renderer_scene_render_rd.cpp 168 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428
  1. /*************************************************************************/
  2. /* renderer_scene_render_rd.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "renderer_scene_render_rd.h"
  31. #include "core/config/project_settings.h"
  32. #include "core/os/os.h"
  33. #include "renderer_compositor_rd.h"
  34. #include "servers/rendering/rendering_server_default.h"
  35. void get_vogel_disk(float *r_kernel, int p_sample_count) {
  36. const float golden_angle = 2.4;
  37. for (int i = 0; i < p_sample_count; i++) {
  38. float r = Math::sqrt(float(i) + 0.5) / Math::sqrt(float(p_sample_count));
  39. float theta = float(i) * golden_angle;
  40. r_kernel[i * 4] = Math::cos(theta) * r;
  41. r_kernel[i * 4 + 1] = Math::sin(theta) * r;
  42. }
  43. }
  44. void RendererSceneRenderRD::sdfgi_update(RID p_render_buffers, RID p_environment, const Vector3 &p_world_position) {
  45. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_environment);
  46. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  47. bool needs_sdfgi = env && env->sdfgi_enabled;
  48. if (!needs_sdfgi) {
  49. if (rb->sdfgi != nullptr) {
  50. //erase it
  51. rb->sdfgi->erase();
  52. memdelete(rb->sdfgi);
  53. rb->sdfgi = nullptr;
  54. }
  55. return;
  56. }
  57. static const uint32_t history_frames_to_converge[RS::ENV_SDFGI_CONVERGE_MAX] = { 5, 10, 15, 20, 25, 30 };
  58. uint32_t requested_history_size = history_frames_to_converge[gi.sdfgi_frames_to_converge];
  59. if (rb->sdfgi && (rb->sdfgi->cascade_mode != env->sdfgi_cascades || rb->sdfgi->min_cell_size != env->sdfgi_min_cell_size || requested_history_size != rb->sdfgi->history_size || rb->sdfgi->uses_occlusion != env->sdfgi_use_occlusion || rb->sdfgi->y_scale_mode != env->sdfgi_y_scale)) {
  60. //configuration changed, erase
  61. rb->sdfgi->erase();
  62. memdelete(rb->sdfgi);
  63. rb->sdfgi = nullptr;
  64. }
  65. RendererSceneGIRD::SDFGI *sdfgi = rb->sdfgi;
  66. if (sdfgi == nullptr) {
  67. // re-create
  68. rb->sdfgi = gi.create_sdfgi(env, p_world_position, requested_history_size);
  69. } else {
  70. //check for updates
  71. rb->sdfgi->update(env, p_world_position);
  72. }
  73. }
  74. int RendererSceneRenderRD::sdfgi_get_pending_region_count(RID p_render_buffers) const {
  75. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  76. ERR_FAIL_COND_V(rb == nullptr, 0);
  77. if (rb->sdfgi == nullptr) {
  78. return 0;
  79. }
  80. int dirty_count = 0;
  81. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  82. const RendererSceneGIRD::SDFGI::Cascade &c = rb->sdfgi->cascades[i];
  83. if (c.dirty_regions == RendererSceneGIRD::SDFGI::Cascade::DIRTY_ALL) {
  84. dirty_count++;
  85. } else {
  86. for (int j = 0; j < 3; j++) {
  87. if (c.dirty_regions[j] != 0) {
  88. dirty_count++;
  89. }
  90. }
  91. }
  92. }
  93. return dirty_count;
  94. }
  95. AABB RendererSceneRenderRD::sdfgi_get_pending_region_bounds(RID p_render_buffers, int p_region) const {
  96. AABB bounds;
  97. Vector3i from;
  98. Vector3i size;
  99. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  100. ERR_FAIL_COND_V(rb == nullptr, AABB());
  101. ERR_FAIL_COND_V(rb->sdfgi == nullptr, AABB());
  102. int c = rb->sdfgi->get_pending_region_data(p_region, from, size, bounds);
  103. ERR_FAIL_COND_V(c == -1, AABB());
  104. return bounds;
  105. }
  106. uint32_t RendererSceneRenderRD::sdfgi_get_pending_region_cascade(RID p_render_buffers, int p_region) const {
  107. AABB bounds;
  108. Vector3i from;
  109. Vector3i size;
  110. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  111. ERR_FAIL_COND_V(rb == nullptr, -1);
  112. ERR_FAIL_COND_V(rb->sdfgi == nullptr, -1);
  113. return rb->sdfgi->get_pending_region_data(p_region, from, size, bounds);
  114. }
  115. RID RendererSceneRenderRD::sky_allocate() {
  116. return sky.allocate_sky_rid();
  117. }
  118. void RendererSceneRenderRD::sky_initialize(RID p_rid) {
  119. sky.initialize_sky_rid(p_rid);
  120. }
  121. void RendererSceneRenderRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) {
  122. sky.sky_set_radiance_size(p_sky, p_radiance_size);
  123. }
  124. void RendererSceneRenderRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) {
  125. sky.sky_set_mode(p_sky, p_mode);
  126. }
  127. void RendererSceneRenderRD::sky_set_material(RID p_sky, RID p_material) {
  128. sky.sky_set_material(p_sky, p_material);
  129. }
  130. Ref<Image> RendererSceneRenderRD::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) {
  131. return sky.sky_bake_panorama(p_sky, p_energy, p_bake_irradiance, p_size);
  132. }
  133. RID RendererSceneRenderRD::environment_allocate() {
  134. return environment_owner.allocate_rid();
  135. }
  136. void RendererSceneRenderRD::environment_initialize(RID p_rid) {
  137. environment_owner.initialize_rid(p_rid, RendererSceneEnvironmentRD());
  138. }
  139. void RendererSceneRenderRD::environment_set_background(RID p_env, RS::EnvironmentBG p_bg) {
  140. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  141. ERR_FAIL_COND(!env);
  142. env->background = p_bg;
  143. }
  144. void RendererSceneRenderRD::environment_set_sky(RID p_env, RID p_sky) {
  145. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  146. ERR_FAIL_COND(!env);
  147. env->sky = p_sky;
  148. }
  149. void RendererSceneRenderRD::environment_set_sky_custom_fov(RID p_env, float p_scale) {
  150. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  151. ERR_FAIL_COND(!env);
  152. env->sky_custom_fov = p_scale;
  153. }
  154. void RendererSceneRenderRD::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) {
  155. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  156. ERR_FAIL_COND(!env);
  157. env->sky_orientation = p_orientation;
  158. }
  159. void RendererSceneRenderRD::environment_set_bg_color(RID p_env, const Color &p_color) {
  160. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  161. ERR_FAIL_COND(!env);
  162. env->bg_color = p_color;
  163. }
  164. void RendererSceneRenderRD::environment_set_bg_energy(RID p_env, float p_energy) {
  165. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  166. ERR_FAIL_COND(!env);
  167. env->bg_energy = p_energy;
  168. }
  169. void RendererSceneRenderRD::environment_set_canvas_max_layer(RID p_env, int p_max_layer) {
  170. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  171. ERR_FAIL_COND(!env);
  172. env->canvas_max_layer = p_max_layer;
  173. }
  174. void RendererSceneRenderRD::environment_set_ambient_light(RID p_env, const Color &p_color, RS::EnvironmentAmbientSource p_ambient, float p_energy, float p_sky_contribution, RS::EnvironmentReflectionSource p_reflection_source, const Color &p_ao_color) {
  175. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  176. ERR_FAIL_COND(!env);
  177. env->set_ambient_light(p_color, p_ambient, p_energy, p_sky_contribution, p_reflection_source, p_ao_color);
  178. }
  179. RS::EnvironmentBG RendererSceneRenderRD::environment_get_background(RID p_env) const {
  180. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  181. ERR_FAIL_COND_V(!env, RS::ENV_BG_MAX);
  182. return env->background;
  183. }
  184. RID RendererSceneRenderRD::environment_get_sky(RID p_env) const {
  185. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  186. ERR_FAIL_COND_V(!env, RID());
  187. return env->sky;
  188. }
  189. float RendererSceneRenderRD::environment_get_sky_custom_fov(RID p_env) const {
  190. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  191. ERR_FAIL_COND_V(!env, 0);
  192. return env->sky_custom_fov;
  193. }
  194. Basis RendererSceneRenderRD::environment_get_sky_orientation(RID p_env) const {
  195. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  196. ERR_FAIL_COND_V(!env, Basis());
  197. return env->sky_orientation;
  198. }
  199. Color RendererSceneRenderRD::environment_get_bg_color(RID p_env) const {
  200. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  201. ERR_FAIL_COND_V(!env, Color());
  202. return env->bg_color;
  203. }
  204. float RendererSceneRenderRD::environment_get_bg_energy(RID p_env) const {
  205. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  206. ERR_FAIL_COND_V(!env, 0);
  207. return env->bg_energy;
  208. }
  209. int RendererSceneRenderRD::environment_get_canvas_max_layer(RID p_env) const {
  210. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  211. ERR_FAIL_COND_V(!env, 0);
  212. return env->canvas_max_layer;
  213. }
  214. Color RendererSceneRenderRD::environment_get_ambient_light_color(RID p_env) const {
  215. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  216. ERR_FAIL_COND_V(!env, Color());
  217. return env->ambient_light;
  218. }
  219. RS::EnvironmentAmbientSource RendererSceneRenderRD::environment_get_ambient_source(RID p_env) const {
  220. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  221. ERR_FAIL_COND_V(!env, RS::ENV_AMBIENT_SOURCE_BG);
  222. return env->ambient_source;
  223. }
  224. float RendererSceneRenderRD::environment_get_ambient_light_energy(RID p_env) const {
  225. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  226. ERR_FAIL_COND_V(!env, 0);
  227. return env->ambient_light_energy;
  228. }
  229. float RendererSceneRenderRD::environment_get_ambient_sky_contribution(RID p_env) const {
  230. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  231. ERR_FAIL_COND_V(!env, 0);
  232. return env->ambient_sky_contribution;
  233. }
  234. RS::EnvironmentReflectionSource RendererSceneRenderRD::environment_get_reflection_source(RID p_env) const {
  235. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  236. ERR_FAIL_COND_V(!env, RS::ENV_REFLECTION_SOURCE_DISABLED);
  237. return env->reflection_source;
  238. }
  239. Color RendererSceneRenderRD::environment_get_ao_color(RID p_env) const {
  240. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  241. ERR_FAIL_COND_V(!env, Color());
  242. return env->ao_color;
  243. }
  244. void RendererSceneRenderRD::environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) {
  245. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  246. ERR_FAIL_COND(!env);
  247. env->set_tonemap(p_tone_mapper, p_exposure, p_white, p_auto_exposure, p_min_luminance, p_max_luminance, p_auto_exp_speed, p_auto_exp_scale);
  248. }
  249. void RendererSceneRenderRD::environment_set_glow(RID p_env, bool p_enable, Vector<float> p_levels, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap) {
  250. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  251. ERR_FAIL_COND(!env);
  252. env->set_glow(p_enable, p_levels, p_intensity, p_strength, p_mix, p_bloom_threshold, p_blend_mode, p_hdr_bleed_threshold, p_hdr_bleed_scale, p_hdr_luminance_cap);
  253. }
  254. void RendererSceneRenderRD::environment_glow_set_use_bicubic_upscale(bool p_enable) {
  255. glow_bicubic_upscale = p_enable;
  256. }
  257. void RendererSceneRenderRD::environment_glow_set_use_high_quality(bool p_enable) {
  258. glow_high_quality = p_enable;
  259. }
  260. void RendererSceneRenderRD::environment_set_sdfgi(RID p_env, bool p_enable, RS::EnvironmentSDFGICascades p_cascades, float p_min_cell_size, RS::EnvironmentSDFGIYScale p_y_scale, bool p_use_occlusion, float p_bounce_feedback, bool p_read_sky, float p_energy, float p_normal_bias, float p_probe_bias) {
  261. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  262. ERR_FAIL_COND(!env);
  263. if (!is_dynamic_gi_supported()) {
  264. return;
  265. }
  266. env->set_sdfgi(p_enable, p_cascades, p_min_cell_size, p_y_scale, p_use_occlusion, p_bounce_feedback, p_read_sky, p_energy, p_normal_bias, p_probe_bias);
  267. }
  268. void RendererSceneRenderRD::environment_set_fog(RID p_env, bool p_enable, const Color &p_light_color, float p_light_energy, float p_sun_scatter, float p_density, float p_height, float p_height_density, float p_fog_aerial_perspective) {
  269. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  270. ERR_FAIL_COND(!env);
  271. env->set_fog(p_enable, p_light_color, p_light_energy, p_sun_scatter, p_density, p_height, p_height_density, p_fog_aerial_perspective);
  272. }
  273. bool RendererSceneRenderRD::environment_is_fog_enabled(RID p_env) const {
  274. const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  275. ERR_FAIL_COND_V(!env, false);
  276. return env->fog_enabled;
  277. }
  278. Color RendererSceneRenderRD::environment_get_fog_light_color(RID p_env) const {
  279. const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  280. ERR_FAIL_COND_V(!env, Color());
  281. return env->fog_light_color;
  282. }
  283. float RendererSceneRenderRD::environment_get_fog_light_energy(RID p_env) const {
  284. const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  285. ERR_FAIL_COND_V(!env, 0);
  286. return env->fog_light_energy;
  287. }
  288. float RendererSceneRenderRD::environment_get_fog_sun_scatter(RID p_env) const {
  289. const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  290. ERR_FAIL_COND_V(!env, 0);
  291. return env->fog_sun_scatter;
  292. }
  293. float RendererSceneRenderRD::environment_get_fog_density(RID p_env) const {
  294. const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  295. ERR_FAIL_COND_V(!env, 0);
  296. return env->fog_density;
  297. }
  298. float RendererSceneRenderRD::environment_get_fog_height(RID p_env) const {
  299. const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  300. ERR_FAIL_COND_V(!env, 0);
  301. return env->fog_height;
  302. }
  303. float RendererSceneRenderRD::environment_get_fog_height_density(RID p_env) const {
  304. const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  305. ERR_FAIL_COND_V(!env, 0);
  306. return env->fog_height_density;
  307. }
  308. float RendererSceneRenderRD::environment_get_fog_aerial_perspective(RID p_env) const {
  309. const RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  310. ERR_FAIL_COND_V(!env, 0);
  311. return env->fog_aerial_perspective;
  312. }
  313. void RendererSceneRenderRD::environment_set_volumetric_fog(RID p_env, bool p_enable, float p_density, const Color &p_light, float p_light_energy, float p_length, float p_detail_spread, float p_gi_inject, bool p_temporal_reprojection, float p_temporal_reprojection_amount) {
  314. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  315. ERR_FAIL_COND(!env);
  316. if (!is_volumetric_supported()) {
  317. return;
  318. }
  319. env->set_volumetric_fog(p_enable, p_density, p_light, p_light_energy, p_length, p_detail_spread, p_gi_inject, p_temporal_reprojection, p_temporal_reprojection_amount);
  320. }
  321. void RendererSceneRenderRD::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) {
  322. volumetric_fog_size = p_size;
  323. volumetric_fog_depth = p_depth;
  324. }
  325. void RendererSceneRenderRD::environment_set_volumetric_fog_filter_active(bool p_enable) {
  326. volumetric_fog_filter_active = p_enable;
  327. }
  328. void RendererSceneRenderRD::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) {
  329. gi.sdfgi_ray_count = p_ray_count;
  330. }
  331. void RendererSceneRenderRD::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) {
  332. gi.sdfgi_frames_to_converge = p_frames;
  333. }
  334. void RendererSceneRenderRD::environment_set_sdfgi_frames_to_update_light(RS::EnvironmentSDFGIFramesToUpdateLight p_update) {
  335. gi.sdfgi_frames_to_update_light = p_update;
  336. }
  337. void RendererSceneRenderRD::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance) {
  338. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  339. ERR_FAIL_COND(!env);
  340. env->set_ssr(p_enable, p_max_steps, p_fade_int, p_fade_out, p_depth_tolerance);
  341. }
  342. void RendererSceneRenderRD::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) {
  343. ssr_roughness_quality = p_quality;
  344. }
  345. RS::EnvironmentSSRRoughnessQuality RendererSceneRenderRD::environment_get_ssr_roughness_quality() const {
  346. return ssr_roughness_quality;
  347. }
  348. void RendererSceneRenderRD::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_power, float p_detail, float p_horizon, float p_sharpness, float p_light_affect, float p_ao_channel_affect) {
  349. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  350. ERR_FAIL_COND(!env);
  351. env->set_ssao(p_enable, p_radius, p_intensity, p_power, p_detail, p_horizon, p_sharpness, p_light_affect, p_ao_channel_affect);
  352. }
  353. void RendererSceneRenderRD::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) {
  354. ssao_quality = p_quality;
  355. ssao_half_size = p_half_size;
  356. ssao_adaptive_target = p_adaptive_target;
  357. ssao_blur_passes = p_blur_passes;
  358. ssao_fadeout_from = p_fadeout_from;
  359. ssao_fadeout_to = p_fadeout_to;
  360. }
  361. bool RendererSceneRenderRD::environment_is_ssao_enabled(RID p_env) const {
  362. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  363. ERR_FAIL_COND_V(!env, false);
  364. return env->ssao_enabled;
  365. }
  366. float RendererSceneRenderRD::environment_get_ssao_ao_affect(RID p_env) const {
  367. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  368. ERR_FAIL_COND_V(!env, 0.0);
  369. return env->ssao_ao_channel_affect;
  370. }
  371. float RendererSceneRenderRD::environment_get_ssao_light_affect(RID p_env) const {
  372. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  373. ERR_FAIL_COND_V(!env, 0.0);
  374. return env->ssao_direct_light_affect;
  375. }
  376. bool RendererSceneRenderRD::environment_is_ssr_enabled(RID p_env) const {
  377. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  378. ERR_FAIL_COND_V(!env, false);
  379. return env->ssr_enabled;
  380. }
  381. bool RendererSceneRenderRD::environment_is_sdfgi_enabled(RID p_env) const {
  382. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  383. ERR_FAIL_COND_V(!env, false);
  384. return env->sdfgi_enabled;
  385. }
  386. bool RendererSceneRenderRD::is_environment(RID p_env) const {
  387. return environment_owner.owns(p_env);
  388. }
  389. Ref<Image> RendererSceneRenderRD::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) {
  390. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  391. ERR_FAIL_COND_V(!env, Ref<Image>());
  392. if (env->background == RS::ENV_BG_CAMERA_FEED || env->background == RS::ENV_BG_CANVAS || env->background == RS::ENV_BG_KEEP) {
  393. return Ref<Image>(); //nothing to bake
  394. }
  395. if (env->background == RS::ENV_BG_CLEAR_COLOR || env->background == RS::ENV_BG_COLOR) {
  396. Color color;
  397. if (env->background == RS::ENV_BG_CLEAR_COLOR) {
  398. color = storage->get_default_clear_color();
  399. } else {
  400. color = env->bg_color;
  401. }
  402. color.r *= env->bg_energy;
  403. color.g *= env->bg_energy;
  404. color.b *= env->bg_energy;
  405. Ref<Image> ret;
  406. ret.instantiate();
  407. ret->create(p_size.width, p_size.height, false, Image::FORMAT_RGBAF);
  408. for (int i = 0; i < p_size.width; i++) {
  409. for (int j = 0; j < p_size.height; j++) {
  410. ret->set_pixel(i, j, color);
  411. }
  412. }
  413. return ret;
  414. }
  415. if (env->background == RS::ENV_BG_SKY && env->sky.is_valid()) {
  416. return sky_bake_panorama(env->sky, env->bg_energy, p_bake_irradiance, p_size);
  417. }
  418. return Ref<Image>();
  419. }
  420. ////////////////////////////////////////////////////////////
  421. RID RendererSceneRenderRD::reflection_atlas_create() {
  422. ReflectionAtlas ra;
  423. ra.count = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_count");
  424. ra.size = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_size");
  425. if (is_clustered_enabled()) {
  426. ra.cluster_builder = memnew(ClusterBuilderRD);
  427. ra.cluster_builder->set_shared(&cluster_builder_shared);
  428. ra.cluster_builder->setup(Size2i(ra.size, ra.size), max_cluster_elements, RID(), RID(), RID());
  429. } else {
  430. ra.cluster_builder = nullptr;
  431. }
  432. return reflection_atlas_owner.make_rid(ra);
  433. }
  434. void RendererSceneRenderRD::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) {
  435. ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_ref_atlas);
  436. ERR_FAIL_COND(!ra);
  437. if (ra->size == p_reflection_size && ra->count == p_reflection_count) {
  438. return; //no changes
  439. }
  440. if (ra->cluster_builder) {
  441. // only if we're using our cluster
  442. ra->cluster_builder->setup(Size2i(ra->size, ra->size), max_cluster_elements, RID(), RID(), RID());
  443. }
  444. ra->size = p_reflection_size;
  445. ra->count = p_reflection_count;
  446. if (ra->reflection.is_valid()) {
  447. //clear and invalidate everything
  448. RD::get_singleton()->free(ra->reflection);
  449. ra->reflection = RID();
  450. RD::get_singleton()->free(ra->depth_buffer);
  451. ra->depth_buffer = RID();
  452. for (int i = 0; i < ra->reflections.size(); i++) {
  453. ra->reflections.write[i].data.clear_reflection_data();
  454. if (ra->reflections[i].owner.is_null()) {
  455. continue;
  456. }
  457. reflection_probe_release_atlas_index(ra->reflections[i].owner);
  458. //rp->atlasindex clear
  459. }
  460. ra->reflections.clear();
  461. }
  462. }
  463. int RendererSceneRenderRD::reflection_atlas_get_size(RID p_ref_atlas) const {
  464. ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_ref_atlas);
  465. ERR_FAIL_COND_V(!ra, 0);
  466. return ra->size;
  467. }
  468. ////////////////////////
  469. RID RendererSceneRenderRD::reflection_probe_instance_create(RID p_probe) {
  470. ReflectionProbeInstance rpi;
  471. rpi.probe = p_probe;
  472. return reflection_probe_instance_owner.make_rid(rpi);
  473. }
  474. void RendererSceneRenderRD::reflection_probe_instance_set_transform(RID p_instance, const Transform3D &p_transform) {
  475. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  476. ERR_FAIL_COND(!rpi);
  477. rpi->transform = p_transform;
  478. rpi->dirty = true;
  479. }
  480. void RendererSceneRenderRD::reflection_probe_release_atlas_index(RID p_instance) {
  481. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  482. ERR_FAIL_COND(!rpi);
  483. if (rpi->atlas.is_null()) {
  484. return; //nothing to release
  485. }
  486. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  487. ERR_FAIL_COND(!atlas);
  488. ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size());
  489. atlas->reflections.write[rpi->atlas_index].owner = RID();
  490. rpi->atlas_index = -1;
  491. rpi->atlas = RID();
  492. }
  493. bool RendererSceneRenderRD::reflection_probe_instance_needs_redraw(RID p_instance) {
  494. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  495. ERR_FAIL_COND_V(!rpi, false);
  496. if (rpi->rendering) {
  497. return false;
  498. }
  499. if (rpi->dirty) {
  500. return true;
  501. }
  502. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
  503. return true;
  504. }
  505. return rpi->atlas_index == -1;
  506. }
  507. bool RendererSceneRenderRD::reflection_probe_instance_has_reflection(RID p_instance) {
  508. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  509. ERR_FAIL_COND_V(!rpi, false);
  510. return rpi->atlas.is_valid();
  511. }
  512. bool RendererSceneRenderRD::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
  513. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(p_reflection_atlas);
  514. ERR_FAIL_COND_V(!atlas, false);
  515. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  516. ERR_FAIL_COND_V(!rpi, false);
  517. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->size != 256) {
  518. WARN_PRINT("ReflectionProbes set to UPDATE_ALWAYS must have an atlas size of 256. Please update the atlas size in the ProjectSettings.");
  519. reflection_atlas_set_size(p_reflection_atlas, 256, atlas->count);
  520. }
  521. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->reflections[0].data.layers[0].mipmaps.size() != 8) {
  522. // Invalidate reflection atlas, need to regenerate
  523. RD::get_singleton()->free(atlas->reflection);
  524. atlas->reflection = RID();
  525. for (int i = 0; i < atlas->reflections.size(); i++) {
  526. if (atlas->reflections[i].owner.is_null()) {
  527. continue;
  528. }
  529. reflection_probe_release_atlas_index(atlas->reflections[i].owner);
  530. }
  531. atlas->reflections.clear();
  532. }
  533. if (atlas->reflection.is_null()) {
  534. int mipmaps = MIN(sky.roughness_layers, Image::get_image_required_mipmaps(atlas->size, atlas->size, Image::FORMAT_RGBAH) + 1);
  535. mipmaps = storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS ? 8 : mipmaps; // always use 8 mipmaps with real time filtering
  536. {
  537. //reflection atlas was unused, create:
  538. RD::TextureFormat tf;
  539. tf.array_layers = 6 * atlas->count;
  540. tf.format = _render_buffers_get_color_format();
  541. tf.texture_type = RD::TEXTURE_TYPE_CUBE_ARRAY;
  542. tf.mipmaps = mipmaps;
  543. tf.width = atlas->size;
  544. tf.height = atlas->size;
  545. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  546. atlas->reflection = RD::get_singleton()->texture_create(tf, RD::TextureView());
  547. }
  548. {
  549. RD::TextureFormat tf;
  550. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  551. tf.width = atlas->size;
  552. tf.height = atlas->size;
  553. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  554. atlas->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView());
  555. }
  556. atlas->reflections.resize(atlas->count);
  557. for (int i = 0; i < atlas->count; i++) {
  558. atlas->reflections.write[i].data.update_reflection_data(atlas->size, mipmaps, false, atlas->reflection, i * 6, storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS, sky.roughness_layers);
  559. for (int j = 0; j < 6; j++) {
  560. Vector<RID> fb;
  561. fb.push_back(atlas->reflections.write[i].data.layers[0].mipmaps[0].views[j]);
  562. fb.push_back(atlas->depth_buffer);
  563. atlas->reflections.write[i].fbs[j] = RD::get_singleton()->framebuffer_create(fb);
  564. }
  565. }
  566. Vector<RID> fb;
  567. fb.push_back(atlas->depth_buffer);
  568. atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb);
  569. }
  570. if (rpi->atlas_index == -1) {
  571. for (int i = 0; i < atlas->reflections.size(); i++) {
  572. if (atlas->reflections[i].owner.is_null()) {
  573. rpi->atlas_index = i;
  574. break;
  575. }
  576. }
  577. //find the one used last
  578. if (rpi->atlas_index == -1) {
  579. //everything is in use, find the one least used via LRU
  580. uint64_t pass_min = 0;
  581. for (int i = 0; i < atlas->reflections.size(); i++) {
  582. ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.getornull(atlas->reflections[i].owner);
  583. if (rpi2->last_pass < pass_min) {
  584. pass_min = rpi2->last_pass;
  585. rpi->atlas_index = i;
  586. }
  587. }
  588. }
  589. }
  590. if (rpi->atlas_index != -1) { // should we fail if this is still -1 ?
  591. atlas->reflections.write[rpi->atlas_index].owner = p_instance;
  592. }
  593. rpi->atlas = p_reflection_atlas;
  594. rpi->rendering = true;
  595. rpi->dirty = false;
  596. rpi->processing_layer = 1;
  597. rpi->processing_side = 0;
  598. return true;
  599. }
  600. bool RendererSceneRenderRD::reflection_probe_instance_postprocess_step(RID p_instance) {
  601. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  602. ERR_FAIL_COND_V(!rpi, false);
  603. ERR_FAIL_COND_V(!rpi->rendering, false);
  604. ERR_FAIL_COND_V(rpi->atlas.is_null(), false);
  605. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  606. if (!atlas || rpi->atlas_index == -1) {
  607. //does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering)
  608. rpi->rendering = false;
  609. return false;
  610. }
  611. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
  612. // Using real time reflections, all roughness is done in one step
  613. atlas->reflections.write[rpi->atlas_index].data.create_reflection_fast_filter(storage, false);
  614. rpi->rendering = false;
  615. rpi->processing_side = 0;
  616. rpi->processing_layer = 1;
  617. return true;
  618. }
  619. if (rpi->processing_layer > 1) {
  620. atlas->reflections.write[rpi->atlas_index].data.create_reflection_importance_sample(storage, false, 10, rpi->processing_layer, sky.sky_ggx_samples_quality);
  621. rpi->processing_layer++;
  622. if (rpi->processing_layer == atlas->reflections[rpi->atlas_index].data.layers[0].mipmaps.size()) {
  623. rpi->rendering = false;
  624. rpi->processing_side = 0;
  625. rpi->processing_layer = 1;
  626. return true;
  627. }
  628. return false;
  629. } else {
  630. atlas->reflections.write[rpi->atlas_index].data.create_reflection_importance_sample(storage, false, rpi->processing_side, rpi->processing_layer, sky.sky_ggx_samples_quality);
  631. }
  632. rpi->processing_side++;
  633. if (rpi->processing_side == 6) {
  634. rpi->processing_side = 0;
  635. rpi->processing_layer++;
  636. }
  637. return false;
  638. }
  639. uint32_t RendererSceneRenderRD::reflection_probe_instance_get_resolution(RID p_instance) {
  640. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  641. ERR_FAIL_COND_V(!rpi, 0);
  642. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  643. ERR_FAIL_COND_V(!atlas, 0);
  644. return atlas->size;
  645. }
  646. RID RendererSceneRenderRD::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) {
  647. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  648. ERR_FAIL_COND_V(!rpi, RID());
  649. ERR_FAIL_INDEX_V(p_index, 6, RID());
  650. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  651. ERR_FAIL_COND_V(!atlas, RID());
  652. return atlas->reflections[rpi->atlas_index].fbs[p_index];
  653. }
  654. RID RendererSceneRenderRD::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) {
  655. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  656. ERR_FAIL_COND_V(!rpi, RID());
  657. ERR_FAIL_INDEX_V(p_index, 6, RID());
  658. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  659. ERR_FAIL_COND_V(!atlas, RID());
  660. return atlas->depth_fb;
  661. }
  662. ///////////////////////////////////////////////////////////
  663. RID RendererSceneRenderRD::shadow_atlas_create() {
  664. return shadow_atlas_owner.make_rid(ShadowAtlas());
  665. }
  666. void RendererSceneRenderRD::_update_shadow_atlas(ShadowAtlas *shadow_atlas) {
  667. if (shadow_atlas->size > 0 && shadow_atlas->depth.is_null()) {
  668. RD::TextureFormat tf;
  669. tf.format = shadow_atlas->use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT;
  670. tf.width = shadow_atlas->size;
  671. tf.height = shadow_atlas->size;
  672. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  673. shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  674. Vector<RID> fb_tex;
  675. fb_tex.push_back(shadow_atlas->depth);
  676. shadow_atlas->fb = RD::get_singleton()->framebuffer_create(fb_tex);
  677. }
  678. }
  679. void RendererSceneRenderRD::shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits) {
  680. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  681. ERR_FAIL_COND(!shadow_atlas);
  682. ERR_FAIL_COND(p_size < 0);
  683. p_size = next_power_of_2(p_size);
  684. if (p_size == shadow_atlas->size && p_16_bits == shadow_atlas->use_16_bits) {
  685. return;
  686. }
  687. // erasing atlas
  688. if (shadow_atlas->depth.is_valid()) {
  689. RD::get_singleton()->free(shadow_atlas->depth);
  690. shadow_atlas->depth = RID();
  691. }
  692. for (int i = 0; i < 4; i++) {
  693. //clear subdivisions
  694. shadow_atlas->quadrants[i].shadows.resize(0);
  695. shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision);
  696. }
  697. //erase shadow atlas reference from lights
  698. for (Map<RID, uint32_t>::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) {
  699. LightInstance *li = light_instance_owner.getornull(E->key());
  700. ERR_CONTINUE(!li);
  701. li->shadow_atlases.erase(p_atlas);
  702. }
  703. //clear owners
  704. shadow_atlas->shadow_owners.clear();
  705. shadow_atlas->size = p_size;
  706. shadow_atlas->use_16_bits = p_size;
  707. }
  708. void RendererSceneRenderRD::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
  709. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  710. ERR_FAIL_COND(!shadow_atlas);
  711. ERR_FAIL_INDEX(p_quadrant, 4);
  712. ERR_FAIL_INDEX(p_subdivision, 16384);
  713. uint32_t subdiv = next_power_of_2(p_subdivision);
  714. if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer
  715. subdiv <<= 1;
  716. }
  717. subdiv = int(Math::sqrt((float)subdiv));
  718. //obtain the number that will be x*x
  719. if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) {
  720. return;
  721. }
  722. //erase all data from quadrant
  723. for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
  724. if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
  725. shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  726. LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  727. ERR_CONTINUE(!li);
  728. li->shadow_atlases.erase(p_atlas);
  729. }
  730. }
  731. shadow_atlas->quadrants[p_quadrant].shadows.resize(0);
  732. shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv);
  733. shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;
  734. //cache the smallest subdiv (for faster allocation in light update)
  735. shadow_atlas->smallest_subdiv = 1 << 30;
  736. for (int i = 0; i < 4; i++) {
  737. if (shadow_atlas->quadrants[i].subdivision) {
  738. shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
  739. }
  740. }
  741. if (shadow_atlas->smallest_subdiv == 1 << 30) {
  742. shadow_atlas->smallest_subdiv = 0;
  743. }
  744. //resort the size orders, simple bublesort for 4 elements..
  745. int swaps = 0;
  746. do {
  747. swaps = 0;
  748. for (int i = 0; i < 3; i++) {
  749. if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
  750. SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
  751. swaps++;
  752. }
  753. }
  754. } while (swaps > 0);
  755. }
  756. bool RendererSceneRenderRD::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
  757. for (int i = p_quadrant_count - 1; i >= 0; i--) {
  758. int qidx = p_in_quadrants[i];
  759. if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
  760. return false;
  761. }
  762. //look for an empty space
  763. int sc = shadow_atlas->quadrants[qidx].shadows.size();
  764. ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw();
  765. int found_free_idx = -1; //found a free one
  766. int found_used_idx = -1; //found existing one, must steal it
  767. uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion)
  768. for (int j = 0; j < sc; j++) {
  769. if (!sarr[j].owner.is_valid()) {
  770. found_free_idx = j;
  771. break;
  772. }
  773. LightInstance *sli = light_instance_owner.getornull(sarr[j].owner);
  774. ERR_CONTINUE(!sli);
  775. if (sli->last_scene_pass != scene_pass) {
  776. //was just allocated, don't kill it so soon, wait a bit..
  777. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
  778. continue;
  779. }
  780. if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
  781. found_used_idx = j;
  782. min_pass = sli->last_scene_pass;
  783. }
  784. }
  785. }
  786. if (found_free_idx == -1 && found_used_idx == -1) {
  787. continue; //nothing found
  788. }
  789. if (found_free_idx == -1 && found_used_idx != -1) {
  790. found_free_idx = found_used_idx;
  791. }
  792. r_quadrant = qidx;
  793. r_shadow = found_free_idx;
  794. return true;
  795. }
  796. return false;
  797. }
  798. bool RendererSceneRenderRD::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) {
  799. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  800. ERR_FAIL_COND_V(!shadow_atlas, false);
  801. LightInstance *li = light_instance_owner.getornull(p_light_intance);
  802. ERR_FAIL_COND_V(!li, false);
  803. if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
  804. return false;
  805. }
  806. uint32_t quad_size = shadow_atlas->size >> 1;
  807. int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));
  808. int valid_quadrants[4];
  809. int valid_quadrant_count = 0;
  810. int best_size = -1; //best size found
  811. int best_subdiv = -1; //subdiv for the best size
  812. //find the quadrants this fits into, and the best possible size it can fit into
  813. for (int i = 0; i < 4; i++) {
  814. int q = shadow_atlas->size_order[i];
  815. int sd = shadow_atlas->quadrants[q].subdivision;
  816. if (sd == 0) {
  817. continue; //unused
  818. }
  819. int max_fit = quad_size / sd;
  820. if (best_size != -1 && max_fit > best_size) {
  821. break; //too large
  822. }
  823. valid_quadrants[valid_quadrant_count++] = q;
  824. best_subdiv = sd;
  825. if (max_fit >= desired_fit) {
  826. best_size = max_fit;
  827. }
  828. }
  829. ERR_FAIL_COND_V(valid_quadrant_count == 0, false);
  830. uint64_t tick = OS::get_singleton()->get_ticks_msec();
  831. //see if it already exists
  832. if (shadow_atlas->shadow_owners.has(p_light_intance)) {
  833. //it does!
  834. uint32_t key = shadow_atlas->shadow_owners[p_light_intance];
  835. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  836. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  837. bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
  838. bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version;
  839. if (!should_realloc) {
  840. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  841. //already existing, see if it should redraw or it's just OK
  842. return should_redraw;
  843. }
  844. int new_quadrant, new_shadow;
  845. //find a better place
  846. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) {
  847. //found a better place!
  848. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  849. if (sh->owner.is_valid()) {
  850. //is taken, but is invalid, erasing it
  851. shadow_atlas->shadow_owners.erase(sh->owner);
  852. LightInstance *sli = light_instance_owner.getornull(sh->owner);
  853. sli->shadow_atlases.erase(p_atlas);
  854. }
  855. //erase previous
  856. shadow_atlas->quadrants[q].shadows.write[s].version = 0;
  857. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  858. sh->owner = p_light_intance;
  859. sh->alloc_tick = tick;
  860. sh->version = p_light_version;
  861. li->shadow_atlases.insert(p_atlas);
  862. //make new key
  863. key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  864. key |= new_shadow;
  865. //update it in map
  866. shadow_atlas->shadow_owners[p_light_intance] = key;
  867. //make it dirty, as it should redraw anyway
  868. return true;
  869. }
  870. //no better place for this shadow found, keep current
  871. //already existing, see if it should redraw or it's just OK
  872. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  873. return should_redraw;
  874. }
  875. int new_quadrant, new_shadow;
  876. //find a better place
  877. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) {
  878. //found a better place!
  879. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  880. if (sh->owner.is_valid()) {
  881. //is taken, but is invalid, erasing it
  882. shadow_atlas->shadow_owners.erase(sh->owner);
  883. LightInstance *sli = light_instance_owner.getornull(sh->owner);
  884. sli->shadow_atlases.erase(p_atlas);
  885. }
  886. sh->owner = p_light_intance;
  887. sh->alloc_tick = tick;
  888. sh->version = p_light_version;
  889. li->shadow_atlases.insert(p_atlas);
  890. //make new key
  891. uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  892. key |= new_shadow;
  893. //update it in map
  894. shadow_atlas->shadow_owners[p_light_intance] = key;
  895. //make it dirty, as it should redraw anyway
  896. return true;
  897. }
  898. //no place to allocate this light, apologies
  899. return false;
  900. }
  901. void RendererSceneRenderRD::_update_directional_shadow_atlas() {
  902. if (directional_shadow.depth.is_null() && directional_shadow.size > 0) {
  903. RD::TextureFormat tf;
  904. tf.format = directional_shadow.use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT;
  905. tf.width = directional_shadow.size;
  906. tf.height = directional_shadow.size;
  907. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  908. directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  909. Vector<RID> fb_tex;
  910. fb_tex.push_back(directional_shadow.depth);
  911. directional_shadow.fb = RD::get_singleton()->framebuffer_create(fb_tex);
  912. }
  913. }
  914. void RendererSceneRenderRD::directional_shadow_atlas_set_size(int p_size, bool p_16_bits) {
  915. p_size = nearest_power_of_2_templated(p_size);
  916. if (directional_shadow.size == p_size && directional_shadow.use_16_bits == p_16_bits) {
  917. return;
  918. }
  919. directional_shadow.size = p_size;
  920. if (directional_shadow.depth.is_valid()) {
  921. RD::get_singleton()->free(directional_shadow.depth);
  922. directional_shadow.depth = RID();
  923. _base_uniforms_changed();
  924. }
  925. }
  926. void RendererSceneRenderRD::set_directional_shadow_count(int p_count) {
  927. directional_shadow.light_count = p_count;
  928. directional_shadow.current_light = 0;
  929. }
  930. static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) {
  931. int split_h = 1;
  932. int split_v = 1;
  933. while (split_h * split_v < p_shadow_count) {
  934. if (split_h == split_v) {
  935. split_h <<= 1;
  936. } else {
  937. split_v <<= 1;
  938. }
  939. }
  940. Rect2i rect(0, 0, p_size, p_size);
  941. rect.size.width /= split_h;
  942. rect.size.height /= split_v;
  943. rect.position.x = rect.size.width * (p_shadow_index % split_h);
  944. rect.position.y = rect.size.height * (p_shadow_index / split_h);
  945. return rect;
  946. }
  947. int RendererSceneRenderRD::get_directional_light_shadow_size(RID p_light_intance) {
  948. ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);
  949. Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0);
  950. LightInstance *light_instance = light_instance_owner.getornull(p_light_intance);
  951. ERR_FAIL_COND_V(!light_instance, 0);
  952. switch (storage->light_directional_get_shadow_mode(light_instance->light)) {
  953. case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
  954. break; //none
  955. case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
  956. r.size.height /= 2;
  957. break;
  958. case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
  959. r.size /= 2;
  960. break;
  961. }
  962. return MAX(r.size.width, r.size.height);
  963. }
  964. //////////////////////////////////////////////////
  965. RID RendererSceneRenderRD::camera_effects_allocate() {
  966. return camera_effects_owner.allocate_rid();
  967. }
  968. void RendererSceneRenderRD::camera_effects_initialize(RID p_rid) {
  969. camera_effects_owner.initialize_rid(p_rid, CameraEffects());
  970. }
  971. void RendererSceneRenderRD::camera_effects_set_dof_blur_quality(RS::DOFBlurQuality p_quality, bool p_use_jitter) {
  972. dof_blur_quality = p_quality;
  973. dof_blur_use_jitter = p_use_jitter;
  974. }
  975. void RendererSceneRenderRD::camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape p_shape) {
  976. dof_blur_bokeh_shape = p_shape;
  977. }
  978. void RendererSceneRenderRD::camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount) {
  979. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  980. ERR_FAIL_COND(!camfx);
  981. camfx->dof_blur_far_enabled = p_far_enable;
  982. camfx->dof_blur_far_distance = p_far_distance;
  983. camfx->dof_blur_far_transition = p_far_transition;
  984. camfx->dof_blur_near_enabled = p_near_enable;
  985. camfx->dof_blur_near_distance = p_near_distance;
  986. camfx->dof_blur_near_transition = p_near_transition;
  987. camfx->dof_blur_amount = p_amount;
  988. }
  989. void RendererSceneRenderRD::camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure) {
  990. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  991. ERR_FAIL_COND(!camfx);
  992. camfx->override_exposure_enabled = p_enable;
  993. camfx->override_exposure = p_exposure;
  994. }
  995. RID RendererSceneRenderRD::light_instance_create(RID p_light) {
  996. RID li = light_instance_owner.make_rid(LightInstance());
  997. LightInstance *light_instance = light_instance_owner.getornull(li);
  998. light_instance->self = li;
  999. light_instance->light = p_light;
  1000. light_instance->light_type = storage->light_get_type(p_light);
  1001. return li;
  1002. }
  1003. void RendererSceneRenderRD::light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) {
  1004. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  1005. ERR_FAIL_COND(!light_instance);
  1006. light_instance->transform = p_transform;
  1007. }
  1008. void RendererSceneRenderRD::light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) {
  1009. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  1010. ERR_FAIL_COND(!light_instance);
  1011. light_instance->aabb = p_aabb;
  1012. }
  1013. void RendererSceneRenderRD::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) {
  1014. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  1015. ERR_FAIL_COND(!light_instance);
  1016. ERR_FAIL_INDEX(p_pass, 6);
  1017. light_instance->shadow_transform[p_pass].camera = p_projection;
  1018. light_instance->shadow_transform[p_pass].transform = p_transform;
  1019. light_instance->shadow_transform[p_pass].farplane = p_far;
  1020. light_instance->shadow_transform[p_pass].split = p_split;
  1021. light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
  1022. light_instance->shadow_transform[p_pass].range_begin = p_range_begin;
  1023. light_instance->shadow_transform[p_pass].shadow_texel_size = p_shadow_texel_size;
  1024. light_instance->shadow_transform[p_pass].uv_scale = p_uv_scale;
  1025. }
  1026. void RendererSceneRenderRD::light_instance_mark_visible(RID p_light_instance) {
  1027. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  1028. ERR_FAIL_COND(!light_instance);
  1029. light_instance->last_scene_pass = scene_pass;
  1030. }
  1031. RendererSceneRenderRD::ShadowCubemap *RendererSceneRenderRD::_get_shadow_cubemap(int p_size) {
  1032. if (!shadow_cubemaps.has(p_size)) {
  1033. ShadowCubemap sc;
  1034. {
  1035. RD::TextureFormat tf;
  1036. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  1037. tf.width = p_size;
  1038. tf.height = p_size;
  1039. tf.texture_type = RD::TEXTURE_TYPE_CUBE;
  1040. tf.array_layers = 6;
  1041. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  1042. sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1043. }
  1044. for (int i = 0; i < 6; i++) {
  1045. RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0);
  1046. Vector<RID> fbtex;
  1047. fbtex.push_back(side_texture);
  1048. sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex);
  1049. }
  1050. shadow_cubemaps[p_size] = sc;
  1051. }
  1052. return &shadow_cubemaps[p_size];
  1053. }
  1054. //////////////////////////
  1055. RID RendererSceneRenderRD::decal_instance_create(RID p_decal) {
  1056. DecalInstance di;
  1057. di.decal = p_decal;
  1058. return decal_instance_owner.make_rid(di);
  1059. }
  1060. void RendererSceneRenderRD::decal_instance_set_transform(RID p_decal, const Transform3D &p_transform) {
  1061. DecalInstance *di = decal_instance_owner.getornull(p_decal);
  1062. ERR_FAIL_COND(!di);
  1063. di->transform = p_transform;
  1064. }
  1065. /////////////////////////////////
  1066. RID RendererSceneRenderRD::lightmap_instance_create(RID p_lightmap) {
  1067. LightmapInstance li;
  1068. li.lightmap = p_lightmap;
  1069. return lightmap_instance_owner.make_rid(li);
  1070. }
  1071. void RendererSceneRenderRD::lightmap_instance_set_transform(RID p_lightmap, const Transform3D &p_transform) {
  1072. LightmapInstance *li = lightmap_instance_owner.getornull(p_lightmap);
  1073. ERR_FAIL_COND(!li);
  1074. li->transform = p_transform;
  1075. }
  1076. /////////////////////////////////
  1077. RID RendererSceneRenderRD::voxel_gi_instance_create(RID p_base) {
  1078. return gi.voxel_gi_instance_create(p_base);
  1079. }
  1080. void RendererSceneRenderRD::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) {
  1081. gi.voxel_gi_instance_set_transform_to_data(p_probe, p_xform);
  1082. }
  1083. bool RendererSceneRenderRD::voxel_gi_needs_update(RID p_probe) const {
  1084. if (!is_dynamic_gi_supported()) {
  1085. return false;
  1086. }
  1087. return gi.voxel_gi_needs_update(p_probe);
  1088. }
  1089. void RendererSceneRenderRD::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<GeometryInstance *> &p_dynamic_objects) {
  1090. if (!is_dynamic_gi_supported()) {
  1091. return;
  1092. }
  1093. gi.voxel_gi_update(p_probe, p_update_light_instances, p_light_instances, p_dynamic_objects, this);
  1094. }
  1095. void RendererSceneRenderRD::_debug_sdfgi_probes(RID p_render_buffers, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform) {
  1096. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1097. ERR_FAIL_COND(!rb);
  1098. if (!rb->sdfgi) {
  1099. return; //nothing to debug
  1100. }
  1101. rb->sdfgi->debug_probes(p_draw_list, p_framebuffer, p_camera_with_transform);
  1102. }
  1103. ////////////////////////////////
  1104. RID RendererSceneRenderRD::render_buffers_create() {
  1105. RenderBuffers rb;
  1106. rb.data = _create_render_buffer_data();
  1107. return render_buffers_owner.make_rid(rb);
  1108. }
  1109. void RendererSceneRenderRD::_allocate_blur_textures(RenderBuffers *rb) {
  1110. ERR_FAIL_COND(!rb->blur[0].texture.is_null());
  1111. uint32_t mipmaps_required = Image::get_image_required_mipmaps(rb->width, rb->height, Image::FORMAT_RGBAH);
  1112. RD::TextureFormat tf;
  1113. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1114. tf.width = rb->width;
  1115. tf.height = rb->height;
  1116. tf.texture_type = RD::TEXTURE_TYPE_2D;
  1117. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  1118. tf.mipmaps = mipmaps_required;
  1119. rb->blur[0].texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1120. //the second one is smaller (only used for separatable part of blur)
  1121. tf.width >>= 1;
  1122. tf.height >>= 1;
  1123. tf.mipmaps--;
  1124. rb->blur[1].texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1125. int base_width = rb->width;
  1126. int base_height = rb->height;
  1127. for (uint32_t i = 0; i < mipmaps_required; i++) {
  1128. RenderBuffers::Blur::Mipmap mm;
  1129. mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[0].texture, 0, i);
  1130. mm.width = base_width;
  1131. mm.height = base_height;
  1132. rb->blur[0].mipmaps.push_back(mm);
  1133. if (i > 0) {
  1134. mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[1].texture, 0, i - 1);
  1135. rb->blur[1].mipmaps.push_back(mm);
  1136. }
  1137. base_width = MAX(1, base_width >> 1);
  1138. base_height = MAX(1, base_height >> 1);
  1139. }
  1140. }
  1141. void RendererSceneRenderRD::_allocate_luminance_textures(RenderBuffers *rb) {
  1142. ERR_FAIL_COND(!rb->luminance.current.is_null());
  1143. int w = rb->width;
  1144. int h = rb->height;
  1145. while (true) {
  1146. w = MAX(w / 8, 1);
  1147. h = MAX(h / 8, 1);
  1148. RD::TextureFormat tf;
  1149. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  1150. tf.width = w;
  1151. tf.height = h;
  1152. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  1153. bool final = w == 1 && h == 1;
  1154. if (final) {
  1155. tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT;
  1156. }
  1157. RID texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1158. rb->luminance.reduce.push_back(texture);
  1159. if (final) {
  1160. rb->luminance.current = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1161. break;
  1162. }
  1163. }
  1164. }
  1165. void RendererSceneRenderRD::_free_render_buffer_data(RenderBuffers *rb) {
  1166. if (rb->texture.is_valid()) {
  1167. RD::get_singleton()->free(rb->texture);
  1168. rb->texture = RID();
  1169. }
  1170. if (rb->depth_texture.is_valid()) {
  1171. RD::get_singleton()->free(rb->depth_texture);
  1172. rb->depth_texture = RID();
  1173. }
  1174. for (int i = 0; i < 2; i++) {
  1175. if (rb->blur[i].texture.is_valid()) {
  1176. RD::get_singleton()->free(rb->blur[i].texture);
  1177. rb->blur[i].texture = RID();
  1178. rb->blur[i].mipmaps.clear();
  1179. }
  1180. }
  1181. for (int i = 0; i < rb->luminance.reduce.size(); i++) {
  1182. RD::get_singleton()->free(rb->luminance.reduce[i]);
  1183. }
  1184. rb->luminance.reduce.clear();
  1185. if (rb->luminance.current.is_valid()) {
  1186. RD::get_singleton()->free(rb->luminance.current);
  1187. rb->luminance.current = RID();
  1188. }
  1189. if (rb->ssao.depth.is_valid()) {
  1190. RD::get_singleton()->free(rb->ssao.depth);
  1191. RD::get_singleton()->free(rb->ssao.ao_deinterleaved);
  1192. RD::get_singleton()->free(rb->ssao.ao_pong);
  1193. RD::get_singleton()->free(rb->ssao.ao_final);
  1194. RD::get_singleton()->free(rb->ssao.importance_map[0]);
  1195. RD::get_singleton()->free(rb->ssao.importance_map[1]);
  1196. rb->ssao.depth = RID();
  1197. rb->ssao.ao_deinterleaved = RID();
  1198. rb->ssao.ao_pong = RID();
  1199. rb->ssao.ao_final = RID();
  1200. rb->ssao.importance_map[0] = RID();
  1201. rb->ssao.importance_map[1] = RID();
  1202. rb->ssao.depth_slices.clear();
  1203. rb->ssao.ao_deinterleaved_slices.clear();
  1204. rb->ssao.ao_pong_slices.clear();
  1205. }
  1206. if (rb->ssr.blur_radius[0].is_valid()) {
  1207. RD::get_singleton()->free(rb->ssr.blur_radius[0]);
  1208. RD::get_singleton()->free(rb->ssr.blur_radius[1]);
  1209. rb->ssr.blur_radius[0] = RID();
  1210. rb->ssr.blur_radius[1] = RID();
  1211. }
  1212. if (rb->ssr.depth_scaled.is_valid()) {
  1213. RD::get_singleton()->free(rb->ssr.depth_scaled);
  1214. rb->ssr.depth_scaled = RID();
  1215. RD::get_singleton()->free(rb->ssr.normal_scaled);
  1216. rb->ssr.normal_scaled = RID();
  1217. }
  1218. if (rb->ambient_buffer.is_valid()) {
  1219. RD::get_singleton()->free(rb->ambient_buffer);
  1220. RD::get_singleton()->free(rb->reflection_buffer);
  1221. rb->ambient_buffer = RID();
  1222. rb->reflection_buffer = RID();
  1223. }
  1224. }
  1225. void RendererSceneRenderRD::_process_sss(RID p_render_buffers, const CameraMatrix &p_camera) {
  1226. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1227. ERR_FAIL_COND(!rb);
  1228. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  1229. if (!can_use_effects) {
  1230. //just copy
  1231. return;
  1232. }
  1233. if (rb->blur[0].texture.is_null()) {
  1234. _allocate_blur_textures(rb);
  1235. }
  1236. storage->get_effects()->sub_surface_scattering(rb->texture, rb->blur[0].mipmaps[0].texture, rb->depth_texture, p_camera, Size2i(rb->width, rb->height), sss_scale, sss_depth_scale, sss_quality);
  1237. }
  1238. void RendererSceneRenderRD::_process_ssr(RID p_render_buffers, RID p_dest_framebuffer, RID p_normal_buffer, RID p_specular_buffer, RID p_metallic, const Color &p_metallic_mask, RID p_environment, const CameraMatrix &p_projection, bool p_use_additive) {
  1239. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1240. ERR_FAIL_COND(!rb);
  1241. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  1242. if (!can_use_effects) {
  1243. //just copy
  1244. storage->get_effects()->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : rb->texture, RID());
  1245. return;
  1246. }
  1247. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_environment);
  1248. ERR_FAIL_COND(!env);
  1249. ERR_FAIL_COND(!env->ssr_enabled);
  1250. if (rb->ssr.depth_scaled.is_null()) {
  1251. RD::TextureFormat tf;
  1252. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  1253. tf.width = rb->width / 2;
  1254. tf.height = rb->height / 2;
  1255. tf.texture_type = RD::TEXTURE_TYPE_2D;
  1256. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  1257. rb->ssr.depth_scaled = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1258. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  1259. rb->ssr.normal_scaled = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1260. }
  1261. if (ssr_roughness_quality != RS::ENV_SSR_ROUGNESS_QUALITY_DISABLED && !rb->ssr.blur_radius[0].is_valid()) {
  1262. RD::TextureFormat tf;
  1263. tf.format = RD::DATA_FORMAT_R8_UNORM;
  1264. tf.width = rb->width / 2;
  1265. tf.height = rb->height / 2;
  1266. tf.texture_type = RD::TEXTURE_TYPE_2D;
  1267. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  1268. rb->ssr.blur_radius[0] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1269. rb->ssr.blur_radius[1] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1270. }
  1271. if (rb->blur[0].texture.is_null()) {
  1272. _allocate_blur_textures(rb);
  1273. }
  1274. storage->get_effects()->screen_space_reflection(rb->texture, p_normal_buffer, ssr_roughness_quality, rb->ssr.blur_radius[0], rb->ssr.blur_radius[1], p_metallic, p_metallic_mask, rb->depth_texture, rb->ssr.depth_scaled, rb->ssr.normal_scaled, rb->blur[0].mipmaps[1].texture, rb->blur[1].mipmaps[0].texture, Size2i(rb->width / 2, rb->height / 2), env->ssr_max_steps, env->ssr_fade_in, env->ssr_fade_out, env->ssr_depth_tolerance, p_projection);
  1275. storage->get_effects()->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : rb->texture, rb->blur[0].mipmaps[1].texture);
  1276. }
  1277. void RendererSceneRenderRD::_process_ssao(RID p_render_buffers, RID p_environment, RID p_normal_buffer, const CameraMatrix &p_projection) {
  1278. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1279. ERR_FAIL_COND(!rb);
  1280. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_environment);
  1281. ERR_FAIL_COND(!env);
  1282. RENDER_TIMESTAMP("Process SSAO");
  1283. if (rb->ssao.ao_final.is_valid() && ssao_using_half_size != ssao_half_size) {
  1284. RD::get_singleton()->free(rb->ssao.depth);
  1285. RD::get_singleton()->free(rb->ssao.ao_deinterleaved);
  1286. RD::get_singleton()->free(rb->ssao.ao_pong);
  1287. RD::get_singleton()->free(rb->ssao.ao_final);
  1288. RD::get_singleton()->free(rb->ssao.importance_map[0]);
  1289. RD::get_singleton()->free(rb->ssao.importance_map[1]);
  1290. rb->ssao.depth = RID();
  1291. rb->ssao.ao_deinterleaved = RID();
  1292. rb->ssao.ao_pong = RID();
  1293. rb->ssao.ao_final = RID();
  1294. rb->ssao.importance_map[0] = RID();
  1295. rb->ssao.importance_map[1] = RID();
  1296. rb->ssao.depth_slices.clear();
  1297. rb->ssao.ao_deinterleaved_slices.clear();
  1298. rb->ssao.ao_pong_slices.clear();
  1299. }
  1300. int buffer_width;
  1301. int buffer_height;
  1302. int half_width;
  1303. int half_height;
  1304. if (ssao_half_size) {
  1305. buffer_width = (rb->width + 3) / 4;
  1306. buffer_height = (rb->height + 3) / 4;
  1307. half_width = (rb->width + 7) / 8;
  1308. half_height = (rb->height + 7) / 8;
  1309. } else {
  1310. buffer_width = (rb->width + 1) / 2;
  1311. buffer_height = (rb->height + 1) / 2;
  1312. half_width = (rb->width + 3) / 4;
  1313. half_height = (rb->height + 3) / 4;
  1314. }
  1315. bool uniform_sets_are_invalid = false;
  1316. if (rb->ssao.depth.is_null()) {
  1317. //allocate depth slices
  1318. {
  1319. RD::TextureFormat tf;
  1320. tf.format = RD::DATA_FORMAT_R16_SFLOAT;
  1321. tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  1322. tf.width = buffer_width;
  1323. tf.height = buffer_height;
  1324. tf.mipmaps = 4;
  1325. tf.array_layers = 4;
  1326. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1327. rb->ssao.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1328. RD::get_singleton()->set_resource_name(rb->ssao.depth, "SSAO Depth");
  1329. for (uint32_t i = 0; i < tf.mipmaps; i++) {
  1330. RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.depth, 0, i, RD::TEXTURE_SLICE_2D_ARRAY);
  1331. rb->ssao.depth_slices.push_back(slice);
  1332. RD::get_singleton()->set_resource_name(rb->ssao.depth_slices[i], "SSAO Depth Mip " + itos(i) + " ");
  1333. }
  1334. }
  1335. {
  1336. RD::TextureFormat tf;
  1337. tf.format = RD::DATA_FORMAT_R8G8_UNORM;
  1338. tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  1339. tf.width = buffer_width;
  1340. tf.height = buffer_height;
  1341. tf.array_layers = 4;
  1342. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1343. rb->ssao.ao_deinterleaved = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1344. RD::get_singleton()->set_resource_name(rb->ssao.ao_deinterleaved, "SSAO De-interleaved Array");
  1345. for (uint32_t i = 0; i < 4; i++) {
  1346. RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.ao_deinterleaved, i, 0);
  1347. rb->ssao.ao_deinterleaved_slices.push_back(slice);
  1348. RD::get_singleton()->set_resource_name(rb->ssao.ao_deinterleaved_slices[i], "SSAO De-interleaved Array Layer " + itos(i) + " ");
  1349. }
  1350. }
  1351. {
  1352. RD::TextureFormat tf;
  1353. tf.format = RD::DATA_FORMAT_R8G8_UNORM;
  1354. tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  1355. tf.width = buffer_width;
  1356. tf.height = buffer_height;
  1357. tf.array_layers = 4;
  1358. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1359. rb->ssao.ao_pong = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1360. RD::get_singleton()->set_resource_name(rb->ssao.ao_pong, "SSAO De-interleaved Array Pong");
  1361. for (uint32_t i = 0; i < 4; i++) {
  1362. RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.ao_pong, i, 0);
  1363. rb->ssao.ao_pong_slices.push_back(slice);
  1364. RD::get_singleton()->set_resource_name(rb->ssao.ao_deinterleaved_slices[i], "SSAO De-interleaved Array Layer " + itos(i) + " Pong");
  1365. }
  1366. }
  1367. {
  1368. RD::TextureFormat tf;
  1369. tf.format = RD::DATA_FORMAT_R8_UNORM;
  1370. tf.width = half_width;
  1371. tf.height = half_height;
  1372. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1373. rb->ssao.importance_map[0] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1374. RD::get_singleton()->set_resource_name(rb->ssao.importance_map[0], "SSAO Importance Map");
  1375. rb->ssao.importance_map[1] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1376. RD::get_singleton()->set_resource_name(rb->ssao.importance_map[1], "SSAO Importance Map Pong");
  1377. }
  1378. {
  1379. RD::TextureFormat tf;
  1380. tf.format = RD::DATA_FORMAT_R8_UNORM;
  1381. tf.width = rb->width;
  1382. tf.height = rb->height;
  1383. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1384. rb->ssao.ao_final = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1385. RD::get_singleton()->set_resource_name(rb->ssao.ao_final, "SSAO Final");
  1386. }
  1387. ssao_using_half_size = ssao_half_size;
  1388. uniform_sets_are_invalid = true;
  1389. }
  1390. EffectsRD::SSAOSettings settings;
  1391. settings.radius = env->ssao_radius;
  1392. settings.intensity = env->ssao_intensity;
  1393. settings.power = env->ssao_power;
  1394. settings.detail = env->ssao_detail;
  1395. settings.horizon = env->ssao_horizon;
  1396. settings.sharpness = env->ssao_sharpness;
  1397. settings.quality = ssao_quality;
  1398. settings.half_size = ssao_half_size;
  1399. settings.adaptive_target = ssao_adaptive_target;
  1400. settings.blur_passes = ssao_blur_passes;
  1401. settings.fadeout_from = ssao_fadeout_from;
  1402. settings.fadeout_to = ssao_fadeout_to;
  1403. settings.full_screen_size = Size2i(rb->width, rb->height);
  1404. settings.half_screen_size = Size2i(buffer_width, buffer_height);
  1405. settings.quarter_screen_size = Size2i(half_width, half_height);
  1406. storage->get_effects()->generate_ssao(rb->depth_texture, p_normal_buffer, rb->ssao.depth, rb->ssao.depth_slices, rb->ssao.ao_deinterleaved, rb->ssao.ao_deinterleaved_slices, rb->ssao.ao_pong, rb->ssao.ao_pong_slices, rb->ssao.ao_final, rb->ssao.importance_map[0], rb->ssao.importance_map[1], p_projection, settings, uniform_sets_are_invalid, rb->ssao.downsample_uniform_set, rb->ssao.gather_uniform_set, rb->ssao.importance_map_uniform_set);
  1407. }
  1408. void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(const RenderDataRD *p_render_data) {
  1409. RenderBuffers *rb = render_buffers_owner.getornull(p_render_data->render_buffers);
  1410. ERR_FAIL_COND(!rb);
  1411. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_render_data->environment);
  1412. //glow (if enabled)
  1413. CameraEffects *camfx = camera_effects_owner.getornull(p_render_data->camera_effects);
  1414. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  1415. if (can_use_effects && camfx && (camfx->dof_blur_near_enabled || camfx->dof_blur_far_enabled) && camfx->dof_blur_amount > 0.0) {
  1416. if (rb->blur[0].texture.is_null()) {
  1417. _allocate_blur_textures(rb);
  1418. }
  1419. float bokeh_size = camfx->dof_blur_amount * 64.0;
  1420. storage->get_effects()->bokeh_dof(rb->texture, rb->depth_texture, Size2i(rb->width, rb->height), rb->blur[0].mipmaps[0].texture, rb->blur[1].mipmaps[0].texture, rb->blur[0].mipmaps[1].texture, camfx->dof_blur_far_enabled, camfx->dof_blur_far_distance, camfx->dof_blur_far_transition, camfx->dof_blur_near_enabled, camfx->dof_blur_near_distance, camfx->dof_blur_near_transition, bokeh_size, dof_blur_bokeh_shape, dof_blur_quality, dof_blur_use_jitter, p_render_data->z_near, p_render_data->z_far, p_render_data->cam_ortogonal);
  1421. }
  1422. if (can_use_effects && env && env->auto_exposure) {
  1423. if (rb->luminance.current.is_null()) {
  1424. _allocate_luminance_textures(rb);
  1425. }
  1426. bool set_immediate = env->auto_exposure_version != rb->auto_exposure_version;
  1427. rb->auto_exposure_version = env->auto_exposure_version;
  1428. double step = env->auto_exp_speed * time_step;
  1429. storage->get_effects()->luminance_reduction(rb->texture, Size2i(rb->width, rb->height), rb->luminance.reduce, rb->luminance.current, env->min_luminance, env->max_luminance, step, set_immediate);
  1430. //swap final reduce with prev luminance
  1431. SWAP(rb->luminance.current, rb->luminance.reduce.write[rb->luminance.reduce.size() - 1]);
  1432. RenderingServerDefault::redraw_request(); //redraw all the time if auto exposure rendering is on
  1433. }
  1434. int max_glow_level = -1;
  1435. if (can_use_effects && env && env->glow_enabled) {
  1436. /* see that blur textures are allocated */
  1437. if (rb->blur[1].texture.is_null()) {
  1438. _allocate_blur_textures(rb);
  1439. }
  1440. for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
  1441. if (env->glow_levels[i] > 0.0) {
  1442. if (i >= rb->blur[1].mipmaps.size()) {
  1443. max_glow_level = rb->blur[1].mipmaps.size() - 1;
  1444. } else {
  1445. max_glow_level = i;
  1446. }
  1447. }
  1448. }
  1449. for (int i = 0; i < (max_glow_level + 1); i++) {
  1450. int vp_w = rb->blur[1].mipmaps[i].width;
  1451. int vp_h = rb->blur[1].mipmaps[i].height;
  1452. if (i == 0) {
  1453. RID luminance_texture;
  1454. if (env->auto_exposure && rb->luminance.current.is_valid()) {
  1455. luminance_texture = rb->luminance.current;
  1456. }
  1457. storage->get_effects()->gaussian_glow(rb->texture, rb->blur[1].mipmaps[i].texture, Size2i(vp_w, vp_h), env->glow_strength, glow_high_quality, true, env->glow_hdr_luminance_cap, env->exposure, env->glow_bloom, env->glow_hdr_bleed_threshold, env->glow_hdr_bleed_scale, luminance_texture, env->auto_exp_scale);
  1458. } else {
  1459. storage->get_effects()->gaussian_glow(rb->blur[1].mipmaps[i - 1].texture, rb->blur[1].mipmaps[i].texture, Size2i(vp_w, vp_h), env->glow_strength, glow_high_quality);
  1460. }
  1461. }
  1462. }
  1463. {
  1464. //tonemap
  1465. EffectsRD::TonemapSettings tonemap;
  1466. if (can_use_effects && env && env->auto_exposure && rb->luminance.current.is_valid()) {
  1467. tonemap.use_auto_exposure = true;
  1468. tonemap.exposure_texture = rb->luminance.current;
  1469. tonemap.auto_exposure_grey = env->auto_exp_scale;
  1470. } else {
  1471. tonemap.exposure_texture = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_WHITE);
  1472. }
  1473. if (can_use_effects && env && env->glow_enabled) {
  1474. tonemap.use_glow = true;
  1475. tonemap.glow_mode = EffectsRD::TonemapSettings::GlowMode(env->glow_blend_mode);
  1476. tonemap.glow_intensity = env->glow_blend_mode == RS::ENV_GLOW_BLEND_MODE_MIX ? env->glow_mix : env->glow_intensity;
  1477. for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
  1478. tonemap.glow_levels[i] = env->glow_levels[i];
  1479. }
  1480. tonemap.glow_texture_size.x = rb->blur[1].mipmaps[0].width;
  1481. tonemap.glow_texture_size.y = rb->blur[1].mipmaps[0].height;
  1482. tonemap.glow_use_bicubic_upscale = glow_bicubic_upscale;
  1483. tonemap.glow_texture = rb->blur[1].texture;
  1484. } else {
  1485. tonemap.glow_texture = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_BLACK);
  1486. }
  1487. if (rb->screen_space_aa == RS::VIEWPORT_SCREEN_SPACE_AA_FXAA) {
  1488. tonemap.use_fxaa = true;
  1489. }
  1490. tonemap.use_debanding = rb->use_debanding;
  1491. tonemap.texture_size = Vector2i(rb->width, rb->height);
  1492. if (env) {
  1493. tonemap.tonemap_mode = env->tone_mapper;
  1494. tonemap.white = env->white;
  1495. tonemap.exposure = env->exposure;
  1496. }
  1497. tonemap.use_color_correction = false;
  1498. tonemap.use_1d_color_correction = false;
  1499. tonemap.color_correction_texture = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE);
  1500. if (can_use_effects && env) {
  1501. tonemap.use_bcs = env->adjustments_enabled;
  1502. tonemap.brightness = env->adjustments_brightness;
  1503. tonemap.contrast = env->adjustments_contrast;
  1504. tonemap.saturation = env->adjustments_saturation;
  1505. if (env->adjustments_enabled && env->color_correction.is_valid()) {
  1506. tonemap.use_color_correction = true;
  1507. tonemap.use_1d_color_correction = env->use_1d_color_correction;
  1508. tonemap.color_correction_texture = storage->texture_get_rd_texture(env->color_correction);
  1509. }
  1510. }
  1511. tonemap.view_count = p_render_data->view_count;
  1512. storage->get_effects()->tonemapper(rb->texture, storage->render_target_get_rd_framebuffer(rb->render_target), tonemap);
  1513. }
  1514. storage->render_target_disable_clear_request(rb->render_target);
  1515. }
  1516. void RendererSceneRenderRD::_render_buffers_debug_draw(RID p_render_buffers, RID p_shadow_atlas, RID p_occlusion_buffer) {
  1517. EffectsRD *effects = storage->get_effects();
  1518. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1519. ERR_FAIL_COND(!rb);
  1520. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) {
  1521. if (p_shadow_atlas.is_valid()) {
  1522. RID shadow_atlas_texture = shadow_atlas_get_texture(p_shadow_atlas);
  1523. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  1524. effects->copy_to_fb_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, true);
  1525. }
  1526. }
  1527. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) {
  1528. if (directional_shadow_get_texture().is_valid()) {
  1529. RID shadow_atlas_texture = directional_shadow_get_texture();
  1530. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  1531. effects->copy_to_fb_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, true);
  1532. }
  1533. }
  1534. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DECAL_ATLAS) {
  1535. RID decal_atlas = storage->decal_atlas_get_texture();
  1536. if (decal_atlas.is_valid()) {
  1537. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  1538. effects->copy_to_fb_rect(decal_atlas, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, false, true);
  1539. }
  1540. }
  1541. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE) {
  1542. if (rb->luminance.current.is_valid()) {
  1543. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  1544. effects->copy_to_fb_rect(rb->luminance.current, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize / 8), false, true);
  1545. }
  1546. }
  1547. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSAO && rb->ssao.ao_final.is_valid()) {
  1548. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  1549. RID ao_buf = rb->ssao.ao_final;
  1550. effects->copy_to_fb_rect(ao_buf, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, true);
  1551. }
  1552. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(p_render_buffers).is_valid()) {
  1553. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  1554. effects->copy_to_fb_rect(_render_buffers_get_normal_texture(p_render_buffers), storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, false);
  1555. }
  1556. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_GI_BUFFER && rb->ambient_buffer.is_valid()) {
  1557. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  1558. RID ambient_texture = rb->ambient_buffer;
  1559. RID reflection_texture = rb->reflection_buffer;
  1560. effects->copy_to_fb_rect(ambient_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, false, false, true, reflection_texture);
  1561. }
  1562. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_OCCLUDERS) {
  1563. if (p_occlusion_buffer.is_valid()) {
  1564. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  1565. effects->copy_to_fb_rect(storage->texture_get_rd_texture(p_occlusion_buffer), storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize), true, false);
  1566. }
  1567. }
  1568. }
  1569. void RendererSceneRenderRD::environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, bool p_use_1d_color_correction, RID p_color_correction) {
  1570. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_env);
  1571. ERR_FAIL_COND(!env);
  1572. env->adjustments_enabled = p_enable;
  1573. env->adjustments_brightness = p_brightness;
  1574. env->adjustments_contrast = p_contrast;
  1575. env->adjustments_saturation = p_saturation;
  1576. env->use_1d_color_correction = p_use_1d_color_correction;
  1577. env->color_correction = p_color_correction;
  1578. }
  1579. RID RendererSceneRenderRD::render_buffers_get_back_buffer_texture(RID p_render_buffers) {
  1580. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1581. ERR_FAIL_COND_V(!rb, RID());
  1582. if (!rb->blur[0].texture.is_valid()) {
  1583. return RID(); //not valid at the moment
  1584. }
  1585. return rb->blur[0].texture;
  1586. }
  1587. RID RendererSceneRenderRD::render_buffers_get_ao_texture(RID p_render_buffers) {
  1588. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1589. ERR_FAIL_COND_V(!rb, RID());
  1590. return rb->ssao.ao_final;
  1591. }
  1592. RID RendererSceneRenderRD::render_buffers_get_voxel_gi_buffer(RID p_render_buffers) {
  1593. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1594. ERR_FAIL_COND_V(!rb, RID());
  1595. if (rb->gi.voxel_gi_buffer.is_null()) {
  1596. rb->gi.voxel_gi_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(RendererSceneGIRD::VoxelGIData) * RendererSceneGIRD::MAX_VOXEL_GI_INSTANCES);
  1597. }
  1598. return rb->gi.voxel_gi_buffer;
  1599. }
  1600. RID RendererSceneRenderRD::render_buffers_get_default_voxel_gi_buffer() {
  1601. return gi.default_voxel_gi_buffer;
  1602. }
  1603. RID RendererSceneRenderRD::render_buffers_get_gi_ambient_texture(RID p_render_buffers) {
  1604. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1605. ERR_FAIL_COND_V(!rb, RID());
  1606. return rb->ambient_buffer;
  1607. }
  1608. RID RendererSceneRenderRD::render_buffers_get_gi_reflection_texture(RID p_render_buffers) {
  1609. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1610. ERR_FAIL_COND_V(!rb, RID());
  1611. return rb->reflection_buffer;
  1612. }
  1613. uint32_t RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_count(RID p_render_buffers) const {
  1614. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1615. ERR_FAIL_COND_V(!rb, 0);
  1616. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  1617. return rb->sdfgi->cascades.size();
  1618. }
  1619. bool RendererSceneRenderRD::render_buffers_is_sdfgi_enabled(RID p_render_buffers) const {
  1620. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1621. ERR_FAIL_COND_V(!rb, false);
  1622. return rb->sdfgi != nullptr;
  1623. }
  1624. RID RendererSceneRenderRD::render_buffers_get_sdfgi_irradiance_probes(RID p_render_buffers) const {
  1625. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1626. ERR_FAIL_COND_V(!rb, RID());
  1627. ERR_FAIL_COND_V(!rb->sdfgi, RID());
  1628. return rb->sdfgi->lightprobe_texture;
  1629. }
  1630. Vector3 RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_offset(RID p_render_buffers, uint32_t p_cascade) const {
  1631. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1632. ERR_FAIL_COND_V(!rb, Vector3());
  1633. ERR_FAIL_COND_V(!rb->sdfgi, Vector3());
  1634. ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), Vector3());
  1635. return Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[p_cascade].position)) * rb->sdfgi->cascades[p_cascade].cell_size;
  1636. }
  1637. Vector3i RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_probe_offset(RID p_render_buffers, uint32_t p_cascade) const {
  1638. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1639. ERR_FAIL_COND_V(!rb, Vector3i());
  1640. ERR_FAIL_COND_V(!rb->sdfgi, Vector3i());
  1641. ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), Vector3i());
  1642. int32_t probe_divisor = rb->sdfgi->cascade_size / RendererSceneGIRD::SDFGI::PROBE_DIVISOR;
  1643. return rb->sdfgi->cascades[p_cascade].position / probe_divisor;
  1644. }
  1645. float RendererSceneRenderRD::render_buffers_get_sdfgi_normal_bias(RID p_render_buffers) const {
  1646. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1647. ERR_FAIL_COND_V(!rb, 0);
  1648. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  1649. return rb->sdfgi->normal_bias;
  1650. }
  1651. float RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_probe_size(RID p_render_buffers, uint32_t p_cascade) const {
  1652. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1653. ERR_FAIL_COND_V(!rb, 0);
  1654. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  1655. ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), 0);
  1656. return float(rb->sdfgi->cascade_size) * rb->sdfgi->cascades[p_cascade].cell_size / float(rb->sdfgi->probe_axis_count - 1);
  1657. }
  1658. uint32_t RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_probe_count(RID p_render_buffers) const {
  1659. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1660. ERR_FAIL_COND_V(!rb, 0);
  1661. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  1662. return rb->sdfgi->probe_axis_count;
  1663. }
  1664. uint32_t RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_size(RID p_render_buffers) const {
  1665. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1666. ERR_FAIL_COND_V(!rb, 0);
  1667. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  1668. return rb->sdfgi->cascade_size;
  1669. }
  1670. bool RendererSceneRenderRD::render_buffers_is_sdfgi_using_occlusion(RID p_render_buffers) const {
  1671. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1672. ERR_FAIL_COND_V(!rb, false);
  1673. ERR_FAIL_COND_V(!rb->sdfgi, false);
  1674. return rb->sdfgi->uses_occlusion;
  1675. }
  1676. float RendererSceneRenderRD::render_buffers_get_sdfgi_energy(RID p_render_buffers) const {
  1677. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1678. ERR_FAIL_COND_V(!rb, 0.0);
  1679. ERR_FAIL_COND_V(!rb->sdfgi, 0.0);
  1680. return rb->sdfgi->energy;
  1681. }
  1682. RID RendererSceneRenderRD::render_buffers_get_sdfgi_occlusion_texture(RID p_render_buffers) const {
  1683. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1684. ERR_FAIL_COND_V(!rb, RID());
  1685. ERR_FAIL_COND_V(!rb->sdfgi, RID());
  1686. return rb->sdfgi->occlusion_texture;
  1687. }
  1688. bool RendererSceneRenderRD::render_buffers_has_volumetric_fog(RID p_render_buffers) const {
  1689. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1690. ERR_FAIL_COND_V(!rb, false);
  1691. return rb->volumetric_fog != nullptr;
  1692. }
  1693. RID RendererSceneRenderRD::render_buffers_get_volumetric_fog_texture(RID p_render_buffers) {
  1694. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1695. ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, RID());
  1696. return rb->volumetric_fog->fog_map;
  1697. }
  1698. RID RendererSceneRenderRD::render_buffers_get_volumetric_fog_sky_uniform_set(RID p_render_buffers) {
  1699. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1700. ERR_FAIL_COND_V(!rb, RID());
  1701. if (!rb->volumetric_fog) {
  1702. return RID();
  1703. }
  1704. return rb->volumetric_fog->sky_uniform_set;
  1705. }
  1706. float RendererSceneRenderRD::render_buffers_get_volumetric_fog_end(RID p_render_buffers) {
  1707. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1708. ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, 0);
  1709. return rb->volumetric_fog->length;
  1710. }
  1711. float RendererSceneRenderRD::render_buffers_get_volumetric_fog_detail_spread(RID p_render_buffers) {
  1712. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1713. ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, 0);
  1714. return rb->volumetric_fog->spread;
  1715. }
  1716. RD::DataFormat RendererSceneRenderRD::_render_buffers_get_color_format() {
  1717. return RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1718. }
  1719. void RendererSceneRenderRD::render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, RS::ViewportMSAA p_msaa, RenderingServer::ViewportScreenSpaceAA p_screen_space_aa, bool p_use_debanding, uint32_t p_view_count) {
  1720. ERR_FAIL_COND_MSG(p_view_count == 0, "Must have atleast 1 view");
  1721. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1722. rb->width = p_width;
  1723. rb->height = p_height;
  1724. rb->render_target = p_render_target;
  1725. rb->msaa = p_msaa;
  1726. rb->screen_space_aa = p_screen_space_aa;
  1727. rb->use_debanding = p_use_debanding;
  1728. rb->view_count = p_view_count;
  1729. if (is_clustered_enabled()) {
  1730. if (rb->cluster_builder == nullptr) {
  1731. rb->cluster_builder = memnew(ClusterBuilderRD);
  1732. }
  1733. rb->cluster_builder->set_shared(&cluster_builder_shared);
  1734. }
  1735. _free_render_buffer_data(rb);
  1736. {
  1737. RD::TextureFormat tf;
  1738. if (rb->view_count > 1) {
  1739. tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  1740. }
  1741. tf.format = _render_buffers_get_color_format();
  1742. tf.width = rb->width;
  1743. tf.height = rb->height;
  1744. tf.array_layers = rb->view_count; // create a layer for every view
  1745. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1746. if (rb->msaa != RS::VIEWPORT_MSAA_DISABLED) {
  1747. tf.usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1748. } else {
  1749. tf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  1750. }
  1751. rb->texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1752. }
  1753. {
  1754. RD::TextureFormat tf;
  1755. if (rb->view_count > 1) {
  1756. tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  1757. }
  1758. if (rb->msaa == RS::VIEWPORT_MSAA_DISABLED) {
  1759. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D24_UNORM_S8_UINT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D24_UNORM_S8_UINT : RD::DATA_FORMAT_D32_SFLOAT_S8_UINT;
  1760. } else {
  1761. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  1762. }
  1763. tf.width = p_width;
  1764. tf.height = p_height;
  1765. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT;
  1766. tf.array_layers = rb->view_count; // create a layer for every view
  1767. if (rb->msaa != RS::VIEWPORT_MSAA_DISABLED) {
  1768. tf.usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1769. } else {
  1770. tf.usage_bits |= RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  1771. }
  1772. rb->depth_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1773. }
  1774. rb->data->configure(rb->texture, rb->depth_texture, p_width, p_height, p_msaa, p_view_count);
  1775. if (is_clustered_enabled()) {
  1776. rb->cluster_builder->setup(Size2i(p_width, p_height), max_cluster_elements, rb->depth_texture, storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED), rb->texture);
  1777. }
  1778. }
  1779. void RendererSceneRenderRD::gi_set_use_half_resolution(bool p_enable) {
  1780. gi.half_resolution = p_enable;
  1781. }
  1782. void RendererSceneRenderRD::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) {
  1783. sss_quality = p_quality;
  1784. }
  1785. RS::SubSurfaceScatteringQuality RendererSceneRenderRD::sub_surface_scattering_get_quality() const {
  1786. return sss_quality;
  1787. }
  1788. void RendererSceneRenderRD::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) {
  1789. sss_scale = p_scale;
  1790. sss_depth_scale = p_depth_scale;
  1791. }
  1792. void RendererSceneRenderRD::shadows_quality_set(RS::ShadowQuality p_quality) {
  1793. ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");
  1794. if (shadows_quality != p_quality) {
  1795. shadows_quality = p_quality;
  1796. switch (shadows_quality) {
  1797. case RS::SHADOW_QUALITY_HARD: {
  1798. penumbra_shadow_samples = 4;
  1799. soft_shadow_samples = 1;
  1800. shadows_quality_radius = 1.0;
  1801. } break;
  1802. case RS::SHADOW_QUALITY_SOFT_LOW: {
  1803. penumbra_shadow_samples = 8;
  1804. soft_shadow_samples = 4;
  1805. shadows_quality_radius = 2.0;
  1806. } break;
  1807. case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
  1808. penumbra_shadow_samples = 12;
  1809. soft_shadow_samples = 8;
  1810. shadows_quality_radius = 2.0;
  1811. } break;
  1812. case RS::SHADOW_QUALITY_SOFT_HIGH: {
  1813. penumbra_shadow_samples = 24;
  1814. soft_shadow_samples = 16;
  1815. shadows_quality_radius = 3.0;
  1816. } break;
  1817. case RS::SHADOW_QUALITY_SOFT_ULTRA: {
  1818. penumbra_shadow_samples = 32;
  1819. soft_shadow_samples = 32;
  1820. shadows_quality_radius = 4.0;
  1821. } break;
  1822. case RS::SHADOW_QUALITY_MAX:
  1823. break;
  1824. }
  1825. get_vogel_disk(penumbra_shadow_kernel, penumbra_shadow_samples);
  1826. get_vogel_disk(soft_shadow_kernel, soft_shadow_samples);
  1827. }
  1828. }
  1829. void RendererSceneRenderRD::directional_shadow_quality_set(RS::ShadowQuality p_quality) {
  1830. ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");
  1831. if (directional_shadow_quality != p_quality) {
  1832. directional_shadow_quality = p_quality;
  1833. switch (directional_shadow_quality) {
  1834. case RS::SHADOW_QUALITY_HARD: {
  1835. directional_penumbra_shadow_samples = 4;
  1836. directional_soft_shadow_samples = 1;
  1837. directional_shadow_quality_radius = 1.0;
  1838. } break;
  1839. case RS::SHADOW_QUALITY_SOFT_LOW: {
  1840. directional_penumbra_shadow_samples = 8;
  1841. directional_soft_shadow_samples = 4;
  1842. directional_shadow_quality_radius = 2.0;
  1843. } break;
  1844. case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
  1845. directional_penumbra_shadow_samples = 12;
  1846. directional_soft_shadow_samples = 8;
  1847. directional_shadow_quality_radius = 2.0;
  1848. } break;
  1849. case RS::SHADOW_QUALITY_SOFT_HIGH: {
  1850. directional_penumbra_shadow_samples = 24;
  1851. directional_soft_shadow_samples = 16;
  1852. directional_shadow_quality_radius = 3.0;
  1853. } break;
  1854. case RS::SHADOW_QUALITY_SOFT_ULTRA: {
  1855. directional_penumbra_shadow_samples = 32;
  1856. directional_soft_shadow_samples = 32;
  1857. directional_shadow_quality_radius = 4.0;
  1858. } break;
  1859. case RS::SHADOW_QUALITY_MAX:
  1860. break;
  1861. }
  1862. get_vogel_disk(directional_penumbra_shadow_kernel, directional_penumbra_shadow_samples);
  1863. get_vogel_disk(directional_soft_shadow_kernel, directional_soft_shadow_samples);
  1864. }
  1865. }
  1866. int RendererSceneRenderRD::get_roughness_layers() const {
  1867. return sky.roughness_layers;
  1868. }
  1869. bool RendererSceneRenderRD::is_using_radiance_cubemap_array() const {
  1870. return sky.sky_use_cubemap_array;
  1871. }
  1872. RendererSceneRenderRD::RenderBufferData *RendererSceneRenderRD::render_buffers_get_data(RID p_render_buffers) {
  1873. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1874. ERR_FAIL_COND_V(!rb, nullptr);
  1875. return rb->data;
  1876. }
  1877. void RendererSceneRenderRD::_setup_reflections(const PagedArray<RID> &p_reflections, const Transform3D &p_camera_inverse_transform, RID p_environment) {
  1878. cluster.reflection_count = 0;
  1879. for (uint32_t i = 0; i < (uint32_t)p_reflections.size(); i++) {
  1880. if (cluster.reflection_count == cluster.max_reflections) {
  1881. break;
  1882. }
  1883. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_reflections[i]);
  1884. if (!rpi) {
  1885. continue;
  1886. }
  1887. cluster.reflection_sort[cluster.reflection_count].instance = rpi;
  1888. cluster.reflection_sort[cluster.reflection_count].depth = -p_camera_inverse_transform.xform(rpi->transform.origin).z;
  1889. cluster.reflection_count++;
  1890. }
  1891. if (cluster.reflection_count > 0) {
  1892. SortArray<Cluster::InstanceSort<ReflectionProbeInstance>> sort_array;
  1893. sort_array.sort(cluster.reflection_sort, cluster.reflection_count);
  1894. }
  1895. for (uint32_t i = 0; i < cluster.reflection_count; i++) {
  1896. ReflectionProbeInstance *rpi = cluster.reflection_sort[i].instance;
  1897. rpi->render_index = i;
  1898. RID base_probe = rpi->probe;
  1899. Cluster::ReflectionData &reflection_ubo = cluster.reflections[i];
  1900. Vector3 extents = storage->reflection_probe_get_extents(base_probe);
  1901. rpi->cull_mask = storage->reflection_probe_get_cull_mask(base_probe);
  1902. reflection_ubo.box_extents[0] = extents.x;
  1903. reflection_ubo.box_extents[1] = extents.y;
  1904. reflection_ubo.box_extents[2] = extents.z;
  1905. reflection_ubo.index = rpi->atlas_index;
  1906. Vector3 origin_offset = storage->reflection_probe_get_origin_offset(base_probe);
  1907. reflection_ubo.box_offset[0] = origin_offset.x;
  1908. reflection_ubo.box_offset[1] = origin_offset.y;
  1909. reflection_ubo.box_offset[2] = origin_offset.z;
  1910. reflection_ubo.mask = storage->reflection_probe_get_cull_mask(base_probe);
  1911. reflection_ubo.intensity = storage->reflection_probe_get_intensity(base_probe);
  1912. reflection_ubo.ambient_mode = storage->reflection_probe_get_ambient_mode(base_probe);
  1913. reflection_ubo.exterior = !storage->reflection_probe_is_interior(base_probe);
  1914. reflection_ubo.box_project = storage->reflection_probe_is_box_projection(base_probe);
  1915. Color ambient_linear = storage->reflection_probe_get_ambient_color(base_probe).to_linear();
  1916. float interior_ambient_energy = storage->reflection_probe_get_ambient_color_energy(base_probe);
  1917. reflection_ubo.ambient[0] = ambient_linear.r * interior_ambient_energy;
  1918. reflection_ubo.ambient[1] = ambient_linear.g * interior_ambient_energy;
  1919. reflection_ubo.ambient[2] = ambient_linear.b * interior_ambient_energy;
  1920. Transform3D transform = rpi->transform;
  1921. Transform3D proj = (p_camera_inverse_transform * transform).inverse();
  1922. RendererStorageRD::store_transform(proj, reflection_ubo.local_matrix);
  1923. if (current_cluster_builder != nullptr) {
  1924. current_cluster_builder->add_box(ClusterBuilderRD::BOX_TYPE_REFLECTION_PROBE, transform, extents);
  1925. }
  1926. rpi->last_pass = RSG::rasterizer->get_frame_number();
  1927. }
  1928. if (cluster.reflection_count) {
  1929. RD::get_singleton()->buffer_update(cluster.reflection_buffer, 0, cluster.reflection_count * sizeof(Cluster::ReflectionData), cluster.reflections, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  1930. }
  1931. }
  1932. void RendererSceneRenderRD::_setup_lights(const PagedArray<RID> &p_lights, const Transform3D &p_camera_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_positional_light_count, bool &r_directional_light_soft_shadows) {
  1933. Transform3D inverse_transform = p_camera_transform.affine_inverse();
  1934. r_directional_light_count = 0;
  1935. r_positional_light_count = 0;
  1936. sky.sky_scene_state.ubo.directional_light_count = 0;
  1937. Plane camera_plane(p_camera_transform.origin, -p_camera_transform.basis.get_axis(Vector3::AXIS_Z).normalized());
  1938. cluster.omni_light_count = 0;
  1939. cluster.spot_light_count = 0;
  1940. r_directional_light_soft_shadows = false;
  1941. for (int i = 0; i < (int)p_lights.size(); i++) {
  1942. LightInstance *li = light_instance_owner.getornull(p_lights[i]);
  1943. if (!li) {
  1944. continue;
  1945. }
  1946. RID base = li->light;
  1947. ERR_CONTINUE(base.is_null());
  1948. RS::LightType type = storage->light_get_type(base);
  1949. switch (type) {
  1950. case RS::LIGHT_DIRECTIONAL: {
  1951. // Copy to SkyDirectionalLightData
  1952. if (r_directional_light_count < sky.sky_scene_state.max_directional_lights) {
  1953. RendererSceneSkyRD::SkyDirectionalLightData &sky_light_data = sky.sky_scene_state.directional_lights[r_directional_light_count];
  1954. Transform3D light_transform = li->transform;
  1955. Vector3 world_direction = light_transform.basis.xform(Vector3(0, 0, 1)).normalized();
  1956. sky_light_data.direction[0] = world_direction.x;
  1957. sky_light_data.direction[1] = world_direction.y;
  1958. sky_light_data.direction[2] = -world_direction.z;
  1959. float sign = storage->light_is_negative(base) ? -1 : 1;
  1960. sky_light_data.energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY);
  1961. Color linear_col = storage->light_get_color(base).to_linear();
  1962. sky_light_data.color[0] = linear_col.r;
  1963. sky_light_data.color[1] = linear_col.g;
  1964. sky_light_data.color[2] = linear_col.b;
  1965. sky_light_data.enabled = true;
  1966. float angular_diameter = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  1967. if (angular_diameter > 0.0) {
  1968. // I know tan(0) is 0, but let's not risk it with numerical precision.
  1969. // technically this will keep expanding until reaching the sun, but all we care
  1970. // is expand until we reach the radius of the near plane (there can't be more occluders than that)
  1971. angular_diameter = Math::tan(Math::deg2rad(angular_diameter));
  1972. if (storage->light_has_shadow(base)) {
  1973. r_directional_light_soft_shadows = true;
  1974. }
  1975. } else {
  1976. angular_diameter = 0.0;
  1977. }
  1978. sky_light_data.size = angular_diameter;
  1979. sky.sky_scene_state.ubo.directional_light_count++;
  1980. }
  1981. if (r_directional_light_count >= cluster.max_directional_lights || storage->light_directional_is_sky_only(base)) {
  1982. continue;
  1983. }
  1984. Cluster::DirectionalLightData &light_data = cluster.directional_lights[r_directional_light_count];
  1985. Transform3D light_transform = li->transform;
  1986. Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized();
  1987. light_data.direction[0] = direction.x;
  1988. light_data.direction[1] = direction.y;
  1989. light_data.direction[2] = direction.z;
  1990. float sign = storage->light_is_negative(base) ? -1 : 1;
  1991. light_data.energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI;
  1992. Color linear_col = storage->light_get_color(base).to_linear();
  1993. light_data.color[0] = linear_col.r;
  1994. light_data.color[1] = linear_col.g;
  1995. light_data.color[2] = linear_col.b;
  1996. light_data.specular = storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR);
  1997. light_data.mask = storage->light_get_cull_mask(base);
  1998. float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  1999. light_data.size = 1.0 - Math::cos(Math::deg2rad(size)); //angle to cosine offset
  2000. Color shadow_col = storage->light_get_shadow_color(base).to_linear();
  2001. if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_PSSM_SPLITS) {
  2002. light_data.shadow_color1[0] = 1.0;
  2003. light_data.shadow_color1[1] = 0.0;
  2004. light_data.shadow_color1[2] = 0.0;
  2005. light_data.shadow_color1[3] = 1.0;
  2006. light_data.shadow_color2[0] = 0.0;
  2007. light_data.shadow_color2[1] = 1.0;
  2008. light_data.shadow_color2[2] = 0.0;
  2009. light_data.shadow_color2[3] = 1.0;
  2010. light_data.shadow_color3[0] = 0.0;
  2011. light_data.shadow_color3[1] = 0.0;
  2012. light_data.shadow_color3[2] = 1.0;
  2013. light_data.shadow_color3[3] = 1.0;
  2014. light_data.shadow_color4[0] = 1.0;
  2015. light_data.shadow_color4[1] = 1.0;
  2016. light_data.shadow_color4[2] = 0.0;
  2017. light_data.shadow_color4[3] = 1.0;
  2018. } else {
  2019. light_data.shadow_color1[0] = shadow_col.r;
  2020. light_data.shadow_color1[1] = shadow_col.g;
  2021. light_data.shadow_color1[2] = shadow_col.b;
  2022. light_data.shadow_color1[3] = 1.0;
  2023. light_data.shadow_color2[0] = shadow_col.r;
  2024. light_data.shadow_color2[1] = shadow_col.g;
  2025. light_data.shadow_color2[2] = shadow_col.b;
  2026. light_data.shadow_color2[3] = 1.0;
  2027. light_data.shadow_color3[0] = shadow_col.r;
  2028. light_data.shadow_color3[1] = shadow_col.g;
  2029. light_data.shadow_color3[2] = shadow_col.b;
  2030. light_data.shadow_color3[3] = 1.0;
  2031. light_data.shadow_color4[0] = shadow_col.r;
  2032. light_data.shadow_color4[1] = shadow_col.g;
  2033. light_data.shadow_color4[2] = shadow_col.b;
  2034. light_data.shadow_color4[3] = 1.0;
  2035. }
  2036. light_data.shadow_enabled = p_using_shadows && storage->light_has_shadow(base);
  2037. float angular_diameter = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  2038. if (angular_diameter > 0.0) {
  2039. // I know tan(0) is 0, but let's not risk it with numerical precision.
  2040. // technically this will keep expanding until reaching the sun, but all we care
  2041. // is expand until we reach the radius of the near plane (there can't be more occluders than that)
  2042. angular_diameter = Math::tan(Math::deg2rad(angular_diameter));
  2043. } else {
  2044. angular_diameter = 0.0;
  2045. }
  2046. if (light_data.shadow_enabled) {
  2047. RS::LightDirectionalShadowMode smode = storage->light_directional_get_shadow_mode(base);
  2048. int limit = smode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (smode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3);
  2049. light_data.blend_splits = storage->light_directional_get_blend_splits(base);
  2050. for (int j = 0; j < 4; j++) {
  2051. Rect2 atlas_rect = li->shadow_transform[j].atlas_rect;
  2052. CameraMatrix matrix = li->shadow_transform[j].camera;
  2053. float split = li->shadow_transform[MIN(limit, j)].split;
  2054. CameraMatrix bias;
  2055. bias.set_light_bias();
  2056. CameraMatrix rectm;
  2057. rectm.set_light_atlas_rect(atlas_rect);
  2058. Transform3D modelview = (inverse_transform * li->shadow_transform[j].transform).inverse();
  2059. CameraMatrix shadow_mtx = rectm * bias * matrix * modelview;
  2060. light_data.shadow_split_offsets[j] = split;
  2061. float bias_scale = li->shadow_transform[j].bias_scale;
  2062. light_data.shadow_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * bias_scale;
  2063. light_data.shadow_normal_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * li->shadow_transform[j].shadow_texel_size;
  2064. light_data.shadow_transmittance_bias[j] = storage->light_get_transmittance_bias(base) * bias_scale;
  2065. light_data.shadow_z_range[j] = li->shadow_transform[j].farplane;
  2066. light_data.shadow_range_begin[j] = li->shadow_transform[j].range_begin;
  2067. RendererStorageRD::store_camera(shadow_mtx, light_data.shadow_matrices[j]);
  2068. Vector2 uv_scale = li->shadow_transform[j].uv_scale;
  2069. uv_scale *= atlas_rect.size; //adapt to atlas size
  2070. switch (j) {
  2071. case 0: {
  2072. light_data.uv_scale1[0] = uv_scale.x;
  2073. light_data.uv_scale1[1] = uv_scale.y;
  2074. } break;
  2075. case 1: {
  2076. light_data.uv_scale2[0] = uv_scale.x;
  2077. light_data.uv_scale2[1] = uv_scale.y;
  2078. } break;
  2079. case 2: {
  2080. light_data.uv_scale3[0] = uv_scale.x;
  2081. light_data.uv_scale3[1] = uv_scale.y;
  2082. } break;
  2083. case 3: {
  2084. light_data.uv_scale4[0] = uv_scale.x;
  2085. light_data.uv_scale4[1] = uv_scale.y;
  2086. } break;
  2087. }
  2088. }
  2089. float fade_start = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START);
  2090. light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep
  2091. light_data.fade_to = -light_data.shadow_split_offsets[3];
  2092. light_data.shadow_volumetric_fog_fade = 1.0 / storage->light_get_shadow_volumetric_fog_fade(base);
  2093. light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
  2094. light_data.softshadow_angle = angular_diameter;
  2095. light_data.bake_mode = storage->light_get_bake_mode(base);
  2096. if (angular_diameter <= 0.0) {
  2097. light_data.soft_shadow_scale *= directional_shadow_quality_radius_get(); // Only use quality radius for PCF
  2098. }
  2099. }
  2100. r_directional_light_count++;
  2101. } break;
  2102. case RS::LIGHT_OMNI: {
  2103. if (cluster.omni_light_count >= cluster.max_lights) {
  2104. continue;
  2105. }
  2106. cluster.omni_light_sort[cluster.omni_light_count].instance = li;
  2107. cluster.omni_light_sort[cluster.omni_light_count].depth = camera_plane.distance_to(li->transform.origin);
  2108. cluster.omni_light_count++;
  2109. } break;
  2110. case RS::LIGHT_SPOT: {
  2111. if (cluster.spot_light_count >= cluster.max_lights) {
  2112. continue;
  2113. }
  2114. cluster.spot_light_sort[cluster.spot_light_count].instance = li;
  2115. cluster.spot_light_sort[cluster.spot_light_count].depth = camera_plane.distance_to(li->transform.origin);
  2116. cluster.spot_light_count++;
  2117. } break;
  2118. }
  2119. li->last_pass = RSG::rasterizer->get_frame_number();
  2120. }
  2121. if (cluster.omni_light_count) {
  2122. SortArray<Cluster::InstanceSort<LightInstance>> sorter;
  2123. sorter.sort(cluster.omni_light_sort, cluster.omni_light_count);
  2124. }
  2125. if (cluster.spot_light_count) {
  2126. SortArray<Cluster::InstanceSort<LightInstance>> sorter;
  2127. sorter.sort(cluster.spot_light_sort, cluster.spot_light_count);
  2128. }
  2129. ShadowAtlas *shadow_atlas = nullptr;
  2130. if (p_shadow_atlas.is_valid() && p_using_shadows) {
  2131. shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2132. }
  2133. for (uint32_t i = 0; i < (cluster.omni_light_count + cluster.spot_light_count); i++) {
  2134. uint32_t index = (i < cluster.omni_light_count) ? i : i - (cluster.omni_light_count);
  2135. Cluster::LightData &light_data = (i < cluster.omni_light_count) ? cluster.omni_lights[index] : cluster.spot_lights[index];
  2136. RS::LightType type = (i < cluster.omni_light_count) ? RS::LIGHT_OMNI : RS::LIGHT_SPOT;
  2137. LightInstance *li = (i < cluster.omni_light_count) ? cluster.omni_light_sort[index].instance : cluster.spot_light_sort[index].instance;
  2138. RID base = li->light;
  2139. Transform3D light_transform = li->transform;
  2140. float sign = storage->light_is_negative(base) ? -1 : 1;
  2141. Color linear_col = storage->light_get_color(base).to_linear();
  2142. light_data.attenuation = storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION);
  2143. float energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI;
  2144. light_data.color[0] = linear_col.r * energy;
  2145. light_data.color[1] = linear_col.g * energy;
  2146. light_data.color[2] = linear_col.b * energy;
  2147. light_data.specular_amount = storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 2.0;
  2148. light_data.bake_mode = storage->light_get_bake_mode(base);
  2149. float radius = MAX(0.001, storage->light_get_param(base, RS::LIGHT_PARAM_RANGE));
  2150. light_data.inv_radius = 1.0 / radius;
  2151. Vector3 pos = inverse_transform.xform(light_transform.origin);
  2152. light_data.position[0] = pos.x;
  2153. light_data.position[1] = pos.y;
  2154. light_data.position[2] = pos.z;
  2155. Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized();
  2156. light_data.direction[0] = direction.x;
  2157. light_data.direction[1] = direction.y;
  2158. light_data.direction[2] = direction.z;
  2159. float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  2160. light_data.size = size;
  2161. light_data.inv_spot_attenuation = 1.0f / storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  2162. float spot_angle = storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE);
  2163. light_data.cos_spot_angle = Math::cos(Math::deg2rad(spot_angle));
  2164. light_data.mask = storage->light_get_cull_mask(base);
  2165. light_data.atlas_rect[0] = 0;
  2166. light_data.atlas_rect[1] = 0;
  2167. light_data.atlas_rect[2] = 0;
  2168. light_data.atlas_rect[3] = 0;
  2169. RID projector = storage->light_get_projector(base);
  2170. if (projector.is_valid()) {
  2171. Rect2 rect = storage->decal_atlas_get_texture_rect(projector);
  2172. if (type == RS::LIGHT_SPOT) {
  2173. light_data.projector_rect[0] = rect.position.x;
  2174. light_data.projector_rect[1] = rect.position.y + rect.size.height; //flip because shadow is flipped
  2175. light_data.projector_rect[2] = rect.size.width;
  2176. light_data.projector_rect[3] = -rect.size.height;
  2177. } else {
  2178. light_data.projector_rect[0] = rect.position.x;
  2179. light_data.projector_rect[1] = rect.position.y;
  2180. light_data.projector_rect[2] = rect.size.width;
  2181. light_data.projector_rect[3] = rect.size.height * 0.5; //used by dp, so needs to be half
  2182. }
  2183. } else {
  2184. light_data.projector_rect[0] = 0;
  2185. light_data.projector_rect[1] = 0;
  2186. light_data.projector_rect[2] = 0;
  2187. light_data.projector_rect[3] = 0;
  2188. }
  2189. if (shadow_atlas && shadow_atlas->shadow_owners.has(li->self)) {
  2190. // fill in the shadow information
  2191. light_data.shadow_enabled = true;
  2192. if (type == RS::LIGHT_SPOT) {
  2193. light_data.shadow_bias = (storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0);
  2194. float shadow_texel_size = Math::tan(Math::deg2rad(spot_angle)) * radius * 2.0;
  2195. shadow_texel_size *= light_instance_get_shadow_texel_size(li->self, p_shadow_atlas);
  2196. light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size;
  2197. } else { //omni
  2198. light_data.shadow_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0;
  2199. float shadow_texel_size = light_instance_get_shadow_texel_size(li->self, p_shadow_atlas);
  2200. light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 2.0; // applied in -1 .. 1 space
  2201. }
  2202. light_data.transmittance_bias = storage->light_get_transmittance_bias(base);
  2203. Rect2 rect = light_instance_get_shadow_atlas_rect(li->self, p_shadow_atlas);
  2204. light_data.atlas_rect[0] = rect.position.x;
  2205. light_data.atlas_rect[1] = rect.position.y;
  2206. light_data.atlas_rect[2] = rect.size.width;
  2207. light_data.atlas_rect[3] = rect.size.height;
  2208. light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
  2209. light_data.shadow_volumetric_fog_fade = 1.0 / storage->light_get_shadow_volumetric_fog_fade(base);
  2210. if (type == RS::LIGHT_OMNI) {
  2211. light_data.atlas_rect[3] *= 0.5; //one paraboloid on top of another
  2212. Transform3D proj = (inverse_transform * light_transform).inverse();
  2213. RendererStorageRD::store_transform(proj, light_data.shadow_matrix);
  2214. if (size > 0.0) {
  2215. light_data.soft_shadow_size = size;
  2216. } else {
  2217. light_data.soft_shadow_size = 0.0;
  2218. light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
  2219. }
  2220. } else if (type == RS::LIGHT_SPOT) {
  2221. Transform3D modelview = (inverse_transform * light_transform).inverse();
  2222. CameraMatrix bias;
  2223. bias.set_light_bias();
  2224. CameraMatrix shadow_mtx = bias * li->shadow_transform[0].camera * modelview;
  2225. RendererStorageRD::store_camera(shadow_mtx, light_data.shadow_matrix);
  2226. if (size > 0.0) {
  2227. CameraMatrix cm = li->shadow_transform[0].camera;
  2228. float half_np = cm.get_z_near() * Math::tan(Math::deg2rad(spot_angle));
  2229. light_data.soft_shadow_size = (size * 0.5 / radius) / (half_np / cm.get_z_near()) * rect.size.width;
  2230. } else {
  2231. light_data.soft_shadow_size = 0.0;
  2232. light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
  2233. }
  2234. }
  2235. } else {
  2236. light_data.shadow_enabled = false;
  2237. }
  2238. li->light_index = index;
  2239. li->cull_mask = storage->light_get_cull_mask(base);
  2240. if (current_cluster_builder != nullptr) {
  2241. current_cluster_builder->add_light(type == RS::LIGHT_SPOT ? ClusterBuilderRD::LIGHT_TYPE_SPOT : ClusterBuilderRD::LIGHT_TYPE_OMNI, light_transform, radius, spot_angle);
  2242. }
  2243. r_positional_light_count++;
  2244. }
  2245. //update without barriers
  2246. if (cluster.omni_light_count) {
  2247. RD::get_singleton()->buffer_update(cluster.omni_light_buffer, 0, sizeof(Cluster::LightData) * cluster.omni_light_count, cluster.omni_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  2248. }
  2249. if (cluster.spot_light_count) {
  2250. RD::get_singleton()->buffer_update(cluster.spot_light_buffer, 0, sizeof(Cluster::LightData) * cluster.spot_light_count, cluster.spot_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  2251. }
  2252. if (r_directional_light_count) {
  2253. RD::get_singleton()->buffer_update(cluster.directional_light_buffer, 0, sizeof(Cluster::DirectionalLightData) * r_directional_light_count, cluster.directional_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  2254. }
  2255. }
  2256. void RendererSceneRenderRD::_setup_decals(const PagedArray<RID> &p_decals, const Transform3D &p_camera_inverse_xform) {
  2257. Transform3D uv_xform;
  2258. uv_xform.basis.scale(Vector3(2.0, 1.0, 2.0));
  2259. uv_xform.origin = Vector3(-1.0, 0.0, -1.0);
  2260. uint32_t decal_count = p_decals.size();
  2261. cluster.decal_count = 0;
  2262. for (uint32_t i = 0; i < decal_count; i++) {
  2263. if (cluster.decal_count == cluster.max_decals) {
  2264. break;
  2265. }
  2266. DecalInstance *di = decal_instance_owner.getornull(p_decals[i]);
  2267. if (!di) {
  2268. continue;
  2269. }
  2270. RID decal = di->decal;
  2271. Transform3D xform = di->transform;
  2272. real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;
  2273. if (storage->decal_is_distance_fade_enabled(decal)) {
  2274. float fade_begin = storage->decal_get_distance_fade_begin(decal);
  2275. float fade_length = storage->decal_get_distance_fade_length(decal);
  2276. if (distance > fade_begin) {
  2277. if (distance > fade_begin + fade_length) {
  2278. continue; // do not use this decal, its invisible
  2279. }
  2280. }
  2281. }
  2282. cluster.decal_sort[cluster.decal_count].instance = di;
  2283. cluster.decal_sort[cluster.decal_count].depth = distance;
  2284. cluster.decal_count++;
  2285. }
  2286. if (cluster.decal_count > 0) {
  2287. SortArray<Cluster::InstanceSort<DecalInstance>> sort_array;
  2288. sort_array.sort(cluster.decal_sort, cluster.decal_count);
  2289. }
  2290. for (uint32_t i = 0; i < cluster.decal_count; i++) {
  2291. DecalInstance *di = cluster.decal_sort[i].instance;
  2292. RID decal = di->decal;
  2293. di->render_index = i;
  2294. di->cull_mask = storage->decal_get_cull_mask(decal);
  2295. Transform3D xform = di->transform;
  2296. float fade = 1.0;
  2297. if (storage->decal_is_distance_fade_enabled(decal)) {
  2298. real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;
  2299. float fade_begin = storage->decal_get_distance_fade_begin(decal);
  2300. float fade_length = storage->decal_get_distance_fade_length(decal);
  2301. if (distance > fade_begin) {
  2302. fade = 1.0 - (distance - fade_begin) / fade_length;
  2303. }
  2304. }
  2305. Cluster::DecalData &dd = cluster.decals[i];
  2306. Vector3 decal_extents = storage->decal_get_extents(decal);
  2307. Transform3D scale_xform;
  2308. scale_xform.basis.scale(Vector3(decal_extents.x, decal_extents.y, decal_extents.z));
  2309. Transform3D to_decal_xform = (p_camera_inverse_xform * di->transform * scale_xform * uv_xform).affine_inverse();
  2310. RendererStorageRD::store_transform(to_decal_xform, dd.xform);
  2311. Vector3 normal = xform.basis.get_axis(Vector3::AXIS_Y).normalized();
  2312. normal = p_camera_inverse_xform.basis.xform(normal); //camera is normalized, so fine
  2313. dd.normal[0] = normal.x;
  2314. dd.normal[1] = normal.y;
  2315. dd.normal[2] = normal.z;
  2316. dd.normal_fade = storage->decal_get_normal_fade(decal);
  2317. RID albedo_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ALBEDO);
  2318. RID emission_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_EMISSION);
  2319. if (albedo_tex.is_valid()) {
  2320. Rect2 rect = storage->decal_atlas_get_texture_rect(albedo_tex);
  2321. dd.albedo_rect[0] = rect.position.x;
  2322. dd.albedo_rect[1] = rect.position.y;
  2323. dd.albedo_rect[2] = rect.size.x;
  2324. dd.albedo_rect[3] = rect.size.y;
  2325. } else {
  2326. if (!emission_tex.is_valid()) {
  2327. continue; //no albedo, no emission, no decal.
  2328. }
  2329. dd.albedo_rect[0] = 0;
  2330. dd.albedo_rect[1] = 0;
  2331. dd.albedo_rect[2] = 0;
  2332. dd.albedo_rect[3] = 0;
  2333. }
  2334. RID normal_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_NORMAL);
  2335. if (normal_tex.is_valid()) {
  2336. Rect2 rect = storage->decal_atlas_get_texture_rect(normal_tex);
  2337. dd.normal_rect[0] = rect.position.x;
  2338. dd.normal_rect[1] = rect.position.y;
  2339. dd.normal_rect[2] = rect.size.x;
  2340. dd.normal_rect[3] = rect.size.y;
  2341. Basis normal_xform = p_camera_inverse_xform.basis * xform.basis.orthonormalized();
  2342. RendererStorageRD::store_basis_3x4(normal_xform, dd.normal_xform);
  2343. } else {
  2344. dd.normal_rect[0] = 0;
  2345. dd.normal_rect[1] = 0;
  2346. dd.normal_rect[2] = 0;
  2347. dd.normal_rect[3] = 0;
  2348. }
  2349. RID orm_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ORM);
  2350. if (orm_tex.is_valid()) {
  2351. Rect2 rect = storage->decal_atlas_get_texture_rect(orm_tex);
  2352. dd.orm_rect[0] = rect.position.x;
  2353. dd.orm_rect[1] = rect.position.y;
  2354. dd.orm_rect[2] = rect.size.x;
  2355. dd.orm_rect[3] = rect.size.y;
  2356. } else {
  2357. dd.orm_rect[0] = 0;
  2358. dd.orm_rect[1] = 0;
  2359. dd.orm_rect[2] = 0;
  2360. dd.orm_rect[3] = 0;
  2361. }
  2362. if (emission_tex.is_valid()) {
  2363. Rect2 rect = storage->decal_atlas_get_texture_rect(emission_tex);
  2364. dd.emission_rect[0] = rect.position.x;
  2365. dd.emission_rect[1] = rect.position.y;
  2366. dd.emission_rect[2] = rect.size.x;
  2367. dd.emission_rect[3] = rect.size.y;
  2368. } else {
  2369. dd.emission_rect[0] = 0;
  2370. dd.emission_rect[1] = 0;
  2371. dd.emission_rect[2] = 0;
  2372. dd.emission_rect[3] = 0;
  2373. }
  2374. Color modulate = storage->decal_get_modulate(decal);
  2375. dd.modulate[0] = modulate.r;
  2376. dd.modulate[1] = modulate.g;
  2377. dd.modulate[2] = modulate.b;
  2378. dd.modulate[3] = modulate.a * fade;
  2379. dd.emission_energy = storage->decal_get_emission_energy(decal) * fade;
  2380. dd.albedo_mix = storage->decal_get_albedo_mix(decal);
  2381. dd.mask = storage->decal_get_cull_mask(decal);
  2382. dd.upper_fade = storage->decal_get_upper_fade(decal);
  2383. dd.lower_fade = storage->decal_get_lower_fade(decal);
  2384. if (current_cluster_builder != nullptr) {
  2385. current_cluster_builder->add_box(ClusterBuilderRD::BOX_TYPE_DECAL, xform, decal_extents);
  2386. }
  2387. }
  2388. if (cluster.decal_count > 0) {
  2389. RD::get_singleton()->buffer_update(cluster.decal_buffer, 0, sizeof(Cluster::DecalData) * cluster.decal_count, cluster.decals, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  2390. }
  2391. }
  2392. void RendererSceneRenderRD::_fill_instance_indices(const RID *p_omni_light_instances, uint32_t p_omni_light_instance_count, uint32_t *p_omni_light_indices, const RID *p_spot_light_instances, uint32_t p_spot_light_instance_count, uint32_t *p_spot_light_indices, const RID *p_reflection_probe_instances, uint32_t p_reflection_probe_instance_count, uint32_t *p_reflection_probe_indices, const RID *p_decal_instances, uint32_t p_decal_instance_count, uint32_t *p_decal_instance_indices, uint32_t p_layer_mask, uint32_t p_max_dst_words) {
  2393. // first zero out our indices
  2394. for (uint32_t i = 0; i < p_max_dst_words; i++) {
  2395. p_omni_light_indices[i] = 0;
  2396. p_spot_light_indices[i] = 0;
  2397. p_reflection_probe_indices[i] = 0;
  2398. p_decal_instance_indices[i] = 0;
  2399. }
  2400. {
  2401. // process omni lights
  2402. uint32_t dword = 0;
  2403. uint32_t shift = 0;
  2404. for (uint32_t i = 0; i < p_omni_light_instance_count && dword < p_max_dst_words; i++) {
  2405. LightInstance *li = light_instance_owner.getornull(p_omni_light_instances[i]);
  2406. if ((li->cull_mask & p_layer_mask) && (li->light_index < 255)) {
  2407. p_omni_light_indices[dword] += li->light_index << shift;
  2408. if (shift == 24) {
  2409. dword++;
  2410. shift = 0;
  2411. } else {
  2412. shift += 8;
  2413. }
  2414. }
  2415. }
  2416. if (dword < 2) {
  2417. // put in ending mark
  2418. p_omni_light_indices[dword] += 0xFF << shift;
  2419. }
  2420. }
  2421. {
  2422. // process spot lights
  2423. uint32_t dword = 0;
  2424. uint32_t shift = 0;
  2425. for (uint32_t i = 0; i < p_spot_light_instance_count && dword < p_max_dst_words; i++) {
  2426. LightInstance *li = light_instance_owner.getornull(p_spot_light_instances[i]);
  2427. if ((li->cull_mask & p_layer_mask) && (li->light_index < 255)) {
  2428. p_spot_light_indices[dword] += li->light_index << shift;
  2429. if (shift == 24) {
  2430. dword++;
  2431. shift = 0;
  2432. } else {
  2433. shift += 8;
  2434. }
  2435. }
  2436. }
  2437. if (dword < 2) {
  2438. // put in ending mark
  2439. p_spot_light_indices[dword] += 0xFF << shift;
  2440. }
  2441. }
  2442. {
  2443. // process reflection probes
  2444. uint32_t dword = 0;
  2445. uint32_t shift = 0;
  2446. for (uint32_t i = 0; i < p_reflection_probe_instance_count && dword < p_max_dst_words; i++) {
  2447. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_reflection_probe_instances[i]);
  2448. if ((rpi->cull_mask & p_layer_mask) && (rpi->render_index < 255)) {
  2449. p_reflection_probe_indices[dword] += rpi->render_index << shift;
  2450. if (shift == 24) {
  2451. dword++;
  2452. shift = 0;
  2453. } else {
  2454. shift += 8;
  2455. }
  2456. }
  2457. }
  2458. if (dword < 2) {
  2459. // put in ending mark
  2460. p_reflection_probe_indices[dword] += 0xFF << shift;
  2461. }
  2462. }
  2463. {
  2464. // process decals
  2465. uint32_t dword = 0;
  2466. uint32_t shift = 0;
  2467. for (uint32_t i = 0; i < p_decal_instance_count && dword < p_max_dst_words; i++) {
  2468. DecalInstance *decal = decal_instance_owner.getornull(p_decal_instances[i]);
  2469. if ((decal->cull_mask & p_layer_mask) && (decal->render_index < 255)) {
  2470. p_decal_instance_indices[dword] += decal->render_index << shift;
  2471. if (shift == 24) {
  2472. dword++;
  2473. shift = 0;
  2474. } else {
  2475. shift += 8;
  2476. }
  2477. }
  2478. }
  2479. if (dword < 2) {
  2480. // put in ending mark
  2481. p_decal_instance_indices[dword] += 0xFF << shift;
  2482. }
  2483. }
  2484. }
  2485. void RendererSceneRenderRD::_volumetric_fog_erase(RenderBuffers *rb) {
  2486. ERR_FAIL_COND(!rb->volumetric_fog);
  2487. RD::get_singleton()->free(rb->volumetric_fog->prev_light_density_map);
  2488. RD::get_singleton()->free(rb->volumetric_fog->light_density_map);
  2489. RD::get_singleton()->free(rb->volumetric_fog->fog_map);
  2490. if (rb->volumetric_fog->uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
  2491. RD::get_singleton()->free(rb->volumetric_fog->uniform_set);
  2492. }
  2493. if (rb->volumetric_fog->uniform_set2.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set2)) {
  2494. RD::get_singleton()->free(rb->volumetric_fog->uniform_set2);
  2495. }
  2496. if (rb->volumetric_fog->sdfgi_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sdfgi_uniform_set)) {
  2497. RD::get_singleton()->free(rb->volumetric_fog->sdfgi_uniform_set);
  2498. }
  2499. if (rb->volumetric_fog->sky_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sky_uniform_set)) {
  2500. RD::get_singleton()->free(rb->volumetric_fog->sky_uniform_set);
  2501. }
  2502. memdelete(rb->volumetric_fog);
  2503. rb->volumetric_fog = nullptr;
  2504. }
  2505. void RendererSceneRenderRD::_update_volumetric_fog(RID p_render_buffers, RID p_environment, const CameraMatrix &p_cam_projection, const Transform3D &p_cam_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_voxel_gi_count) {
  2506. ERR_FAIL_COND(!is_clustered_enabled()); // can't use volumetric fog without clustered
  2507. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2508. ERR_FAIL_COND(!rb);
  2509. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_environment);
  2510. float ratio = float(rb->width) / float((rb->width + rb->height) / 2);
  2511. uint32_t target_width = uint32_t(float(volumetric_fog_size) * ratio);
  2512. uint32_t target_height = uint32_t(float(volumetric_fog_size) / ratio);
  2513. if (rb->volumetric_fog) {
  2514. //validate
  2515. if (!env || !env->volumetric_fog_enabled || rb->volumetric_fog->width != target_width || rb->volumetric_fog->height != target_height || rb->volumetric_fog->depth != volumetric_fog_depth) {
  2516. _volumetric_fog_erase(rb);
  2517. }
  2518. }
  2519. if (!env || !env->volumetric_fog_enabled) {
  2520. //no reason to enable or update, bye
  2521. return;
  2522. }
  2523. RENDER_TIMESTAMP(">Volumetric Fog");
  2524. if (env && env->volumetric_fog_enabled && !rb->volumetric_fog) {
  2525. //required volumetric fog but not existing, create
  2526. rb->volumetric_fog = memnew(VolumetricFog);
  2527. rb->volumetric_fog->width = target_width;
  2528. rb->volumetric_fog->height = target_height;
  2529. rb->volumetric_fog->depth = volumetric_fog_depth;
  2530. RD::TextureFormat tf;
  2531. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  2532. tf.width = target_width;
  2533. tf.height = target_height;
  2534. tf.depth = volumetric_fog_depth;
  2535. tf.texture_type = RD::TEXTURE_TYPE_3D;
  2536. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  2537. rb->volumetric_fog->light_density_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2538. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  2539. rb->volumetric_fog->prev_light_density_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2540. RD::get_singleton()->texture_clear(rb->volumetric_fog->prev_light_density_map, Color(0, 0, 0, 0), 0, 1, 0, 1);
  2541. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  2542. rb->volumetric_fog->fog_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2543. Vector<RD::Uniform> uniforms;
  2544. {
  2545. RD::Uniform u;
  2546. u.binding = 0;
  2547. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2548. u.ids.push_back(rb->volumetric_fog->fog_map);
  2549. uniforms.push_back(u);
  2550. }
  2551. rb->volumetric_fog->sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky.sky_shader.default_shader_rd, RendererSceneSkyRD::SKY_SET_FOG);
  2552. }
  2553. //update volumetric fog
  2554. if (rb->volumetric_fog->uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
  2555. //re create uniform set if needed
  2556. Vector<RD::Uniform> uniforms;
  2557. {
  2558. RD::Uniform u;
  2559. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2560. u.binding = 1;
  2561. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2562. if (shadow_atlas == nullptr || shadow_atlas->depth.is_null()) {
  2563. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_BLACK));
  2564. } else {
  2565. u.ids.push_back(shadow_atlas->depth);
  2566. }
  2567. uniforms.push_back(u);
  2568. }
  2569. {
  2570. RD::Uniform u;
  2571. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2572. u.binding = 2;
  2573. if (directional_shadow.depth.is_valid()) {
  2574. u.ids.push_back(directional_shadow.depth);
  2575. } else {
  2576. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_BLACK));
  2577. }
  2578. uniforms.push_back(u);
  2579. }
  2580. {
  2581. RD::Uniform u;
  2582. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2583. u.binding = 3;
  2584. u.ids.push_back(get_omni_light_buffer());
  2585. uniforms.push_back(u);
  2586. }
  2587. {
  2588. RD::Uniform u;
  2589. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2590. u.binding = 4;
  2591. u.ids.push_back(get_spot_light_buffer());
  2592. uniforms.push_back(u);
  2593. }
  2594. {
  2595. RD::Uniform u;
  2596. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  2597. u.binding = 5;
  2598. u.ids.push_back(get_directional_light_buffer());
  2599. uniforms.push_back(u);
  2600. }
  2601. {
  2602. RD::Uniform u;
  2603. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2604. u.binding = 6;
  2605. u.ids.push_back(rb->cluster_builder->get_cluster_buffer());
  2606. uniforms.push_back(u);
  2607. }
  2608. {
  2609. RD::Uniform u;
  2610. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2611. u.binding = 7;
  2612. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2613. uniforms.push_back(u);
  2614. }
  2615. {
  2616. RD::Uniform u;
  2617. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2618. u.binding = 8;
  2619. u.ids.push_back(rb->volumetric_fog->light_density_map);
  2620. uniforms.push_back(u);
  2621. }
  2622. {
  2623. RD::Uniform u;
  2624. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2625. u.binding = 9;
  2626. u.ids.push_back(rb->volumetric_fog->fog_map);
  2627. uniforms.push_back(u);
  2628. }
  2629. {
  2630. RD::Uniform u;
  2631. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2632. u.binding = 10;
  2633. u.ids.push_back(shadow_sampler);
  2634. uniforms.push_back(u);
  2635. }
  2636. {
  2637. RD::Uniform u;
  2638. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  2639. u.binding = 11;
  2640. u.ids.push_back(render_buffers_get_voxel_gi_buffer(p_render_buffers));
  2641. uniforms.push_back(u);
  2642. }
  2643. {
  2644. RD::Uniform u;
  2645. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2646. u.binding = 12;
  2647. for (int i = 0; i < RendererSceneGIRD::MAX_VOXEL_GI_INSTANCES; i++) {
  2648. u.ids.push_back(rb->gi.voxel_gi_textures[i]);
  2649. }
  2650. uniforms.push_back(u);
  2651. }
  2652. {
  2653. RD::Uniform u;
  2654. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2655. u.binding = 13;
  2656. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2657. uniforms.push_back(u);
  2658. }
  2659. {
  2660. RD::Uniform u;
  2661. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  2662. u.binding = 14;
  2663. u.ids.push_back(volumetric_fog.params_ubo);
  2664. uniforms.push_back(u);
  2665. }
  2666. {
  2667. RD::Uniform u;
  2668. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2669. u.binding = 15;
  2670. u.ids.push_back(rb->volumetric_fog->prev_light_density_map);
  2671. uniforms.push_back(u);
  2672. }
  2673. rb->volumetric_fog->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, 0), 0);
  2674. SWAP(uniforms.write[7].ids.write[0], uniforms.write[8].ids.write[0]);
  2675. rb->volumetric_fog->uniform_set2 = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, 0), 0);
  2676. }
  2677. bool using_sdfgi = env->volumetric_fog_gi_inject > 0.0001 && env->sdfgi_enabled && (rb->sdfgi != nullptr);
  2678. if (using_sdfgi) {
  2679. if (rb->volumetric_fog->sdfgi_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sdfgi_uniform_set)) {
  2680. Vector<RD::Uniform> uniforms;
  2681. {
  2682. RD::Uniform u;
  2683. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  2684. u.binding = 0;
  2685. u.ids.push_back(gi.sdfgi_ubo);
  2686. uniforms.push_back(u);
  2687. }
  2688. {
  2689. RD::Uniform u;
  2690. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2691. u.binding = 1;
  2692. u.ids.push_back(rb->sdfgi->ambient_texture);
  2693. uniforms.push_back(u);
  2694. }
  2695. {
  2696. RD::Uniform u;
  2697. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2698. u.binding = 2;
  2699. u.ids.push_back(rb->sdfgi->occlusion_texture);
  2700. uniforms.push_back(u);
  2701. }
  2702. rb->volumetric_fog->sdfgi_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI), 1);
  2703. }
  2704. }
  2705. rb->volumetric_fog->length = env->volumetric_fog_length;
  2706. rb->volumetric_fog->spread = env->volumetric_fog_detail_spread;
  2707. VolumetricFogShader::ParamsUBO params;
  2708. Vector2 frustum_near_size = p_cam_projection.get_viewport_half_extents();
  2709. Vector2 frustum_far_size = p_cam_projection.get_far_plane_half_extents();
  2710. float z_near = p_cam_projection.get_z_near();
  2711. float z_far = p_cam_projection.get_z_far();
  2712. float fog_end = env->volumetric_fog_length;
  2713. Vector2 fog_far_size = frustum_near_size.lerp(frustum_far_size, (fog_end - z_near) / (z_far - z_near));
  2714. Vector2 fog_near_size;
  2715. if (p_cam_projection.is_orthogonal()) {
  2716. fog_near_size = fog_far_size;
  2717. } else {
  2718. fog_near_size = Vector2();
  2719. }
  2720. params.fog_frustum_size_begin[0] = fog_near_size.x;
  2721. params.fog_frustum_size_begin[1] = fog_near_size.y;
  2722. params.fog_frustum_size_end[0] = fog_far_size.x;
  2723. params.fog_frustum_size_end[1] = fog_far_size.y;
  2724. params.z_near = z_near;
  2725. params.z_far = z_far;
  2726. params.fog_frustum_end = fog_end;
  2727. params.fog_volume_size[0] = rb->volumetric_fog->width;
  2728. params.fog_volume_size[1] = rb->volumetric_fog->height;
  2729. params.fog_volume_size[2] = rb->volumetric_fog->depth;
  2730. params.directional_light_count = p_directional_light_count;
  2731. Color light = env->volumetric_fog_light.to_linear();
  2732. params.light_energy[0] = light.r * env->volumetric_fog_light_energy;
  2733. params.light_energy[1] = light.g * env->volumetric_fog_light_energy;
  2734. params.light_energy[2] = light.b * env->volumetric_fog_light_energy;
  2735. params.base_density = env->volumetric_fog_density;
  2736. params.detail_spread = env->volumetric_fog_detail_spread;
  2737. params.gi_inject = env->volumetric_fog_gi_inject;
  2738. params.cam_rotation[0] = p_cam_transform.basis[0][0];
  2739. params.cam_rotation[1] = p_cam_transform.basis[1][0];
  2740. params.cam_rotation[2] = p_cam_transform.basis[2][0];
  2741. params.cam_rotation[3] = 0;
  2742. params.cam_rotation[4] = p_cam_transform.basis[0][1];
  2743. params.cam_rotation[5] = p_cam_transform.basis[1][1];
  2744. params.cam_rotation[6] = p_cam_transform.basis[2][1];
  2745. params.cam_rotation[7] = 0;
  2746. params.cam_rotation[8] = p_cam_transform.basis[0][2];
  2747. params.cam_rotation[9] = p_cam_transform.basis[1][2];
  2748. params.cam_rotation[10] = p_cam_transform.basis[2][2];
  2749. params.cam_rotation[11] = 0;
  2750. params.filter_axis = 0;
  2751. params.max_voxel_gi_instances = env->volumetric_fog_gi_inject > 0.001 ? p_voxel_gi_count : 0;
  2752. params.temporal_frame = RSG::rasterizer->get_frame_number() % VolumetricFog::MAX_TEMPORAL_FRAMES;
  2753. Transform3D to_prev_cam_view = rb->volumetric_fog->prev_cam_transform.affine_inverse() * p_cam_transform;
  2754. storage->store_transform(to_prev_cam_view, params.to_prev_view);
  2755. params.use_temporal_reprojection = env->volumetric_fog_temporal_reprojection;
  2756. params.temporal_blend = env->volumetric_fog_temporal_reprojection_amount;
  2757. {
  2758. uint32_t cluster_size = rb->cluster_builder->get_cluster_size();
  2759. params.cluster_shift = get_shift_from_power_of_2(cluster_size);
  2760. uint32_t cluster_screen_width = (rb->width - 1) / cluster_size + 1;
  2761. uint32_t cluster_screen_height = (rb->height - 1) / cluster_size + 1;
  2762. params.cluster_type_size = cluster_screen_width * cluster_screen_height * (32 + 32);
  2763. params.cluster_width = cluster_screen_width;
  2764. params.max_cluster_element_count_div_32 = max_cluster_elements / 32;
  2765. params.screen_size[0] = rb->width;
  2766. params.screen_size[1] = rb->height;
  2767. }
  2768. /* Vector2 dssize = directional_shadow_get_size();
  2769. push_constant.directional_shadow_pixel_size[0] = 1.0 / dssize.x;
  2770. push_constant.directional_shadow_pixel_size[1] = 1.0 / dssize.y;
  2771. */
  2772. RD::get_singleton()->draw_command_begin_label("Render Volumetric Fog");
  2773. RENDER_TIMESTAMP("Render Fog");
  2774. RD::get_singleton()->buffer_update(volumetric_fog.params_ubo, 0, sizeof(VolumetricFogShader::ParamsUBO), &params, RD::BARRIER_MASK_COMPUTE);
  2775. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  2776. bool use_filter = volumetric_fog_filter_active;
  2777. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[using_sdfgi ? VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI : VOLUMETRIC_FOG_SHADER_DENSITY]);
  2778. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0);
  2779. if (using_sdfgi) {
  2780. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->sdfgi_uniform_set, 1);
  2781. }
  2782. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth);
  2783. RD::get_singleton()->draw_command_end_label();
  2784. RD::get_singleton()->compute_list_end();
  2785. RD::get_singleton()->texture_copy(rb->volumetric_fog->light_density_map, rb->volumetric_fog->prev_light_density_map, Vector3(0, 0, 0), Vector3(0, 0, 0), Vector3(rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth), 0, 0, 0, 0);
  2786. compute_list = RD::get_singleton()->compute_list_begin();
  2787. if (use_filter) {
  2788. RD::get_singleton()->draw_command_begin_label("Filter Fog");
  2789. RENDER_TIMESTAMP("Filter Fog");
  2790. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FILTER]);
  2791. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0);
  2792. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth);
  2793. RD::get_singleton()->compute_list_end();
  2794. //need restart for buffer update
  2795. params.filter_axis = 1;
  2796. RD::get_singleton()->buffer_update(volumetric_fog.params_ubo, 0, sizeof(VolumetricFogShader::ParamsUBO), &params);
  2797. compute_list = RD::get_singleton()->compute_list_begin();
  2798. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FILTER]);
  2799. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set2, 0);
  2800. if (using_sdfgi) {
  2801. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->sdfgi_uniform_set, 1);
  2802. }
  2803. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth);
  2804. RD::get_singleton()->compute_list_add_barrier(compute_list);
  2805. RD::get_singleton()->draw_command_end_label();
  2806. }
  2807. RENDER_TIMESTAMP("Integrate Fog");
  2808. RD::get_singleton()->draw_command_begin_label("Integrate Fog");
  2809. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FOG]);
  2810. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0);
  2811. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, 1);
  2812. RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_RASTER);
  2813. RENDER_TIMESTAMP("<Volumetric Fog");
  2814. RD::get_singleton()->draw_command_end_label();
  2815. rb->volumetric_fog->prev_cam_transform = p_cam_transform;
  2816. }
  2817. bool RendererSceneRenderRD::_needs_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi) {
  2818. if (p_render_data->render_buffers.is_valid()) {
  2819. RenderBuffers *rb = render_buffers_owner.getornull(p_render_data->render_buffers);
  2820. if (rb->sdfgi != nullptr) {
  2821. return true;
  2822. }
  2823. }
  2824. return false;
  2825. }
  2826. void RendererSceneRenderRD::_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi) {
  2827. if (p_render_data->render_buffers.is_valid()) {
  2828. if (p_use_gi) {
  2829. RenderBuffers *rb = render_buffers_owner.getornull(p_render_data->render_buffers);
  2830. ERR_FAIL_COND(rb == nullptr);
  2831. if (rb->sdfgi == nullptr) {
  2832. return;
  2833. }
  2834. RendererSceneEnvironmentRD *env = environment_owner.getornull(p_render_data->environment);
  2835. rb->sdfgi->update_probes(env, sky.sky_owner.getornull(env->sky));
  2836. }
  2837. }
  2838. }
  2839. void RendererSceneRenderRD::_pre_resolve_render(RenderDataRD *p_render_data, bool p_use_gi) {
  2840. if (p_render_data->render_buffers.is_valid()) {
  2841. if (p_use_gi) {
  2842. RD::get_singleton()->compute_list_end();
  2843. }
  2844. }
  2845. }
  2846. void RendererSceneRenderRD::_pre_opaque_render(RenderDataRD *p_render_data, bool p_use_ssao, bool p_use_gi, RID p_normal_roughness_buffer, RID p_voxel_gi_buffer) {
  2847. // Render shadows while GI is rendering, due to how barriers are handled, this should happen at the same time
  2848. if (p_render_data->render_buffers.is_valid() && p_use_gi) {
  2849. RenderBuffers *rb = render_buffers_owner.getornull(p_render_data->render_buffers);
  2850. ERR_FAIL_COND(rb == nullptr);
  2851. if (rb->sdfgi != nullptr) {
  2852. rb->sdfgi->store_probes();
  2853. }
  2854. }
  2855. render_state.cube_shadows.clear();
  2856. render_state.shadows.clear();
  2857. render_state.directional_shadows.clear();
  2858. Plane camera_plane(p_render_data->cam_transform.origin, -p_render_data->cam_transform.basis.get_axis(Vector3::AXIS_Z));
  2859. float lod_distance_multiplier = p_render_data->cam_projection.get_lod_multiplier();
  2860. {
  2861. for (int i = 0; i < render_state.render_shadow_count; i++) {
  2862. LightInstance *li = light_instance_owner.getornull(render_state.render_shadows[i].light);
  2863. if (storage->light_get_type(li->light) == RS::LIGHT_DIRECTIONAL) {
  2864. render_state.directional_shadows.push_back(i);
  2865. } else if (storage->light_get_type(li->light) == RS::LIGHT_OMNI && storage->light_omni_get_shadow_mode(li->light) == RS::LIGHT_OMNI_SHADOW_CUBE) {
  2866. render_state.cube_shadows.push_back(i);
  2867. } else {
  2868. render_state.shadows.push_back(i);
  2869. }
  2870. }
  2871. //cube shadows are rendered in their own way
  2872. for (uint32_t i = 0; i < render_state.cube_shadows.size(); i++) {
  2873. _render_shadow_pass(render_state.render_shadows[render_state.cube_shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.cube_shadows[i]].pass, render_state.render_shadows[render_state.cube_shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->screen_lod_threshold, true, true, true, p_render_data->render_info);
  2874. }
  2875. if (render_state.directional_shadows.size()) {
  2876. //open the pass for directional shadows
  2877. _update_directional_shadow_atlas();
  2878. RD::get_singleton()->draw_list_begin(directional_shadow.fb, RD::INITIAL_ACTION_DROP, RD::FINAL_ACTION_DISCARD, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_CONTINUE);
  2879. RD::get_singleton()->draw_list_end();
  2880. }
  2881. }
  2882. // Render GI
  2883. bool render_shadows = render_state.directional_shadows.size() || render_state.shadows.size();
  2884. bool render_gi = p_render_data->render_buffers.is_valid() && p_use_gi;
  2885. if (render_shadows && render_gi) {
  2886. RENDER_TIMESTAMP("Render GI + Render Shadows (parallel)");
  2887. } else if (render_shadows) {
  2888. RENDER_TIMESTAMP("Render Shadows");
  2889. } else if (render_gi) {
  2890. RENDER_TIMESTAMP("Render GI");
  2891. }
  2892. //prepare shadow rendering
  2893. if (render_shadows) {
  2894. _render_shadow_begin();
  2895. //render directional shadows
  2896. for (uint32_t i = 0; i < render_state.directional_shadows.size(); i++) {
  2897. _render_shadow_pass(render_state.render_shadows[render_state.directional_shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.directional_shadows[i]].pass, render_state.render_shadows[render_state.directional_shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->screen_lod_threshold, false, i == render_state.directional_shadows.size() - 1, false, p_render_data->render_info);
  2898. }
  2899. //render positional shadows
  2900. for (uint32_t i = 0; i < render_state.shadows.size(); i++) {
  2901. _render_shadow_pass(render_state.render_shadows[render_state.shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.shadows[i]].pass, render_state.render_shadows[render_state.shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->screen_lod_threshold, i == 0, i == render_state.shadows.size() - 1, true, p_render_data->render_info);
  2902. }
  2903. _render_shadow_process();
  2904. }
  2905. //start GI
  2906. if (render_gi) {
  2907. gi.process_gi(p_render_data->render_buffers, p_normal_roughness_buffer, p_voxel_gi_buffer, p_render_data->environment, p_render_data->cam_projection, p_render_data->cam_transform, *p_render_data->voxel_gi_instances, this);
  2908. }
  2909. //Do shadow rendering (in parallel with GI)
  2910. if (render_shadows) {
  2911. _render_shadow_end(RD::BARRIER_MASK_NO_BARRIER);
  2912. }
  2913. if (render_gi) {
  2914. RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_NO_BARRIER); //use a later barrier
  2915. }
  2916. if (p_render_data->render_buffers.is_valid()) {
  2917. if (p_use_ssao) {
  2918. _process_ssao(p_render_data->render_buffers, p_render_data->environment, p_normal_roughness_buffer, p_render_data->cam_projection);
  2919. }
  2920. }
  2921. //full barrier here, we need raster, transfer and compute and it depends from the previous work
  2922. RD::get_singleton()->barrier(RD::BARRIER_MASK_ALL, RD::BARRIER_MASK_ALL);
  2923. if (current_cluster_builder) {
  2924. current_cluster_builder->begin(p_render_data->cam_transform, p_render_data->cam_projection, !p_render_data->reflection_probe.is_valid());
  2925. }
  2926. bool using_shadows = true;
  2927. if (p_render_data->reflection_probe.is_valid()) {
  2928. if (!storage->reflection_probe_renders_shadows(reflection_probe_instance_get_probe(p_render_data->reflection_probe))) {
  2929. using_shadows = false;
  2930. }
  2931. } else {
  2932. //do not render reflections when rendering a reflection probe
  2933. _setup_reflections(*p_render_data->reflection_probes, p_render_data->cam_transform.affine_inverse(), p_render_data->environment);
  2934. }
  2935. uint32_t directional_light_count = 0;
  2936. uint32_t positional_light_count = 0;
  2937. _setup_lights(*p_render_data->lights, p_render_data->cam_transform, p_render_data->shadow_atlas, using_shadows, directional_light_count, positional_light_count, p_render_data->directional_light_soft_shadows);
  2938. _setup_decals(*p_render_data->decals, p_render_data->cam_transform.affine_inverse());
  2939. p_render_data->directional_light_count = directional_light_count;
  2940. if (current_cluster_builder) {
  2941. current_cluster_builder->bake_cluster();
  2942. }
  2943. if (p_render_data->render_buffers.is_valid()) {
  2944. bool directional_shadows = false;
  2945. for (uint32_t i = 0; i < directional_light_count; i++) {
  2946. if (cluster.directional_lights[i].shadow_enabled) {
  2947. directional_shadows = true;
  2948. break;
  2949. }
  2950. }
  2951. if (is_volumetric_supported()) {
  2952. _update_volumetric_fog(p_render_data->render_buffers, p_render_data->environment, p_render_data->cam_projection, p_render_data->cam_transform, p_render_data->shadow_atlas, directional_light_count, directional_shadows, positional_light_count, render_state.voxel_gi_count);
  2953. }
  2954. }
  2955. }
  2956. void RendererSceneRenderRD::render_scene(RID p_render_buffers, const CameraData *p_camera_data, const PagedArray<GeometryInstance *> &p_instances, const PagedArray<RID> &p_lights, const PagedArray<RID> &p_reflection_probes, const PagedArray<RID> &p_voxel_gi_instances, const PagedArray<RID> &p_decals, const PagedArray<RID> &p_lightmaps, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data, RendererScene::RenderInfo *r_render_info) {
  2957. // getting this here now so we can direct call a bunch of things more easily
  2958. RenderBuffers *rb = nullptr;
  2959. if (p_render_buffers.is_valid()) {
  2960. rb = render_buffers_owner.getornull(p_render_buffers);
  2961. ERR_FAIL_COND(!rb);
  2962. }
  2963. //assign render data
  2964. RenderDataRD render_data;
  2965. {
  2966. render_data.render_buffers = p_render_buffers;
  2967. // Our first camera is used by default
  2968. render_data.cam_transform = p_camera_data->main_transform;
  2969. render_data.cam_projection = p_camera_data->main_projection;
  2970. render_data.view_projection[0] = p_camera_data->main_projection;
  2971. render_data.cam_ortogonal = p_camera_data->is_ortogonal;
  2972. render_data.view_count = p_camera_data->view_count;
  2973. for (uint32_t v = 0; v < p_camera_data->view_count; v++) {
  2974. render_data.view_projection[v] = p_camera_data->view_projection[v];
  2975. }
  2976. render_data.z_near = p_camera_data->main_projection.get_z_near();
  2977. render_data.z_far = p_camera_data->main_projection.get_z_far();
  2978. render_data.instances = &p_instances;
  2979. render_data.lights = &p_lights;
  2980. render_data.reflection_probes = &p_reflection_probes;
  2981. render_data.voxel_gi_instances = &p_voxel_gi_instances;
  2982. render_data.decals = &p_decals;
  2983. render_data.lightmaps = &p_lightmaps;
  2984. render_data.environment = p_environment;
  2985. render_data.camera_effects = p_camera_effects;
  2986. render_data.shadow_atlas = p_shadow_atlas;
  2987. render_data.reflection_atlas = p_reflection_atlas;
  2988. render_data.reflection_probe = p_reflection_probe;
  2989. render_data.reflection_probe_pass = p_reflection_probe_pass;
  2990. // this should be the same for all cameras..
  2991. render_data.lod_distance_multiplier = p_camera_data->main_projection.get_lod_multiplier();
  2992. render_data.lod_camera_plane = Plane(p_camera_data->main_transform.get_origin(), -p_camera_data->main_transform.basis.get_axis(Vector3::AXIS_Z));
  2993. if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) {
  2994. render_data.screen_lod_threshold = 0.0;
  2995. } else {
  2996. render_data.screen_lod_threshold = p_screen_lod_threshold;
  2997. }
  2998. render_state.render_shadows = p_render_shadows;
  2999. render_state.render_shadow_count = p_render_shadow_count;
  3000. render_state.render_sdfgi_regions = p_render_sdfgi_regions;
  3001. render_state.render_sdfgi_region_count = p_render_sdfgi_region_count;
  3002. render_state.sdfgi_update_data = p_sdfgi_update_data;
  3003. render_data.render_info = r_render_info;
  3004. }
  3005. PagedArray<RID> empty;
  3006. if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) {
  3007. render_data.lights = &empty;
  3008. render_data.reflection_probes = &empty;
  3009. render_data.voxel_gi_instances = &empty;
  3010. }
  3011. //sdfgi first
  3012. if (rb != nullptr && rb->sdfgi != nullptr) {
  3013. for (int i = 0; i < render_state.render_sdfgi_region_count; i++) {
  3014. rb->sdfgi->render_region(p_render_buffers, render_state.render_sdfgi_regions[i].region, render_state.render_sdfgi_regions[i].instances, this);
  3015. }
  3016. if (render_state.sdfgi_update_data->update_static) {
  3017. rb->sdfgi->render_static_lights(p_render_buffers, render_state.sdfgi_update_data->static_cascade_count, p_sdfgi_update_data->static_cascade_indices, render_state.sdfgi_update_data->static_positional_lights, this);
  3018. }
  3019. }
  3020. Color clear_color;
  3021. if (p_render_buffers.is_valid()) {
  3022. clear_color = storage->render_target_get_clear_request_color(rb->render_target);
  3023. } else {
  3024. clear_color = storage->get_default_clear_color();
  3025. }
  3026. //assign render indices to voxel_gi_instances
  3027. if (is_dynamic_gi_supported()) {
  3028. for (uint32_t i = 0; i < (uint32_t)p_voxel_gi_instances.size(); i++) {
  3029. RendererSceneGIRD::VoxelGIInstance *voxel_gi_inst = gi.voxel_gi_instance_owner.getornull(p_voxel_gi_instances[i]);
  3030. if (voxel_gi_inst) {
  3031. voxel_gi_inst->render_index = i;
  3032. }
  3033. }
  3034. }
  3035. if (render_buffers_owner.owns(render_data.render_buffers)) {
  3036. // render_data.render_buffers == p_render_buffers so we can use our already retrieved rb
  3037. current_cluster_builder = rb->cluster_builder;
  3038. } else if (reflection_probe_instance_owner.owns(render_data.reflection_probe)) {
  3039. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(render_data.reflection_probe);
  3040. ReflectionAtlas *ra = reflection_atlas_owner.getornull(rpi->atlas);
  3041. if (!ra) {
  3042. ERR_PRINT("reflection probe has no reflection atlas! Bug?");
  3043. current_cluster_builder = nullptr;
  3044. } else {
  3045. current_cluster_builder = ra->cluster_builder;
  3046. }
  3047. } else {
  3048. ERR_PRINT("No render buffer nor reflection atlas, bug"); //should never happen, will crash
  3049. current_cluster_builder = nullptr;
  3050. }
  3051. render_state.voxel_gi_count = 0;
  3052. if (rb != nullptr) {
  3053. if (rb->sdfgi) {
  3054. rb->sdfgi->update_cascades();
  3055. rb->sdfgi->pre_process_gi(render_data.cam_transform, &render_data, this);
  3056. rb->sdfgi->update_light();
  3057. }
  3058. gi.setup_voxel_gi_instances(render_data.render_buffers, render_data.cam_transform, *render_data.voxel_gi_instances, render_state.voxel_gi_count, this);
  3059. }
  3060. render_state.depth_prepass_used = false;
  3061. //calls _pre_opaque_render between depth pre-pass and opaque pass
  3062. if (current_cluster_builder != nullptr) {
  3063. render_data.cluster_buffer = current_cluster_builder->get_cluster_buffer();
  3064. render_data.cluster_size = current_cluster_builder->get_cluster_size();
  3065. render_data.cluster_max_elements = current_cluster_builder->get_max_cluster_elements();
  3066. }
  3067. _render_scene(&render_data, clear_color);
  3068. if (p_render_buffers.is_valid()) {
  3069. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS || debug_draw == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS || debug_draw == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS || debug_draw == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES) {
  3070. ClusterBuilderRD::ElementType elem_type = ClusterBuilderRD::ELEMENT_TYPE_MAX;
  3071. switch (debug_draw) {
  3072. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS:
  3073. elem_type = ClusterBuilderRD::ELEMENT_TYPE_OMNI_LIGHT;
  3074. break;
  3075. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS:
  3076. elem_type = ClusterBuilderRD::ELEMENT_TYPE_SPOT_LIGHT;
  3077. break;
  3078. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS:
  3079. elem_type = ClusterBuilderRD::ELEMENT_TYPE_DECAL;
  3080. break;
  3081. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES:
  3082. elem_type = ClusterBuilderRD::ELEMENT_TYPE_REFLECTION_PROBE;
  3083. break;
  3084. default: {
  3085. }
  3086. }
  3087. if (current_cluster_builder != nullptr) {
  3088. current_cluster_builder->debug(elem_type);
  3089. }
  3090. }
  3091. RENDER_TIMESTAMP("Tonemap");
  3092. _render_buffers_post_process_and_tonemap(&render_data);
  3093. _render_buffers_debug_draw(p_render_buffers, p_shadow_atlas, p_occluder_debug_tex);
  3094. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SDFGI && rb != nullptr && rb->sdfgi != nullptr) {
  3095. rb->sdfgi->debug_draw(render_data.cam_projection, render_data.cam_transform, rb->width, rb->height, rb->render_target, rb->texture);
  3096. }
  3097. }
  3098. }
  3099. void RendererSceneRenderRD::_render_shadow_pass(RID p_light, RID p_shadow_atlas, int p_pass, const PagedArray<GeometryInstance *> &p_instances, const Plane &p_camera_plane, float p_lod_distance_multiplier, float p_screen_lod_threshold, bool p_open_pass, bool p_close_pass, bool p_clear_region, RendererScene::RenderInfo *p_render_info) {
  3100. LightInstance *light_instance = light_instance_owner.getornull(p_light);
  3101. ERR_FAIL_COND(!light_instance);
  3102. Rect2i atlas_rect;
  3103. uint32_t atlas_size;
  3104. RID atlas_fb;
  3105. bool using_dual_paraboloid = false;
  3106. bool using_dual_paraboloid_flip = false;
  3107. RID render_fb;
  3108. RID render_texture;
  3109. float zfar;
  3110. bool use_pancake = false;
  3111. bool render_cubemap = false;
  3112. bool finalize_cubemap = false;
  3113. bool flip_y = false;
  3114. CameraMatrix light_projection;
  3115. Transform3D light_transform;
  3116. if (storage->light_get_type(light_instance->light) == RS::LIGHT_DIRECTIONAL) {
  3117. //set pssm stuff
  3118. if (light_instance->last_scene_shadow_pass != scene_pass) {
  3119. light_instance->directional_rect = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light);
  3120. directional_shadow.current_light++;
  3121. light_instance->last_scene_shadow_pass = scene_pass;
  3122. }
  3123. use_pancake = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE) > 0;
  3124. light_projection = light_instance->shadow_transform[p_pass].camera;
  3125. light_transform = light_instance->shadow_transform[p_pass].transform;
  3126. atlas_rect.position.x = light_instance->directional_rect.position.x;
  3127. atlas_rect.position.y = light_instance->directional_rect.position.y;
  3128. atlas_rect.size.width = light_instance->directional_rect.size.x;
  3129. atlas_rect.size.height = light_instance->directional_rect.size.y;
  3130. if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  3131. atlas_rect.size.width /= 2;
  3132. atlas_rect.size.height /= 2;
  3133. if (p_pass == 1) {
  3134. atlas_rect.position.x += atlas_rect.size.width;
  3135. } else if (p_pass == 2) {
  3136. atlas_rect.position.y += atlas_rect.size.height;
  3137. } else if (p_pass == 3) {
  3138. atlas_rect.position.x += atlas_rect.size.width;
  3139. atlas_rect.position.y += atlas_rect.size.height;
  3140. }
  3141. } else if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  3142. atlas_rect.size.height /= 2;
  3143. if (p_pass == 0) {
  3144. } else {
  3145. atlas_rect.position.y += atlas_rect.size.height;
  3146. }
  3147. }
  3148. light_instance->shadow_transform[p_pass].atlas_rect = atlas_rect;
  3149. light_instance->shadow_transform[p_pass].atlas_rect.position /= directional_shadow.size;
  3150. light_instance->shadow_transform[p_pass].atlas_rect.size /= directional_shadow.size;
  3151. zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
  3152. render_fb = directional_shadow.fb;
  3153. render_texture = RID();
  3154. flip_y = true;
  3155. } else {
  3156. //set from shadow atlas
  3157. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  3158. ERR_FAIL_COND(!shadow_atlas);
  3159. ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
  3160. _update_shadow_atlas(shadow_atlas);
  3161. uint32_t key = shadow_atlas->shadow_owners[p_light];
  3162. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  3163. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  3164. ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size());
  3165. uint32_t quadrant_size = shadow_atlas->size >> 1;
  3166. atlas_rect.position.x = (quadrant & 1) * quadrant_size;
  3167. atlas_rect.position.y = (quadrant >> 1) * quadrant_size;
  3168. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  3169. atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  3170. atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  3171. atlas_rect.size.width = shadow_size;
  3172. atlas_rect.size.height = shadow_size;
  3173. zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
  3174. if (storage->light_get_type(light_instance->light) == RS::LIGHT_OMNI) {
  3175. if (storage->light_omni_get_shadow_mode(light_instance->light) == RS::LIGHT_OMNI_SHADOW_CUBE) {
  3176. ShadowCubemap *cubemap = _get_shadow_cubemap(shadow_size / 2);
  3177. render_fb = cubemap->side_fb[p_pass];
  3178. render_texture = cubemap->cubemap;
  3179. light_projection = light_instance->shadow_transform[p_pass].camera;
  3180. light_transform = light_instance->shadow_transform[p_pass].transform;
  3181. render_cubemap = true;
  3182. finalize_cubemap = p_pass == 5;
  3183. atlas_fb = shadow_atlas->fb;
  3184. atlas_size = shadow_atlas->size;
  3185. if (p_pass == 0) {
  3186. _render_shadow_begin();
  3187. }
  3188. } else {
  3189. light_projection = light_instance->shadow_transform[0].camera;
  3190. light_transform = light_instance->shadow_transform[0].transform;
  3191. atlas_rect.size.height /= 2;
  3192. atlas_rect.position.y += p_pass * atlas_rect.size.height;
  3193. using_dual_paraboloid = true;
  3194. using_dual_paraboloid_flip = p_pass == 1;
  3195. render_fb = shadow_atlas->fb;
  3196. flip_y = true;
  3197. }
  3198. } else if (storage->light_get_type(light_instance->light) == RS::LIGHT_SPOT) {
  3199. light_projection = light_instance->shadow_transform[0].camera;
  3200. light_transform = light_instance->shadow_transform[0].transform;
  3201. render_fb = shadow_atlas->fb;
  3202. flip_y = true;
  3203. }
  3204. }
  3205. if (render_cubemap) {
  3206. //rendering to cubemap
  3207. _render_shadow_append(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, false, false, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_lod_threshold, Rect2(), false, true, true, true, p_render_info);
  3208. if (finalize_cubemap) {
  3209. _render_shadow_process();
  3210. _render_shadow_end();
  3211. //reblit
  3212. Rect2 atlas_rect_norm = atlas_rect;
  3213. atlas_rect_norm.position.x /= float(atlas_size);
  3214. atlas_rect_norm.position.y /= float(atlas_size);
  3215. atlas_rect_norm.size.x /= float(atlas_size);
  3216. atlas_rect_norm.size.y /= float(atlas_size);
  3217. atlas_rect_norm.size.height /= 2;
  3218. storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect_norm, light_projection.get_z_near(), light_projection.get_z_far(), false);
  3219. atlas_rect_norm.position.y += atlas_rect_norm.size.height;
  3220. storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect_norm, light_projection.get_z_near(), light_projection.get_z_far(), true);
  3221. //restore transform so it can be properly used
  3222. light_instance_set_shadow_transform(p_light, CameraMatrix(), light_instance->transform, zfar, 0, 0, 0);
  3223. }
  3224. } else {
  3225. //render shadow
  3226. _render_shadow_append(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, using_dual_paraboloid, using_dual_paraboloid_flip, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_lod_threshold, atlas_rect, flip_y, p_clear_region, p_open_pass, p_close_pass, p_render_info);
  3227. }
  3228. }
  3229. void RendererSceneRenderRD::render_material(const Transform3D &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, const PagedArray<GeometryInstance *> &p_instances, RID p_framebuffer, const Rect2i &p_region) {
  3230. _render_material(p_cam_transform, p_cam_projection, p_cam_ortogonal, p_instances, p_framebuffer, p_region);
  3231. }
  3232. void RendererSceneRenderRD::render_particle_collider_heightfield(RID p_collider, const Transform3D &p_transform, const PagedArray<GeometryInstance *> &p_instances) {
  3233. ERR_FAIL_COND(!storage->particles_collision_is_heightfield(p_collider));
  3234. Vector3 extents = storage->particles_collision_get_extents(p_collider) * p_transform.basis.get_scale();
  3235. CameraMatrix cm;
  3236. cm.set_orthogonal(-extents.x, extents.x, -extents.z, extents.z, 0, extents.y * 2.0);
  3237. Vector3 cam_pos = p_transform.origin;
  3238. cam_pos.y += extents.y;
  3239. Transform3D cam_xform;
  3240. cam_xform.set_look_at(cam_pos, cam_pos - p_transform.basis.get_axis(Vector3::AXIS_Y), -p_transform.basis.get_axis(Vector3::AXIS_Z).normalized());
  3241. RID fb = storage->particles_collision_get_heightfield_framebuffer(p_collider);
  3242. _render_particle_collider_heightfield(fb, cam_xform, cm, p_instances);
  3243. }
  3244. bool RendererSceneRenderRD::free(RID p_rid) {
  3245. if (render_buffers_owner.owns(p_rid)) {
  3246. RenderBuffers *rb = render_buffers_owner.getornull(p_rid);
  3247. _free_render_buffer_data(rb);
  3248. memdelete(rb->data);
  3249. if (rb->sdfgi) {
  3250. rb->sdfgi->erase();
  3251. memdelete(rb->sdfgi);
  3252. rb->sdfgi = nullptr;
  3253. }
  3254. if (rb->volumetric_fog) {
  3255. _volumetric_fog_erase(rb);
  3256. }
  3257. if (rb->cluster_builder) {
  3258. memdelete(rb->cluster_builder);
  3259. }
  3260. render_buffers_owner.free(p_rid);
  3261. } else if (environment_owner.owns(p_rid)) {
  3262. //not much to delete, just free it
  3263. environment_owner.free(p_rid);
  3264. } else if (camera_effects_owner.owns(p_rid)) {
  3265. //not much to delete, just free it
  3266. camera_effects_owner.free(p_rid);
  3267. } else if (reflection_atlas_owner.owns(p_rid)) {
  3268. reflection_atlas_set_size(p_rid, 0, 0);
  3269. ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_rid);
  3270. if (ra->cluster_builder) {
  3271. memdelete(ra->cluster_builder);
  3272. }
  3273. reflection_atlas_owner.free(p_rid);
  3274. } else if (reflection_probe_instance_owner.owns(p_rid)) {
  3275. //not much to delete, just free it
  3276. //ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_rid);
  3277. reflection_probe_release_atlas_index(p_rid);
  3278. reflection_probe_instance_owner.free(p_rid);
  3279. } else if (decal_instance_owner.owns(p_rid)) {
  3280. decal_instance_owner.free(p_rid);
  3281. } else if (lightmap_instance_owner.owns(p_rid)) {
  3282. lightmap_instance_owner.free(p_rid);
  3283. } else if (gi.voxel_gi_instance_owner.owns(p_rid)) {
  3284. RendererSceneGIRD::VoxelGIInstance *voxel_gi = gi.voxel_gi_instance_owner.getornull(p_rid);
  3285. if (voxel_gi->texture.is_valid()) {
  3286. RD::get_singleton()->free(voxel_gi->texture);
  3287. RD::get_singleton()->free(voxel_gi->write_buffer);
  3288. }
  3289. for (int i = 0; i < voxel_gi->dynamic_maps.size(); i++) {
  3290. RD::get_singleton()->free(voxel_gi->dynamic_maps[i].texture);
  3291. RD::get_singleton()->free(voxel_gi->dynamic_maps[i].depth);
  3292. }
  3293. gi.voxel_gi_instance_owner.free(p_rid);
  3294. } else if (sky.sky_owner.owns(p_rid)) {
  3295. sky.update_dirty_skys();
  3296. sky.free_sky(p_rid);
  3297. } else if (light_instance_owner.owns(p_rid)) {
  3298. LightInstance *light_instance = light_instance_owner.getornull(p_rid);
  3299. //remove from shadow atlases..
  3300. for (Set<RID>::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) {
  3301. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(E->get());
  3302. ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
  3303. uint32_t key = shadow_atlas->shadow_owners[p_rid];
  3304. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  3305. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  3306. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  3307. shadow_atlas->shadow_owners.erase(p_rid);
  3308. }
  3309. light_instance_owner.free(p_rid);
  3310. } else if (shadow_atlas_owner.owns(p_rid)) {
  3311. shadow_atlas_set_size(p_rid, 0);
  3312. shadow_atlas_owner.free(p_rid);
  3313. } else {
  3314. return false;
  3315. }
  3316. return true;
  3317. }
  3318. void RendererSceneRenderRD::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) {
  3319. debug_draw = p_debug_draw;
  3320. }
  3321. void RendererSceneRenderRD::update() {
  3322. sky.update_dirty_skys();
  3323. }
  3324. void RendererSceneRenderRD::set_time(double p_time, double p_step) {
  3325. time = p_time;
  3326. time_step = p_step;
  3327. }
  3328. void RendererSceneRenderRD::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_limit) {
  3329. screen_space_roughness_limiter = p_enable;
  3330. screen_space_roughness_limiter_amount = p_amount;
  3331. screen_space_roughness_limiter_limit = p_limit;
  3332. }
  3333. bool RendererSceneRenderRD::screen_space_roughness_limiter_is_active() const {
  3334. return screen_space_roughness_limiter;
  3335. }
  3336. float RendererSceneRenderRD::screen_space_roughness_limiter_get_amount() const {
  3337. return screen_space_roughness_limiter_amount;
  3338. }
  3339. float RendererSceneRenderRD::screen_space_roughness_limiter_get_limit() const {
  3340. return screen_space_roughness_limiter_limit;
  3341. }
  3342. TypedArray<Image> RendererSceneRenderRD::bake_render_uv2(RID p_base, const Vector<RID> &p_material_overrides, const Size2i &p_image_size) {
  3343. RD::TextureFormat tf;
  3344. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  3345. tf.width = p_image_size.width; // Always 64x64
  3346. tf.height = p_image_size.height;
  3347. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  3348. RID albedo_alpha_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3349. RID normal_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3350. RID orm_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3351. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  3352. RID emission_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3353. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  3354. RID depth_write_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3355. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  3356. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  3357. RID depth_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3358. Vector<RID> fb_tex;
  3359. fb_tex.push_back(albedo_alpha_tex);
  3360. fb_tex.push_back(normal_tex);
  3361. fb_tex.push_back(orm_tex);
  3362. fb_tex.push_back(emission_tex);
  3363. fb_tex.push_back(depth_write_tex);
  3364. fb_tex.push_back(depth_tex);
  3365. RID fb = RD::get_singleton()->framebuffer_create(fb_tex);
  3366. //RID sampled_light;
  3367. GeometryInstance *gi = geometry_instance_create(p_base);
  3368. uint32_t sc = RSG::storage->mesh_get_surface_count(p_base);
  3369. Vector<RID> materials;
  3370. materials.resize(sc);
  3371. for (uint32_t i = 0; i < sc; i++) {
  3372. if (i < (uint32_t)p_material_overrides.size()) {
  3373. materials.write[i] = p_material_overrides[i];
  3374. }
  3375. }
  3376. geometry_instance_set_surface_materials(gi, materials);
  3377. if (cull_argument.size() == 0) {
  3378. cull_argument.push_back(nullptr);
  3379. }
  3380. cull_argument[0] = gi;
  3381. _render_uv2(cull_argument, fb, Rect2i(0, 0, p_image_size.width, p_image_size.height));
  3382. geometry_instance_free(gi);
  3383. TypedArray<Image> ret;
  3384. {
  3385. PackedByteArray data = RD::get_singleton()->texture_get_data(albedo_alpha_tex, 0);
  3386. Ref<Image> img;
  3387. img.instantiate();
  3388. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  3389. RD::get_singleton()->free(albedo_alpha_tex);
  3390. ret.push_back(img);
  3391. }
  3392. {
  3393. PackedByteArray data = RD::get_singleton()->texture_get_data(normal_tex, 0);
  3394. Ref<Image> img;
  3395. img.instantiate();
  3396. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  3397. RD::get_singleton()->free(normal_tex);
  3398. ret.push_back(img);
  3399. }
  3400. {
  3401. PackedByteArray data = RD::get_singleton()->texture_get_data(orm_tex, 0);
  3402. Ref<Image> img;
  3403. img.instantiate();
  3404. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  3405. RD::get_singleton()->free(orm_tex);
  3406. ret.push_back(img);
  3407. }
  3408. {
  3409. PackedByteArray data = RD::get_singleton()->texture_get_data(emission_tex, 0);
  3410. Ref<Image> img;
  3411. img.instantiate();
  3412. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBAH, data);
  3413. RD::get_singleton()->free(emission_tex);
  3414. ret.push_back(img);
  3415. }
  3416. RD::get_singleton()->free(depth_write_tex);
  3417. RD::get_singleton()->free(depth_tex);
  3418. return ret;
  3419. }
  3420. void RendererSceneRenderRD::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) {
  3421. gi.sdfgi_debug_probe_pos = p_position;
  3422. gi.sdfgi_debug_probe_dir = p_dir;
  3423. }
  3424. RendererSceneRenderRD *RendererSceneRenderRD::singleton = nullptr;
  3425. RID RendererSceneRenderRD::get_reflection_probe_buffer() {
  3426. return cluster.reflection_buffer;
  3427. }
  3428. RID RendererSceneRenderRD::get_omni_light_buffer() {
  3429. return cluster.omni_light_buffer;
  3430. }
  3431. RID RendererSceneRenderRD::get_spot_light_buffer() {
  3432. return cluster.spot_light_buffer;
  3433. }
  3434. RID RendererSceneRenderRD::get_directional_light_buffer() {
  3435. return cluster.directional_light_buffer;
  3436. }
  3437. RID RendererSceneRenderRD::get_decal_buffer() {
  3438. return cluster.decal_buffer;
  3439. }
  3440. int RendererSceneRenderRD::get_max_directional_lights() const {
  3441. return cluster.max_directional_lights;
  3442. }
  3443. bool RendererSceneRenderRD::is_dynamic_gi_supported() const {
  3444. // usable by default (unless low end = true)
  3445. return true;
  3446. }
  3447. bool RendererSceneRenderRD::is_clustered_enabled() const {
  3448. // used by default.
  3449. return true;
  3450. }
  3451. bool RendererSceneRenderRD::is_volumetric_supported() const {
  3452. // usable by default (unless low end = true)
  3453. return true;
  3454. }
  3455. uint32_t RendererSceneRenderRD::get_max_elements() const {
  3456. return GLOBAL_GET("rendering/limits/cluster_builder/max_clustered_elements");
  3457. }
  3458. RendererSceneRenderRD::RendererSceneRenderRD(RendererStorageRD *p_storage) {
  3459. max_cluster_elements = get_max_elements();
  3460. storage = p_storage;
  3461. singleton = this;
  3462. directional_shadow.size = GLOBAL_GET("rendering/shadows/directional_shadow/size");
  3463. directional_shadow.use_16_bits = GLOBAL_GET("rendering/shadows/directional_shadow/16_bits");
  3464. /* SKY SHADER */
  3465. sky.init(storage);
  3466. /* GI */
  3467. if (is_dynamic_gi_supported()) {
  3468. gi.init(storage, &sky);
  3469. }
  3470. { //decals
  3471. cluster.max_decals = max_cluster_elements;
  3472. uint32_t decal_buffer_size = cluster.max_decals * sizeof(Cluster::DecalData);
  3473. cluster.decals = memnew_arr(Cluster::DecalData, cluster.max_decals);
  3474. cluster.decal_sort = memnew_arr(Cluster::InstanceSort<DecalInstance>, cluster.max_decals);
  3475. cluster.decal_buffer = RD::get_singleton()->storage_buffer_create(decal_buffer_size);
  3476. }
  3477. { //reflections
  3478. cluster.max_reflections = max_cluster_elements;
  3479. cluster.reflections = memnew_arr(Cluster::ReflectionData, cluster.max_reflections);
  3480. cluster.reflection_sort = memnew_arr(Cluster::InstanceSort<ReflectionProbeInstance>, cluster.max_reflections);
  3481. cluster.reflection_buffer = RD::get_singleton()->storage_buffer_create(sizeof(Cluster::ReflectionData) * cluster.max_reflections);
  3482. }
  3483. { //lights
  3484. cluster.max_lights = max_cluster_elements;
  3485. uint32_t light_buffer_size = cluster.max_lights * sizeof(Cluster::LightData);
  3486. cluster.omni_lights = memnew_arr(Cluster::LightData, cluster.max_lights);
  3487. cluster.omni_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
  3488. cluster.omni_light_sort = memnew_arr(Cluster::InstanceSort<LightInstance>, cluster.max_lights);
  3489. cluster.spot_lights = memnew_arr(Cluster::LightData, cluster.max_lights);
  3490. cluster.spot_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
  3491. cluster.spot_light_sort = memnew_arr(Cluster::InstanceSort<LightInstance>, cluster.max_lights);
  3492. //defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(cluster.max_lights) + "\n";
  3493. cluster.max_directional_lights = MAX_DIRECTIONAL_LIGHTS;
  3494. uint32_t directional_light_buffer_size = cluster.max_directional_lights * sizeof(Cluster::DirectionalLightData);
  3495. cluster.directional_lights = memnew_arr(Cluster::DirectionalLightData, cluster.max_directional_lights);
  3496. cluster.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size);
  3497. }
  3498. if (is_volumetric_supported()) {
  3499. String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(cluster.max_directional_lights) + "\n";
  3500. Vector<String> volumetric_fog_modes;
  3501. volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n");
  3502. volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n#define ENABLE_SDFGI\n");
  3503. volumetric_fog_modes.push_back("\n#define MODE_FILTER\n");
  3504. volumetric_fog_modes.push_back("\n#define MODE_FOG\n");
  3505. volumetric_fog.shader.initialize(volumetric_fog_modes, defines);
  3506. volumetric_fog.shader_version = volumetric_fog.shader.version_create();
  3507. for (int i = 0; i < VOLUMETRIC_FOG_SHADER_MAX; i++) {
  3508. volumetric_fog.pipelines[i] = RD::get_singleton()->compute_pipeline_create(volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, i));
  3509. }
  3510. volumetric_fog.params_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(VolumetricFogShader::ParamsUBO));
  3511. }
  3512. {
  3513. RD::SamplerState sampler;
  3514. sampler.mag_filter = RD::SAMPLER_FILTER_NEAREST;
  3515. sampler.min_filter = RD::SAMPLER_FILTER_NEAREST;
  3516. sampler.enable_compare = true;
  3517. sampler.compare_op = RD::COMPARE_OP_LESS;
  3518. shadow_sampler = RD::get_singleton()->sampler_create(sampler);
  3519. }
  3520. camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_shape"))));
  3521. camera_effects_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_use_jitter"));
  3522. environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/environment/ssao/quality"))), GLOBAL_GET("rendering/environment/ssao/half_size"), GLOBAL_GET("rendering/environment/ssao/adaptive_target"), GLOBAL_GET("rendering/environment/ssao/blur_passes"), GLOBAL_GET("rendering/environment/ssao/fadeout_from"), GLOBAL_GET("rendering/environment/ssao/fadeout_to"));
  3523. screen_space_roughness_limiter = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/enabled");
  3524. screen_space_roughness_limiter_amount = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/amount");
  3525. screen_space_roughness_limiter_limit = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/limit");
  3526. glow_bicubic_upscale = int(GLOBAL_GET("rendering/environment/glow/upscale_mode")) > 0;
  3527. glow_high_quality = GLOBAL_GET("rendering/environment/glow/use_high_quality");
  3528. ssr_roughness_quality = RS::EnvironmentSSRRoughnessQuality(int(GLOBAL_GET("rendering/environment/screen_space_reflection/roughness_quality")));
  3529. sss_quality = RS::SubSurfaceScatteringQuality(int(GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_quality")));
  3530. sss_scale = GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_scale");
  3531. sss_depth_scale = GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_depth_scale");
  3532. directional_penumbra_shadow_kernel = memnew_arr(float, 128);
  3533. directional_soft_shadow_kernel = memnew_arr(float, 128);
  3534. penumbra_shadow_kernel = memnew_arr(float, 128);
  3535. soft_shadow_kernel = memnew_arr(float, 128);
  3536. shadows_quality_set(RS::ShadowQuality(int(GLOBAL_GET("rendering/shadows/shadows/soft_shadow_quality"))));
  3537. directional_shadow_quality_set(RS::ShadowQuality(int(GLOBAL_GET("rendering/shadows/directional_shadow/soft_shadow_quality"))));
  3538. environment_set_volumetric_fog_volume_size(GLOBAL_GET("rendering/environment/volumetric_fog/volume_size"), GLOBAL_GET("rendering/environment/volumetric_fog/volume_depth"));
  3539. environment_set_volumetric_fog_filter_active(GLOBAL_GET("rendering/environment/volumetric_fog/use_filter"));
  3540. cull_argument.set_page_pool(&cull_argument_pool);
  3541. }
  3542. RendererSceneRenderRD::~RendererSceneRenderRD() {
  3543. for (Map<int, ShadowCubemap>::Element *E = shadow_cubemaps.front(); E; E = E->next()) {
  3544. RD::get_singleton()->free(E->get().cubemap);
  3545. }
  3546. if (sky.sky_scene_state.uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky.sky_scene_state.uniform_set)) {
  3547. RD::get_singleton()->free(sky.sky_scene_state.uniform_set);
  3548. }
  3549. if (is_dynamic_gi_supported()) {
  3550. gi.free();
  3551. volumetric_fog.shader.version_free(volumetric_fog.shader_version);
  3552. RD::get_singleton()->free(volumetric_fog.params_ubo);
  3553. }
  3554. RendererSceneSkyRD::SkyMaterialData *md = (RendererSceneSkyRD::SkyMaterialData *)storage->material_get_data(sky.sky_shader.default_material, RendererStorageRD::SHADER_TYPE_SKY);
  3555. sky.sky_shader.shader.version_free(md->shader_data->version);
  3556. RD::get_singleton()->free(sky.sky_scene_state.directional_light_buffer);
  3557. RD::get_singleton()->free(sky.sky_scene_state.uniform_buffer);
  3558. memdelete_arr(sky.sky_scene_state.directional_lights);
  3559. memdelete_arr(sky.sky_scene_state.last_frame_directional_lights);
  3560. storage->free(sky.sky_shader.default_shader);
  3561. storage->free(sky.sky_shader.default_material);
  3562. storage->free(sky.sky_scene_state.fog_shader);
  3563. storage->free(sky.sky_scene_state.fog_material);
  3564. memdelete_arr(directional_penumbra_shadow_kernel);
  3565. memdelete_arr(directional_soft_shadow_kernel);
  3566. memdelete_arr(penumbra_shadow_kernel);
  3567. memdelete_arr(soft_shadow_kernel);
  3568. {
  3569. RD::get_singleton()->free(cluster.directional_light_buffer);
  3570. RD::get_singleton()->free(cluster.omni_light_buffer);
  3571. RD::get_singleton()->free(cluster.spot_light_buffer);
  3572. RD::get_singleton()->free(cluster.reflection_buffer);
  3573. RD::get_singleton()->free(cluster.decal_buffer);
  3574. memdelete_arr(cluster.directional_lights);
  3575. memdelete_arr(cluster.omni_lights);
  3576. memdelete_arr(cluster.spot_lights);
  3577. memdelete_arr(cluster.omni_light_sort);
  3578. memdelete_arr(cluster.spot_light_sort);
  3579. memdelete_arr(cluster.reflections);
  3580. memdelete_arr(cluster.reflection_sort);
  3581. memdelete_arr(cluster.decals);
  3582. memdelete_arr(cluster.decal_sort);
  3583. }
  3584. RD::get_singleton()->free(shadow_sampler);
  3585. directional_shadow_atlas_set_size(0);
  3586. cull_argument.reset(); //avoid exit error
  3587. }