basis.cpp 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053
  1. /**************************************************************************/
  2. /* basis.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "basis.h"
  31. #include "core/math/math_funcs.h"
  32. #include "core/string/ustring.h"
  33. #define cofac(row1, col1, row2, col2) \
  34. (rows[row1][col1] * rows[row2][col2] - rows[row1][col2] * rows[row2][col1])
  35. void Basis::invert() {
  36. real_t co[3] = {
  37. cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
  38. };
  39. real_t det = rows[0][0] * co[0] +
  40. rows[0][1] * co[1] +
  41. rows[0][2] * co[2];
  42. #ifdef MATH_CHECKS
  43. ERR_FAIL_COND(det == 0);
  44. #endif
  45. real_t s = 1.0f / det;
  46. set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
  47. co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
  48. co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
  49. }
  50. void Basis::orthonormalize() {
  51. // Gram-Schmidt Process
  52. Vector3 x = get_column(0);
  53. Vector3 y = get_column(1);
  54. Vector3 z = get_column(2);
  55. x.normalize();
  56. y = (y - x * (x.dot(y)));
  57. y.normalize();
  58. z = (z - x * (x.dot(z)) - y * (y.dot(z)));
  59. z.normalize();
  60. set_column(0, x);
  61. set_column(1, y);
  62. set_column(2, z);
  63. }
  64. Basis Basis::orthonormalized() const {
  65. Basis c = *this;
  66. c.orthonormalize();
  67. return c;
  68. }
  69. void Basis::orthogonalize() {
  70. Vector3 scl = get_scale();
  71. orthonormalize();
  72. scale_local(scl);
  73. }
  74. Basis Basis::orthogonalized() const {
  75. Basis c = *this;
  76. c.orthogonalize();
  77. return c;
  78. }
  79. // Returns true if the basis vectors are orthogonal (perpendicular), so it has no skew or shear, and can be decomposed into rotation and scale.
  80. // See https://en.wikipedia.org/wiki/Orthogonal_basis
  81. bool Basis::is_orthogonal() const {
  82. const Vector3 x = get_column(0);
  83. const Vector3 y = get_column(1);
  84. const Vector3 z = get_column(2);
  85. return Math::is_zero_approx(x.dot(y)) && Math::is_zero_approx(x.dot(z)) && Math::is_zero_approx(y.dot(z));
  86. }
  87. // Returns true if the basis vectors are orthonormal (orthogonal and normalized), so it has no scale, skew, or shear.
  88. // See https://en.wikipedia.org/wiki/Orthonormal_basis
  89. bool Basis::is_orthonormal() const {
  90. const Vector3 x = get_column(0);
  91. const Vector3 y = get_column(1);
  92. const Vector3 z = get_column(2);
  93. return Math::is_equal_approx(x.length_squared(), 1) && Math::is_equal_approx(y.length_squared(), 1) && Math::is_equal_approx(z.length_squared(), 1) && Math::is_zero_approx(x.dot(y)) && Math::is_zero_approx(x.dot(z)) && Math::is_zero_approx(y.dot(z));
  94. }
  95. // Returns true if the basis is conformal (orthogonal, uniform scale, preserves angles and distance ratios).
  96. // See https://en.wikipedia.org/wiki/Conformal_linear_transformation
  97. bool Basis::is_conformal() const {
  98. const Vector3 x = get_column(0);
  99. const Vector3 y = get_column(1);
  100. const Vector3 z = get_column(2);
  101. const real_t x_len_sq = x.length_squared();
  102. return Math::is_equal_approx(x_len_sq, y.length_squared()) && Math::is_equal_approx(x_len_sq, z.length_squared()) && Math::is_zero_approx(x.dot(y)) && Math::is_zero_approx(x.dot(z)) && Math::is_zero_approx(y.dot(z));
  103. }
  104. // Returns true if the basis only has diagonal elements, so it may only have scale or flip, but no rotation, skew, or shear.
  105. bool Basis::is_diagonal() const {
  106. return (
  107. Math::is_zero_approx(rows[0][1]) && Math::is_zero_approx(rows[0][2]) &&
  108. Math::is_zero_approx(rows[1][0]) && Math::is_zero_approx(rows[1][2]) &&
  109. Math::is_zero_approx(rows[2][0]) && Math::is_zero_approx(rows[2][1]));
  110. }
  111. // Returns true if the basis is a pure rotation matrix, so it has no scale, skew, shear, or flip.
  112. bool Basis::is_rotation() const {
  113. return is_conformal() && Math::is_equal_approx(determinant(), 1, (real_t)UNIT_EPSILON);
  114. }
  115. #ifdef MATH_CHECKS
  116. // This method is only used once, in diagonalize. If it's desired elsewhere, feel free to remove the #ifdef.
  117. bool Basis::is_symmetric() const {
  118. if (!Math::is_equal_approx(rows[0][1], rows[1][0])) {
  119. return false;
  120. }
  121. if (!Math::is_equal_approx(rows[0][2], rows[2][0])) {
  122. return false;
  123. }
  124. if (!Math::is_equal_approx(rows[1][2], rows[2][1])) {
  125. return false;
  126. }
  127. return true;
  128. }
  129. #endif
  130. Basis Basis::diagonalize() {
  131. // NOTE: only implemented for symmetric matrices
  132. // with the Jacobi iterative method
  133. #ifdef MATH_CHECKS
  134. ERR_FAIL_COND_V(!is_symmetric(), Basis());
  135. #endif
  136. const int ite_max = 1024;
  137. real_t off_matrix_norm_2 = rows[0][1] * rows[0][1] + rows[0][2] * rows[0][2] + rows[1][2] * rows[1][2];
  138. int ite = 0;
  139. Basis acc_rot;
  140. while (off_matrix_norm_2 > (real_t)CMP_EPSILON2 && ite++ < ite_max) {
  141. real_t el01_2 = rows[0][1] * rows[0][1];
  142. real_t el02_2 = rows[0][2] * rows[0][2];
  143. real_t el12_2 = rows[1][2] * rows[1][2];
  144. // Find the pivot element
  145. int i, j;
  146. if (el01_2 > el02_2) {
  147. if (el12_2 > el01_2) {
  148. i = 1;
  149. j = 2;
  150. } else {
  151. i = 0;
  152. j = 1;
  153. }
  154. } else {
  155. if (el12_2 > el02_2) {
  156. i = 1;
  157. j = 2;
  158. } else {
  159. i = 0;
  160. j = 2;
  161. }
  162. }
  163. // Compute the rotation angle
  164. real_t angle;
  165. if (Math::is_equal_approx(rows[j][j], rows[i][i])) {
  166. angle = Math::PI / 4;
  167. } else {
  168. angle = 0.5f * Math::atan(2 * rows[i][j] / (rows[j][j] - rows[i][i]));
  169. }
  170. // Compute the rotation matrix
  171. Basis rot;
  172. rot.rows[i][i] = rot.rows[j][j] = Math::cos(angle);
  173. rot.rows[i][j] = -(rot.rows[j][i] = Math::sin(angle));
  174. // Update the off matrix norm
  175. off_matrix_norm_2 -= rows[i][j] * rows[i][j];
  176. // Apply the rotation
  177. *this = rot * *this * rot.transposed();
  178. acc_rot = rot * acc_rot;
  179. }
  180. return acc_rot;
  181. }
  182. Basis Basis::inverse() const {
  183. Basis inv = *this;
  184. inv.invert();
  185. return inv;
  186. }
  187. void Basis::transpose() {
  188. SWAP(rows[0][1], rows[1][0]);
  189. SWAP(rows[0][2], rows[2][0]);
  190. SWAP(rows[1][2], rows[2][1]);
  191. }
  192. Basis Basis::transposed() const {
  193. Basis tr = *this;
  194. tr.transpose();
  195. return tr;
  196. }
  197. Basis Basis::from_scale(const Vector3 &p_scale) {
  198. return Basis(p_scale.x, 0, 0, 0, p_scale.y, 0, 0, 0, p_scale.z);
  199. }
  200. // Multiplies the matrix from left by the scaling matrix: M -> S.M
  201. // See the comment for Basis::rotated for further explanation.
  202. void Basis::scale(const Vector3 &p_scale) {
  203. rows[0] *= p_scale.x;
  204. rows[1] *= p_scale.y;
  205. rows[2] *= p_scale.z;
  206. }
  207. Basis Basis::scaled(const Vector3 &p_scale) const {
  208. Basis m = *this;
  209. m.scale(p_scale);
  210. return m;
  211. }
  212. void Basis::scale_local(const Vector3 &p_scale) {
  213. // performs a scaling in object-local coordinate system:
  214. // M -> (M.S.Minv).M = M.S.
  215. rows[0] *= p_scale;
  216. rows[1] *= p_scale;
  217. rows[2] *= p_scale;
  218. }
  219. void Basis::scale_orthogonal(const Vector3 &p_scale) {
  220. *this = scaled_orthogonal(p_scale);
  221. }
  222. Basis Basis::scaled_orthogonal(const Vector3 &p_scale) const {
  223. Basis m = *this;
  224. Vector3 s = Vector3(-1, -1, -1) + p_scale;
  225. bool sign = std::signbit(s.x + s.y + s.z);
  226. Basis b = m.orthonormalized();
  227. s = b.xform_inv(s);
  228. Vector3 dots;
  229. for (int i = 0; i < 3; i++) {
  230. for (int j = 0; j < 3; j++) {
  231. dots[j] += s[i] * Math::abs(m.get_column(i).normalized().dot(b.get_column(j)));
  232. }
  233. }
  234. if (sign != std::signbit(dots.x + dots.y + dots.z)) {
  235. dots = -dots;
  236. }
  237. m.scale_local(Vector3(1, 1, 1) + dots);
  238. return m;
  239. }
  240. real_t Basis::get_uniform_scale() const {
  241. return (rows[0].length() + rows[1].length() + rows[2].length()) / 3.0f;
  242. }
  243. Basis Basis::scaled_local(const Vector3 &p_scale) const {
  244. Basis m = *this;
  245. m.scale_local(p_scale);
  246. return m;
  247. }
  248. Vector3 Basis::get_scale_abs() const {
  249. return Vector3(
  250. Vector3(rows[0][0], rows[1][0], rows[2][0]).length(),
  251. Vector3(rows[0][1], rows[1][1], rows[2][1]).length(),
  252. Vector3(rows[0][2], rows[1][2], rows[2][2]).length());
  253. }
  254. Vector3 Basis::get_scale_global() const {
  255. real_t det_sign = SIGN(determinant());
  256. return det_sign * Vector3(rows[0].length(), rows[1].length(), rows[2].length());
  257. }
  258. // get_scale works with get_rotation, use get_scale_abs if you need to enforce positive signature.
  259. Vector3 Basis::get_scale() const {
  260. // FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S.
  261. // A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and
  262. // P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal).
  263. //
  264. // Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition
  265. // here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where
  266. // we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix,
  267. // which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P,
  268. // the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique.
  269. // Therefore, we are going to do this decomposition by sticking to a particular convention.
  270. // This may lead to confusion for some users though.
  271. //
  272. // The convention we use here is to absorb the sign flip into the scaling matrix.
  273. // The same convention is also used in other similar functions such as get_rotation_axis_angle, get_rotation, ...
  274. //
  275. // A proper way to get rid of this issue would be to store the scaling values (or at least their signs)
  276. // as a part of Basis. However, if we go that path, we need to disable direct (write) access to the
  277. // matrix elements.
  278. //
  279. // The rotation part of this decomposition is returned by get_rotation* functions.
  280. real_t det_sign = SIGN(determinant());
  281. return det_sign * get_scale_abs();
  282. }
  283. // Decomposes a Basis into a rotation-reflection matrix (an element of the group O(3)) and a positive scaling matrix as B = O.S.
  284. // Returns the rotation-reflection matrix via reference argument, and scaling information is returned as a Vector3.
  285. // This (internal) function is too specific and named too ugly to expose to users, and probably there's no need to do so.
  286. Vector3 Basis::rotref_posscale_decomposition(Basis &rotref) const {
  287. #ifdef MATH_CHECKS
  288. ERR_FAIL_COND_V(determinant() == 0, Vector3());
  289. Basis m = transposed() * (*this);
  290. ERR_FAIL_COND_V(!m.is_diagonal(), Vector3());
  291. #endif
  292. Vector3 scale = get_scale();
  293. Basis inv_scale = Basis().scaled(scale.inverse()); // this will also absorb the sign of scale
  294. rotref = (*this) * inv_scale;
  295. #ifdef MATH_CHECKS
  296. ERR_FAIL_COND_V(!rotref.is_orthogonal(), Vector3());
  297. #endif
  298. return scale.abs();
  299. }
  300. // Multiplies the matrix from left by the rotation matrix: M -> R.M
  301. // Note that this does *not* rotate the matrix itself.
  302. //
  303. // The main use of Basis is as Transform.basis, which is used by the transformation matrix
  304. // of 3D object. Rotate here refers to rotation of the object (which is R * (*this)),
  305. // not the matrix itself (which is R * (*this) * R.transposed()).
  306. Basis Basis::rotated(const Vector3 &p_axis, real_t p_angle) const {
  307. return Basis(p_axis, p_angle) * (*this);
  308. }
  309. void Basis::rotate(const Vector3 &p_axis, real_t p_angle) {
  310. *this = rotated(p_axis, p_angle);
  311. }
  312. void Basis::rotate_local(const Vector3 &p_axis, real_t p_angle) {
  313. // performs a rotation in object-local coordinate system:
  314. // M -> (M.R.Minv).M = M.R.
  315. *this = rotated_local(p_axis, p_angle);
  316. }
  317. Basis Basis::rotated_local(const Vector3 &p_axis, real_t p_angle) const {
  318. return (*this) * Basis(p_axis, p_angle);
  319. }
  320. Basis Basis::rotated(const Vector3 &p_euler, EulerOrder p_order) const {
  321. return Basis::from_euler(p_euler, p_order) * (*this);
  322. }
  323. void Basis::rotate(const Vector3 &p_euler, EulerOrder p_order) {
  324. *this = rotated(p_euler, p_order);
  325. }
  326. Basis Basis::rotated(const Quaternion &p_quaternion) const {
  327. return Basis(p_quaternion) * (*this);
  328. }
  329. void Basis::rotate(const Quaternion &p_quaternion) {
  330. *this = rotated(p_quaternion);
  331. }
  332. Vector3 Basis::get_euler_normalized(EulerOrder p_order) const {
  333. // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
  334. // and returns the Euler angles corresponding to the rotation part, complementing get_scale().
  335. // See the comment in get_scale() for further information.
  336. Basis m = orthonormalized();
  337. real_t det = m.determinant();
  338. if (det < 0) {
  339. // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
  340. m.scale(Vector3(-1, -1, -1));
  341. }
  342. return m.get_euler(p_order);
  343. }
  344. Quaternion Basis::get_rotation_quaternion() const {
  345. // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
  346. // and returns the Euler angles corresponding to the rotation part, complementing get_scale().
  347. // See the comment in get_scale() for further information.
  348. Basis m = orthonormalized();
  349. real_t det = m.determinant();
  350. if (det < 0) {
  351. // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
  352. m.scale(Vector3(-1, -1, -1));
  353. }
  354. return m.get_quaternion();
  355. }
  356. void Basis::rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction) {
  357. // Takes two vectors and rotates the basis from the first vector to the second vector.
  358. // Adopted from: https://gist.github.com/kevinmoran/b45980723e53edeb8a5a43c49f134724
  359. const Vector3 axis = p_start_direction.cross(p_end_direction).normalized();
  360. if (axis.length_squared() != 0) {
  361. real_t dot = p_start_direction.dot(p_end_direction);
  362. dot = CLAMP(dot, -1.0f, 1.0f);
  363. const real_t angle_rads = Math::acos(dot);
  364. *this = Basis(axis, angle_rads) * (*this);
  365. }
  366. }
  367. void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const {
  368. // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
  369. // and returns the Euler angles corresponding to the rotation part, complementing get_scale().
  370. // See the comment in get_scale() for further information.
  371. Basis m = orthonormalized();
  372. real_t det = m.determinant();
  373. if (det < 0) {
  374. // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
  375. m.scale(Vector3(-1, -1, -1));
  376. }
  377. m.get_axis_angle(p_axis, p_angle);
  378. }
  379. void Basis::get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const {
  380. // Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
  381. // and returns the Euler angles corresponding to the rotation part, complementing get_scale().
  382. // See the comment in get_scale() for further information.
  383. Basis m = transposed();
  384. m.orthonormalize();
  385. real_t det = m.determinant();
  386. if (det < 0) {
  387. // Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
  388. m.scale(Vector3(-1, -1, -1));
  389. }
  390. m.get_axis_angle(p_axis, p_angle);
  391. p_angle = -p_angle;
  392. }
  393. Vector3 Basis::get_euler(EulerOrder p_order) const {
  394. // This epsilon value results in angles within a +/- 0.04 degree range being simplified/truncated.
  395. // Based on testing, this is the largest the epsilon can be without the angle truncation becoming
  396. // visually noticeable.
  397. const real_t epsilon = 0.00000025;
  398. switch (p_order) {
  399. case EulerOrder::XYZ: {
  400. // Euler angles in XYZ convention.
  401. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
  402. //
  403. // rot = cy*cz -cy*sz sy
  404. // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
  405. // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
  406. Vector3 euler;
  407. real_t sy = rows[0][2];
  408. if (sy < (1.0f - epsilon)) {
  409. if (sy > -(1.0f - epsilon)) {
  410. // is this a pure Y rotation?
  411. if (rows[1][0] == 0 && rows[0][1] == 0 && rows[1][2] == 0 && rows[2][1] == 0 && rows[1][1] == 1) {
  412. // return the simplest form (human friendlier in editor and scripts)
  413. euler.x = 0;
  414. euler.y = std::atan2(rows[0][2], rows[0][0]);
  415. euler.z = 0;
  416. } else {
  417. euler.x = Math::atan2(-rows[1][2], rows[2][2]);
  418. euler.y = Math::asin(sy);
  419. euler.z = Math::atan2(-rows[0][1], rows[0][0]);
  420. }
  421. } else {
  422. euler.x = Math::atan2(rows[2][1], rows[1][1]);
  423. euler.y = -Math::PI / 2.0f;
  424. euler.z = 0.0f;
  425. }
  426. } else {
  427. euler.x = Math::atan2(rows[2][1], rows[1][1]);
  428. euler.y = Math::PI / 2.0f;
  429. euler.z = 0.0f;
  430. }
  431. return euler;
  432. }
  433. case EulerOrder::XZY: {
  434. // Euler angles in XZY convention.
  435. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
  436. //
  437. // rot = cz*cy -sz cz*sy
  438. // sx*sy+cx*cy*sz cx*cz cx*sz*sy-cy*sx
  439. // cy*sx*sz cz*sx cx*cy+sx*sz*sy
  440. Vector3 euler;
  441. real_t sz = rows[0][1];
  442. if (sz < (1.0f - epsilon)) {
  443. if (sz > -(1.0f - epsilon)) {
  444. euler.x = Math::atan2(rows[2][1], rows[1][1]);
  445. euler.y = Math::atan2(rows[0][2], rows[0][0]);
  446. euler.z = Math::asin(-sz);
  447. } else {
  448. // It's -1
  449. euler.x = -Math::atan2(rows[1][2], rows[2][2]);
  450. euler.y = 0.0f;
  451. euler.z = Math::PI / 2.0f;
  452. }
  453. } else {
  454. // It's 1
  455. euler.x = -Math::atan2(rows[1][2], rows[2][2]);
  456. euler.y = 0.0f;
  457. euler.z = -Math::PI / 2.0f;
  458. }
  459. return euler;
  460. }
  461. case EulerOrder::YXZ: {
  462. // Euler angles in YXZ convention.
  463. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
  464. //
  465. // rot = cy*cz+sy*sx*sz cz*sy*sx-cy*sz cx*sy
  466. // cx*sz cx*cz -sx
  467. // cy*sx*sz-cz*sy cy*cz*sx+sy*sz cy*cx
  468. Vector3 euler;
  469. real_t m12 = rows[1][2];
  470. if (m12 < (1 - epsilon)) {
  471. if (m12 > -(1 - epsilon)) {
  472. // is this a pure X rotation?
  473. if (rows[1][0] == 0 && rows[0][1] == 0 && rows[0][2] == 0 && rows[2][0] == 0 && rows[0][0] == 1) {
  474. // return the simplest form (human friendlier in editor and scripts)
  475. euler.x = std::atan2(-m12, rows[1][1]);
  476. euler.y = 0;
  477. euler.z = 0;
  478. } else {
  479. euler.x = std::asin(-m12);
  480. euler.y = std::atan2(rows[0][2], rows[2][2]);
  481. euler.z = std::atan2(rows[1][0], rows[1][1]);
  482. }
  483. } else { // m12 == -1
  484. euler.x = Math::PI * 0.5f;
  485. euler.y = std::atan2(rows[0][1], rows[0][0]);
  486. euler.z = 0;
  487. }
  488. } else { // m12 == 1
  489. euler.x = -Math::PI * 0.5f;
  490. euler.y = -std::atan2(rows[0][1], rows[0][0]);
  491. euler.z = 0;
  492. }
  493. return euler;
  494. }
  495. case EulerOrder::YZX: {
  496. // Euler angles in YZX convention.
  497. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
  498. //
  499. // rot = cy*cz sy*sx-cy*cx*sz cx*sy+cy*sz*sx
  500. // sz cz*cx -cz*sx
  501. // -cz*sy cy*sx+cx*sy*sz cy*cx-sy*sz*sx
  502. Vector3 euler;
  503. real_t sz = rows[1][0];
  504. if (sz < (1.0f - epsilon)) {
  505. if (sz > -(1.0f - epsilon)) {
  506. euler.x = Math::atan2(-rows[1][2], rows[1][1]);
  507. euler.y = Math::atan2(-rows[2][0], rows[0][0]);
  508. euler.z = Math::asin(sz);
  509. } else {
  510. // It's -1
  511. euler.x = Math::atan2(rows[2][1], rows[2][2]);
  512. euler.y = 0.0f;
  513. euler.z = -Math::PI / 2.0f;
  514. }
  515. } else {
  516. // It's 1
  517. euler.x = Math::atan2(rows[2][1], rows[2][2]);
  518. euler.y = 0.0f;
  519. euler.z = Math::PI / 2.0f;
  520. }
  521. return euler;
  522. } break;
  523. case EulerOrder::ZXY: {
  524. // Euler angles in ZXY convention.
  525. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
  526. //
  527. // rot = cz*cy-sz*sx*sy -cx*sz cz*sy+cy*sz*sx
  528. // cy*sz+cz*sx*sy cz*cx sz*sy-cz*cy*sx
  529. // -cx*sy sx cx*cy
  530. Vector3 euler;
  531. real_t sx = rows[2][1];
  532. if (sx < (1.0f - epsilon)) {
  533. if (sx > -(1.0f - epsilon)) {
  534. euler.x = Math::asin(sx);
  535. euler.y = Math::atan2(-rows[2][0], rows[2][2]);
  536. euler.z = Math::atan2(-rows[0][1], rows[1][1]);
  537. } else {
  538. // It's -1
  539. euler.x = -Math::PI / 2.0f;
  540. euler.y = Math::atan2(rows[0][2], rows[0][0]);
  541. euler.z = 0;
  542. }
  543. } else {
  544. // It's 1
  545. euler.x = Math::PI / 2.0f;
  546. euler.y = Math::atan2(rows[0][2], rows[0][0]);
  547. euler.z = 0;
  548. }
  549. return euler;
  550. } break;
  551. case EulerOrder::ZYX: {
  552. // Euler angles in ZYX convention.
  553. // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
  554. //
  555. // rot = cz*cy cz*sy*sx-cx*sz sz*sx+cz*cx*cy
  556. // cy*sz cz*cx+sz*sy*sx cx*sz*sy-cz*sx
  557. // -sy cy*sx cy*cx
  558. Vector3 euler;
  559. real_t sy = rows[2][0];
  560. if (sy < (1.0f - epsilon)) {
  561. if (sy > -(1.0f - epsilon)) {
  562. euler.x = Math::atan2(rows[2][1], rows[2][2]);
  563. euler.y = Math::asin(-sy);
  564. euler.z = Math::atan2(rows[1][0], rows[0][0]);
  565. } else {
  566. // It's -1
  567. euler.x = 0;
  568. euler.y = Math::PI / 2.0f;
  569. euler.z = -Math::atan2(rows[0][1], rows[1][1]);
  570. }
  571. } else {
  572. // It's 1
  573. euler.x = 0;
  574. euler.y = -Math::PI / 2.0f;
  575. euler.z = -Math::atan2(rows[0][1], rows[1][1]);
  576. }
  577. return euler;
  578. }
  579. default: {
  580. ERR_FAIL_V_MSG(Vector3(), "Invalid parameter for get_euler(order)");
  581. }
  582. }
  583. return Vector3();
  584. }
  585. void Basis::set_euler(const Vector3 &p_euler, EulerOrder p_order) {
  586. real_t c, s;
  587. c = Math::cos(p_euler.x);
  588. s = Math::sin(p_euler.x);
  589. Basis xmat(1, 0, 0, 0, c, -s, 0, s, c);
  590. c = Math::cos(p_euler.y);
  591. s = Math::sin(p_euler.y);
  592. Basis ymat(c, 0, s, 0, 1, 0, -s, 0, c);
  593. c = Math::cos(p_euler.z);
  594. s = Math::sin(p_euler.z);
  595. Basis zmat(c, -s, 0, s, c, 0, 0, 0, 1);
  596. switch (p_order) {
  597. case EulerOrder::XYZ: {
  598. *this = xmat * (ymat * zmat);
  599. } break;
  600. case EulerOrder::XZY: {
  601. *this = xmat * zmat * ymat;
  602. } break;
  603. case EulerOrder::YXZ: {
  604. *this = ymat * xmat * zmat;
  605. } break;
  606. case EulerOrder::YZX: {
  607. *this = ymat * zmat * xmat;
  608. } break;
  609. case EulerOrder::ZXY: {
  610. *this = zmat * xmat * ymat;
  611. } break;
  612. case EulerOrder::ZYX: {
  613. *this = zmat * ymat * xmat;
  614. } break;
  615. default: {
  616. ERR_FAIL_MSG("Invalid Euler order parameter.");
  617. }
  618. }
  619. }
  620. bool Basis::is_equal_approx(const Basis &p_basis) const {
  621. return rows[0].is_equal_approx(p_basis.rows[0]) && rows[1].is_equal_approx(p_basis.rows[1]) && rows[2].is_equal_approx(p_basis.rows[2]);
  622. }
  623. bool Basis::is_same(const Basis &p_basis) const {
  624. return rows[0].is_same(p_basis.rows[0]) && rows[1].is_same(p_basis.rows[1]) && rows[2].is_same(p_basis.rows[2]);
  625. }
  626. bool Basis::is_finite() const {
  627. return rows[0].is_finite() && rows[1].is_finite() && rows[2].is_finite();
  628. }
  629. Basis::operator String() const {
  630. return "[X: " + get_column(0).operator String() +
  631. ", Y: " + get_column(1).operator String() +
  632. ", Z: " + get_column(2).operator String() + "]";
  633. }
  634. Quaternion Basis::get_quaternion() const {
  635. #ifdef MATH_CHECKS
  636. ERR_FAIL_COND_V_MSG(!is_rotation(), Quaternion(), "Basis " + operator String() + " must be normalized in order to be casted to a Quaternion. Use get_rotation_quaternion() or call orthonormalized() if the Basis contains linearly independent vectors.");
  637. #endif
  638. /* Allow getting a quaternion from an unnormalized transform */
  639. Basis m = *this;
  640. real_t trace = m.rows[0][0] + m.rows[1][1] + m.rows[2][2];
  641. real_t temp[4];
  642. if (trace > 0.0f) {
  643. real_t s = Math::sqrt(trace + 1.0f);
  644. temp[3] = (s * 0.5f);
  645. s = 0.5f / s;
  646. temp[0] = ((m.rows[2][1] - m.rows[1][2]) * s);
  647. temp[1] = ((m.rows[0][2] - m.rows[2][0]) * s);
  648. temp[2] = ((m.rows[1][0] - m.rows[0][1]) * s);
  649. } else {
  650. int i = m.rows[0][0] < m.rows[1][1]
  651. ? (m.rows[1][1] < m.rows[2][2] ? 2 : 1)
  652. : (m.rows[0][0] < m.rows[2][2] ? 2 : 0);
  653. int j = (i + 1) % 3;
  654. int k = (i + 2) % 3;
  655. real_t s = Math::sqrt(m.rows[i][i] - m.rows[j][j] - m.rows[k][k] + 1.0f);
  656. temp[i] = s * 0.5f;
  657. s = 0.5f / s;
  658. temp[3] = (m.rows[k][j] - m.rows[j][k]) * s;
  659. temp[j] = (m.rows[j][i] + m.rows[i][j]) * s;
  660. temp[k] = (m.rows[k][i] + m.rows[i][k]) * s;
  661. }
  662. return Quaternion(temp[0], temp[1], temp[2], temp[3]);
  663. }
  664. void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
  665. /* checking this is a bad idea, because obtaining from scaled transform is a valid use case
  666. #ifdef MATH_CHECKS
  667. ERR_FAIL_COND(!is_rotation());
  668. #endif
  669. */
  670. // https://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm
  671. real_t x, y, z; // Variables for result.
  672. if (Math::is_zero_approx(rows[0][1] - rows[1][0]) && Math::is_zero_approx(rows[0][2] - rows[2][0]) && Math::is_zero_approx(rows[1][2] - rows[2][1])) {
  673. // Singularity found.
  674. // First check for identity matrix which must have +1 for all terms in leading diagonal and zero in other terms.
  675. if (is_diagonal() && (Math::abs(rows[0][0] + rows[1][1] + rows[2][2] - 3) < 3 * CMP_EPSILON)) {
  676. // This singularity is identity matrix so angle = 0.
  677. r_axis = Vector3(0, 1, 0);
  678. r_angle = 0;
  679. return;
  680. }
  681. // Otherwise this singularity is angle = 180.
  682. real_t xx = (rows[0][0] + 1) / 2;
  683. real_t yy = (rows[1][1] + 1) / 2;
  684. real_t zz = (rows[2][2] + 1) / 2;
  685. real_t xy = (rows[0][1] + rows[1][0]) / 4;
  686. real_t xz = (rows[0][2] + rows[2][0]) / 4;
  687. real_t yz = (rows[1][2] + rows[2][1]) / 4;
  688. if ((xx > yy) && (xx > zz)) { // rows[0][0] is the largest diagonal term.
  689. if (xx < CMP_EPSILON) {
  690. x = 0;
  691. y = Math::SQRT12;
  692. z = Math::SQRT12;
  693. } else {
  694. x = Math::sqrt(xx);
  695. y = xy / x;
  696. z = xz / x;
  697. }
  698. } else if (yy > zz) { // rows[1][1] is the largest diagonal term.
  699. if (yy < CMP_EPSILON) {
  700. x = Math::SQRT12;
  701. y = 0;
  702. z = Math::SQRT12;
  703. } else {
  704. y = Math::sqrt(yy);
  705. x = xy / y;
  706. z = yz / y;
  707. }
  708. } else { // rows[2][2] is the largest diagonal term so base result on this.
  709. if (zz < CMP_EPSILON) {
  710. x = Math::SQRT12;
  711. y = Math::SQRT12;
  712. z = 0;
  713. } else {
  714. z = Math::sqrt(zz);
  715. x = xz / z;
  716. y = yz / z;
  717. }
  718. }
  719. r_axis = Vector3(x, y, z);
  720. r_angle = Math::PI;
  721. return;
  722. }
  723. // As we have reached here there are no singularities so we can handle normally.
  724. double s = Math::sqrt((rows[2][1] - rows[1][2]) * (rows[2][1] - rows[1][2]) + (rows[0][2] - rows[2][0]) * (rows[0][2] - rows[2][0]) + (rows[1][0] - rows[0][1]) * (rows[1][0] - rows[0][1])); // Used to normalize.
  725. if (Math::abs(s) < CMP_EPSILON) {
  726. // Prevent divide by zero, should not happen if matrix is orthogonal and should be caught by singularity test above.
  727. s = 1;
  728. }
  729. x = (rows[2][1] - rows[1][2]) / s;
  730. y = (rows[0][2] - rows[2][0]) / s;
  731. z = (rows[1][0] - rows[0][1]) / s;
  732. r_axis = Vector3(x, y, z);
  733. // acos does clamping.
  734. r_angle = Math::acos((rows[0][0] + rows[1][1] + rows[2][2] - 1) / 2);
  735. }
  736. void Basis::set_quaternion(const Quaternion &p_quaternion) {
  737. real_t d = p_quaternion.length_squared();
  738. real_t s = 2.0f / d;
  739. real_t xs = p_quaternion.x * s, ys = p_quaternion.y * s, zs = p_quaternion.z * s;
  740. real_t wx = p_quaternion.w * xs, wy = p_quaternion.w * ys, wz = p_quaternion.w * zs;
  741. real_t xx = p_quaternion.x * xs, xy = p_quaternion.x * ys, xz = p_quaternion.x * zs;
  742. real_t yy = p_quaternion.y * ys, yz = p_quaternion.y * zs, zz = p_quaternion.z * zs;
  743. set(1.0f - (yy + zz), xy - wz, xz + wy,
  744. xy + wz, 1.0f - (xx + zz), yz - wx,
  745. xz - wy, yz + wx, 1.0f - (xx + yy));
  746. }
  747. void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_angle) {
  748. // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle
  749. #ifdef MATH_CHECKS
  750. ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 " + p_axis.operator String() + " must be normalized.");
  751. #endif
  752. Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z);
  753. real_t cosine = Math::cos(p_angle);
  754. rows[0][0] = axis_sq.x + cosine * (1.0f - axis_sq.x);
  755. rows[1][1] = axis_sq.y + cosine * (1.0f - axis_sq.y);
  756. rows[2][2] = axis_sq.z + cosine * (1.0f - axis_sq.z);
  757. real_t sine = Math::sin(p_angle);
  758. real_t t = 1 - cosine;
  759. real_t xyzt = p_axis.x * p_axis.y * t;
  760. real_t zyxs = p_axis.z * sine;
  761. rows[0][1] = xyzt - zyxs;
  762. rows[1][0] = xyzt + zyxs;
  763. xyzt = p_axis.x * p_axis.z * t;
  764. zyxs = p_axis.y * sine;
  765. rows[0][2] = xyzt + zyxs;
  766. rows[2][0] = xyzt - zyxs;
  767. xyzt = p_axis.y * p_axis.z * t;
  768. zyxs = p_axis.x * sine;
  769. rows[1][2] = xyzt - zyxs;
  770. rows[2][1] = xyzt + zyxs;
  771. }
  772. void Basis::set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) {
  773. _set_diagonal(p_scale);
  774. rotate(p_axis, p_angle);
  775. }
  776. void Basis::set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order) {
  777. _set_diagonal(p_scale);
  778. rotate(p_euler, p_order);
  779. }
  780. void Basis::set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale) {
  781. _set_diagonal(p_scale);
  782. rotate(p_quaternion);
  783. }
  784. // This also sets the non-diagonal elements to 0, which is misleading from the
  785. // name, so we want this method to be private. Use `from_scale` externally.
  786. void Basis::_set_diagonal(const Vector3 &p_diag) {
  787. rows[0][0] = p_diag.x;
  788. rows[0][1] = 0;
  789. rows[0][2] = 0;
  790. rows[1][0] = 0;
  791. rows[1][1] = p_diag.y;
  792. rows[1][2] = 0;
  793. rows[2][0] = 0;
  794. rows[2][1] = 0;
  795. rows[2][2] = p_diag.z;
  796. }
  797. Basis Basis::lerp(const Basis &p_to, real_t p_weight) const {
  798. Basis b;
  799. b.rows[0] = rows[0].lerp(p_to.rows[0], p_weight);
  800. b.rows[1] = rows[1].lerp(p_to.rows[1], p_weight);
  801. b.rows[2] = rows[2].lerp(p_to.rows[2], p_weight);
  802. return b;
  803. }
  804. Basis Basis::slerp(const Basis &p_to, real_t p_weight) const {
  805. //consider scale
  806. Quaternion from(*this);
  807. Quaternion to(p_to);
  808. Basis b(from.slerp(to, p_weight));
  809. b.rows[0] *= Math::lerp(rows[0].length(), p_to.rows[0].length(), p_weight);
  810. b.rows[1] *= Math::lerp(rows[1].length(), p_to.rows[1].length(), p_weight);
  811. b.rows[2] *= Math::lerp(rows[2].length(), p_to.rows[2].length(), p_weight);
  812. return b;
  813. }
  814. void Basis::rotate_sh(real_t *p_values) {
  815. // code by John Hable
  816. // http://filmicworlds.com/blog/simple-and-fast-spherical-harmonic-rotation/
  817. // this code is Public Domain
  818. const static real_t s_c3 = 0.94617469575; // (3*sqrt(5))/(4*sqrt(pi))
  819. const static real_t s_c4 = -0.31539156525; // (-sqrt(5))/(4*sqrt(pi))
  820. const static real_t s_c5 = 0.54627421529; // (sqrt(15))/(4*sqrt(pi))
  821. const static real_t s_c_scale = 1.0 / 0.91529123286551084;
  822. const static real_t s_c_scale_inv = 0.91529123286551084;
  823. const static real_t s_rc2 = 1.5853309190550713 * s_c_scale;
  824. const static real_t s_c4_div_c3 = s_c4 / s_c3;
  825. const static real_t s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0;
  826. const static real_t s_scale_dst2 = s_c3 * s_c_scale_inv;
  827. const static real_t s_scale_dst4 = s_c5 * s_c_scale_inv;
  828. const real_t src[9] = { p_values[0], p_values[1], p_values[2], p_values[3], p_values[4], p_values[5], p_values[6], p_values[7], p_values[8] };
  829. real_t m00 = rows[0][0];
  830. real_t m01 = rows[0][1];
  831. real_t m02 = rows[0][2];
  832. real_t m10 = rows[1][0];
  833. real_t m11 = rows[1][1];
  834. real_t m12 = rows[1][2];
  835. real_t m20 = rows[2][0];
  836. real_t m21 = rows[2][1];
  837. real_t m22 = rows[2][2];
  838. p_values[0] = src[0];
  839. p_values[1] = m11 * src[1] - m12 * src[2] + m10 * src[3];
  840. p_values[2] = -m21 * src[1] + m22 * src[2] - m20 * src[3];
  841. p_values[3] = m01 * src[1] - m02 * src[2] + m00 * src[3];
  842. real_t sh0 = src[7] + src[8] + src[8] - src[5];
  843. real_t sh1 = src[4] + s_rc2 * src[6] + src[7] + src[8];
  844. real_t sh2 = src[4];
  845. real_t sh3 = -src[7];
  846. real_t sh4 = -src[5];
  847. // Rotations. R0 and R1 just use the raw matrix columns
  848. real_t r2x = m00 + m01;
  849. real_t r2y = m10 + m11;
  850. real_t r2z = m20 + m21;
  851. real_t r3x = m00 + m02;
  852. real_t r3y = m10 + m12;
  853. real_t r3z = m20 + m22;
  854. real_t r4x = m01 + m02;
  855. real_t r4y = m11 + m12;
  856. real_t r4z = m21 + m22;
  857. // dense matrix multiplication one column at a time
  858. // column 0
  859. real_t sh0_x = sh0 * m00;
  860. real_t sh0_y = sh0 * m10;
  861. real_t d0 = sh0_x * m10;
  862. real_t d1 = sh0_y * m20;
  863. real_t d2 = sh0 * (m20 * m20 + s_c4_div_c3);
  864. real_t d3 = sh0_x * m20;
  865. real_t d4 = sh0_x * m00 - sh0_y * m10;
  866. // column 1
  867. real_t sh1_x = sh1 * m02;
  868. real_t sh1_y = sh1 * m12;
  869. d0 += sh1_x * m12;
  870. d1 += sh1_y * m22;
  871. d2 += sh1 * (m22 * m22 + s_c4_div_c3);
  872. d3 += sh1_x * m22;
  873. d4 += sh1_x * m02 - sh1_y * m12;
  874. // column 2
  875. real_t sh2_x = sh2 * r2x;
  876. real_t sh2_y = sh2 * r2y;
  877. d0 += sh2_x * r2y;
  878. d1 += sh2_y * r2z;
  879. d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2);
  880. d3 += sh2_x * r2z;
  881. d4 += sh2_x * r2x - sh2_y * r2y;
  882. // column 3
  883. real_t sh3_x = sh3 * r3x;
  884. real_t sh3_y = sh3 * r3y;
  885. d0 += sh3_x * r3y;
  886. d1 += sh3_y * r3z;
  887. d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2);
  888. d3 += sh3_x * r3z;
  889. d4 += sh3_x * r3x - sh3_y * r3y;
  890. // column 4
  891. real_t sh4_x = sh4 * r4x;
  892. real_t sh4_y = sh4 * r4y;
  893. d0 += sh4_x * r4y;
  894. d1 += sh4_y * r4z;
  895. d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2);
  896. d3 += sh4_x * r4z;
  897. d4 += sh4_x * r4x - sh4_y * r4y;
  898. // extra multipliers
  899. p_values[4] = d0;
  900. p_values[5] = -d1;
  901. p_values[6] = d2 * s_scale_dst2;
  902. p_values[7] = -d3;
  903. p_values[8] = d4 * s_scale_dst4;
  904. }
  905. Basis Basis::looking_at(const Vector3 &p_target, const Vector3 &p_up, bool p_use_model_front) {
  906. #ifdef MATH_CHECKS
  907. ERR_FAIL_COND_V_MSG(p_target.is_zero_approx(), Basis(), "The target vector can't be zero.");
  908. ERR_FAIL_COND_V_MSG(p_up.is_zero_approx(), Basis(), "The up vector can't be zero.");
  909. #endif
  910. Vector3 v_z = p_target.normalized();
  911. if (!p_use_model_front) {
  912. v_z = -v_z;
  913. }
  914. Vector3 v_x = p_up.cross(v_z);
  915. if (v_x.is_zero_approx()) {
  916. WARN_PRINT("Target and up vectors are colinear. This is not advised as it may cause unwanted rotation around local Z axis.");
  917. v_x = p_up.get_any_perpendicular(); // Vectors are almost parallel.
  918. }
  919. v_x.normalize();
  920. Vector3 v_y = v_z.cross(v_x);
  921. Basis basis;
  922. basis.set_columns(v_x, v_y, v_z);
  923. return basis;
  924. }