| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773 |
- // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
- #include "meshoptimizer.h"
- #include <assert.h>
- #include <float.h>
- #include <math.h>
- #include <string.h>
- // The block below auto-detects SIMD ISA that can be used on the target platform
- #ifndef MESHOPTIMIZER_NO_SIMD
- #if defined(__SSE2__) || (defined(_MSC_VER) && defined(_M_X64))
- #define SIMD_SSE
- #include <emmintrin.h>
- #elif defined(__aarch64__) || (defined(_MSC_VER) && defined(_M_ARM64) && _MSC_VER >= 1922)
- #define SIMD_NEON
- #include <arm_neon.h>
- #endif
- #endif // !MESHOPTIMIZER_NO_SIMD
- // This work is based on:
- // Graham Wihlidal. Optimizing the Graphics Pipeline with Compute. 2016
- // Matthaeus Chajdas. GeometryFX 1.2 - Cluster Culling. 2016
- // Jack Ritter. An Efficient Bounding Sphere. 1990
- // Thomas Larsson. Fast and Tight Fitting Bounding Spheres. 2008
- // Ingo Wald, Vlastimil Havran. On building fast kd-Trees for Ray Tracing, and on doing that in O(N log N). 2006
- namespace meshopt
- {
- // This must be <= 256 since meshlet indices are stored as bytes
- const size_t kMeshletMaxVertices = 256;
- // A reasonable limit is around 2*max_vertices or less
- const size_t kMeshletMaxTriangles = 512;
- // We keep a limited number of seed triangles and add a few triangles per finished meshlet
- const size_t kMeshletMaxSeeds = 256;
- const size_t kMeshletAddSeeds = 4;
- // To avoid excessive recursion for malformed inputs, we limit the maximum depth of the tree
- const int kMeshletMaxTreeDepth = 50;
- struct TriangleAdjacency2
- {
- unsigned int* counts;
- unsigned int* offsets;
- unsigned int* data;
- };
- static void buildTriangleAdjacency(TriangleAdjacency2& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator)
- {
- size_t face_count = index_count / 3;
- // allocate arrays
- adjacency.counts = allocator.allocate<unsigned int>(vertex_count);
- adjacency.offsets = allocator.allocate<unsigned int>(vertex_count);
- adjacency.data = allocator.allocate<unsigned int>(index_count);
- // fill triangle counts
- memset(adjacency.counts, 0, vertex_count * sizeof(unsigned int));
- for (size_t i = 0; i < index_count; ++i)
- {
- assert(indices[i] < vertex_count);
- adjacency.counts[indices[i]]++;
- }
- // fill offset table
- unsigned int offset = 0;
- for (size_t i = 0; i < vertex_count; ++i)
- {
- adjacency.offsets[i] = offset;
- offset += adjacency.counts[i];
- }
- assert(offset == index_count);
- // fill triangle data
- for (size_t i = 0; i < face_count; ++i)
- {
- unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
- adjacency.data[adjacency.offsets[a]++] = unsigned(i);
- adjacency.data[adjacency.offsets[b]++] = unsigned(i);
- adjacency.data[adjacency.offsets[c]++] = unsigned(i);
- }
- // fix offsets that have been disturbed by the previous pass
- for (size_t i = 0; i < vertex_count; ++i)
- {
- assert(adjacency.offsets[i] >= adjacency.counts[i]);
- adjacency.offsets[i] -= adjacency.counts[i];
- }
- }
- static void buildTriangleAdjacencySparse(TriangleAdjacency2& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator)
- {
- size_t face_count = index_count / 3;
- // sparse mode can build adjacency more quickly by ignoring unused vertices, using a bit to mark visited vertices
- const unsigned int sparse_seen = 1u << 31;
- assert(index_count < sparse_seen);
- // allocate arrays
- adjacency.counts = allocator.allocate<unsigned int>(vertex_count);
- adjacency.offsets = allocator.allocate<unsigned int>(vertex_count);
- adjacency.data = allocator.allocate<unsigned int>(index_count);
- // fill triangle counts
- for (size_t i = 0; i < index_count; ++i)
- assert(indices[i] < vertex_count);
- for (size_t i = 0; i < index_count; ++i)
- adjacency.counts[indices[i]] = 0;
- for (size_t i = 0; i < index_count; ++i)
- adjacency.counts[indices[i]]++;
- // fill offset table; uses sparse_seen bit to tag visited vertices
- unsigned int offset = 0;
- for (size_t i = 0; i < index_count; ++i)
- {
- unsigned int v = indices[i];
- if ((adjacency.counts[v] & sparse_seen) == 0)
- {
- adjacency.offsets[v] = offset;
- offset += adjacency.counts[v];
- adjacency.counts[v] |= sparse_seen;
- }
- }
- assert(offset == index_count);
- // fill triangle data
- for (size_t i = 0; i < face_count; ++i)
- {
- unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
- adjacency.data[adjacency.offsets[a]++] = unsigned(i);
- adjacency.data[adjacency.offsets[b]++] = unsigned(i);
- adjacency.data[adjacency.offsets[c]++] = unsigned(i);
- }
- // fix offsets that have been disturbed by the previous pass
- // also fix counts (that were marked with sparse_seen by the first pass)
- for (size_t i = 0; i < index_count; ++i)
- {
- unsigned int v = indices[i];
- if (adjacency.counts[v] & sparse_seen)
- {
- adjacency.counts[v] &= ~sparse_seen;
- assert(adjacency.offsets[v] >= adjacency.counts[v]);
- adjacency.offsets[v] -= adjacency.counts[v];
- }
- }
- }
- static void clearUsed(short* used, size_t vertex_count, const unsigned int* indices, size_t index_count)
- {
- // for sparse inputs, it's faster to only clear vertices referenced by the index buffer
- if (vertex_count <= index_count)
- memset(used, -1, vertex_count * sizeof(short));
- else
- for (size_t i = 0; i < index_count; ++i)
- {
- assert(indices[i] < vertex_count);
- used[indices[i]] = -1;
- }
- }
- static void computeBoundingSphere(float result[4], const float* points, size_t count, size_t points_stride, const float* radii, size_t radii_stride, size_t axis_count)
- {
- static const float kAxes[7][3] = {
- // X, Y, Z
- {1, 0, 0},
- {0, 1, 0},
- {0, 0, 1},
- // XYZ, -XYZ, X-YZ, XY-Z; normalized to unit length
- {0.57735026f, 0.57735026f, 0.57735026f},
- {-0.57735026f, 0.57735026f, 0.57735026f},
- {0.57735026f, -0.57735026f, 0.57735026f},
- {0.57735026f, 0.57735026f, -0.57735026f},
- };
- assert(count > 0);
- assert(axis_count <= sizeof(kAxes) / sizeof(kAxes[0]));
- size_t points_stride_float = points_stride / sizeof(float);
- size_t radii_stride_float = radii_stride / sizeof(float);
- // find extremum points along all axes; for each axis we get a pair of points with min/max coordinates
- size_t pmin[7], pmax[7];
- float tmin[7], tmax[7];
- for (size_t axis = 0; axis < axis_count; ++axis)
- {
- pmin[axis] = pmax[axis] = 0;
- tmin[axis] = FLT_MAX;
- tmax[axis] = -FLT_MAX;
- }
- for (size_t i = 0; i < count; ++i)
- {
- const float* p = points + i * points_stride_float;
- float r = radii[i * radii_stride_float];
- for (size_t axis = 0; axis < axis_count; ++axis)
- {
- const float* ax = kAxes[axis];
- float tp = ax[0] * p[0] + ax[1] * p[1] + ax[2] * p[2];
- float tpmin = tp - r, tpmax = tp + r;
- pmin[axis] = (tpmin < tmin[axis]) ? i : pmin[axis];
- pmax[axis] = (tpmax > tmax[axis]) ? i : pmax[axis];
- tmin[axis] = (tpmin < tmin[axis]) ? tpmin : tmin[axis];
- tmax[axis] = (tpmax > tmax[axis]) ? tpmax : tmax[axis];
- }
- }
- // find the pair of points with largest distance
- size_t paxis = 0;
- float paxisdr = 0;
- for (size_t axis = 0; axis < axis_count; ++axis)
- {
- const float* p1 = points + pmin[axis] * points_stride_float;
- const float* p2 = points + pmax[axis] * points_stride_float;
- float r1 = radii[pmin[axis] * radii_stride_float];
- float r2 = radii[pmax[axis] * radii_stride_float];
- float d2 = (p2[0] - p1[0]) * (p2[0] - p1[0]) + (p2[1] - p1[1]) * (p2[1] - p1[1]) + (p2[2] - p1[2]) * (p2[2] - p1[2]);
- float dr = sqrtf(d2) + r1 + r2;
- if (dr > paxisdr)
- {
- paxisdr = dr;
- paxis = axis;
- }
- }
- // use the longest segment as the initial sphere diameter
- const float* p1 = points + pmin[paxis] * points_stride_float;
- const float* p2 = points + pmax[paxis] * points_stride_float;
- float r1 = radii[pmin[paxis] * radii_stride_float];
- float r2 = radii[pmax[paxis] * radii_stride_float];
- float paxisd = sqrtf((p2[0] - p1[0]) * (p2[0] - p1[0]) + (p2[1] - p1[1]) * (p2[1] - p1[1]) + (p2[2] - p1[2]) * (p2[2] - p1[2]));
- float paxisk = paxisd > 0 ? (paxisd + r2 - r1) / (2 * paxisd) : 0.f;
- float center[3] = {p1[0] + (p2[0] - p1[0]) * paxisk, p1[1] + (p2[1] - p1[1]) * paxisk, p1[2] + (p2[2] - p1[2]) * paxisk};
- float radius = paxisdr / 2;
- // iteratively adjust the sphere up until all points fit
- for (size_t i = 0; i < count; ++i)
- {
- const float* p = points + i * points_stride_float;
- float r = radii[i * radii_stride_float];
- float d2 = (p[0] - center[0]) * (p[0] - center[0]) + (p[1] - center[1]) * (p[1] - center[1]) + (p[2] - center[2]) * (p[2] - center[2]);
- float d = sqrtf(d2);
- if (d + r > radius)
- {
- float k = d > 0 ? (d + r - radius) / (2 * d) : 0.f;
- center[0] += k * (p[0] - center[0]);
- center[1] += k * (p[1] - center[1]);
- center[2] += k * (p[2] - center[2]);
- radius = (radius + d + r) / 2;
- }
- }
- result[0] = center[0];
- result[1] = center[1];
- result[2] = center[2];
- result[3] = radius;
- }
- struct Cone
- {
- float px, py, pz;
- float nx, ny, nz;
- };
- static float getMeshletScore(float distance, float spread, float cone_weight, float expected_radius)
- {
- float cone = 1.f - spread * cone_weight;
- float cone_clamped = cone < 1e-3f ? 1e-3f : cone;
- return (1 + distance / expected_radius * (1 - cone_weight)) * cone_clamped;
- }
- static Cone getMeshletCone(const Cone& acc, unsigned int triangle_count)
- {
- Cone result = acc;
- float center_scale = triangle_count == 0 ? 0.f : 1.f / float(triangle_count);
- result.px *= center_scale;
- result.py *= center_scale;
- result.pz *= center_scale;
- float axis_length = result.nx * result.nx + result.ny * result.ny + result.nz * result.nz;
- float axis_scale = axis_length == 0.f ? 0.f : 1.f / sqrtf(axis_length);
- result.nx *= axis_scale;
- result.ny *= axis_scale;
- result.nz *= axis_scale;
- return result;
- }
- static float computeTriangleCones(Cone* triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
- {
- (void)vertex_count;
- size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
- size_t face_count = index_count / 3;
- float mesh_area = 0;
- for (size_t i = 0; i < face_count; ++i)
- {
- unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
- assert(a < vertex_count && b < vertex_count && c < vertex_count);
- const float* p0 = vertex_positions + vertex_stride_float * a;
- const float* p1 = vertex_positions + vertex_stride_float * b;
- const float* p2 = vertex_positions + vertex_stride_float * c;
- float p10[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]};
- float p20[3] = {p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]};
- float normalx = p10[1] * p20[2] - p10[2] * p20[1];
- float normaly = p10[2] * p20[0] - p10[0] * p20[2];
- float normalz = p10[0] * p20[1] - p10[1] * p20[0];
- float area = sqrtf(normalx * normalx + normaly * normaly + normalz * normalz);
- float invarea = (area == 0.f) ? 0.f : 1.f / area;
- triangles[i].px = (p0[0] + p1[0] + p2[0]) / 3.f;
- triangles[i].py = (p0[1] + p1[1] + p2[1]) / 3.f;
- triangles[i].pz = (p0[2] + p1[2] + p2[2]) / 3.f;
- triangles[i].nx = normalx * invarea;
- triangles[i].ny = normaly * invarea;
- triangles[i].nz = normalz * invarea;
- mesh_area += area;
- }
- return mesh_area;
- }
- static bool appendMeshlet(meshopt_Meshlet& meshlet, unsigned int a, unsigned int b, unsigned int c, short* used, meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, size_t meshlet_offset, size_t max_vertices, size_t max_triangles, bool split = false)
- {
- short& av = used[a];
- short& bv = used[b];
- short& cv = used[c];
- bool result = false;
- int used_extra = (av < 0) + (bv < 0) + (cv < 0);
- if (meshlet.vertex_count + used_extra > max_vertices || meshlet.triangle_count >= max_triangles || split)
- {
- meshlets[meshlet_offset] = meshlet;
- for (size_t j = 0; j < meshlet.vertex_count; ++j)
- used[meshlet_vertices[meshlet.vertex_offset + j]] = -1;
- meshlet.vertex_offset += meshlet.vertex_count;
- meshlet.triangle_offset += meshlet.triangle_count * 3;
- meshlet.vertex_count = 0;
- meshlet.triangle_count = 0;
- result = true;
- }
- if (av < 0)
- {
- av = short(meshlet.vertex_count);
- meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = a;
- }
- if (bv < 0)
- {
- bv = short(meshlet.vertex_count);
- meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = b;
- }
- if (cv < 0)
- {
- cv = short(meshlet.vertex_count);
- meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = c;
- }
- meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 0] = (unsigned char)av;
- meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 1] = (unsigned char)bv;
- meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 2] = (unsigned char)cv;
- meshlet.triangle_count++;
- return result;
- }
- static unsigned int getNeighborTriangle(const meshopt_Meshlet& meshlet, const Cone& meshlet_cone, const unsigned int* meshlet_vertices, const unsigned int* indices, const TriangleAdjacency2& adjacency, const Cone* triangles, const unsigned int* live_triangles, const short* used, float meshlet_expected_radius, float cone_weight)
- {
- unsigned int best_triangle = ~0u;
- int best_priority = 5;
- float best_score = FLT_MAX;
- for (size_t i = 0; i < meshlet.vertex_count; ++i)
- {
- unsigned int index = meshlet_vertices[meshlet.vertex_offset + i];
- unsigned int* neighbors = &adjacency.data[0] + adjacency.offsets[index];
- size_t neighbors_size = adjacency.counts[index];
- for (size_t j = 0; j < neighbors_size; ++j)
- {
- unsigned int triangle = neighbors[j];
- unsigned int a = indices[triangle * 3 + 0], b = indices[triangle * 3 + 1], c = indices[triangle * 3 + 2];
- int extra = (used[a] < 0) + (used[b] < 0) + (used[c] < 0);
- assert(extra <= 2);
- int priority = -1;
- // triangles that don't add new vertices to meshlets are max. priority
- if (extra == 0)
- priority = 0;
- // artificially increase the priority of dangling triangles as they're expensive to add to new meshlets
- else if (live_triangles[a] == 1 || live_triangles[b] == 1 || live_triangles[c] == 1)
- priority = 1;
- // if two vertices have live count of 2, removing this triangle will make another triangle dangling which is good for overall flow
- else if ((live_triangles[a] == 2) + (live_triangles[b] == 2) + (live_triangles[c] == 2) >= 2)
- priority = 1 + extra;
- // otherwise adjust priority to be after the above cases, 3 or 4 based on used[] count
- else
- priority = 2 + extra;
- // since topology-based priority is always more important than the score, we can skip scoring in some cases
- if (priority > best_priority)
- continue;
- const Cone& tri_cone = triangles[triangle];
- float dx = tri_cone.px - meshlet_cone.px, dy = tri_cone.py - meshlet_cone.py, dz = tri_cone.pz - meshlet_cone.pz;
- float distance = sqrtf(dx * dx + dy * dy + dz * dz);
- float spread = tri_cone.nx * meshlet_cone.nx + tri_cone.ny * meshlet_cone.ny + tri_cone.nz * meshlet_cone.nz;
- float score = getMeshletScore(distance, spread, cone_weight, meshlet_expected_radius);
- // note that topology-based priority is always more important than the score
- // this helps maintain reasonable effectiveness of meshlet data and reduces scoring cost
- if (priority < best_priority || score < best_score)
- {
- best_triangle = triangle;
- best_priority = priority;
- best_score = score;
- }
- }
- }
- return best_triangle;
- }
- static size_t appendSeedTriangles(unsigned int* seeds, const meshopt_Meshlet& meshlet, const unsigned int* meshlet_vertices, const unsigned int* indices, const TriangleAdjacency2& adjacency, const Cone* triangles, const unsigned int* live_triangles, float cornerx, float cornery, float cornerz)
- {
- unsigned int best_seeds[kMeshletAddSeeds];
- unsigned int best_live[kMeshletAddSeeds];
- float best_score[kMeshletAddSeeds];
- for (size_t i = 0; i < kMeshletAddSeeds; ++i)
- {
- best_seeds[i] = ~0u;
- best_live[i] = ~0u;
- best_score[i] = FLT_MAX;
- }
- for (size_t i = 0; i < meshlet.vertex_count; ++i)
- {
- unsigned int index = meshlet_vertices[meshlet.vertex_offset + i];
- unsigned int best_neighbor = ~0u;
- unsigned int best_neighbor_live = ~0u;
- // find the neighbor with the smallest live metric
- unsigned int* neighbors = &adjacency.data[0] + adjacency.offsets[index];
- size_t neighbors_size = adjacency.counts[index];
- for (size_t j = 0; j < neighbors_size; ++j)
- {
- unsigned int triangle = neighbors[j];
- unsigned int a = indices[triangle * 3 + 0], b = indices[triangle * 3 + 1], c = indices[triangle * 3 + 2];
- unsigned int live = live_triangles[a] + live_triangles[b] + live_triangles[c];
- if (live < best_neighbor_live)
- {
- best_neighbor = triangle;
- best_neighbor_live = live;
- }
- }
- // add the neighbor to the list of seeds; the list is unsorted and the replacement criteria is approximate
- if (best_neighbor == ~0u)
- continue;
- float dx = triangles[best_neighbor].px - cornerx, dy = triangles[best_neighbor].py - cornery, dz = triangles[best_neighbor].pz - cornerz;
- float best_neighbor_score = sqrtf(dx * dx + dy * dy + dz * dz);
- for (size_t j = 0; j < kMeshletAddSeeds; ++j)
- {
- // non-strict comparison reduces the number of duplicate seeds (triangles adjacent to multiple vertices)
- if (best_neighbor_live < best_live[j] || (best_neighbor_live == best_live[j] && best_neighbor_score <= best_score[j]))
- {
- best_seeds[j] = best_neighbor;
- best_live[j] = best_neighbor_live;
- best_score[j] = best_neighbor_score;
- break;
- }
- }
- }
- // add surviving seeds to the meshlet
- size_t seed_count = 0;
- for (size_t i = 0; i < kMeshletAddSeeds; ++i)
- if (best_seeds[i] != ~0u)
- seeds[seed_count++] = best_seeds[i];
- return seed_count;
- }
- static size_t pruneSeedTriangles(unsigned int* seeds, size_t seed_count, const unsigned char* emitted_flags)
- {
- size_t result = 0;
- for (size_t i = 0; i < seed_count; ++i)
- {
- unsigned int index = seeds[i];
- seeds[result] = index;
- result += emitted_flags[index] == 0;
- }
- return result;
- }
- static unsigned int selectSeedTriangle(const unsigned int* seeds, size_t seed_count, const unsigned int* indices, const Cone* triangles, const unsigned int* live_triangles, float cornerx, float cornery, float cornerz)
- {
- unsigned int best_seed = ~0u;
- unsigned int best_live = ~0u;
- float best_score = FLT_MAX;
- for (size_t i = 0; i < seed_count; ++i)
- {
- unsigned int index = seeds[i];
- unsigned int a = indices[index * 3 + 0], b = indices[index * 3 + 1], c = indices[index * 3 + 2];
- unsigned int live = live_triangles[a] + live_triangles[b] + live_triangles[c];
- float dx = triangles[index].px - cornerx, dy = triangles[index].py - cornery, dz = triangles[index].pz - cornerz;
- float score = sqrtf(dx * dx + dy * dy + dz * dz);
- if (live < best_live || (live == best_live && score < best_score))
- {
- best_seed = index;
- best_live = live;
- best_score = score;
- }
- }
- return best_seed;
- }
- struct KDNode
- {
- union
- {
- float split;
- unsigned int index;
- };
- // leaves: axis = 3, children = number of points including this one
- // branches: axis != 3, left subtree = skip 1, right subtree = skip 1+children
- unsigned int axis : 2;
- unsigned int children : 30;
- };
- static size_t kdtreePartition(unsigned int* indices, size_t count, const float* points, size_t stride, int axis, float pivot)
- {
- size_t m = 0;
- // invariant: elements in range [0, m) are < pivot, elements in range [m, i) are >= pivot
- for (size_t i = 0; i < count; ++i)
- {
- float v = points[indices[i] * stride + axis];
- // swap(m, i) unconditionally
- unsigned int t = indices[m];
- indices[m] = indices[i];
- indices[i] = t;
- // when v >= pivot, we swap i with m without advancing it, preserving invariants
- m += v < pivot;
- }
- return m;
- }
- static size_t kdtreeBuildLeaf(size_t offset, KDNode* nodes, size_t node_count, unsigned int* indices, size_t count)
- {
- assert(offset + count <= node_count);
- (void)node_count;
- KDNode& result = nodes[offset];
- result.index = indices[0];
- result.axis = 3;
- result.children = unsigned(count);
- // all remaining points are stored in nodes immediately following the leaf
- for (size_t i = 1; i < count; ++i)
- {
- KDNode& tail = nodes[offset + i];
- tail.index = indices[i];
- tail.axis = 3;
- tail.children = ~0u >> 2; // bogus value to prevent misuse
- }
- return offset + count;
- }
- static size_t kdtreeBuild(size_t offset, KDNode* nodes, size_t node_count, const float* points, size_t stride, unsigned int* indices, size_t count, size_t leaf_size, int depth)
- {
- assert(count > 0);
- assert(offset < node_count);
- if (count <= leaf_size)
- return kdtreeBuildLeaf(offset, nodes, node_count, indices, count);
- float mean[3] = {};
- float vars[3] = {};
- float runc = 1, runs = 1;
- // gather statistics on the points in the subtree using Welford's algorithm
- for (size_t i = 0; i < count; ++i, runc += 1.f, runs = 1.f / runc)
- {
- const float* point = points + indices[i] * stride;
- for (int k = 0; k < 3; ++k)
- {
- float delta = point[k] - mean[k];
- mean[k] += delta * runs;
- vars[k] += delta * (point[k] - mean[k]);
- }
- }
- // split axis is one where the variance is largest
- int axis = (vars[0] >= vars[1] && vars[0] >= vars[2]) ? 0 : (vars[1] >= vars[2] ? 1 : 2);
- float split = mean[axis];
- size_t middle = kdtreePartition(indices, count, points, stride, axis, split);
- // when the partition is degenerate simply consolidate the points into a single node
- // this also ensures recursion depth is bounded on pathological inputs
- if (middle <= leaf_size / 2 || middle >= count - leaf_size / 2 || depth >= kMeshletMaxTreeDepth)
- return kdtreeBuildLeaf(offset, nodes, node_count, indices, count);
- KDNode& result = nodes[offset];
- result.split = split;
- result.axis = axis;
- // left subtree is right after our node
- size_t next_offset = kdtreeBuild(offset + 1, nodes, node_count, points, stride, indices, middle, leaf_size, depth + 1);
- // distance to the right subtree is represented explicitly
- assert(next_offset - offset > 1);
- result.children = unsigned(next_offset - offset - 1);
- return kdtreeBuild(next_offset, nodes, node_count, points, stride, indices + middle, count - middle, leaf_size, depth + 1);
- }
- static void kdtreeNearest(KDNode* nodes, unsigned int root, const float* points, size_t stride, const unsigned char* emitted_flags, const float* position, unsigned int& result, float& limit)
- {
- const KDNode& node = nodes[root];
- if (node.children == 0)
- return;
- if (node.axis == 3)
- {
- // leaf
- bool inactive = true;
- for (unsigned int i = 0; i < node.children; ++i)
- {
- unsigned int index = nodes[root + i].index;
- if (emitted_flags[index])
- continue;
- inactive = false;
- const float* point = points + index * stride;
- float dx = point[0] - position[0], dy = point[1] - position[1], dz = point[2] - position[2];
- float distance = sqrtf(dx * dx + dy * dy + dz * dz);
- if (distance < limit)
- {
- result = index;
- limit = distance;
- }
- }
- // deactivate leaves that no longer have items to emit
- if (inactive)
- nodes[root].children = 0;
- }
- else
- {
- // branch; we order recursion to process the node that search position is in first
- float delta = position[node.axis] - node.split;
- unsigned int first = (delta <= 0) ? 0 : node.children;
- unsigned int second = first ^ node.children;
- // deactivate branches that no longer have items to emit to accelerate traversal
- // note that we do this *before* recursing which delays deactivation but keeps tail calls
- if ((nodes[root + 1 + first].children | nodes[root + 1 + second].children) == 0)
- nodes[root].children = 0;
- // recursion depth is bounded by tree depth (which is limited by construction)
- kdtreeNearest(nodes, root + 1 + first, points, stride, emitted_flags, position, result, limit);
- // only process the other node if it can have a match based on closest distance so far
- if (fabsf(delta) <= limit)
- kdtreeNearest(nodes, root + 1 + second, points, stride, emitted_flags, position, result, limit);
- }
- }
- struct BVHBoxT
- {
- float min[4];
- float max[4];
- };
- struct BVHBox
- {
- float min[3];
- float max[3];
- };
- #if defined(SIMD_SSE)
- static float boxMerge(BVHBoxT& box, const BVHBox& other)
- {
- __m128 min = _mm_loadu_ps(box.min);
- __m128 max = _mm_loadu_ps(box.max);
- // note: over-read is safe because BVHBox array is allocated with padding
- min = _mm_min_ps(min, _mm_loadu_ps(other.min));
- max = _mm_max_ps(max, _mm_loadu_ps(other.max));
- _mm_storeu_ps(box.min, min);
- _mm_storeu_ps(box.max, max);
- __m128 size = _mm_sub_ps(max, min);
- __m128 size_yzx = _mm_shuffle_ps(size, size, _MM_SHUFFLE(0, 0, 2, 1));
- __m128 mul = _mm_mul_ps(size, size_yzx);
- __m128 sum_xy = _mm_add_ss(mul, _mm_shuffle_ps(mul, mul, _MM_SHUFFLE(1, 1, 1, 1)));
- __m128 sum_xyz = _mm_add_ss(sum_xy, _mm_shuffle_ps(mul, mul, _MM_SHUFFLE(2, 2, 2, 2)));
- return _mm_cvtss_f32(sum_xyz);
- }
- #elif defined(SIMD_NEON)
- static float boxMerge(BVHBoxT& box, const BVHBox& other)
- {
- float32x4_t min = vld1q_f32(box.min);
- float32x4_t max = vld1q_f32(box.max);
- // note: over-read is safe because BVHBox array is allocated with padding
- min = vminq_f32(min, vld1q_f32(other.min));
- max = vmaxq_f32(max, vld1q_f32(other.max));
- vst1q_f32(box.min, min);
- vst1q_f32(box.max, max);
- float32x4_t size = vsubq_f32(max, min);
- float32x4_t size_yzx = vextq_f32(vextq_f32(size, size, 3), size, 2);
- float32x4_t mul = vmulq_f32(size, size_yzx);
- float sum_xy = vgetq_lane_f32(mul, 0) + vgetq_lane_f32(mul, 1);
- float sum_xyz = sum_xy + vgetq_lane_f32(mul, 2);
- return sum_xyz;
- }
- #else
- static float boxMerge(BVHBoxT& box, const BVHBox& other)
- {
- for (int k = 0; k < 3; ++k)
- {
- box.min[k] = other.min[k] < box.min[k] ? other.min[k] : box.min[k];
- box.max[k] = other.max[k] > box.max[k] ? other.max[k] : box.max[k];
- }
- float sx = box.max[0] - box.min[0], sy = box.max[1] - box.min[1], sz = box.max[2] - box.min[2];
- return sx * sy + sx * sz + sy * sz;
- }
- #endif
- inline unsigned int radixFloat(unsigned int v)
- {
- // if sign bit is 0, flip sign bit
- // if sign bit is 1, flip everything
- unsigned int mask = (int(v) >> 31) | 0x80000000;
- return v ^ mask;
- }
- static void computeHistogram(unsigned int (&hist)[1024][3], const float* data, size_t count)
- {
- memset(hist, 0, sizeof(hist));
- const unsigned int* bits = reinterpret_cast<const unsigned int*>(data);
- // compute 3 10-bit histograms in parallel (dropping 2 LSB)
- for (size_t i = 0; i < count; ++i)
- {
- unsigned int id = radixFloat(bits[i]);
- hist[(id >> 2) & 1023][0]++;
- hist[(id >> 12) & 1023][1]++;
- hist[(id >> 22) & 1023][2]++;
- }
- unsigned int sum0 = 0, sum1 = 0, sum2 = 0;
- // replace histogram data with prefix histogram sums in-place
- for (int i = 0; i < 1024; ++i)
- {
- unsigned int hx = hist[i][0], hy = hist[i][1], hz = hist[i][2];
- hist[i][0] = sum0;
- hist[i][1] = sum1;
- hist[i][2] = sum2;
- sum0 += hx;
- sum1 += hy;
- sum2 += hz;
- }
- assert(sum0 == count && sum1 == count && sum2 == count);
- }
- static void radixPass(unsigned int* destination, const unsigned int* source, const float* keys, size_t count, unsigned int (&hist)[1024][3], int pass)
- {
- const unsigned int* bits = reinterpret_cast<const unsigned int*>(keys);
- int bitoff = pass * 10 + 2; // drop 2 LSB to be able to use 3 10-bit passes
- for (size_t i = 0; i < count; ++i)
- {
- unsigned int id = (radixFloat(bits[source[i]]) >> bitoff) & 1023;
- destination[hist[id][pass]++] = source[i];
- }
- }
- static void bvhPrepare(BVHBox* boxes, float* centroids, const unsigned int* indices, size_t face_count, const float* vertex_positions, size_t vertex_count, size_t vertex_stride_float)
- {
- (void)vertex_count;
- for (size_t i = 0; i < face_count; ++i)
- {
- unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
- assert(a < vertex_count && b < vertex_count && c < vertex_count);
- const float* va = vertex_positions + vertex_stride_float * a;
- const float* vb = vertex_positions + vertex_stride_float * b;
- const float* vc = vertex_positions + vertex_stride_float * c;
- BVHBox& box = boxes[i];
- for (int k = 0; k < 3; ++k)
- {
- box.min[k] = va[k] < vb[k] ? va[k] : vb[k];
- box.min[k] = vc[k] < box.min[k] ? vc[k] : box.min[k];
- box.max[k] = va[k] > vb[k] ? va[k] : vb[k];
- box.max[k] = vc[k] > box.max[k] ? vc[k] : box.max[k];
- centroids[i + face_count * k] = (box.min[k] + box.max[k]) / 2.f;
- }
- }
- }
- static size_t bvhCountVertices(const unsigned int* order, size_t count, short* used, const unsigned int* indices, unsigned int* out = NULL)
- {
- // count number of unique vertices
- size_t used_vertices = 0;
- for (size_t i = 0; i < count; ++i)
- {
- unsigned int index = order[i];
- unsigned int a = indices[index * 3 + 0], b = indices[index * 3 + 1], c = indices[index * 3 + 2];
- used_vertices += (used[a] < 0) + (used[b] < 0) + (used[c] < 0);
- used[a] = used[b] = used[c] = 1;
- if (out)
- out[i] = unsigned(used_vertices);
- }
- // reset used[] for future invocations
- for (size_t i = 0; i < count; ++i)
- {
- unsigned int index = order[i];
- unsigned int a = indices[index * 3 + 0], b = indices[index * 3 + 1], c = indices[index * 3 + 2];
- used[a] = used[b] = used[c] = -1;
- }
- return used_vertices;
- }
- static void bvhPackLeaf(unsigned char* boundary, size_t count)
- {
- // mark meshlet boundary for future reassembly
- assert(count > 0);
- boundary[0] = 1;
- memset(boundary + 1, 0, count - 1);
- }
- static void bvhPackTail(unsigned char* boundary, const unsigned int* order, size_t count, short* used, const unsigned int* indices, size_t max_vertices, size_t max_triangles)
- {
- for (size_t i = 0; i < count;)
- {
- size_t chunk = i + max_triangles <= count ? max_triangles : count - i;
- if (bvhCountVertices(order + i, chunk, used, indices) <= max_vertices)
- {
- bvhPackLeaf(boundary + i, chunk);
- i += chunk;
- continue;
- }
- // chunk is vertex bound, split it into smaller meshlets
- assert(chunk > max_vertices / 3);
- bvhPackLeaf(boundary + i, max_vertices / 3);
- i += max_vertices / 3;
- }
- }
- static bool bvhDivisible(size_t count, size_t min, size_t max)
- {
- // count is representable as a sum of values in [min..max] if if it in range of [k*min..k*min+k*(max-min)]
- // equivalent to ceil(count / max) <= floor(count / min), but the form below allows using idiv (see nv_cluster_builder)
- // we avoid expensive integer divisions in the common case where min is <= max/2
- return min * 2 <= max ? count >= min : count % min <= (count / min) * (max - min);
- }
- static void bvhComputeArea(float* areas, const BVHBox* boxes, const unsigned int* order, size_t count)
- {
- BVHBoxT accuml = {{FLT_MAX, FLT_MAX, FLT_MAX, 0}, {-FLT_MAX, -FLT_MAX, -FLT_MAX, 0}};
- BVHBoxT accumr = accuml;
- for (size_t i = 0; i < count; ++i)
- {
- float larea = boxMerge(accuml, boxes[order[i]]);
- float rarea = boxMerge(accumr, boxes[order[count - 1 - i]]);
- areas[i] = larea;
- areas[i + count] = rarea;
- }
- }
- static size_t bvhPivot(const float* areas, const unsigned int* vertices, size_t count, size_t step, size_t min, size_t max, float fill, size_t maxfill, float* out_cost)
- {
- bool aligned = count >= min * 2 && bvhDivisible(count, min, max);
- size_t end = aligned ? count - min : count - 1;
- float rmaxfill = 1.f / float(int(maxfill));
- // find best split that minimizes SAH
- size_t bestsplit = 0;
- float bestcost = FLT_MAX;
- for (size_t i = min - 1; i < end; i += step)
- {
- size_t lsplit = i + 1, rsplit = count - (i + 1);
- if (!bvhDivisible(lsplit, min, max))
- continue;
- if (aligned && !bvhDivisible(rsplit, min, max))
- continue;
- // areas[x] = inclusive surface area of boxes[0..x]
- // areas[count-1-x] = inclusive surface area of boxes[x..count-1]
- float larea = areas[i], rarea = areas[(count - 1 - (i + 1)) + count];
- float cost = larea * float(int(lsplit)) + rarea * float(int(rsplit));
- if (cost > bestcost)
- continue;
- // use vertex fill when splitting vertex limited clusters; note that we use the same (left->right) vertex count
- // using bidirectional vertex counts is a little more expensive to compute and produces slightly worse results in practice
- size_t lfill = vertices ? vertices[i] : lsplit;
- size_t rfill = vertices ? vertices[i] : rsplit;
- // fill cost; use floating point math to round up to maxfill to avoid expensive integer modulo
- int lrest = int(float(int(lfill + maxfill - 1)) * rmaxfill) * int(maxfill) - int(lfill);
- int rrest = int(float(int(rfill + maxfill - 1)) * rmaxfill) * int(maxfill) - int(rfill);
- cost += fill * (float(lrest) * larea + float(rrest) * rarea);
- if (cost < bestcost)
- {
- bestcost = cost;
- bestsplit = i + 1;
- }
- }
- *out_cost = bestcost;
- return bestsplit;
- }
- static void bvhPartition(unsigned int* target, const unsigned int* order, const unsigned char* sides, size_t split, size_t count)
- {
- size_t l = 0, r = split;
- for (size_t i = 0; i < count; ++i)
- {
- unsigned char side = sides[order[i]];
- target[side ? r : l] = order[i];
- l += 1;
- l -= side;
- r += side;
- }
- assert(l == split && r == count);
- }
- static void bvhSplit(const BVHBox* boxes, unsigned int* orderx, unsigned int* ordery, unsigned int* orderz, unsigned char* boundary, size_t count, int depth, void* scratch, short* used, const unsigned int* indices, size_t max_vertices, size_t min_triangles, size_t max_triangles, float fill_weight)
- {
- if (count <= max_triangles && bvhCountVertices(orderx, count, used, indices) <= max_vertices)
- return bvhPackLeaf(boundary, count);
- unsigned int* axes[3] = {orderx, ordery, orderz};
- // we can use step=1 unconditionally but to reduce the cost for min=max case we use step=max
- size_t step = min_triangles == max_triangles && count > max_triangles ? max_triangles : 1;
- // if we could not pack the meshlet, we must be vertex bound
- size_t mint = count <= max_triangles && max_vertices / 3 < min_triangles ? max_vertices / 3 : min_triangles;
- size_t maxfill = count <= max_triangles ? max_vertices : max_triangles;
- // find best split that minimizes SAH
- int bestk = -1;
- size_t bestsplit = 0;
- float bestcost = FLT_MAX;
- for (int k = 0; k < 3; ++k)
- {
- float* areas = static_cast<float*>(scratch);
- unsigned int* vertices = NULL;
- bvhComputeArea(areas, boxes, axes[k], count);
- if (count <= max_triangles)
- {
- // for vertex bound clusters, count number of unique vertices for each split
- vertices = reinterpret_cast<unsigned int*>(areas + 2 * count);
- bvhCountVertices(axes[k], count, used, indices, vertices);
- }
- float axiscost = FLT_MAX;
- size_t axissplit = bvhPivot(areas, vertices, count, step, mint, max_triangles, fill_weight, maxfill, &axiscost);
- if (axissplit && axiscost < bestcost)
- {
- bestk = k;
- bestcost = axiscost;
- bestsplit = axissplit;
- }
- }
- // this may happen if SAH costs along the admissible splits are NaN, or due to imbalanced splits on pathological inputs
- if (bestk < 0 || depth >= kMeshletMaxTreeDepth)
- return bvhPackTail(boundary, orderx, count, used, indices, max_vertices, max_triangles);
- // mark sides of split for partitioning
- unsigned char* sides = static_cast<unsigned char*>(scratch) + count * sizeof(unsigned int);
- for (size_t i = 0; i < bestsplit; ++i)
- sides[axes[bestk][i]] = 0;
- for (size_t i = bestsplit; i < count; ++i)
- sides[axes[bestk][i]] = 1;
- // partition all axes into two sides, maintaining order
- unsigned int* temp = static_cast<unsigned int*>(scratch);
- for (int k = 0; k < 3; ++k)
- {
- if (k == bestk)
- continue;
- unsigned int* axis = axes[k];
- memcpy(temp, axis, sizeof(unsigned int) * count);
- bvhPartition(axis, temp, sides, bestsplit, count);
- }
- // recursion depth is bounded due to max depth check above
- bvhSplit(boxes, orderx, ordery, orderz, boundary, bestsplit, depth + 1, scratch, used, indices, max_vertices, min_triangles, max_triangles, fill_weight);
- bvhSplit(boxes, orderx + bestsplit, ordery + bestsplit, orderz + bestsplit, boundary + bestsplit, count - bestsplit, depth + 1, scratch, used, indices, max_vertices, min_triangles, max_triangles, fill_weight);
- }
- } // namespace meshopt
- size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles)
- {
- using namespace meshopt;
- assert(index_count % 3 == 0);
- assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
- assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles);
- (void)kMeshletMaxVertices;
- (void)kMeshletMaxTriangles;
- // meshlet construction is limited by max vertices and max triangles per meshlet
- // the worst case is that the input is an unindexed stream since this equally stresses both limits
- // note that we assume that in the worst case, we leave 2 vertices unpacked in each meshlet - if we have space for 3 we can pack any triangle
- size_t max_vertices_conservative = max_vertices - 2;
- size_t meshlet_limit_vertices = (index_count + max_vertices_conservative - 1) / max_vertices_conservative;
- size_t meshlet_limit_triangles = (index_count / 3 + max_triangles - 1) / max_triangles;
- return meshlet_limit_vertices > meshlet_limit_triangles ? meshlet_limit_vertices : meshlet_limit_triangles;
- }
- size_t meshopt_buildMeshletsFlex(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t min_triangles, size_t max_triangles, float cone_weight, float split_factor)
- {
- using namespace meshopt;
- assert(index_count % 3 == 0);
- assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
- assert(vertex_positions_stride % sizeof(float) == 0);
- assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
- assert(min_triangles >= 1 && min_triangles <= max_triangles && max_triangles <= kMeshletMaxTriangles);
- assert(cone_weight >= 0 && cone_weight <= 1);
- assert(split_factor >= 0);
- if (index_count == 0)
- return 0;
- meshopt_Allocator allocator;
- TriangleAdjacency2 adjacency = {};
- if (vertex_count > index_count && index_count < (1u << 31))
- buildTriangleAdjacencySparse(adjacency, indices, index_count, vertex_count, allocator);
- else
- buildTriangleAdjacency(adjacency, indices, index_count, vertex_count, allocator);
- // live triangle counts; note, we alias adjacency.counts as we remove triangles after emitting them so the counts always match
- unsigned int* live_triangles = adjacency.counts;
- size_t face_count = index_count / 3;
- unsigned char* emitted_flags = allocator.allocate<unsigned char>(face_count);
- memset(emitted_flags, 0, face_count);
- // for each triangle, precompute centroid & normal to use for scoring
- Cone* triangles = allocator.allocate<Cone>(face_count);
- float mesh_area = computeTriangleCones(triangles, indices, index_count, vertex_positions, vertex_count, vertex_positions_stride);
- // assuming each meshlet is a square patch, expected radius is sqrt(expected area)
- float triangle_area_avg = face_count == 0 ? 0.f : mesh_area / float(face_count) * 0.5f;
- float meshlet_expected_radius = sqrtf(triangle_area_avg * max_triangles) * 0.5f;
- // build a kd-tree for nearest neighbor lookup
- unsigned int* kdindices = allocator.allocate<unsigned int>(face_count);
- for (size_t i = 0; i < face_count; ++i)
- kdindices[i] = unsigned(i);
- KDNode* nodes = allocator.allocate<KDNode>(face_count * 2);
- kdtreeBuild(0, nodes, face_count * 2, &triangles[0].px, sizeof(Cone) / sizeof(float), kdindices, face_count, /* leaf_size= */ 8, 0);
- // find a specific corner of the mesh to use as a starting point for meshlet flow
- float cornerx = FLT_MAX, cornery = FLT_MAX, cornerz = FLT_MAX;
- for (size_t i = 0; i < face_count; ++i)
- {
- const Cone& tri = triangles[i];
- cornerx = cornerx > tri.px ? tri.px : cornerx;
- cornery = cornery > tri.py ? tri.py : cornery;
- cornerz = cornerz > tri.pz ? tri.pz : cornerz;
- }
- // index of the vertex in the meshlet, -1 if the vertex isn't used
- short* used = allocator.allocate<short>(vertex_count);
- clearUsed(used, vertex_count, indices, index_count);
- // initial seed triangle is the one closest to the corner
- unsigned int initial_seed = ~0u;
- float initial_score = FLT_MAX;
- for (size_t i = 0; i < face_count; ++i)
- {
- const Cone& tri = triangles[i];
- float dx = tri.px - cornerx, dy = tri.py - cornery, dz = tri.pz - cornerz;
- float score = sqrtf(dx * dx + dy * dy + dz * dz);
- if (initial_seed == ~0u || score < initial_score)
- {
- initial_seed = unsigned(i);
- initial_score = score;
- }
- }
- // seed triangles to continue meshlet flow
- unsigned int seeds[kMeshletMaxSeeds] = {};
- size_t seed_count = 0;
- meshopt_Meshlet meshlet = {};
- size_t meshlet_offset = 0;
- Cone meshlet_cone_acc = {};
- for (;;)
- {
- Cone meshlet_cone = getMeshletCone(meshlet_cone_acc, meshlet.triangle_count);
- unsigned int best_triangle = ~0u;
- // for the first triangle, we don't have a meshlet cone yet, so we use the initial seed
- // to continue the meshlet, we select an adjacent triangle based on connectivity and spatial scoring
- if (meshlet_offset == 0 && meshlet.triangle_count == 0)
- best_triangle = initial_seed;
- else
- best_triangle = getNeighborTriangle(meshlet, meshlet_cone, meshlet_vertices, indices, adjacency, triangles, live_triangles, used, meshlet_expected_radius, cone_weight);
- bool split = false;
- // when we run out of adjacent triangles we need to switch to spatial search; we currently just pick the closest triangle irrespective of connectivity
- if (best_triangle == ~0u)
- {
- float position[3] = {meshlet_cone.px, meshlet_cone.py, meshlet_cone.pz};
- unsigned int index = ~0u;
- float distance = FLT_MAX;
- kdtreeNearest(nodes, 0, &triangles[0].px, sizeof(Cone) / sizeof(float), emitted_flags, position, index, distance);
- best_triangle = index;
- split = meshlet.triangle_count >= min_triangles && split_factor > 0 && distance > meshlet_expected_radius * split_factor;
- }
- if (best_triangle == ~0u)
- break;
- int best_extra = (used[indices[best_triangle * 3 + 0]] < 0) + (used[indices[best_triangle * 3 + 1]] < 0) + (used[indices[best_triangle * 3 + 2]] < 0);
- // if the best triangle doesn't fit into current meshlet, we re-select using seeds to maintain global flow
- if (split || (meshlet.vertex_count + best_extra > max_vertices || meshlet.triangle_count >= max_triangles))
- {
- seed_count = pruneSeedTriangles(seeds, seed_count, emitted_flags);
- seed_count = (seed_count + kMeshletAddSeeds <= kMeshletMaxSeeds) ? seed_count : kMeshletMaxSeeds - kMeshletAddSeeds;
- seed_count += appendSeedTriangles(seeds + seed_count, meshlet, meshlet_vertices, indices, adjacency, triangles, live_triangles, cornerx, cornery, cornerz);
- unsigned int best_seed = selectSeedTriangle(seeds, seed_count, indices, triangles, live_triangles, cornerx, cornery, cornerz);
- // we may not find a valid seed triangle if the mesh is disconnected as seeds are based on adjacency
- best_triangle = best_seed != ~0u ? best_seed : best_triangle;
- }
- unsigned int a = indices[best_triangle * 3 + 0], b = indices[best_triangle * 3 + 1], c = indices[best_triangle * 3 + 2];
- assert(a < vertex_count && b < vertex_count && c < vertex_count);
- // add meshlet to the output; when the current meshlet is full we reset the accumulated bounds
- if (appendMeshlet(meshlet, a, b, c, used, meshlets, meshlet_vertices, meshlet_triangles, meshlet_offset, max_vertices, max_triangles, split))
- {
- meshlet_offset++;
- memset(&meshlet_cone_acc, 0, sizeof(meshlet_cone_acc));
- }
- // remove emitted triangle from adjacency data
- // this makes sure that we spend less time traversing these lists on subsequent iterations
- // live triangle counts are updated as a byproduct of these adjustments
- for (size_t k = 0; k < 3; ++k)
- {
- unsigned int index = indices[best_triangle * 3 + k];
- unsigned int* neighbors = &adjacency.data[0] + adjacency.offsets[index];
- size_t neighbors_size = adjacency.counts[index];
- for (size_t i = 0; i < neighbors_size; ++i)
- {
- unsigned int tri = neighbors[i];
- if (tri == best_triangle)
- {
- neighbors[i] = neighbors[neighbors_size - 1];
- adjacency.counts[index]--;
- break;
- }
- }
- }
- // update aggregated meshlet cone data for scoring subsequent triangles
- meshlet_cone_acc.px += triangles[best_triangle].px;
- meshlet_cone_acc.py += triangles[best_triangle].py;
- meshlet_cone_acc.pz += triangles[best_triangle].pz;
- meshlet_cone_acc.nx += triangles[best_triangle].nx;
- meshlet_cone_acc.ny += triangles[best_triangle].ny;
- meshlet_cone_acc.nz += triangles[best_triangle].nz;
- assert(!emitted_flags[best_triangle]);
- emitted_flags[best_triangle] = 1;
- }
- if (meshlet.triangle_count)
- meshlets[meshlet_offset++] = meshlet;
- assert(meshlet_offset <= meshopt_buildMeshletsBound(index_count, max_vertices, min_triangles));
- assert(meshlet.triangle_offset + meshlet.triangle_count * 3 <= index_count && meshlet.vertex_offset + meshlet.vertex_count <= index_count);
- return meshlet_offset;
- }
- size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight)
- {
- return meshopt_buildMeshletsFlex(meshlets, meshlet_vertices, meshlet_triangles, indices, index_count, vertex_positions, vertex_count, vertex_positions_stride, max_vertices, max_triangles, max_triangles, cone_weight, 0.0f);
- }
- size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
- {
- using namespace meshopt;
- assert(index_count % 3 == 0);
- assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
- assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles);
- meshopt_Allocator allocator;
- // index of the vertex in the meshlet, -1 if the vertex isn't used
- short* used = allocator.allocate<short>(vertex_count);
- clearUsed(used, vertex_count, indices, index_count);
- meshopt_Meshlet meshlet = {};
- size_t meshlet_offset = 0;
- for (size_t i = 0; i < index_count; i += 3)
- {
- unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
- assert(a < vertex_count && b < vertex_count && c < vertex_count);
- // appends triangle to the meshlet and writes previous meshlet to the output if full
- meshlet_offset += appendMeshlet(meshlet, a, b, c, used, meshlets, meshlet_vertices, meshlet_triangles, meshlet_offset, max_vertices, max_triangles);
- }
- if (meshlet.triangle_count)
- meshlets[meshlet_offset++] = meshlet;
- assert(meshlet_offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles));
- assert(meshlet.triangle_offset + meshlet.triangle_count * 3 <= index_count && meshlet.vertex_offset + meshlet.vertex_count <= index_count);
- return meshlet_offset;
- }
- size_t meshopt_buildMeshletsSpatial(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t min_triangles, size_t max_triangles, float fill_weight)
- {
- using namespace meshopt;
- assert(index_count % 3 == 0);
- assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
- assert(vertex_positions_stride % sizeof(float) == 0);
- assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices);
- assert(min_triangles >= 1 && min_triangles <= max_triangles && max_triangles <= kMeshletMaxTriangles);
- if (index_count == 0)
- return 0;
- size_t face_count = index_count / 3;
- size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
- meshopt_Allocator allocator;
- // 3 floats plus 1 uint for sorting, or
- // 2 floats plus 1 uint for pivoting, or
- // 1 uint plus 1 byte for partitioning
- float* scratch = allocator.allocate<float>(face_count * 4);
- // compute bounding boxes and centroids for sorting
- BVHBox* boxes = allocator.allocate<BVHBox>(face_count + 1); // padding for SIMD
- bvhPrepare(boxes, scratch, indices, face_count, vertex_positions, vertex_count, vertex_stride_float);
- memset(boxes + face_count, 0, sizeof(BVHBox));
- unsigned int* axes = allocator.allocate<unsigned int>(face_count * 3);
- unsigned int* temp = reinterpret_cast<unsigned int*>(scratch) + face_count * 3;
- for (int k = 0; k < 3; ++k)
- {
- unsigned int* order = axes + k * face_count;
- const float* keys = scratch + k * face_count;
- unsigned int hist[1024][3];
- computeHistogram(hist, keys, face_count);
- // 3-pass radix sort computes the resulting order into axes
- for (size_t i = 0; i < face_count; ++i)
- temp[i] = unsigned(i);
- radixPass(order, temp, keys, face_count, hist, 0);
- radixPass(temp, order, keys, face_count, hist, 1);
- radixPass(order, temp, keys, face_count, hist, 2);
- }
- // index of the vertex in the meshlet, -1 if the vertex isn't used
- short* used = allocator.allocate<short>(vertex_count);
- clearUsed(used, vertex_count, indices, index_count);
- unsigned char* boundary = allocator.allocate<unsigned char>(face_count);
- bvhSplit(boxes, &axes[0], &axes[face_count], &axes[face_count * 2], boundary, face_count, 0, scratch, used, indices, max_vertices, min_triangles, max_triangles, fill_weight);
- // compute the desired number of meshlets; note that on some meshes with a lot of vertex bound clusters this might go over the bound
- size_t meshlet_count = 0;
- for (size_t i = 0; i < face_count; ++i)
- {
- assert(boundary[i] <= 1);
- meshlet_count += boundary[i];
- }
- size_t meshlet_bound = meshopt_buildMeshletsBound(index_count, max_vertices, min_triangles);
- // pack triangles into meshlets according to the order and boundaries marked by bvhSplit
- meshopt_Meshlet meshlet = {};
- size_t meshlet_offset = 0;
- size_t meshlet_pending = meshlet_count;
- for (size_t i = 0; i < face_count; ++i)
- {
- assert(boundary[i] <= 1);
- bool split = i > 0 && boundary[i] == 1;
- // while we are over the limit, we ignore boundary[] data and disable splits until we free up enough space
- if (split && meshlet_count > meshlet_bound && meshlet_offset + meshlet_pending >= meshlet_bound)
- split = false;
- unsigned int index = axes[i];
- assert(index < face_count);
- unsigned int a = indices[index * 3 + 0], b = indices[index * 3 + 1], c = indices[index * 3 + 2];
- // appends triangle to the meshlet and writes previous meshlet to the output if full
- meshlet_offset += appendMeshlet(meshlet, a, b, c, used, meshlets, meshlet_vertices, meshlet_triangles, meshlet_offset, max_vertices, max_triangles, split);
- meshlet_pending -= boundary[i];
- }
- if (meshlet.triangle_count)
- meshlets[meshlet_offset++] = meshlet;
- assert(meshlet_offset <= meshlet_bound);
- assert(meshlet.triangle_offset + meshlet.triangle_count * 3 <= index_count && meshlet.vertex_offset + meshlet.vertex_count <= index_count);
- return meshlet_offset;
- }
- meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
- {
- using namespace meshopt;
- assert(index_count % 3 == 0);
- assert(index_count / 3 <= kMeshletMaxTriangles);
- assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
- assert(vertex_positions_stride % sizeof(float) == 0);
- (void)vertex_count;
- size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
- // compute triangle normals and gather triangle corners
- float normals[kMeshletMaxTriangles][3];
- float corners[kMeshletMaxTriangles][3][3];
- size_t triangles = 0;
- for (size_t i = 0; i < index_count; i += 3)
- {
- unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
- assert(a < vertex_count && b < vertex_count && c < vertex_count);
- const float* p0 = vertex_positions + vertex_stride_float * a;
- const float* p1 = vertex_positions + vertex_stride_float * b;
- const float* p2 = vertex_positions + vertex_stride_float * c;
- float p10[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]};
- float p20[3] = {p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]};
- float normalx = p10[1] * p20[2] - p10[2] * p20[1];
- float normaly = p10[2] * p20[0] - p10[0] * p20[2];
- float normalz = p10[0] * p20[1] - p10[1] * p20[0];
- float area = sqrtf(normalx * normalx + normaly * normaly + normalz * normalz);
- // no need to include degenerate triangles - they will be invisible anyway
- if (area == 0.f)
- continue;
- // record triangle normals & corners for future use; normal and corner 0 define a plane equation
- normals[triangles][0] = normalx / area;
- normals[triangles][1] = normaly / area;
- normals[triangles][2] = normalz / area;
- memcpy(corners[triangles][0], p0, 3 * sizeof(float));
- memcpy(corners[triangles][1], p1, 3 * sizeof(float));
- memcpy(corners[triangles][2], p2, 3 * sizeof(float));
- triangles++;
- }
- meshopt_Bounds bounds = {};
- // degenerate cluster, no valid triangles => trivial reject (cone data is 0)
- if (triangles == 0)
- return bounds;
- const float rzero = 0.f;
- // compute cluster bounding sphere; we'll use the center to determine normal cone apex as well
- float psphere[4] = {};
- computeBoundingSphere(psphere, corners[0][0], triangles * 3, sizeof(float) * 3, &rzero, 0, 7);
- float center[3] = {psphere[0], psphere[1], psphere[2]};
- // treating triangle normals as points, find the bounding sphere - the sphere center determines the optimal cone axis
- float nsphere[4] = {};
- computeBoundingSphere(nsphere, normals[0], triangles, sizeof(float) * 3, &rzero, 0, 3);
- float axis[3] = {nsphere[0], nsphere[1], nsphere[2]};
- float axislength = sqrtf(axis[0] * axis[0] + axis[1] * axis[1] + axis[2] * axis[2]);
- float invaxislength = axislength == 0.f ? 0.f : 1.f / axislength;
- axis[0] *= invaxislength;
- axis[1] *= invaxislength;
- axis[2] *= invaxislength;
- // compute a tight cone around all normals, mindp = cos(angle/2)
- float mindp = 1.f;
- for (size_t i = 0; i < triangles; ++i)
- {
- float dp = normals[i][0] * axis[0] + normals[i][1] * axis[1] + normals[i][2] * axis[2];
- mindp = (dp < mindp) ? dp : mindp;
- }
- // fill bounding sphere info; note that below we can return bounds without cone information for degenerate cones
- bounds.center[0] = center[0];
- bounds.center[1] = center[1];
- bounds.center[2] = center[2];
- bounds.radius = psphere[3];
- // degenerate cluster, normal cone is larger than a hemisphere => trivial accept
- // note that if mindp is positive but close to 0, the triangle intersection code below gets less stable
- // we arbitrarily decide that if a normal cone is ~168 degrees wide or more, the cone isn't useful
- if (mindp <= 0.1f)
- {
- bounds.cone_cutoff = 1;
- bounds.cone_cutoff_s8 = 127;
- return bounds;
- }
- float maxt = 0;
- // we need to find the point on center-t*axis ray that lies in negative half-space of all triangles
- for (size_t i = 0; i < triangles; ++i)
- {
- // dot(center-t*axis-corner, trinormal) = 0
- // dot(center-corner, trinormal) - t * dot(axis, trinormal) = 0
- float cx = center[0] - corners[i][0][0];
- float cy = center[1] - corners[i][0][1];
- float cz = center[2] - corners[i][0][2];
- float dc = cx * normals[i][0] + cy * normals[i][1] + cz * normals[i][2];
- float dn = axis[0] * normals[i][0] + axis[1] * normals[i][1] + axis[2] * normals[i][2];
- // dn should be larger than mindp cutoff above
- assert(dn > 0.f);
- float t = dc / dn;
- maxt = (t > maxt) ? t : maxt;
- }
- // cone apex should be in the negative half-space of all cluster triangles by construction
- bounds.cone_apex[0] = center[0] - axis[0] * maxt;
- bounds.cone_apex[1] = center[1] - axis[1] * maxt;
- bounds.cone_apex[2] = center[2] - axis[2] * maxt;
- // note: this axis is the axis of the normal cone, but our test for perspective camera effectively negates the axis
- bounds.cone_axis[0] = axis[0];
- bounds.cone_axis[1] = axis[1];
- bounds.cone_axis[2] = axis[2];
- // cos(a) for normal cone is mindp; we need to add 90 degrees on both sides and invert the cone
- // which gives us -cos(a+90) = -(-sin(a)) = sin(a) = sqrt(1 - cos^2(a))
- bounds.cone_cutoff = sqrtf(1 - mindp * mindp);
- // quantize axis & cutoff to 8-bit SNORM format
- bounds.cone_axis_s8[0] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[0], 8));
- bounds.cone_axis_s8[1] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[1], 8));
- bounds.cone_axis_s8[2] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[2], 8));
- // for the 8-bit test to be conservative, we need to adjust the cutoff by measuring the max. error
- float cone_axis_s8_e0 = fabsf(bounds.cone_axis_s8[0] / 127.f - bounds.cone_axis[0]);
- float cone_axis_s8_e1 = fabsf(bounds.cone_axis_s8[1] / 127.f - bounds.cone_axis[1]);
- float cone_axis_s8_e2 = fabsf(bounds.cone_axis_s8[2] / 127.f - bounds.cone_axis[2]);
- // note that we need to round this up instead of rounding to nearest, hence +1
- int cone_cutoff_s8 = int(127 * (bounds.cone_cutoff + cone_axis_s8_e0 + cone_axis_s8_e1 + cone_axis_s8_e2) + 1);
- bounds.cone_cutoff_s8 = (cone_cutoff_s8 > 127) ? 127 : (signed char)(cone_cutoff_s8);
- return bounds;
- }
- meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
- {
- using namespace meshopt;
- assert(triangle_count <= kMeshletMaxTriangles);
- assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
- assert(vertex_positions_stride % sizeof(float) == 0);
- unsigned int indices[kMeshletMaxTriangles * 3];
- for (size_t i = 0; i < triangle_count * 3; ++i)
- {
- unsigned int index = meshlet_vertices[meshlet_triangles[i]];
- assert(index < vertex_count);
- indices[i] = index;
- }
- return meshopt_computeClusterBounds(indices, triangle_count * 3, vertex_positions, vertex_count, vertex_positions_stride);
- }
- meshopt_Bounds meshopt_computeSphereBounds(const float* positions, size_t count, size_t positions_stride, const float* radii, size_t radii_stride)
- {
- using namespace meshopt;
- assert(positions_stride >= 12 && positions_stride <= 256);
- assert(positions_stride % sizeof(float) == 0);
- assert((radii_stride >= 4 && radii_stride <= 256) || radii == NULL);
- assert(radii_stride % sizeof(float) == 0);
- meshopt_Bounds bounds = {};
- if (count == 0)
- return bounds;
- const float rzero = 0.f;
- float psphere[4] = {};
- computeBoundingSphere(psphere, positions, count, positions_stride, radii ? radii : &rzero, radii ? radii_stride : 0, 7);
- bounds.center[0] = psphere[0];
- bounds.center[1] = psphere[1];
- bounds.center[2] = psphere[2];
- bounds.radius = psphere[3];
- return bounds;
- }
- void meshopt_optimizeMeshlet(unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, size_t triangle_count, size_t vertex_count)
- {
- using namespace meshopt;
- assert(triangle_count <= kMeshletMaxTriangles);
- assert(vertex_count <= kMeshletMaxVertices);
- unsigned char* indices = meshlet_triangles;
- unsigned int* vertices = meshlet_vertices;
- // cache tracks vertex timestamps (corresponding to triangle index! all 3 vertices are added at the same time and never removed)
- unsigned char cache[kMeshletMaxVertices];
- memset(cache, 0, vertex_count);
- // note that we start from a value that means all vertices aren't in cache
- unsigned char cache_last = 128;
- const unsigned char cache_cutoff = 3; // 3 triangles = ~5..9 vertices depending on reuse
- for (size_t i = 0; i < triangle_count; ++i)
- {
- int next = -1;
- int next_match = -1;
- for (size_t j = i; j < triangle_count; ++j)
- {
- unsigned char a = indices[j * 3 + 0], b = indices[j * 3 + 1], c = indices[j * 3 + 2];
- assert(a < vertex_count && b < vertex_count && c < vertex_count);
- // score each triangle by how many vertices are in cache
- // note: the distance is computed using unsigned 8-bit values, so cache timestamp overflow is handled gracefully
- int aok = (unsigned char)(cache_last - cache[a]) < cache_cutoff;
- int bok = (unsigned char)(cache_last - cache[b]) < cache_cutoff;
- int cok = (unsigned char)(cache_last - cache[c]) < cache_cutoff;
- if (aok + bok + cok > next_match)
- {
- next = (int)j;
- next_match = aok + bok + cok;
- // note that we could end up with all 3 vertices in the cache, but 2 is enough for ~strip traversal
- if (next_match >= 2)
- break;
- }
- }
- assert(next >= 0);
- unsigned char a = indices[next * 3 + 0], b = indices[next * 3 + 1], c = indices[next * 3 + 2];
- // shift triangles before the next one forward so that we always keep an ordered partition
- // note: this could have swapped triangles [i] and [next] but that distorts the order and may skew the output sequence
- memmove(indices + (i + 1) * 3, indices + i * 3, (next - i) * 3 * sizeof(unsigned char));
- indices[i * 3 + 0] = a;
- indices[i * 3 + 1] = b;
- indices[i * 3 + 2] = c;
- // cache timestamp is the same between all vertices of each triangle to reduce overflow
- cache_last++;
- cache[a] = cache_last;
- cache[b] = cache_last;
- cache[c] = cache_last;
- }
- // reorder meshlet vertices for access locality assuming index buffer is scanned sequentially
- unsigned int order[kMeshletMaxVertices];
- short remap[kMeshletMaxVertices];
- memset(remap, -1, vertex_count * sizeof(short));
- size_t vertex_offset = 0;
- for (size_t i = 0; i < triangle_count * 3; ++i)
- {
- short& r = remap[indices[i]];
- if (r < 0)
- {
- r = short(vertex_offset);
- order[vertex_offset] = vertices[indices[i]];
- vertex_offset++;
- }
- indices[i] = (unsigned char)r;
- }
- assert(vertex_offset <= vertex_count);
- memcpy(vertices, order, vertex_offset * sizeof(unsigned int));
- }
- #undef SIMD_SSE
- #undef SIMD_NEON
|