| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910 |
- // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
- #include "meshoptimizer.h"
- #include <assert.h>
- #include <string.h>
- // The block below auto-detects SIMD ISA that can be used on the target platform
- #ifndef MESHOPTIMIZER_NO_SIMD
- // The SIMD implementation requires SSSE3, which can be enabled unconditionally through compiler settings
- #if defined(__AVX__) || defined(__SSSE3__)
- #define SIMD_SSE
- #endif
- // An experimental implementation using AVX512 instructions; it's only enabled when AVX512 is enabled through compiler settings
- #if defined(__AVX512VBMI2__) && defined(__AVX512VBMI__) && defined(__AVX512VL__) && defined(__POPCNT__)
- #undef SIMD_SSE
- #define SIMD_AVX
- #endif
- // MSVC supports compiling SSSE3 code regardless of compile options; we use a cpuid-based scalar fallback
- #if !defined(SIMD_SSE) && !defined(SIMD_AVX) && defined(_MSC_VER) && !defined(__clang__) && (defined(_M_IX86) || defined(_M_X64))
- #define SIMD_SSE
- #define SIMD_FALLBACK
- #endif
- // GCC 4.9+ and clang 3.8+ support targeting SIMD ISA from individual functions; we use a cpuid-based scalar fallback
- #if !defined(SIMD_SSE) && !defined(SIMD_AVX) && ((defined(__clang__) && __clang_major__ * 100 + __clang_minor__ >= 308) || (defined(__GNUC__) && __GNUC__ * 100 + __GNUC_MINOR__ >= 409)) && (defined(__i386__) || defined(__x86_64__))
- #define SIMD_SSE
- #define SIMD_FALLBACK
- #define SIMD_TARGET __attribute__((target("ssse3")))
- #endif
- // GCC/clang define these when NEON support is available
- #if defined(__ARM_NEON__) || defined(__ARM_NEON)
- #define SIMD_NEON
- #endif
- // On MSVC, we assume that ARM builds always target NEON-capable devices
- #if !defined(SIMD_NEON) && defined(_MSC_VER) && (defined(_M_ARM) || defined(_M_ARM64))
- #define SIMD_NEON
- #endif
- // When targeting Wasm SIMD we can't use runtime cpuid checks so we unconditionally enable SIMD
- #if defined(__wasm_simd128__)
- #define SIMD_WASM
- // Prevent compiling other variant when wasm simd compilation is active
- #undef SIMD_NEON
- #undef SIMD_SSE
- #undef SIMD_AVX
- #endif
- #ifndef SIMD_TARGET
- #define SIMD_TARGET
- #endif
- // When targeting AArch64/x64, optimize for latency to allow decoding of individual 16-byte groups to overlap
- // We don't do this for 32-bit systems because we need 64-bit math for this and this will hurt in-order CPUs
- #if defined(__x86_64__) || defined(_M_X64) || defined(__aarch64__) || defined(_M_ARM64)
- #define SIMD_LATENCYOPT
- #endif
- // In switch dispatch, marking default case as unreachable allows to remove redundant bounds checks
- #if defined(__GNUC__)
- #define SIMD_UNREACHABLE() __builtin_unreachable()
- #elif defined(_MSC_VER)
- #define SIMD_UNREACHABLE() __assume(false)
- #else
- #define SIMD_UNREACHABLE() assert(!"Unreachable")
- #endif
- #endif // !MESHOPTIMIZER_NO_SIMD
- #ifdef SIMD_SSE
- #include <tmmintrin.h>
- #endif
- #if defined(SIMD_SSE) && defined(SIMD_FALLBACK)
- #ifdef _MSC_VER
- #include <intrin.h> // __cpuid
- #else
- #include <cpuid.h> // __cpuid
- #endif
- #endif
- #ifdef SIMD_AVX
- #include <immintrin.h>
- #endif
- #ifdef SIMD_NEON
- #if defined(_MSC_VER) && defined(_M_ARM64)
- #include <arm64_neon.h>
- #else
- #include <arm_neon.h>
- #endif
- #endif
- #ifdef SIMD_WASM
- #include <wasm_simd128.h>
- #endif
- #ifndef TRACE
- #define TRACE 0
- #endif
- #if TRACE
- #include <stdio.h>
- #endif
- #ifdef SIMD_WASM
- #define wasmx_splat_v32x4(v, i) wasm_i32x4_shuffle(v, v, i, i, i, i)
- #define wasmx_unpacklo_v8x16(a, b) wasm_i8x16_shuffle(a, b, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23)
- #define wasmx_unpackhi_v8x16(a, b) wasm_i8x16_shuffle(a, b, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31)
- #define wasmx_unpacklo_v16x8(a, b) wasm_i16x8_shuffle(a, b, 0, 8, 1, 9, 2, 10, 3, 11)
- #define wasmx_unpackhi_v16x8(a, b) wasm_i16x8_shuffle(a, b, 4, 12, 5, 13, 6, 14, 7, 15)
- #define wasmx_unpacklo_v64x2(a, b) wasm_i64x2_shuffle(a, b, 0, 2)
- #define wasmx_unpackhi_v64x2(a, b) wasm_i64x2_shuffle(a, b, 1, 3)
- #endif
- namespace meshopt
- {
- const unsigned char kVertexHeader = 0xa0;
- static int gEncodeVertexVersion = 1;
- const int kDecodeVertexVersion = 1;
- const size_t kVertexBlockSizeBytes = 8192;
- const size_t kVertexBlockMaxSize = 256;
- const size_t kByteGroupSize = 16;
- const size_t kByteGroupDecodeLimit = 24;
- const size_t kTailMinSizeV0 = 32;
- const size_t kTailMinSizeV1 = 24;
- static const int kBitsV0[4] = {0, 2, 4, 8};
- static const int kBitsV1[5] = {0, 1, 2, 4, 8};
- const int kEncodeDefaultLevel = 2;
- static size_t getVertexBlockSize(size_t vertex_size)
- {
- // make sure the entire block fits into the scratch buffer and is aligned to byte group size
- // note: the block size is implicitly part of the format, so we can't change it without breaking compatibility
- size_t result = (kVertexBlockSizeBytes / vertex_size) & ~(kByteGroupSize - 1);
- return (result < kVertexBlockMaxSize) ? result : kVertexBlockMaxSize;
- }
- inline unsigned int rotate(unsigned int v, int r)
- {
- return (v << r) | (v >> ((32 - r) & 31));
- }
- template <typename T>
- inline T zigzag(T v)
- {
- return (0 - (v >> (sizeof(T) * 8 - 1))) ^ (v << 1);
- }
- template <typename T>
- inline T unzigzag(T v)
- {
- return (0 - (v & 1)) ^ (v >> 1);
- }
- #if TRACE
- struct Stats
- {
- size_t size;
- size_t header; // bytes for header
- size_t bitg[9]; // bytes for bit groups
- size_t bitc[8]; // bit consistency: how many bits are shared between all bytes in a group
- size_t ctrl[4]; // number of control groups
- };
- static Stats* bytestats = NULL;
- static Stats vertexstats[256];
- #endif
- static bool encodeBytesGroupZero(const unsigned char* buffer)
- {
- assert(kByteGroupSize == sizeof(unsigned long long) * 2);
- unsigned long long v[2];
- memcpy(v, buffer, sizeof(v));
- return (v[0] | v[1]) == 0;
- }
- static size_t encodeBytesGroupMeasure(const unsigned char* buffer, int bits)
- {
- assert(bits >= 0 && bits <= 8);
- if (bits == 0)
- return encodeBytesGroupZero(buffer) ? 0 : size_t(-1);
- if (bits == 8)
- return kByteGroupSize;
- size_t result = kByteGroupSize * bits / 8;
- unsigned char sentinel = (1 << bits) - 1;
- for (size_t i = 0; i < kByteGroupSize; ++i)
- result += buffer[i] >= sentinel;
- return result;
- }
- static unsigned char* encodeBytesGroup(unsigned char* data, const unsigned char* buffer, int bits)
- {
- assert(bits >= 0 && bits <= 8);
- assert(kByteGroupSize % 8 == 0);
- if (bits == 0)
- return data;
- if (bits == 8)
- {
- memcpy(data, buffer, kByteGroupSize);
- return data + kByteGroupSize;
- }
- size_t byte_size = 8 / bits;
- assert(kByteGroupSize % byte_size == 0);
- // fixed portion: bits bits for each value
- // variable portion: full byte for each out-of-range value (using 1...1 as sentinel)
- unsigned char sentinel = (1 << bits) - 1;
- for (size_t i = 0; i < kByteGroupSize; i += byte_size)
- {
- unsigned char byte = 0;
- for (size_t k = 0; k < byte_size; ++k)
- {
- unsigned char enc = (buffer[i + k] >= sentinel) ? sentinel : buffer[i + k];
- byte <<= bits;
- byte |= enc;
- }
- // encode 1-bit groups in reverse bit order
- // this makes them faster to decode alongside other groups
- if (bits == 1)
- byte = (unsigned char)(((byte * 0x80200802ull) & 0x0884422110ull) * 0x0101010101ull >> 32);
- *data++ = byte;
- }
- for (size_t i = 0; i < kByteGroupSize; ++i)
- {
- unsigned char v = buffer[i];
- // branchless append of out-of-range values
- *data = v;
- data += v >= sentinel;
- }
- return data;
- }
- static unsigned char* encodeBytes(unsigned char* data, unsigned char* data_end, const unsigned char* buffer, size_t buffer_size, const int bits[4])
- {
- assert(buffer_size % kByteGroupSize == 0);
- unsigned char* header = data;
- // round number of groups to 4 to get number of header bytes
- size_t header_size = (buffer_size / kByteGroupSize + 3) / 4;
- if (size_t(data_end - data) < header_size)
- return NULL;
- data += header_size;
- memset(header, 0, header_size);
- int last_bits = -1;
- for (size_t i = 0; i < buffer_size; i += kByteGroupSize)
- {
- if (size_t(data_end - data) < kByteGroupDecodeLimit)
- return NULL;
- int best_bitk = 3;
- size_t best_size = encodeBytesGroupMeasure(buffer + i, bits[best_bitk]);
- for (int bitk = 0; bitk < 3; ++bitk)
- {
- size_t size = encodeBytesGroupMeasure(buffer + i, bits[bitk]);
- // favor consistent bit selection across groups, but never replace literals
- if (size < best_size || (size == best_size && bits[bitk] == last_bits && bits[best_bitk] != 8))
- {
- best_bitk = bitk;
- best_size = size;
- }
- }
- size_t header_offset = i / kByteGroupSize;
- header[header_offset / 4] |= best_bitk << ((header_offset % 4) * 2);
- int best_bits = bits[best_bitk];
- unsigned char* next = encodeBytesGroup(data, buffer + i, best_bits);
- assert(data + best_size == next);
- data = next;
- last_bits = best_bits;
- #if TRACE
- bytestats->bitg[best_bits] += best_size;
- #endif
- }
- #if TRACE
- bytestats->header += header_size;
- #endif
- return data;
- }
- template <typename T, bool Xor>
- static void encodeDeltas1(unsigned char* buffer, const unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, const unsigned char last_vertex[256], size_t k, int rot)
- {
- size_t k0 = k & ~(sizeof(T) - 1);
- int ks = (k & (sizeof(T) - 1)) * 8;
- T p = last_vertex[k0];
- for (size_t j = 1; j < sizeof(T); ++j)
- p |= T(last_vertex[k0 + j]) << (j * 8);
- const unsigned char* vertex = vertex_data + k0;
- for (size_t i = 0; i < vertex_count; ++i)
- {
- T v = vertex[0];
- for (size_t j = 1; j < sizeof(T); ++j)
- v |= vertex[j] << (j * 8);
- T d = Xor ? T(rotate(v ^ p, rot)) : zigzag(T(v - p));
- buffer[i] = (unsigned char)(d >> ks);
- p = v;
- vertex += vertex_size;
- }
- }
- static void encodeDeltas(unsigned char* buffer, const unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, const unsigned char last_vertex[256], size_t k, int channel)
- {
- switch (channel & 3)
- {
- case 0:
- return encodeDeltas1<unsigned char, false>(buffer, vertex_data, vertex_count, vertex_size, last_vertex, k, 0);
- case 1:
- return encodeDeltas1<unsigned short, false>(buffer, vertex_data, vertex_count, vertex_size, last_vertex, k, 0);
- case 2:
- return encodeDeltas1<unsigned int, true>(buffer, vertex_data, vertex_count, vertex_size, last_vertex, k, channel >> 4);
- default:
- assert(!"Unsupported channel encoding"); // unreachable
- }
- }
- static int estimateBits(unsigned char v)
- {
- return v <= 15 ? (v <= 3 ? (v == 0 ? 0 : 2) : 4) : 8;
- }
- static int estimateRotate(const unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, size_t k, size_t group_size)
- {
- size_t sizes[8] = {};
- const unsigned char* vertex = vertex_data + k;
- unsigned int last = vertex[0] | (vertex[1] << 8) | (vertex[2] << 16) | (vertex[3] << 24);
- for (size_t i = 0; i < vertex_count; i += group_size)
- {
- unsigned int bitg = 0;
- // calculate bit consistency mask for the group
- for (size_t j = 0; j < group_size && i + j < vertex_count; ++j)
- {
- unsigned int v = vertex[0] | (vertex[1] << 8) | (vertex[2] << 16) | (vertex[3] << 24);
- unsigned int d = v ^ last;
- bitg |= d;
- last = v;
- vertex += vertex_size;
- }
- #if TRACE
- for (int j = 0; j < 32; ++j)
- vertexstats[k + (j / 8)].bitc[j % 8] += (i + group_size < vertex_count ? group_size : vertex_count - i) * (1 - ((bitg >> j) & 1));
- #endif
- for (int j = 0; j < 8; ++j)
- {
- unsigned int bitr = rotate(bitg, j);
- sizes[j] += estimateBits((unsigned char)(bitr >> 0)) + estimateBits((unsigned char)(bitr >> 8));
- sizes[j] += estimateBits((unsigned char)(bitr >> 16)) + estimateBits((unsigned char)(bitr >> 24));
- }
- }
- int best_rot = 0;
- for (int rot = 1; rot < 8; ++rot)
- best_rot = (sizes[rot] < sizes[best_rot]) ? rot : best_rot;
- return best_rot;
- }
- static int estimateChannel(const unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, size_t k, size_t vertex_block_size, size_t block_skip, int max_channel, int xor_rot)
- {
- unsigned char block[kVertexBlockMaxSize];
- assert(vertex_block_size <= kVertexBlockMaxSize);
- unsigned char last_vertex[256] = {};
- size_t sizes[3] = {};
- assert(max_channel <= 3);
- for (size_t i = 0; i < vertex_count; i += vertex_block_size * block_skip)
- {
- size_t block_size = i + vertex_block_size < vertex_count ? vertex_block_size : vertex_count - i;
- size_t block_size_aligned = (block_size + kByteGroupSize - 1) & ~(kByteGroupSize - 1);
- memcpy(last_vertex, vertex_data + (i == 0 ? 0 : i - 1) * vertex_size, vertex_size);
- // we sometimes encode elements we didn't fill when rounding to kByteGroupSize
- if (block_size < block_size_aligned)
- memset(block + block_size, 0, block_size_aligned - block_size);
- for (int channel = 0; channel < max_channel; ++channel)
- for (size_t j = 0; j < 4; ++j)
- {
- encodeDeltas(block, vertex_data + i * vertex_size, block_size, vertex_size, last_vertex, k + j, channel | (xor_rot << 4));
- for (size_t ig = 0; ig < block_size; ig += kByteGroupSize)
- {
- // to maximize encoding performance we only evaluate 1/2/4/8 bit groups
- size_t size1 = encodeBytesGroupMeasure(block + ig, 1);
- size_t size2 = encodeBytesGroupMeasure(block + ig, 2);
- size_t size4 = encodeBytesGroupMeasure(block + ig, 4);
- size_t size8 = encodeBytesGroupMeasure(block + ig, 8);
- size_t best_size = size1 < size2 ? size1 : size2;
- best_size = best_size < size4 ? best_size : size4;
- best_size = best_size < size8 ? best_size : size8;
- sizes[channel] += best_size;
- }
- }
- }
- int best_channel = 0;
- for (int channel = 1; channel < max_channel; ++channel)
- best_channel = (sizes[channel] < sizes[best_channel]) ? channel : best_channel;
- return best_channel == 2 ? best_channel | (xor_rot << 4) : best_channel;
- }
- static bool estimateControlZero(const unsigned char* buffer, size_t vertex_count_aligned)
- {
- for (size_t i = 0; i < vertex_count_aligned; i += kByteGroupSize)
- if (!encodeBytesGroupZero(buffer + i))
- return false;
- return true;
- }
- static int estimateControl(const unsigned char* buffer, size_t vertex_count, size_t vertex_count_aligned, int level)
- {
- if (estimateControlZero(buffer, vertex_count_aligned))
- return 2; // zero encoding
- if (level == 0)
- return 1; // 1248 encoding in level 0 for encoding speed
- // round number of groups to 4 to get number of header bytes
- size_t header_size = (vertex_count_aligned / kByteGroupSize + 3) / 4;
- size_t est_bytes0 = header_size, est_bytes1 = header_size;
- for (size_t i = 0; i < vertex_count_aligned; i += kByteGroupSize)
- {
- // assumes kBitsV1[] = {0, 1, 2, 4, 8} for performance
- size_t size0 = encodeBytesGroupMeasure(buffer + i, 0);
- size_t size1 = encodeBytesGroupMeasure(buffer + i, 1);
- size_t size2 = encodeBytesGroupMeasure(buffer + i, 2);
- size_t size4 = encodeBytesGroupMeasure(buffer + i, 4);
- size_t size8 = encodeBytesGroupMeasure(buffer + i, 8);
- // both control modes have access to 1/2/4 bit encoding
- size_t size12 = size1 < size2 ? size1 : size2;
- size_t size124 = size12 < size4 ? size12 : size4;
- // each control mode has access to 0/8 bit encoding respectively
- est_bytes0 += size124 < size0 ? size124 : size0;
- est_bytes1 += size124 < size8 ? size124 : size8;
- }
- // pick shortest control entry but prefer literal encoding
- if (est_bytes0 < vertex_count || est_bytes1 < vertex_count)
- return est_bytes0 < est_bytes1 ? 0 : 1;
- else
- return 3; // literal encoding
- }
- static unsigned char* encodeVertexBlock(unsigned char* data, unsigned char* data_end, const unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, unsigned char last_vertex[256], const unsigned char* channels, int version, int level)
- {
- assert(vertex_count > 0 && vertex_count <= kVertexBlockMaxSize);
- assert(vertex_size % 4 == 0);
- unsigned char buffer[kVertexBlockMaxSize];
- assert(sizeof(buffer) % kByteGroupSize == 0);
- size_t vertex_count_aligned = (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1);
- // we sometimes encode elements we didn't fill when rounding to kByteGroupSize
- memset(buffer, 0, sizeof(buffer));
- size_t control_size = version == 0 ? 0 : vertex_size / 4;
- if (size_t(data_end - data) < control_size)
- return NULL;
- unsigned char* control = data;
- data += control_size;
- memset(control, 0, control_size);
- for (size_t k = 0; k < vertex_size; ++k)
- {
- encodeDeltas(buffer, vertex_data, vertex_count, vertex_size, last_vertex, k, version == 0 ? 0 : channels[k / 4]);
- #if TRACE
- const unsigned char* olddata = data;
- bytestats = &vertexstats[k];
- #endif
- int ctrl = 0;
- if (version != 0)
- {
- ctrl = estimateControl(buffer, vertex_count, vertex_count_aligned, level);
- assert(unsigned(ctrl) < 4);
- control[k / 4] |= ctrl << ((k % 4) * 2);
- #if TRACE
- vertexstats[k].ctrl[ctrl]++;
- #endif
- }
- if (ctrl == 3)
- {
- // literal encoding
- if (size_t(data_end - data) < vertex_count)
- return NULL;
- memcpy(data, buffer, vertex_count);
- data += vertex_count;
- }
- else if (ctrl != 2) // non-zero encoding
- {
- data = encodeBytes(data, data_end, buffer, vertex_count_aligned, version == 0 ? kBitsV0 : kBitsV1 + ctrl);
- if (!data)
- return NULL;
- }
- #if TRACE
- bytestats = NULL;
- vertexstats[k].size += data - olddata;
- #endif
- }
- memcpy(last_vertex, &vertex_data[vertex_size * (vertex_count - 1)], vertex_size);
- return data;
- }
- #if defined(SIMD_FALLBACK) || (!defined(SIMD_SSE) && !defined(SIMD_NEON) && !defined(SIMD_AVX) && !defined(SIMD_WASM))
- static const unsigned char* decodeBytesGroup(const unsigned char* data, unsigned char* buffer, int bits)
- {
- #define READ() byte = *data++
- #define NEXT(bits) enc = byte >> (8 - bits), byte <<= bits, encv = *data_var, *buffer++ = (enc == (1 << bits) - 1) ? encv : enc, data_var += (enc == (1 << bits) - 1)
- unsigned char byte, enc, encv;
- const unsigned char* data_var;
- switch (bits)
- {
- case 0:
- memset(buffer, 0, kByteGroupSize);
- return data;
- case 1:
- data_var = data + 2;
- // 2 groups with 8 1-bit values in each byte (reversed from the order in other groups)
- READ();
- byte = (unsigned char)(((byte * 0x80200802ull) & 0x0884422110ull) * 0x0101010101ull >> 32);
- NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1);
- READ();
- byte = (unsigned char)(((byte * 0x80200802ull) & 0x0884422110ull) * 0x0101010101ull >> 32);
- NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1), NEXT(1);
- return data_var;
- case 2:
- data_var = data + 4;
- // 4 groups with 4 2-bit values in each byte
- READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2);
- READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2);
- READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2);
- READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2);
- return data_var;
- case 4:
- data_var = data + 8;
- // 8 groups with 2 4-bit values in each byte
- READ(), NEXT(4), NEXT(4);
- READ(), NEXT(4), NEXT(4);
- READ(), NEXT(4), NEXT(4);
- READ(), NEXT(4), NEXT(4);
- READ(), NEXT(4), NEXT(4);
- READ(), NEXT(4), NEXT(4);
- READ(), NEXT(4), NEXT(4);
- READ(), NEXT(4), NEXT(4);
- return data_var;
- case 8:
- memcpy(buffer, data, kByteGroupSize);
- return data + kByteGroupSize;
- default:
- assert(!"Unexpected bit length"); // unreachable
- return data;
- }
- #undef READ
- #undef NEXT
- }
- static const unsigned char* decodeBytes(const unsigned char* data, const unsigned char* data_end, unsigned char* buffer, size_t buffer_size, const int* bits)
- {
- assert(buffer_size % kByteGroupSize == 0);
- // round number of groups to 4 to get number of header bytes
- size_t header_size = (buffer_size / kByteGroupSize + 3) / 4;
- if (size_t(data_end - data) < header_size)
- return NULL;
- const unsigned char* header = data;
- data += header_size;
- for (size_t i = 0; i < buffer_size; i += kByteGroupSize)
- {
- if (size_t(data_end - data) < kByteGroupDecodeLimit)
- return NULL;
- size_t header_offset = i / kByteGroupSize;
- int bitsk = (header[header_offset / 4] >> ((header_offset % 4) * 2)) & 3;
- data = decodeBytesGroup(data, buffer + i, bits[bitsk]);
- }
- return data;
- }
- template <typename T, bool Xor>
- static void decodeDeltas1(const unsigned char* buffer, unsigned char* transposed, size_t vertex_count, size_t vertex_size, const unsigned char* last_vertex, int rot)
- {
- for (size_t k = 0; k < 4; k += sizeof(T))
- {
- size_t vertex_offset = k;
- T p = last_vertex[0];
- for (size_t j = 1; j < sizeof(T); ++j)
- p |= last_vertex[j] << (8 * j);
- for (size_t i = 0; i < vertex_count; ++i)
- {
- T v = buffer[i];
- for (size_t j = 1; j < sizeof(T); ++j)
- v |= buffer[i + vertex_count * j] << (8 * j);
- v = Xor ? T(rotate(v, rot)) ^ p : unzigzag(v) + p;
- for (size_t j = 0; j < sizeof(T); ++j)
- transposed[vertex_offset + j] = (unsigned char)(v >> (j * 8));
- p = v;
- vertex_offset += vertex_size;
- }
- buffer += vertex_count * sizeof(T);
- last_vertex += sizeof(T);
- }
- }
- static const unsigned char* decodeVertexBlock(const unsigned char* data, const unsigned char* data_end, unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, unsigned char last_vertex[256], const unsigned char* channels, int version)
- {
- assert(vertex_count > 0 && vertex_count <= kVertexBlockMaxSize);
- unsigned char buffer[kVertexBlockMaxSize * 4];
- unsigned char transposed[kVertexBlockSizeBytes];
- size_t vertex_count_aligned = (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1);
- assert(vertex_count <= vertex_count_aligned);
- size_t control_size = version == 0 ? 0 : vertex_size / 4;
- if (size_t(data_end - data) < control_size)
- return NULL;
- const unsigned char* control = data;
- data += control_size;
- for (size_t k = 0; k < vertex_size; k += 4)
- {
- unsigned char ctrl_byte = version == 0 ? 0 : control[k / 4];
- for (size_t j = 0; j < 4; ++j)
- {
- int ctrl = (ctrl_byte >> (j * 2)) & 3;
- if (ctrl == 3)
- {
- // literal encoding
- if (size_t(data_end - data) < vertex_count)
- return NULL;
- memcpy(buffer + j * vertex_count, data, vertex_count);
- data += vertex_count;
- }
- else if (ctrl == 2)
- {
- // zero encoding
- memset(buffer + j * vertex_count, 0, vertex_count);
- }
- else
- {
- data = decodeBytes(data, data_end, buffer + j * vertex_count, vertex_count_aligned, version == 0 ? kBitsV0 : kBitsV1 + ctrl);
- if (!data)
- return NULL;
- }
- }
- int channel = version == 0 ? 0 : channels[k / 4];
- switch (channel & 3)
- {
- case 0:
- decodeDeltas1<unsigned char, false>(buffer, transposed + k, vertex_count, vertex_size, last_vertex + k, 0);
- break;
- case 1:
- decodeDeltas1<unsigned short, false>(buffer, transposed + k, vertex_count, vertex_size, last_vertex + k, 0);
- break;
- case 2:
- decodeDeltas1<unsigned int, true>(buffer, transposed + k, vertex_count, vertex_size, last_vertex + k, (32 - (channel >> 4)) & 31);
- break;
- default:
- return NULL; // invalid channel type
- }
- }
- memcpy(vertex_data, transposed, vertex_count * vertex_size);
- memcpy(last_vertex, &transposed[vertex_size * (vertex_count - 1)], vertex_size);
- return data;
- }
- #endif
- #if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM)
- static unsigned char kDecodeBytesGroupShuffle[256][8];
- static unsigned char kDecodeBytesGroupCount[256];
- #ifdef __wasm__
- __attribute__((cold)) // this saves 500 bytes in the output binary - we don't need to vectorize this loop!
- #endif
- static bool
- decodeBytesGroupBuildTables()
- {
- for (int mask = 0; mask < 256; ++mask)
- {
- unsigned char shuffle[8];
- unsigned char count = 0;
- for (int i = 0; i < 8; ++i)
- {
- int maski = (mask >> i) & 1;
- shuffle[i] = maski ? count : 0x80;
- count += (unsigned char)(maski);
- }
- memcpy(kDecodeBytesGroupShuffle[mask], shuffle, 8);
- kDecodeBytesGroupCount[mask] = count;
- }
- return true;
- }
- static bool gDecodeBytesGroupInitialized = decodeBytesGroupBuildTables();
- #endif
- #ifdef SIMD_SSE
- SIMD_TARGET
- inline __m128i decodeShuffleMask(unsigned char mask0, unsigned char mask1)
- {
- __m128i sm0 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(&kDecodeBytesGroupShuffle[mask0]));
- __m128i sm1 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(&kDecodeBytesGroupShuffle[mask1]));
- __m128i sm1off = _mm_set1_epi8(kDecodeBytesGroupCount[mask0]);
- __m128i sm1r = _mm_add_epi8(sm1, sm1off);
- return _mm_unpacklo_epi64(sm0, sm1r);
- }
- SIMD_TARGET
- inline const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int hbits)
- {
- switch (hbits)
- {
- case 0:
- case 4:
- {
- __m128i result = _mm_setzero_si128();
- _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
- return data;
- }
- case 1:
- case 6:
- {
- #ifdef __GNUC__
- typedef int __attribute__((aligned(1))) unaligned_int;
- #else
- typedef int unaligned_int;
- #endif
- #ifdef SIMD_LATENCYOPT
- unsigned int data32;
- memcpy(&data32, data, 4);
- data32 &= data32 >> 1;
- // arrange bits such that low bits of nibbles of data64 contain all 2-bit elements of data32
- unsigned long long data64 = ((unsigned long long)data32 << 30) | (data32 & 0x3fffffff);
- // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3
- int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60);
- #endif
- __m128i sel2 = _mm_cvtsi32_si128(*reinterpret_cast<const unaligned_int*>(data));
- __m128i rest = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data + 4));
- __m128i sel22 = _mm_unpacklo_epi8(_mm_srli_epi16(sel2, 4), sel2);
- __m128i sel2222 = _mm_unpacklo_epi8(_mm_srli_epi16(sel22, 2), sel22);
- __m128i sel = _mm_and_si128(sel2222, _mm_set1_epi8(3));
- __m128i mask = _mm_cmpeq_epi8(sel, _mm_set1_epi8(3));
- int mask16 = _mm_movemask_epi8(mask);
- unsigned char mask0 = (unsigned char)(mask16 & 255);
- unsigned char mask1 = (unsigned char)(mask16 >> 8);
- __m128i shuf = decodeShuffleMask(mask0, mask1);
- __m128i result = _mm_or_si128(_mm_shuffle_epi8(rest, shuf), _mm_andnot_si128(mask, sel));
- _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
- #ifdef SIMD_LATENCYOPT
- return data + 4 + datacnt;
- #else
- return data + 4 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
- #endif
- }
- case 2:
- case 7:
- {
- #ifdef SIMD_LATENCYOPT
- unsigned long long data64;
- memcpy(&data64, data, 8);
- data64 &= data64 >> 1;
- data64 &= data64 >> 2;
- // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3
- int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60);
- #endif
- __m128i sel4 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(data));
- __m128i rest = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data + 8));
- __m128i sel44 = _mm_unpacklo_epi8(_mm_srli_epi16(sel4, 4), sel4);
- __m128i sel = _mm_and_si128(sel44, _mm_set1_epi8(15));
- __m128i mask = _mm_cmpeq_epi8(sel, _mm_set1_epi8(15));
- int mask16 = _mm_movemask_epi8(mask);
- unsigned char mask0 = (unsigned char)(mask16 & 255);
- unsigned char mask1 = (unsigned char)(mask16 >> 8);
- __m128i shuf = decodeShuffleMask(mask0, mask1);
- __m128i result = _mm_or_si128(_mm_shuffle_epi8(rest, shuf), _mm_andnot_si128(mask, sel));
- _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
- #ifdef SIMD_LATENCYOPT
- return data + 8 + datacnt;
- #else
- return data + 8 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
- #endif
- }
- case 3:
- case 8:
- {
- __m128i result = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data));
- _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
- return data + 16;
- }
- case 5:
- {
- __m128i rest = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data + 2));
- unsigned char mask0 = data[0];
- unsigned char mask1 = data[1];
- __m128i shuf = decodeShuffleMask(mask0, mask1);
- __m128i result = _mm_shuffle_epi8(rest, shuf);
- _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
- return data + 2 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
- }
- default:
- SIMD_UNREACHABLE(); // unreachable
- }
- }
- #endif
- #ifdef SIMD_AVX
- static const __m128i kDecodeBytesGroupConfig[8][2] = {
- {_mm_setzero_si128(), _mm_setzero_si128()},
- {_mm_set1_epi8(3), _mm_setr_epi8(6, 4, 2, 0, 14, 12, 10, 8, 22, 20, 18, 16, 30, 28, 26, 24)},
- {_mm_set1_epi8(15), _mm_setr_epi8(4, 0, 12, 8, 20, 16, 28, 24, 36, 32, 44, 40, 52, 48, 60, 56)},
- {_mm_setzero_si128(), _mm_setzero_si128()},
- {_mm_setzero_si128(), _mm_setzero_si128()},
- {_mm_set1_epi8(1), _mm_setr_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)},
- {_mm_set1_epi8(3), _mm_setr_epi8(6, 4, 2, 0, 14, 12, 10, 8, 22, 20, 18, 16, 30, 28, 26, 24)},
- {_mm_set1_epi8(15), _mm_setr_epi8(4, 0, 12, 8, 20, 16, 28, 24, 36, 32, 44, 40, 52, 48, 60, 56)},
- };
- SIMD_TARGET
- inline const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int hbits)
- {
- switch (hbits)
- {
- case 0:
- case 4:
- {
- __m128i result = _mm_setzero_si128();
- _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
- return data;
- }
- case 5: // 1-bit
- case 1: // 2-bit
- case 6:
- case 2: // 4-bit
- case 7:
- {
- const unsigned char* skip = data + (2 << (hbits < 3 ? hbits : hbits - 5));
- __m128i selb = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(data));
- __m128i rest = _mm_loadu_si128(reinterpret_cast<const __m128i*>(skip));
- __m128i sent = kDecodeBytesGroupConfig[hbits][0];
- __m128i ctrl = kDecodeBytesGroupConfig[hbits][1];
- __m128i selw = _mm_shuffle_epi32(selb, 0x44);
- __m128i sel = _mm_and_si128(sent, _mm_multishift_epi64_epi8(ctrl, selw));
- __mmask16 mask16 = _mm_cmp_epi8_mask(sel, sent, _MM_CMPINT_EQ);
- __m128i result = _mm_mask_expand_epi8(sel, mask16, rest);
- _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
- return skip + _mm_popcnt_u32(mask16);
- }
- case 3:
- case 8:
- {
- __m128i result = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data));
- _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
- return data + 16;
- }
- default:
- SIMD_UNREACHABLE(); // unreachable
- }
- }
- #endif
- #ifdef SIMD_NEON
- SIMD_TARGET
- inline uint8x16_t shuffleBytes(unsigned char mask0, unsigned char mask1, uint8x8_t rest0, uint8x8_t rest1)
- {
- uint8x8_t sm0 = vld1_u8(kDecodeBytesGroupShuffle[mask0]);
- uint8x8_t sm1 = vld1_u8(kDecodeBytesGroupShuffle[mask1]);
- uint8x8_t r0 = vtbl1_u8(rest0, sm0);
- uint8x8_t r1 = vtbl1_u8(rest1, sm1);
- return vcombine_u8(r0, r1);
- }
- SIMD_TARGET
- inline void neonMoveMask(uint8x16_t mask, unsigned char& mask0, unsigned char& mask1)
- {
- // magic constant found using z3 SMT assuming mask has 8 groups of 0xff or 0x00
- const uint64_t magic = 0x000103070f1f3f80ull;
- uint64x2_t mask2 = vreinterpretq_u64_u8(mask);
- mask0 = uint8_t((vgetq_lane_u64(mask2, 0) * magic) >> 56);
- mask1 = uint8_t((vgetq_lane_u64(mask2, 1) * magic) >> 56);
- }
- SIMD_TARGET
- inline const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int hbits)
- {
- switch (hbits)
- {
- case 0:
- case 4:
- {
- uint8x16_t result = vdupq_n_u8(0);
- vst1q_u8(buffer, result);
- return data;
- }
- case 1:
- case 6:
- {
- #ifdef SIMD_LATENCYOPT
- unsigned int data32;
- memcpy(&data32, data, 4);
- data32 &= data32 >> 1;
- // arrange bits such that low bits of nibbles of data64 contain all 2-bit elements of data32
- unsigned long long data64 = ((unsigned long long)data32 << 30) | (data32 & 0x3fffffff);
- // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3
- int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60);
- #endif
- uint8x8_t sel2 = vld1_u8(data);
- uint8x8_t sel22 = vzip_u8(vshr_n_u8(sel2, 4), sel2).val[0];
- uint8x8x2_t sel2222 = vzip_u8(vshr_n_u8(sel22, 2), sel22);
- uint8x16_t sel = vandq_u8(vcombine_u8(sel2222.val[0], sel2222.val[1]), vdupq_n_u8(3));
- uint8x16_t mask = vceqq_u8(sel, vdupq_n_u8(3));
- unsigned char mask0, mask1;
- neonMoveMask(mask, mask0, mask1);
- uint8x8_t rest0 = vld1_u8(data + 4);
- uint8x8_t rest1 = vld1_u8(data + 4 + kDecodeBytesGroupCount[mask0]);
- uint8x16_t result = vbslq_u8(mask, shuffleBytes(mask0, mask1, rest0, rest1), sel);
- vst1q_u8(buffer, result);
- #ifdef SIMD_LATENCYOPT
- return data + 4 + datacnt;
- #else
- return data + 4 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
- #endif
- }
- case 2:
- case 7:
- {
- #ifdef SIMD_LATENCYOPT
- unsigned long long data64;
- memcpy(&data64, data, 8);
- data64 &= data64 >> 1;
- data64 &= data64 >> 2;
- // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3
- int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60);
- #endif
- uint8x8_t sel4 = vld1_u8(data);
- uint8x8x2_t sel44 = vzip_u8(vshr_n_u8(sel4, 4), vand_u8(sel4, vdup_n_u8(15)));
- uint8x16_t sel = vcombine_u8(sel44.val[0], sel44.val[1]);
- uint8x16_t mask = vceqq_u8(sel, vdupq_n_u8(15));
- unsigned char mask0, mask1;
- neonMoveMask(mask, mask0, mask1);
- uint8x8_t rest0 = vld1_u8(data + 8);
- uint8x8_t rest1 = vld1_u8(data + 8 + kDecodeBytesGroupCount[mask0]);
- uint8x16_t result = vbslq_u8(mask, shuffleBytes(mask0, mask1, rest0, rest1), sel);
- vst1q_u8(buffer, result);
- #ifdef SIMD_LATENCYOPT
- return data + 8 + datacnt;
- #else
- return data + 8 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
- #endif
- }
- case 3:
- case 8:
- {
- uint8x16_t result = vld1q_u8(data);
- vst1q_u8(buffer, result);
- return data + 16;
- }
- case 5:
- {
- unsigned char mask0 = data[0];
- unsigned char mask1 = data[1];
- uint8x8_t rest0 = vld1_u8(data + 2);
- uint8x8_t rest1 = vld1_u8(data + 2 + kDecodeBytesGroupCount[mask0]);
- uint8x16_t result = shuffleBytes(mask0, mask1, rest0, rest1);
- vst1q_u8(buffer, result);
- return data + 2 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
- }
- default:
- SIMD_UNREACHABLE(); // unreachable
- }
- }
- #endif
- #ifdef SIMD_WASM
- SIMD_TARGET
- inline v128_t decodeShuffleMask(unsigned char mask0, unsigned char mask1)
- {
- v128_t sm0 = wasm_v128_load(&kDecodeBytesGroupShuffle[mask0]);
- v128_t sm1 = wasm_v128_load(&kDecodeBytesGroupShuffle[mask1]);
- v128_t sm1off = wasm_v128_load8_splat(&kDecodeBytesGroupCount[mask0]);
- v128_t sm1r = wasm_i8x16_add(sm1, sm1off);
- return wasmx_unpacklo_v64x2(sm0, sm1r);
- }
- SIMD_TARGET
- inline void wasmMoveMask(v128_t mask, unsigned char& mask0, unsigned char& mask1)
- {
- // magic constant found using z3 SMT assuming mask has 8 groups of 0xff or 0x00
- const uint64_t magic = 0x000103070f1f3f80ull;
- mask0 = uint8_t((wasm_i64x2_extract_lane(mask, 0) * magic) >> 56);
- mask1 = uint8_t((wasm_i64x2_extract_lane(mask, 1) * magic) >> 56);
- }
- SIMD_TARGET
- inline const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int hbits)
- {
- switch (hbits)
- {
- case 0:
- case 4:
- {
- v128_t result = wasm_i8x16_splat(0);
- wasm_v128_store(buffer, result);
- return data;
- }
- case 1:
- case 6:
- {
- v128_t sel2 = wasm_v128_load(data);
- v128_t rest = wasm_v128_load(data + 4);
- v128_t sel22 = wasmx_unpacklo_v8x16(wasm_i16x8_shr(sel2, 4), sel2);
- v128_t sel2222 = wasmx_unpacklo_v8x16(wasm_i16x8_shr(sel22, 2), sel22);
- v128_t sel = wasm_v128_and(sel2222, wasm_i8x16_splat(3));
- v128_t mask = wasm_i8x16_eq(sel, wasm_i8x16_splat(3));
- unsigned char mask0, mask1;
- wasmMoveMask(mask, mask0, mask1);
- v128_t shuf = decodeShuffleMask(mask0, mask1);
- v128_t result = wasm_v128_bitselect(wasm_i8x16_swizzle(rest, shuf), sel, mask);
- wasm_v128_store(buffer, result);
- return data + 4 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
- }
- case 2:
- case 7:
- {
- v128_t sel4 = wasm_v128_load(data);
- v128_t rest = wasm_v128_load(data + 8);
- v128_t sel44 = wasmx_unpacklo_v8x16(wasm_i16x8_shr(sel4, 4), sel4);
- v128_t sel = wasm_v128_and(sel44, wasm_i8x16_splat(15));
- v128_t mask = wasm_i8x16_eq(sel, wasm_i8x16_splat(15));
- unsigned char mask0, mask1;
- wasmMoveMask(mask, mask0, mask1);
- v128_t shuf = decodeShuffleMask(mask0, mask1);
- v128_t result = wasm_v128_bitselect(wasm_i8x16_swizzle(rest, shuf), sel, mask);
- wasm_v128_store(buffer, result);
- return data + 8 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
- }
- case 3:
- case 8:
- {
- v128_t result = wasm_v128_load(data);
- wasm_v128_store(buffer, result);
- return data + 16;
- }
- case 5:
- {
- v128_t rest = wasm_v128_load(data + 2);
- unsigned char mask0 = data[0];
- unsigned char mask1 = data[1];
- v128_t shuf = decodeShuffleMask(mask0, mask1);
- v128_t result = wasm_i8x16_swizzle(rest, shuf);
- wasm_v128_store(buffer, result);
- return data + 2 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
- }
- default:
- SIMD_UNREACHABLE(); // unreachable
- }
- }
- #endif
- #if defined(SIMD_SSE) || defined(SIMD_AVX)
- SIMD_TARGET
- inline void transpose8(__m128i& x0, __m128i& x1, __m128i& x2, __m128i& x3)
- {
- __m128i t0 = _mm_unpacklo_epi8(x0, x1);
- __m128i t1 = _mm_unpackhi_epi8(x0, x1);
- __m128i t2 = _mm_unpacklo_epi8(x2, x3);
- __m128i t3 = _mm_unpackhi_epi8(x2, x3);
- x0 = _mm_unpacklo_epi16(t0, t2);
- x1 = _mm_unpackhi_epi16(t0, t2);
- x2 = _mm_unpacklo_epi16(t1, t3);
- x3 = _mm_unpackhi_epi16(t1, t3);
- }
- SIMD_TARGET
- inline __m128i unzigzag8(__m128i v)
- {
- __m128i xl = _mm_sub_epi8(_mm_setzero_si128(), _mm_and_si128(v, _mm_set1_epi8(1)));
- __m128i xr = _mm_and_si128(_mm_srli_epi16(v, 1), _mm_set1_epi8(127));
- return _mm_xor_si128(xl, xr);
- }
- SIMD_TARGET
- inline __m128i unzigzag16(__m128i v)
- {
- __m128i xl = _mm_sub_epi16(_mm_setzero_si128(), _mm_and_si128(v, _mm_set1_epi16(1)));
- __m128i xr = _mm_srli_epi16(v, 1);
- return _mm_xor_si128(xl, xr);
- }
- SIMD_TARGET
- inline __m128i rotate32(__m128i v, int r)
- {
- return _mm_or_si128(_mm_slli_epi32(v, r), _mm_srli_epi32(v, 32 - r));
- }
- #endif
- #ifdef SIMD_NEON
- SIMD_TARGET
- inline void transpose8(uint8x16_t& x0, uint8x16_t& x1, uint8x16_t& x2, uint8x16_t& x3)
- {
- uint8x16x2_t t01 = vzipq_u8(x0, x1);
- uint8x16x2_t t23 = vzipq_u8(x2, x3);
- uint16x8x2_t x01 = vzipq_u16(vreinterpretq_u16_u8(t01.val[0]), vreinterpretq_u16_u8(t23.val[0]));
- uint16x8x2_t x23 = vzipq_u16(vreinterpretq_u16_u8(t01.val[1]), vreinterpretq_u16_u8(t23.val[1]));
- x0 = vreinterpretq_u8_u16(x01.val[0]);
- x1 = vreinterpretq_u8_u16(x01.val[1]);
- x2 = vreinterpretq_u8_u16(x23.val[0]);
- x3 = vreinterpretq_u8_u16(x23.val[1]);
- }
- SIMD_TARGET
- inline uint8x16_t unzigzag8(uint8x16_t v)
- {
- uint8x16_t xl = vreinterpretq_u8_s8(vnegq_s8(vreinterpretq_s8_u8(vandq_u8(v, vdupq_n_u8(1)))));
- uint8x16_t xr = vshrq_n_u8(v, 1);
- return veorq_u8(xl, xr);
- }
- SIMD_TARGET
- inline uint8x16_t unzigzag16(uint8x16_t v)
- {
- uint16x8_t vv = vreinterpretq_u16_u8(v);
- uint8x16_t xl = vreinterpretq_u8_s16(vnegq_s16(vreinterpretq_s16_u16(vandq_u16(vv, vdupq_n_u16(1)))));
- uint8x16_t xr = vreinterpretq_u8_u16(vshrq_n_u16(vv, 1));
- return veorq_u8(xl, xr);
- }
- SIMD_TARGET
- inline uint8x16_t rotate32(uint8x16_t v, int r)
- {
- uint32x4_t v32 = vreinterpretq_u32_u8(v);
- return vreinterpretq_u8_u32(vorrq_u32(vshlq_u32(v32, vdupq_n_s32(r)), vshlq_u32(v32, vdupq_n_s32(r - 32))));
- }
- template <int Channel>
- SIMD_TARGET inline uint8x8_t rebase(uint8x8_t npi, uint8x16_t r0, uint8x16_t r1, uint8x16_t r2, uint8x16_t r3)
- {
- switch (Channel)
- {
- case 0:
- {
- uint8x16_t rsum = vaddq_u8(vaddq_u8(r0, r1), vaddq_u8(r2, r3));
- uint8x8_t rsumx = vadd_u8(vget_low_u8(rsum), vget_high_u8(rsum));
- return vadd_u8(vadd_u8(npi, rsumx), vext_u8(rsumx, rsumx, 4));
- }
- case 1:
- {
- uint16x8_t rsum = vaddq_u16(vaddq_u16(vreinterpretq_u16_u8(r0), vreinterpretq_u16_u8(r1)), vaddq_u16(vreinterpretq_u16_u8(r2), vreinterpretq_u16_u8(r3)));
- uint16x4_t rsumx = vadd_u16(vget_low_u16(rsum), vget_high_u16(rsum));
- return vreinterpret_u8_u16(vadd_u16(vadd_u16(vreinterpret_u16_u8(npi), rsumx), vext_u16(rsumx, rsumx, 2)));
- }
- case 2:
- {
- uint8x16_t rsum = veorq_u8(veorq_u8(r0, r1), veorq_u8(r2, r3));
- uint8x8_t rsumx = veor_u8(vget_low_u8(rsum), vget_high_u8(rsum));
- return veor_u8(veor_u8(npi, rsumx), vext_u8(rsumx, rsumx, 4));
- }
- default:
- return npi;
- }
- }
- #endif
- #ifdef SIMD_WASM
- SIMD_TARGET
- inline void transpose8(v128_t& x0, v128_t& x1, v128_t& x2, v128_t& x3)
- {
- v128_t t0 = wasmx_unpacklo_v8x16(x0, x1);
- v128_t t1 = wasmx_unpackhi_v8x16(x0, x1);
- v128_t t2 = wasmx_unpacklo_v8x16(x2, x3);
- v128_t t3 = wasmx_unpackhi_v8x16(x2, x3);
- x0 = wasmx_unpacklo_v16x8(t0, t2);
- x1 = wasmx_unpackhi_v16x8(t0, t2);
- x2 = wasmx_unpacklo_v16x8(t1, t3);
- x3 = wasmx_unpackhi_v16x8(t1, t3);
- }
- SIMD_TARGET
- inline v128_t unzigzag8(v128_t v)
- {
- v128_t xl = wasm_i8x16_neg(wasm_v128_and(v, wasm_i8x16_splat(1)));
- v128_t xr = wasm_u8x16_shr(v, 1);
- return wasm_v128_xor(xl, xr);
- }
- SIMD_TARGET
- inline v128_t unzigzag16(v128_t v)
- {
- v128_t xl = wasm_i16x8_neg(wasm_v128_and(v, wasm_i16x8_splat(1)));
- v128_t xr = wasm_u16x8_shr(v, 1);
- return wasm_v128_xor(xl, xr);
- }
- SIMD_TARGET
- inline v128_t rotate32(v128_t v, int r)
- {
- return wasm_v128_or(wasm_i32x4_shl(v, r), wasm_i32x4_shr(v, 32 - r));
- }
- #endif
- #if defined(SIMD_SSE) || defined(SIMD_AVX) || defined(SIMD_NEON) || defined(SIMD_WASM)
- SIMD_TARGET
- static const unsigned char* decodeBytesSimd(const unsigned char* data, const unsigned char* data_end, unsigned char* buffer, size_t buffer_size, int hshift)
- {
- assert(buffer_size % kByteGroupSize == 0);
- assert(kByteGroupSize == 16);
- // round number of groups to 4 to get number of header bytes
- size_t header_size = (buffer_size / kByteGroupSize + 3) / 4;
- if (size_t(data_end - data) < header_size)
- return NULL;
- const unsigned char* header = data;
- data += header_size;
- size_t i = 0;
- // fast-path: process 4 groups at a time, do a shared bounds check
- for (; i + kByteGroupSize * 4 <= buffer_size && size_t(data_end - data) >= kByteGroupDecodeLimit * 4; i += kByteGroupSize * 4)
- {
- size_t header_offset = i / kByteGroupSize;
- unsigned char header_byte = header[header_offset / 4];
- data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 0, hshift + ((header_byte >> 0) & 3));
- data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 1, hshift + ((header_byte >> 2) & 3));
- data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 2, hshift + ((header_byte >> 4) & 3));
- data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 3, hshift + ((header_byte >> 6) & 3));
- }
- // slow-path: process remaining groups
- for (; i < buffer_size; i += kByteGroupSize)
- {
- if (size_t(data_end - data) < kByteGroupDecodeLimit)
- return NULL;
- size_t header_offset = i / kByteGroupSize;
- unsigned char header_byte = header[header_offset / 4];
- data = decodeBytesGroupSimd(data, buffer + i, hshift + ((header_byte >> ((header_offset % 4) * 2)) & 3));
- }
- return data;
- }
- template <int Channel>
- SIMD_TARGET static void
- decodeDeltas4Simd(const unsigned char* buffer, unsigned char* transposed, size_t vertex_count_aligned, size_t vertex_size, unsigned char last_vertex[4], int rot)
- {
- #if defined(SIMD_SSE) || defined(SIMD_AVX)
- #define TEMP __m128i
- #define PREP() __m128i pi = _mm_cvtsi32_si128(*reinterpret_cast<const int*>(last_vertex))
- #define LOAD(i) __m128i r##i = _mm_loadu_si128(reinterpret_cast<const __m128i*>(buffer + j + i * vertex_count_aligned))
- #define GRP4(i) t0 = r##i, t1 = _mm_shuffle_epi32(r##i, 1), t2 = _mm_shuffle_epi32(r##i, 2), t3 = _mm_shuffle_epi32(r##i, 3)
- #define FIXD(i) t##i = pi = Channel == 0 ? _mm_add_epi8(pi, t##i) : (Channel == 1 ? _mm_add_epi16(pi, t##i) : _mm_xor_si128(pi, t##i))
- #define SAVE(i) *reinterpret_cast<int*>(savep) = _mm_cvtsi128_si32(t##i), savep += vertex_size
- #endif
- #ifdef SIMD_NEON
- #define TEMP uint8x8_t
- #define PREP() uint8x8_t pi = vreinterpret_u8_u32(vld1_lane_u32(reinterpret_cast<uint32_t*>(last_vertex), vdup_n_u32(0), 0))
- #define LOAD(i) uint8x16_t r##i = vld1q_u8(buffer + j + i * vertex_count_aligned)
- #define GRP4(i) t0 = vget_low_u8(r##i), t1 = vreinterpret_u8_u32(vdup_lane_u32(vreinterpret_u32_u8(t0), 1)), t2 = vget_high_u8(r##i), t3 = vreinterpret_u8_u32(vdup_lane_u32(vreinterpret_u32_u8(t2), 1))
- #define FIXD(i) t##i = pi = Channel == 0 ? vadd_u8(pi, t##i) : (Channel == 1 ? vreinterpret_u8_u16(vadd_u16(vreinterpret_u16_u8(pi), vreinterpret_u16_u8(t##i))) : veor_u8(pi, t##i))
- #define SAVE(i) vst1_lane_u32(reinterpret_cast<uint32_t*>(savep), vreinterpret_u32_u8(t##i), 0), savep += vertex_size
- #endif
- #ifdef SIMD_WASM
- #define TEMP v128_t
- #define PREP() v128_t pi = wasm_v128_load(last_vertex)
- #define LOAD(i) v128_t r##i = wasm_v128_load(buffer + j + i * vertex_count_aligned)
- #define GRP4(i) t0 = r##i, t1 = wasmx_splat_v32x4(r##i, 1), t2 = wasmx_splat_v32x4(r##i, 2), t3 = wasmx_splat_v32x4(r##i, 3)
- #define FIXD(i) t##i = pi = Channel == 0 ? wasm_i8x16_add(pi, t##i) : (Channel == 1 ? wasm_i16x8_add(pi, t##i) : wasm_v128_xor(pi, t##i))
- #define SAVE(i) wasm_v128_store32_lane(savep, t##i, 0), savep += vertex_size
- #endif
- #define UNZR(i) r##i = Channel == 0 ? unzigzag8(r##i) : (Channel == 1 ? unzigzag16(r##i) : rotate32(r##i, rot))
- PREP();
- unsigned char* savep = transposed;
- for (size_t j = 0; j < vertex_count_aligned; j += 16)
- {
- LOAD(0);
- LOAD(1);
- LOAD(2);
- LOAD(3);
- transpose8(r0, r1, r2, r3);
- TEMP t0, t1, t2, t3;
- TEMP npi = pi;
- UNZR(0);
- GRP4(0);
- FIXD(0), FIXD(1), FIXD(2), FIXD(3);
- SAVE(0), SAVE(1), SAVE(2), SAVE(3);
- UNZR(1);
- GRP4(1);
- FIXD(0), FIXD(1), FIXD(2), FIXD(3);
- SAVE(0), SAVE(1), SAVE(2), SAVE(3);
- UNZR(2);
- GRP4(2);
- FIXD(0), FIXD(1), FIXD(2), FIXD(3);
- SAVE(0), SAVE(1), SAVE(2), SAVE(3);
- UNZR(3);
- GRP4(3);
- FIXD(0), FIXD(1), FIXD(2), FIXD(3);
- SAVE(0), SAVE(1), SAVE(2), SAVE(3);
- #if defined(SIMD_LATENCYOPT) && defined(SIMD_NEON) && (defined(__APPLE__) || defined(_WIN32))
- // instead of relying on accumulated pi, recompute it from scratch from r0..r3; this shortens dependency between loop iterations
- pi = rebase<Channel>(npi, r0, r1, r2, r3);
- #else
- (void)npi;
- #endif
- #undef UNZR
- #undef TEMP
- #undef PREP
- #undef LOAD
- #undef GRP4
- #undef FIXD
- #undef SAVE
- }
- }
- SIMD_TARGET
- static const unsigned char* decodeVertexBlockSimd(const unsigned char* data, const unsigned char* data_end, unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, unsigned char last_vertex[256], const unsigned char* channels, int version)
- {
- assert(vertex_count > 0 && vertex_count <= kVertexBlockMaxSize);
- unsigned char buffer[kVertexBlockMaxSize * 4];
- unsigned char transposed[kVertexBlockSizeBytes];
- size_t vertex_count_aligned = (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1);
- size_t control_size = version == 0 ? 0 : vertex_size / 4;
- if (size_t(data_end - data) < control_size)
- return NULL;
- const unsigned char* control = data;
- data += control_size;
- for (size_t k = 0; k < vertex_size; k += 4)
- {
- unsigned char ctrl_byte = version == 0 ? 0 : control[k / 4];
- for (size_t j = 0; j < 4; ++j)
- {
- int ctrl = (ctrl_byte >> (j * 2)) & 3;
- if (ctrl == 3)
- {
- // literal encoding; safe to over-copy due to tail
- if (size_t(data_end - data) < vertex_count_aligned)
- return NULL;
- memcpy(buffer + j * vertex_count_aligned, data, vertex_count_aligned);
- data += vertex_count;
- }
- else if (ctrl == 2)
- {
- // zero encoding
- memset(buffer + j * vertex_count_aligned, 0, vertex_count_aligned);
- }
- else
- {
- // for v0, headers are mapped to 0..3; for v1, headers are mapped to 4..8
- int hshift = version == 0 ? 0 : 4 + ctrl;
- data = decodeBytesSimd(data, data_end, buffer + j * vertex_count_aligned, vertex_count_aligned, hshift);
- if (!data)
- return NULL;
- }
- }
- int channel = version == 0 ? 0 : channels[k / 4];
- switch (channel & 3)
- {
- case 0:
- decodeDeltas4Simd<0>(buffer, transposed + k, vertex_count_aligned, vertex_size, last_vertex + k, 0);
- break;
- case 1:
- decodeDeltas4Simd<1>(buffer, transposed + k, vertex_count_aligned, vertex_size, last_vertex + k, 0);
- break;
- case 2:
- decodeDeltas4Simd<2>(buffer, transposed + k, vertex_count_aligned, vertex_size, last_vertex + k, (32 - (channel >> 4)) & 31);
- break;
- default:
- return NULL; // invalid channel type
- }
- }
- memcpy(vertex_data, transposed, vertex_count * vertex_size);
- memcpy(last_vertex, &transposed[vertex_size * (vertex_count - 1)], vertex_size);
- return data;
- }
- #endif
- #if defined(SIMD_SSE) && defined(SIMD_FALLBACK)
- static unsigned int getCpuFeatures()
- {
- int cpuinfo[4] = {};
- #ifdef _MSC_VER
- __cpuid(cpuinfo, 1);
- #else
- __cpuid(1, cpuinfo[0], cpuinfo[1], cpuinfo[2], cpuinfo[3]);
- #endif
- return cpuinfo[2];
- }
- static unsigned int cpuid = getCpuFeatures();
- #endif
- } // namespace meshopt
- size_t meshopt_encodeVertexBufferLevel(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size, int level, int version)
- {
- using namespace meshopt;
- assert(vertex_size > 0 && vertex_size <= 256);
- assert(vertex_size % 4 == 0);
- assert(level >= 0 && level <= 9); // only a subset of this range is used right now
- assert(version < 0 || unsigned(version) <= kDecodeVertexVersion);
- version = version < 0 ? gEncodeVertexVersion : version;
- #if TRACE
- memset(vertexstats, 0, sizeof(vertexstats));
- #endif
- const unsigned char* vertex_data = static_cast<const unsigned char*>(vertices);
- unsigned char* data = buffer;
- unsigned char* data_end = buffer + buffer_size;
- if (size_t(data_end - data) < 1)
- return 0;
- *data++ = (unsigned char)(kVertexHeader | version);
- unsigned char first_vertex[256] = {};
- if (vertex_count > 0)
- memcpy(first_vertex, vertex_data, vertex_size);
- unsigned char last_vertex[256] = {};
- memcpy(last_vertex, first_vertex, vertex_size);
- size_t vertex_block_size = getVertexBlockSize(vertex_size);
- unsigned char channels[64] = {};
- if (version != 0 && level > 1 && vertex_count > 1)
- for (size_t k = 0; k < vertex_size; k += 4)
- {
- int rot = level >= 3 ? estimateRotate(vertex_data, vertex_count, vertex_size, k, /* group_size= */ 16) : 0;
- int channel = estimateChannel(vertex_data, vertex_count, vertex_size, k, vertex_block_size, /* block_skip= */ 3, /* max_channels= */ level >= 3 ? 3 : 2, rot);
- assert(unsigned(channel) < 2 || ((channel & 3) == 2 && unsigned(channel >> 4) < 8));
- channels[k / 4] = (unsigned char)channel;
- }
- size_t vertex_offset = 0;
- while (vertex_offset < vertex_count)
- {
- size_t block_size = (vertex_offset + vertex_block_size < vertex_count) ? vertex_block_size : vertex_count - vertex_offset;
- data = encodeVertexBlock(data, data_end, vertex_data + vertex_offset * vertex_size, block_size, vertex_size, last_vertex, channels, version, level);
- if (!data)
- return 0;
- vertex_offset += block_size;
- }
- size_t tail_size = vertex_size + (version == 0 ? 0 : vertex_size / 4);
- size_t tail_size_min = version == 0 ? kTailMinSizeV0 : kTailMinSizeV1;
- size_t tail_size_pad = tail_size < tail_size_min ? tail_size_min : tail_size;
- if (size_t(data_end - data) < tail_size_pad)
- return 0;
- if (tail_size < tail_size_pad)
- {
- memset(data, 0, tail_size_pad - tail_size);
- data += tail_size_pad - tail_size;
- }
- memcpy(data, first_vertex, vertex_size);
- data += vertex_size;
- if (version != 0)
- {
- memcpy(data, channels, vertex_size / 4);
- data += vertex_size / 4;
- }
- assert(data >= buffer + tail_size);
- assert(data <= buffer + buffer_size);
- #if TRACE
- size_t total_size = data - buffer;
- for (size_t k = 0; k < vertex_size; ++k)
- {
- const Stats& vsk = vertexstats[k];
- printf("%2d: %7d bytes [%4.1f%%] %.1f bpv", int(k), int(vsk.size), double(vsk.size) / double(total_size) * 100, double(vsk.size) / double(vertex_count) * 8);
- size_t total_k = vsk.header + vsk.bitg[1] + vsk.bitg[2] + vsk.bitg[4] + vsk.bitg[8];
- double total_kr = total_k ? 1.0 / double(total_k) : 0;
- if (version != 0)
- {
- int channel = channels[k / 4];
- if ((channel & 3) == 2 && k % 4 == 0)
- printf(" | ^%d", channel >> 4);
- else
- printf(" | %2s", channel == 0 ? "1" : (channel == 1 && k % 2 == 0 ? "2" : "."));
- }
- printf(" | hdr [%5.1f%%] bitg [1 %4.1f%% 2 %4.1f%% 4 %4.1f%% 8 %4.1f%%]",
- double(vsk.header) * total_kr * 100,
- double(vsk.bitg[1]) * total_kr * 100, double(vsk.bitg[2]) * total_kr * 100,
- double(vsk.bitg[4]) * total_kr * 100, double(vsk.bitg[8]) * total_kr * 100);
- size_t total_ctrl = vsk.ctrl[0] + vsk.ctrl[1] + vsk.ctrl[2] + vsk.ctrl[3];
- if (total_ctrl)
- {
- printf(" | ctrl %3.0f%% %3.0f%% %3.0f%% %3.0f%%",
- double(vsk.ctrl[0]) / double(total_ctrl) * 100, double(vsk.ctrl[1]) / double(total_ctrl) * 100,
- double(vsk.ctrl[2]) / double(total_ctrl) * 100, double(vsk.ctrl[3]) / double(total_ctrl) * 100);
- }
- if (level >= 3)
- printf(" | bitc [%3.0f%% %3.0f%% %3.0f%% %3.0f%% %3.0f%% %3.0f%% %3.0f%% %3.0f%%]",
- double(vsk.bitc[0]) / double(vertex_count) * 100, double(vsk.bitc[1]) / double(vertex_count) * 100,
- double(vsk.bitc[2]) / double(vertex_count) * 100, double(vsk.bitc[3]) / double(vertex_count) * 100,
- double(vsk.bitc[4]) / double(vertex_count) * 100, double(vsk.bitc[5]) / double(vertex_count) * 100,
- double(vsk.bitc[6]) / double(vertex_count) * 100, double(vsk.bitc[7]) / double(vertex_count) * 100);
- printf("\n");
- }
- #endif
- return data - buffer;
- }
- size_t meshopt_encodeVertexBuffer(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size)
- {
- return meshopt_encodeVertexBufferLevel(buffer, buffer_size, vertices, vertex_count, vertex_size, meshopt::kEncodeDefaultLevel, meshopt::gEncodeVertexVersion);
- }
- size_t meshopt_encodeVertexBufferBound(size_t vertex_count, size_t vertex_size)
- {
- using namespace meshopt;
- assert(vertex_size > 0 && vertex_size <= 256);
- assert(vertex_size % 4 == 0);
- size_t vertex_block_size = getVertexBlockSize(vertex_size);
- size_t vertex_block_count = (vertex_count + vertex_block_size - 1) / vertex_block_size;
- size_t vertex_block_control_size = vertex_size / 4;
- size_t vertex_block_header_size = (vertex_block_size / kByteGroupSize + 3) / 4;
- size_t vertex_block_data_size = vertex_block_size;
- size_t tail_size = vertex_size + (vertex_size / 4);
- size_t tail_size_min = kTailMinSizeV0 > kTailMinSizeV1 ? kTailMinSizeV0 : kTailMinSizeV1;
- size_t tail_size_pad = tail_size < tail_size_min ? tail_size_min : tail_size;
- assert(tail_size_pad >= kByteGroupDecodeLimit);
- return 1 + vertex_block_count * vertex_size * (vertex_block_control_size + vertex_block_header_size + vertex_block_data_size) + tail_size_pad;
- }
- void meshopt_encodeVertexVersion(int version)
- {
- assert(unsigned(version) <= unsigned(meshopt::kDecodeVertexVersion));
- meshopt::gEncodeVertexVersion = version;
- }
- int meshopt_decodeVertexVersion(const unsigned char* buffer, size_t buffer_size)
- {
- if (buffer_size < 1)
- return -1;
- unsigned char header = buffer[0];
- if ((header & 0xf0) != meshopt::kVertexHeader)
- return -1;
- int version = header & 0x0f;
- if (version > meshopt::kDecodeVertexVersion)
- return -1;
- return version;
- }
- int meshopt_decodeVertexBuffer(void* destination, size_t vertex_count, size_t vertex_size, const unsigned char* buffer, size_t buffer_size)
- {
- using namespace meshopt;
- assert(vertex_size > 0 && vertex_size <= 256);
- assert(vertex_size % 4 == 0);
- const unsigned char* (*decode)(const unsigned char*, const unsigned char*, unsigned char*, size_t, size_t, unsigned char[256], const unsigned char*, int) = NULL;
- #if defined(SIMD_SSE) && defined(SIMD_FALLBACK)
- decode = (cpuid & (1 << 9)) ? decodeVertexBlockSimd : decodeVertexBlock;
- #elif defined(SIMD_SSE) || defined(SIMD_AVX) || defined(SIMD_NEON) || defined(SIMD_WASM)
- decode = decodeVertexBlockSimd;
- #else
- decode = decodeVertexBlock;
- #endif
- #if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM)
- assert(gDecodeBytesGroupInitialized);
- (void)gDecodeBytesGroupInitialized;
- #endif
- unsigned char* vertex_data = static_cast<unsigned char*>(destination);
- const unsigned char* data = buffer;
- const unsigned char* data_end = buffer + buffer_size;
- if (size_t(data_end - data) < 1)
- return -2;
- unsigned char data_header = *data++;
- if ((data_header & 0xf0) != kVertexHeader)
- return -1;
- int version = data_header & 0x0f;
- if (version > kDecodeVertexVersion)
- return -1;
- size_t tail_size = vertex_size + (version == 0 ? 0 : vertex_size / 4);
- size_t tail_size_min = version == 0 ? kTailMinSizeV0 : kTailMinSizeV1;
- size_t tail_size_pad = tail_size < tail_size_min ? tail_size_min : tail_size;
- if (size_t(data_end - data) < tail_size_pad)
- return -2;
- const unsigned char* tail = data_end - tail_size;
- unsigned char last_vertex[256];
- memcpy(last_vertex, tail, vertex_size);
- const unsigned char* channels = version == 0 ? NULL : tail + vertex_size;
- size_t vertex_block_size = getVertexBlockSize(vertex_size);
- size_t vertex_offset = 0;
- while (vertex_offset < vertex_count)
- {
- size_t block_size = (vertex_offset + vertex_block_size < vertex_count) ? vertex_block_size : vertex_count - vertex_offset;
- data = decode(data, data_end, vertex_data + vertex_offset * vertex_size, block_size, vertex_size, last_vertex, channels, version);
- if (!data)
- return -2;
- vertex_offset += block_size;
- }
- if (size_t(data_end - data) != tail_size_pad)
- return -3;
- return 0;
- }
- #undef SIMD_NEON
- #undef SIMD_SSE
- #undef SIMD_AVX
- #undef SIMD_WASM
- #undef SIMD_FALLBACK
- #undef SIMD_TARGET
- #undef SIMD_LATENCYOPT
|