gi.cpp 161 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180
  1. /**************************************************************************/
  2. /* gi.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "gi.h"
  31. #include "core/config/project_settings.h"
  32. #include "servers/rendering/renderer_rd/renderer_compositor_rd.h"
  33. #include "servers/rendering/renderer_rd/renderer_scene_render_rd.h"
  34. #include "servers/rendering/renderer_rd/storage_rd/material_storage.h"
  35. #include "servers/rendering/renderer_rd/storage_rd/render_scene_buffers_rd.h"
  36. #include "servers/rendering/renderer_rd/storage_rd/texture_storage.h"
  37. #include "servers/rendering/rendering_server_default.h"
  38. using namespace RendererRD;
  39. const Vector3i GI::SDFGI::Cascade::DIRTY_ALL = Vector3i(0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF);
  40. GI *GI::singleton = nullptr;
  41. ////////////////////////////////////////////////////////////////////////////////
  42. // VOXEL GI STORAGE
  43. RID GI::voxel_gi_allocate() {
  44. return voxel_gi_owner.allocate_rid();
  45. }
  46. void GI::voxel_gi_free(RID p_voxel_gi) {
  47. voxel_gi_allocate_data(p_voxel_gi, Transform3D(), AABB(), Vector3i(), Vector<uint8_t>(), Vector<uint8_t>(), Vector<uint8_t>(), Vector<int>()); //deallocate
  48. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  49. voxel_gi->dependency.deleted_notify(p_voxel_gi);
  50. voxel_gi_owner.free(p_voxel_gi);
  51. }
  52. void GI::voxel_gi_initialize(RID p_voxel_gi) {
  53. voxel_gi_owner.initialize_rid(p_voxel_gi, VoxelGI());
  54. }
  55. void GI::voxel_gi_allocate_data(RID p_voxel_gi, const Transform3D &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const Vector<uint8_t> &p_octree_cells, const Vector<uint8_t> &p_data_cells, const Vector<uint8_t> &p_distance_field, const Vector<int> &p_level_counts) {
  56. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  57. ERR_FAIL_NULL(voxel_gi);
  58. if (voxel_gi->octree_buffer.is_valid()) {
  59. RD::get_singleton()->free_rid(voxel_gi->octree_buffer);
  60. RD::get_singleton()->free_rid(voxel_gi->data_buffer);
  61. if (voxel_gi->sdf_texture.is_valid()) {
  62. RD::get_singleton()->free_rid(voxel_gi->sdf_texture);
  63. }
  64. voxel_gi->sdf_texture = RID();
  65. voxel_gi->octree_buffer = RID();
  66. voxel_gi->data_buffer = RID();
  67. voxel_gi->octree_buffer_size = 0;
  68. voxel_gi->data_buffer_size = 0;
  69. voxel_gi->cell_count = 0;
  70. }
  71. voxel_gi->to_cell_xform = p_to_cell_xform;
  72. voxel_gi->bounds = p_aabb;
  73. voxel_gi->octree_size = p_octree_size;
  74. voxel_gi->level_counts = p_level_counts;
  75. if (p_octree_cells.size()) {
  76. ERR_FAIL_COND(p_octree_cells.size() % 32 != 0); //cells size must be a multiple of 32
  77. uint32_t cell_count = p_octree_cells.size() / 32;
  78. ERR_FAIL_COND(p_data_cells.size() != (int)cell_count * 16); //see that data size matches
  79. voxel_gi->cell_count = cell_count;
  80. voxel_gi->octree_buffer = RD::get_singleton()->storage_buffer_create(p_octree_cells.size(), p_octree_cells);
  81. voxel_gi->octree_buffer_size = p_octree_cells.size();
  82. voxel_gi->data_buffer = RD::get_singleton()->storage_buffer_create(p_data_cells.size(), p_data_cells);
  83. voxel_gi->data_buffer_size = p_data_cells.size();
  84. if (p_distance_field.size()) {
  85. RD::TextureFormat tf;
  86. tf.format = RD::DATA_FORMAT_R8_UNORM;
  87. tf.width = voxel_gi->octree_size.x;
  88. tf.height = voxel_gi->octree_size.y;
  89. tf.depth = voxel_gi->octree_size.z;
  90. tf.texture_type = RD::TEXTURE_TYPE_3D;
  91. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  92. Vector<Vector<uint8_t>> s;
  93. s.push_back(p_distance_field);
  94. voxel_gi->sdf_texture = RD::get_singleton()->texture_create(tf, RD::TextureView(), s);
  95. RD::get_singleton()->set_resource_name(voxel_gi->sdf_texture, "VoxelGI SDF Texture");
  96. }
  97. #if 0
  98. {
  99. RD::TextureFormat tf;
  100. tf.format = RD::DATA_FORMAT_R8_UNORM;
  101. tf.width = voxel_gi->octree_size.x;
  102. tf.height = voxel_gi->octree_size.y;
  103. tf.depth = voxel_gi->octree_size.z;
  104. tf.type = RD::TEXTURE_TYPE_3D;
  105. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  106. tf.shareable_formats.push_back(RD::DATA_FORMAT_R8_UNORM);
  107. tf.shareable_formats.push_back(RD::DATA_FORMAT_R8_UINT);
  108. voxel_gi->sdf_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  109. RD::get_singleton()->set_resource_name(voxel_gi->sdf_texture, "VoxelGI SDF Texture");
  110. }
  111. RID shared_tex;
  112. {
  113. RD::TextureView tv;
  114. tv.format_override = RD::DATA_FORMAT_R8_UINT;
  115. shared_tex = RD::get_singleton()->texture_create_shared(tv, voxel_gi->sdf_texture);
  116. }
  117. //update SDF texture
  118. Vector<RD::Uniform> uniforms;
  119. {
  120. RD::Uniform u;
  121. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  122. u.binding = 1;
  123. u.append_id(voxel_gi->octree_buffer);
  124. uniforms.push_back(u);
  125. }
  126. {
  127. RD::Uniform u;
  128. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  129. u.binding = 2;
  130. u.append_id(voxel_gi->data_buffer);
  131. uniforms.push_back(u);
  132. }
  133. {
  134. RD::Uniform u;
  135. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  136. u.binding = 3;
  137. u.append_id(shared_tex);
  138. uniforms.push_back(u);
  139. }
  140. RID uniform_set = RD::get_singleton()->uniform_set_create(uniforms, voxel_gi_sdf_shader_version_shader, 0);
  141. {
  142. uint32_t push_constant[4] = { 0, 0, 0, 0 };
  143. for (int i = 0; i < voxel_gi->level_counts.size() - 1; i++) {
  144. push_constant[0] += voxel_gi->level_counts[i];
  145. }
  146. push_constant[1] = push_constant[0] + voxel_gi->level_counts[voxel_gi->level_counts.size() - 1];
  147. print_line("offset: " + itos(push_constant[0]));
  148. print_line("size: " + itos(push_constant[1]));
  149. //create SDF
  150. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  151. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, voxel_gi_sdf_shader_pipeline);
  152. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set, 0);
  153. RD::get_singleton()->compute_list_set_push_constant(compute_list, push_constant, sizeof(uint32_t) * 4);
  154. RD::get_singleton()->compute_list_dispatch(compute_list, voxel_gi->octree_size.x / 4, voxel_gi->octree_size.y / 4, voxel_gi->octree_size.z / 4);
  155. RD::get_singleton()->compute_list_end();
  156. }
  157. RD::get_singleton()->free(uniform_set);
  158. RD::get_singleton()->free(shared_tex);
  159. }
  160. #endif
  161. }
  162. voxel_gi->version++;
  163. voxel_gi->data_version++;
  164. voxel_gi->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  165. }
  166. AABB GI::voxel_gi_get_bounds(RID p_voxel_gi) const {
  167. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  168. ERR_FAIL_NULL_V(voxel_gi, AABB());
  169. return voxel_gi->bounds;
  170. }
  171. Vector3i GI::voxel_gi_get_octree_size(RID p_voxel_gi) const {
  172. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  173. ERR_FAIL_NULL_V(voxel_gi, Vector3i());
  174. return voxel_gi->octree_size;
  175. }
  176. Vector<uint8_t> GI::voxel_gi_get_octree_cells(RID p_voxel_gi) const {
  177. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  178. ERR_FAIL_NULL_V(voxel_gi, Vector<uint8_t>());
  179. if (voxel_gi->octree_buffer.is_valid()) {
  180. return RD::get_singleton()->buffer_get_data(voxel_gi->octree_buffer);
  181. }
  182. return Vector<uint8_t>();
  183. }
  184. Vector<uint8_t> GI::voxel_gi_get_data_cells(RID p_voxel_gi) const {
  185. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  186. ERR_FAIL_NULL_V(voxel_gi, Vector<uint8_t>());
  187. if (voxel_gi->data_buffer.is_valid()) {
  188. return RD::get_singleton()->buffer_get_data(voxel_gi->data_buffer);
  189. }
  190. return Vector<uint8_t>();
  191. }
  192. Vector<uint8_t> GI::voxel_gi_get_distance_field(RID p_voxel_gi) const {
  193. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  194. ERR_FAIL_NULL_V(voxel_gi, Vector<uint8_t>());
  195. if (voxel_gi->data_buffer.is_valid()) {
  196. return RD::get_singleton()->texture_get_data(voxel_gi->sdf_texture, 0);
  197. }
  198. return Vector<uint8_t>();
  199. }
  200. Vector<int> GI::voxel_gi_get_level_counts(RID p_voxel_gi) const {
  201. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  202. ERR_FAIL_NULL_V(voxel_gi, Vector<int>());
  203. return voxel_gi->level_counts;
  204. }
  205. Transform3D GI::voxel_gi_get_to_cell_xform(RID p_voxel_gi) const {
  206. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  207. ERR_FAIL_NULL_V(voxel_gi, Transform3D());
  208. return voxel_gi->to_cell_xform;
  209. }
  210. void GI::voxel_gi_set_dynamic_range(RID p_voxel_gi, float p_range) {
  211. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  212. ERR_FAIL_NULL(voxel_gi);
  213. voxel_gi->dynamic_range = p_range;
  214. voxel_gi->version++;
  215. }
  216. float GI::voxel_gi_get_dynamic_range(RID p_voxel_gi) const {
  217. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  218. ERR_FAIL_NULL_V(voxel_gi, 0);
  219. return voxel_gi->dynamic_range;
  220. }
  221. void GI::voxel_gi_set_propagation(RID p_voxel_gi, float p_range) {
  222. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  223. ERR_FAIL_NULL(voxel_gi);
  224. voxel_gi->propagation = p_range;
  225. voxel_gi->version++;
  226. }
  227. float GI::voxel_gi_get_propagation(RID p_voxel_gi) const {
  228. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  229. ERR_FAIL_NULL_V(voxel_gi, 0);
  230. return voxel_gi->propagation;
  231. }
  232. void GI::voxel_gi_set_energy(RID p_voxel_gi, float p_energy) {
  233. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  234. ERR_FAIL_NULL(voxel_gi);
  235. voxel_gi->energy = p_energy;
  236. }
  237. float GI::voxel_gi_get_energy(RID p_voxel_gi) const {
  238. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  239. ERR_FAIL_NULL_V(voxel_gi, 0);
  240. return voxel_gi->energy;
  241. }
  242. void GI::voxel_gi_set_baked_exposure_normalization(RID p_voxel_gi, float p_baked_exposure) {
  243. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  244. ERR_FAIL_NULL(voxel_gi);
  245. voxel_gi->baked_exposure = p_baked_exposure;
  246. }
  247. float GI::voxel_gi_get_baked_exposure_normalization(RID p_voxel_gi) const {
  248. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  249. ERR_FAIL_NULL_V(voxel_gi, 0);
  250. return voxel_gi->baked_exposure;
  251. }
  252. void GI::voxel_gi_set_bias(RID p_voxel_gi, float p_bias) {
  253. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  254. ERR_FAIL_NULL(voxel_gi);
  255. voxel_gi->bias = p_bias;
  256. }
  257. float GI::voxel_gi_get_bias(RID p_voxel_gi) const {
  258. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  259. ERR_FAIL_NULL_V(voxel_gi, 0);
  260. return voxel_gi->bias;
  261. }
  262. void GI::voxel_gi_set_normal_bias(RID p_voxel_gi, float p_normal_bias) {
  263. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  264. ERR_FAIL_NULL(voxel_gi);
  265. voxel_gi->normal_bias = p_normal_bias;
  266. }
  267. float GI::voxel_gi_get_normal_bias(RID p_voxel_gi) const {
  268. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  269. ERR_FAIL_NULL_V(voxel_gi, 0);
  270. return voxel_gi->normal_bias;
  271. }
  272. void GI::voxel_gi_set_interior(RID p_voxel_gi, bool p_enable) {
  273. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  274. ERR_FAIL_NULL(voxel_gi);
  275. voxel_gi->interior = p_enable;
  276. }
  277. void GI::voxel_gi_set_use_two_bounces(RID p_voxel_gi, bool p_enable) {
  278. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  279. ERR_FAIL_NULL(voxel_gi);
  280. voxel_gi->use_two_bounces = p_enable;
  281. voxel_gi->version++;
  282. }
  283. bool GI::voxel_gi_is_using_two_bounces(RID p_voxel_gi) const {
  284. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  285. ERR_FAIL_NULL_V(voxel_gi, false);
  286. return voxel_gi->use_two_bounces;
  287. }
  288. bool GI::voxel_gi_is_interior(RID p_voxel_gi) const {
  289. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  290. ERR_FAIL_NULL_V(voxel_gi, false);
  291. return voxel_gi->interior;
  292. }
  293. uint32_t GI::voxel_gi_get_version(RID p_voxel_gi) const {
  294. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  295. ERR_FAIL_NULL_V(voxel_gi, 0);
  296. return voxel_gi->version;
  297. }
  298. uint32_t GI::voxel_gi_get_data_version(RID p_voxel_gi) {
  299. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  300. ERR_FAIL_NULL_V(voxel_gi, 0);
  301. return voxel_gi->data_version;
  302. }
  303. RID GI::voxel_gi_get_octree_buffer(RID p_voxel_gi) const {
  304. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  305. ERR_FAIL_NULL_V(voxel_gi, RID());
  306. return voxel_gi->octree_buffer;
  307. }
  308. RID GI::voxel_gi_get_data_buffer(RID p_voxel_gi) const {
  309. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  310. ERR_FAIL_NULL_V(voxel_gi, RID());
  311. return voxel_gi->data_buffer;
  312. }
  313. RID GI::voxel_gi_get_sdf_texture(RID p_voxel_gi) {
  314. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  315. ERR_FAIL_NULL_V(voxel_gi, RID());
  316. return voxel_gi->sdf_texture;
  317. }
  318. Dependency *GI::voxel_gi_get_dependency(RID p_voxel_gi) const {
  319. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  320. ERR_FAIL_NULL_V(voxel_gi, nullptr);
  321. return &voxel_gi->dependency;
  322. }
  323. void GI::sdfgi_reset() {
  324. sdfgi_current_version++;
  325. }
  326. ////////////////////////////////////////////////////////////////////////////////
  327. // SDFGI
  328. static RID create_clear_texture(const RD::TextureFormat &p_format, const String &p_name) {
  329. RID texture = RD::get_singleton()->texture_create(p_format, RD::TextureView());
  330. ERR_FAIL_COND_V_MSG(texture.is_null(), RID(), String("Cannot create texture: ") + p_name);
  331. RD::get_singleton()->set_resource_name(texture, p_name);
  332. RD::get_singleton()->texture_clear(texture, Color(0, 0, 0, 0), 0, p_format.mipmaps, 0, p_format.array_layers);
  333. return texture;
  334. }
  335. void GI::SDFGI::create(RID p_env, const Vector3 &p_world_position, uint32_t p_requested_history_size, GI *p_gi) {
  336. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  337. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  338. gi = p_gi;
  339. num_cascades = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_cascades(p_env);
  340. min_cell_size = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_min_cell_size(p_env);
  341. uses_occlusion = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_use_occlusion(p_env);
  342. y_scale_mode = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_y_scale(p_env);
  343. static const float y_scale[3] = { 2.0, 1.5, 1.0 };
  344. y_mult = y_scale[y_scale_mode];
  345. version = gi->sdfgi_current_version;
  346. cascades.resize(num_cascades);
  347. probe_axis_count = SDFGI::PROBE_DIVISOR + 1;
  348. solid_cell_ratio = gi->sdfgi_solid_cell_ratio;
  349. solid_cell_count = uint32_t(float(cascade_size * cascade_size * cascade_size) * solid_cell_ratio);
  350. float base_cell_size = min_cell_size;
  351. RD::TextureFormat tf_sdf;
  352. tf_sdf.format = RD::DATA_FORMAT_R8_UNORM;
  353. tf_sdf.width = cascade_size; // Always 64x64
  354. tf_sdf.height = cascade_size;
  355. tf_sdf.depth = cascade_size;
  356. tf_sdf.texture_type = RD::TEXTURE_TYPE_3D;
  357. tf_sdf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  358. {
  359. RD::TextureFormat tf_render = tf_sdf;
  360. tf_render.format = RD::DATA_FORMAT_R16_UINT;
  361. render_albedo = create_clear_texture(tf_render, "SDFGI Render Albedo");
  362. tf_render.format = RD::DATA_FORMAT_R32_UINT;
  363. render_emission = create_clear_texture(tf_render, "SDFGI Render Emission");
  364. render_emission_aniso = create_clear_texture(tf_render, "SDFGI Render Emission Aniso");
  365. tf_render.format = RD::DATA_FORMAT_R8_UNORM; //at least its easy to visualize
  366. for (int i = 0; i < 8; i++) {
  367. render_occlusion[i] = create_clear_texture(tf_render, String("SDFGI Render Occlusion ") + itos(i));
  368. }
  369. tf_render.format = RD::DATA_FORMAT_R32_UINT;
  370. render_geom_facing = create_clear_texture(tf_render, "SDFGI Render Geometry Facing");
  371. tf_render.format = RD::DATA_FORMAT_R8G8B8A8_UINT;
  372. render_sdf[0] = create_clear_texture(tf_render, "SDFGI Render SDF 0");
  373. render_sdf[1] = create_clear_texture(tf_render, "SDFGI Render SDF 1");
  374. tf_render.width /= 2;
  375. tf_render.height /= 2;
  376. tf_render.depth /= 2;
  377. render_sdf_half[0] = create_clear_texture(tf_render, "SDFGI Render SDF Half 0");
  378. render_sdf_half[1] = create_clear_texture(tf_render, "SDFGI Render SDF Half 1");
  379. }
  380. RD::TextureFormat tf_occlusion = tf_sdf;
  381. tf_occlusion.format = RD::DATA_FORMAT_R16_UINT;
  382. tf_occlusion.shareable_formats.push_back(RD::DATA_FORMAT_R16_UINT);
  383. tf_occlusion.shareable_formats.push_back(RD::DATA_FORMAT_R4G4B4A4_UNORM_PACK16);
  384. tf_occlusion.depth *= cascades.size(); //use depth for occlusion slices
  385. tf_occlusion.width *= 2; //use width for the other half
  386. RD::TextureFormat tf_light = tf_sdf;
  387. tf_light.format = RD::DATA_FORMAT_R32_UINT;
  388. tf_light.shareable_formats.push_back(RD::DATA_FORMAT_R32_UINT);
  389. tf_light.shareable_formats.push_back(RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32);
  390. RD::TextureFormat tf_aniso0 = tf_sdf;
  391. tf_aniso0.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  392. RD::TextureFormat tf_aniso1 = tf_sdf;
  393. tf_aniso1.format = RD::DATA_FORMAT_R8G8_UNORM;
  394. int passes = nearest_shift(cascade_size) - 1;
  395. //store lightprobe SH
  396. RD::TextureFormat tf_probes;
  397. tf_probes.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  398. tf_probes.width = probe_axis_count * probe_axis_count;
  399. tf_probes.height = probe_axis_count * SDFGI::SH_SIZE;
  400. tf_probes.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  401. tf_probes.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  402. history_size = p_requested_history_size;
  403. RD::TextureFormat tf_probe_history = tf_probes;
  404. tf_probe_history.format = RD::DATA_FORMAT_R16G16B16A16_SINT; //signed integer because SH are signed
  405. tf_probe_history.array_layers = history_size;
  406. RD::TextureFormat tf_probe_average = tf_probes;
  407. tf_probe_average.format = RD::DATA_FORMAT_R32G32B32A32_SINT; //signed integer because SH are signed
  408. tf_probe_average.texture_type = RD::TEXTURE_TYPE_2D;
  409. lightprobe_history_scroll = create_clear_texture(tf_probe_history, "SDFGI LightProbe History Scroll");
  410. lightprobe_average_scroll = create_clear_texture(tf_probe_average, "SDFGI LightProbe Average Scroll");
  411. {
  412. //octahedral lightprobes
  413. RD::TextureFormat tf_octprobes = tf_probes;
  414. tf_octprobes.array_layers = cascades.size() * 2;
  415. tf_octprobes.format = RD::DATA_FORMAT_R32_UINT; //pack well with RGBE
  416. tf_octprobes.width = probe_axis_count * probe_axis_count * (SDFGI::LIGHTPROBE_OCT_SIZE + 2);
  417. tf_octprobes.height = probe_axis_count * (SDFGI::LIGHTPROBE_OCT_SIZE + 2);
  418. tf_octprobes.shareable_formats.push_back(RD::DATA_FORMAT_R32_UINT);
  419. tf_octprobes.shareable_formats.push_back(RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32);
  420. //lightprobe texture is an octahedral texture
  421. lightprobe_data = create_clear_texture(tf_octprobes, "SDFGI LightProbe Data");
  422. RD::TextureView tv;
  423. tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32;
  424. lightprobe_texture = RD::get_singleton()->texture_create_shared(tv, lightprobe_data);
  425. //texture handling ambient data, to integrate with volumetric foc
  426. RD::TextureFormat tf_ambient = tf_probes;
  427. tf_ambient.array_layers = cascades.size();
  428. tf_ambient.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; //pack well with RGBE
  429. tf_ambient.width = probe_axis_count * probe_axis_count;
  430. tf_ambient.height = probe_axis_count;
  431. tf_ambient.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  432. //lightprobe texture is an octahedral texture
  433. ambient_texture = create_clear_texture(tf_ambient, "SDFGI Ambient Texture");
  434. }
  435. cascades_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES);
  436. occlusion_data = create_clear_texture(tf_occlusion, "SDFGI Occlusion Data");
  437. {
  438. RD::TextureView tv;
  439. tv.format_override = RD::DATA_FORMAT_R4G4B4A4_UNORM_PACK16;
  440. occlusion_texture = RD::get_singleton()->texture_create_shared(tv, occlusion_data);
  441. }
  442. for (SDFGI::Cascade &cascade : cascades) {
  443. /* 3D Textures */
  444. cascade.sdf_tex = create_clear_texture(tf_sdf, "SDFGI Cascade SDF Texture");
  445. cascade.light_data = create_clear_texture(tf_light, "SDFGI Cascade Light Data");
  446. cascade.light_aniso_0_tex = create_clear_texture(tf_aniso0, "SDFGI Cascade Light Aniso 0 Texture");
  447. cascade.light_aniso_1_tex = create_clear_texture(tf_aniso1, "SDFGI Cascade Light Aniso 1 Texture");
  448. {
  449. RD::TextureView tv;
  450. tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32;
  451. cascade.light_tex = RD::get_singleton()->texture_create_shared(tv, cascade.light_data);
  452. }
  453. cascade.cell_size = base_cell_size;
  454. Vector3 world_position = p_world_position;
  455. world_position.y *= y_mult;
  456. int32_t probe_cells = cascade_size / SDFGI::PROBE_DIVISOR;
  457. Vector3 probe_size = Vector3(1, 1, 1) * cascade.cell_size * probe_cells;
  458. Vector3i probe_pos = Vector3i((world_position / probe_size + Vector3(0.5, 0.5, 0.5)).floor());
  459. cascade.position = probe_pos * probe_cells;
  460. cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
  461. base_cell_size *= 2.0;
  462. /* Probe History */
  463. cascade.lightprobe_history_tex = RD::get_singleton()->texture_create(tf_probe_history, RD::TextureView());
  464. RD::get_singleton()->set_resource_name(cascade.lightprobe_history_tex, "SDFGI Cascade LightProbe History Texture");
  465. RD::get_singleton()->texture_clear(cascade.lightprobe_history_tex, Color(0, 0, 0, 0), 0, 1, 0, tf_probe_history.array_layers); //needs to be cleared for average to work
  466. cascade.lightprobe_average_tex = RD::get_singleton()->texture_create(tf_probe_average, RD::TextureView());
  467. RD::get_singleton()->set_resource_name(cascade.lightprobe_average_tex, "SDFGI Cascade LightProbe Average Texture");
  468. RD::get_singleton()->texture_clear(cascade.lightprobe_average_tex, Color(0, 0, 0, 0), 0, 1, 0, 1); //needs to be cleared for average to work
  469. /* Buffers */
  470. cascade.solid_cell_buffer = RD::get_singleton()->storage_buffer_create(sizeof(SDFGI::Cascade::SolidCell) * solid_cell_count);
  471. cascade.solid_cell_dispatch_buffer_storage = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4, Vector<uint8_t>());
  472. cascade.solid_cell_dispatch_buffer_call = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4, Vector<uint8_t>(), RD::STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT);
  473. cascade.lights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(SDFGIShader::Light) * MAX(SDFGI::MAX_STATIC_LIGHTS, SDFGI::MAX_DYNAMIC_LIGHTS));
  474. {
  475. Vector<RD::Uniform> uniforms;
  476. {
  477. RD::Uniform u;
  478. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  479. u.binding = 1;
  480. u.append_id(render_sdf[(passes & 1) ? 1 : 0]); //if passes are even, we read from buffer 0, else we read from buffer 1
  481. uniforms.push_back(u);
  482. }
  483. {
  484. RD::Uniform u;
  485. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  486. u.binding = 2;
  487. u.append_id(render_albedo);
  488. uniforms.push_back(u);
  489. }
  490. {
  491. RD::Uniform u;
  492. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  493. u.binding = 3;
  494. for (int j = 0; j < 8; j++) {
  495. u.append_id(render_occlusion[j]);
  496. }
  497. uniforms.push_back(u);
  498. }
  499. {
  500. RD::Uniform u;
  501. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  502. u.binding = 4;
  503. u.append_id(render_emission);
  504. uniforms.push_back(u);
  505. }
  506. {
  507. RD::Uniform u;
  508. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  509. u.binding = 5;
  510. u.append_id(render_emission_aniso);
  511. uniforms.push_back(u);
  512. }
  513. {
  514. RD::Uniform u;
  515. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  516. u.binding = 6;
  517. u.append_id(render_geom_facing);
  518. uniforms.push_back(u);
  519. }
  520. {
  521. RD::Uniform u;
  522. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  523. u.binding = 7;
  524. u.append_id(cascade.sdf_tex);
  525. uniforms.push_back(u);
  526. }
  527. {
  528. RD::Uniform u;
  529. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  530. u.binding = 8;
  531. u.append_id(occlusion_data);
  532. uniforms.push_back(u);
  533. }
  534. {
  535. RD::Uniform u;
  536. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  537. u.binding = 10;
  538. u.append_id(cascade.solid_cell_dispatch_buffer_storage);
  539. uniforms.push_back(u);
  540. }
  541. {
  542. RD::Uniform u;
  543. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  544. u.binding = 11;
  545. u.append_id(cascade.solid_cell_buffer);
  546. uniforms.push_back(u);
  547. }
  548. cascade.sdf_store_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_STORE), 0);
  549. }
  550. {
  551. Vector<RD::Uniform> uniforms;
  552. {
  553. RD::Uniform u;
  554. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  555. u.binding = 1;
  556. u.append_id(render_albedo);
  557. uniforms.push_back(u);
  558. }
  559. {
  560. RD::Uniform u;
  561. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  562. u.binding = 2;
  563. u.append_id(render_geom_facing);
  564. uniforms.push_back(u);
  565. }
  566. {
  567. RD::Uniform u;
  568. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  569. u.binding = 3;
  570. u.append_id(render_emission);
  571. uniforms.push_back(u);
  572. }
  573. {
  574. RD::Uniform u;
  575. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  576. u.binding = 4;
  577. u.append_id(render_emission_aniso);
  578. uniforms.push_back(u);
  579. }
  580. {
  581. RD::Uniform u;
  582. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  583. u.binding = 5;
  584. u.append_id(cascade.solid_cell_dispatch_buffer_storage);
  585. uniforms.push_back(u);
  586. }
  587. {
  588. RD::Uniform u;
  589. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  590. u.binding = 6;
  591. u.append_id(cascade.solid_cell_buffer);
  592. uniforms.push_back(u);
  593. }
  594. cascade.scroll_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_SCROLL), 0);
  595. }
  596. {
  597. Vector<RD::Uniform> uniforms;
  598. {
  599. RD::Uniform u;
  600. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  601. u.binding = 1;
  602. for (int j = 0; j < 8; j++) {
  603. u.append_id(render_occlusion[j]);
  604. }
  605. uniforms.push_back(u);
  606. }
  607. {
  608. RD::Uniform u;
  609. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  610. u.binding = 2;
  611. u.append_id(occlusion_data);
  612. uniforms.push_back(u);
  613. }
  614. cascade.scroll_occlusion_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_SCROLL_OCCLUSION), 0);
  615. }
  616. }
  617. //direct light
  618. for (SDFGI::Cascade &cascade : cascades) {
  619. Vector<RD::Uniform> uniforms;
  620. {
  621. RD::Uniform u;
  622. u.binding = 1;
  623. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  624. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  625. if (j < cascades.size()) {
  626. u.append_id(cascades[j].sdf_tex);
  627. } else {
  628. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  629. }
  630. }
  631. uniforms.push_back(u);
  632. }
  633. {
  634. RD::Uniform u;
  635. u.binding = 2;
  636. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  637. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  638. uniforms.push_back(u);
  639. }
  640. {
  641. RD::Uniform u;
  642. u.binding = 3;
  643. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  644. u.append_id(cascade.solid_cell_dispatch_buffer_storage);
  645. uniforms.push_back(u);
  646. }
  647. {
  648. RD::Uniform u;
  649. u.binding = 4;
  650. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  651. u.append_id(cascade.solid_cell_buffer);
  652. uniforms.push_back(u);
  653. }
  654. {
  655. RD::Uniform u;
  656. u.binding = 5;
  657. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  658. u.append_id(cascade.light_data);
  659. uniforms.push_back(u);
  660. }
  661. {
  662. RD::Uniform u;
  663. u.binding = 6;
  664. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  665. u.append_id(cascade.light_aniso_0_tex);
  666. uniforms.push_back(u);
  667. }
  668. {
  669. RD::Uniform u;
  670. u.binding = 7;
  671. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  672. u.append_id(cascade.light_aniso_1_tex);
  673. uniforms.push_back(u);
  674. }
  675. {
  676. RD::Uniform u;
  677. u.binding = 8;
  678. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  679. u.append_id(cascades_ubo);
  680. uniforms.push_back(u);
  681. }
  682. {
  683. RD::Uniform u;
  684. u.binding = 9;
  685. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  686. u.append_id(cascade.lights_buffer);
  687. uniforms.push_back(u);
  688. }
  689. {
  690. RD::Uniform u;
  691. u.binding = 10;
  692. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  693. u.append_id(lightprobe_texture);
  694. uniforms.push_back(u);
  695. }
  696. {
  697. RD::Uniform u;
  698. u.binding = 11;
  699. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  700. u.append_id(occlusion_texture);
  701. uniforms.push_back(u);
  702. }
  703. cascade.sdf_direct_light_static_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.direct_light.version_get_shader(gi->sdfgi_shader.direct_light_shader, SDFGIShader::DIRECT_LIGHT_MODE_STATIC), 0);
  704. cascade.sdf_direct_light_dynamic_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.direct_light.version_get_shader(gi->sdfgi_shader.direct_light_shader, SDFGIShader::DIRECT_LIGHT_MODE_DYNAMIC), 0);
  705. }
  706. //preprocess initialize uniform set
  707. {
  708. Vector<RD::Uniform> uniforms;
  709. {
  710. RD::Uniform u;
  711. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  712. u.binding = 1;
  713. u.append_id(render_albedo);
  714. uniforms.push_back(u);
  715. }
  716. {
  717. RD::Uniform u;
  718. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  719. u.binding = 2;
  720. u.append_id(render_sdf[0]);
  721. uniforms.push_back(u);
  722. }
  723. sdf_initialize_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE), 0);
  724. }
  725. {
  726. Vector<RD::Uniform> uniforms;
  727. {
  728. RD::Uniform u;
  729. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  730. u.binding = 1;
  731. u.append_id(render_albedo);
  732. uniforms.push_back(u);
  733. }
  734. {
  735. RD::Uniform u;
  736. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  737. u.binding = 2;
  738. u.append_id(render_sdf_half[0]);
  739. uniforms.push_back(u);
  740. }
  741. sdf_initialize_half_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF), 0);
  742. }
  743. //jump flood uniform set
  744. {
  745. Vector<RD::Uniform> uniforms;
  746. {
  747. RD::Uniform u;
  748. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  749. u.binding = 1;
  750. u.append_id(render_sdf[0]);
  751. uniforms.push_back(u);
  752. }
  753. {
  754. RD::Uniform u;
  755. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  756. u.binding = 2;
  757. u.append_id(render_sdf[1]);
  758. uniforms.push_back(u);
  759. }
  760. jump_flood_uniform_set[0] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  761. RID aux0 = uniforms.write[0].get_id(0);
  762. RID aux1 = uniforms.write[1].get_id(0);
  763. uniforms.write[0].set_id(0, aux1);
  764. uniforms.write[1].set_id(0, aux0);
  765. jump_flood_uniform_set[1] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  766. }
  767. //jump flood half uniform set
  768. {
  769. Vector<RD::Uniform> uniforms;
  770. {
  771. RD::Uniform u;
  772. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  773. u.binding = 1;
  774. u.append_id(render_sdf_half[0]);
  775. uniforms.push_back(u);
  776. }
  777. {
  778. RD::Uniform u;
  779. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  780. u.binding = 2;
  781. u.append_id(render_sdf_half[1]);
  782. uniforms.push_back(u);
  783. }
  784. jump_flood_half_uniform_set[0] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  785. RID aux0 = uniforms.write[0].get_id(0);
  786. RID aux1 = uniforms.write[1].get_id(0);
  787. uniforms.write[0].set_id(0, aux1);
  788. uniforms.write[1].set_id(0, aux0);
  789. jump_flood_half_uniform_set[1] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  790. }
  791. //upscale half size sdf
  792. {
  793. Vector<RD::Uniform> uniforms;
  794. {
  795. RD::Uniform u;
  796. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  797. u.binding = 1;
  798. u.append_id(render_albedo);
  799. uniforms.push_back(u);
  800. }
  801. {
  802. RD::Uniform u;
  803. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  804. u.binding = 2;
  805. u.append_id(render_sdf_half[(passes & 1) ? 0 : 1]); //reverse pass order because half size
  806. uniforms.push_back(u);
  807. }
  808. {
  809. RD::Uniform u;
  810. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  811. u.binding = 3;
  812. u.append_id(render_sdf[(passes & 1) ? 0 : 1]); //reverse pass order because it needs an extra JFA pass
  813. uniforms.push_back(u);
  814. }
  815. upscale_jfa_uniform_set_index = (passes & 1) ? 0 : 1;
  816. sdf_upscale_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD_UPSCALE), 0);
  817. }
  818. //occlusion uniform set
  819. {
  820. Vector<RD::Uniform> uniforms;
  821. {
  822. RD::Uniform u;
  823. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  824. u.binding = 1;
  825. u.append_id(render_albedo);
  826. uniforms.push_back(u);
  827. }
  828. {
  829. RD::Uniform u;
  830. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  831. u.binding = 2;
  832. for (int i = 0; i < 8; i++) {
  833. u.append_id(render_occlusion[i]);
  834. }
  835. uniforms.push_back(u);
  836. }
  837. {
  838. RD::Uniform u;
  839. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  840. u.binding = 3;
  841. u.append_id(render_geom_facing);
  842. uniforms.push_back(u);
  843. }
  844. occlusion_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_OCCLUSION), 0);
  845. }
  846. for (uint32_t i = 0; i < cascades.size(); i++) {
  847. //integrate uniform
  848. Vector<RD::Uniform> uniforms;
  849. {
  850. RD::Uniform u;
  851. u.binding = 1;
  852. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  853. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  854. if (j < cascades.size()) {
  855. u.append_id(cascades[j].sdf_tex);
  856. } else {
  857. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  858. }
  859. }
  860. uniforms.push_back(u);
  861. }
  862. {
  863. RD::Uniform u;
  864. u.binding = 2;
  865. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  866. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  867. if (j < cascades.size()) {
  868. u.append_id(cascades[j].light_tex);
  869. } else {
  870. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  871. }
  872. }
  873. uniforms.push_back(u);
  874. }
  875. {
  876. RD::Uniform u;
  877. u.binding = 3;
  878. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  879. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  880. if (j < cascades.size()) {
  881. u.append_id(cascades[j].light_aniso_0_tex);
  882. } else {
  883. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  884. }
  885. }
  886. uniforms.push_back(u);
  887. }
  888. {
  889. RD::Uniform u;
  890. u.binding = 4;
  891. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  892. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  893. if (j < cascades.size()) {
  894. u.append_id(cascades[j].light_aniso_1_tex);
  895. } else {
  896. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  897. }
  898. }
  899. uniforms.push_back(u);
  900. }
  901. {
  902. RD::Uniform u;
  903. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  904. u.binding = 6;
  905. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  906. uniforms.push_back(u);
  907. }
  908. {
  909. RD::Uniform u;
  910. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  911. u.binding = 7;
  912. u.append_id(cascades_ubo);
  913. uniforms.push_back(u);
  914. }
  915. {
  916. RD::Uniform u;
  917. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  918. u.binding = 8;
  919. u.append_id(lightprobe_data);
  920. uniforms.push_back(u);
  921. }
  922. {
  923. RD::Uniform u;
  924. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  925. u.binding = 9;
  926. u.append_id(cascades[i].lightprobe_history_tex);
  927. uniforms.push_back(u);
  928. }
  929. {
  930. RD::Uniform u;
  931. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  932. u.binding = 10;
  933. u.append_id(cascades[i].lightprobe_average_tex);
  934. uniforms.push_back(u);
  935. }
  936. {
  937. RD::Uniform u;
  938. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  939. u.binding = 11;
  940. u.append_id(lightprobe_history_scroll);
  941. uniforms.push_back(u);
  942. }
  943. {
  944. RD::Uniform u;
  945. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  946. u.binding = 12;
  947. u.append_id(lightprobe_average_scroll);
  948. uniforms.push_back(u);
  949. }
  950. {
  951. RD::Uniform u;
  952. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  953. u.binding = 13;
  954. RID parent_average;
  955. if (cascades.size() == 1) {
  956. // If there is only one SDFGI cascade, we can't use the previous cascade for blending.
  957. parent_average = cascades[i].lightprobe_average_tex;
  958. } else if (i < cascades.size() - 1) {
  959. parent_average = cascades[i + 1].lightprobe_average_tex;
  960. } else {
  961. parent_average = cascades[i - 1].lightprobe_average_tex; //to use something, but it won't be used
  962. }
  963. u.append_id(parent_average);
  964. uniforms.push_back(u);
  965. }
  966. {
  967. RD::Uniform u;
  968. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  969. u.binding = 14;
  970. u.append_id(ambient_texture);
  971. uniforms.push_back(u);
  972. }
  973. cascades[i].integrate_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.integrate.version_get_shader(gi->sdfgi_shader.integrate_shader, 0), 0);
  974. }
  975. bounce_feedback = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_bounce_feedback(p_env);
  976. energy = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_energy(p_env);
  977. normal_bias = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_normal_bias(p_env);
  978. probe_bias = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_probe_bias(p_env);
  979. reads_sky = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_read_sky_light(p_env);
  980. }
  981. void GI::SDFGI::free_data() {
  982. // we don't free things here, we handle SDFGI differently at the moment destructing the object when it needs to change.
  983. }
  984. GI::SDFGI::~SDFGI() {
  985. for (const SDFGI::Cascade &c : cascades) {
  986. RD::get_singleton()->free_rid(c.light_data);
  987. RD::get_singleton()->free_rid(c.light_aniso_0_tex);
  988. RD::get_singleton()->free_rid(c.light_aniso_1_tex);
  989. RD::get_singleton()->free_rid(c.sdf_tex);
  990. RD::get_singleton()->free_rid(c.solid_cell_dispatch_buffer_storage);
  991. RD::get_singleton()->free_rid(c.solid_cell_dispatch_buffer_call);
  992. RD::get_singleton()->free_rid(c.solid_cell_buffer);
  993. RD::get_singleton()->free_rid(c.lightprobe_history_tex);
  994. RD::get_singleton()->free_rid(c.lightprobe_average_tex);
  995. RD::get_singleton()->free_rid(c.lights_buffer);
  996. }
  997. RD::get_singleton()->free_rid(render_albedo);
  998. RD::get_singleton()->free_rid(render_emission);
  999. RD::get_singleton()->free_rid(render_emission_aniso);
  1000. RD::get_singleton()->free_rid(render_sdf[0]);
  1001. RD::get_singleton()->free_rid(render_sdf[1]);
  1002. RD::get_singleton()->free_rid(render_sdf_half[0]);
  1003. RD::get_singleton()->free_rid(render_sdf_half[1]);
  1004. for (int i = 0; i < 8; i++) {
  1005. RD::get_singleton()->free_rid(render_occlusion[i]);
  1006. }
  1007. RD::get_singleton()->free_rid(render_geom_facing);
  1008. RD::get_singleton()->free_rid(lightprobe_data);
  1009. RD::get_singleton()->free_rid(lightprobe_history_scroll);
  1010. RD::get_singleton()->free_rid(lightprobe_average_scroll);
  1011. RD::get_singleton()->free_rid(occlusion_data);
  1012. RD::get_singleton()->free_rid(ambient_texture);
  1013. RD::get_singleton()->free_rid(cascades_ubo);
  1014. for (uint32_t v = 0; v < RendererSceneRender::MAX_RENDER_VIEWS; v++) {
  1015. if (RD::get_singleton()->uniform_set_is_valid(debug_uniform_set[v])) {
  1016. RD::get_singleton()->free_rid(debug_uniform_set[v]);
  1017. }
  1018. debug_uniform_set[v] = RID();
  1019. }
  1020. if (RD::get_singleton()->uniform_set_is_valid(debug_probes_uniform_set)) {
  1021. RD::get_singleton()->free_rid(debug_probes_uniform_set);
  1022. }
  1023. debug_probes_uniform_set = RID();
  1024. if (debug_probes_scene_data_ubo.is_valid()) {
  1025. RD::get_singleton()->free_rid(debug_probes_scene_data_ubo);
  1026. debug_probes_scene_data_ubo = RID();
  1027. }
  1028. }
  1029. void GI::SDFGI::update(RID p_env, const Vector3 &p_world_position) {
  1030. bounce_feedback = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_bounce_feedback(p_env);
  1031. energy = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_energy(p_env);
  1032. normal_bias = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_normal_bias(p_env);
  1033. probe_bias = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_probe_bias(p_env);
  1034. reads_sky = RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_read_sky_light(p_env);
  1035. int32_t drag_margin = (cascade_size / SDFGI::PROBE_DIVISOR) / 2;
  1036. for (SDFGI::Cascade &cascade : cascades) {
  1037. cascade.dirty_regions = Vector3i();
  1038. Vector3 probe_half_size = Vector3(1, 1, 1) * cascade.cell_size * float(cascade_size / SDFGI::PROBE_DIVISOR) * 0.5;
  1039. probe_half_size = Vector3(0, 0, 0);
  1040. Vector3 world_position = p_world_position;
  1041. world_position.y *= y_mult;
  1042. Vector3i pos_in_cascade = Vector3i((world_position + probe_half_size) / cascade.cell_size);
  1043. for (int j = 0; j < 3; j++) {
  1044. if (pos_in_cascade[j] < cascade.position[j]) {
  1045. while (pos_in_cascade[j] < (cascade.position[j] - drag_margin)) {
  1046. cascade.position[j] -= drag_margin * 2;
  1047. cascade.dirty_regions[j] += drag_margin * 2;
  1048. }
  1049. } else if (pos_in_cascade[j] > cascade.position[j]) {
  1050. while (pos_in_cascade[j] > (cascade.position[j] + drag_margin)) {
  1051. cascade.position[j] += drag_margin * 2;
  1052. cascade.dirty_regions[j] -= drag_margin * 2;
  1053. }
  1054. }
  1055. if (cascade.dirty_regions[j] == 0) {
  1056. continue; // not dirty
  1057. } else if (uint32_t(Math::abs(cascade.dirty_regions[j])) >= cascade_size) {
  1058. //moved too much, just redraw everything (make all dirty)
  1059. cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
  1060. break;
  1061. }
  1062. }
  1063. if (cascade.dirty_regions != Vector3i() && cascade.dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
  1064. //see how much the total dirty volume represents from the total volume
  1065. uint32_t total_volume = cascade_size * cascade_size * cascade_size;
  1066. uint32_t safe_volume = 1;
  1067. for (int j = 0; j < 3; j++) {
  1068. safe_volume *= cascade_size - Math::abs(cascade.dirty_regions[j]);
  1069. }
  1070. uint32_t dirty_volume = total_volume - safe_volume;
  1071. if (dirty_volume > (safe_volume / 2)) {
  1072. //more than half the volume is dirty, make all dirty so its only rendered once
  1073. cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
  1074. }
  1075. }
  1076. }
  1077. }
  1078. void GI::SDFGI::update_light() {
  1079. RD::get_singleton()->draw_command_begin_label("SDFGI Update Dynamic Light");
  1080. for (uint32_t i = 0; i < cascades.size(); i++) {
  1081. RD::get_singleton()->buffer_copy(cascades[i].solid_cell_dispatch_buffer_storage, cascades[i].solid_cell_dispatch_buffer_call, 0, 0, sizeof(uint32_t) * 4);
  1082. }
  1083. /* Update dynamic light */
  1084. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1085. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.direct_light_pipeline[SDFGIShader::DIRECT_LIGHT_MODE_DYNAMIC].get_rid());
  1086. SDFGIShader::DirectLightPushConstant push_constant;
  1087. push_constant.grid_size[0] = cascade_size;
  1088. push_constant.grid_size[1] = cascade_size;
  1089. push_constant.grid_size[2] = cascade_size;
  1090. push_constant.max_cascades = cascades.size();
  1091. push_constant.probe_axis_size = probe_axis_count;
  1092. push_constant.bounce_feedback = bounce_feedback;
  1093. push_constant.y_mult = y_mult;
  1094. push_constant.use_occlusion = uses_occlusion;
  1095. for (uint32_t i = 0; i < cascades.size(); i++) {
  1096. SDFGI::Cascade &cascade = cascades[i];
  1097. push_constant.light_count = cascade_dynamic_light_count[i];
  1098. push_constant.cascade = i;
  1099. if (cascades[i].all_dynamic_lights_dirty || gi->sdfgi_frames_to_update_light == RS::ENV_SDFGI_UPDATE_LIGHT_IN_1_FRAME) {
  1100. push_constant.process_offset = 0;
  1101. push_constant.process_increment = 1;
  1102. } else {
  1103. static const uint32_t frames_to_update_table[RS::ENV_SDFGI_UPDATE_LIGHT_MAX] = {
  1104. 1, 2, 4, 8, 16
  1105. };
  1106. uint32_t frames_to_update = frames_to_update_table[gi->sdfgi_frames_to_update_light];
  1107. push_constant.process_offset = RSG::rasterizer->get_frame_number() % frames_to_update;
  1108. push_constant.process_increment = frames_to_update;
  1109. }
  1110. cascades[i].all_dynamic_lights_dirty = false;
  1111. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascade.sdf_direct_light_dynamic_uniform_set, 0);
  1112. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::DirectLightPushConstant));
  1113. RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cascade.solid_cell_dispatch_buffer_call, 0);
  1114. }
  1115. RD::get_singleton()->compute_list_end();
  1116. RD::get_singleton()->draw_command_end_label();
  1117. }
  1118. void GI::SDFGI::update_probes(RID p_env, SkyRD::Sky *p_sky) {
  1119. RD::get_singleton()->draw_command_begin_label("SDFGI Update Probes");
  1120. SDFGIShader::IntegratePushConstant push_constant;
  1121. push_constant.grid_size[1] = cascade_size;
  1122. push_constant.grid_size[2] = cascade_size;
  1123. push_constant.grid_size[0] = cascade_size;
  1124. push_constant.max_cascades = cascades.size();
  1125. push_constant.probe_axis_size = probe_axis_count;
  1126. push_constant.history_index = render_pass % history_size;
  1127. push_constant.history_size = history_size;
  1128. static const uint32_t ray_count[RS::ENV_SDFGI_RAY_COUNT_MAX] = { 4, 8, 16, 32, 64, 96, 128 };
  1129. push_constant.ray_count = ray_count[gi->sdfgi_ray_count];
  1130. push_constant.ray_bias = probe_bias;
  1131. push_constant.image_size[0] = probe_axis_count * probe_axis_count;
  1132. push_constant.image_size[1] = probe_axis_count;
  1133. push_constant.store_ambient_texture = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_enabled(p_env);
  1134. const float sky_irradiance_border_size = p_sky != nullptr ? p_sky->uv_border_size : 0.0f;
  1135. push_constant.sky_irradiance_border_size[0] = sky_irradiance_border_size;
  1136. push_constant.sky_irradiance_border_size[1] = 1.0 - sky_irradiance_border_size * 2.0f;
  1137. RID sky_uniform_set = gi->sdfgi_shader.integrate_default_sky_uniform_set;
  1138. push_constant.sky_flags = 0;
  1139. push_constant.y_mult = y_mult;
  1140. if (reads_sky && p_env.is_valid()) {
  1141. push_constant.sky_energy = RendererSceneRenderRD::get_singleton()->environment_get_bg_energy_multiplier(p_env);
  1142. if (RendererSceneRenderRD::get_singleton()->environment_get_background(p_env) == RS::ENV_BG_CLEAR_COLOR) {
  1143. push_constant.sky_flags |= SDFGIShader::IntegratePushConstant::SKY_FLAGS_MODE_COLOR;
  1144. Color c = RSG::texture_storage->get_default_clear_color().srgb_to_linear();
  1145. push_constant.sky_color_or_orientation[0] = c.r;
  1146. push_constant.sky_color_or_orientation[1] = c.g;
  1147. push_constant.sky_color_or_orientation[2] = c.b;
  1148. } else if (RendererSceneRenderRD::get_singleton()->environment_get_background(p_env) == RS::ENV_BG_COLOR) {
  1149. push_constant.sky_flags |= SDFGIShader::IntegratePushConstant::SKY_FLAGS_MODE_COLOR;
  1150. Color c = RendererSceneRenderRD::get_singleton()->environment_get_bg_color(p_env);
  1151. push_constant.sky_color_or_orientation[0] = c.r;
  1152. push_constant.sky_color_or_orientation[1] = c.g;
  1153. push_constant.sky_color_or_orientation[2] = c.b;
  1154. } else if (RendererSceneRenderRD::get_singleton()->environment_get_background(p_env) == RS::ENV_BG_SKY) {
  1155. if (p_sky && p_sky->radiance.is_valid()) {
  1156. if (integrate_sky_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(integrate_sky_uniform_set)) {
  1157. Vector<RD::Uniform> uniforms;
  1158. {
  1159. RD::Uniform u;
  1160. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1161. u.binding = 0;
  1162. u.append_id(p_sky->radiance);
  1163. uniforms.push_back(u);
  1164. }
  1165. {
  1166. RD::Uniform u;
  1167. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  1168. u.binding = 1;
  1169. u.append_id(RendererRD::MaterialStorage::get_singleton()->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1170. uniforms.push_back(u);
  1171. }
  1172. integrate_sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.integrate.version_get_shader(gi->sdfgi_shader.integrate_shader, 0), 1);
  1173. }
  1174. sky_uniform_set = integrate_sky_uniform_set;
  1175. push_constant.sky_flags |= SDFGIShader::IntegratePushConstant::SKY_FLAGS_MODE_SKY;
  1176. // Encode sky orientation as quaternion in existing push constants.
  1177. const Basis sky_basis = RendererSceneRenderRD::get_singleton()->environment_get_sky_orientation(p_env);
  1178. const Quaternion sky_quaternion = sky_basis.get_quaternion().inverse();
  1179. push_constant.sky_color_or_orientation[0] = sky_quaternion.x;
  1180. push_constant.sky_color_or_orientation[1] = sky_quaternion.y;
  1181. push_constant.sky_color_or_orientation[2] = sky_quaternion.z;
  1182. // Ideally we would reconstruct the largest component for least error, but sky contribution to GI is low frequency so just needs to get the idea across.
  1183. push_constant.sky_flags |= SDFGIShader::IntegratePushConstant::SKY_FLAGS_ORIENTATION_SIGN * (sky_quaternion.w < 0.0 ? 0 : 1);
  1184. }
  1185. }
  1186. }
  1187. render_pass++;
  1188. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1189. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_PROCESS].get_rid());
  1190. int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR;
  1191. for (uint32_t i = 0; i < cascades.size(); i++) {
  1192. push_constant.cascade = i;
  1193. push_constant.world_offset[0] = cascades[i].position.x / probe_divisor;
  1194. push_constant.world_offset[1] = cascades[i].position.y / probe_divisor;
  1195. push_constant.world_offset[2] = cascades[i].position.z / probe_divisor;
  1196. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[i].integrate_uniform_set, 0);
  1197. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sky_uniform_set, 1);
  1198. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::IntegratePushConstant));
  1199. RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count, probe_axis_count, 1);
  1200. }
  1201. RD::get_singleton()->compute_list_end();
  1202. RD::get_singleton()->draw_command_end_label();
  1203. }
  1204. void GI::SDFGI::store_probes() {
  1205. RD::get_singleton()->draw_command_begin_label("SDFGI Store Probes");
  1206. SDFGIShader::IntegratePushConstant push_constant;
  1207. push_constant.grid_size[1] = cascade_size;
  1208. push_constant.grid_size[2] = cascade_size;
  1209. push_constant.grid_size[0] = cascade_size;
  1210. push_constant.max_cascades = cascades.size();
  1211. push_constant.probe_axis_size = probe_axis_count;
  1212. push_constant.history_index = render_pass % history_size;
  1213. push_constant.history_size = history_size;
  1214. static const uint32_t ray_count[RS::ENV_SDFGI_RAY_COUNT_MAX] = { 4, 8, 16, 32, 64, 96, 128 };
  1215. push_constant.ray_count = ray_count[gi->sdfgi_ray_count];
  1216. push_constant.ray_bias = probe_bias;
  1217. push_constant.image_size[0] = probe_axis_count * probe_axis_count;
  1218. push_constant.image_size[1] = probe_axis_count;
  1219. push_constant.store_ambient_texture = false;
  1220. push_constant.sky_flags = 0;
  1221. push_constant.y_mult = y_mult;
  1222. // Then store values into the lightprobe texture. Separating these steps has a small performance hit, but it allows for multiple bounces
  1223. RENDER_TIMESTAMP("Average SDFGI Probes");
  1224. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1225. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_STORE].get_rid());
  1226. //convert to octahedral to store
  1227. push_constant.image_size[0] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  1228. push_constant.image_size[1] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  1229. for (uint32_t i = 0; i < cascades.size(); i++) {
  1230. push_constant.cascade = i;
  1231. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[i].integrate_uniform_set, 0);
  1232. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1);
  1233. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::IntegratePushConstant));
  1234. RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, 1);
  1235. }
  1236. RD::get_singleton()->compute_list_end();
  1237. RD::get_singleton()->draw_command_end_label();
  1238. }
  1239. int GI::SDFGI::get_pending_region_data(int p_region, Vector3i &r_local_offset, Vector3i &r_local_size, AABB &r_bounds) const {
  1240. int dirty_count = 0;
  1241. for (uint32_t i = 0; i < cascades.size(); i++) {
  1242. const SDFGI::Cascade &c = cascades[i];
  1243. if (c.dirty_regions == SDFGI::Cascade::DIRTY_ALL) {
  1244. if (dirty_count == p_region) {
  1245. r_local_offset = Vector3i();
  1246. r_local_size = Vector3i(1, 1, 1) * cascade_size;
  1247. r_bounds.position = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + c.position)) * c.cell_size * Vector3(1, 1.0 / y_mult, 1);
  1248. r_bounds.size = Vector3(r_local_size) * c.cell_size * Vector3(1, 1.0 / y_mult, 1);
  1249. return i;
  1250. }
  1251. dirty_count++;
  1252. } else {
  1253. for (int j = 0; j < 3; j++) {
  1254. if (c.dirty_regions[j] != 0) {
  1255. if (dirty_count == p_region) {
  1256. Vector3i from = Vector3i(0, 0, 0);
  1257. Vector3i to = Vector3i(1, 1, 1) * cascade_size;
  1258. if (c.dirty_regions[j] > 0) {
  1259. //fill from the beginning
  1260. to[j] = c.dirty_regions[j];
  1261. } else {
  1262. //fill from the end
  1263. from[j] = to[j] + c.dirty_regions[j];
  1264. }
  1265. for (int k = 0; k < j; k++) {
  1266. // "chip" away previous regions to avoid re-voxelizing the same thing
  1267. if (c.dirty_regions[k] > 0) {
  1268. from[k] += c.dirty_regions[k];
  1269. } else if (c.dirty_regions[k] < 0) {
  1270. to[k] += c.dirty_regions[k];
  1271. }
  1272. }
  1273. r_local_offset = from;
  1274. r_local_size = to - from;
  1275. r_bounds.position = Vector3(from + Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + c.position) * c.cell_size * Vector3(1, 1.0 / y_mult, 1);
  1276. r_bounds.size = Vector3(r_local_size) * c.cell_size * Vector3(1, 1.0 / y_mult, 1);
  1277. return i;
  1278. }
  1279. dirty_count++;
  1280. }
  1281. }
  1282. }
  1283. }
  1284. return -1;
  1285. }
  1286. void GI::SDFGI::update_cascades() {
  1287. //update cascades
  1288. SDFGI::Cascade::UBO cascade_data[SDFGI::MAX_CASCADES];
  1289. int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR;
  1290. for (uint32_t i = 0; i < cascades.size(); i++) {
  1291. Vector3 pos = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascades[i].position)) * cascades[i].cell_size;
  1292. cascade_data[i].offset[0] = pos.x;
  1293. cascade_data[i].offset[1] = pos.y;
  1294. cascade_data[i].offset[2] = pos.z;
  1295. cascade_data[i].to_cell = 1.0 / cascades[i].cell_size;
  1296. cascade_data[i].probe_offset[0] = cascades[i].position.x / probe_divisor;
  1297. cascade_data[i].probe_offset[1] = cascades[i].position.y / probe_divisor;
  1298. cascade_data[i].probe_offset[2] = cascades[i].position.z / probe_divisor;
  1299. cascade_data[i].pad = 0;
  1300. }
  1301. RD::get_singleton()->buffer_update(cascades_ubo, 0, sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES, cascade_data);
  1302. }
  1303. void GI::SDFGI::debug_draw(uint32_t p_view_count, const Projection *p_projections, const Transform3D &p_transform, int p_width, int p_height, RID p_render_target, RID p_texture, const Vector<RID> &p_texture_views) {
  1304. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  1305. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  1306. RendererRD::CopyEffects *copy_effects = RendererRD::CopyEffects::get_singleton();
  1307. for (uint32_t v = 0; v < p_view_count; v++) {
  1308. if (!debug_uniform_set[v].is_valid() || !RD::get_singleton()->uniform_set_is_valid(debug_uniform_set[v])) {
  1309. Vector<RD::Uniform> uniforms;
  1310. {
  1311. RD::Uniform u;
  1312. u.binding = 1;
  1313. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1314. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  1315. if (i < cascades.size()) {
  1316. u.append_id(cascades[i].sdf_tex);
  1317. } else {
  1318. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  1319. }
  1320. }
  1321. uniforms.push_back(u);
  1322. }
  1323. {
  1324. RD::Uniform u;
  1325. u.binding = 2;
  1326. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1327. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  1328. if (i < cascades.size()) {
  1329. u.append_id(cascades[i].light_tex);
  1330. } else {
  1331. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  1332. }
  1333. }
  1334. uniforms.push_back(u);
  1335. }
  1336. {
  1337. RD::Uniform u;
  1338. u.binding = 3;
  1339. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1340. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  1341. if (i < cascades.size()) {
  1342. u.append_id(cascades[i].light_aniso_0_tex);
  1343. } else {
  1344. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  1345. }
  1346. }
  1347. uniforms.push_back(u);
  1348. }
  1349. {
  1350. RD::Uniform u;
  1351. u.binding = 4;
  1352. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1353. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  1354. if (i < cascades.size()) {
  1355. u.append_id(cascades[i].light_aniso_1_tex);
  1356. } else {
  1357. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  1358. }
  1359. }
  1360. uniforms.push_back(u);
  1361. }
  1362. {
  1363. RD::Uniform u;
  1364. u.binding = 5;
  1365. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1366. u.append_id(occlusion_texture);
  1367. uniforms.push_back(u);
  1368. }
  1369. {
  1370. RD::Uniform u;
  1371. u.binding = 8;
  1372. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  1373. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1374. uniforms.push_back(u);
  1375. }
  1376. {
  1377. RD::Uniform u;
  1378. u.binding = 9;
  1379. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1380. u.append_id(cascades_ubo);
  1381. uniforms.push_back(u);
  1382. }
  1383. {
  1384. RD::Uniform u;
  1385. u.binding = 10;
  1386. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  1387. u.append_id(p_texture_views[v]);
  1388. uniforms.push_back(u);
  1389. }
  1390. {
  1391. RD::Uniform u;
  1392. u.binding = 11;
  1393. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1394. u.append_id(lightprobe_texture);
  1395. uniforms.push_back(u);
  1396. }
  1397. debug_uniform_set[v] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.debug_shader_version, 0);
  1398. }
  1399. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1400. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.debug_pipeline.get_rid());
  1401. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, debug_uniform_set[v], 0);
  1402. SDFGIShader::DebugPushConstant push_constant;
  1403. push_constant.grid_size[0] = cascade_size;
  1404. push_constant.grid_size[1] = cascade_size;
  1405. push_constant.grid_size[2] = cascade_size;
  1406. push_constant.max_cascades = cascades.size();
  1407. push_constant.screen_size[0] = p_width;
  1408. push_constant.screen_size[1] = p_height;
  1409. push_constant.y_mult = y_mult;
  1410. push_constant.z_near = -p_projections[v].get_z_near();
  1411. for (int i = 0; i < 3; i++) {
  1412. for (int j = 0; j < 3; j++) {
  1413. push_constant.cam_basis[i][j] = p_transform.basis.rows[j][i];
  1414. }
  1415. }
  1416. push_constant.cam_origin[0] = p_transform.origin[0];
  1417. push_constant.cam_origin[1] = p_transform.origin[1];
  1418. push_constant.cam_origin[2] = p_transform.origin[2];
  1419. // need to properly unproject for asymmetric projection matrices in stereo..
  1420. Projection inv_projection = p_projections[v].inverse();
  1421. for (int i = 0; i < 4; i++) {
  1422. for (int j = 0; j < 3; j++) {
  1423. push_constant.inv_projection[j][i] = inv_projection.columns[i][j];
  1424. }
  1425. }
  1426. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::DebugPushConstant));
  1427. RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_width, p_height, 1);
  1428. RD::get_singleton()->compute_list_end();
  1429. }
  1430. Size2i rtsize = texture_storage->render_target_get_size(p_render_target);
  1431. copy_effects->copy_to_fb_rect(p_texture, texture_storage->render_target_get_rd_framebuffer(p_render_target), Rect2i(Point2i(), rtsize), true, false, false, false, RID(), p_view_count > 1);
  1432. }
  1433. void GI::SDFGI::debug_probes(RID p_framebuffer, const uint32_t p_view_count, const Projection *p_camera_with_transforms) {
  1434. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  1435. // setup scene data
  1436. {
  1437. SDFGIShader::DebugProbesSceneData scene_data;
  1438. if (debug_probes_scene_data_ubo.is_null()) {
  1439. debug_probes_scene_data_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGIShader::DebugProbesSceneData));
  1440. }
  1441. for (uint32_t v = 0; v < p_view_count; v++) {
  1442. RendererRD::MaterialStorage::store_camera(p_camera_with_transforms[v], scene_data.projection[v]);
  1443. }
  1444. RD::get_singleton()->buffer_update(debug_probes_scene_data_ubo, 0, sizeof(SDFGIShader::DebugProbesSceneData), &scene_data);
  1445. }
  1446. // setup push constant
  1447. SDFGIShader::DebugProbesPushConstant push_constant;
  1448. //gen spheres from strips
  1449. uint32_t band_points = 16;
  1450. push_constant.band_power = 4;
  1451. push_constant.sections_in_band = ((band_points / 2) - 1);
  1452. push_constant.band_mask = band_points - 2;
  1453. push_constant.section_arc = Math::TAU / float(push_constant.sections_in_band);
  1454. push_constant.y_mult = y_mult;
  1455. uint32_t total_points = push_constant.sections_in_band * band_points;
  1456. uint32_t total_probes = probe_axis_count * probe_axis_count * probe_axis_count;
  1457. push_constant.grid_size[0] = cascade_size;
  1458. push_constant.grid_size[1] = cascade_size;
  1459. push_constant.grid_size[2] = cascade_size;
  1460. push_constant.cascade = 0;
  1461. push_constant.probe_axis_size = probe_axis_count;
  1462. if (!debug_probes_uniform_set.is_valid() || !RD::get_singleton()->uniform_set_is_valid(debug_probes_uniform_set)) {
  1463. Vector<RD::Uniform> uniforms;
  1464. {
  1465. RD::Uniform u;
  1466. u.binding = 1;
  1467. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1468. u.append_id(cascades_ubo);
  1469. uniforms.push_back(u);
  1470. }
  1471. {
  1472. RD::Uniform u;
  1473. u.binding = 2;
  1474. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1475. u.append_id(lightprobe_texture);
  1476. uniforms.push_back(u);
  1477. }
  1478. {
  1479. RD::Uniform u;
  1480. u.binding = 3;
  1481. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  1482. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1483. uniforms.push_back(u);
  1484. }
  1485. {
  1486. RD::Uniform u;
  1487. u.binding = 4;
  1488. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1489. u.append_id(occlusion_texture);
  1490. uniforms.push_back(u);
  1491. }
  1492. {
  1493. RD::Uniform u;
  1494. u.binding = 5;
  1495. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1496. u.append_id(debug_probes_scene_data_ubo);
  1497. uniforms.push_back(u);
  1498. }
  1499. debug_probes_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.debug_probes.version_get_shader(gi->sdfgi_shader.debug_probes_shader, 0), 0);
  1500. }
  1501. SDFGIShader::ProbeDebugMode mode = p_view_count > 1 ? SDFGIShader::PROBE_DEBUG_PROBES_MULTIVIEW : SDFGIShader::PROBE_DEBUG_PROBES;
  1502. RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_framebuffer);
  1503. RD::get_singleton()->draw_command_begin_label("Debug SDFGI");
  1504. RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, gi->sdfgi_shader.debug_probes_pipeline[mode].get_render_pipeline(RD::INVALID_FORMAT_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  1505. RD::get_singleton()->draw_list_bind_uniform_set(draw_list, debug_probes_uniform_set, 0);
  1506. RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(SDFGIShader::DebugProbesPushConstant));
  1507. RD::get_singleton()->draw_list_draw(draw_list, false, total_probes, total_points);
  1508. if (gi->sdfgi_debug_probe_dir != Vector3()) {
  1509. uint32_t cascade = 0;
  1510. Vector3 offset = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascades[cascade].position)) * cascades[cascade].cell_size * Vector3(1.0, 1.0 / y_mult, 1.0);
  1511. Vector3 probe_size = cascades[cascade].cell_size * (cascade_size / SDFGI::PROBE_DIVISOR) * Vector3(1.0, 1.0 / y_mult, 1.0);
  1512. Vector3 ray_from = gi->sdfgi_debug_probe_pos;
  1513. Vector3 ray_to = gi->sdfgi_debug_probe_pos + gi->sdfgi_debug_probe_dir * cascades[cascade].cell_size * Math::sqrt(3.0) * cascade_size;
  1514. float sphere_radius = 0.2;
  1515. float closest_dist = 1e20;
  1516. gi->sdfgi_debug_probe_enabled = false;
  1517. Vector3i probe_from = cascades[cascade].position / (cascade_size / SDFGI::PROBE_DIVISOR);
  1518. for (int i = 0; i < (SDFGI::PROBE_DIVISOR + 1); i++) {
  1519. for (int j = 0; j < (SDFGI::PROBE_DIVISOR + 1); j++) {
  1520. for (int k = 0; k < (SDFGI::PROBE_DIVISOR + 1); k++) {
  1521. Vector3 pos = offset + probe_size * Vector3(i, j, k);
  1522. Vector3 res;
  1523. if (Geometry3D::segment_intersects_sphere(ray_from, ray_to, pos, sphere_radius, &res)) {
  1524. float d = ray_from.distance_to(res);
  1525. if (d < closest_dist) {
  1526. closest_dist = d;
  1527. gi->sdfgi_debug_probe_enabled = true;
  1528. gi->sdfgi_debug_probe_index = probe_from + Vector3i(i, j, k);
  1529. }
  1530. }
  1531. }
  1532. }
  1533. }
  1534. gi->sdfgi_debug_probe_dir = Vector3();
  1535. }
  1536. if (gi->sdfgi_debug_probe_enabled) {
  1537. uint32_t cascade = 0;
  1538. uint32_t probe_cells = (cascade_size / SDFGI::PROBE_DIVISOR);
  1539. Vector3i probe_from = cascades[cascade].position / probe_cells;
  1540. Vector3i ofs = gi->sdfgi_debug_probe_index - probe_from;
  1541. if (ofs.x < 0 || ofs.y < 0 || ofs.z < 0) {
  1542. return;
  1543. }
  1544. if (ofs.x > SDFGI::PROBE_DIVISOR || ofs.y > SDFGI::PROBE_DIVISOR || ofs.z > SDFGI::PROBE_DIVISOR) {
  1545. return;
  1546. }
  1547. uint32_t mult = (SDFGI::PROBE_DIVISOR + 1);
  1548. uint32_t index = ofs.z * mult * mult + ofs.y * mult + ofs.x;
  1549. push_constant.probe_debug_index = index;
  1550. uint32_t cell_count = probe_cells * 2 * probe_cells * 2 * probe_cells * 2;
  1551. RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, gi->sdfgi_shader.debug_probes_pipeline[p_view_count > 1 ? SDFGIShader::PROBE_DEBUG_VISIBILITY_MULTIVIEW : SDFGIShader::PROBE_DEBUG_VISIBILITY].get_render_pipeline(RD::INVALID_FORMAT_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  1552. RD::get_singleton()->draw_list_bind_uniform_set(draw_list, debug_probes_uniform_set, 0);
  1553. RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(SDFGIShader::DebugProbesPushConstant));
  1554. RD::get_singleton()->draw_list_draw(draw_list, false, cell_count, total_points);
  1555. }
  1556. RD::get_singleton()->draw_command_end_label();
  1557. RD::get_singleton()->draw_list_end();
  1558. }
  1559. void GI::SDFGI::pre_process_gi(const Transform3D &p_transform, RenderDataRD *p_render_data) {
  1560. if (p_render_data->sdfgi_update_data == nullptr) {
  1561. return;
  1562. }
  1563. RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
  1564. /* Update general SDFGI Buffer */
  1565. SDFGIData sdfgi_data;
  1566. sdfgi_data.grid_size[0] = cascade_size;
  1567. sdfgi_data.grid_size[1] = cascade_size;
  1568. sdfgi_data.grid_size[2] = cascade_size;
  1569. sdfgi_data.max_cascades = cascades.size();
  1570. sdfgi_data.probe_axis_size = probe_axis_count;
  1571. sdfgi_data.cascade_probe_size[0] = sdfgi_data.probe_axis_size - 1; //float version for performance
  1572. sdfgi_data.cascade_probe_size[1] = sdfgi_data.probe_axis_size - 1;
  1573. sdfgi_data.cascade_probe_size[2] = sdfgi_data.probe_axis_size - 1;
  1574. float csize = cascade_size;
  1575. sdfgi_data.probe_to_uvw = 1.0 / float(sdfgi_data.cascade_probe_size[0]);
  1576. sdfgi_data.use_occlusion = uses_occlusion;
  1577. //sdfgi_data.energy = energy;
  1578. sdfgi_data.y_mult = y_mult;
  1579. float cascade_voxel_size = (csize / sdfgi_data.cascade_probe_size[0]);
  1580. float occlusion_clamp = (cascade_voxel_size - 0.5) / cascade_voxel_size;
  1581. sdfgi_data.occlusion_clamp[0] = occlusion_clamp;
  1582. sdfgi_data.occlusion_clamp[1] = occlusion_clamp;
  1583. sdfgi_data.occlusion_clamp[2] = occlusion_clamp;
  1584. sdfgi_data.normal_bias = (normal_bias / csize) * sdfgi_data.cascade_probe_size[0];
  1585. //vec2 tex_pixel_size = 1.0 / vec2(ivec2( (OCT_SIZE+2) * params.probe_axis_size * params.probe_axis_size, (OCT_SIZE+2) * params.probe_axis_size ) );
  1586. //vec3 probe_uv_offset = (ivec3(OCT_SIZE+2,OCT_SIZE+2,(OCT_SIZE+2) * params.probe_axis_size)) * tex_pixel_size.xyx;
  1587. uint32_t oct_size = SDFGI::LIGHTPROBE_OCT_SIZE;
  1588. sdfgi_data.lightprobe_tex_pixel_size[0] = 1.0 / ((oct_size + 2) * sdfgi_data.probe_axis_size * sdfgi_data.probe_axis_size);
  1589. sdfgi_data.lightprobe_tex_pixel_size[1] = 1.0 / ((oct_size + 2) * sdfgi_data.probe_axis_size);
  1590. sdfgi_data.lightprobe_tex_pixel_size[2] = 1.0;
  1591. sdfgi_data.energy = energy;
  1592. sdfgi_data.lightprobe_uv_offset[0] = float(oct_size + 2) * sdfgi_data.lightprobe_tex_pixel_size[0];
  1593. sdfgi_data.lightprobe_uv_offset[1] = float(oct_size + 2) * sdfgi_data.lightprobe_tex_pixel_size[1];
  1594. sdfgi_data.lightprobe_uv_offset[2] = float((oct_size + 2) * sdfgi_data.probe_axis_size) * sdfgi_data.lightprobe_tex_pixel_size[0];
  1595. sdfgi_data.occlusion_renormalize[0] = 0.5;
  1596. sdfgi_data.occlusion_renormalize[1] = 1.0;
  1597. sdfgi_data.occlusion_renormalize[2] = 1.0 / float(sdfgi_data.max_cascades);
  1598. int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR;
  1599. for (uint32_t i = 0; i < sdfgi_data.max_cascades; i++) {
  1600. SDFGIData::ProbeCascadeData &c = sdfgi_data.cascades[i];
  1601. Vector3 pos = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascades[i].position)) * cascades[i].cell_size;
  1602. Vector3 cam_origin = p_transform.origin;
  1603. cam_origin.y *= y_mult;
  1604. pos -= cam_origin; //make pos local to camera, to reduce numerical error
  1605. c.position[0] = pos.x;
  1606. c.position[1] = pos.y;
  1607. c.position[2] = pos.z;
  1608. c.to_probe = 1.0 / (float(cascade_size) * cascades[i].cell_size / float(probe_axis_count - 1));
  1609. Vector3i probe_ofs = cascades[i].position / probe_divisor;
  1610. c.probe_world_offset[0] = probe_ofs.x;
  1611. c.probe_world_offset[1] = probe_ofs.y;
  1612. c.probe_world_offset[2] = probe_ofs.z;
  1613. c.to_cell = 1.0 / cascades[i].cell_size;
  1614. c.exposure_normalization = 1.0;
  1615. if (p_render_data->camera_attributes.is_valid()) {
  1616. float exposure_normalization = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
  1617. c.exposure_normalization = exposure_normalization / cascades[i].baked_exposure_normalization;
  1618. }
  1619. }
  1620. RD::get_singleton()->buffer_update(gi->sdfgi_ubo, 0, sizeof(SDFGIData), &sdfgi_data);
  1621. /* Update dynamic lights in SDFGI cascades */
  1622. for (uint32_t i = 0; i < cascades.size(); i++) {
  1623. SDFGI::Cascade &cascade = cascades[i];
  1624. SDFGIShader::Light lights[SDFGI::MAX_DYNAMIC_LIGHTS];
  1625. uint32_t idx = 0;
  1626. for (uint32_t j = 0; j < (uint32_t)p_render_data->sdfgi_update_data->directional_lights->size(); j++) {
  1627. if (idx == SDFGI::MAX_DYNAMIC_LIGHTS) {
  1628. break;
  1629. }
  1630. RID light_instance = p_render_data->sdfgi_update_data->directional_lights->get(j);
  1631. ERR_CONTINUE(!light_storage->owns_light_instance(light_instance));
  1632. RID light = light_storage->light_instance_get_base_light(light_instance);
  1633. Transform3D light_transform = light_storage->light_instance_get_base_transform(light_instance);
  1634. if (RSG::light_storage->light_directional_get_sky_mode(light) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) {
  1635. continue;
  1636. }
  1637. Vector3 dir = -light_transform.basis.get_column(Vector3::AXIS_Z);
  1638. dir.y *= y_mult;
  1639. dir.normalize();
  1640. lights[idx].direction[0] = dir.x;
  1641. lights[idx].direction[1] = dir.y;
  1642. lights[idx].direction[2] = dir.z;
  1643. Color color = RSG::light_storage->light_get_color(light);
  1644. color = color.srgb_to_linear();
  1645. lights[idx].color[0] = color.r;
  1646. lights[idx].color[1] = color.g;
  1647. lights[idx].color[2] = color.b;
  1648. lights[idx].type = RS::LIGHT_DIRECTIONAL;
  1649. lights[idx].energy = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
  1650. if (RendererSceneRenderRD::get_singleton()->is_using_physical_light_units()) {
  1651. lights[idx].energy *= RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INTENSITY);
  1652. }
  1653. if (p_render_data->camera_attributes.is_valid()) {
  1654. lights[idx].energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
  1655. }
  1656. lights[idx].has_shadow = RSG::light_storage->light_has_shadow(light);
  1657. idx++;
  1658. }
  1659. AABB cascade_aabb;
  1660. cascade_aabb.position = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascade.position)) * cascade.cell_size;
  1661. cascade_aabb.size = Vector3(1, 1, 1) * cascade_size * cascade.cell_size;
  1662. for (uint32_t j = 0; j < p_render_data->sdfgi_update_data->positional_light_count; j++) {
  1663. if (idx == SDFGI::MAX_DYNAMIC_LIGHTS) {
  1664. break;
  1665. }
  1666. RID light_instance = p_render_data->sdfgi_update_data->positional_light_instances[j];
  1667. ERR_CONTINUE(!light_storage->owns_light_instance(light_instance));
  1668. RID light = light_storage->light_instance_get_base_light(light_instance);
  1669. AABB light_aabb = light_storage->light_instance_get_base_aabb(light_instance);
  1670. Transform3D light_transform = light_storage->light_instance_get_base_transform(light_instance);
  1671. uint32_t max_sdfgi_cascade = RSG::light_storage->light_get_max_sdfgi_cascade(light);
  1672. if (i > max_sdfgi_cascade) {
  1673. continue;
  1674. }
  1675. if (!cascade_aabb.intersects(light_aabb)) {
  1676. continue;
  1677. }
  1678. Vector3 dir = -light_transform.basis.get_column(Vector3::AXIS_Z);
  1679. //faster to not do this here
  1680. //dir.y *= y_mult;
  1681. //dir.normalize();
  1682. lights[idx].direction[0] = dir.x;
  1683. lights[idx].direction[1] = dir.y;
  1684. lights[idx].direction[2] = dir.z;
  1685. Vector3 pos = light_transform.origin;
  1686. pos.y *= y_mult;
  1687. lights[idx].position[0] = pos.x;
  1688. lights[idx].position[1] = pos.y;
  1689. lights[idx].position[2] = pos.z;
  1690. Color color = RSG::light_storage->light_get_color(light);
  1691. color = color.srgb_to_linear();
  1692. lights[idx].color[0] = color.r;
  1693. lights[idx].color[1] = color.g;
  1694. lights[idx].color[2] = color.b;
  1695. lights[idx].type = RSG::light_storage->light_get_type(light);
  1696. lights[idx].energy = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
  1697. if (RendererSceneRenderRD::get_singleton()->is_using_physical_light_units()) {
  1698. lights[idx].energy *= RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INTENSITY);
  1699. // Convert from Luminous Power to Luminous Intensity
  1700. if (lights[idx].type == RS::LIGHT_OMNI) {
  1701. lights[idx].energy *= 1.0 / (Math::PI * 4.0);
  1702. } else if (lights[idx].type == RS::LIGHT_SPOT) {
  1703. // Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle.
  1704. // We make this assumption to keep them easy to control.
  1705. lights[idx].energy *= 1.0 / Math::PI;
  1706. }
  1707. }
  1708. if (p_render_data->camera_attributes.is_valid()) {
  1709. lights[idx].energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
  1710. }
  1711. lights[idx].has_shadow = RSG::light_storage->light_has_shadow(light);
  1712. lights[idx].attenuation = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION);
  1713. lights[idx].radius = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_RANGE);
  1714. lights[idx].cos_spot_angle = Math::cos(Math::deg_to_rad(RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE)));
  1715. lights[idx].inv_spot_attenuation = 1.0f / RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  1716. idx++;
  1717. }
  1718. if (idx > 0) {
  1719. RD::get_singleton()->buffer_update(cascade.lights_buffer, 0, idx * sizeof(SDFGIShader::Light), lights);
  1720. }
  1721. cascade_dynamic_light_count[i] = idx;
  1722. }
  1723. }
  1724. void GI::SDFGI::render_region(Ref<RenderSceneBuffersRD> p_render_buffers, int p_region, const PagedArray<RenderGeometryInstance *> &p_instances, float p_exposure_normalization) {
  1725. //print_line("rendering region " + itos(p_region));
  1726. ERR_FAIL_COND(p_render_buffers.is_null()); // we wouldn't be here if this failed but...
  1727. AABB bounds;
  1728. Vector3i from;
  1729. Vector3i size;
  1730. int cascade_prev = get_pending_region_data(p_region - 1, from, size, bounds);
  1731. int cascade_next = get_pending_region_data(p_region + 1, from, size, bounds);
  1732. int cascade = get_pending_region_data(p_region, from, size, bounds);
  1733. ERR_FAIL_COND(cascade < 0);
  1734. if (cascade_prev != cascade) {
  1735. //initialize render
  1736. RD::get_singleton()->texture_clear(render_albedo, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1737. RD::get_singleton()->texture_clear(render_emission, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1738. RD::get_singleton()->texture_clear(render_emission_aniso, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1739. RD::get_singleton()->texture_clear(render_geom_facing, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1740. }
  1741. //print_line("rendering cascade " + itos(p_region) + " objects: " + itos(p_cull_count) + " bounds: " + bounds + " from: " + from + " size: " + size + " cell size: " + rtos(cascades[cascade].cell_size));
  1742. RendererSceneRenderRD::get_singleton()->_render_sdfgi(p_render_buffers, from, size, bounds, p_instances, render_albedo, render_emission, render_emission_aniso, render_geom_facing, p_exposure_normalization);
  1743. if (cascade_next != cascade) {
  1744. RD::get_singleton()->draw_command_begin_label("SDFGI Pre-Process Cascade");
  1745. RENDER_TIMESTAMP("> SDFGI Update SDF");
  1746. //done rendering! must update SDF
  1747. //clear dispatch indirect data
  1748. SDFGIShader::PreprocessPushConstant push_constant;
  1749. memset(&push_constant, 0, sizeof(SDFGIShader::PreprocessPushConstant));
  1750. RENDER_TIMESTAMP("SDFGI Scroll SDF");
  1751. //scroll
  1752. if (cascades[cascade].dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
  1753. //for scroll
  1754. Vector3i dirty = cascades[cascade].dirty_regions;
  1755. push_constant.scroll[0] = dirty.x;
  1756. push_constant.scroll[1] = dirty.y;
  1757. push_constant.scroll[2] = dirty.z;
  1758. } else {
  1759. //for no scroll
  1760. push_constant.scroll[0] = 0;
  1761. push_constant.scroll[1] = 0;
  1762. push_constant.scroll[2] = 0;
  1763. }
  1764. cascades[cascade].all_dynamic_lights_dirty = true;
  1765. cascades[cascade].baked_exposure_normalization = p_exposure_normalization;
  1766. push_constant.grid_size = cascade_size;
  1767. push_constant.cascade = cascade;
  1768. if (cascades[cascade].dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
  1769. RD::get_singleton()->buffer_copy(cascades[cascade].solid_cell_dispatch_buffer_storage, cascades[cascade].solid_cell_dispatch_buffer_call, 0, 0, sizeof(uint32_t) * 4);
  1770. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1771. //must pre scroll existing data because not all is dirty
  1772. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_SCROLL].get_rid());
  1773. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].scroll_uniform_set, 0);
  1774. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1775. RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cascades[cascade].solid_cell_dispatch_buffer_call, 0);
  1776. // no barrier do all together
  1777. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_SCROLL_OCCLUSION].get_rid());
  1778. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].scroll_occlusion_uniform_set, 0);
  1779. Vector3i dirty = cascades[cascade].dirty_regions;
  1780. Vector3i groups;
  1781. groups.x = cascade_size - Math::abs(dirty.x);
  1782. groups.y = cascade_size - Math::abs(dirty.y);
  1783. groups.z = cascade_size - Math::abs(dirty.z);
  1784. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1785. RD::get_singleton()->compute_list_dispatch_threads(compute_list, groups.x, groups.y, groups.z);
  1786. //no barrier, continue together
  1787. {
  1788. //scroll probes and their history also
  1789. SDFGIShader::IntegratePushConstant ipush_constant;
  1790. ipush_constant.grid_size[1] = cascade_size;
  1791. ipush_constant.grid_size[2] = cascade_size;
  1792. ipush_constant.grid_size[0] = cascade_size;
  1793. ipush_constant.max_cascades = cascades.size();
  1794. ipush_constant.probe_axis_size = probe_axis_count;
  1795. ipush_constant.history_index = 0;
  1796. ipush_constant.history_size = history_size;
  1797. ipush_constant.ray_count = 0;
  1798. ipush_constant.ray_bias = 0;
  1799. ipush_constant.sky_flags = 0;
  1800. ipush_constant.sky_energy = 0;
  1801. ipush_constant.sky_color_or_orientation[0] = 0;
  1802. ipush_constant.sky_color_or_orientation[1] = 0;
  1803. ipush_constant.sky_color_or_orientation[2] = 0;
  1804. ipush_constant.y_mult = y_mult;
  1805. ipush_constant.store_ambient_texture = false;
  1806. ipush_constant.image_size[0] = probe_axis_count * probe_axis_count;
  1807. ipush_constant.image_size[1] = probe_axis_count;
  1808. int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR;
  1809. ipush_constant.cascade = cascade;
  1810. ipush_constant.world_offset[0] = cascades[cascade].position.x / probe_divisor;
  1811. ipush_constant.world_offset[1] = cascades[cascade].position.y / probe_divisor;
  1812. ipush_constant.world_offset[2] = cascades[cascade].position.z / probe_divisor;
  1813. ipush_constant.scroll[0] = dirty.x / probe_divisor;
  1814. ipush_constant.scroll[1] = dirty.y / probe_divisor;
  1815. ipush_constant.scroll[2] = dirty.z / probe_divisor;
  1816. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_SCROLL].get_rid());
  1817. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].integrate_uniform_set, 0);
  1818. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1);
  1819. RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDFGIShader::IntegratePushConstant));
  1820. RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count, probe_axis_count, 1);
  1821. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1822. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_SCROLL_STORE].get_rid());
  1823. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].integrate_uniform_set, 0);
  1824. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1);
  1825. RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDFGIShader::IntegratePushConstant));
  1826. RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count, probe_axis_count, 1);
  1827. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1828. if (bounce_feedback > 0.0) {
  1829. //multibounce requires this to be stored so direct light can read from it
  1830. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_STORE].get_rid());
  1831. //convert to octahedral to store
  1832. ipush_constant.image_size[0] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  1833. ipush_constant.image_size[1] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  1834. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].integrate_uniform_set, 0);
  1835. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1);
  1836. RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDFGIShader::IntegratePushConstant));
  1837. RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, 1);
  1838. }
  1839. }
  1840. //ok finally barrier
  1841. RD::get_singleton()->compute_list_end();
  1842. }
  1843. //clear dispatch indirect data
  1844. uint32_t dispatch_indirect_data[4] = { 0, 0, 0, 0 };
  1845. RD::get_singleton()->buffer_update(cascades[cascade].solid_cell_dispatch_buffer_storage, 0, sizeof(uint32_t) * 4, dispatch_indirect_data);
  1846. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1847. bool half_size = true; //much faster, very little difference
  1848. static const int optimized_jf_group_size = 8;
  1849. if (half_size) {
  1850. push_constant.grid_size >>= 1;
  1851. uint32_t cascade_half_size = cascade_size >> 1;
  1852. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF].get_rid());
  1853. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdf_initialize_half_uniform_set, 0);
  1854. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1855. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size);
  1856. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1857. //must start with regular jumpflood
  1858. push_constant.half_size = true;
  1859. {
  1860. RENDER_TIMESTAMP("SDFGI Jump Flood (Half-Size)");
  1861. uint32_t s = cascade_half_size;
  1862. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD].get_rid());
  1863. int jf_us = 0;
  1864. //start with regular jump flood for very coarse reads, as this is impossible to optimize
  1865. while (s > 1) {
  1866. s /= 2;
  1867. push_constant.step_size = s;
  1868. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_half_uniform_set[jf_us], 0);
  1869. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1870. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size);
  1871. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1872. jf_us = jf_us == 0 ? 1 : 0;
  1873. if (cascade_half_size / (s / 2) >= optimized_jf_group_size) {
  1874. break;
  1875. }
  1876. }
  1877. RENDER_TIMESTAMP("SDFGI Jump Flood Optimized (Half-Size)");
  1878. //continue with optimized jump flood for smaller reads
  1879. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED].get_rid());
  1880. while (s > 1) {
  1881. s /= 2;
  1882. push_constant.step_size = s;
  1883. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_half_uniform_set[jf_us], 0);
  1884. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1885. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size);
  1886. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1887. jf_us = jf_us == 0 ? 1 : 0;
  1888. }
  1889. }
  1890. // restore grid size for last passes
  1891. push_constant.grid_size = cascade_size;
  1892. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_UPSCALE].get_rid());
  1893. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdf_upscale_uniform_set, 0);
  1894. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1895. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
  1896. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1897. //run one pass of fullsize jumpflood to fix up half size artifacts
  1898. push_constant.half_size = false;
  1899. push_constant.step_size = 1;
  1900. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED].get_rid());
  1901. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_uniform_set[upscale_jfa_uniform_set_index], 0);
  1902. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1903. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
  1904. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1905. } else {
  1906. //full size jumpflood
  1907. RENDER_TIMESTAMP("SDFGI Jump Flood (Full-Size)");
  1908. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE].get_rid());
  1909. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdf_initialize_uniform_set, 0);
  1910. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1911. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
  1912. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1913. push_constant.half_size = false;
  1914. {
  1915. uint32_t s = cascade_size;
  1916. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD].get_rid());
  1917. int jf_us = 0;
  1918. //start with regular jump flood for very coarse reads, as this is impossible to optimize
  1919. while (s > 1) {
  1920. s /= 2;
  1921. push_constant.step_size = s;
  1922. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_uniform_set[jf_us], 0);
  1923. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1924. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
  1925. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1926. jf_us = jf_us == 0 ? 1 : 0;
  1927. if (cascade_size / (s / 2) >= optimized_jf_group_size) {
  1928. break;
  1929. }
  1930. }
  1931. RENDER_TIMESTAMP("SDFGI Jump Flood Optimized (Full-Size)");
  1932. //continue with optimized jump flood for smaller reads
  1933. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED].get_rid());
  1934. while (s > 1) {
  1935. s /= 2;
  1936. push_constant.step_size = s;
  1937. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_uniform_set[jf_us], 0);
  1938. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1939. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
  1940. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1941. jf_us = jf_us == 0 ? 1 : 0;
  1942. }
  1943. }
  1944. }
  1945. RENDER_TIMESTAMP("SDFGI Occlusion");
  1946. // occlusion
  1947. {
  1948. uint32_t probe_size = cascade_size / SDFGI::PROBE_DIVISOR;
  1949. Vector3i probe_global_pos = cascades[cascade].position / probe_size;
  1950. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_OCCLUSION].get_rid());
  1951. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, occlusion_uniform_set, 0);
  1952. for (int i = 0; i < 8; i++) {
  1953. //dispatch all at once for performance
  1954. Vector3i offset(i & 1, (i >> 1) & 1, (i >> 2) & 1);
  1955. if ((probe_global_pos.x & 1) != 0) {
  1956. offset.x = (offset.x + 1) & 1;
  1957. }
  1958. if ((probe_global_pos.y & 1) != 0) {
  1959. offset.y = (offset.y + 1) & 1;
  1960. }
  1961. if ((probe_global_pos.z & 1) != 0) {
  1962. offset.z = (offset.z + 1) & 1;
  1963. }
  1964. push_constant.probe_offset[0] = offset.x;
  1965. push_constant.probe_offset[1] = offset.y;
  1966. push_constant.probe_offset[2] = offset.z;
  1967. push_constant.occlusion_index = i;
  1968. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1969. Vector3i groups = Vector3i(probe_size + 1, probe_size + 1, probe_size + 1) - offset; //if offset, it's one less probe per axis to compute
  1970. RD::get_singleton()->compute_list_dispatch(compute_list, groups.x, groups.y, groups.z);
  1971. }
  1972. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1973. }
  1974. RENDER_TIMESTAMP("SDFGI Store");
  1975. // store
  1976. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_STORE].get_rid());
  1977. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].sdf_store_uniform_set, 0);
  1978. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1979. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
  1980. RD::get_singleton()->compute_list_end();
  1981. //clear these textures, as they will have previous garbage on next draw
  1982. RD::get_singleton()->texture_clear(cascades[cascade].light_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1983. RD::get_singleton()->texture_clear(cascades[cascade].light_aniso_0_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1984. RD::get_singleton()->texture_clear(cascades[cascade].light_aniso_1_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1985. #if 0
  1986. Vector<uint8_t> data = RD::get_singleton()->texture_get_data(cascades[cascade].sdf, 0);
  1987. Ref<Image> img;
  1988. img.instantiate();
  1989. for (uint32_t i = 0; i < cascade_size; i++) {
  1990. Vector<uint8_t> subarr = data.slice(128 * 128 * i, 128 * 128 * (i + 1));
  1991. img->set_data(cascade_size, cascade_size, false, Image::FORMAT_L8, subarr);
  1992. img->save_png("res://cascade_sdf_" + itos(cascade) + "_" + itos(i) + ".png");
  1993. }
  1994. //finalize render and update sdf
  1995. #endif
  1996. #if 0
  1997. Vector<uint8_t> data = RD::get_singleton()->texture_get_data(render_albedo, 0);
  1998. Ref<Image> img;
  1999. img.instantiate();
  2000. for (uint32_t i = 0; i < cascade_size; i++) {
  2001. Vector<uint8_t> subarr = data.slice(128 * 128 * i * 2, 128 * 128 * (i + 1) * 2);
  2002. img->createcascade_size, cascade_size, false, Image::FORMAT_RGB565, subarr);
  2003. img->convert(Image::FORMAT_RGBA8);
  2004. img->save_png("res://cascade_" + itos(cascade) + "_" + itos(i) + ".png");
  2005. }
  2006. //finalize render and update sdf
  2007. #endif
  2008. RENDER_TIMESTAMP("< SDFGI Update SDF");
  2009. RD::get_singleton()->draw_command_end_label();
  2010. }
  2011. }
  2012. void GI::SDFGI::render_static_lights(RenderDataRD *p_render_data, Ref<RenderSceneBuffersRD> p_render_buffers, uint32_t p_cascade_count, const uint32_t *p_cascade_indices, const PagedArray<RID> *p_positional_light_cull_result) {
  2013. ERR_FAIL_COND(p_render_buffers.is_null()); // we wouldn't be here if this failed but...
  2014. RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
  2015. RD::get_singleton()->draw_command_begin_label("SDFGI Render Static Lights");
  2016. update_cascades();
  2017. SDFGIShader::Light lights[SDFGI::MAX_STATIC_LIGHTS];
  2018. uint32_t light_count[SDFGI::MAX_STATIC_LIGHTS];
  2019. for (uint32_t i = 0; i < p_cascade_count; i++) {
  2020. ERR_CONTINUE(p_cascade_indices[i] >= cascades.size());
  2021. SDFGI::Cascade &cc = cascades[p_cascade_indices[i]];
  2022. { //fill light buffer
  2023. AABB cascade_aabb;
  2024. cascade_aabb.position = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cc.position)) * cc.cell_size;
  2025. cascade_aabb.size = Vector3(1, 1, 1) * cascade_size * cc.cell_size;
  2026. int idx = 0;
  2027. for (uint32_t j = 0; j < (uint32_t)p_positional_light_cull_result[i].size(); j++) {
  2028. if (idx == SDFGI::MAX_STATIC_LIGHTS) {
  2029. break;
  2030. }
  2031. RID light_instance = p_positional_light_cull_result[i][j];
  2032. ERR_CONTINUE(!light_storage->owns_light_instance(light_instance));
  2033. RID light = light_storage->light_instance_get_base_light(light_instance);
  2034. AABB light_aabb = light_storage->light_instance_get_base_aabb(light_instance);
  2035. Transform3D light_transform = light_storage->light_instance_get_base_transform(light_instance);
  2036. uint32_t max_sdfgi_cascade = RSG::light_storage->light_get_max_sdfgi_cascade(light);
  2037. if (p_cascade_indices[i] > max_sdfgi_cascade) {
  2038. continue;
  2039. }
  2040. if (!cascade_aabb.intersects(light_aabb)) {
  2041. continue;
  2042. }
  2043. lights[idx].type = RSG::light_storage->light_get_type(light);
  2044. Vector3 dir = -light_transform.basis.get_column(Vector3::AXIS_Z);
  2045. if (lights[idx].type == RS::LIGHT_DIRECTIONAL) {
  2046. dir.y *= y_mult; //only makes sense for directional
  2047. dir.normalize();
  2048. }
  2049. lights[idx].direction[0] = dir.x;
  2050. lights[idx].direction[1] = dir.y;
  2051. lights[idx].direction[2] = dir.z;
  2052. Vector3 pos = light_transform.origin;
  2053. pos.y *= y_mult;
  2054. lights[idx].position[0] = pos.x;
  2055. lights[idx].position[1] = pos.y;
  2056. lights[idx].position[2] = pos.z;
  2057. Color color = RSG::light_storage->light_get_color(light);
  2058. color = color.srgb_to_linear();
  2059. lights[idx].color[0] = color.r;
  2060. lights[idx].color[1] = color.g;
  2061. lights[idx].color[2] = color.b;
  2062. lights[idx].energy = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
  2063. if (RendererSceneRenderRD::get_singleton()->is_using_physical_light_units()) {
  2064. lights[idx].energy *= RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INTENSITY);
  2065. // Convert from Luminous Power to Luminous Intensity
  2066. if (lights[idx].type == RS::LIGHT_OMNI) {
  2067. lights[idx].energy *= 1.0 / (Math::PI * 4.0);
  2068. } else if (lights[idx].type == RS::LIGHT_SPOT) {
  2069. // Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle.
  2070. // We make this assumption to keep them easy to control.
  2071. lights[idx].energy *= 1.0 / Math::PI;
  2072. }
  2073. }
  2074. if (p_render_data->camera_attributes.is_valid()) {
  2075. lights[idx].energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
  2076. }
  2077. lights[idx].has_shadow = RSG::light_storage->light_has_shadow(light);
  2078. lights[idx].attenuation = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION);
  2079. lights[idx].radius = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_RANGE);
  2080. lights[idx].cos_spot_angle = Math::cos(Math::deg_to_rad(RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE)));
  2081. lights[idx].inv_spot_attenuation = 1.0f / RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  2082. idx++;
  2083. }
  2084. if (idx > 0) {
  2085. RD::get_singleton()->buffer_update(cc.lights_buffer, 0, idx * sizeof(SDFGIShader::Light), lights);
  2086. }
  2087. light_count[i] = idx;
  2088. }
  2089. }
  2090. for (uint32_t i = 0; i < p_cascade_count; i++) {
  2091. ERR_CONTINUE(p_cascade_indices[i] >= cascades.size());
  2092. SDFGI::Cascade &cc = cascades[p_cascade_indices[i]];
  2093. if (light_count[i] > 0) {
  2094. RD::get_singleton()->buffer_copy(cc.solid_cell_dispatch_buffer_storage, cc.solid_cell_dispatch_buffer_call, 0, 0, sizeof(uint32_t) * 4);
  2095. }
  2096. }
  2097. /* Static Lights */
  2098. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  2099. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.direct_light_pipeline[SDFGIShader::DIRECT_LIGHT_MODE_STATIC].get_rid());
  2100. SDFGIShader::DirectLightPushConstant dl_push_constant;
  2101. dl_push_constant.grid_size[0] = cascade_size;
  2102. dl_push_constant.grid_size[1] = cascade_size;
  2103. dl_push_constant.grid_size[2] = cascade_size;
  2104. dl_push_constant.max_cascades = cascades.size();
  2105. dl_push_constant.probe_axis_size = probe_axis_count;
  2106. dl_push_constant.bounce_feedback = 0.0; // this is static light, do not multibounce yet
  2107. dl_push_constant.y_mult = y_mult;
  2108. dl_push_constant.use_occlusion = uses_occlusion;
  2109. //all must be processed
  2110. dl_push_constant.process_offset = 0;
  2111. dl_push_constant.process_increment = 1;
  2112. for (uint32_t i = 0; i < p_cascade_count; i++) {
  2113. ERR_CONTINUE(p_cascade_indices[i] >= cascades.size());
  2114. SDFGI::Cascade &cc = cascades[p_cascade_indices[i]];
  2115. dl_push_constant.light_count = light_count[i];
  2116. dl_push_constant.cascade = p_cascade_indices[i];
  2117. if (dl_push_constant.light_count > 0) {
  2118. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cc.sdf_direct_light_static_uniform_set, 0);
  2119. RD::get_singleton()->compute_list_set_push_constant(compute_list, &dl_push_constant, sizeof(SDFGIShader::DirectLightPushConstant));
  2120. RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cc.solid_cell_dispatch_buffer_call, 0);
  2121. }
  2122. }
  2123. RD::get_singleton()->compute_list_end();
  2124. RD::get_singleton()->draw_command_end_label();
  2125. }
  2126. ////////////////////////////////////////////////////////////////////////////////
  2127. // VoxelGIInstance
  2128. void GI::VoxelGIInstance::update(bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<RenderGeometryInstance *> &p_dynamic_objects) {
  2129. RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
  2130. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  2131. uint32_t data_version = gi->voxel_gi_get_data_version(probe);
  2132. // (RE)CREATE IF NEEDED
  2133. if (last_probe_data_version != data_version) {
  2134. //need to re-create everything
  2135. free_resources();
  2136. Vector3i octree_size = gi->voxel_gi_get_octree_size(probe);
  2137. if (octree_size != Vector3i()) {
  2138. //can create a 3D texture
  2139. Vector<int> levels = gi->voxel_gi_get_level_counts(probe);
  2140. RD::TextureFormat tf;
  2141. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  2142. tf.width = octree_size.x;
  2143. tf.height = octree_size.y;
  2144. tf.depth = octree_size.z;
  2145. tf.texture_type = RD::TEXTURE_TYPE_3D;
  2146. tf.mipmaps = levels.size();
  2147. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  2148. texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2149. RD::get_singleton()->set_resource_name(texture, "VoxelGI Instance Texture");
  2150. RD::get_singleton()->texture_clear(texture, Color(0, 0, 0, 0), 0, levels.size(), 0, 1);
  2151. {
  2152. int total_elements = 0;
  2153. for (int i = 0; i < levels.size(); i++) {
  2154. total_elements += levels[i];
  2155. }
  2156. write_buffer = RD::get_singleton()->storage_buffer_create(total_elements * 16);
  2157. }
  2158. for (int i = 0; i < levels.size(); i++) {
  2159. VoxelGIInstance::Mipmap mipmap;
  2160. mipmap.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), texture, 0, i, 1, RD::TEXTURE_SLICE_3D);
  2161. mipmap.level = levels.size() - i - 1;
  2162. mipmap.cell_offset = 0;
  2163. for (uint32_t j = 0; j < mipmap.level; j++) {
  2164. mipmap.cell_offset += levels[j];
  2165. }
  2166. mipmap.cell_count = levels[mipmap.level];
  2167. Vector<RD::Uniform> uniforms;
  2168. {
  2169. RD::Uniform u;
  2170. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2171. u.binding = 1;
  2172. u.append_id(gi->voxel_gi_get_octree_buffer(probe));
  2173. uniforms.push_back(u);
  2174. }
  2175. {
  2176. RD::Uniform u;
  2177. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2178. u.binding = 2;
  2179. u.append_id(gi->voxel_gi_get_data_buffer(probe));
  2180. uniforms.push_back(u);
  2181. }
  2182. {
  2183. RD::Uniform u;
  2184. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2185. u.binding = 4;
  2186. u.append_id(write_buffer);
  2187. uniforms.push_back(u);
  2188. }
  2189. {
  2190. RD::Uniform u;
  2191. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2192. u.binding = 9;
  2193. u.append_id(gi->voxel_gi_get_sdf_texture(probe));
  2194. uniforms.push_back(u);
  2195. }
  2196. {
  2197. RD::Uniform u;
  2198. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2199. u.binding = 10;
  2200. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2201. uniforms.push_back(u);
  2202. }
  2203. {
  2204. Vector<RD::Uniform> copy_uniforms = uniforms;
  2205. if (i == 0) {
  2206. {
  2207. RD::Uniform u;
  2208. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  2209. u.binding = 3;
  2210. u.append_id(gi->voxel_gi_lights_uniform);
  2211. copy_uniforms.push_back(u);
  2212. }
  2213. mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_COMPUTE_LIGHT], 0);
  2214. copy_uniforms = uniforms; //restore
  2215. {
  2216. RD::Uniform u;
  2217. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2218. u.binding = 5;
  2219. u.append_id(texture);
  2220. copy_uniforms.push_back(u);
  2221. }
  2222. mipmap.second_bounce_uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_COMPUTE_SECOND_BOUNCE], 0);
  2223. } else {
  2224. mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_COMPUTE_MIPMAP], 0);
  2225. }
  2226. }
  2227. {
  2228. RD::Uniform u;
  2229. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2230. u.binding = 5;
  2231. u.append_id(mipmap.texture);
  2232. uniforms.push_back(u);
  2233. }
  2234. mipmap.write_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_WRITE_TEXTURE], 0);
  2235. mipmaps.push_back(mipmap);
  2236. }
  2237. {
  2238. uint32_t dynamic_map_size = MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
  2239. uint32_t oversample = nearest_power_of_2_templated(4);
  2240. int mipmap_index = 0;
  2241. while (mipmap_index < mipmaps.size()) {
  2242. VoxelGIInstance::DynamicMap dmap;
  2243. if (oversample > 0) {
  2244. dmap.size = dynamic_map_size * (1 << oversample);
  2245. dmap.mipmap = -1;
  2246. oversample--;
  2247. } else {
  2248. dmap.size = dynamic_map_size >> mipmap_index;
  2249. dmap.mipmap = mipmap_index;
  2250. mipmap_index++;
  2251. }
  2252. RD::TextureFormat dtf;
  2253. dtf.width = dmap.size;
  2254. dtf.height = dmap.size;
  2255. dtf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  2256. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  2257. if (dynamic_maps.is_empty()) {
  2258. dtf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  2259. }
  2260. dmap.texture = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  2261. RD::get_singleton()->set_resource_name(dmap.texture, "VoxelGI Instance DMap Texture");
  2262. if (dynamic_maps.is_empty()) {
  2263. // Render depth for first one.
  2264. // Use 16-bit depth when supported to improve performance.
  2265. dtf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D16_UNORM, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  2266. dtf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  2267. dmap.fb_depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  2268. RD::get_singleton()->set_resource_name(dmap.fb_depth, "VoxelGI Instance DMap FB Depth");
  2269. }
  2270. //just use depth as-is
  2271. dtf.format = RD::DATA_FORMAT_R32_SFLOAT;
  2272. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  2273. dmap.depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  2274. RD::get_singleton()->set_resource_name(dmap.depth, "VoxelGI Instance DMap Depth");
  2275. if (dynamic_maps.is_empty()) {
  2276. dtf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  2277. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  2278. dmap.albedo = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  2279. RD::get_singleton()->set_resource_name(dmap.albedo, "VoxelGI Instance DMap Albedo");
  2280. dmap.normal = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  2281. RD::get_singleton()->set_resource_name(dmap.normal, "VoxelGI Instance DMap Normal");
  2282. dmap.orm = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  2283. RD::get_singleton()->set_resource_name(dmap.orm, "VoxelGI Instance DMap ORM");
  2284. Vector<RID> fb;
  2285. fb.push_back(dmap.albedo);
  2286. fb.push_back(dmap.normal);
  2287. fb.push_back(dmap.orm);
  2288. fb.push_back(dmap.texture); //emission
  2289. fb.push_back(dmap.depth);
  2290. fb.push_back(dmap.fb_depth);
  2291. dmap.fb = RD::get_singleton()->framebuffer_create(fb);
  2292. {
  2293. Vector<RD::Uniform> uniforms;
  2294. {
  2295. RD::Uniform u;
  2296. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  2297. u.binding = 3;
  2298. u.append_id(gi->voxel_gi_lights_uniform);
  2299. uniforms.push_back(u);
  2300. }
  2301. {
  2302. RD::Uniform u;
  2303. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2304. u.binding = 5;
  2305. u.append_id(dmap.albedo);
  2306. uniforms.push_back(u);
  2307. }
  2308. {
  2309. RD::Uniform u;
  2310. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2311. u.binding = 6;
  2312. u.append_id(dmap.normal);
  2313. uniforms.push_back(u);
  2314. }
  2315. {
  2316. RD::Uniform u;
  2317. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2318. u.binding = 7;
  2319. u.append_id(dmap.orm);
  2320. uniforms.push_back(u);
  2321. }
  2322. {
  2323. RD::Uniform u;
  2324. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2325. u.binding = 8;
  2326. u.append_id(dmap.fb_depth);
  2327. uniforms.push_back(u);
  2328. }
  2329. {
  2330. RD::Uniform u;
  2331. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2332. u.binding = 9;
  2333. u.append_id(gi->voxel_gi_get_sdf_texture(probe));
  2334. uniforms.push_back(u);
  2335. }
  2336. {
  2337. RD::Uniform u;
  2338. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2339. u.binding = 10;
  2340. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2341. uniforms.push_back(u);
  2342. }
  2343. {
  2344. RD::Uniform u;
  2345. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2346. u.binding = 11;
  2347. u.append_id(dmap.texture);
  2348. uniforms.push_back(u);
  2349. }
  2350. {
  2351. RD::Uniform u;
  2352. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2353. u.binding = 12;
  2354. u.append_id(dmap.depth);
  2355. uniforms.push_back(u);
  2356. }
  2357. dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING], 0);
  2358. }
  2359. } else {
  2360. bool plot = dmap.mipmap >= 0;
  2361. bool write = dmap.mipmap < (mipmaps.size() - 1);
  2362. Vector<RD::Uniform> uniforms;
  2363. {
  2364. RD::Uniform u;
  2365. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2366. u.binding = 5;
  2367. u.append_id(dynamic_maps[dynamic_maps.size() - 1].texture);
  2368. uniforms.push_back(u);
  2369. }
  2370. {
  2371. RD::Uniform u;
  2372. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2373. u.binding = 6;
  2374. u.append_id(dynamic_maps[dynamic_maps.size() - 1].depth);
  2375. uniforms.push_back(u);
  2376. }
  2377. if (write) {
  2378. {
  2379. RD::Uniform u;
  2380. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2381. u.binding = 7;
  2382. u.append_id(dmap.texture);
  2383. uniforms.push_back(u);
  2384. }
  2385. {
  2386. RD::Uniform u;
  2387. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2388. u.binding = 8;
  2389. u.append_id(dmap.depth);
  2390. uniforms.push_back(u);
  2391. }
  2392. }
  2393. {
  2394. RD::Uniform u;
  2395. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2396. u.binding = 9;
  2397. u.append_id(gi->voxel_gi_get_sdf_texture(probe));
  2398. uniforms.push_back(u);
  2399. }
  2400. {
  2401. RD::Uniform u;
  2402. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2403. u.binding = 10;
  2404. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2405. uniforms.push_back(u);
  2406. }
  2407. if (plot) {
  2408. {
  2409. RD::Uniform u;
  2410. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2411. u.binding = 11;
  2412. u.append_id(mipmaps[dmap.mipmap].texture);
  2413. uniforms.push_back(u);
  2414. }
  2415. }
  2416. dmap.uniform_set = RD::get_singleton()->uniform_set_create(
  2417. uniforms,
  2418. gi->voxel_gi_lighting_shader_version_shaders[(write && plot) ? VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT : (write ? VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE : VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_PLOT)],
  2419. 0);
  2420. }
  2421. dynamic_maps.push_back(dmap);
  2422. }
  2423. }
  2424. }
  2425. last_probe_data_version = data_version;
  2426. p_update_light_instances = true; //just in case
  2427. RendererSceneRenderRD::get_singleton()->base_uniforms_changed();
  2428. }
  2429. // UDPDATE TIME
  2430. if (has_dynamic_object_data) {
  2431. //if it has dynamic object data, it needs to be cleared
  2432. RD::get_singleton()->texture_clear(texture, Color(0, 0, 0, 0), 0, mipmaps.size(), 0, 1);
  2433. }
  2434. uint32_t light_count = 0;
  2435. if (p_update_light_instances || p_dynamic_objects.size() > 0) {
  2436. light_count = MIN(gi->voxel_gi_max_lights, (uint32_t)p_light_instances.size());
  2437. {
  2438. Transform3D to_cell = gi->voxel_gi_get_to_cell_xform(probe);
  2439. Transform3D to_probe_xform = to_cell * transform.affine_inverse();
  2440. //update lights
  2441. for (uint32_t i = 0; i < light_count; i++) {
  2442. VoxelGILight &l = gi->voxel_gi_lights[i];
  2443. RID light_instance = p_light_instances[i];
  2444. RID light = light_storage->light_instance_get_base_light(light_instance);
  2445. l.type = RSG::light_storage->light_get_type(light);
  2446. if (l.type == RS::LIGHT_DIRECTIONAL && RSG::light_storage->light_directional_get_sky_mode(light) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) {
  2447. light_count--;
  2448. continue;
  2449. }
  2450. l.attenuation = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION);
  2451. l.energy = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
  2452. if (RendererSceneRenderRD::get_singleton()->is_using_physical_light_units()) {
  2453. l.energy *= RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INTENSITY);
  2454. l.energy *= gi->voxel_gi_get_baked_exposure_normalization(probe);
  2455. // Convert from Luminous Power to Luminous Intensity
  2456. if (l.type == RS::LIGHT_OMNI) {
  2457. l.energy *= 1.0 / (Math::PI * 4.0);
  2458. } else if (l.type == RS::LIGHT_SPOT) {
  2459. // Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle.
  2460. // We make this assumption to keep them easy to control.
  2461. l.energy *= 1.0 / Math::PI;
  2462. }
  2463. }
  2464. l.radius = to_cell.basis.xform(Vector3(RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_RANGE), 0, 0)).length();
  2465. Color color = RSG::light_storage->light_get_color(light).srgb_to_linear();
  2466. l.color[0] = color.r;
  2467. l.color[1] = color.g;
  2468. l.color[2] = color.b;
  2469. l.cos_spot_angle = Math::cos(Math::deg_to_rad(RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE)));
  2470. l.inv_spot_attenuation = 1.0f / RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  2471. Transform3D xform = light_storage->light_instance_get_base_transform(light_instance);
  2472. Vector3 pos = to_probe_xform.xform(xform.origin);
  2473. Vector3 dir = to_probe_xform.basis.xform(-xform.basis.get_column(2)).normalized();
  2474. l.position[0] = pos.x;
  2475. l.position[1] = pos.y;
  2476. l.position[2] = pos.z;
  2477. l.direction[0] = dir.x;
  2478. l.direction[1] = dir.y;
  2479. l.direction[2] = dir.z;
  2480. l.has_shadow = RSG::light_storage->light_has_shadow(light);
  2481. }
  2482. RD::get_singleton()->buffer_update(gi->voxel_gi_lights_uniform, 0, sizeof(VoxelGILight) * light_count, gi->voxel_gi_lights);
  2483. }
  2484. }
  2485. if (has_dynamic_object_data || p_update_light_instances || p_dynamic_objects.size()) {
  2486. // PROCESS MIPMAPS
  2487. if (mipmaps.size()) {
  2488. //can update mipmaps
  2489. Vector3i probe_size = gi->voxel_gi_get_octree_size(probe);
  2490. Vector3 ps = probe_size / gi->voxel_gi_get_bounds(probe).size;
  2491. float cell_size = (1.0 / MAX(MAX(ps.x, ps.y), ps.z)); // probe size relative to 1 unit in world space
  2492. VoxelGIPushConstant push_constant;
  2493. push_constant.limits[0] = probe_size.x;
  2494. push_constant.limits[1] = probe_size.y;
  2495. push_constant.limits[2] = probe_size.z;
  2496. push_constant.stack_size = mipmaps.size();
  2497. push_constant.emission_scale = 1.0;
  2498. push_constant.propagation = gi->voxel_gi_get_propagation(probe);
  2499. push_constant.dynamic_range = gi->voxel_gi_get_dynamic_range(probe);
  2500. push_constant.light_count = light_count;
  2501. push_constant.aniso_strength = 0;
  2502. push_constant.cell_size = cell_size;
  2503. /* print_line("probe update to version " + itos(last_probe_version));
  2504. print_line("propagation " + rtos(push_constant.propagation));
  2505. print_line("dynrange " + rtos(push_constant.dynamic_range));
  2506. */
  2507. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  2508. int passes;
  2509. if (p_update_light_instances) {
  2510. passes = gi->voxel_gi_is_using_two_bounces(probe) ? 2 : 1;
  2511. } else {
  2512. passes = 1; //only re-blitting is necessary
  2513. }
  2514. int wg_size = 64;
  2515. int64_t wg_limit_x = (int64_t)RD::get_singleton()->limit_get(RD::LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X);
  2516. for (int pass = 0; pass < passes; pass++) {
  2517. if (p_update_light_instances) {
  2518. for (int i = 0; i < mipmaps.size(); i++) {
  2519. if (i == 0) {
  2520. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[pass == 0 ? VOXEL_GI_SHADER_VERSION_COMPUTE_LIGHT : VOXEL_GI_SHADER_VERSION_COMPUTE_SECOND_BOUNCE].get_rid());
  2521. } else if (i == 1) {
  2522. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_COMPUTE_MIPMAP].get_rid());
  2523. }
  2524. if (pass == 1 || i > 0) {
  2525. RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
  2526. }
  2527. if (pass == 0 || i > 0) {
  2528. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mipmaps[i].uniform_set, 0);
  2529. } else {
  2530. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mipmaps[i].second_bounce_uniform_set, 0);
  2531. }
  2532. push_constant.cell_offset = mipmaps[i].cell_offset;
  2533. push_constant.cell_count = mipmaps[i].cell_count;
  2534. int64_t wg_todo = (mipmaps[i].cell_count + wg_size - 1) / wg_size;
  2535. while (wg_todo) {
  2536. int64_t wg_count = MIN(wg_todo, wg_limit_x);
  2537. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIPushConstant));
  2538. RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
  2539. wg_todo -= wg_count;
  2540. push_constant.cell_offset += wg_count * wg_size;
  2541. }
  2542. }
  2543. RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
  2544. }
  2545. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_WRITE_TEXTURE].get_rid());
  2546. for (int i = 0; i < mipmaps.size(); i++) {
  2547. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mipmaps[i].write_uniform_set, 0);
  2548. push_constant.cell_offset = mipmaps[i].cell_offset;
  2549. push_constant.cell_count = mipmaps[i].cell_count;
  2550. int64_t wg_todo = (mipmaps[i].cell_count + wg_size - 1) / wg_size;
  2551. while (wg_todo) {
  2552. int64_t wg_count = MIN(wg_todo, wg_limit_x);
  2553. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIPushConstant));
  2554. RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
  2555. wg_todo -= wg_count;
  2556. push_constant.cell_offset += wg_count * wg_size;
  2557. }
  2558. }
  2559. }
  2560. RD::get_singleton()->compute_list_end();
  2561. }
  2562. }
  2563. has_dynamic_object_data = false; //clear until dynamic object data is used again
  2564. if (p_dynamic_objects.size() && dynamic_maps.size()) {
  2565. Vector3i octree_size = gi->voxel_gi_get_octree_size(probe);
  2566. int multiplier = dynamic_maps[0].size / MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
  2567. Transform3D oversample_scale;
  2568. oversample_scale.basis.scale(Vector3(multiplier, multiplier, multiplier));
  2569. Transform3D to_cell = oversample_scale * gi->voxel_gi_get_to_cell_xform(probe);
  2570. Transform3D to_world_xform = transform * to_cell.affine_inverse();
  2571. Transform3D to_probe_xform = to_world_xform.affine_inverse();
  2572. AABB probe_aabb(Vector3(), octree_size);
  2573. //this could probably be better parallelized in compute..
  2574. for (int i = 0; i < (int)p_dynamic_objects.size(); i++) {
  2575. RenderGeometryInstance *instance = p_dynamic_objects[i];
  2576. //transform aabb to voxel_gi
  2577. AABB aabb = (to_probe_xform * instance->get_transform()).xform(instance->get_aabb());
  2578. //this needs to wrap to grid resolution to avoid jitter
  2579. //also extend margin a bit just in case
  2580. Vector3i begin = aabb.position - Vector3i(1, 1, 1);
  2581. Vector3i end = aabb.position + aabb.size + Vector3i(1, 1, 1);
  2582. for (int j = 0; j < 3; j++) {
  2583. if ((end[j] - begin[j]) & 1) {
  2584. end[j]++; //for half extents split, it needs to be even
  2585. }
  2586. begin[j] = MAX(begin[j], 0);
  2587. end[j] = MIN(end[j], octree_size[j] * multiplier);
  2588. }
  2589. //aabb = aabb.intersection(probe_aabb); //intersect
  2590. aabb.position = begin;
  2591. aabb.size = end - begin;
  2592. //print_line("aabb: " + aabb);
  2593. for (int j = 0; j < 6; j++) {
  2594. //if (j != 0 && j != 3) {
  2595. // continue;
  2596. //}
  2597. static const Vector3 render_z[6] = {
  2598. Vector3(1, 0, 0),
  2599. Vector3(0, 1, 0),
  2600. Vector3(0, 0, 1),
  2601. Vector3(-1, 0, 0),
  2602. Vector3(0, -1, 0),
  2603. Vector3(0, 0, -1),
  2604. };
  2605. static const Vector3 render_up[6] = {
  2606. Vector3(0, 1, 0),
  2607. Vector3(0, 0, 1),
  2608. Vector3(0, 1, 0),
  2609. Vector3(0, 1, 0),
  2610. Vector3(0, 0, 1),
  2611. Vector3(0, 1, 0),
  2612. };
  2613. Vector3 render_dir = render_z[j];
  2614. Vector3 up_dir = render_up[j];
  2615. Vector3 center = aabb.get_center();
  2616. Transform3D xform;
  2617. xform.set_look_at(center - aabb.size * 0.5 * render_dir, center, up_dir);
  2618. Vector3 x_dir = xform.basis.get_column(0).abs();
  2619. int x_axis = int(Vector3(0, 1, 2).dot(x_dir));
  2620. Vector3 y_dir = xform.basis.get_column(1).abs();
  2621. int y_axis = int(Vector3(0, 1, 2).dot(y_dir));
  2622. Vector3 z_dir = -xform.basis.get_column(2);
  2623. int z_axis = int(Vector3(0, 1, 2).dot(z_dir.abs()));
  2624. Rect2i rect(aabb.position[x_axis], aabb.position[y_axis], aabb.size[x_axis], aabb.size[y_axis]);
  2625. bool x_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_column(0)) < 0);
  2626. bool y_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_column(1)) < 0);
  2627. bool z_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_column(2)) > 0);
  2628. Projection cm;
  2629. cm.set_orthogonal(-rect.size.width / 2, rect.size.width / 2, -rect.size.height / 2, rect.size.height / 2, 0.0001, aabb.size[z_axis]);
  2630. if (RendererSceneRenderRD::get_singleton()->cull_argument.size() == 0) {
  2631. RendererSceneRenderRD::get_singleton()->cull_argument.push_back(nullptr);
  2632. }
  2633. RendererSceneRenderRD::get_singleton()->cull_argument[0] = instance;
  2634. float exposure_normalization = 1.0;
  2635. if (RendererSceneRenderRD::get_singleton()->is_using_physical_light_units()) {
  2636. exposure_normalization = gi->voxel_gi_get_baked_exposure_normalization(probe);
  2637. }
  2638. RendererSceneRenderRD::get_singleton()->_render_material(to_world_xform * xform, cm, true, RendererSceneRenderRD::get_singleton()->cull_argument, dynamic_maps[0].fb, Rect2i(Vector2i(), rect.size), exposure_normalization);
  2639. Vector3 ps = octree_size / gi->voxel_gi_get_bounds(probe).size;
  2640. float cell_size = (1.0 / MAX(MAX(ps.x, ps.y), ps.z)); // probe size relative to 1 unit in world space
  2641. VoxelGIDynamicPushConstant push_constant;
  2642. memset(&push_constant, 0, sizeof(VoxelGIDynamicPushConstant));
  2643. push_constant.limits[0] = octree_size.x;
  2644. push_constant.limits[1] = octree_size.y;
  2645. push_constant.limits[2] = octree_size.z;
  2646. push_constant.light_count = p_light_instances.size();
  2647. push_constant.x_dir[0] = x_dir[0];
  2648. push_constant.x_dir[1] = x_dir[1];
  2649. push_constant.x_dir[2] = x_dir[2];
  2650. push_constant.y_dir[0] = y_dir[0];
  2651. push_constant.y_dir[1] = y_dir[1];
  2652. push_constant.y_dir[2] = y_dir[2];
  2653. push_constant.z_dir[0] = z_dir[0];
  2654. push_constant.z_dir[1] = z_dir[1];
  2655. push_constant.z_dir[2] = z_dir[2];
  2656. push_constant.z_base = xform.origin[z_axis];
  2657. push_constant.z_sign = (z_flip ? -1.0 : 1.0);
  2658. push_constant.pos_multiplier = float(1.0) / multiplier;
  2659. push_constant.dynamic_range = gi->voxel_gi_get_dynamic_range(probe);
  2660. push_constant.flip_x = x_flip;
  2661. push_constant.flip_y = y_flip;
  2662. push_constant.rect_pos[0] = rect.position[0];
  2663. push_constant.rect_pos[1] = rect.position[1];
  2664. push_constant.rect_size[0] = rect.size[0];
  2665. push_constant.rect_size[1] = rect.size[1];
  2666. push_constant.prev_rect_ofs[0] = 0;
  2667. push_constant.prev_rect_ofs[1] = 0;
  2668. push_constant.prev_rect_size[0] = 0;
  2669. push_constant.prev_rect_size[1] = 0;
  2670. push_constant.on_mipmap = false;
  2671. push_constant.propagation = gi->voxel_gi_get_propagation(probe);
  2672. push_constant.cell_size = cell_size;
  2673. push_constant.pad[0] = 0;
  2674. push_constant.pad[1] = 0;
  2675. //process lighting
  2676. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  2677. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING].get_rid());
  2678. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, dynamic_maps[0].uniform_set, 0);
  2679. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIDynamicPushConstant));
  2680. RD::get_singleton()->compute_list_dispatch(compute_list, Math::division_round_up(rect.size.x, 8), Math::division_round_up(rect.size.y, 8), 1);
  2681. //print_line("rect: " + itos(i) + ": " + rect);
  2682. for (int k = 1; k < dynamic_maps.size(); k++) {
  2683. // enlarge the rect if needed so all pixels fit when downscaled,
  2684. // this ensures downsampling is smooth and optimal because no pixels are left behind
  2685. //x
  2686. if (rect.position.x & 1) {
  2687. rect.size.x++;
  2688. push_constant.prev_rect_ofs[0] = 1; //this is used to ensure reading is also optimal
  2689. } else {
  2690. push_constant.prev_rect_ofs[0] = 0;
  2691. }
  2692. if (rect.size.x & 1) {
  2693. rect.size.x++;
  2694. }
  2695. rect.position.x >>= 1;
  2696. rect.size.x = MAX(1, rect.size.x >> 1);
  2697. //y
  2698. if (rect.position.y & 1) {
  2699. rect.size.y++;
  2700. push_constant.prev_rect_ofs[1] = 1;
  2701. } else {
  2702. push_constant.prev_rect_ofs[1] = 0;
  2703. }
  2704. if (rect.size.y & 1) {
  2705. rect.size.y++;
  2706. }
  2707. rect.position.y >>= 1;
  2708. rect.size.y = MAX(1, rect.size.y >> 1);
  2709. //shrink limits to ensure plot does not go outside map
  2710. if (dynamic_maps[k].mipmap > 0) {
  2711. for (int l = 0; l < 3; l++) {
  2712. push_constant.limits[l] = MAX(1, push_constant.limits[l] >> 1);
  2713. }
  2714. }
  2715. //print_line("rect: " + itos(i) + ": " + rect);
  2716. push_constant.rect_pos[0] = rect.position[0];
  2717. push_constant.rect_pos[1] = rect.position[1];
  2718. push_constant.prev_rect_size[0] = push_constant.rect_size[0];
  2719. push_constant.prev_rect_size[1] = push_constant.rect_size[1];
  2720. push_constant.rect_size[0] = rect.size[0];
  2721. push_constant.rect_size[1] = rect.size[1];
  2722. push_constant.on_mipmap = dynamic_maps[k].mipmap > 0;
  2723. RD::get_singleton()->compute_list_add_barrier(compute_list);
  2724. if (dynamic_maps[k].mipmap < 0) {
  2725. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE].get_rid());
  2726. } else if (k < dynamic_maps.size() - 1) {
  2727. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT].get_rid());
  2728. } else {
  2729. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_PLOT].get_rid());
  2730. }
  2731. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, dynamic_maps[k].uniform_set, 0);
  2732. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIDynamicPushConstant));
  2733. RD::get_singleton()->compute_list_dispatch(compute_list, Math::division_round_up(rect.size.x, 8), Math::division_round_up(rect.size.y, 8), 1);
  2734. }
  2735. RD::get_singleton()->compute_list_end();
  2736. }
  2737. }
  2738. has_dynamic_object_data = true; //clear until dynamic object data is used again
  2739. }
  2740. last_probe_version = gi->voxel_gi_get_version(probe);
  2741. }
  2742. void GI::VoxelGIInstance::free_resources() {
  2743. if (texture.is_valid()) {
  2744. RD::get_singleton()->free_rid(texture);
  2745. RD::get_singleton()->free_rid(write_buffer);
  2746. texture = RID();
  2747. write_buffer = RID();
  2748. mipmaps.clear();
  2749. }
  2750. for (int i = 0; i < dynamic_maps.size(); i++) {
  2751. RD::get_singleton()->free_rid(dynamic_maps[i].texture);
  2752. RD::get_singleton()->free_rid(dynamic_maps[i].depth);
  2753. // these only exist on the first level...
  2754. if (dynamic_maps[i].fb_depth.is_valid()) {
  2755. RD::get_singleton()->free_rid(dynamic_maps[i].fb_depth);
  2756. }
  2757. if (dynamic_maps[i].albedo.is_valid()) {
  2758. RD::get_singleton()->free_rid(dynamic_maps[i].albedo);
  2759. }
  2760. if (dynamic_maps[i].normal.is_valid()) {
  2761. RD::get_singleton()->free_rid(dynamic_maps[i].normal);
  2762. }
  2763. if (dynamic_maps[i].orm.is_valid()) {
  2764. RD::get_singleton()->free_rid(dynamic_maps[i].orm);
  2765. }
  2766. }
  2767. dynamic_maps.clear();
  2768. }
  2769. void GI::VoxelGIInstance::debug(RD::DrawListID p_draw_list, RID p_framebuffer, const Projection &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) {
  2770. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  2771. if (mipmaps.is_empty()) {
  2772. return;
  2773. }
  2774. Projection cam_transform = (p_camera_with_transform * Projection(transform)) * Projection(gi->voxel_gi_get_to_cell_xform(probe).affine_inverse());
  2775. int level = 0;
  2776. Vector3i octree_size = gi->voxel_gi_get_octree_size(probe);
  2777. VoxelGIDebugPushConstant push_constant;
  2778. push_constant.alpha = p_alpha;
  2779. push_constant.dynamic_range = gi->voxel_gi_get_dynamic_range(probe);
  2780. push_constant.cell_offset = mipmaps[level].cell_offset;
  2781. push_constant.level = level;
  2782. push_constant.bounds[0] = octree_size.x >> level;
  2783. push_constant.bounds[1] = octree_size.y >> level;
  2784. push_constant.bounds[2] = octree_size.z >> level;
  2785. push_constant.pad = 0;
  2786. for (int i = 0; i < 4; i++) {
  2787. for (int j = 0; j < 4; j++) {
  2788. push_constant.projection[i * 4 + j] = cam_transform.columns[i][j];
  2789. }
  2790. }
  2791. if (gi->voxel_gi_debug_uniform_set.is_valid()) {
  2792. RD::get_singleton()->free_rid(gi->voxel_gi_debug_uniform_set);
  2793. }
  2794. Vector<RD::Uniform> uniforms;
  2795. {
  2796. RD::Uniform u;
  2797. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2798. u.binding = 1;
  2799. u.append_id(gi->voxel_gi_get_data_buffer(probe));
  2800. uniforms.push_back(u);
  2801. }
  2802. {
  2803. RD::Uniform u;
  2804. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2805. u.binding = 2;
  2806. u.append_id(texture);
  2807. uniforms.push_back(u);
  2808. }
  2809. {
  2810. RD::Uniform u;
  2811. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2812. u.binding = 3;
  2813. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2814. uniforms.push_back(u);
  2815. }
  2816. int cell_count;
  2817. if (!p_emission && p_lighting && has_dynamic_object_data) {
  2818. cell_count = push_constant.bounds[0] * push_constant.bounds[1] * push_constant.bounds[2];
  2819. } else {
  2820. cell_count = mipmaps[level].cell_count;
  2821. }
  2822. gi->voxel_gi_debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->voxel_gi_debug_shader_version_shaders[0], 0);
  2823. int voxel_gi_debug_pipeline = VOXEL_GI_DEBUG_COLOR;
  2824. if (p_emission) {
  2825. voxel_gi_debug_pipeline = VOXEL_GI_DEBUG_EMISSION;
  2826. } else if (p_lighting) {
  2827. voxel_gi_debug_pipeline = has_dynamic_object_data ? VOXEL_GI_DEBUG_LIGHT_FULL : VOXEL_GI_DEBUG_LIGHT;
  2828. }
  2829. RD::get_singleton()->draw_list_bind_render_pipeline(
  2830. p_draw_list,
  2831. gi->voxel_gi_debug_shader_version_pipelines[voxel_gi_debug_pipeline].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  2832. RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, gi->voxel_gi_debug_uniform_set, 0);
  2833. RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(VoxelGIDebugPushConstant));
  2834. RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, 36);
  2835. }
  2836. ////////////////////////////////////////////////////////////////////////////////
  2837. // GI
  2838. GI::GI() {
  2839. singleton = this;
  2840. sdfgi_ray_count = RS::EnvironmentSDFGIRayCount(CLAMP(int32_t(GLOBAL_GET("rendering/global_illumination/sdfgi/probe_ray_count")), 0, int32_t(RS::ENV_SDFGI_RAY_COUNT_MAX - 1)));
  2841. sdfgi_frames_to_converge = RS::EnvironmentSDFGIFramesToConverge(CLAMP(int32_t(GLOBAL_GET("rendering/global_illumination/sdfgi/frames_to_converge")), 0, int32_t(RS::ENV_SDFGI_CONVERGE_MAX - 1)));
  2842. sdfgi_frames_to_update_light = RS::EnvironmentSDFGIFramesToUpdateLight(CLAMP(int32_t(GLOBAL_GET("rendering/global_illumination/sdfgi/frames_to_update_lights")), 0, int32_t(RS::ENV_SDFGI_UPDATE_LIGHT_MAX - 1)));
  2843. }
  2844. GI::~GI() {
  2845. for (int v = 0; v < SHADER_SPECIALIZATION_VARIATIONS; v++) {
  2846. for (int i = 0; i < MODE_MAX; i++) {
  2847. pipelines[v][i].free();
  2848. }
  2849. }
  2850. sdfgi_shader.debug_pipeline.free();
  2851. for (int i = 0; i < SDFGIShader::DIRECT_LIGHT_MODE_MAX; i++) {
  2852. sdfgi_shader.direct_light_pipeline[i].free();
  2853. }
  2854. for (int i = 0; i < SDFGIShader::INTEGRATE_MODE_MAX; i++) {
  2855. sdfgi_shader.integrate_pipeline[i].free();
  2856. }
  2857. for (int i = 0; i < SDFGIShader::PRE_PROCESS_MAX; i++) {
  2858. sdfgi_shader.preprocess_pipeline[i].free();
  2859. }
  2860. for (int i = 0; i < VOXEL_GI_SHADER_VERSION_MAX; i++) {
  2861. voxel_gi_lighting_shader_version_pipelines[i].free();
  2862. }
  2863. if (voxel_gi_debug_shader_version.is_valid()) {
  2864. voxel_gi_debug_shader.version_free(voxel_gi_debug_shader_version);
  2865. }
  2866. if (voxel_gi_lighting_shader_version.is_valid()) {
  2867. voxel_gi_shader.version_free(voxel_gi_lighting_shader_version);
  2868. }
  2869. if (shader_version.is_valid()) {
  2870. shader.version_free(shader_version);
  2871. }
  2872. if (sdfgi_shader.debug_probes_shader.is_valid()) {
  2873. sdfgi_shader.debug_probes.version_free(sdfgi_shader.debug_probes_shader);
  2874. }
  2875. if (sdfgi_shader.debug_shader.is_valid()) {
  2876. sdfgi_shader.debug.version_free(sdfgi_shader.debug_shader);
  2877. }
  2878. if (sdfgi_shader.direct_light_shader.is_valid()) {
  2879. sdfgi_shader.direct_light.version_free(sdfgi_shader.direct_light_shader);
  2880. }
  2881. if (sdfgi_shader.integrate_shader.is_valid()) {
  2882. sdfgi_shader.integrate.version_free(sdfgi_shader.integrate_shader);
  2883. }
  2884. if (sdfgi_shader.preprocess_shader.is_valid()) {
  2885. sdfgi_shader.preprocess.version_free(sdfgi_shader.preprocess_shader);
  2886. }
  2887. singleton = nullptr;
  2888. }
  2889. void GI::init(SkyRD *p_sky) {
  2890. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  2891. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  2892. /* GI */
  2893. {
  2894. //kinda complicated to compute the amount of slots, we try to use as many as we can
  2895. voxel_gi_lights = memnew_arr(VoxelGILight, voxel_gi_max_lights);
  2896. voxel_gi_lights_uniform = RD::get_singleton()->uniform_buffer_create(voxel_gi_max_lights * sizeof(VoxelGILight));
  2897. voxel_gi_quality = RS::VoxelGIQuality(CLAMP(int(GLOBAL_GET("rendering/global_illumination/voxel_gi/quality")), 0, 1));
  2898. String defines = "\n#define MAX_LIGHTS " + itos(voxel_gi_max_lights) + "\n";
  2899. Vector<String> versions;
  2900. versions.push_back("\n#define MODE_COMPUTE_LIGHT\n");
  2901. versions.push_back("\n#define MODE_SECOND_BOUNCE\n");
  2902. versions.push_back("\n#define MODE_UPDATE_MIPMAPS\n");
  2903. versions.push_back("\n#define MODE_WRITE_TEXTURE\n");
  2904. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_LIGHTING\n");
  2905. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
  2906. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n");
  2907. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
  2908. voxel_gi_shader.initialize(versions, defines);
  2909. voxel_gi_lighting_shader_version = voxel_gi_shader.version_create();
  2910. for (int i = 0; i < VOXEL_GI_SHADER_VERSION_MAX; i++) {
  2911. voxel_gi_lighting_shader_version_shaders[i] = voxel_gi_shader.version_get_shader(voxel_gi_lighting_shader_version, i);
  2912. voxel_gi_lighting_shader_version_pipelines[i].create_compute_pipeline(voxel_gi_lighting_shader_version_shaders[i]);
  2913. }
  2914. }
  2915. {
  2916. String defines;
  2917. Vector<String> versions;
  2918. versions.push_back("\n#define MODE_DEBUG_COLOR\n");
  2919. versions.push_back("\n#define MODE_DEBUG_LIGHT\n");
  2920. versions.push_back("\n#define MODE_DEBUG_EMISSION\n");
  2921. versions.push_back("\n#define MODE_DEBUG_LIGHT\n#define MODE_DEBUG_LIGHT_FULL\n");
  2922. voxel_gi_debug_shader.initialize(versions, defines);
  2923. voxel_gi_debug_shader_version = voxel_gi_debug_shader.version_create();
  2924. for (int i = 0; i < VOXEL_GI_DEBUG_MAX; i++) {
  2925. voxel_gi_debug_shader_version_shaders[i] = voxel_gi_debug_shader.version_get_shader(voxel_gi_debug_shader_version, i);
  2926. RD::PipelineRasterizationState rs;
  2927. rs.cull_mode = RD::POLYGON_CULL_FRONT;
  2928. RD::PipelineDepthStencilState ds;
  2929. ds.enable_depth_test = true;
  2930. ds.enable_depth_write = true;
  2931. ds.depth_compare_operator = RD::COMPARE_OP_GREATER_OR_EQUAL;
  2932. voxel_gi_debug_shader_version_pipelines[i].setup(voxel_gi_debug_shader_version_shaders[i], RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
  2933. }
  2934. }
  2935. /* SDGFI */
  2936. {
  2937. Vector<String> preprocess_modes;
  2938. preprocess_modes.push_back("\n#define MODE_SCROLL\n");
  2939. preprocess_modes.push_back("\n#define MODE_SCROLL_OCCLUSION\n");
  2940. preprocess_modes.push_back("\n#define MODE_INITIALIZE_JUMP_FLOOD\n");
  2941. preprocess_modes.push_back("\n#define MODE_INITIALIZE_JUMP_FLOOD_HALF\n");
  2942. preprocess_modes.push_back("\n#define MODE_JUMPFLOOD\n");
  2943. preprocess_modes.push_back("\n#define MODE_JUMPFLOOD_OPTIMIZED\n");
  2944. preprocess_modes.push_back("\n#define MODE_UPSCALE_JUMP_FLOOD\n");
  2945. preprocess_modes.push_back("\n#define MODE_OCCLUSION\n");
  2946. preprocess_modes.push_back("\n#define MODE_STORE\n");
  2947. String defines = "\n#define OCCLUSION_SIZE " + itos(SDFGI::CASCADE_SIZE / SDFGI::PROBE_DIVISOR) + "\n";
  2948. sdfgi_shader.preprocess.initialize(preprocess_modes, defines);
  2949. sdfgi_shader.preprocess_shader = sdfgi_shader.preprocess.version_create();
  2950. for (int i = 0; i < SDFGIShader::PRE_PROCESS_MAX; i++) {
  2951. sdfgi_shader.preprocess_pipeline[i].create_compute_pipeline(sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, i));
  2952. }
  2953. }
  2954. {
  2955. //calculate tables
  2956. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  2957. Vector<String> direct_light_modes;
  2958. direct_light_modes.push_back("\n#define MODE_PROCESS_STATIC\n");
  2959. direct_light_modes.push_back("\n#define MODE_PROCESS_DYNAMIC\n");
  2960. sdfgi_shader.direct_light.initialize(direct_light_modes, defines);
  2961. sdfgi_shader.direct_light_shader = sdfgi_shader.direct_light.version_create();
  2962. for (int i = 0; i < SDFGIShader::DIRECT_LIGHT_MODE_MAX; i++) {
  2963. sdfgi_shader.direct_light_pipeline[i].create_compute_pipeline(sdfgi_shader.direct_light.version_get_shader(sdfgi_shader.direct_light_shader, i));
  2964. }
  2965. }
  2966. {
  2967. //calculate tables
  2968. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  2969. defines += "\n#define SH_SIZE " + itos(SDFGI::SH_SIZE) + "\n";
  2970. if (p_sky->sky_use_octmap_array) {
  2971. defines += "\n#define USE_OCTMAP_ARRAY\n";
  2972. }
  2973. Vector<String> integrate_modes;
  2974. integrate_modes.push_back("\n#define MODE_PROCESS\n");
  2975. integrate_modes.push_back("\n#define MODE_STORE\n");
  2976. integrate_modes.push_back("\n#define MODE_SCROLL\n");
  2977. integrate_modes.push_back("\n#define MODE_SCROLL_STORE\n");
  2978. sdfgi_shader.integrate.initialize(integrate_modes, defines);
  2979. sdfgi_shader.integrate_shader = sdfgi_shader.integrate.version_create();
  2980. for (int i = 0; i < SDFGIShader::INTEGRATE_MODE_MAX; i++) {
  2981. sdfgi_shader.integrate_pipeline[i].create_compute_pipeline(sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, i));
  2982. }
  2983. {
  2984. Vector<RD::Uniform> uniforms;
  2985. {
  2986. RD::Uniform u;
  2987. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2988. u.binding = 0;
  2989. if (p_sky->sky_use_octmap_array) {
  2990. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE));
  2991. } else {
  2992. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE));
  2993. }
  2994. uniforms.push_back(u);
  2995. }
  2996. {
  2997. RD::Uniform u;
  2998. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2999. u.binding = 1;
  3000. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  3001. uniforms.push_back(u);
  3002. }
  3003. sdfgi_shader.integrate_default_sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, 0), 1);
  3004. }
  3005. }
  3006. //GK
  3007. {
  3008. //calculate tables
  3009. String defines = "\n#define SDFGI_OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  3010. Vector<ShaderRD::VariantDefine> variants;
  3011. for (uint32_t vrs = 0; vrs < 2; vrs++) {
  3012. String vrs_base = vrs ? "\n#define USE_VRS\n" : "";
  3013. Group group = vrs ? GROUP_VRS : GROUP_NORMAL;
  3014. bool default_enabled = vrs == 0;
  3015. variants.push_back(ShaderRD::VariantDefine(group, vrs_base + "\n#define USE_VOXEL_GI_INSTANCES\n", default_enabled)); // MODE_VOXEL_GI
  3016. variants.push_back(ShaderRD::VariantDefine(group, vrs_base + "\n#define USE_VOXEL_GI_INSTANCES\n#define SAMPLE_VOXEL_GI_NEAREST\n", default_enabled)); // MODE_VOXEL_GI_WITHOUT_SAMPLER
  3017. variants.push_back(ShaderRD::VariantDefine(group, vrs_base + "\n#define USE_SDFGI\n", default_enabled)); // MODE_SDFGI
  3018. variants.push_back(ShaderRD::VariantDefine(group, vrs_base + "\n#define USE_SDFGI\n\n#define USE_VOXEL_GI_INSTANCES\n", default_enabled)); // MODE_COMBINED
  3019. variants.push_back(ShaderRD::VariantDefine(group, vrs_base + "\n#define USE_SDFGI\n\n#define USE_VOXEL_GI_INSTANCES\n#define SAMPLE_VOXEL_GI_NEAREST\n", default_enabled)); // MODE_COMBINED_WITHOUT_SAMPLER
  3020. }
  3021. shader.initialize(variants, defines);
  3022. bool vrs_supported = RendererSceneRenderRD::get_singleton()->is_vrs_supported();
  3023. if (vrs_supported) {
  3024. shader.enable_group(GROUP_VRS);
  3025. }
  3026. shader_version = shader.version_create();
  3027. Vector<RD::PipelineSpecializationConstant> specialization_constants;
  3028. {
  3029. RD::PipelineSpecializationConstant sc;
  3030. sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL;
  3031. sc.constant_id = 0; // SHADER_SPECIALIZATION_HALF_RES
  3032. sc.bool_value = false;
  3033. specialization_constants.push_back(sc);
  3034. sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL;
  3035. sc.constant_id = 1; // SHADER_SPECIALIZATION_USE_FULL_PROJECTION_MATRIX
  3036. sc.bool_value = false;
  3037. specialization_constants.push_back(sc);
  3038. sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL;
  3039. sc.constant_id = 2; // SHADER_SPECIALIZATION_USE_VRS
  3040. sc.bool_value = false;
  3041. specialization_constants.push_back(sc);
  3042. }
  3043. for (int v = 0; v < SHADER_SPECIALIZATION_VARIATIONS; v++) {
  3044. specialization_constants.ptrw()[0].bool_value = (v & SHADER_SPECIALIZATION_HALF_RES) ? true : false;
  3045. specialization_constants.ptrw()[1].bool_value = (v & SHADER_SPECIALIZATION_USE_FULL_PROJECTION_MATRIX) ? true : false;
  3046. specialization_constants.ptrw()[2].bool_value = (v & SHADER_SPECIALIZATION_USE_VRS) ? true : false;
  3047. int variant_base = vrs_supported ? MODE_MAX : 0;
  3048. for (int i = 0; i < MODE_MAX; i++) {
  3049. pipelines[v][i].create_compute_pipeline(shader.version_get_shader(shader_version, variant_base + i), specialization_constants);
  3050. }
  3051. }
  3052. sdfgi_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGIData));
  3053. }
  3054. {
  3055. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  3056. Vector<String> debug_modes;
  3057. debug_modes.push_back("");
  3058. sdfgi_shader.debug.initialize(debug_modes, defines);
  3059. sdfgi_shader.debug_shader = sdfgi_shader.debug.version_create();
  3060. sdfgi_shader.debug_shader_version = sdfgi_shader.debug.version_get_shader(sdfgi_shader.debug_shader, 0);
  3061. sdfgi_shader.debug_pipeline.create_compute_pipeline(sdfgi_shader.debug_shader_version);
  3062. }
  3063. {
  3064. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  3065. Vector<String> versions;
  3066. versions.push_back("\n#define MODE_PROBES\n");
  3067. versions.push_back("\n#define MODE_PROBES\n#define USE_MULTIVIEW\n");
  3068. versions.push_back("\n#define MODE_VISIBILITY\n");
  3069. versions.push_back("\n#define MODE_VISIBILITY\n#define USE_MULTIVIEW\n");
  3070. sdfgi_shader.debug_probes.initialize(versions, defines);
  3071. // TODO disable multiview versions if turned off
  3072. sdfgi_shader.debug_probes_shader = sdfgi_shader.debug_probes.version_create();
  3073. {
  3074. RD::PipelineRasterizationState rs;
  3075. rs.cull_mode = RD::POLYGON_CULL_DISABLED;
  3076. RD::PipelineDepthStencilState ds;
  3077. ds.enable_depth_test = true;
  3078. ds.enable_depth_write = true;
  3079. ds.depth_compare_operator = RD::COMPARE_OP_GREATER_OR_EQUAL;
  3080. for (int i = 0; i < SDFGIShader::PROBE_DEBUG_MAX; i++) {
  3081. // TODO check if version is enabled
  3082. RID debug_probes_shader_version = sdfgi_shader.debug_probes.version_get_shader(sdfgi_shader.debug_probes_shader, i);
  3083. sdfgi_shader.debug_probes_pipeline[i].setup(debug_probes_shader_version, RD::RENDER_PRIMITIVE_TRIANGLE_STRIPS, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
  3084. }
  3085. }
  3086. }
  3087. default_voxel_gi_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(VoxelGIData) * MAX_VOXEL_GI_INSTANCES);
  3088. half_resolution = GLOBAL_GET("rendering/global_illumination/gi/use_half_resolution");
  3089. }
  3090. void GI::free() {
  3091. if (default_voxel_gi_buffer.is_valid()) {
  3092. RD::get_singleton()->free_rid(default_voxel_gi_buffer);
  3093. }
  3094. if (voxel_gi_lights_uniform.is_valid()) {
  3095. RD::get_singleton()->free_rid(voxel_gi_lights_uniform);
  3096. }
  3097. if (sdfgi_ubo.is_valid()) {
  3098. RD::get_singleton()->free_rid(sdfgi_ubo);
  3099. }
  3100. if (voxel_gi_lights) {
  3101. memdelete_arr(voxel_gi_lights);
  3102. }
  3103. }
  3104. Ref<GI::SDFGI> GI::create_sdfgi(RID p_env, const Vector3 &p_world_position, uint32_t p_requested_history_size) {
  3105. Ref<SDFGI> sdfgi;
  3106. sdfgi.instantiate();
  3107. sdfgi->create(p_env, p_world_position, p_requested_history_size, this);
  3108. return sdfgi;
  3109. }
  3110. void GI::setup_voxel_gi_instances(RenderDataRD *p_render_data, Ref<RenderSceneBuffersRD> p_render_buffers, const Transform3D &p_transform, const PagedArray<RID> &p_voxel_gi_instances, uint32_t &r_voxel_gi_instances_used) {
  3111. ERR_FAIL_COND(p_render_buffers.is_null());
  3112. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  3113. ERR_FAIL_NULL(texture_storage);
  3114. r_voxel_gi_instances_used = 0;
  3115. Ref<RenderBuffersGI> rbgi = p_render_buffers->get_custom_data(RB_SCOPE_GI);
  3116. ERR_FAIL_COND(rbgi.is_null());
  3117. RID voxel_gi_buffer = rbgi->get_voxel_gi_buffer();
  3118. VoxelGIData voxel_gi_data[MAX_VOXEL_GI_INSTANCES];
  3119. bool voxel_gi_instances_changed = false;
  3120. Transform3D to_camera;
  3121. to_camera.origin = p_transform.origin; //only translation, make local
  3122. for (int i = 0; i < MAX_VOXEL_GI_INSTANCES; i++) {
  3123. RID texture;
  3124. if (i < (int)p_voxel_gi_instances.size()) {
  3125. VoxelGIInstance *gipi = voxel_gi_instance_owner.get_or_null(p_voxel_gi_instances[i]);
  3126. if (gipi) {
  3127. texture = gipi->texture;
  3128. VoxelGIData &gipd = voxel_gi_data[i];
  3129. RID base_probe = gipi->probe;
  3130. Transform3D to_cell = voxel_gi_get_to_cell_xform(gipi->probe) * gipi->transform.affine_inverse() * to_camera;
  3131. gipd.xform[0] = to_cell.basis.rows[0][0];
  3132. gipd.xform[1] = to_cell.basis.rows[1][0];
  3133. gipd.xform[2] = to_cell.basis.rows[2][0];
  3134. gipd.xform[3] = 0;
  3135. gipd.xform[4] = to_cell.basis.rows[0][1];
  3136. gipd.xform[5] = to_cell.basis.rows[1][1];
  3137. gipd.xform[6] = to_cell.basis.rows[2][1];
  3138. gipd.xform[7] = 0;
  3139. gipd.xform[8] = to_cell.basis.rows[0][2];
  3140. gipd.xform[9] = to_cell.basis.rows[1][2];
  3141. gipd.xform[10] = to_cell.basis.rows[2][2];
  3142. gipd.xform[11] = 0;
  3143. gipd.xform[12] = to_cell.origin.x;
  3144. gipd.xform[13] = to_cell.origin.y;
  3145. gipd.xform[14] = to_cell.origin.z;
  3146. gipd.xform[15] = 1;
  3147. Vector3 bounds = voxel_gi_get_octree_size(base_probe);
  3148. gipd.bounds[0] = bounds.x;
  3149. gipd.bounds[1] = bounds.y;
  3150. gipd.bounds[2] = bounds.z;
  3151. gipd.dynamic_range = voxel_gi_get_dynamic_range(base_probe) * voxel_gi_get_energy(base_probe);
  3152. gipd.bias = voxel_gi_get_bias(base_probe);
  3153. gipd.normal_bias = voxel_gi_get_normal_bias(base_probe);
  3154. gipd.blend_ambient = !voxel_gi_is_interior(base_probe);
  3155. gipd.mipmaps = gipi->mipmaps.size();
  3156. gipd.exposure_normalization = 1.0;
  3157. if (p_render_data->camera_attributes.is_valid()) {
  3158. float exposure_normalization = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
  3159. gipd.exposure_normalization = exposure_normalization / voxel_gi_get_baked_exposure_normalization(base_probe);
  3160. }
  3161. }
  3162. r_voxel_gi_instances_used++;
  3163. }
  3164. if (texture == RID()) {
  3165. texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE);
  3166. }
  3167. if (texture != rbgi->voxel_gi_textures[i]) {
  3168. voxel_gi_instances_changed = true;
  3169. rbgi->voxel_gi_textures[i] = texture;
  3170. }
  3171. }
  3172. if (voxel_gi_instances_changed) {
  3173. for (uint32_t v = 0; v < RendererSceneRender::MAX_RENDER_VIEWS; v++) {
  3174. if (RD::get_singleton()->uniform_set_is_valid(rbgi->uniform_set[v])) {
  3175. RD::get_singleton()->free_rid(rbgi->uniform_set[v]);
  3176. }
  3177. rbgi->uniform_set[v] = RID();
  3178. }
  3179. if (p_render_buffers->has_custom_data(RB_SCOPE_FOG)) {
  3180. // VoxelGI instances have changed, so we need to update volumetric fog.
  3181. Ref<RendererRD::Fog::VolumetricFog> fog = p_render_buffers->get_custom_data(RB_SCOPE_FOG);
  3182. fog->sync_gi_dependent_sets_validity(true);
  3183. }
  3184. }
  3185. if (p_voxel_gi_instances.size() > 0) {
  3186. RD::get_singleton()->draw_command_begin_label("VoxelGIs Setup");
  3187. RD::get_singleton()->buffer_update(voxel_gi_buffer, 0, sizeof(VoxelGIData) * MIN((uint64_t)MAX_VOXEL_GI_INSTANCES, p_voxel_gi_instances.size()), voxel_gi_data);
  3188. RD::get_singleton()->draw_command_end_label();
  3189. }
  3190. }
  3191. RID GI::RenderBuffersGI::get_voxel_gi_buffer() {
  3192. if (voxel_gi_buffer.is_null()) {
  3193. voxel_gi_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(GI::VoxelGIData) * GI::MAX_VOXEL_GI_INSTANCES);
  3194. }
  3195. return voxel_gi_buffer;
  3196. }
  3197. void GI::RenderBuffersGI::free_data() {
  3198. for (uint32_t v = 0; v < RendererSceneRender::MAX_RENDER_VIEWS; v++) {
  3199. if (RD::get_singleton()->uniform_set_is_valid(uniform_set[v])) {
  3200. RD::get_singleton()->free_rid(uniform_set[v]);
  3201. }
  3202. uniform_set[v] = RID();
  3203. }
  3204. if (scene_data_ubo.is_valid()) {
  3205. RD::get_singleton()->free_rid(scene_data_ubo);
  3206. scene_data_ubo = RID();
  3207. }
  3208. if (voxel_gi_buffer.is_valid()) {
  3209. RD::get_singleton()->free_rid(voxel_gi_buffer);
  3210. voxel_gi_buffer = RID();
  3211. }
  3212. }
  3213. void GI::process_gi(Ref<RenderSceneBuffersRD> p_render_buffers, const RID *p_normal_roughness_slices, RID p_voxel_gi_buffer, RID p_environment, uint32_t p_view_count, const Projection *p_projections, const Vector3 *p_eye_offsets, const Transform3D &p_cam_transform, const PagedArray<RID> &p_voxel_gi_instances) {
  3214. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  3215. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  3216. ERR_FAIL_COND_MSG(p_view_count > 2, "Maximum of 2 views supported for Processing GI.");
  3217. RD::get_singleton()->draw_command_begin_label("GI Render");
  3218. ERR_FAIL_COND(p_render_buffers.is_null());
  3219. Ref<RenderBuffersGI> rbgi = p_render_buffers->get_custom_data(RB_SCOPE_GI);
  3220. ERR_FAIL_COND(rbgi.is_null());
  3221. Size2i internal_size = p_render_buffers->get_internal_size();
  3222. if (rbgi->using_half_size_gi != half_resolution) {
  3223. p_render_buffers->clear_context(RB_SCOPE_GI);
  3224. }
  3225. if (!p_render_buffers->has_texture(RB_SCOPE_GI, RB_TEX_AMBIENT)) {
  3226. Size2i size = internal_size;
  3227. uint32_t usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  3228. if (half_resolution) {
  3229. size.x >>= 1;
  3230. size.y >>= 1;
  3231. }
  3232. p_render_buffers->create_texture(RB_SCOPE_GI, RB_TEX_AMBIENT, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, usage_bits, RD::TEXTURE_SAMPLES_1, size);
  3233. p_render_buffers->create_texture(RB_SCOPE_GI, RB_TEX_REFLECTION, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, usage_bits, RD::TEXTURE_SAMPLES_1, size);
  3234. rbgi->using_half_size_gi = half_resolution;
  3235. }
  3236. // Setup our scene data
  3237. {
  3238. SceneData scene_data;
  3239. if (rbgi->scene_data_ubo.is_null()) {
  3240. rbgi->scene_data_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SceneData));
  3241. }
  3242. Projection correction;
  3243. correction.set_depth_correction(false);
  3244. for (uint32_t v = 0; v < p_view_count; v++) {
  3245. Projection temp = correction * p_projections[v];
  3246. RendererRD::MaterialStorage::store_camera(temp.inverse(), scene_data.inv_projection[v]);
  3247. scene_data.eye_offset[v][0] = p_eye_offsets[v].x;
  3248. scene_data.eye_offset[v][1] = p_eye_offsets[v].y;
  3249. scene_data.eye_offset[v][2] = p_eye_offsets[v].z;
  3250. scene_data.eye_offset[v][3] = 0.0;
  3251. }
  3252. // Note that we will be ignoring the origin of this transform.
  3253. RendererRD::MaterialStorage::store_transform(p_cam_transform, scene_data.cam_transform);
  3254. scene_data.screen_size[0] = internal_size.x;
  3255. scene_data.screen_size[1] = internal_size.y;
  3256. RD::get_singleton()->buffer_update(rbgi->scene_data_ubo, 0, sizeof(SceneData), &scene_data);
  3257. }
  3258. // Now compute the contents of our buffers.
  3259. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  3260. // Render each eye separately.
  3261. // We need to look into whether we can make our compute shader use Multiview but not sure that works or makes a difference..
  3262. // setup our push constant
  3263. PushConstant push_constant;
  3264. push_constant.max_voxel_gi_instances = MIN((uint64_t)MAX_VOXEL_GI_INSTANCES, p_voxel_gi_instances.size());
  3265. push_constant.high_quality_vct = voxel_gi_quality == RS::VOXEL_GI_QUALITY_HIGH;
  3266. // these should be the same for all views
  3267. push_constant.orthogonal = p_projections[0].is_orthogonal();
  3268. push_constant.z_near = p_projections[0].get_z_near();
  3269. push_constant.z_far = p_projections[0].get_z_far();
  3270. // these are only used if we have 1 view, else we use the projections in our scene data
  3271. push_constant.proj_info[0] = -2.0f / (internal_size.x * p_projections[0].columns[0][0]);
  3272. push_constant.proj_info[1] = -2.0f / (internal_size.y * p_projections[0].columns[1][1]);
  3273. push_constant.proj_info[2] = (1.0f - p_projections[0].columns[0][2]) / p_projections[0].columns[0][0];
  3274. push_constant.proj_info[3] = (1.0f + p_projections[0].columns[1][2]) / p_projections[0].columns[1][1];
  3275. bool use_sdfgi = p_render_buffers->has_custom_data(RB_SCOPE_SDFGI);
  3276. bool use_voxel_gi_instances = push_constant.max_voxel_gi_instances > 0;
  3277. Ref<SDFGI> sdfgi;
  3278. if (use_sdfgi) {
  3279. sdfgi = p_render_buffers->get_custom_data(RB_SCOPE_SDFGI);
  3280. }
  3281. uint32_t pipeline_specialization = 0;
  3282. if (rbgi->using_half_size_gi) {
  3283. pipeline_specialization |= SHADER_SPECIALIZATION_HALF_RES;
  3284. }
  3285. if (p_view_count > 1) {
  3286. pipeline_specialization |= SHADER_SPECIALIZATION_USE_FULL_PROJECTION_MATRIX;
  3287. }
  3288. bool has_vrs_texture = p_render_buffers->has_texture(RB_SCOPE_VRS, RB_TEXTURE);
  3289. if (has_vrs_texture) {
  3290. pipeline_specialization |= SHADER_SPECIALIZATION_USE_VRS;
  3291. }
  3292. bool without_sampler = RD::get_singleton()->sampler_is_format_supported_for_filter(RD::DATA_FORMAT_R8G8_UINT, RD::SAMPLER_FILTER_LINEAR);
  3293. Mode mode;
  3294. if (use_sdfgi && use_voxel_gi_instances) {
  3295. mode = without_sampler ? MODE_COMBINED_WITHOUT_SAMPLER : MODE_COMBINED;
  3296. } else if (use_sdfgi) {
  3297. mode = MODE_SDFGI;
  3298. } else {
  3299. mode = without_sampler ? MODE_VOXEL_GI_WITHOUT_SAMPLER : MODE_VOXEL_GI;
  3300. }
  3301. for (uint32_t v = 0; v < p_view_count; v++) {
  3302. push_constant.view_index = v;
  3303. // setup our uniform set
  3304. if (rbgi->uniform_set[v].is_null() || !RD::get_singleton()->uniform_set_is_valid(rbgi->uniform_set[v])) {
  3305. Vector<RD::Uniform> uniforms;
  3306. {
  3307. RD::Uniform u;
  3308. u.binding = 1;
  3309. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3310. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  3311. if (use_sdfgi && j < sdfgi->cascades.size()) {
  3312. u.append_id(sdfgi->cascades[j].sdf_tex);
  3313. } else {
  3314. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  3315. }
  3316. }
  3317. uniforms.push_back(u);
  3318. }
  3319. {
  3320. RD::Uniform u;
  3321. u.binding = 2;
  3322. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3323. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  3324. if (use_sdfgi && j < sdfgi->cascades.size()) {
  3325. u.append_id(sdfgi->cascades[j].light_tex);
  3326. } else {
  3327. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  3328. }
  3329. }
  3330. uniforms.push_back(u);
  3331. }
  3332. {
  3333. RD::Uniform u;
  3334. u.binding = 3;
  3335. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3336. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  3337. if (use_sdfgi && j < sdfgi->cascades.size()) {
  3338. u.append_id(sdfgi->cascades[j].light_aniso_0_tex);
  3339. } else {
  3340. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  3341. }
  3342. }
  3343. uniforms.push_back(u);
  3344. }
  3345. {
  3346. RD::Uniform u;
  3347. u.binding = 4;
  3348. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3349. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  3350. if (use_sdfgi && j < sdfgi->cascades.size()) {
  3351. u.append_id(sdfgi->cascades[j].light_aniso_1_tex);
  3352. } else {
  3353. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  3354. }
  3355. }
  3356. uniforms.push_back(u);
  3357. }
  3358. {
  3359. RD::Uniform u;
  3360. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3361. u.binding = 5;
  3362. if (use_sdfgi) {
  3363. u.append_id(sdfgi->occlusion_texture);
  3364. } else {
  3365. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE));
  3366. }
  3367. uniforms.push_back(u);
  3368. }
  3369. {
  3370. RD::Uniform u;
  3371. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  3372. u.binding = 6;
  3373. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  3374. uniforms.push_back(u);
  3375. }
  3376. {
  3377. RD::Uniform u;
  3378. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  3379. u.binding = 7;
  3380. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  3381. uniforms.push_back(u);
  3382. }
  3383. {
  3384. RD::Uniform u;
  3385. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3386. u.binding = 9;
  3387. u.append_id(p_render_buffers->get_texture_slice(RB_SCOPE_GI, RB_TEX_AMBIENT, v, 0));
  3388. uniforms.push_back(u);
  3389. }
  3390. {
  3391. RD::Uniform u;
  3392. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3393. u.binding = 10;
  3394. u.append_id(p_render_buffers->get_texture_slice(RB_SCOPE_GI, RB_TEX_REFLECTION, v, 0));
  3395. uniforms.push_back(u);
  3396. }
  3397. {
  3398. RD::Uniform u;
  3399. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3400. u.binding = 11;
  3401. if (use_sdfgi) {
  3402. u.append_id(sdfgi->lightprobe_texture);
  3403. } else {
  3404. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE));
  3405. }
  3406. uniforms.push_back(u);
  3407. }
  3408. {
  3409. RD::Uniform u;
  3410. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3411. u.binding = 12;
  3412. u.append_id(p_render_buffers->get_depth_texture(v));
  3413. uniforms.push_back(u);
  3414. }
  3415. {
  3416. RD::Uniform u;
  3417. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3418. u.binding = 13;
  3419. u.append_id(p_normal_roughness_slices[v]);
  3420. uniforms.push_back(u);
  3421. }
  3422. {
  3423. RD::Uniform u;
  3424. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3425. u.binding = 14;
  3426. RID buffer = p_voxel_gi_buffer.is_valid() ? p_voxel_gi_buffer : texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK);
  3427. u.append_id(buffer);
  3428. uniforms.push_back(u);
  3429. }
  3430. {
  3431. RD::Uniform u;
  3432. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  3433. u.binding = 15;
  3434. u.append_id(sdfgi_ubo);
  3435. uniforms.push_back(u);
  3436. }
  3437. {
  3438. RD::Uniform u;
  3439. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  3440. u.binding = 16;
  3441. u.append_id(rbgi->get_voxel_gi_buffer());
  3442. uniforms.push_back(u);
  3443. }
  3444. {
  3445. RD::Uniform u;
  3446. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3447. u.binding = 17;
  3448. for (int i = 0; i < MAX_VOXEL_GI_INSTANCES; i++) {
  3449. u.append_id(rbgi->voxel_gi_textures[i]);
  3450. }
  3451. uniforms.push_back(u);
  3452. }
  3453. {
  3454. RD::Uniform u;
  3455. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  3456. u.binding = 18;
  3457. u.append_id(rbgi->scene_data_ubo);
  3458. uniforms.push_back(u);
  3459. }
  3460. if (RendererSceneRenderRD::get_singleton()->is_vrs_supported()) {
  3461. RD::Uniform u;
  3462. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3463. u.binding = 19;
  3464. RID buffer = has_vrs_texture ? p_render_buffers->get_texture_slice(RB_SCOPE_VRS, RB_TEXTURE, v, 0) : texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_VRS);
  3465. u.append_id(buffer);
  3466. uniforms.push_back(u);
  3467. }
  3468. bool vrs_supported = RendererSceneRenderRD::get_singleton()->is_vrs_supported();
  3469. int variant_base = vrs_supported ? MODE_MAX : 0;
  3470. rbgi->uniform_set[v] = RD::get_singleton()->uniform_set_create(uniforms, shader.version_get_shader(shader_version, variant_base), 0);
  3471. }
  3472. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, pipelines[pipeline_specialization][mode].get_rid());
  3473. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rbgi->uniform_set[v], 0);
  3474. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
  3475. if (rbgi->using_half_size_gi) {
  3476. RD::get_singleton()->compute_list_dispatch_threads(compute_list, internal_size.x >> 1, internal_size.y >> 1, 1);
  3477. } else {
  3478. RD::get_singleton()->compute_list_dispatch_threads(compute_list, internal_size.x, internal_size.y, 1);
  3479. }
  3480. }
  3481. RD::get_singleton()->compute_list_end();
  3482. RD::get_singleton()->draw_command_end_label();
  3483. }
  3484. RID GI::voxel_gi_instance_create(RID p_base) {
  3485. VoxelGIInstance voxel_gi;
  3486. voxel_gi.gi = this;
  3487. voxel_gi.probe = p_base;
  3488. RID rid = voxel_gi_instance_owner.make_rid(voxel_gi);
  3489. return rid;
  3490. }
  3491. void GI::voxel_gi_instance_free(RID p_rid) {
  3492. GI::VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_rid);
  3493. voxel_gi->free_resources();
  3494. voxel_gi_instance_owner.free(p_rid);
  3495. }
  3496. void GI::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) {
  3497. VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_probe);
  3498. ERR_FAIL_NULL(voxel_gi);
  3499. voxel_gi->transform = p_xform;
  3500. }
  3501. bool GI::voxel_gi_needs_update(RID p_probe) const {
  3502. VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_probe);
  3503. ERR_FAIL_NULL_V(voxel_gi, false);
  3504. return voxel_gi->last_probe_version != voxel_gi_get_version(voxel_gi->probe);
  3505. }
  3506. void GI::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<RenderGeometryInstance *> &p_dynamic_objects) {
  3507. VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_probe);
  3508. ERR_FAIL_NULL(voxel_gi);
  3509. voxel_gi->update(p_update_light_instances, p_light_instances, p_dynamic_objects);
  3510. }
  3511. void GI::debug_voxel_gi(RID p_voxel_gi, RD::DrawListID p_draw_list, RID p_framebuffer, const Projection &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) {
  3512. VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_voxel_gi);
  3513. ERR_FAIL_NULL(voxel_gi);
  3514. voxel_gi->debug(p_draw_list, p_framebuffer, p_camera_with_transform, p_lighting, p_emission, p_alpha);
  3515. }
  3516. void GI::enable_vrs_shader_group() {
  3517. shader.enable_group(GROUP_VRS);
  3518. }