| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980 |
- // basisu_enc.cpp
- // Copyright (C) 2019-2024 Binomial LLC. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "basisu_enc.h"
- #include "basisu_resampler.h"
- #include "basisu_resampler_filters.h"
- #include "basisu_etc.h"
- #include "../transcoder/basisu_transcoder.h"
- #include "basisu_bc7enc.h"
- #include "jpgd.h"
- #include "pvpngreader.h"
- #include "basisu_opencl.h"
- #include "basisu_uastc_hdr_4x4_enc.h"
- #include "basisu_astc_hdr_6x6_enc.h"
- #include <vector>
- #ifndef TINYEXR_USE_ZFP
- #define TINYEXR_USE_ZFP (1)
- #endif
- #include <tinyexr.h>
- #ifndef MINIZ_HEADER_FILE_ONLY
- #define MINIZ_HEADER_FILE_ONLY
- #endif
- #ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES
- #define MINIZ_NO_ZLIB_COMPATIBLE_NAMES
- #endif
- #include "basisu_miniz.h"
- #if defined(_WIN32)
- // For QueryPerformanceCounter/QueryPerformanceFrequency
- #define WIN32_LEAN_AND_MEAN
- #include <windows.h>
- #endif
- namespace basisu
- {
- uint64_t interval_timer::g_init_ticks, interval_timer::g_freq;
- double interval_timer::g_timer_freq;
- #if BASISU_SUPPORT_SSE
- bool g_cpu_supports_sse41;
- #endif
- fast_linear_to_srgb g_fast_linear_to_srgb;
- uint8_t g_hamming_dist[256] =
- {
- 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
- };
- // This is a Public Domain 8x8 font from here:
- // https://github.com/dhepper/font8x8/blob/master/font8x8_basic.h
- const uint8_t g_debug_font8x8_basic[127 - 32 + 1][8] =
- {
- { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0020 ( )
- { 0x18, 0x3C, 0x3C, 0x18, 0x18, 0x00, 0x18, 0x00}, // U+0021 (!)
- { 0x36, 0x36, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0022 (")
- { 0x36, 0x36, 0x7F, 0x36, 0x7F, 0x36, 0x36, 0x00}, // U+0023 (#)
- { 0x0C, 0x3E, 0x03, 0x1E, 0x30, 0x1F, 0x0C, 0x00}, // U+0024 ($)
- { 0x00, 0x63, 0x33, 0x18, 0x0C, 0x66, 0x63, 0x00}, // U+0025 (%)
- { 0x1C, 0x36, 0x1C, 0x6E, 0x3B, 0x33, 0x6E, 0x00}, // U+0026 (&)
- { 0x06, 0x06, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0027 (')
- { 0x18, 0x0C, 0x06, 0x06, 0x06, 0x0C, 0x18, 0x00}, // U+0028 (()
- { 0x06, 0x0C, 0x18, 0x18, 0x18, 0x0C, 0x06, 0x00}, // U+0029 ())
- { 0x00, 0x66, 0x3C, 0xFF, 0x3C, 0x66, 0x00, 0x00}, // U+002A (*)
- { 0x00, 0x0C, 0x0C, 0x3F, 0x0C, 0x0C, 0x00, 0x00}, // U+002B (+)
- { 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x0C, 0x06}, // U+002C (,)
- { 0x00, 0x00, 0x00, 0x3F, 0x00, 0x00, 0x00, 0x00}, // U+002D (-)
- { 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x0C, 0x00}, // U+002E (.)
- { 0x60, 0x30, 0x18, 0x0C, 0x06, 0x03, 0x01, 0x00}, // U+002F (/)
- { 0x3E, 0x63, 0x73, 0x7B, 0x6F, 0x67, 0x3E, 0x00}, // U+0030 (0)
- { 0x0C, 0x0E, 0x0C, 0x0C, 0x0C, 0x0C, 0x3F, 0x00}, // U+0031 (1)
- { 0x1E, 0x33, 0x30, 0x1C, 0x06, 0x33, 0x3F, 0x00}, // U+0032 (2)
- { 0x1E, 0x33, 0x30, 0x1C, 0x30, 0x33, 0x1E, 0x00}, // U+0033 (3)
- { 0x38, 0x3C, 0x36, 0x33, 0x7F, 0x30, 0x78, 0x00}, // U+0034 (4)
- { 0x3F, 0x03, 0x1F, 0x30, 0x30, 0x33, 0x1E, 0x00}, // U+0035 (5)
- { 0x1C, 0x06, 0x03, 0x1F, 0x33, 0x33, 0x1E, 0x00}, // U+0036 (6)
- { 0x3F, 0x33, 0x30, 0x18, 0x0C, 0x0C, 0x0C, 0x00}, // U+0037 (7)
- { 0x1E, 0x33, 0x33, 0x1E, 0x33, 0x33, 0x1E, 0x00}, // U+0038 (8)
- { 0x1E, 0x33, 0x33, 0x3E, 0x30, 0x18, 0x0E, 0x00}, // U+0039 (9)
- { 0x00, 0x0C, 0x0C, 0x00, 0x00, 0x0C, 0x0C, 0x00}, // U+003A (:)
- { 0x00, 0x0C, 0x0C, 0x00, 0x00, 0x0C, 0x0C, 0x06}, // U+003B (;)
- { 0x18, 0x0C, 0x06, 0x03, 0x06, 0x0C, 0x18, 0x00}, // U+003C (<)
- { 0x00, 0x00, 0x3F, 0x00, 0x00, 0x3F, 0x00, 0x00}, // U+003D (=)
- { 0x06, 0x0C, 0x18, 0x30, 0x18, 0x0C, 0x06, 0x00}, // U+003E (>)
- { 0x1E, 0x33, 0x30, 0x18, 0x0C, 0x00, 0x0C, 0x00}, // U+003F (?)
- { 0x3E, 0x63, 0x7B, 0x7B, 0x7B, 0x03, 0x1E, 0x00}, // U+0040 (@)
- { 0x0C, 0x1E, 0x33, 0x33, 0x3F, 0x33, 0x33, 0x00}, // U+0041 (A)
- { 0x3F, 0x66, 0x66, 0x3E, 0x66, 0x66, 0x3F, 0x00}, // U+0042 (B)
- { 0x3C, 0x66, 0x03, 0x03, 0x03, 0x66, 0x3C, 0x00}, // U+0043 (C)
- { 0x1F, 0x36, 0x66, 0x66, 0x66, 0x36, 0x1F, 0x00}, // U+0044 (D)
- { 0x7F, 0x46, 0x16, 0x1E, 0x16, 0x46, 0x7F, 0x00}, // U+0045 (E)
- { 0x7F, 0x46, 0x16, 0x1E, 0x16, 0x06, 0x0F, 0x00}, // U+0046 (F)
- { 0x3C, 0x66, 0x03, 0x03, 0x73, 0x66, 0x7C, 0x00}, // U+0047 (G)
- { 0x33, 0x33, 0x33, 0x3F, 0x33, 0x33, 0x33, 0x00}, // U+0048 (H)
- { 0x1E, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+0049 (I)
- { 0x78, 0x30, 0x30, 0x30, 0x33, 0x33, 0x1E, 0x00}, // U+004A (J)
- { 0x67, 0x66, 0x36, 0x1E, 0x36, 0x66, 0x67, 0x00}, // U+004B (K)
- { 0x0F, 0x06, 0x06, 0x06, 0x46, 0x66, 0x7F, 0x00}, // U+004C (L)
- { 0x63, 0x77, 0x7F, 0x7F, 0x6B, 0x63, 0x63, 0x00}, // U+004D (M)
- { 0x63, 0x67, 0x6F, 0x7B, 0x73, 0x63, 0x63, 0x00}, // U+004E (N)
- { 0x1C, 0x36, 0x63, 0x63, 0x63, 0x36, 0x1C, 0x00}, // U+004F (O)
- { 0x3F, 0x66, 0x66, 0x3E, 0x06, 0x06, 0x0F, 0x00}, // U+0050 (P)
- { 0x1E, 0x33, 0x33, 0x33, 0x3B, 0x1E, 0x38, 0x00}, // U+0051 (Q)
- { 0x3F, 0x66, 0x66, 0x3E, 0x36, 0x66, 0x67, 0x00}, // U+0052 (R)
- { 0x1E, 0x33, 0x07, 0x0E, 0x38, 0x33, 0x1E, 0x00}, // U+0053 (S)
- { 0x3F, 0x2D, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+0054 (T)
- { 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x3F, 0x00}, // U+0055 (U)
- { 0x33, 0x33, 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x00}, // U+0056 (V)
- { 0x63, 0x63, 0x63, 0x6B, 0x7F, 0x77, 0x63, 0x00}, // U+0057 (W)
- { 0x63, 0x63, 0x36, 0x1C, 0x1C, 0x36, 0x63, 0x00}, // U+0058 (X)
- { 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x0C, 0x1E, 0x00}, // U+0059 (Y)
- { 0x7F, 0x63, 0x31, 0x18, 0x4C, 0x66, 0x7F, 0x00}, // U+005A (Z)
- { 0x1E, 0x06, 0x06, 0x06, 0x06, 0x06, 0x1E, 0x00}, // U+005B ([)
- { 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0x40, 0x00}, // U+005C (\)
- { 0x1E, 0x18, 0x18, 0x18, 0x18, 0x18, 0x1E, 0x00}, // U+005D (])
- { 0x08, 0x1C, 0x36, 0x63, 0x00, 0x00, 0x00, 0x00}, // U+005E (^)
- { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF}, // U+005F (_)
- { 0x0C, 0x0C, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0060 (`)
- { 0x00, 0x00, 0x1E, 0x30, 0x3E, 0x33, 0x6E, 0x00}, // U+0061 (a)
- { 0x07, 0x06, 0x06, 0x3E, 0x66, 0x66, 0x3B, 0x00}, // U+0062 (b)
- { 0x00, 0x00, 0x1E, 0x33, 0x03, 0x33, 0x1E, 0x00}, // U+0063 (c)
- { 0x38, 0x30, 0x30, 0x3e, 0x33, 0x33, 0x6E, 0x00}, // U+0064 (d)
- { 0x00, 0x00, 0x1E, 0x33, 0x3f, 0x03, 0x1E, 0x00}, // U+0065 (e)
- { 0x1C, 0x36, 0x06, 0x0f, 0x06, 0x06, 0x0F, 0x00}, // U+0066 (f)
- { 0x00, 0x00, 0x6E, 0x33, 0x33, 0x3E, 0x30, 0x1F}, // U+0067 (g)
- { 0x07, 0x06, 0x36, 0x6E, 0x66, 0x66, 0x67, 0x00}, // U+0068 (h)
- { 0x0C, 0x00, 0x0E, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+0069 (i)
- { 0x30, 0x00, 0x30, 0x30, 0x30, 0x33, 0x33, 0x1E}, // U+006A (j)
- { 0x07, 0x06, 0x66, 0x36, 0x1E, 0x36, 0x67, 0x00}, // U+006B (k)
- { 0x0E, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+006C (l)
- { 0x00, 0x00, 0x33, 0x7F, 0x7F, 0x6B, 0x63, 0x00}, // U+006D (m)
- { 0x00, 0x00, 0x1F, 0x33, 0x33, 0x33, 0x33, 0x00}, // U+006E (n)
- { 0x00, 0x00, 0x1E, 0x33, 0x33, 0x33, 0x1E, 0x00}, // U+006F (o)
- { 0x00, 0x00, 0x3B, 0x66, 0x66, 0x3E, 0x06, 0x0F}, // U+0070 (p)
- { 0x00, 0x00, 0x6E, 0x33, 0x33, 0x3E, 0x30, 0x78}, // U+0071 (q)
- { 0x00, 0x00, 0x3B, 0x6E, 0x66, 0x06, 0x0F, 0x00}, // U+0072 (r)
- { 0x00, 0x00, 0x3E, 0x03, 0x1E, 0x30, 0x1F, 0x00}, // U+0073 (s)
- { 0x08, 0x0C, 0x3E, 0x0C, 0x0C, 0x2C, 0x18, 0x00}, // U+0074 (t)
- { 0x00, 0x00, 0x33, 0x33, 0x33, 0x33, 0x6E, 0x00}, // U+0075 (u)
- { 0x00, 0x00, 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x00}, // U+0076 (v)
- { 0x00, 0x00, 0x63, 0x6B, 0x7F, 0x7F, 0x36, 0x00}, // U+0077 (w)
- { 0x00, 0x00, 0x63, 0x36, 0x1C, 0x36, 0x63, 0x00}, // U+0078 (x)
- { 0x00, 0x00, 0x33, 0x33, 0x33, 0x3E, 0x30, 0x1F}, // U+0079 (y)
- { 0x00, 0x00, 0x3F, 0x19, 0x0C, 0x26, 0x3F, 0x00}, // U+007A (z)
- { 0x38, 0x0C, 0x0C, 0x07, 0x0C, 0x0C, 0x38, 0x00}, // U+007B ({)
- { 0x18, 0x18, 0x18, 0x00, 0x18, 0x18, 0x18, 0x00}, // U+007C (|)
- { 0x07, 0x0C, 0x0C, 0x38, 0x0C, 0x0C, 0x07, 0x00}, // U+007D (})
- { 0x6E, 0x3B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+007E (~)
- { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} // U+007F
- };
- bool g_library_initialized;
- std::mutex g_encoder_init_mutex;
-
- // Encoder library initialization (just call once at startup)
- bool basisu_encoder_init(bool use_opencl, bool opencl_force_serialization)
- {
- std::lock_guard<std::mutex> lock(g_encoder_init_mutex);
- if (g_library_initialized)
- return true;
- detect_sse41();
-
- basist::basisu_transcoder_init();
- pack_etc1_solid_color_init();
- //uastc_init();
- bc7enc_compress_block_init(); // must be after uastc_init()
- // Don't bother initializing the OpenCL module at all if it's been completely disabled.
- if (use_opencl)
- {
- opencl_init(opencl_force_serialization);
- }
- interval_timer::init(); // make sure interval_timer globals are initialized from main thread to avoid TSAN reports
- astc_hdr_enc_init();
- basist::bc6h_enc_init();
- astc_6x6_hdr::global_init();
- g_library_initialized = true;
- return true;
- }
- void basisu_encoder_deinit()
- {
- opencl_deinit();
- g_library_initialized = false;
- }
- void error_vprintf(const char* pFmt, va_list args)
- {
- const uint32_t BUF_SIZE = 256;
- char buf[BUF_SIZE];
- va_list args_copy;
- va_copy(args_copy, args);
- int total_chars = vsnprintf(buf, sizeof(buf), pFmt, args_copy);
- va_end(args_copy);
- if (total_chars < 0)
- {
- assert(0);
- return;
- }
- if (total_chars >= (int)BUF_SIZE)
- {
- basisu::vector<char> var_buf(total_chars + 1);
-
- va_copy(args_copy, args);
- int total_chars_retry = vsnprintf(var_buf.data(), var_buf.size(), pFmt, args_copy);
- va_end(args_copy);
- if (total_chars_retry < 0)
- {
- assert(0);
- return;
- }
- fprintf(stderr, "ERROR: %s", var_buf.data());
- }
- else
- {
- fprintf(stderr, "ERROR: %s", buf);
- }
- }
- void error_printf(const char *pFmt, ...)
- {
- va_list args;
- va_start(args, pFmt);
- error_vprintf(pFmt, args);
- va_end(args);
- }
- #if defined(_WIN32)
- void platform_sleep(uint32_t ms)
- {
- Sleep(ms);
- }
- #else
- void platform_sleep(uint32_t ms)
- {
- // TODO
- }
- #endif
- #if defined(_WIN32)
- inline void query_counter(timer_ticks* pTicks)
- {
- QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER*>(pTicks));
- }
- inline void query_counter_frequency(timer_ticks* pTicks)
- {
- QueryPerformanceFrequency(reinterpret_cast<LARGE_INTEGER*>(pTicks));
- }
- #elif defined(__APPLE__) || defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__EMSCRIPTEN__)
- #include <sys/time.h>
- inline void query_counter(timer_ticks* pTicks)
- {
- struct timeval cur_time;
- gettimeofday(&cur_time, NULL);
- *pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec);
- }
- inline void query_counter_frequency(timer_ticks* pTicks)
- {
- *pTicks = 1000000;
- }
- #elif defined(__GNUC__)
- #include <sys/timex.h>
- inline void query_counter(timer_ticks* pTicks)
- {
- struct timeval cur_time;
- gettimeofday(&cur_time, NULL);
- *pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec);
- }
- inline void query_counter_frequency(timer_ticks* pTicks)
- {
- *pTicks = 1000000;
- }
- #else
- #error TODO
- #endif
-
- interval_timer::interval_timer() : m_start_time(0), m_stop_time(0), m_started(false), m_stopped(false)
- {
- if (!g_timer_freq)
- init();
- }
- void interval_timer::start()
- {
- query_counter(&m_start_time);
- m_started = true;
- m_stopped = false;
- }
- void interval_timer::stop()
- {
- assert(m_started);
- query_counter(&m_stop_time);
- m_stopped = true;
- }
- double interval_timer::get_elapsed_secs() const
- {
- assert(m_started);
- if (!m_started)
- return 0;
- timer_ticks stop_time = m_stop_time;
- if (!m_stopped)
- query_counter(&stop_time);
- timer_ticks delta = stop_time - m_start_time;
- return delta * g_timer_freq;
- }
-
- void interval_timer::init()
- {
- if (!g_timer_freq)
- {
- query_counter_frequency(&g_freq);
- g_timer_freq = 1.0f / g_freq;
- query_counter(&g_init_ticks);
- }
- }
- timer_ticks interval_timer::get_ticks()
- {
- if (!g_timer_freq)
- init();
- timer_ticks ticks;
- query_counter(&ticks);
- return ticks - g_init_ticks;
- }
- double interval_timer::ticks_to_secs(timer_ticks ticks)
- {
- if (!g_timer_freq)
- init();
- return ticks * g_timer_freq;
- }
- // Note this is linear<->sRGB, NOT REC709 which uses slightly different equations/transfer functions.
- // However the gamuts/white points of REC709 and sRGB are the same.
- float linear_to_srgb(float l)
- {
- assert(l >= 0.0f && l <= 1.0f);
- if (l < .0031308f)
- return saturate(l * 12.92f);
- else
- return saturate(1.055f * powf(l, 1.0f / 2.4f) - .055f);
- }
-
- float srgb_to_linear(float s)
- {
- assert(s >= 0.0f && s <= 1.0f);
- if (s < .04045f)
- return saturate(s * (1.0f / 12.92f));
- else
- return saturate(powf((s + .055f) * (1.0f / 1.055f), 2.4f));
- }
-
- const uint32_t MAX_32BIT_ALLOC_SIZE = 250000000;
-
- bool load_tga(const char* pFilename, image& img)
- {
- int w = 0, h = 0, n_chans = 0;
- uint8_t* pImage_data = read_tga(pFilename, w, h, n_chans);
-
- if ((!pImage_data) || (!w) || (!h) || ((n_chans != 3) && (n_chans != 4)))
- {
- error_printf("Failed loading .TGA image \"%s\"!\n", pFilename);
- if (pImage_data)
- free(pImage_data);
-
- return false;
- }
- if (sizeof(void *) == sizeof(uint32_t))
- {
- if (((uint64_t)w * h * n_chans) > MAX_32BIT_ALLOC_SIZE)
- {
- error_printf("Image \"%s\" is too large (%ux%u) to process in a 32-bit build!\n", pFilename, w, h);
- if (pImage_data)
- free(pImage_data);
- return false;
- }
- }
-
- img.resize(w, h);
- const uint8_t *pSrc = pImage_data;
- for (int y = 0; y < h; y++)
- {
- color_rgba *pDst = &img(0, y);
- for (int x = 0; x < w; x++)
- {
- pDst->r = pSrc[0];
- pDst->g = pSrc[1];
- pDst->b = pSrc[2];
- pDst->a = (n_chans == 3) ? 255 : pSrc[3];
- pSrc += n_chans;
- ++pDst;
- }
- }
- free(pImage_data);
- return true;
- }
- bool load_qoi(const char* pFilename, image& img)
- {
- return false;
- }
- bool load_png(const uint8_t *pBuf, size_t buf_size, image &img, const char *pFilename)
- {
- interval_timer tm;
- tm.start();
-
- if (!buf_size)
- return false;
- uint32_t width = 0, height = 0, num_chans = 0;
- void* pImage = pv_png::load_png(pBuf, buf_size, 4, width, height, num_chans);
- if (!pImage)
- {
- error_printf("pv_png::load_png failed while loading image \"%s\"\n", pFilename);
- return false;
- }
- img.grant_ownership(reinterpret_cast<color_rgba*>(pImage), width, height);
- //debug_printf("Total load_png() time: %3.3f secs\n", tm.get_elapsed_secs());
- return true;
- }
-
- bool load_png(const char* pFilename, image& img)
- {
- uint8_vec buffer;
- if (!read_file_to_vec(pFilename, buffer))
- {
- error_printf("load_png: Failed reading file \"%s\"!\n", pFilename);
- return false;
- }
- return load_png(buffer.data(), buffer.size(), img, pFilename);
- }
- bool load_jpg(const char *pFilename, image& img)
- {
- int width = 0, height = 0, actual_comps = 0;
- uint8_t *pImage_data = jpgd::decompress_jpeg_image_from_file(pFilename, &width, &height, &actual_comps, 4, jpgd::jpeg_decoder::cFlagLinearChromaFiltering);
- if (!pImage_data)
- return false;
-
- img.init(pImage_data, width, height, 4);
-
- free(pImage_data);
- return true;
- }
- bool load_jpg(const uint8_t* pBuf, size_t buf_size, image& img)
- {
- if (buf_size > INT_MAX)
- {
- assert(0);
- return false;
- }
- int width = 0, height = 0, actual_comps = 0;
- uint8_t* pImage_data = jpgd::decompress_jpeg_image_from_memory(pBuf, (int)buf_size, &width, &height, &actual_comps, 4, jpgd::jpeg_decoder::cFlagLinearChromaFiltering);
- if (!pImage_data)
- return false;
- img.init(pImage_data, width, height, 4);
- free(pImage_data);
- return true;
- }
- bool load_image(const char* pFilename, image& img)
- {
- std::string ext(string_get_extension(std::string(pFilename)));
- if (ext.length() == 0)
- return false;
- const char *pExt = ext.c_str();
- if (strcasecmp(pExt, "png") == 0)
- return load_png(pFilename, img);
- if (strcasecmp(pExt, "tga") == 0)
- return load_tga(pFilename, img);
- if (strcasecmp(pExt, "qoi") == 0)
- return load_qoi(pFilename, img);
- if ( (strcasecmp(pExt, "jpg") == 0) || (strcasecmp(pExt, "jfif") == 0) || (strcasecmp(pExt, "jpeg") == 0) )
- return load_jpg(pFilename, img);
- return false;
- }
- static void convert_ldr_to_hdr_image(imagef &img, const image &ldr_img, bool ldr_srgb_to_linear, float linear_nit_multiplier = 1.0f, float ldr_black_bias = 0.0f)
- {
- img.resize(ldr_img.get_width(), ldr_img.get_height());
- for (uint32_t y = 0; y < ldr_img.get_height(); y++)
- {
- for (uint32_t x = 0; x < ldr_img.get_width(); x++)
- {
- const color_rgba& c = ldr_img(x, y);
- vec4F& d = img(x, y);
- if (ldr_srgb_to_linear)
- {
- float r = (float)c[0];
- float g = (float)c[1];
- float b = (float)c[2];
- if (ldr_black_bias > 0.0f)
- {
- // ASTC HDR is noticeably weaker dealing with blocks containing some pixels with components set to 0.
- // Add a very slight bias less than .5 to avoid this difficulity. When the HDR image is mapped to SDR sRGB and rounded back to 8-bits, this bias will still result in zero.
- // (FWIW, in reality, a physical monitor would be unlikely to have a perfectly zero black level.)
- // This is purely optional and on most images it doesn't matter visually.
- if (r == 0.0f)
- r = ldr_black_bias;
- if (g == 0.0f)
- g = ldr_black_bias;
- if (b == 0.0f)
- b = ldr_black_bias;
- }
- // Compute how much linear light would be emitted by a SDR 80-100 nit monitor.
- d[0] = srgb_to_linear(r * (1.0f / 255.0f)) * linear_nit_multiplier;
- d[1] = srgb_to_linear(g * (1.0f / 255.0f)) * linear_nit_multiplier;
- d[2] = srgb_to_linear(b * (1.0f / 255.0f)) * linear_nit_multiplier;
- }
- else
- {
- d[0] = c[0] * (1.0f / 255.0f) * linear_nit_multiplier;
- d[1] = c[1] * (1.0f / 255.0f) * linear_nit_multiplier;
- d[2] = c[2] * (1.0f / 255.0f) * linear_nit_multiplier;
- }
- d[3] = c[3] * (1.0f / 255.0f);
- }
- }
- }
- bool load_image_hdr(const void* pMem, size_t mem_size, imagef& img, uint32_t width, uint32_t height, hdr_image_type img_type, bool ldr_srgb_to_linear, float linear_nit_multiplier, float ldr_black_bias)
- {
- if ((!pMem) || (!mem_size))
- {
- assert(0);
- return false;
- }
- switch (img_type)
- {
- case hdr_image_type::cHITRGBAHalfFloat:
- {
- if (mem_size != width * height * sizeof(basist::half_float) * 4)
- {
- assert(0);
- return false;
- }
- if ((!width) || (!height))
- {
- assert(0);
- return false;
- }
- const basist::half_float* pSrc_image_h = static_cast<const basist::half_float *>(pMem);
- img.resize(width, height);
- for (uint32_t y = 0; y < height; y++)
- {
- for (uint32_t x = 0; x < width; x++)
- {
- const basist::half_float* pSrc_pixel = &pSrc_image_h[x * 4];
- vec4F& dst = img(x, y);
- dst[0] = basist::half_to_float(pSrc_pixel[0]);
- dst[1] = basist::half_to_float(pSrc_pixel[1]);
- dst[2] = basist::half_to_float(pSrc_pixel[2]);
- dst[3] = basist::half_to_float(pSrc_pixel[3]);
- }
-
- pSrc_image_h += (width * 4);
- }
- break;
- }
- case hdr_image_type::cHITRGBAFloat:
- {
- if (mem_size != width * height * sizeof(float) * 4)
- {
- assert(0);
- return false;
- }
- if ((!width) || (!height))
- {
- assert(0);
- return false;
- }
- img.resize(width, height);
- memcpy((void *)img.get_ptr(), pMem, width * height * sizeof(float) * 4);
- break;
- }
- case hdr_image_type::cHITJPGImage:
- {
- image ldr_img;
- if (!load_jpg(static_cast<const uint8_t*>(pMem), mem_size, ldr_img))
- return false;
- convert_ldr_to_hdr_image(img, ldr_img, ldr_srgb_to_linear, linear_nit_multiplier, ldr_black_bias);
- break;
- }
- case hdr_image_type::cHITPNGImage:
- {
- image ldr_img;
- if (!load_png(static_cast<const uint8_t *>(pMem), mem_size, ldr_img))
- return false;
- convert_ldr_to_hdr_image(img, ldr_img, ldr_srgb_to_linear, linear_nit_multiplier, ldr_black_bias);
- break;
- }
- case hdr_image_type::cHITEXRImage:
- {
- if (!read_exr(pMem, mem_size, img))
- return false;
- break;
- }
- case hdr_image_type::cHITHDRImage:
- {
- uint8_vec buf(mem_size);
- memcpy(buf.get_ptr(), pMem, mem_size);
- rgbe_header_info hdr;
- if (!read_rgbe(buf, img, hdr))
- return false;
- break;
- }
- default:
- assert(0);
- return false;
- }
- return true;
- }
- bool is_image_filename_hdr(const char *pFilename)
- {
- std::string ext(string_get_extension(std::string(pFilename)));
- if (ext.length() == 0)
- return false;
- const char* pExt = ext.c_str();
- return ((strcasecmp(pExt, "hdr") == 0) || (strcasecmp(pExt, "exr") == 0));
- }
-
- // TODO: move parameters to struct, add a HDR clean flag to eliminate NaN's/Inf's
- bool load_image_hdr(const char* pFilename, imagef& img, bool ldr_srgb_to_linear, float linear_nit_multiplier, float ldr_black_bias)
- {
- std::string ext(string_get_extension(std::string(pFilename)));
- if (ext.length() == 0)
- return false;
- const char* pExt = ext.c_str();
- if (strcasecmp(pExt, "hdr") == 0)
- {
- rgbe_header_info rgbe_info;
- if (!read_rgbe(pFilename, img, rgbe_info))
- return false;
- return true;
- }
-
- if (strcasecmp(pExt, "exr") == 0)
- {
- int n_chans = 0;
- if (!read_exr(pFilename, img, n_chans))
- return false;
- return true;
- }
- // Try loading image as LDR, then optionally convert to linear light.
- {
- image ldr_img;
- if (!load_image(pFilename, ldr_img))
- return false;
- convert_ldr_to_hdr_image(img, ldr_img, ldr_srgb_to_linear, linear_nit_multiplier, ldr_black_bias);
- }
- return true;
- }
-
- bool save_png(const char* pFilename, const image &img, uint32_t image_save_flags, uint32_t grayscale_comp)
- {
- if (!img.get_total_pixels())
- return false;
-
- void* pPNG_data = nullptr;
- size_t PNG_data_size = 0;
- if (image_save_flags & cImageSaveGrayscale)
- {
- uint8_vec g_pixels(img.get_total_pixels());
- uint8_t* pDst = &g_pixels[0];
- for (uint32_t y = 0; y < img.get_height(); y++)
- for (uint32_t x = 0; x < img.get_width(); x++)
- *pDst++ = img(x, y)[grayscale_comp];
- pPNG_data = buminiz::tdefl_write_image_to_png_file_in_memory_ex(g_pixels.data(), img.get_width(), img.get_height(), 1, &PNG_data_size, 1, false);
- }
- else
- {
- bool has_alpha = false;
-
- if ((image_save_flags & cImageSaveIgnoreAlpha) == 0)
- has_alpha = img.has_alpha();
- if (!has_alpha)
- {
- uint8_vec rgb_pixels(img.get_total_pixels() * 3);
- uint8_t* pDst = &rgb_pixels[0];
- for (uint32_t y = 0; y < img.get_height(); y++)
- {
- const color_rgba* pSrc = &img(0, y);
- for (uint32_t x = 0; x < img.get_width(); x++)
- {
- pDst[0] = pSrc->r;
- pDst[1] = pSrc->g;
- pDst[2] = pSrc->b;
-
- pSrc++;
- pDst += 3;
- }
- }
- pPNG_data = buminiz::tdefl_write_image_to_png_file_in_memory_ex(rgb_pixels.data(), img.get_width(), img.get_height(), 3, &PNG_data_size, 1, false);
- }
- else
- {
- pPNG_data = buminiz::tdefl_write_image_to_png_file_in_memory_ex(img.get_ptr(), img.get_width(), img.get_height(), 4, &PNG_data_size, 1, false);
- }
- }
- if (!pPNG_data)
- return false;
- bool status = write_data_to_file(pFilename, pPNG_data, PNG_data_size);
- if (!status)
- {
- error_printf("save_png: Failed writing to filename \"%s\"!\n", pFilename);
- }
- free(pPNG_data);
-
- return status;
- }
-
- bool read_file_to_vec(const char* pFilename, uint8_vec& data)
- {
- FILE* pFile = nullptr;
- #ifdef _WIN32
- fopen_s(&pFile, pFilename, "rb");
- #else
- pFile = fopen(pFilename, "rb");
- #endif
- if (!pFile)
- return false;
-
- fseek(pFile, 0, SEEK_END);
- #ifdef _WIN32
- int64_t filesize = _ftelli64(pFile);
- #else
- int64_t filesize = ftello(pFile);
- #endif
- if (filesize < 0)
- {
- fclose(pFile);
- return false;
- }
- fseek(pFile, 0, SEEK_SET);
- if (sizeof(size_t) == sizeof(uint32_t))
- {
- if (filesize > 0x70000000)
- {
- // File might be too big to load safely in one alloc
- fclose(pFile);
- return false;
- }
- }
- if (!data.try_resize((size_t)filesize))
- {
- fclose(pFile);
- return false;
- }
- if (filesize)
- {
- if (fread(&data[0], 1, (size_t)filesize, pFile) != (size_t)filesize)
- {
- fclose(pFile);
- return false;
- }
- }
- fclose(pFile);
- return true;
- }
- bool read_file_to_data(const char* pFilename, void *pData, size_t len)
- {
- assert(pData && len);
- if ((!pData) || (!len))
- return false;
- FILE* pFile = nullptr;
- #ifdef _WIN32
- fopen_s(&pFile, pFilename, "rb");
- #else
- pFile = fopen(pFilename, "rb");
- #endif
- if (!pFile)
- return false;
- fseek(pFile, 0, SEEK_END);
- #ifdef _WIN32
- int64_t filesize = _ftelli64(pFile);
- #else
- int64_t filesize = ftello(pFile);
- #endif
- if ((filesize < 0) || ((size_t)filesize < len))
- {
- fclose(pFile);
- return false;
- }
- fseek(pFile, 0, SEEK_SET);
-
- if (fread(pData, 1, (size_t)len, pFile) != (size_t)len)
- {
- fclose(pFile);
- return false;
- }
- fclose(pFile);
- return true;
- }
- bool write_data_to_file(const char* pFilename, const void* pData, size_t len)
- {
- FILE* pFile = nullptr;
- #ifdef _WIN32
- fopen_s(&pFile, pFilename, "wb");
- #else
- pFile = fopen(pFilename, "wb");
- #endif
- if (!pFile)
- return false;
- if (len)
- {
- if (fwrite(pData, 1, len, pFile) != len)
- {
- fclose(pFile);
- return false;
- }
- }
- return fclose(pFile) != EOF;
- }
-
- bool image_resample(const image &src, image &dst, bool srgb,
- const char *pFilter, float filter_scale,
- bool wrapping,
- uint32_t first_comp, uint32_t num_comps)
- {
- assert((first_comp + num_comps) <= 4);
- const int cMaxComps = 4;
-
- const uint32_t src_w = src.get_width(), src_h = src.get_height();
- const uint32_t dst_w = dst.get_width(), dst_h = dst.get_height();
-
- if (maximum(src_w, src_h) > BASISU_RESAMPLER_MAX_DIMENSION)
- {
- printf("Image is too large!\n");
- return false;
- }
- if (!src_w || !src_h || !dst_w || !dst_h)
- return false;
-
- if ((num_comps < 1) || (num_comps > cMaxComps))
- return false;
-
- if ((minimum(dst_w, dst_h) < 1) || (maximum(dst_w, dst_h) > BASISU_RESAMPLER_MAX_DIMENSION))
- {
- printf("Image is too large!\n");
- return false;
- }
- if ((src_w == dst_w) && (src_h == dst_h))
- {
- dst = src;
- return true;
- }
- float srgb_to_linear_table[256];
- if (srgb)
- {
- for (int i = 0; i < 256; ++i)
- srgb_to_linear_table[i] = srgb_to_linear((float)i * (1.0f/255.0f));
- }
- const int LINEAR_TO_SRGB_TABLE_SIZE = 8192;
- uint8_t linear_to_srgb_table[LINEAR_TO_SRGB_TABLE_SIZE];
- if (srgb)
- {
- for (int i = 0; i < LINEAR_TO_SRGB_TABLE_SIZE; ++i)
- linear_to_srgb_table[i] = (uint8_t)clamp<int>((int)(255.0f * linear_to_srgb((float)i * (1.0f / (LINEAR_TO_SRGB_TABLE_SIZE - 1))) + .5f), 0, 255);
- }
- std::vector<float> samples[cMaxComps];
- Resampler *resamplers[cMaxComps];
-
- resamplers[0] = new Resampler(src_w, src_h, dst_w, dst_h,
- wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f,
- pFilter, nullptr, nullptr, filter_scale, filter_scale, 0, 0);
- samples[0].resize(src_w);
- for (uint32_t i = 1; i < num_comps; ++i)
- {
- resamplers[i] = new Resampler(src_w, src_h, dst_w, dst_h,
- wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f,
- pFilter, resamplers[0]->get_clist_x(), resamplers[0]->get_clist_y(), filter_scale, filter_scale, 0, 0);
- samples[i].resize(src_w);
- }
- uint32_t dst_y = 0;
- for (uint32_t src_y = 0; src_y < src_h; ++src_y)
- {
- const color_rgba *pSrc = &src(0, src_y);
- // Put source lines into resampler(s)
- for (uint32_t x = 0; x < src_w; ++x)
- {
- for (uint32_t c = 0; c < num_comps; ++c)
- {
- const uint32_t comp_index = first_comp + c;
- const uint32_t v = (*pSrc)[comp_index];
- if (!srgb || (comp_index == 3))
- samples[c][x] = v * (1.0f / 255.0f);
- else
- samples[c][x] = srgb_to_linear_table[v];
- }
- pSrc++;
- }
- for (uint32_t c = 0; c < num_comps; ++c)
- {
- if (!resamplers[c]->put_line(&samples[c][0]))
- {
- for (uint32_t i = 0; i < num_comps; i++)
- delete resamplers[i];
- return false;
- }
- }
- // Now retrieve any output lines
- for (;;)
- {
- uint32_t c;
- for (c = 0; c < num_comps; ++c)
- {
- const uint32_t comp_index = first_comp + c;
- const float *pOutput_samples = resamplers[c]->get_line();
- if (!pOutput_samples)
- break;
- const bool linear_flag = !srgb || (comp_index == 3);
-
- color_rgba *pDst = &dst(0, dst_y);
- for (uint32_t x = 0; x < dst_w; x++)
- {
- // TODO: Add dithering
- if (linear_flag)
- {
- int j = (int)(255.0f * pOutput_samples[x] + .5f);
- (*pDst)[comp_index] = (uint8_t)clamp<int>(j, 0, 255);
- }
- else
- {
- int j = (int)((LINEAR_TO_SRGB_TABLE_SIZE - 1) * pOutput_samples[x] + .5f);
- (*pDst)[comp_index] = linear_to_srgb_table[clamp<int>(j, 0, LINEAR_TO_SRGB_TABLE_SIZE - 1)];
- }
- pDst++;
- }
- }
- if (c < num_comps)
- break;
- ++dst_y;
- }
- }
- for (uint32_t i = 0; i < num_comps; ++i)
- delete resamplers[i];
- return true;
- }
- bool image_resample(const imagef& src, imagef& dst,
- const char* pFilter, float filter_scale,
- bool wrapping,
- uint32_t first_comp, uint32_t num_comps)
- {
- assert((first_comp + num_comps) <= 4);
- const int cMaxComps = 4;
- const uint32_t src_w = src.get_width(), src_h = src.get_height();
- const uint32_t dst_w = dst.get_width(), dst_h = dst.get_height();
- if (maximum(src_w, src_h) > BASISU_RESAMPLER_MAX_DIMENSION)
- {
- printf("Image is too large!\n");
- return false;
- }
- if (!src_w || !src_h || !dst_w || !dst_h)
- return false;
- if ((num_comps < 1) || (num_comps > cMaxComps))
- return false;
- if ((minimum(dst_w, dst_h) < 1) || (maximum(dst_w, dst_h) > BASISU_RESAMPLER_MAX_DIMENSION))
- {
- printf("Image is too large!\n");
- return false;
- }
- if ((src_w == dst_w) && (src_h == dst_h) && (filter_scale == 1.0f))
- {
- dst = src;
- return true;
- }
- std::vector<float> samples[cMaxComps];
- Resampler* resamplers[cMaxComps];
- resamplers[0] = new Resampler(src_w, src_h, dst_w, dst_h,
- wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 1.0f, 0.0f, // no clamping
- pFilter, nullptr, nullptr, filter_scale, filter_scale, 0, 0);
- samples[0].resize(src_w);
- for (uint32_t i = 1; i < num_comps; ++i)
- {
- resamplers[i] = new Resampler(src_w, src_h, dst_w, dst_h,
- wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 1.0f, 0.0f, // no clamping
- pFilter, resamplers[0]->get_clist_x(), resamplers[0]->get_clist_y(), filter_scale, filter_scale, 0, 0);
- samples[i].resize(src_w);
- }
- uint32_t dst_y = 0;
- for (uint32_t src_y = 0; src_y < src_h; ++src_y)
- {
- const vec4F* pSrc = &src(0, src_y);
- // Put source lines into resampler(s)
- for (uint32_t x = 0; x < src_w; ++x)
- {
- for (uint32_t c = 0; c < num_comps; ++c)
- {
- const uint32_t comp_index = first_comp + c;
- const float v = (*pSrc)[comp_index];
- samples[c][x] = v;
- }
- pSrc++;
- }
- for (uint32_t c = 0; c < num_comps; ++c)
- {
- if (!resamplers[c]->put_line(&samples[c][0]))
- {
- for (uint32_t i = 0; i < num_comps; i++)
- delete resamplers[i];
- return false;
- }
- }
- // Now retrieve any output lines
- for (;;)
- {
- uint32_t c;
- for (c = 0; c < num_comps; ++c)
- {
- const uint32_t comp_index = first_comp + c;
- const float* pOutput_samples = resamplers[c]->get_line();
- if (!pOutput_samples)
- break;
-
- vec4F* pDst = &dst(0, dst_y);
- for (uint32_t x = 0; x < dst_w; x++)
- {
- (*pDst)[comp_index] = pOutput_samples[x];
- pDst++;
- }
- }
- if (c < num_comps)
- break;
- ++dst_y;
- }
- }
- for (uint32_t i = 0; i < num_comps; ++i)
- delete resamplers[i];
- return true;
- }
- void canonical_huffman_calculate_minimum_redundancy(sym_freq *A, int num_syms)
- {
- // See the paper "In-Place Calculation of Minimum Redundancy Codes" by Moffat and Katajainen
- if (!num_syms)
- return;
- if (1 == num_syms)
- {
- A[0].m_key = 1;
- return;
- }
-
- A[0].m_key += A[1].m_key;
-
- int s = 2, r = 0, next;
- for (next = 1; next < (num_syms - 1); ++next)
- {
- if ((s >= num_syms) || (A[r].m_key < A[s].m_key))
- {
- A[next].m_key = A[r].m_key;
- A[r].m_key = next;
- ++r;
- }
- else
- {
- A[next].m_key = A[s].m_key;
- ++s;
- }
- if ((s >= num_syms) || ((r < next) && A[r].m_key < A[s].m_key))
- {
- A[next].m_key = A[next].m_key + A[r].m_key;
- A[r].m_key = next;
- ++r;
- }
- else
- {
- A[next].m_key = A[next].m_key + A[s].m_key;
- ++s;
- }
- }
- A[num_syms - 2].m_key = 0;
- for (next = num_syms - 3; next >= 0; --next)
- {
- A[next].m_key = 1 + A[A[next].m_key].m_key;
- }
- int num_avail = 1, num_used = 0, depth = 0;
- r = num_syms - 2;
- next = num_syms - 1;
- while (num_avail > 0)
- {
- for ( ; (r >= 0) && ((int)A[r].m_key == depth); ++num_used, --r )
- ;
- for ( ; num_avail > num_used; --next, --num_avail)
- A[next].m_key = depth;
- num_avail = 2 * num_used;
- num_used = 0;
- ++depth;
- }
- }
- void canonical_huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size)
- {
- int i;
- uint32_t total = 0;
- if (code_list_len <= 1)
- return;
- for (i = max_code_size + 1; i <= cHuffmanMaxSupportedInternalCodeSize; i++)
- pNum_codes[max_code_size] += pNum_codes[i];
- for (i = max_code_size; i > 0; i--)
- total += (((uint32_t)pNum_codes[i]) << (max_code_size - i));
- while (total != (1UL << max_code_size))
- {
- pNum_codes[max_code_size]--;
- for (i = max_code_size - 1; i > 0; i--)
- {
- if (pNum_codes[i])
- {
- pNum_codes[i]--;
- pNum_codes[i + 1] += 2;
- break;
- }
- }
- total--;
- }
- }
- sym_freq *canonical_huffman_radix_sort_syms(uint32_t num_syms, sym_freq *pSyms0, sym_freq *pSyms1)
- {
- uint32_t total_passes = 2, pass_shift, pass, i, hist[256 * 2];
- sym_freq *pCur_syms = pSyms0, *pNew_syms = pSyms1;
- clear_obj(hist);
- for (i = 0; i < num_syms; i++)
- {
- uint32_t freq = pSyms0[i].m_key;
-
- // We scale all input frequencies to 16-bits.
- assert(freq <= UINT16_MAX);
- hist[freq & 0xFF]++;
- hist[256 + ((freq >> 8) & 0xFF)]++;
- }
- while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256]))
- total_passes--;
- for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8)
- {
- const uint32_t *pHist = &hist[pass << 8];
- uint32_t offsets[256], cur_ofs = 0;
- for (i = 0; i < 256; i++)
- {
- offsets[i] = cur_ofs;
- cur_ofs += pHist[i];
- }
- for (i = 0; i < num_syms; i++)
- pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i];
- sym_freq *t = pCur_syms;
- pCur_syms = pNew_syms;
- pNew_syms = t;
- }
- return pCur_syms;
- }
- bool huffman_encoding_table::init(uint32_t num_syms, const uint16_t *pFreq, uint32_t max_code_size)
- {
- if (max_code_size > cHuffmanMaxSupportedCodeSize)
- return false;
- if ((!num_syms) || (num_syms > cHuffmanMaxSyms))
- return false;
- uint32_t total_used_syms = 0;
- for (uint32_t i = 0; i < num_syms; i++)
- if (pFreq[i])
- total_used_syms++;
- if (!total_used_syms)
- return false;
- std::vector<sym_freq> sym_freq0(total_used_syms), sym_freq1(total_used_syms);
- for (uint32_t i = 0, j = 0; i < num_syms; i++)
- {
- if (pFreq[i])
- {
- sym_freq0[j].m_key = pFreq[i];
- sym_freq0[j++].m_sym_index = static_cast<uint16_t>(i);
- }
- }
- sym_freq *pSym_freq = canonical_huffman_radix_sort_syms(total_used_syms, &sym_freq0[0], &sym_freq1[0]);
- canonical_huffman_calculate_minimum_redundancy(pSym_freq, total_used_syms);
- int num_codes[cHuffmanMaxSupportedInternalCodeSize + 1];
- clear_obj(num_codes);
- for (uint32_t i = 0; i < total_used_syms; i++)
- {
- if (pSym_freq[i].m_key > cHuffmanMaxSupportedInternalCodeSize)
- return false;
- num_codes[pSym_freq[i].m_key]++;
- }
- canonical_huffman_enforce_max_code_size(num_codes, total_used_syms, max_code_size);
- m_code_sizes.resize(0);
- m_code_sizes.resize(num_syms);
- m_codes.resize(0);
- m_codes.resize(num_syms);
- for (uint32_t i = 1, j = total_used_syms; i <= max_code_size; i++)
- for (uint32_t l = num_codes[i]; l > 0; l--)
- m_code_sizes[pSym_freq[--j].m_sym_index] = static_cast<uint8_t>(i);
- uint32_t next_code[cHuffmanMaxSupportedInternalCodeSize + 1];
- next_code[1] = 0;
- for (uint32_t j = 0, i = 2; i <= max_code_size; i++)
- next_code[i] = j = ((j + num_codes[i - 1]) << 1);
- for (uint32_t i = 0; i < num_syms; i++)
- {
- uint32_t rev_code = 0, code, code_size;
- if ((code_size = m_code_sizes[i]) == 0)
- continue;
- if (code_size > cHuffmanMaxSupportedInternalCodeSize)
- return false;
- code = next_code[code_size]++;
- for (uint32_t l = code_size; l > 0; l--, code >>= 1)
- rev_code = (rev_code << 1) | (code & 1);
- m_codes[i] = static_cast<uint16_t>(rev_code);
- }
- return true;
- }
- bool huffman_encoding_table::init(uint32_t num_syms, const uint32_t *pSym_freq, uint32_t max_code_size)
- {
- if ((!num_syms) || (num_syms > cHuffmanMaxSyms))
- return false;
- uint16_vec sym_freq(num_syms);
- uint32_t max_freq = 0;
- for (uint32_t i = 0; i < num_syms; i++)
- max_freq = maximum(max_freq, pSym_freq[i]);
- if (max_freq < UINT16_MAX)
- {
- for (uint32_t i = 0; i < num_syms; i++)
- sym_freq[i] = static_cast<uint16_t>(pSym_freq[i]);
- }
- else
- {
- for (uint32_t i = 0; i < num_syms; i++)
- {
- if (pSym_freq[i])
- {
- uint32_t f = static_cast<uint32_t>((static_cast<uint64_t>(pSym_freq[i]) * 65534U + (max_freq >> 1)) / max_freq);
- sym_freq[i] = static_cast<uint16_t>(clamp<uint32_t>(f, 1, 65534));
- }
- }
- }
- return init(num_syms, &sym_freq[0], max_code_size);
- }
- void bitwise_coder::end_nonzero_run(uint16_vec &syms, uint32_t &run_size, uint32_t len)
- {
- if (run_size)
- {
- if (run_size < cHuffmanSmallRepeatSizeMin)
- {
- while (run_size--)
- syms.push_back(static_cast<uint16_t>(len));
- }
- else if (run_size <= cHuffmanSmallRepeatSizeMax)
- {
- syms.push_back(static_cast<uint16_t>(cHuffmanSmallRepeatCode | ((run_size - cHuffmanSmallRepeatSizeMin) << 6)));
- }
- else
- {
- assert((run_size >= cHuffmanBigRepeatSizeMin) && (run_size <= cHuffmanBigRepeatSizeMax));
- syms.push_back(static_cast<uint16_t>(cHuffmanBigRepeatCode | ((run_size - cHuffmanBigRepeatSizeMin) << 6)));
- }
- }
- run_size = 0;
- }
- void bitwise_coder::end_zero_run(uint16_vec &syms, uint32_t &run_size)
- {
- if (run_size)
- {
- if (run_size < cHuffmanSmallZeroRunSizeMin)
- {
- while (run_size--)
- syms.push_back(0);
- }
- else if (run_size <= cHuffmanSmallZeroRunSizeMax)
- {
- syms.push_back(static_cast<uint16_t>(cHuffmanSmallZeroRunCode | ((run_size - cHuffmanSmallZeroRunSizeMin) << 6)));
- }
- else
- {
- assert((run_size >= cHuffmanBigZeroRunSizeMin) && (run_size <= cHuffmanBigZeroRunSizeMax));
- syms.push_back(static_cast<uint16_t>(cHuffmanBigZeroRunCode | ((run_size - cHuffmanBigZeroRunSizeMin) << 6)));
- }
- }
- run_size = 0;
- }
- uint32_t bitwise_coder::emit_huffman_table(const huffman_encoding_table &tab)
- {
- const uint64_t start_bits = m_total_bits;
- const uint8_vec &code_sizes = tab.get_code_sizes();
- uint32_t total_used = tab.get_total_used_codes();
- put_bits(total_used, cHuffmanMaxSymsLog2);
-
- if (!total_used)
- return 0;
- uint16_vec syms;
- syms.reserve(total_used + 16);
- uint32_t prev_code_len = UINT_MAX, zero_run_size = 0, nonzero_run_size = 0;
- for (uint32_t i = 0; i <= total_used; ++i)
- {
- const uint32_t code_len = (i == total_used) ? 0xFF : code_sizes[i];
- assert((code_len == 0xFF) || (code_len <= 16));
- if (code_len)
- {
- end_zero_run(syms, zero_run_size);
- if (code_len != prev_code_len)
- {
- end_nonzero_run(syms, nonzero_run_size, prev_code_len);
- if (code_len != 0xFF)
- syms.push_back(static_cast<uint16_t>(code_len));
- }
- else if (++nonzero_run_size == cHuffmanBigRepeatSizeMax)
- end_nonzero_run(syms, nonzero_run_size, prev_code_len);
- }
- else
- {
- end_nonzero_run(syms, nonzero_run_size, prev_code_len);
- if (++zero_run_size == cHuffmanBigZeroRunSizeMax)
- end_zero_run(syms, zero_run_size);
- }
- prev_code_len = code_len;
- }
- histogram h(cHuffmanTotalCodelengthCodes);
- for (uint32_t i = 0; i < syms.size(); i++)
- h.inc(syms[i] & 63);
- huffman_encoding_table ct;
- if (!ct.init(h, 7))
- return 0;
- assert(cHuffmanTotalSortedCodelengthCodes == cHuffmanTotalCodelengthCodes);
- uint32_t total_codelength_codes;
- for (total_codelength_codes = cHuffmanTotalSortedCodelengthCodes; total_codelength_codes > 0; total_codelength_codes--)
- if (ct.get_code_sizes()[g_huffman_sorted_codelength_codes[total_codelength_codes - 1]])
- break;
- assert(total_codelength_codes);
- put_bits(total_codelength_codes, 5);
- for (uint32_t i = 0; i < total_codelength_codes; i++)
- put_bits(ct.get_code_sizes()[g_huffman_sorted_codelength_codes[i]], 3);
- for (uint32_t i = 0; i < syms.size(); ++i)
- {
- const uint32_t l = syms[i] & 63, e = syms[i] >> 6;
- put_code(l, ct);
-
- if (l == cHuffmanSmallZeroRunCode)
- put_bits(e, cHuffmanSmallZeroRunExtraBits);
- else if (l == cHuffmanBigZeroRunCode)
- put_bits(e, cHuffmanBigZeroRunExtraBits);
- else if (l == cHuffmanSmallRepeatCode)
- put_bits(e, cHuffmanSmallRepeatExtraBits);
- else if (l == cHuffmanBigRepeatCode)
- put_bits(e, cHuffmanBigRepeatExtraBits);
- }
- return (uint32_t)(m_total_bits - start_bits);
- }
- bool huffman_test(int rand_seed)
- {
- histogram h(19);
- // Feed in a fibonacci sequence to force large codesizes
- h[0] += 1; h[1] += 1; h[2] += 2; h[3] += 3;
- h[4] += 5; h[5] += 8; h[6] += 13; h[7] += 21;
- h[8] += 34; h[9] += 55; h[10] += 89; h[11] += 144;
- h[12] += 233; h[13] += 377; h[14] += 610; h[15] += 987;
- h[16] += 1597; h[17] += 2584; h[18] += 4181;
- huffman_encoding_table etab;
- etab.init(h, 16);
-
- {
- bitwise_coder c;
- c.init(1024);
- c.emit_huffman_table(etab);
- for (int i = 0; i < 19; i++)
- c.put_code(i, etab);
- c.flush();
- basist::bitwise_decoder d;
- d.init(&c.get_bytes()[0], static_cast<uint32_t>(c.get_bytes().size()));
- basist::huffman_decoding_table dtab;
- bool success = d.read_huffman_table(dtab);
- if (!success)
- {
- assert(0);
- printf("Failure 5\n");
- return false;
- }
- for (uint32_t i = 0; i < 19; i++)
- {
- uint32_t s = d.decode_huffman(dtab);
- if (s != i)
- {
- assert(0);
- printf("Failure 5\n");
- return false;
- }
- }
- }
- basisu::rand r;
- r.seed(rand_seed);
- for (int iter = 0; iter < 500000; iter++)
- {
- printf("%u\n", iter);
- uint32_t max_sym = r.irand(0, 8193);
- uint32_t num_codes = r.irand(1, 10000);
- uint_vec syms(num_codes);
- for (uint32_t i = 0; i < num_codes; i++)
- {
- if (r.bit())
- syms[i] = r.irand(0, max_sym);
- else
- {
- int s = (int)(r.gaussian((float)max_sym / 2, (float)maximum<int>(1, max_sym / 2)) + .5f);
- s = basisu::clamp<int>(s, 0, max_sym);
- syms[i] = s;
- }
- }
- histogram h1(max_sym + 1);
- for (uint32_t i = 0; i < num_codes; i++)
- h1[syms[i]]++;
- huffman_encoding_table etab2;
- if (!etab2.init(h1, 16))
- {
- assert(0);
- printf("Failed 0\n");
- return false;
- }
- bitwise_coder c;
- c.init(1024);
- c.emit_huffman_table(etab2);
- for (uint32_t i = 0; i < num_codes; i++)
- c.put_code(syms[i], etab2);
- c.flush();
- basist::bitwise_decoder d;
- d.init(&c.get_bytes()[0], (uint32_t)c.get_bytes().size());
- basist::huffman_decoding_table dtab;
- bool success = d.read_huffman_table(dtab);
- if (!success)
- {
- assert(0);
- printf("Failed 2\n");
- return false;
- }
- for (uint32_t i = 0; i < num_codes; i++)
- {
- uint32_t s = d.decode_huffman(dtab);
- if (s != syms[i])
- {
- assert(0);
- printf("Failed 4\n");
- return false;
- }
- }
- }
- return true;
- }
- void palette_index_reorderer::init(uint32_t num_indices, const uint32_t *pIndices, uint32_t num_syms, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight)
- {
- assert((num_syms > 0) && (num_indices > 0));
- assert((dist_func_weight >= 0.0f) && (dist_func_weight <= 1.0f));
- clear();
- m_remap_table.resize(num_syms);
- m_entries_picked.reserve(num_syms);
- m_total_count_to_picked.resize(num_syms);
- if (num_indices <= 1)
- return;
- prepare_hist(num_syms, num_indices, pIndices);
- find_initial(num_syms);
- while (m_entries_to_do.size())
- {
- // Find the best entry to move into the picked list.
- uint32_t best_entry;
- double best_count;
- find_next_entry(best_entry, best_count, pDist_func, pCtx, dist_func_weight);
- // We now have chosen an entry to place in the picked list, now determine which side it goes on.
- const uint32_t entry_to_move = m_entries_to_do[best_entry];
-
- float side = pick_side(num_syms, entry_to_move, pDist_func, pCtx, dist_func_weight);
-
- // Put entry_to_move either on the "left" or "right" side of the picked entries
- if (side <= 0)
- m_entries_picked.push_back(entry_to_move);
- else
- m_entries_picked.insert(m_entries_picked.begin(), entry_to_move);
- // Erase best_entry from the todo list
- m_entries_to_do.erase(m_entries_to_do.begin() + best_entry);
- // We've just moved best_entry to the picked list, so now we need to update m_total_count_to_picked[] to factor the additional count to best_entry
- for (uint32_t i = 0; i < m_entries_to_do.size(); i++)
- m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], entry_to_move, num_syms);
- }
- for (uint32_t i = 0; i < num_syms; i++)
- m_remap_table[m_entries_picked[i]] = i;
- }
- void palette_index_reorderer::prepare_hist(uint32_t num_syms, uint32_t num_indices, const uint32_t *pIndices)
- {
- m_hist.resize(0);
- m_hist.resize(num_syms * num_syms);
- for (uint32_t i = 0; i < num_indices; i++)
- {
- const uint32_t idx = pIndices[i];
- inc_hist(idx, (i < (num_indices - 1)) ? pIndices[i + 1] : -1, num_syms);
- inc_hist(idx, (i > 0) ? pIndices[i - 1] : -1, num_syms);
- }
- }
- void palette_index_reorderer::find_initial(uint32_t num_syms)
- {
- uint32_t max_count = 0, max_index = 0;
- for (uint32_t i = 0; i < num_syms * num_syms; i++)
- if (m_hist[i] > max_count)
- max_count = m_hist[i], max_index = i;
- uint32_t a = max_index / num_syms, b = max_index % num_syms;
- const size_t ofs = m_entries_picked.size();
- m_entries_picked.push_back(a);
- m_entries_picked.push_back(b);
- for (uint32_t i = 0; i < num_syms; i++)
- if ((i != m_entries_picked[ofs + 1]) && (i != m_entries_picked[ofs]))
- m_entries_to_do.push_back(i);
- for (uint32_t i = 0; i < m_entries_to_do.size(); i++)
- for (uint32_t j = 0; j < m_entries_picked.size(); j++)
- m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], m_entries_picked[j], num_syms);
- }
- void palette_index_reorderer::find_next_entry(uint32_t &best_entry, double &best_count, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight)
- {
- best_entry = 0;
- best_count = 0;
- for (uint32_t i = 0; i < m_entries_to_do.size(); i++)
- {
- const uint32_t u = m_entries_to_do[i];
- double total_count = m_total_count_to_picked[u];
- if (pDist_func)
- {
- float w = maximum<float>((*pDist_func)(u, m_entries_picked.front(), pCtx), (*pDist_func)(u, m_entries_picked.back(), pCtx));
- assert((w >= 0.0f) && (w <= 1.0f));
- total_count = (total_count + 1.0f) * lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, w);
- }
- if (total_count <= best_count)
- continue;
- best_entry = i;
- best_count = total_count;
- }
- }
- float palette_index_reorderer::pick_side(uint32_t num_syms, uint32_t entry_to_move, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight)
- {
- float which_side = 0;
- int l_count = 0, r_count = 0;
- for (uint32_t j = 0; j < m_entries_picked.size(); j++)
- {
- const int count = get_hist(entry_to_move, m_entries_picked[j], num_syms), r = ((int)m_entries_picked.size() + 1 - 2 * (j + 1));
- which_side += static_cast<float>(r * count);
- if (r >= 0)
- l_count += r * count;
- else
- r_count += -r * count;
- }
- if (pDist_func)
- {
- float w_left = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.front(), pCtx));
- float w_right = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.back(), pCtx));
- which_side = w_left * l_count - w_right * r_count;
- }
- return which_side;
- }
-
- void image_metrics::calc(const imagef& a, const imagef& b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error, bool log)
- {
- assert((first_chan < 4U) && (first_chan + total_chans <= 4U));
- const uint32_t width = basisu::minimum(a.get_width(), b.get_width());
- const uint32_t height = basisu::minimum(a.get_height(), b.get_height());
- double max_e = -1e+30f;
- double sum = 0.0f, sum_sqr = 0.0f;
- m_has_neg = false;
- m_any_abnormal = false;
- m_hf_mag_overflow = false;
-
- for (uint32_t y = 0; y < height; y++)
- {
- for (uint32_t x = 0; x < width; x++)
- {
- const vec4F& ca = a(x, y), &cb = b(x, y);
-
- if (total_chans)
- {
- for (uint32_t c = 0; c < total_chans; c++)
- {
- float fa = ca[first_chan + c], fb = cb[first_chan + c];
- if ((fabs(fa) > basist::MAX_HALF_FLOAT) || (fabs(fb) > basist::MAX_HALF_FLOAT))
- m_hf_mag_overflow = true;
- if ((fa < 0.0f) || (fb < 0.0f))
- m_has_neg = true;
- if (std::isinf(fa) || std::isinf(fb) || std::isnan(fa) || std::isnan(fb))
- m_any_abnormal = true;
-
- const double delta = fabs(fa - fb);
- max_e = basisu::maximum<double>(max_e, delta);
- if (log)
- {
- double log2_delta = log2f(basisu::maximum(0.0f, fa) + 1.0f) - log2f(basisu::maximum(0.0f, fb) + 1.0f);
- sum += fabs(log2_delta);
- sum_sqr += log2_delta * log2_delta;
- }
- else
- {
- sum += fabs(delta);
- sum_sqr += delta * delta;
- }
- }
- }
- else
- {
- for (uint32_t c = 0; c < 3; c++)
- {
- float fa = ca[c], fb = cb[c];
- if ((fabs(fa) > basist::MAX_HALF_FLOAT) || (fabs(fb) > basist::MAX_HALF_FLOAT))
- m_hf_mag_overflow = true;
- if ((fa < 0.0f) || (fb < 0.0f))
- m_has_neg = true;
- if (std::isinf(fa) || std::isinf(fb) || std::isnan(fa) || std::isnan(fb))
- m_any_abnormal = true;
- }
- double ca_l = get_luminance(ca), cb_l = get_luminance(cb);
-
- double delta = fabs(ca_l - cb_l);
- max_e = basisu::maximum(max_e, delta);
-
- if (log)
- {
- double log2_delta = log2(basisu::maximum<double>(0.0f, ca_l) + 1.0f) - log2(basisu::maximum<double>(0.0f, cb_l) + 1.0f);
- sum += fabs(log2_delta);
- sum_sqr += log2_delta * log2_delta;
- }
- else
- {
- sum += delta;
- sum_sqr += delta * delta;
- }
- }
- }
- }
- m_max = (double)(max_e);
- double total_values = (double)width * (double)height;
- if (avg_comp_error)
- total_values *= (double)clamp<uint32_t>(total_chans, 1, 4);
- m_mean = (float)(sum / total_values);
- m_mean_squared = (float)(sum_sqr / total_values);
- m_rms = (float)sqrt(sum_sqr / total_values);
-
- const double max_val = 1.0f;
- m_psnr = m_rms ? (float)clamp<double>(log10(max_val / m_rms) * 20.0f, 0.0f, 1000.0f) : 1000.0f;
- }
- void image_metrics::calc_half(const imagef& a, const imagef& b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error)
- {
- assert(total_chans);
- assert((first_chan < 4U) && (first_chan + total_chans <= 4U));
- const uint32_t width = basisu::minimum(a.get_width(), b.get_width());
- const uint32_t height = basisu::minimum(a.get_height(), b.get_height());
- m_has_neg = false;
- m_hf_mag_overflow = false;
- m_any_abnormal = false;
- uint_vec hist(65536);
-
- for (uint32_t y = 0; y < height; y++)
- {
- for (uint32_t x = 0; x < width; x++)
- {
- const vec4F& ca = a(x, y), &cb = b(x, y);
- for (uint32_t i = 0; i < 4; i++)
- {
- if ((ca[i] < 0.0f) || (cb[i] < 0.0f))
- m_has_neg = true;
-
- if ((fabs(ca[i]) > basist::MAX_HALF_FLOAT) || (fabs(cb[i]) > basist::MAX_HALF_FLOAT))
- m_hf_mag_overflow = true;
- if (std::isnan(ca[i]) || std::isnan(cb[i]) || std::isinf(ca[i]) || std::isinf(cb[i]))
- m_any_abnormal = true;
- }
- int cah[4] = { basist::float_to_half(ca[0]), basist::float_to_half(ca[1]), basist::float_to_half(ca[2]), basist::float_to_half(ca[3]) };
- int cbh[4] = { basist::float_to_half(cb[0]), basist::float_to_half(cb[1]), basist::float_to_half(cb[2]), basist::float_to_half(cb[3]) };
- for (uint32_t c = 0; c < total_chans; c++)
- hist[iabs(cah[first_chan + c] - cbh[first_chan + c]) & 65535]++;
- } // x
- } // y
- m_max = 0;
- double sum = 0.0f, sum2 = 0.0f;
- for (uint32_t i = 0; i < 65536; i++)
- {
- if (hist[i])
- {
- m_max = basisu::maximum<double>(m_max, (double)i);
- double v = (double)i * (double)hist[i];
- sum += v;
- sum2 += (double)i * v;
- }
- }
- double total_values = (double)width * (double)height;
- if (avg_comp_error)
- total_values *= (double)clamp<uint32_t>(total_chans, 1, 4);
- const float max_val = 65535.0f;
- m_mean = (float)clamp<double>(sum / total_values, 0.0f, max_val);
- m_mean_squared = (float)clamp<double>(sum2 / total_values, 0.0f, max_val * max_val);
- m_rms = (float)sqrt(m_mean_squared);
- m_psnr = m_rms ? (float)clamp<double>(log10(max_val / m_rms) * 20.0f, 0.0f, 1000.0f) : 1000.0f;
- }
- // Alt. variant, same as calc_half(), for validation.
- void image_metrics::calc_half2(const imagef& a, const imagef& b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error)
- {
- assert(total_chans);
- assert((first_chan < 4U) && (first_chan + total_chans <= 4U));
- const uint32_t width = basisu::minimum(a.get_width(), b.get_width());
- const uint32_t height = basisu::minimum(a.get_height(), b.get_height());
- m_has_neg = false;
- m_hf_mag_overflow = false;
- m_any_abnormal = false;
-
- double sum = 0.0f, sum2 = 0.0f;
- m_max = 0;
- for (uint32_t y = 0; y < height; y++)
- {
- for (uint32_t x = 0; x < width; x++)
- {
- const vec4F& ca = a(x, y), & cb = b(x, y);
- for (uint32_t i = 0; i < 4; i++)
- {
- if ((ca[i] < 0.0f) || (cb[i] < 0.0f))
- m_has_neg = true;
- if ((fabs(ca[i]) > basist::MAX_HALF_FLOAT) || (fabs(cb[i]) > basist::MAX_HALF_FLOAT))
- m_hf_mag_overflow = true;
- if (std::isnan(ca[i]) || std::isnan(cb[i]) || std::isinf(ca[i]) || std::isinf(cb[i]))
- m_any_abnormal = true;
- }
- int cah[4] = { basist::float_to_half(ca[0]), basist::float_to_half(ca[1]), basist::float_to_half(ca[2]), basist::float_to_half(ca[3]) };
- int cbh[4] = { basist::float_to_half(cb[0]), basist::float_to_half(cb[1]), basist::float_to_half(cb[2]), basist::float_to_half(cb[3]) };
- for (uint32_t c = 0; c < total_chans; c++)
- {
- int diff = iabs(cah[first_chan + c] - cbh[first_chan + c]);
- if (diff)
- m_max = std::max<double>(m_max, (double)diff);
- sum += diff;
- sum2 += squarei(cah[first_chan + c] - cbh[first_chan + c]);
- }
- } // x
- } // y
-
- double total_values = (double)width * (double)height;
- if (avg_comp_error)
- total_values *= (double)clamp<uint32_t>(total_chans, 1, 4);
- const float max_val = 65535.0f;
- m_mean = (float)clamp<double>(sum / total_values, 0.0f, max_val);
- m_mean_squared = (float)clamp<double>(sum2 / total_values, 0.0f, max_val * max_val);
- m_rms = (float)sqrt(m_mean_squared);
- m_psnr = m_rms ? (float)clamp<double>(log10(max_val / m_rms) * 20.0f, 0.0f, 1000.0f) : 1000.0f;
- }
- void image_metrics::calc(const image &a, const image &b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error, bool use_601_luma)
- {
- assert((first_chan < 4U) && (first_chan + total_chans <= 4U));
- const uint32_t width = basisu::minimum(a.get_width(), b.get_width());
- const uint32_t height = basisu::minimum(a.get_height(), b.get_height());
- double hist[256];
- clear_obj(hist);
- m_has_neg = false;
- m_any_abnormal = false;
- m_hf_mag_overflow = false;
- for (uint32_t y = 0; y < height; y++)
- {
- for (uint32_t x = 0; x < width; x++)
- {
- const color_rgba &ca = a(x, y), &cb = b(x, y);
- if (total_chans)
- {
- for (uint32_t c = 0; c < total_chans; c++)
- hist[iabs(ca[first_chan + c] - cb[first_chan + c])]++;
- }
- else
- {
- if (use_601_luma)
- hist[iabs(ca.get_601_luma() - cb.get_601_luma())]++;
- else
- hist[iabs(ca.get_709_luma() - cb.get_709_luma())]++;
- }
- }
- }
- m_max = 0;
- double sum = 0.0f, sum2 = 0.0f;
- for (uint32_t i = 0; i < 256; i++)
- {
- if (hist[i])
- {
- m_max = basisu::maximum<double>(m_max, (double)i);
- double v = i * hist[i];
- sum += v;
- sum2 += i * v;
- }
- }
- double total_values = (double)width * (double)height;
- if (avg_comp_error)
- total_values *= (double)clamp<uint32_t>(total_chans, 1, 4);
- m_mean = (float)clamp<double>(sum / total_values, 0.0f, 255.0);
- m_mean_squared = (float)clamp<double>(sum2 / total_values, 0.0f, 255.0f * 255.0f);
- m_rms = (float)sqrt(m_mean_squared);
- m_psnr = m_rms ? (float)clamp<double>(log10(255.0 / m_rms) * 20.0f, 0.0f, 100.0f) : 100.0f;
- }
- void print_image_metrics(const image& a, const image& b)
- {
- image_metrics im;
- im.calc(a, b, 0, 3);
- im.print("RGB ");
- im.calc(a, b, 0, 4);
- im.print("RGBA ");
- im.calc(a, b, 0, 1);
- im.print("R ");
- im.calc(a, b, 1, 1);
- im.print("G ");
- im.calc(a, b, 2, 1);
- im.print("B ");
- im.calc(a, b, 3, 1);
- im.print("A ");
- im.calc(a, b, 0, 0);
- im.print("Y 709 ");
- im.calc(a, b, 0, 0, true, true);
- im.print("Y 601 ");
- }
- void fill_buffer_with_random_bytes(void *pBuf, size_t size, uint32_t seed)
- {
- rand r(seed);
- uint8_t *pDst = static_cast<uint8_t *>(pBuf);
- while (size >= sizeof(uint32_t))
- {
- *(uint32_t *)pDst = r.urand32();
- pDst += sizeof(uint32_t);
- size -= sizeof(uint32_t);
- }
- while (size)
- {
- *pDst++ = r.byte();
- size--;
- }
- }
- uint32_t hash_hsieh(const uint8_t *pBuf, size_t len)
- {
- if (!pBuf || !len)
- return 0;
- uint32_t h = static_cast<uint32_t>(len);
- const uint32_t bytes_left = len & 3;
- len >>= 2;
- while (len--)
- {
- const uint16_t *pWords = reinterpret_cast<const uint16_t *>(pBuf);
- h += pWords[0];
-
- const uint32_t t = (pWords[1] << 11) ^ h;
- h = (h << 16) ^ t;
-
- pBuf += sizeof(uint32_t);
-
- h += h >> 11;
- }
- switch (bytes_left)
- {
- case 1:
- h += *reinterpret_cast<const signed char*>(pBuf);
- h ^= h << 10;
- h += h >> 1;
- break;
- case 2:
- h += *reinterpret_cast<const uint16_t *>(pBuf);
- h ^= h << 11;
- h += h >> 17;
- break;
- case 3:
- h += *reinterpret_cast<const uint16_t *>(pBuf);
- h ^= h << 16;
- h ^= (static_cast<signed char>(pBuf[sizeof(uint16_t)])) << 18;
- h += h >> 11;
- break;
- default:
- break;
- }
-
- h ^= h << 3;
- h += h >> 5;
- h ^= h << 4;
- h += h >> 17;
- h ^= h << 25;
- h += h >> 6;
- return h;
- }
- job_pool::job_pool(uint32_t num_threads) :
- m_num_active_jobs(0)
- {
- m_kill_flag.store(false);
- m_num_active_workers.store(0);
- assert(num_threads >= 1U);
- debug_printf("job_pool::job_pool: %u total threads\n", num_threads);
- if (num_threads > 1)
- {
- m_threads.resize(num_threads - 1);
- for (int i = 0; i < ((int)num_threads - 1); i++)
- m_threads[i] = std::thread([this, i] { job_thread(i); });
- }
- }
- job_pool::~job_pool()
- {
- debug_printf("job_pool::~job_pool\n");
-
- // Notify all workers that they need to die right now.
- {
- std::lock_guard<std::mutex> lk(m_mutex);
- m_kill_flag.store(true);
- }
-
- m_has_work.notify_all();
- #ifdef __EMSCRIPTEN__
- for ( ; ; )
- {
- if (m_num_active_workers.load() <= 0)
- break;
- std::this_thread::sleep_for(std::chrono::milliseconds(50));
- }
-
- // At this point all worker threads should be exiting or exited.
- // We could call detach(), but this seems to just call join() anyway.
- #endif
- // Wait for all worker threads to exit.
- for (uint32_t i = 0; i < m_threads.size(); i++)
- m_threads[i].join();
- }
-
- void job_pool::add_job(const std::function<void()>& job)
- {
- std::unique_lock<std::mutex> lock(m_mutex);
- m_queue.emplace_back(job);
- const size_t queue_size = m_queue.size();
- lock.unlock();
- if (queue_size > 1)
- m_has_work.notify_one();
- }
- void job_pool::add_job(std::function<void()>&& job)
- {
- std::unique_lock<std::mutex> lock(m_mutex);
- m_queue.emplace_back(std::move(job));
-
- const size_t queue_size = m_queue.size();
- lock.unlock();
- if (queue_size > 1)
- {
- m_has_work.notify_one();
- }
- }
- void job_pool::wait_for_all()
- {
- std::unique_lock<std::mutex> lock(m_mutex);
- // Drain the job queue on the calling thread.
- while (!m_queue.empty())
- {
- std::function<void()> job(m_queue.back());
- m_queue.pop_back();
- lock.unlock();
- job();
- lock.lock();
- }
- // The queue is empty, now wait for all active jobs to finish up.
- #ifndef __EMSCRIPTEN__
- m_no_more_jobs.wait(lock, [this]{ return !m_num_active_jobs; } );
- #else
- // Avoid infinite blocking
- for (; ; )
- {
- if (m_no_more_jobs.wait_for(lock, std::chrono::milliseconds(50), [this] { return !m_num_active_jobs; }))
- {
- break;
- }
- }
- #endif
- }
- void job_pool::job_thread(uint32_t index)
- {
- BASISU_NOTE_UNUSED(index);
- //debug_printf("job_pool::job_thread: starting %u\n", index);
- m_num_active_workers.fetch_add(1);
-
- while (!m_kill_flag)
- {
- std::unique_lock<std::mutex> lock(m_mutex);
- // Wait for any jobs to be issued.
- #if 0
- m_has_work.wait(lock, [this] { return m_kill_flag || m_queue.size(); } );
- #else
- // For more safety vs. buggy RTL's. Worse case we stall for a second vs. locking up forever if something goes wrong.
- m_has_work.wait_for(lock, std::chrono::milliseconds(1000), [this] {
- return m_kill_flag || !m_queue.empty();
- });
- #endif
- // Check to see if we're supposed to exit.
- if (m_kill_flag)
- break;
- if (m_queue.empty())
- continue;
- // Get the job and execute it.
- std::function<void()> job(m_queue.back());
- m_queue.pop_back();
- ++m_num_active_jobs;
- lock.unlock();
- job();
- lock.lock();
- --m_num_active_jobs;
- // Now check if there are no more jobs remaining.
- const bool all_done = m_queue.empty() && !m_num_active_jobs;
-
- lock.unlock();
- if (all_done)
- m_no_more_jobs.notify_all();
- }
- m_num_active_workers.fetch_add(-1);
- //debug_printf("job_pool::job_thread: exiting\n");
- }
- // .TGA image loading
- #pragma pack(push)
- #pragma pack(1)
- struct tga_header
- {
- uint8_t m_id_len;
- uint8_t m_cmap;
- uint8_t m_type;
- packed_uint<2> m_cmap_first;
- packed_uint<2> m_cmap_len;
- uint8_t m_cmap_bpp;
- packed_uint<2> m_x_org;
- packed_uint<2> m_y_org;
- packed_uint<2> m_width;
- packed_uint<2> m_height;
- uint8_t m_depth;
- uint8_t m_desc;
- };
- #pragma pack(pop)
- const uint32_t MAX_TGA_IMAGE_SIZE = 16384;
- enum tga_image_type
- {
- cITPalettized = 1,
- cITRGB = 2,
- cITGrayscale = 3
- };
- uint8_t *read_tga(const uint8_t *pBuf, uint32_t buf_size, int &width, int &height, int &n_chans)
- {
- width = 0;
- height = 0;
- n_chans = 0;
- if (buf_size <= sizeof(tga_header))
- return nullptr;
- const tga_header &hdr = *reinterpret_cast<const tga_header *>(pBuf);
- if ((!hdr.m_width) || (!hdr.m_height) || (hdr.m_width > MAX_TGA_IMAGE_SIZE) || (hdr.m_height > MAX_TGA_IMAGE_SIZE))
- return nullptr;
- if (hdr.m_desc >> 6)
- return nullptr;
- // Simple validation
- if ((hdr.m_cmap != 0) && (hdr.m_cmap != 1))
- return nullptr;
-
- if (hdr.m_cmap)
- {
- if ((hdr.m_cmap_bpp == 0) || (hdr.m_cmap_bpp > 32))
- return nullptr;
- // Nobody implements CMapFirst correctly, so we're not supporting it. Never seen it used, either.
- if (hdr.m_cmap_first != 0)
- return nullptr;
- }
- const bool x_flipped = (hdr.m_desc & 0x10) != 0;
- const bool y_flipped = (hdr.m_desc & 0x20) == 0;
- bool rle_flag = false;
- int file_image_type = hdr.m_type;
- if (file_image_type > 8)
- {
- file_image_type -= 8;
- rle_flag = true;
- }
- const tga_image_type image_type = static_cast<tga_image_type>(file_image_type);
- switch (file_image_type)
- {
- case cITRGB:
- if (hdr.m_depth == 8)
- return nullptr;
- break;
- case cITPalettized:
- if ((hdr.m_depth != 8) || (hdr.m_cmap != 1) || (hdr.m_cmap_len == 0))
- return nullptr;
- break;
- case cITGrayscale:
- if ((hdr.m_cmap != 0) || (hdr.m_cmap_len != 0))
- return nullptr;
- if ((hdr.m_depth != 8) && (hdr.m_depth != 16))
- return nullptr;
- break;
- default:
- return nullptr;
- }
- uint32_t tga_bytes_per_pixel = 0;
- switch (hdr.m_depth)
- {
- case 32:
- tga_bytes_per_pixel = 4;
- n_chans = 4;
- break;
- case 24:
- tga_bytes_per_pixel = 3;
- n_chans = 3;
- break;
- case 16:
- case 15:
- tga_bytes_per_pixel = 2;
- // For compatibility with stb_image_write.h
- n_chans = ((file_image_type == cITGrayscale) && (hdr.m_depth == 16)) ? 4 : 3;
- break;
- case 8:
- tga_bytes_per_pixel = 1;
- // For palettized RGBA support, which both FreeImage and stb_image support.
- n_chans = ((file_image_type == cITPalettized) && (hdr.m_cmap_bpp == 32)) ? 4 : 3;
- break;
- default:
- return nullptr;
- }
- //const uint32_t bytes_per_line = hdr.m_width * tga_bytes_per_pixel;
- const uint8_t *pSrc = pBuf + sizeof(tga_header);
- uint32_t bytes_remaining = buf_size - sizeof(tga_header);
- if (hdr.m_id_len)
- {
- if (bytes_remaining < hdr.m_id_len)
- return nullptr;
- pSrc += hdr.m_id_len;
- bytes_remaining += hdr.m_id_len;
- }
- color_rgba pal[256];
- for (uint32_t i = 0; i < 256; i++)
- pal[i].set(0, 0, 0, 255);
- if ((hdr.m_cmap) && (hdr.m_cmap_len))
- {
- if (image_type == cITPalettized)
- {
- // Note I cannot find any files using 32bpp palettes in the wild (never seen any in ~30 years).
- if ( ((hdr.m_cmap_bpp != 32) && (hdr.m_cmap_bpp != 24) && (hdr.m_cmap_bpp != 15) && (hdr.m_cmap_bpp != 16)) || (hdr.m_cmap_len > 256) )
- return nullptr;
- if (hdr.m_cmap_bpp == 32)
- {
- const uint32_t pal_size = hdr.m_cmap_len * 4;
- if (bytes_remaining < pal_size)
- return nullptr;
- for (uint32_t i = 0; i < hdr.m_cmap_len; i++)
- {
- pal[i].r = pSrc[i * 4 + 2];
- pal[i].g = pSrc[i * 4 + 1];
- pal[i].b = pSrc[i * 4 + 0];
- pal[i].a = pSrc[i * 4 + 3];
- }
- bytes_remaining -= pal_size;
- pSrc += pal_size;
- }
- else if (hdr.m_cmap_bpp == 24)
- {
- const uint32_t pal_size = hdr.m_cmap_len * 3;
- if (bytes_remaining < pal_size)
- return nullptr;
- for (uint32_t i = 0; i < hdr.m_cmap_len; i++)
- {
- pal[i].r = pSrc[i * 3 + 2];
- pal[i].g = pSrc[i * 3 + 1];
- pal[i].b = pSrc[i * 3 + 0];
- pal[i].a = 255;
- }
- bytes_remaining -= pal_size;
- pSrc += pal_size;
- }
- else
- {
- const uint32_t pal_size = hdr.m_cmap_len * 2;
- if (bytes_remaining < pal_size)
- return nullptr;
- for (uint32_t i = 0; i < hdr.m_cmap_len; i++)
- {
- const uint32_t v = pSrc[i * 2 + 0] | (pSrc[i * 2 + 1] << 8);
- pal[i].r = (((v >> 10) & 31) * 255 + 15) / 31;
- pal[i].g = (((v >> 5) & 31) * 255 + 15) / 31;
- pal[i].b = ((v & 31) * 255 + 15) / 31;
- pal[i].a = 255;
- }
- bytes_remaining -= pal_size;
- pSrc += pal_size;
- }
- }
- else
- {
- const uint32_t bytes_to_skip = (hdr.m_cmap_bpp >> 3) * hdr.m_cmap_len;
- if (bytes_remaining < bytes_to_skip)
- return nullptr;
- pSrc += bytes_to_skip;
- bytes_remaining += bytes_to_skip;
- }
- }
-
- width = hdr.m_width;
- height = hdr.m_height;
- const uint32_t source_pitch = width * tga_bytes_per_pixel;
- const uint32_t dest_pitch = width * n_chans;
-
- uint8_t *pImage = (uint8_t *)malloc(dest_pitch * height);
- if (!pImage)
- return nullptr;
- std::vector<uint8_t> input_line_buf;
- if (rle_flag)
- input_line_buf.resize(source_pitch);
- int run_type = 0, run_remaining = 0;
- uint8_t run_pixel[4];
- memset(run_pixel, 0, sizeof(run_pixel));
- for (int y = 0; y < height; y++)
- {
- const uint8_t *pLine_data;
- if (rle_flag)
- {
- int pixels_remaining = width;
- uint8_t *pDst = &input_line_buf[0];
- do
- {
- if (!run_remaining)
- {
- if (bytes_remaining < 1)
- {
- free(pImage);
- return nullptr;
- }
- int v = *pSrc++;
- bytes_remaining--;
- run_type = v & 0x80;
- run_remaining = (v & 0x7F) + 1;
- if (run_type)
- {
- if (bytes_remaining < tga_bytes_per_pixel)
- {
- free(pImage);
- return nullptr;
- }
- memcpy(run_pixel, pSrc, tga_bytes_per_pixel);
- pSrc += tga_bytes_per_pixel;
- bytes_remaining -= tga_bytes_per_pixel;
- }
- }
- const uint32_t n = basisu::minimum<uint32_t>(pixels_remaining, run_remaining);
- pixels_remaining -= n;
- run_remaining -= n;
- if (run_type)
- {
- for (uint32_t i = 0; i < n; i++)
- for (uint32_t j = 0; j < tga_bytes_per_pixel; j++)
- *pDst++ = run_pixel[j];
- }
- else
- {
- const uint32_t bytes_wanted = n * tga_bytes_per_pixel;
- if (bytes_remaining < bytes_wanted)
- {
- free(pImage);
- return nullptr;
- }
- memcpy(pDst, pSrc, bytes_wanted);
- pDst += bytes_wanted;
- pSrc += bytes_wanted;
- bytes_remaining -= bytes_wanted;
- }
- } while (pixels_remaining);
- assert((pDst - &input_line_buf[0]) == (int)(width * tga_bytes_per_pixel));
- pLine_data = &input_line_buf[0];
- }
- else
- {
- if (bytes_remaining < source_pitch)
- {
- free(pImage);
- return nullptr;
- }
- pLine_data = pSrc;
- bytes_remaining -= source_pitch;
- pSrc += source_pitch;
- }
- // Convert to 24bpp RGB or 32bpp RGBA.
- uint8_t *pDst = pImage + (y_flipped ? (height - 1 - y) : y) * dest_pitch + (x_flipped ? (width - 1) * n_chans : 0);
- const int dst_stride = x_flipped ? -((int)n_chans) : n_chans;
- switch (hdr.m_depth)
- {
- case 32:
- assert(tga_bytes_per_pixel == 4 && n_chans == 4);
- for (int i = 0; i < width; i++, pLine_data += 4, pDst += dst_stride)
- {
- pDst[0] = pLine_data[2];
- pDst[1] = pLine_data[1];
- pDst[2] = pLine_data[0];
- pDst[3] = pLine_data[3];
- }
- break;
- case 24:
- assert(tga_bytes_per_pixel == 3 && n_chans == 3);
- for (int i = 0; i < width; i++, pLine_data += 3, pDst += dst_stride)
- {
- pDst[0] = pLine_data[2];
- pDst[1] = pLine_data[1];
- pDst[2] = pLine_data[0];
- }
- break;
- case 16:
- case 15:
- if (image_type == cITRGB)
- {
- assert(tga_bytes_per_pixel == 2 && n_chans == 3);
- for (int i = 0; i < width; i++, pLine_data += 2, pDst += dst_stride)
- {
- const uint32_t v = pLine_data[0] | (pLine_data[1] << 8);
- pDst[0] = (((v >> 10) & 31) * 255 + 15) / 31;
- pDst[1] = (((v >> 5) & 31) * 255 + 15) / 31;
- pDst[2] = ((v & 31) * 255 + 15) / 31;
- }
- }
- else
- {
- assert(image_type == cITGrayscale && tga_bytes_per_pixel == 2 && n_chans == 4);
- for (int i = 0; i < width; i++, pLine_data += 2, pDst += dst_stride)
- {
- pDst[0] = pLine_data[0];
- pDst[1] = pLine_data[0];
- pDst[2] = pLine_data[0];
- pDst[3] = pLine_data[1];
- }
- }
- break;
- case 8:
- assert(tga_bytes_per_pixel == 1);
- if (image_type == cITPalettized)
- {
- if (hdr.m_cmap_bpp == 32)
- {
- assert(n_chans == 4);
- for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride)
- {
- const uint32_t c = *pLine_data;
- pDst[0] = pal[c].r;
- pDst[1] = pal[c].g;
- pDst[2] = pal[c].b;
- pDst[3] = pal[c].a;
- }
- }
- else
- {
- assert(n_chans == 3);
- for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride)
- {
- const uint32_t c = *pLine_data;
- pDst[0] = pal[c].r;
- pDst[1] = pal[c].g;
- pDst[2] = pal[c].b;
- }
- }
- }
- else
- {
- assert(n_chans == 3);
- for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride)
- {
- const uint8_t c = *pLine_data;
- pDst[0] = c;
- pDst[1] = c;
- pDst[2] = c;
- }
- }
- break;
- default:
- assert(0);
- break;
- }
- } // y
- return pImage;
- }
- uint8_t *read_tga(const char *pFilename, int &width, int &height, int &n_chans)
- {
- width = height = n_chans = 0;
- uint8_vec filedata;
- if (!read_file_to_vec(pFilename, filedata))
- return nullptr;
- if (!filedata.size() || (filedata.size() > UINT32_MAX))
- return nullptr;
-
- return read_tga(&filedata[0], (uint32_t)filedata.size(), width, height, n_chans);
- }
- static inline void hdr_convert(const color_rgba& rgbe, vec4F& c)
- {
- if (rgbe[3] != 0)
- {
- float scale = ldexp(1.0f, rgbe[3] - 128 - 8);
- c.set((float)rgbe[0] * scale, (float)rgbe[1] * scale, (float)rgbe[2] * scale, 1.0f);
- }
- else
- {
- c.set(0.0f, 0.0f, 0.0f, 1.0f);
- }
- }
- bool string_begins_with(const std::string& str, const char* pPhrase)
- {
- const size_t str_len = str.size();
- const size_t phrase_len = strlen(pPhrase);
- assert(phrase_len);
- if (str_len >= phrase_len)
- {
- #ifdef _MSC_VER
- if (_strnicmp(pPhrase, str.c_str(), phrase_len) == 0)
- #else
- if (strncasecmp(pPhrase, str.c_str(), phrase_len) == 0)
- #endif
- return true;
- }
- return false;
- }
- // Radiance RGBE (.HDR) image reading.
- // This code tries to preserve the original logic in Radiance's ray/src/common/color.c code:
- // https://www.radiance-online.org/cgi-bin/viewcvs.cgi/ray/src/common/color.c?revision=2.26&view=markup&sortby=log
- // Also see: https://flipcode.com/archives/HDR_Image_Reader.shtml.
- // https://github.com/LuminanceHDR/LuminanceHDR/blob/master/src/Libpfs/io/rgbereader.cpp.
- // https://radsite.lbl.gov/radiance/refer/filefmts.pdf
- // Buggy readers:
- // stb_image.h: appears to be a clone of rgbe.c, but with goto's (doesn't support old format files, doesn't support mixture of RLE/non-RLE scanlines)
- // http://www.graphics.cornell.edu/~bjw/rgbe.html - rgbe.c/h
- // http://www.graphics.cornell.edu/online/formats/rgbe/ - rgbe.c/.h - buggy
- bool read_rgbe(const uint8_vec &filedata, imagef& img, rgbe_header_info& hdr_info)
- {
- hdr_info.clear();
- const uint32_t MAX_SUPPORTED_DIM = 65536;
- if (filedata.size() < 4)
- return false;
- // stb_image.h checks for the string "#?RADIANCE" or "#?RGBE" in the header.
- // The original Radiance header code doesn't care about the specific string.
- // opencv's reader only checks for "#?", so that's what we're going to do.
- if ((filedata[0] != '#') || (filedata[1] != '?'))
- return false;
- //uint32_t width = 0, height = 0;
- bool is_rgbe = false;
- size_t cur_ofs = 0;
- // Parse the lines until we encounter a blank line.
- std::string cur_line;
- for (; ; )
- {
- if (cur_ofs >= filedata.size())
- return false;
- const uint32_t HEADER_TOO_BIG_SIZE = 4096;
- if (cur_ofs >= HEADER_TOO_BIG_SIZE)
- {
- // Header seems too large - something is likely wrong. Return failure.
- return false;
- }
- uint8_t c = filedata[cur_ofs++];
- if (c == '\n')
- {
- if (!cur_line.size())
- break;
- if ((cur_line[0] == '#') && (!string_begins_with(cur_line, "#?")) && (!hdr_info.m_program.size()))
- {
- cur_line.erase(0, 1);
- while (cur_line.size() && (cur_line[0] == ' '))
- cur_line.erase(0, 1);
- hdr_info.m_program = cur_line;
- }
- else if (string_begins_with(cur_line, "EXPOSURE=") && (cur_line.size() > 9))
- {
- hdr_info.m_exposure = atof(cur_line.c_str() + 9);
- hdr_info.m_has_exposure = true;
- }
- else if (string_begins_with(cur_line, "GAMMA=") && (cur_line.size() > 6))
- {
- hdr_info.m_exposure = atof(cur_line.c_str() + 6);
- hdr_info.m_has_gamma = true;
- }
- else if (cur_line == "FORMAT=32-bit_rle_rgbe")
- {
- is_rgbe = true;
- }
- cur_line.resize(0);
- }
- else
- cur_line.push_back((char)c);
- }
- if (!is_rgbe)
- return false;
- // Assume and require the final line to have the image's dimensions. We're not supporting flipping.
- for (; ; )
- {
- if (cur_ofs >= filedata.size())
- return false;
- uint8_t c = filedata[cur_ofs++];
- if (c == '\n')
- break;
- cur_line.push_back((char)c);
- }
- int comp[2] = { 1, 0 }; // y, x (major, minor)
- int dir[2] = { -1, 1 }; // -1, 1, (major, minor), for y -1=up
- uint32_t major_dim = 0, minor_dim = 0;
- // Parse the dimension string, normally it'll be "-Y # +X #" (major, minor), rarely it differs
- for (uint32_t d = 0; d < 2; d++) // 0=major, 1=minor
- {
- const bool is_neg_x = (strncmp(&cur_line[0], "-X ", 3) == 0);
- const bool is_pos_x = (strncmp(&cur_line[0], "+X ", 3) == 0);
- const bool is_x = is_neg_x || is_pos_x;
- const bool is_neg_y = (strncmp(&cur_line[0], "-Y ", 3) == 0);
- const bool is_pos_y = (strncmp(&cur_line[0], "+Y ", 3) == 0);
- const bool is_y = is_neg_y || is_pos_y;
- if (cur_line.size() < 3)
- return false;
-
- if (!is_x && !is_y)
- return false;
- comp[d] = is_x ? 0 : 1;
- dir[d] = (is_neg_x || is_neg_y) ? -1 : 1;
-
- uint32_t& dim = d ? minor_dim : major_dim;
- cur_line.erase(0, 3);
- while (cur_line.size())
- {
- char c = cur_line[0];
- if (c != ' ')
- break;
- cur_line.erase(0, 1);
- }
- bool has_digits = false;
- while (cur_line.size())
- {
- char c = cur_line[0];
- cur_line.erase(0, 1);
- if (c == ' ')
- break;
- if ((c < '0') || (c > '9'))
- return false;
- const uint32_t prev_dim = dim;
- dim = dim * 10 + (c - '0');
- if (dim < prev_dim)
- return false;
- has_digits = true;
- }
- if (!has_digits)
- return false;
- if ((dim < 1) || (dim > MAX_SUPPORTED_DIM))
- return false;
- }
-
- // temp image: width=minor, height=major
- img.resize(minor_dim, major_dim);
- std::vector<color_rgba> temp_scanline(minor_dim);
- // Read the scanlines.
- for (uint32_t y = 0; y < major_dim; y++)
- {
- vec4F* pDst = &img(0, y);
- if ((filedata.size() - cur_ofs) < 4)
- return false;
- // Determine if the line uses the new or old format. See the logic in color.c.
- bool old_decrunch = false;
- if ((minor_dim < 8) || (minor_dim > 0x7FFF))
- {
- // Line is too short or long; must be old format.
- old_decrunch = true;
- }
- else if (filedata[cur_ofs] != 2)
- {
- // R is not 2, must be old format
- old_decrunch = true;
- }
- else
- {
- // c[0]/red is 2.Check GB and E for validity.
- color_rgba c;
- memcpy(&c, &filedata[cur_ofs], 4);
- if ((c[1] != 2) || (c[2] & 0x80))
- {
- // G isn't 2, or the high bit of B is set which is impossible (image's > 0x7FFF pixels can't get here). Use old format.
- old_decrunch = true;
- }
- else
- {
- // Check B and E. If this isn't the minor_dim in network order, something is wrong. The pixel would also be denormalized, and invalid.
- uint32_t w = (c[2] << 8) | c[3];
- if (w != minor_dim)
- return false;
- cur_ofs += 4;
- }
- }
- if (old_decrunch)
- {
- uint32_t rshift = 0, x = 0;
- while (x < minor_dim)
- {
- if ((filedata.size() - cur_ofs) < 4)
- return false;
- color_rgba c;
- memcpy(&c, &filedata[cur_ofs], 4);
- cur_ofs += 4;
- if ((c[0] == 1) && (c[1] == 1) && (c[2] == 1))
- {
- // We'll allow RLE matches to cross scanlines, but not on the very first pixel.
- if ((!x) && (!y))
- return false;
- const uint32_t run_len = c[3] << rshift;
- const vec4F run_color(pDst[-1]);
- if ((x + run_len) > minor_dim)
- return false;
- for (uint32_t i = 0; i < run_len; i++)
- *pDst++ = run_color;
- rshift += 8;
- x += run_len;
- }
- else
- {
- rshift = 0;
- hdr_convert(c, *pDst);
- pDst++;
- x++;
- }
- }
- continue;
- }
- // New format
- for (uint32_t s = 0; s < 4; s++)
- {
- uint32_t x_ofs = 0;
- while (x_ofs < minor_dim)
- {
- uint32_t num_remaining = minor_dim - x_ofs;
- if (cur_ofs >= filedata.size())
- return false;
- uint8_t count = filedata[cur_ofs++];
- if (count > 128)
- {
- count -= 128;
- if (count > num_remaining)
- return false;
- if (cur_ofs >= filedata.size())
- return false;
- const uint8_t val = filedata[cur_ofs++];
- for (uint32_t i = 0; i < count; i++)
- temp_scanline[x_ofs + i][s] = val;
- x_ofs += count;
- }
- else
- {
- if ((!count) || (count > num_remaining))
- return false;
- for (uint32_t i = 0; i < count; i++)
- {
- if (cur_ofs >= filedata.size())
- return false;
- const uint8_t val = filedata[cur_ofs++];
- temp_scanline[x_ofs + i][s] = val;
- }
- x_ofs += count;
- }
- } // while (x_ofs < minor_dim)
- } // c
- // Convert all the RGBE pixels to float now
- for (uint32_t x = 0; x < minor_dim; x++, pDst++)
- hdr_convert(temp_scanline[x], *pDst);
- assert((pDst - &img(0, y)) == (int)minor_dim);
- } // y
- // at here:
- // img(width,height)=image pixels as read from file, x=minor axis, y=major axis
- // width=minor axis dimension
- // height=major axis dimension
- // in file, pixels are emitted in minor order, them major (so major=scanlines in the file)
-
- imagef final_img;
- if (comp[0] == 0) // if major axis is X
- final_img.resize(major_dim, minor_dim);
- else // major axis is Y, minor is X
- final_img.resize(minor_dim, major_dim);
- // TODO: optimize the identity case
- for (uint32_t major_iter = 0; major_iter < major_dim; major_iter++)
- {
- for (uint32_t minor_iter = 0; minor_iter < minor_dim; minor_iter++)
- {
- const vec4F& p = img(minor_iter, major_iter);
- uint32_t dst_x = 0, dst_y = 0;
- // is the minor dim output x?
- if (comp[1] == 0)
- {
- // minor axis is x, major is y
-
- // is minor axis (which is output x) flipped?
- if (dir[1] < 0)
- dst_x = minor_dim - 1 - minor_iter;
- else
- dst_x = minor_iter;
- // is major axis (which is output y) flipped? -1=down in raster order, 1=up
- if (dir[0] < 0)
- dst_y = major_iter;
- else
- dst_y = major_dim - 1 - major_iter;
- }
- else
- {
- // minor axis is output y, major is output x
- // is minor axis (which is output y) flipped?
- if (dir[1] < 0)
- dst_y = minor_iter;
- else
- dst_y = minor_dim - 1 - minor_iter;
- // is major axis (which is output x) flipped?
- if (dir[0] < 0)
- dst_x = major_dim - 1 - major_iter;
- else
- dst_x = major_iter;
- }
- final_img(dst_x, dst_y) = p;
- }
- }
- final_img.swap(img);
- return true;
- }
- bool read_rgbe(const char* pFilename, imagef& img, rgbe_header_info& hdr_info)
- {
- uint8_vec filedata;
- if (!read_file_to_vec(pFilename, filedata))
- return false;
- return read_rgbe(filedata, img, hdr_info);
- }
- static uint8_vec& append_string(uint8_vec& buf, const char* pStr)
- {
- const size_t str_len = strlen(pStr);
- if (!str_len)
- return buf;
- const size_t ofs = buf.size();
- buf.resize(ofs + str_len);
- memcpy(&buf[ofs], pStr, str_len);
- return buf;
- }
-
- static uint8_vec& append_string(uint8_vec& buf, const std::string& str)
- {
- if (!str.size())
- return buf;
- return append_string(buf, str.c_str());
- }
- static inline void float2rgbe(color_rgba &rgbe, const vec4F &c)
- {
- const float red = c[0], green = c[1], blue = c[2];
- assert(red >= 0.0f && green >= 0.0f && blue >= 0.0f);
- const float max_v = basisu::maximumf(basisu::maximumf(red, green), blue);
- if (max_v < 1e-32f)
- rgbe.clear();
- else
- {
- int e;
- const float scale = frexp(max_v, &e) * 256.0f / max_v;
- rgbe[0] = (uint8_t)(clamp<int>((int)(red * scale), 0, 255));
- rgbe[1] = (uint8_t)(clamp<int>((int)(green * scale), 0, 255));
- rgbe[2] = (uint8_t)(clamp<int>((int)(blue * scale), 0, 255));
- rgbe[3] = (uint8_t)(e + 128);
- }
- }
- const bool RGBE_FORCE_RAW = false;
- const bool RGBE_FORCE_OLD_CRUNCH = false; // note must readers (particularly stb_image.h's) don't properly support this, when they should
-
- bool write_rgbe(uint8_vec &file_data, imagef& img, rgbe_header_info& hdr_info)
- {
- if (!img.get_width() || !img.get_height())
- return false;
- const uint32_t width = img.get_width(), height = img.get_height();
-
- file_data.resize(0);
- file_data.reserve(1024 + img.get_width() * img.get_height() * 4);
- append_string(file_data, "#?RADIANCE\n");
- if (hdr_info.m_has_exposure)
- append_string(file_data, string_format("EXPOSURE=%g\n", hdr_info.m_exposure));
- if (hdr_info.m_has_gamma)
- append_string(file_data, string_format("GAMMA=%g\n", hdr_info.m_gamma));
- append_string(file_data, "FORMAT=32-bit_rle_rgbe\n\n");
- append_string(file_data, string_format("-Y %u +X %u\n", height, width));
- if (((width < 8) || (width > 0x7FFF)) || (RGBE_FORCE_RAW))
- {
- for (uint32_t y = 0; y < height; y++)
- {
- for (uint32_t x = 0; x < width; x++)
- {
- color_rgba rgbe;
- float2rgbe(rgbe, img(x, y));
- append_vector(file_data, (const uint8_t *)&rgbe, sizeof(rgbe));
- }
- }
- }
- else if (RGBE_FORCE_OLD_CRUNCH)
- {
- for (uint32_t y = 0; y < height; y++)
- {
- int prev_r = -1, prev_g = -1, prev_b = -1, prev_e = -1;
- uint32_t cur_run_len = 0;
-
- for (uint32_t x = 0; x < width; x++)
- {
- color_rgba rgbe;
- float2rgbe(rgbe, img(x, y));
- if ((rgbe[0] == prev_r) && (rgbe[1] == prev_g) && (rgbe[2] == prev_b) && (rgbe[3] == prev_e))
- {
- if (++cur_run_len == 255)
- {
- // this ensures rshift stays 0, it's lame but this path is only for testing readers
- color_rgba f(1, 1, 1, cur_run_len - 1);
- append_vector(file_data, (const uint8_t*)&f, sizeof(f));
- append_vector(file_data, (const uint8_t*)&rgbe, sizeof(rgbe));
- cur_run_len = 0;
- }
- }
- else
- {
- if (cur_run_len > 0)
- {
- color_rgba f(1, 1, 1, cur_run_len);
- append_vector(file_data, (const uint8_t*)&f, sizeof(f));
-
- cur_run_len = 0;
- }
-
- append_vector(file_data, (const uint8_t*)&rgbe, sizeof(rgbe));
-
- prev_r = rgbe[0];
- prev_g = rgbe[1];
- prev_b = rgbe[2];
- prev_e = rgbe[3];
- }
- } // x
- if (cur_run_len > 0)
- {
- color_rgba f(1, 1, 1, cur_run_len);
- append_vector(file_data, (const uint8_t*)&f, sizeof(f));
- }
- } // y
- }
- else
- {
- uint8_vec temp[4];
- for (uint32_t c = 0; c < 4; c++)
- temp[c].resize(width);
- for (uint32_t y = 0; y < height; y++)
- {
- color_rgba rgbe(2, 2, width >> 8, width & 0xFF);
- append_vector(file_data, (const uint8_t*)&rgbe, sizeof(rgbe));
-
- for (uint32_t x = 0; x < width; x++)
- {
- float2rgbe(rgbe, img(x, y));
- for (uint32_t c = 0; c < 4; c++)
- temp[c][x] = rgbe[c];
- }
- for (uint32_t c = 0; c < 4; c++)
- {
- int raw_ofs = -1;
-
- uint32_t x = 0;
- while (x < width)
- {
- const uint32_t num_bytes_remaining = width - x;
- const uint32_t max_run_len = basisu::minimum<uint32_t>(num_bytes_remaining, 127);
- const uint8_t cur_byte = temp[c][x];
- uint32_t run_len = 1;
- while (run_len < max_run_len)
- {
- if (temp[c][x + run_len] != cur_byte)
- break;
- run_len++;
- }
-
- const uint32_t cost_to_keep_raw = ((raw_ofs != -1) ? 0 : 1) + run_len; // 0 or 1 bytes to start a raw run, then the repeated bytes issued as raw
- const uint32_t cost_to_take_run = 2 + 1; // 2 bytes to issue the RLE, then 1 bytes to start whatever follows it (raw or RLE)
- if ((run_len >= 3) && (cost_to_take_run < cost_to_keep_raw))
- {
- file_data.push_back((uint8_t)(128 + run_len));
- file_data.push_back(cur_byte);
- x += run_len;
- raw_ofs = -1;
- }
- else
- {
- if (raw_ofs < 0)
- {
- raw_ofs = (int)file_data.size();
- file_data.push_back(0);
- }
- if (++file_data[raw_ofs] == 128)
- raw_ofs = -1;
- file_data.push_back(cur_byte);
-
- x++;
- }
- } // x
- } // c
- } // y
- }
- return true;
- }
- bool write_rgbe(const char* pFilename, imagef& img, rgbe_header_info& hdr_info)
- {
- uint8_vec file_data;
- if (!write_rgbe(file_data, img, hdr_info))
- return false;
- return write_vec_to_file(pFilename, file_data);
- }
-
- bool read_exr(const char* pFilename, imagef& img, int& n_chans)
- {
- n_chans = 0;
- int width = 0, height = 0;
- float* out_rgba = nullptr;
- const char* err = nullptr;
-
- int status = LoadEXRWithLayer(&out_rgba, &width, &height, pFilename, nullptr, &err);
- n_chans = 4;
- if (status != 0)
- {
- error_printf("Failed loading .EXR image \"%s\"! (TinyEXR error: %s)\n", pFilename, err ? err : "?");
- FreeEXRErrorMessage(err);
- free(out_rgba);
- return false;
- }
- const uint32_t MAX_SUPPORTED_DIM = 65536;
- if ((width < 1) || (height < 1) || (width > (int)MAX_SUPPORTED_DIM) || (height > (int)MAX_SUPPORTED_DIM))
- {
- error_printf("Invalid dimensions of .EXR image \"%s\"!\n", pFilename);
- free(out_rgba);
- return false;
- }
- img.resize(width, height);
-
- if (n_chans == 1)
- {
- const float* pSrc = out_rgba;
- vec4F* pDst = img.get_ptr();
- for (int y = 0; y < height; y++)
- {
- for (int x = 0; x < width; x++)
- {
- (*pDst)[0] = pSrc[0];
- (*pDst)[1] = pSrc[1];
- (*pDst)[2] = pSrc[2];
- (*pDst)[3] = 1.0f;
- pSrc += 4;
- ++pDst;
- }
- }
- }
- else
- {
- memcpy((void *)img.get_ptr(), out_rgba, static_cast<size_t>(sizeof(float) * 4 * img.get_total_pixels()));
- }
- free(out_rgba);
- return true;
- }
- bool read_exr(const void* pMem, size_t mem_size, imagef& img)
- {
- float* out_rgba = nullptr;
- int width = 0, height = 0;
- const char* pErr = nullptr;
- int res = LoadEXRFromMemory(&out_rgba, &width, &height, (const uint8_t*)pMem, mem_size, &pErr);
- if (res < 0)
- {
- error_printf("Failed loading .EXR image from memory! (TinyEXR error: %s)\n", pErr ? pErr : "?");
- FreeEXRErrorMessage(pErr);
- free(out_rgba);
- return false;
- }
- img.resize(width, height);
- memcpy((void *)img.get_ptr(), out_rgba, width * height * sizeof(float) * 4);
- free(out_rgba);
- return true;
- }
- bool write_exr(const char* pFilename, const imagef& img, uint32_t n_chans, uint32_t flags)
- {
- assert((n_chans == 1) || (n_chans == 3) || (n_chans == 4));
- const bool linear_hint = (flags & WRITE_EXR_LINEAR_HINT) != 0,
- store_float = (flags & WRITE_EXR_STORE_FLOATS) != 0,
- no_compression = (flags & WRITE_EXR_NO_COMPRESSION) != 0;
-
- const uint32_t width = img.get_width(), height = img.get_height();
- assert(width && height);
-
- if (!width || !height)
- return false;
-
- float_vec layers[4];
- float* image_ptrs[4];
- for (uint32_t c = 0; c < n_chans; c++)
- {
- layers[c].resize(width * height);
- image_ptrs[c] = layers[c].get_ptr();
- }
- // ABGR
- int chan_order[4] = { 3, 2, 1, 0 };
- if (n_chans == 1)
- {
- // Y
- chan_order[0] = 0;
- }
- else if (n_chans == 3)
- {
- // BGR
- chan_order[0] = 2;
- chan_order[1] = 1;
- chan_order[2] = 0;
- }
- else if (n_chans != 4)
- {
- assert(0);
- return false;
- }
-
- for (uint32_t y = 0; y < height; y++)
- {
- for (uint32_t x = 0; x < width; x++)
- {
- const vec4F& p = img(x, y);
- for (uint32_t c = 0; c < n_chans; c++)
- layers[c][x + y * width] = p[chan_order[c]];
- } // x
- } // y
- EXRHeader header;
- InitEXRHeader(&header);
- EXRImage image;
- InitEXRImage(&image);
- image.num_channels = n_chans;
- image.images = (unsigned char**)image_ptrs;
- image.width = width;
- image.height = height;
- header.num_channels = n_chans;
-
- header.channels = (EXRChannelInfo*)calloc(header.num_channels, sizeof(EXRChannelInfo));
- // Must be (A)BGR order, since most of EXR viewers expect this channel order.
- for (uint32_t i = 0; i < n_chans; i++)
- {
- char c = 'Y';
- if (n_chans == 3)
- c = "BGR"[i];
- else if (n_chans == 4)
- c = "ABGR"[i];
-
- header.channels[i].name[0] = c;
- header.channels[i].name[1] = '\0';
- header.channels[i].p_linear = linear_hint;
- }
-
- header.pixel_types = (int*)calloc(header.num_channels, sizeof(int));
- header.requested_pixel_types = (int*)calloc(header.num_channels, sizeof(int));
-
- if (!no_compression)
- header.compression_type = TINYEXR_COMPRESSIONTYPE_ZIP;
- for (int i = 0; i < header.num_channels; i++)
- {
- // pixel type of input image
- header.pixel_types[i] = TINYEXR_PIXELTYPE_FLOAT;
- // pixel type of output image to be stored in .EXR
- header.requested_pixel_types[i] = store_float ? TINYEXR_PIXELTYPE_FLOAT : TINYEXR_PIXELTYPE_HALF;
- }
- const char* pErr_msg = nullptr;
- int ret = SaveEXRImageToFile(&image, &header, pFilename, &pErr_msg);
- if (ret != TINYEXR_SUCCESS)
- {
- error_printf("Save EXR err: %s\n", pErr_msg);
- FreeEXRErrorMessage(pErr_msg);
- }
-
- free(header.channels);
- free(header.pixel_types);
- free(header.requested_pixel_types);
- return (ret == TINYEXR_SUCCESS);
- }
- void image::debug_text(uint32_t x_ofs, uint32_t y_ofs, uint32_t scale_x, uint32_t scale_y, const color_rgba& fg, const color_rgba* pBG, bool alpha_only, const char* pFmt, ...)
- {
- char buf[2048];
- va_list args;
- va_start(args, pFmt);
- #ifdef _WIN32
- vsprintf_s(buf, sizeof(buf), pFmt, args);
- #else
- vsnprintf(buf, sizeof(buf), pFmt, args);
- #endif
- va_end(args);
- const char* p = buf;
- const uint32_t orig_x_ofs = x_ofs;
- while (*p)
- {
- uint8_t c = *p++;
- if ((c < 32) || (c > 127))
- c = '.';
- const uint8_t* pGlpyh = &g_debug_font8x8_basic[c - 32][0];
- for (uint32_t y = 0; y < 8; y++)
- {
- uint32_t row_bits = pGlpyh[y];
- for (uint32_t x = 0; x < 8; x++)
- {
- const uint32_t q = row_bits & (1 << x);
-
- const color_rgba* pColor = q ? &fg : pBG;
- if (!pColor)
- continue;
- if (alpha_only)
- fill_box_alpha(x_ofs + x * scale_x, y_ofs + y * scale_y, scale_x, scale_y, *pColor);
- else
- fill_box(x_ofs + x * scale_x, y_ofs + y * scale_y, scale_x, scale_y, *pColor);
- }
- }
- x_ofs += 8 * scale_x;
- if ((x_ofs + 8 * scale_x) > m_width)
- {
- x_ofs = orig_x_ofs;
- y_ofs += 8 * scale_y;
- }
- }
- }
-
- // Very basic global Reinhard tone mapping, output converted to sRGB with no dithering, alpha is carried through unchanged.
- // Only used for debugging/development.
- void tonemap_image_reinhard(image &ldr_img, const imagef &hdr_img, float exposure, bool add_noise, bool per_component, bool luma_scaling)
- {
- uint32_t width = hdr_img.get_width(), height = hdr_img.get_height();
- ldr_img.resize(width, height);
- rand r;
- r.seed(128);
-
- for (uint32_t y = 0; y < height; y++)
- {
- for (uint32_t x = 0; x < width; x++)
- {
- vec4F c(hdr_img(x, y));
- if (per_component)
- {
- for (uint32_t t = 0; t < 3; t++)
- {
- if (c[t] <= 0.0f)
- {
- c[t] = 0.0f;
- }
- else
- {
- c[t] *= exposure;
- c[t] = c[t] / (1.0f + c[t]);
- }
- }
- }
- else
- {
- c[0] *= exposure;
- c[1] *= exposure;
- c[2] *= exposure;
- const float L = 0.2126f * c[0] + 0.7152f * c[1] + 0.0722f * c[2];
- float Lmapped = 0.0f;
- if (L > 0.0f)
- {
- //Lmapped = L / (1.0f + L);
- //Lmapped /= L;
-
- Lmapped = 1.0f / (1.0f + L);
- }
- c[0] = c[0] * Lmapped;
- c[1] = c[1] * Lmapped;
- c[2] = c[2] * Lmapped;
- if (luma_scaling)
- {
- // Keeps the ratio of r/g/b intact
- float m = maximum(c[0], c[1], c[2]);
- if (m > 1.0f)
- {
- c /= m;
- }
- }
- }
- c.clamp(0.0f, 1.0f);
- c[3] = c[3] * 255.0f;
- color_rgba& o = ldr_img(x, y);
- if (add_noise)
- {
- c[0] = linear_to_srgb(c[0]) * 255.0f;
- c[1] = linear_to_srgb(c[1]) * 255.0f;
- c[2] = linear_to_srgb(c[2]) * 255.0f;
- const float NOISE_AMP = .5f;
- c[0] += r.frand(-NOISE_AMP, NOISE_AMP);
- c[1] += r.frand(-NOISE_AMP, NOISE_AMP);
- c[2] += r.frand(-NOISE_AMP, NOISE_AMP);
- c.clamp(0.0f, 255.0f);
- o[0] = (uint8_t)fast_roundf_int(c[0]);
- o[1] = (uint8_t)fast_roundf_int(c[1]);
- o[2] = (uint8_t)fast_roundf_int(c[2]);
- o[3] = (uint8_t)fast_roundf_int(c[3]);
- }
- else
- {
- o[0] = g_fast_linear_to_srgb.convert(c[0]);
- o[1] = g_fast_linear_to_srgb.convert(c[1]);
- o[2] = g_fast_linear_to_srgb.convert(c[2]);
- o[3] = (uint8_t)fast_roundf_int(c[3]);
- }
- }
- }
- }
- bool tonemap_image_compressive(image& dst_img, const imagef& hdr_test_img)
- {
- const uint32_t width = hdr_test_img.get_width();
- const uint32_t height = hdr_test_img.get_height();
- uint16_vec orig_half_img(width * 3 * height);
- uint16_vec half_img(width * 3 * height);
- int max_shift = 32;
- for (uint32_t y = 0; y < height; y++)
- {
- for (uint32_t x = 0; x < width; x++)
- {
- const vec4F& p = hdr_test_img(x, y);
- for (uint32_t i = 0; i < 3; i++)
- {
- if (p[i] < 0.0f)
- return false;
- if (p[i] > basist::MAX_HALF_FLOAT)
- return false;
- uint32_t h = basist::float_to_half(p[i]);
- //uint32_t orig_h = h;
- orig_half_img[(x + y * width) * 3 + i] = (uint16_t)h;
- // Rotate sign bit into LSB
- //h = rot_left16((uint16_t)h, 1);
- //assert(rot_right16((uint16_t)h, 1) == orig_h);
- h <<= 1;
- half_img[(x + y * width) * 3 + i] = (uint16_t)h;
- // Determine # of leading zero bits, ignoring the sign bit
- if (h)
- {
- int lz = clz(h) - 16;
- assert(lz >= 0 && lz <= 16);
- assert((h << lz) <= 0xFFFF);
- max_shift = basisu::minimum<int>(max_shift, lz);
- }
- } // i
- } // x
- } // y
- //printf("tonemap_image_compressive: Max leading zeros: %i\n", max_shift);
- uint32_t high_hist[256];
- clear_obj(high_hist);
- for (uint32_t y = 0; y < height; y++)
- {
- for (uint32_t x = 0; x < width; x++)
- {
- for (uint32_t i = 0; i < 3; i++)
- {
- uint16_t& hf = half_img[(x + y * width) * 3 + i];
- assert(((uint32_t)hf << max_shift) <= 65535);
- hf <<= max_shift;
- uint32_t h = (uint8_t)(hf >> 8);
- high_hist[h]++;
- }
- } // x
- } // y
- uint32_t total_vals_used = 0;
- int remap_old_to_new[256];
- for (uint32_t i = 0; i < 256; i++)
- remap_old_to_new[i] = -1;
- for (uint32_t i = 0; i < 256; i++)
- {
- if (high_hist[i] != 0)
- {
- remap_old_to_new[i] = total_vals_used;
- total_vals_used++;
- }
- }
- assert(total_vals_used >= 1);
- //printf("tonemap_image_compressive: Total used high byte values: %u, unused: %u\n", total_vals_used, 256 - total_vals_used);
- bool val_used[256];
- clear_obj(val_used);
- int remap_new_to_old[256];
- for (uint32_t i = 0; i < 256; i++)
- remap_new_to_old[i] = -1;
- BASISU_NOTE_UNUSED(remap_new_to_old);
- int prev_c = -1;
- BASISU_NOTE_UNUSED(prev_c);
- for (uint32_t i = 0; i < 256; i++)
- {
- if (remap_old_to_new[i] >= 0)
- {
- int c;
- if (total_vals_used <= 1)
- c = remap_old_to_new[i];
- else
- {
- c = (remap_old_to_new[i] * 255 + ((total_vals_used - 1) / 2)) / (total_vals_used - 1);
- assert(c > prev_c);
- }
- assert(!val_used[c]);
- remap_new_to_old[c] = i;
- remap_old_to_new[i] = c;
- prev_c = c;
- //printf("%u ", c);
- val_used[c] = true;
- }
- } // i
- //printf("\n");
- dst_img.resize(width, height);
- for (uint32_t y = 0; y < height; y++)
- {
- for (uint32_t x = 0; x < width; x++)
- {
- for (uint32_t c = 0; c < 3; c++)
- {
- uint16_t& v16 = half_img[(x + y * width) * 3 + c];
- uint32_t hb = v16 >> 8;
- //uint32_t lb = v16 & 0xFF;
- assert(remap_old_to_new[hb] != -1);
- assert(remap_old_to_new[hb] <= 255);
- assert(remap_new_to_old[remap_old_to_new[hb]] == (int)hb);
- hb = remap_old_to_new[hb];
- //v16 = (uint16_t)((hb << 8) | lb);
- dst_img(x, y)[c] = (uint8_t)hb;
- }
- } // x
- } // y
- return true;
- }
- bool tonemap_image_compressive2(image& dst_img, const imagef& hdr_test_img)
- {
- const uint32_t width = hdr_test_img.get_width();
- const uint32_t height = hdr_test_img.get_height();
- dst_img.resize(width, height);
- dst_img.set_all(color_rgba(0, 0, 0, 255));
- basisu::vector<basist::half_float> half_img(width * 3 * height);
-
- uint32_t low_h = UINT32_MAX, high_h = 0;
- for (uint32_t y = 0; y < height; y++)
- {
- for (uint32_t x = 0; x < width; x++)
- {
- const vec4F& p = hdr_test_img(x, y);
- for (uint32_t i = 0; i < 3; i++)
- {
- float f = p[i];
- if (std::isnan(f) || std::isinf(f))
- f = 0.0f;
- else if (f < 0.0f)
- f = 0.0f;
- else if (f > basist::MAX_HALF_FLOAT)
- f = basist::MAX_HALF_FLOAT;
- uint32_t h = basist::float_to_half(f);
- low_h = minimum(low_h, h);
- high_h = maximum(high_h, h);
-
- half_img[(x + y * width) * 3 + i] = (basist::half_float)h;
- } // i
- } // x
- } // y
- if (low_h == high_h)
- return false;
- for (uint32_t y = 0; y < height; y++)
- {
- for (uint32_t x = 0; x < width; x++)
- {
- for (uint32_t i = 0; i < 3; i++)
- {
- basist::half_float h = half_img[(x + y * width) * 3 + i];
-
- float f = (float)(h - low_h) / (float)(high_h - low_h);
- int iv = basisu::clamp<int>((int)std::round(f * 255.0f), 0, 255);
- dst_img(x, y)[i] = (uint8_t)iv;
- } // i
- } // x
- } // y
- return true;
- }
-
- } // namespace basisu
|