12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376 |
- // basisu_enc.cpp
- // Copyright (C) 2019 Binomial LLC. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #include "basisu_enc.h"
- #include "lodepng.h"
- #include "basisu_resampler.h"
- #include "basisu_resampler_filters.h"
- #include "basisu_etc.h"
- #include "transcoder/basisu_transcoder.h"
- #if defined(_WIN32)
- // For QueryPerformanceCounter/QueryPerformanceFrequency
- #define WIN32_LEAN_AND_MEAN
- #include <windows.h>
- #endif
- namespace basisu
- {
- uint64_t interval_timer::g_init_ticks, interval_timer::g_freq;
- double interval_timer::g_timer_freq;
- uint8_t g_hamming_dist[256] =
- {
- 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
- };
- // Encoder library initialization (just call once at startup)
- void basisu_encoder_init()
- {
- basist::basisu_transcoder_init();
- }
- void error_printf(const char *pFmt, ...)
- {
- char buf[2048];
- va_list args;
- va_start(args, pFmt);
- #ifdef _WIN32
- vsprintf_s(buf, sizeof(buf), pFmt, args);
- #else
- vsnprintf(buf, sizeof(buf), pFmt, args);
- #endif
- va_end(args);
- fprintf(stderr, "ERROR: %s", buf);
- }
- #if defined(_WIN32)
- inline void query_counter(timer_ticks* pTicks)
- {
- QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER*>(pTicks));
- }
- inline void query_counter_frequency(timer_ticks* pTicks)
- {
- QueryPerformanceFrequency(reinterpret_cast<LARGE_INTEGER*>(pTicks));
- }
- #elif defined(__APPLE__)
- #include <sys/time.h>
- inline void query_counter(timer_ticks* pTicks)
- {
- struct timeval cur_time;
- gettimeofday(&cur_time, NULL);
- *pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec);
- }
- inline void query_counter_frequency(timer_ticks* pTicks)
- {
- *pTicks = 1000000;
- }
- #elif defined(__GNUC__)
- #include <sys/timex.h>
- inline void query_counter(timer_ticks* pTicks)
- {
- struct timeval cur_time;
- gettimeofday(&cur_time, NULL);
- *pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec);
- }
- inline void query_counter_frequency(timer_ticks* pTicks)
- {
- *pTicks = 1000000;
- }
- #else
- #error TODO
- #endif
- interval_timer::interval_timer() : m_start_time(0), m_stop_time(0), m_started(false), m_stopped(false)
- {
- if (!g_timer_freq)
- init();
- }
- void interval_timer::start()
- {
- query_counter(&m_start_time);
- m_started = true;
- m_stopped = false;
- }
- void interval_timer::stop()
- {
- assert(m_started);
- query_counter(&m_stop_time);
- m_stopped = true;
- }
- double interval_timer::get_elapsed_secs() const
- {
- assert(m_started);
- if (!m_started)
- return 0;
- timer_ticks stop_time = m_stop_time;
- if (!m_stopped)
- query_counter(&stop_time);
- timer_ticks delta = stop_time - m_start_time;
- return delta * g_timer_freq;
- }
-
- void interval_timer::init()
- {
- if (!g_timer_freq)
- {
- query_counter_frequency(&g_freq);
- g_timer_freq = 1.0f / g_freq;
- query_counter(&g_init_ticks);
- }
- }
- timer_ticks interval_timer::get_ticks()
- {
- if (!g_timer_freq)
- init();
- timer_ticks ticks;
- query_counter(&ticks);
- return ticks - g_init_ticks;
- }
- double interval_timer::ticks_to_secs(timer_ticks ticks)
- {
- if (!g_timer_freq)
- init();
- return ticks * g_timer_freq;
- }
-
- bool load_png(const char* pFilename, image& img)
- {
- std::vector<uint8_t> buffer;
- unsigned err = lodepng::load_file(buffer, std::string(pFilename));
- if (err)
- return false;
- unsigned w = 0, h = 0;
-
- if (sizeof(void *) == sizeof(uint32_t))
- {
- // Inspect the image first on 32-bit builds, to see if the image would require too much memory.
- lodepng::State state;
- err = lodepng_inspect(&w, &h, &state, &buffer[0], buffer.size());
- if ((err != 0) || (!w) || (!h))
- return false;
- const uint32_t exepected_alloc_size = w * h * sizeof(uint32_t);
-
- // If the file is too large on 32-bit builds then just bail now, to prevent causing a memory exception.
- const uint32_t MAX_ALLOC_SIZE = 250000000;
- if (exepected_alloc_size >= MAX_ALLOC_SIZE)
- {
- error_printf("Image \"%s\" is too large (%ux%u) to process in a 32-bit build!\n", pFilename, w, h);
- return false;
- }
-
- w = h = 0;
- }
-
- std::vector<uint8_t> out;
- err = lodepng::decode(out, w, h, &buffer[0], buffer.size());
- if ((err != 0) || (!w) || (!h))
- return false;
- if (out.size() != (w * h * 4))
- return false;
- img.resize(w, h);
- memcpy(img.get_ptr(), &out[0], out.size());
- return true;
- }
-
- bool save_png(const char* pFilename, const image & img, uint32_t image_save_flags, uint32_t grayscale_comp)
- {
- if (!img.get_total_pixels())
- return false;
- std::vector<uint8_t> out;
- unsigned err = 0;
-
- if (image_save_flags & cImageSaveGrayscale)
- {
- uint8_vec g_pixels(img.get_width() * img.get_height());
- uint8_t *pDst = &g_pixels[0];
- for (uint32_t y = 0; y < img.get_height(); y++)
- for (uint32_t x = 0; x < img.get_width(); x++)
- *pDst++ = img(x, y)[grayscale_comp];
- err = lodepng::encode(out, (const uint8_t*)& g_pixels[0], img.get_width(), img.get_height(), LCT_GREY, 8);
- }
- else
- {
- bool has_alpha = img.has_alpha();
- if ((!has_alpha) || ((image_save_flags & cImageSaveIgnoreAlpha) != 0))
- {
- uint8_vec rgb_pixels(img.get_width() * 3 * img.get_height());
- uint8_t *pDst = &rgb_pixels[0];
- for (uint32_t y = 0; y < img.get_height(); y++)
- {
- for (uint32_t x = 0; x < img.get_width(); x++)
- {
- const color_rgba& c = img(x, y);
- pDst[0] = c.r;
- pDst[1] = c.g;
- pDst[2] = c.b;
- pDst += 3;
- }
- }
- err = lodepng::encode(out, (const uint8_t*)& rgb_pixels[0], img.get_width(), img.get_height(), LCT_RGB, 8);
- }
- else
- {
- err = lodepng::encode(out, (const uint8_t*)img.get_ptr(), img.get_width(), img.get_height(), LCT_RGBA, 8);
- }
- }
- err = lodepng::save_file(out, std::string(pFilename));
- if (err)
- return false;
- return true;
- }
-
- bool read_file_to_vec(const char* pFilename, uint8_vec& data)
- {
- FILE* pFile = nullptr;
- #ifdef _WIN32
- fopen_s(&pFile, pFilename, "rb");
- #else
- pFile = fopen(pFilename, "rb");
- #endif
- if (!pFile)
- return false;
-
- fseek(pFile, 0, SEEK_END);
- #ifdef _WIN32
- int64_t filesize = _ftelli64(pFile);
- #else
- int64_t filesize = ftello(pFile);
- #endif
- if (filesize < 0)
- {
- fclose(pFile);
- return false;
- }
- fseek(pFile, 0, SEEK_SET);
- if (sizeof(size_t) == sizeof(uint32_t))
- {
- if (filesize > 0x70000000)
- {
- // File might be too big to load safely in one alloc
- fclose(pFile);
- return false;
- }
- }
- data.resize((size_t)filesize);
- if (filesize)
- {
- if (fread(&data[0], 1, (size_t)filesize, pFile) != (size_t)filesize)
- {
- fclose(pFile);
- return false;
- }
- }
- fclose(pFile);
- return true;
- }
- bool write_data_to_file(const char* pFilename, const void* pData, size_t len)
- {
- FILE* pFile = nullptr;
- #ifdef _WIN32
- fopen_s(&pFile, pFilename, "wb");
- #else
- pFile = fopen(pFilename, "wb");
- #endif
- if (!pFile)
- return false;
- if (len)
- {
- if (fwrite(pData, 1, len, pFile) != len)
- {
- fclose(pFile);
- return false;
- }
- }
- return fclose(pFile) != EOF;
- }
- float linear_to_srgb(float l)
- {
- assert(l >= 0.0f && l <= 1.0f);
- if (l < .0031308f)
- return saturate(l * 12.92f);
- else
- return saturate(1.055f * powf(l, 1.0f/2.4f) - .055f);
- }
- float srgb_to_linear(float s)
- {
- assert(s >= 0.0f && s <= 1.0f);
- if (s < .04045f)
- return saturate(s * (1.0f/12.92f));
- else
- return saturate(powf((s + .055f) * (1.0f/1.055f), 2.4f));
- }
- bool image_resample(const image &src, image &dst, bool srgb,
- const char *pFilter, float filter_scale,
- bool wrapping,
- uint32_t first_comp, uint32_t num_comps)
- {
- assert((first_comp + num_comps) <= 4);
- const int cMaxComps = 4;
-
- const uint32_t src_w = src.get_width(), src_h = src.get_height();
- const uint32_t dst_w = dst.get_width(), dst_h = dst.get_height();
-
- if (maximum(src_w, src_h) > BASISU_RESAMPLER_MAX_DIMENSION)
- {
- printf("Image is too large!\n");
- return false;
- }
- if (!src_w || !src_h || !dst_w || !dst_h)
- return false;
-
- if ((num_comps < 1) || (num_comps > cMaxComps))
- return false;
-
- if ((minimum(dst_w, dst_h) < 1) || (maximum(dst_w, dst_h) > BASISU_RESAMPLER_MAX_DIMENSION))
- {
- printf("Image is too large!\n");
- return false;
- }
- if ((src_w == dst_w) && (src_h == dst_h))
- {
- dst = src;
- return true;
- }
- float srgb_to_linear_table[256];
- if (srgb)
- {
- for (int i = 0; i < 256; ++i)
- srgb_to_linear_table[i] = srgb_to_linear((float)i * (1.0f/255.0f));
- }
- const int LINEAR_TO_SRGB_TABLE_SIZE = 8192;
- uint8_t linear_to_srgb_table[LINEAR_TO_SRGB_TABLE_SIZE];
- if (srgb)
- {
- for (int i = 0; i < LINEAR_TO_SRGB_TABLE_SIZE; ++i)
- linear_to_srgb_table[i] = (uint8_t)clamp<int>((int)(255.0f * linear_to_srgb((float)i * (1.0f / (LINEAR_TO_SRGB_TABLE_SIZE - 1))) + .5f), 0, 255);
- }
- std::vector<float> samples[cMaxComps];
- Resampler *resamplers[cMaxComps];
-
- resamplers[0] = new Resampler(src_w, src_h, dst_w, dst_h,
- wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f,
- pFilter, nullptr, nullptr, filter_scale, filter_scale, 0, 0);
- samples[0].resize(src_w);
- for (uint32_t i = 1; i < num_comps; ++i)
- {
- resamplers[i] = new Resampler(src_w, src_h, dst_w, dst_h,
- wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f,
- pFilter, resamplers[0]->get_clist_x(), resamplers[0]->get_clist_y(), filter_scale, filter_scale, 0, 0);
- samples[i].resize(src_w);
- }
- uint32_t dst_y = 0;
- for (uint32_t src_y = 0; src_y < src_h; ++src_y)
- {
- const color_rgba *pSrc = &src(0, src_y);
- // Put source lines into resampler(s)
- for (uint32_t x = 0; x < src_w; ++x)
- {
- for (uint32_t c = 0; c < num_comps; ++c)
- {
- const uint32_t comp_index = first_comp + c;
- const uint32_t v = (*pSrc)[comp_index];
- if (!srgb || (comp_index == 3))
- samples[c][x] = v * (1.0f / 255.0f);
- else
- samples[c][x] = srgb_to_linear_table[v];
- }
- pSrc++;
- }
- for (uint32_t c = 0; c < num_comps; ++c)
- {
- if (!resamplers[c]->put_line(&samples[c][0]))
- {
- for (uint32_t i = 0; i < num_comps; i++)
- delete resamplers[i];
- return false;
- }
- }
- // Now retrieve any output lines
- for (;;)
- {
- uint32_t c;
- for (c = 0; c < num_comps; ++c)
- {
- const uint32_t comp_index = first_comp + c;
- const float *pOutput_samples = resamplers[c]->get_line();
- if (!pOutput_samples)
- break;
- const bool linear_flag = !srgb || (comp_index == 3);
-
- color_rgba *pDst = &dst(0, dst_y);
- for (uint32_t x = 0; x < dst_w; x++)
- {
- // TODO: Add dithering
- if (linear_flag)
- {
- int j = (int)(255.0f * pOutput_samples[x] + .5f);
- (*pDst)[comp_index] = (uint8_t)clamp<int>(j, 0, 255);
- }
- else
- {
- int j = (int)((LINEAR_TO_SRGB_TABLE_SIZE - 1) * pOutput_samples[x] + .5f);
- (*pDst)[comp_index] = linear_to_srgb_table[clamp<int>(j, 0, LINEAR_TO_SRGB_TABLE_SIZE - 1)];
- }
- pDst++;
- }
- }
- if (c < num_comps)
- break;
- ++dst_y;
- }
- }
- for (uint32_t i = 0; i < num_comps; ++i)
- delete resamplers[i];
- return true;
- }
- void canonical_huffman_calculate_minimum_redundancy(sym_freq *A, int num_syms)
- {
- // See the paper "In-Place Calculation of Minimum Redundancy Codes" by Moffat and Katajainen
- if (!num_syms)
- return;
- if (1 == num_syms)
- {
- A[0].m_key = 1;
- return;
- }
-
- A[0].m_key += A[1].m_key;
-
- int s = 2, r = 0, next;
- for (next = 1; next < (num_syms - 1); ++next)
- {
- if ((s >= num_syms) || (A[r].m_key < A[s].m_key))
- {
- A[next].m_key = A[r].m_key;
- A[r].m_key = static_cast<uint16_t>(next);
- ++r;
- }
- else
- {
- A[next].m_key = A[s].m_key;
- ++s;
- }
- if ((s >= num_syms) || ((r < next) && A[r].m_key < A[s].m_key))
- {
- A[next].m_key = static_cast<uint16_t>(A[next].m_key + A[r].m_key);
- A[r].m_key = static_cast<uint16_t>(next);
- ++r;
- }
- else
- {
- A[next].m_key = static_cast<uint16_t>(A[next].m_key + A[s].m_key);
- ++s;
- }
- }
- A[num_syms - 2].m_key = 0;
- for (next = num_syms - 3; next >= 0; --next)
- {
- A[next].m_key = 1 + A[A[next].m_key].m_key;
- }
- int num_avail = 1, num_used = 0, depth = 0;
- r = num_syms - 2;
- next = num_syms - 1;
- while (num_avail > 0)
- {
- for ( ; (r >= 0) && ((int)A[r].m_key == depth); ++num_used, --r )
- ;
- for ( ; num_avail > num_used; --next, --num_avail)
- A[next].m_key = static_cast<uint16_t>(depth);
- num_avail = 2 * num_used;
- num_used = 0;
- ++depth;
- }
- }
- void canonical_huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size)
- {
- int i;
- uint32_t total = 0;
- if (code_list_len <= 1)
- return;
- for (i = max_code_size + 1; i <= cHuffmanMaxSupportedInternalCodeSize; i++)
- pNum_codes[max_code_size] += pNum_codes[i];
- for (i = max_code_size; i > 0; i--)
- total += (((uint32_t)pNum_codes[i]) << (max_code_size - i));
- while (total != (1UL << max_code_size))
- {
- pNum_codes[max_code_size]--;
- for (i = max_code_size - 1; i > 0; i--)
- {
- if (pNum_codes[i])
- {
- pNum_codes[i]--;
- pNum_codes[i + 1] += 2;
- break;
- }
- }
- total--;
- }
- }
- sym_freq *canonical_huffman_radix_sort_syms(uint32_t num_syms, sym_freq *pSyms0, sym_freq *pSyms1)
- {
- uint32_t total_passes = 2, pass_shift, pass, i, hist[256 * 2];
- sym_freq *pCur_syms = pSyms0, *pNew_syms = pSyms1;
- clear_obj(hist);
- for (i = 0; i < num_syms; i++)
- {
- uint32_t freq = pSyms0[i].m_key;
- hist[freq & 0xFF]++;
- hist[256 + ((freq >> 8) & 0xFF)]++;
- }
- while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256]))
- total_passes--;
- for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8)
- {
- const uint32_t *pHist = &hist[pass << 8];
- uint32_t offsets[256], cur_ofs = 0;
- for (i = 0; i < 256; i++)
- {
- offsets[i] = cur_ofs;
- cur_ofs += pHist[i];
- }
- for (i = 0; i < num_syms; i++)
- pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i];
- sym_freq *t = pCur_syms;
- pCur_syms = pNew_syms;
- pNew_syms = t;
- }
- return pCur_syms;
- }
- bool huffman_encoding_table::init(uint32_t num_syms, const uint16_t *pFreq, uint32_t max_code_size)
- {
- if (max_code_size > cHuffmanMaxSupportedCodeSize)
- return false;
- if ((!num_syms) || (num_syms > cHuffmanMaxSyms))
- return false;
- uint32_t total_used_syms = 0;
- for (uint32_t i = 0; i < num_syms; i++)
- if (pFreq[i])
- total_used_syms++;
- if (!total_used_syms)
- return false;
- std::vector<sym_freq> sym_freq0(total_used_syms), sym_freq1(total_used_syms);
- for (uint32_t i = 0, j = 0; i < num_syms; i++)
- {
- if (pFreq[i])
- {
- sym_freq0[j].m_key = pFreq[i];
- sym_freq0[j++].m_sym_index = static_cast<uint16_t>(i);
- }
- }
- sym_freq *pSym_freq = canonical_huffman_radix_sort_syms(total_used_syms, &sym_freq0[0], &sym_freq1[0]);
- canonical_huffman_calculate_minimum_redundancy(pSym_freq, total_used_syms);
- int num_codes[cHuffmanMaxSupportedInternalCodeSize + 1];
- clear_obj(num_codes);
- for (uint32_t i = 0; i < total_used_syms; i++)
- {
- if (pSym_freq[i].m_key > cHuffmanMaxSupportedInternalCodeSize)
- return false;
- num_codes[pSym_freq[i].m_key]++;
- }
- canonical_huffman_enforce_max_code_size(num_codes, total_used_syms, max_code_size);
- m_code_sizes.resize(0);
- m_code_sizes.resize(num_syms);
- m_codes.resize(0);
- m_codes.resize(num_syms);
- for (uint32_t i = 1, j = total_used_syms; i <= max_code_size; i++)
- for (uint32_t l = num_codes[i]; l > 0; l--)
- m_code_sizes[pSym_freq[--j].m_sym_index] = static_cast<uint8_t>(i);
- uint32_t next_code[cHuffmanMaxSupportedInternalCodeSize + 1];
- next_code[1] = 0;
- for (uint32_t j = 0, i = 2; i <= max_code_size; i++)
- next_code[i] = j = ((j + num_codes[i - 1]) << 1);
- for (uint32_t i = 0; i < num_syms; i++)
- {
- uint32_t rev_code = 0, code, code_size;
- if ((code_size = m_code_sizes[i]) == 0)
- continue;
- if (code_size > cHuffmanMaxSupportedInternalCodeSize)
- return false;
- code = next_code[code_size]++;
- for (uint32_t l = code_size; l > 0; l--, code >>= 1)
- rev_code = (rev_code << 1) | (code & 1);
- m_codes[i] = static_cast<uint16_t>(rev_code);
- }
- return true;
- }
- bool huffman_encoding_table::init(uint32_t num_syms, const uint32_t *pSym_freq, uint32_t max_code_size)
- {
- if ((!num_syms) || (num_syms > cHuffmanMaxSyms))
- return false;
- uint16_vec sym_freq(num_syms);
- uint32_t max_freq = 0;
- for (uint32_t i = 0; i < num_syms; i++)
- max_freq = maximum(max_freq, pSym_freq[i]);
- if (max_freq < UINT16_MAX)
- {
- for (uint32_t i = 0; i < num_syms; i++)
- sym_freq[i] = static_cast<uint16_t>(pSym_freq[i]);
- }
- else
- {
- for (uint32_t i = 0; i < num_syms; i++)
- if (pSym_freq[i])
- sym_freq[i] = static_cast<uint16_t>(maximum<uint32_t>((pSym_freq[i] * 65534U + (max_freq >> 1)) / max_freq, 1));
- }
- return init(num_syms, &sym_freq[0], max_code_size);
- }
- void bitwise_coder::end_nonzero_run(uint16_vec &syms, uint32_t &run_size, uint32_t len)
- {
- if (run_size)
- {
- if (run_size < cHuffmanSmallRepeatSizeMin)
- {
- while (run_size--)
- syms.push_back(static_cast<uint16_t>(len));
- }
- else if (run_size <= cHuffmanSmallRepeatSizeMax)
- {
- syms.push_back(static_cast<uint16_t>(cHuffmanSmallRepeatCode | ((run_size - cHuffmanSmallRepeatSizeMin) << 6)));
- }
- else
- {
- assert((run_size >= cHuffmanBigRepeatSizeMin) && (run_size <= cHuffmanBigRepeatSizeMax));
- syms.push_back(static_cast<uint16_t>(cHuffmanBigRepeatCode | ((run_size - cHuffmanBigRepeatSizeMin) << 6)));
- }
- }
- run_size = 0;
- }
- void bitwise_coder::end_zero_run(uint16_vec &syms, uint32_t &run_size)
- {
- if (run_size)
- {
- if (run_size < cHuffmanSmallZeroRunSizeMin)
- {
- while (run_size--)
- syms.push_back(0);
- }
- else if (run_size <= cHuffmanSmallZeroRunSizeMax)
- {
- syms.push_back(static_cast<uint16_t>(cHuffmanSmallZeroRunCode | ((run_size - cHuffmanSmallZeroRunSizeMin) << 6)));
- }
- else
- {
- assert((run_size >= cHuffmanBigZeroRunSizeMin) && (run_size <= cHuffmanBigZeroRunSizeMax));
- syms.push_back(static_cast<uint16_t>(cHuffmanBigZeroRunCode | ((run_size - cHuffmanBigZeroRunSizeMin) << 6)));
- }
- }
- run_size = 0;
- }
- uint32_t bitwise_coder::emit_huffman_table(const huffman_encoding_table &tab)
- {
- const uint64_t start_bits = m_total_bits;
- const uint8_vec &code_sizes = tab.get_code_sizes();
- uint32_t total_used = tab.get_total_used_codes();
- put_bits(total_used, cHuffmanMaxSymsLog2);
-
- if (!total_used)
- return 0;
- uint16_vec syms;
- syms.reserve(total_used + 16);
- uint32_t prev_code_len = UINT_MAX, zero_run_size = 0, nonzero_run_size = 0;
- for (uint32_t i = 0; i <= total_used; ++i)
- {
- const uint32_t code_len = (i == total_used) ? 0xFF : code_sizes[i];
- assert((code_len == 0xFF) || (code_len <= 16));
- if (code_len)
- {
- end_zero_run(syms, zero_run_size);
- if (code_len != prev_code_len)
- {
- end_nonzero_run(syms, nonzero_run_size, prev_code_len);
- if (code_len != 0xFF)
- syms.push_back(static_cast<uint16_t>(code_len));
- }
- else if (++nonzero_run_size == cHuffmanBigRepeatSizeMax)
- end_nonzero_run(syms, nonzero_run_size, prev_code_len);
- }
- else
- {
- end_nonzero_run(syms, nonzero_run_size, prev_code_len);
- if (++zero_run_size == cHuffmanBigZeroRunSizeMax)
- end_zero_run(syms, zero_run_size);
- }
- prev_code_len = code_len;
- }
- histogram h(cHuffmanTotalCodelengthCodes);
- for (uint32_t i = 0; i < syms.size(); i++)
- h.inc(syms[i] & 63);
- huffman_encoding_table ct;
- if (!ct.init(h, 7))
- return 0;
- assert(cHuffmanTotalSortedCodelengthCodes == cHuffmanTotalCodelengthCodes);
- uint32_t total_codelength_codes;
- for (total_codelength_codes = cHuffmanTotalSortedCodelengthCodes; total_codelength_codes > 0; total_codelength_codes--)
- if (ct.get_code_sizes()[g_huffman_sorted_codelength_codes[total_codelength_codes - 1]])
- break;
- assert(total_codelength_codes);
- put_bits(total_codelength_codes, 5);
- for (uint32_t i = 0; i < total_codelength_codes; i++)
- put_bits(ct.get_code_sizes()[g_huffman_sorted_codelength_codes[i]], 3);
- for (uint32_t i = 0; i < syms.size(); ++i)
- {
- const uint32_t l = syms[i] & 63, e = syms[i] >> 6;
- put_code(l, ct);
-
- if (l == cHuffmanSmallZeroRunCode)
- put_bits(e, cHuffmanSmallZeroRunExtraBits);
- else if (l == cHuffmanBigZeroRunCode)
- put_bits(e, cHuffmanBigZeroRunExtraBits);
- else if (l == cHuffmanSmallRepeatCode)
- put_bits(e, cHuffmanSmallRepeatExtraBits);
- else if (l == cHuffmanBigRepeatCode)
- put_bits(e, cHuffmanBigRepeatExtraBits);
- }
- return (uint32_t)(m_total_bits - start_bits);
- }
- bool huffman_test(int rand_seed)
- {
- histogram h(19);
- // Feed in a fibonacci sequence to force large codesizes
- h[0] += 1; h[1] += 1; h[2] += 2; h[3] += 3;
- h[4] += 5; h[5] += 8; h[6] += 13; h[7] += 21;
- h[8] += 34; h[9] += 55; h[10] += 89; h[11] += 144;
- h[12] += 233; h[13] += 377; h[14] += 610; h[15] += 987;
- h[16] += 1597; h[17] += 2584; h[18] += 4181;
- huffman_encoding_table etab;
- etab.init(h, 16);
-
- {
- bitwise_coder c;
- c.init(1024);
- c.emit_huffman_table(etab);
- for (int i = 0; i < 19; i++)
- c.put_code(i, etab);
- c.flush();
- basist::bitwise_decoder d;
- d.init(&c.get_bytes()[0], static_cast<uint32_t>(c.get_bytes().size()));
- basist::huffman_decoding_table dtab;
- bool success = d.read_huffman_table(dtab);
- if (!success)
- {
- assert(0);
- printf("Failure 5\n");
- return false;
- }
- for (uint32_t i = 0; i < 19; i++)
- {
- uint32_t s = d.decode_huffman(dtab);
- if (s != i)
- {
- assert(0);
- printf("Failure 5\n");
- return false;
- }
- }
- }
- basisu::rand r;
- r.seed(rand_seed);
- for (int iter = 0; iter < 500000; iter++)
- {
- printf("%u\n", iter);
- uint32_t max_sym = r.irand(0, 8193);
- uint32_t num_codes = r.irand(1, 10000);
- uint_vec syms(num_codes);
- for (uint32_t i = 0; i < num_codes; i++)
- {
- if (r.bit())
- syms[i] = r.irand(0, max_sym);
- else
- {
- int s = (int)(r.gaussian((float)max_sym / 2, (float)maximum<int>(1, max_sym / 2)) + .5f);
- s = basisu::clamp<int>(s, 0, max_sym);
- syms[i] = s;
- }
- }
- histogram h1(max_sym + 1);
- for (uint32_t i = 0; i < num_codes; i++)
- h1[syms[i]]++;
- huffman_encoding_table etab2;
- if (!etab2.init(h1, 16))
- {
- assert(0);
- printf("Failed 0\n");
- return false;
- }
- bitwise_coder c;
- c.init(1024);
- c.emit_huffman_table(etab2);
- for (uint32_t i = 0; i < num_codes; i++)
- c.put_code(syms[i], etab2);
- c.flush();
- basist::bitwise_decoder d;
- d.init(&c.get_bytes()[0], (uint32_t)c.get_bytes().size());
- basist::huffman_decoding_table dtab;
- bool success = d.read_huffman_table(dtab);
- if (!success)
- {
- assert(0);
- printf("Failed 2\n");
- return false;
- }
- for (uint32_t i = 0; i < num_codes; i++)
- {
- uint32_t s = d.decode_huffman(dtab);
- if (s != syms[i])
- {
- assert(0);
- printf("Failed 4\n");
- return false;
- }
- }
- }
- return true;
- }
- void palette_index_reorderer::init(uint32_t num_indices, const uint32_t *pIndices, uint32_t num_syms, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight)
- {
- assert((num_syms > 0) && (num_indices > 0));
- assert((dist_func_weight >= 0.0f) && (dist_func_weight <= 1.0f));
- clear();
- m_remap_table.resize(num_syms);
- m_entries_picked.reserve(num_syms);
- m_total_count_to_picked.resize(num_syms);
- if (num_indices <= 1)
- return;
- prepare_hist(num_syms, num_indices, pIndices);
- find_initial(num_syms);
- while (m_entries_to_do.size())
- {
- // Find the best entry to move into the picked list.
- uint32_t best_entry;
- double best_count;
- find_next_entry(best_entry, best_count, pDist_func, pCtx, dist_func_weight);
- // We now have chosen an entry to place in the picked list, now determine which side it goes on.
- const uint32_t entry_to_move = m_entries_to_do[best_entry];
-
- float side = pick_side(num_syms, entry_to_move, pDist_func, pCtx, dist_func_weight);
-
- // Put entry_to_move either on the "left" or "right" side of the picked entries
- if (side <= 0)
- m_entries_picked.push_back(entry_to_move);
- else
- m_entries_picked.insert(m_entries_picked.begin(), entry_to_move);
- // Erase best_entry from the todo list
- m_entries_to_do.erase(m_entries_to_do.begin() + best_entry);
- // We've just moved best_entry to the picked list, so now we need to update m_total_count_to_picked[] to factor the additional count to best_entry
- for (uint32_t i = 0; i < m_entries_to_do.size(); i++)
- m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], entry_to_move, num_syms);
- }
- for (uint32_t i = 0; i < num_syms; i++)
- m_remap_table[m_entries_picked[i]] = i;
- }
- void palette_index_reorderer::prepare_hist(uint32_t num_syms, uint32_t num_indices, const uint32_t *pIndices)
- {
- m_hist.resize(0);
- m_hist.resize(num_syms * num_syms);
- for (uint32_t i = 0; i < num_indices; i++)
- {
- const uint32_t idx = pIndices[i];
- inc_hist(idx, (i < (num_indices - 1)) ? pIndices[i + 1] : -1, num_syms);
- inc_hist(idx, (i > 0) ? pIndices[i - 1] : -1, num_syms);
- }
- }
- void palette_index_reorderer::find_initial(uint32_t num_syms)
- {
- uint32_t max_count = 0, max_index = 0;
- for (uint32_t i = 0; i < num_syms * num_syms; i++)
- if (m_hist[i] > max_count)
- max_count = m_hist[i], max_index = i;
- uint32_t a = max_index / num_syms, b = max_index % num_syms;
- m_entries_picked.push_back(a);
- m_entries_picked.push_back(b);
- for (uint32_t i = 0; i < num_syms; i++)
- if ((i != b) && (i != a))
- m_entries_to_do.push_back(i);
- for (uint32_t i = 0; i < m_entries_to_do.size(); i++)
- for (uint32_t j = 0; j < m_entries_picked.size(); j++)
- m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], m_entries_picked[j], num_syms);
- }
- void palette_index_reorderer::find_next_entry(uint32_t &best_entry, double &best_count, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight)
- {
- best_entry = 0;
- best_count = 0;
- for (uint32_t i = 0; i < m_entries_to_do.size(); i++)
- {
- const uint32_t u = m_entries_to_do[i];
- double total_count = m_total_count_to_picked[u];
- if (pDist_func)
- {
- float w = maximum<float>((*pDist_func)(u, m_entries_picked.front(), pCtx), (*pDist_func)(u, m_entries_picked.back(), pCtx));
- assert((w >= 0.0f) && (w <= 1.0f));
- total_count = (total_count + 1.0f) * lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, w);
- }
- if (total_count <= best_count)
- continue;
- best_entry = i;
- best_count = total_count;
- }
- }
- float palette_index_reorderer::pick_side(uint32_t num_syms, uint32_t entry_to_move, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight)
- {
- float which_side = 0;
- int l_count = 0, r_count = 0;
- for (uint32_t j = 0; j < m_entries_picked.size(); j++)
- {
- const int count = get_hist(entry_to_move, m_entries_picked[j], num_syms), r = ((int)m_entries_picked.size() + 1 - 2 * (j + 1));
- which_side += static_cast<float>(r * count);
- if (r >= 0)
- l_count += r * count;
- else
- r_count += -r * count;
- }
- if (pDist_func)
- {
- float w_left = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.front(), pCtx));
- float w_right = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.back(), pCtx));
- which_side = w_left * l_count - w_right * r_count;
- }
- return which_side;
- }
- void image_metrics::calc(const image &a, const image &b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error, bool use_601_luma)
- {
- assert((first_chan < 4U) && (first_chan + total_chans <= 4U));
-
- const uint32_t width = std::min(a.get_width(), b.get_width());
- const uint32_t height = std::min(a.get_height(), b.get_height());
-
- double hist[256];
- clear_obj(hist);
- for (uint32_t y = 0; y < height; y++)
- {
- for (uint32_t x = 0; x < width; x++)
- {
- const color_rgba &ca = a(x, y), &cb = b(x, y);
- if (total_chans)
- {
- for (uint32_t c = 0; c < total_chans; c++)
- hist[iabs(ca[first_chan + c] - cb[first_chan + c])]++;
- }
- else
- {
- if (use_601_luma)
- hist[iabs(ca.get_601_luma() - cb.get_601_luma())]++;
- else
- hist[iabs(ca.get_709_luma() - cb.get_709_luma())]++;
- }
- }
- }
- m_max = 0;
- double sum = 0.0f, sum2 = 0.0f;
- for (uint32_t i = 0; i < 256; i++)
- {
- if (hist[i])
- {
- m_max = std::max<float>(m_max, (float)i);
- double v = i * hist[i];
- sum += v;
- sum2 += i * v;
- }
- }
- double total_values = (double)width * (double)height;
- if (avg_comp_error)
- total_values *= (double)clamp<uint32_t>(total_chans, 1, 4);
- m_mean = (float)clamp<double>(sum / total_values, 0.0f, 255.0);
- m_mean_squared = (float)clamp<double>(sum2 / total_values, 0.0f, 255.0 * 255.0);
- m_rms = (float)sqrt(m_mean_squared);
- m_psnr = m_rms ? (float)clamp<double>(log10(255.0 / m_rms) * 20.0, 0.0f, 300.0f) : 1e+10f;
- }
- void fill_buffer_with_random_bytes(void *pBuf, size_t size, uint32_t seed)
- {
- rand r(seed);
- uint8_t *pDst = static_cast<uint8_t *>(pBuf);
- while (size >= sizeof(uint32_t))
- {
- *(uint32_t *)pDst = r.urand32();
- pDst += sizeof(uint32_t);
- size -= sizeof(uint32_t);
- }
- while (size)
- {
- *pDst++ = r.byte();
- size--;
- }
- }
- uint32_t hash_hsieh(const uint8_t *pBuf, size_t len)
- {
- if (!pBuf || !len)
- return 0;
- uint32_t h = static_cast<uint32_t>(len);
- const uint32_t bytes_left = len & 3;
- len >>= 2;
- while (len--)
- {
- const uint16_t *pWords = reinterpret_cast<const uint16_t *>(pBuf);
- h += pWords[0];
-
- const uint32_t t = (pWords[1] << 11) ^ h;
- h = (h << 16) ^ t;
-
- pBuf += sizeof(uint32_t);
-
- h += h >> 11;
- }
- switch (bytes_left)
- {
- case 1:
- h += *reinterpret_cast<const signed char*>(pBuf);
- h ^= h << 10;
- h += h >> 1;
- break;
- case 2:
- h += *reinterpret_cast<const uint16_t *>(pBuf);
- h ^= h << 11;
- h += h >> 17;
- break;
- case 3:
- h += *reinterpret_cast<const uint16_t *>(pBuf);
- h ^= h << 16;
- h ^= (static_cast<signed char>(pBuf[sizeof(uint16_t)])) << 18;
- h += h >> 11;
- break;
- default:
- break;
- }
-
- h ^= h << 3;
- h += h >> 5;
- h ^= h << 4;
- h += h >> 17;
- h ^= h << 25;
- h += h >> 6;
- return h;
- }
- job_pool::job_pool(uint32_t num_threads) :
- m_kill_flag(false),
- m_num_active_jobs(0)
- {
- assert(num_threads >= 1U);
- debug_printf("job_pool::job_pool: %u total threads\n", num_threads);
- if (num_threads > 1)
- {
- m_threads.resize(num_threads - 1);
- for (int i = 0; i < ((int)num_threads - 1); i++)
- m_threads[i] = std::thread([this, i] { job_thread(i); });
- }
- }
- job_pool::~job_pool()
- {
- debug_printf("job_pool::~job_pool\n");
-
- // Notify all workers that they need to die right now.
- m_kill_flag = true;
-
- m_has_work.notify_all();
- // Wait for all workers to die.
- for (uint32_t i = 0; i < m_threads.size(); i++)
- m_threads[i].join();
- }
-
- void job_pool::add_job(const std::function<void()>& job)
- {
- std::unique_lock<std::mutex> lock(m_mutex);
- m_queue.emplace_back(job);
- const size_t queue_size = m_queue.size();
- lock.unlock();
- if (queue_size > 1)
- m_has_work.notify_one();
- }
- void job_pool::add_job(std::function<void()>&& job)
- {
- std::unique_lock<std::mutex> lock(m_mutex);
- m_queue.emplace_back(std::move(job));
- const size_t queue_size = m_queue.size();
- lock.unlock();
- if (queue_size > 1)
- m_has_work.notify_one();
- }
- void job_pool::wait_for_all()
- {
- std::unique_lock<std::mutex> lock(m_mutex);
- // Drain the job queue on the calling thread.
- while (!m_queue.empty())
- {
- std::function<void()> job(m_queue.back());
- m_queue.pop_back();
- lock.unlock();
- job();
- lock.lock();
- }
- // The queue is empty, now wait for all active jobs to finish up.
- m_no_more_jobs.wait(lock, [this]{ return !m_num_active_jobs; } );
- }
- void job_pool::job_thread(uint32_t index)
- {
- debug_printf("job_pool::job_thread: starting %u\n", index);
-
- while (true)
- {
- std::unique_lock<std::mutex> lock(m_mutex);
- // Wait for any jobs to be issued.
- m_has_work.wait(lock, [this] { return m_kill_flag || m_queue.size(); } );
- // Check to see if we're supposed to exit.
- if (m_kill_flag)
- break;
- // Get the job and execute it.
- std::function<void()> job(m_queue.back());
- m_queue.pop_back();
- ++m_num_active_jobs;
- lock.unlock();
- job();
- lock.lock();
- --m_num_active_jobs;
- // Now check if there are no more jobs remaining.
- const bool all_done = m_queue.empty() && !m_num_active_jobs;
-
- lock.unlock();
- if (all_done)
- m_no_more_jobs.notify_all();
- }
- debug_printf("job_pool::job_thread: exiting\n");
- }
- } // namespace basisu
|