mesh_storage.cpp 87 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491
  1. /**************************************************************************/
  2. /* mesh_storage.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "mesh_storage.h"
  31. using namespace RendererRD;
  32. MeshStorage *MeshStorage::singleton = nullptr;
  33. MeshStorage *MeshStorage::get_singleton() {
  34. return singleton;
  35. }
  36. MeshStorage::MeshStorage() {
  37. singleton = this;
  38. default_rd_storage_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4);
  39. //default rd buffers
  40. {
  41. Vector<uint8_t> buffer;
  42. {
  43. buffer.resize(sizeof(float) * 3);
  44. {
  45. uint8_t *w = buffer.ptrw();
  46. float *fptr = reinterpret_cast<float *>(w);
  47. fptr[0] = 0.0;
  48. fptr[1] = 0.0;
  49. fptr[2] = 0.0;
  50. }
  51. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_VERTEX] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  52. }
  53. { //normal
  54. buffer.resize(sizeof(float) * 3);
  55. {
  56. uint8_t *w = buffer.ptrw();
  57. float *fptr = reinterpret_cast<float *>(w);
  58. fptr[0] = 1.0;
  59. fptr[1] = 0.0;
  60. fptr[2] = 0.0;
  61. }
  62. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_NORMAL] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  63. }
  64. { //tangent
  65. buffer.resize(sizeof(float) * 4);
  66. {
  67. uint8_t *w = buffer.ptrw();
  68. float *fptr = reinterpret_cast<float *>(w);
  69. fptr[0] = 1.0;
  70. fptr[1] = 0.0;
  71. fptr[2] = 0.0;
  72. fptr[3] = 0.0;
  73. }
  74. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TANGENT] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  75. }
  76. { //color
  77. buffer.resize(sizeof(float) * 4);
  78. {
  79. uint8_t *w = buffer.ptrw();
  80. float *fptr = reinterpret_cast<float *>(w);
  81. fptr[0] = 1.0;
  82. fptr[1] = 1.0;
  83. fptr[2] = 1.0;
  84. fptr[3] = 1.0;
  85. }
  86. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_COLOR] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  87. }
  88. { //tex uv 1
  89. buffer.resize(sizeof(float) * 2);
  90. {
  91. uint8_t *w = buffer.ptrw();
  92. float *fptr = reinterpret_cast<float *>(w);
  93. fptr[0] = 0.0;
  94. fptr[1] = 0.0;
  95. }
  96. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  97. }
  98. { //tex uv 2
  99. buffer.resize(sizeof(float) * 2);
  100. {
  101. uint8_t *w = buffer.ptrw();
  102. float *fptr = reinterpret_cast<float *>(w);
  103. fptr[0] = 0.0;
  104. fptr[1] = 0.0;
  105. }
  106. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV2] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  107. }
  108. for (int i = 0; i < RS::ARRAY_CUSTOM_COUNT; i++) {
  109. buffer.resize(sizeof(float) * 4);
  110. {
  111. uint8_t *w = buffer.ptrw();
  112. float *fptr = reinterpret_cast<float *>(w);
  113. fptr[0] = 0.0;
  114. fptr[1] = 0.0;
  115. fptr[2] = 0.0;
  116. fptr[3] = 0.0;
  117. }
  118. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_CUSTOM0 + i] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  119. }
  120. { //bones
  121. buffer.resize(sizeof(uint32_t) * 4);
  122. {
  123. uint8_t *w = buffer.ptrw();
  124. uint32_t *fptr = reinterpret_cast<uint32_t *>(w);
  125. fptr[0] = 0;
  126. fptr[1] = 0;
  127. fptr[2] = 0;
  128. fptr[3] = 0;
  129. }
  130. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_BONES] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  131. }
  132. { //weights
  133. buffer.resize(sizeof(float) * 4);
  134. {
  135. uint8_t *w = buffer.ptrw();
  136. float *fptr = reinterpret_cast<float *>(w);
  137. fptr[0] = 0.0;
  138. fptr[1] = 0.0;
  139. fptr[2] = 0.0;
  140. fptr[3] = 0.0;
  141. }
  142. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_WEIGHTS] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  143. }
  144. }
  145. {
  146. Vector<String> skeleton_modes;
  147. skeleton_modes.push_back("\n#define MODE_2D\n");
  148. skeleton_modes.push_back("");
  149. skeleton_shader.shader.initialize(skeleton_modes);
  150. skeleton_shader.version = skeleton_shader.shader.version_create();
  151. for (int i = 0; i < SkeletonShader::SHADER_MODE_MAX; i++) {
  152. skeleton_shader.version_shader[i] = skeleton_shader.shader.version_get_shader(skeleton_shader.version, i);
  153. skeleton_shader.pipeline[i] = RD::get_singleton()->compute_pipeline_create(skeleton_shader.version_shader[i]);
  154. }
  155. {
  156. Vector<RD::Uniform> uniforms;
  157. {
  158. RD::Uniform u;
  159. u.binding = 0;
  160. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  161. u.append_id(default_rd_storage_buffer);
  162. uniforms.push_back(u);
  163. }
  164. skeleton_shader.default_skeleton_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  165. }
  166. }
  167. }
  168. MeshStorage::~MeshStorage() {
  169. //def buffers
  170. for (int i = 0; i < DEFAULT_RD_BUFFER_MAX; i++) {
  171. RD::get_singleton()->free(mesh_default_rd_buffers[i]);
  172. }
  173. skeleton_shader.shader.version_free(skeleton_shader.version);
  174. RD::get_singleton()->free(default_rd_storage_buffer);
  175. singleton = nullptr;
  176. }
  177. bool MeshStorage::free(RID p_rid) {
  178. if (owns_mesh(p_rid)) {
  179. mesh_free(p_rid);
  180. return true;
  181. } else if (owns_mesh_instance(p_rid)) {
  182. mesh_instance_free(p_rid);
  183. return true;
  184. } else if (owns_multimesh(p_rid)) {
  185. multimesh_free(p_rid);
  186. return true;
  187. } else if (owns_skeleton(p_rid)) {
  188. skeleton_free(p_rid);
  189. return true;
  190. }
  191. return false;
  192. }
  193. /* MESH API */
  194. RID MeshStorage::mesh_allocate() {
  195. return mesh_owner.allocate_rid();
  196. }
  197. void MeshStorage::mesh_initialize(RID p_rid) {
  198. mesh_owner.initialize_rid(p_rid, Mesh());
  199. }
  200. void MeshStorage::mesh_free(RID p_rid) {
  201. mesh_clear(p_rid);
  202. mesh_set_shadow_mesh(p_rid, RID());
  203. Mesh *mesh = mesh_owner.get_or_null(p_rid);
  204. ERR_FAIL_NULL(mesh);
  205. mesh->dependency.deleted_notify(p_rid);
  206. if (mesh->instances.size()) {
  207. ERR_PRINT("deleting mesh with active instances");
  208. }
  209. if (mesh->shadow_owners.size()) {
  210. for (Mesh *E : mesh->shadow_owners) {
  211. Mesh *shadow_owner = E;
  212. shadow_owner->shadow_mesh = RID();
  213. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  214. }
  215. }
  216. mesh_owner.free(p_rid);
  217. }
  218. void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
  219. ERR_FAIL_COND(p_blend_shape_count < 0);
  220. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  221. ERR_FAIL_NULL(mesh);
  222. ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
  223. mesh->blend_shape_count = p_blend_shape_count;
  224. }
  225. /// Returns stride
  226. void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
  227. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  228. ERR_FAIL_NULL(mesh);
  229. ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
  230. #ifdef DEBUG_ENABLED
  231. //do a validation, to catch errors first
  232. {
  233. uint32_t stride = 0;
  234. uint32_t attrib_stride = 0;
  235. uint32_t skin_stride = 0;
  236. for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
  237. if ((p_surface.format & (1ULL << i))) {
  238. switch (i) {
  239. case RS::ARRAY_VERTEX: {
  240. if ((p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) || (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  241. stride += sizeof(float) * 2;
  242. } else {
  243. stride += sizeof(float) * 3;
  244. }
  245. } break;
  246. case RS::ARRAY_NORMAL: {
  247. stride += sizeof(uint16_t) * 2;
  248. } break;
  249. case RS::ARRAY_TANGENT: {
  250. if (!(p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  251. stride += sizeof(uint16_t) * 2;
  252. }
  253. } break;
  254. case RS::ARRAY_COLOR: {
  255. attrib_stride += sizeof(uint32_t);
  256. } break;
  257. case RS::ARRAY_TEX_UV: {
  258. if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  259. attrib_stride += sizeof(uint16_t) * 2;
  260. } else {
  261. attrib_stride += sizeof(float) * 2;
  262. }
  263. } break;
  264. case RS::ARRAY_TEX_UV2: {
  265. if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  266. attrib_stride += sizeof(uint16_t) * 2;
  267. } else {
  268. attrib_stride += sizeof(float) * 2;
  269. }
  270. } break;
  271. case RS::ARRAY_CUSTOM0:
  272. case RS::ARRAY_CUSTOM1:
  273. case RS::ARRAY_CUSTOM2:
  274. case RS::ARRAY_CUSTOM3: {
  275. int idx = i - RS::ARRAY_CUSTOM0;
  276. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  277. uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  278. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  279. attrib_stride += fmtsize[fmt];
  280. } break;
  281. case RS::ARRAY_WEIGHTS:
  282. case RS::ARRAY_BONES: {
  283. //uses a separate array
  284. bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  285. skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
  286. } break;
  287. }
  288. }
  289. }
  290. int expected_size = stride * p_surface.vertex_count;
  291. ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  292. int bs_expected_size = expected_size * mesh->blend_shape_count;
  293. ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
  294. int expected_attrib_size = attrib_stride * p_surface.vertex_count;
  295. ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
  296. if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
  297. expected_size = skin_stride * p_surface.vertex_count;
  298. ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  299. }
  300. }
  301. #endif
  302. uint64_t surface_version = p_surface.format & (uint64_t(RS::ARRAY_FLAG_FORMAT_VERSION_MASK) << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
  303. RS::SurfaceData new_surface = p_surface;
  304. #ifdef DISABLE_DEPRECATED
  305. ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION, "Surface version provided (" + itos(int(surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT)) + ") does not match current version (" + itos(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) + ")");
  306. #else
  307. if (surface_version != uint64_t(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION)) {
  308. RS::get_singleton()->fix_surface_compatibility(new_surface);
  309. surface_version = new_surface.format & (RS::ARRAY_FLAG_FORMAT_VERSION_MASK << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
  310. ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION,
  311. vformat("Surface version provided (%d) does not match current version (%d).",
  312. (surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK,
  313. (RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK));
  314. }
  315. #endif
  316. Mesh::Surface *s = memnew(Mesh::Surface);
  317. s->format = new_surface.format;
  318. s->primitive = new_surface.primitive;
  319. const bool use_as_storage = (new_surface.skin_data.size() || mesh->blend_shape_count > 0);
  320. const BitField<RD::BufferCreationBits> as_storage_flag = use_as_storage ? RD::BUFFER_CREATION_AS_STORAGE_BIT : 0;
  321. if (new_surface.vertex_data.size()) {
  322. // If we have an uncompressed surface that contains normals, but not tangents, we need to differentiate the array
  323. // from a compressed array in the shader. To do so, we allow the normal to read 4 components out of the buffer
  324. // But only give it 2 components per normal. So essentially, each vertex reads the next normal in normal.zw.
  325. // This allows us to avoid adding a shader permutation, and avoid passing dummy tangents. Since the stride is kept small
  326. // this should still be a net win for bandwidth.
  327. // If we do this, then the last normal will read past the end of the array. So we need to pad the array with dummy data.
  328. if (!(new_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && (new_surface.format & RS::ARRAY_FORMAT_NORMAL) && !(new_surface.format & RS::ARRAY_FORMAT_TANGENT)) {
  329. // Unfortunately, we need to copy the buffer, which is fine as doing a resize triggers a CoW anyway.
  330. Vector<uint8_t> new_vertex_data;
  331. new_vertex_data.resize_initialized(new_surface.vertex_data.size() + sizeof(uint16_t) * 2);
  332. memcpy(new_vertex_data.ptrw(), new_surface.vertex_data.ptr(), new_surface.vertex_data.size());
  333. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(new_vertex_data.size(), new_vertex_data, as_storage_flag);
  334. s->vertex_buffer_size = new_vertex_data.size();
  335. } else {
  336. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(new_surface.vertex_data.size(), new_surface.vertex_data, as_storage_flag);
  337. s->vertex_buffer_size = new_surface.vertex_data.size();
  338. }
  339. }
  340. if (new_surface.attribute_data.size()) {
  341. s->attribute_buffer = RD::get_singleton()->vertex_buffer_create(new_surface.attribute_data.size(), new_surface.attribute_data);
  342. s->attribute_buffer_size = new_surface.attribute_data.size();
  343. }
  344. if (new_surface.skin_data.size()) {
  345. s->skin_buffer = RD::get_singleton()->vertex_buffer_create(new_surface.skin_data.size(), new_surface.skin_data, as_storage_flag);
  346. s->skin_buffer_size = new_surface.skin_data.size();
  347. }
  348. s->vertex_count = new_surface.vertex_count;
  349. if (new_surface.format & RS::ARRAY_FORMAT_BONES) {
  350. mesh->has_bone_weights = true;
  351. }
  352. if (new_surface.index_count) {
  353. bool is_index_16 = new_surface.vertex_count <= 65536 && new_surface.vertex_count > 0;
  354. s->index_buffer = RD::get_singleton()->index_buffer_create(new_surface.index_count, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, new_surface.index_data, false);
  355. s->index_buffer_size = new_surface.index_data.size();
  356. s->index_count = new_surface.index_count;
  357. s->index_array = RD::get_singleton()->index_array_create(s->index_buffer, 0, s->index_count);
  358. if (new_surface.lods.size()) {
  359. s->lods = memnew_arr(Mesh::Surface::LOD, new_surface.lods.size());
  360. s->lod_count = new_surface.lods.size();
  361. for (int i = 0; i < new_surface.lods.size(); i++) {
  362. uint32_t indices = new_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
  363. s->lods[i].index_buffer = RD::get_singleton()->index_buffer_create(indices, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, new_surface.lods[i].index_data);
  364. s->lods[i].index_buffer_size = new_surface.lods[i].index_data.size();
  365. s->lods[i].index_array = RD::get_singleton()->index_array_create(s->lods[i].index_buffer, 0, indices);
  366. s->lods[i].edge_length = new_surface.lods[i].edge_length;
  367. s->lods[i].index_count = indices;
  368. }
  369. }
  370. }
  371. ERR_FAIL_COND_MSG(!new_surface.index_count && !new_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
  372. s->aabb = new_surface.aabb;
  373. s->bone_aabbs = new_surface.bone_aabbs; //only really useful for returning them.
  374. s->mesh_to_skeleton_xform = p_surface.mesh_to_skeleton_xform;
  375. s->uv_scale = new_surface.uv_scale;
  376. if (mesh->blend_shape_count > 0) {
  377. s->blend_shape_buffer = RD::get_singleton()->storage_buffer_create(new_surface.blend_shape_data.size(), new_surface.blend_shape_data);
  378. s->blend_shape_buffer_size = new_surface.blend_shape_data.size();
  379. }
  380. if (use_as_storage) {
  381. Vector<RD::Uniform> uniforms;
  382. {
  383. RD::Uniform u;
  384. u.binding = 0;
  385. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  386. if (s->vertex_buffer.is_valid()) {
  387. u.append_id(s->vertex_buffer);
  388. } else {
  389. u.append_id(default_rd_storage_buffer);
  390. }
  391. uniforms.push_back(u);
  392. }
  393. {
  394. RD::Uniform u;
  395. u.binding = 1;
  396. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  397. if (s->skin_buffer.is_valid()) {
  398. u.append_id(s->skin_buffer);
  399. } else {
  400. u.append_id(default_rd_storage_buffer);
  401. }
  402. uniforms.push_back(u);
  403. }
  404. {
  405. RD::Uniform u;
  406. u.binding = 2;
  407. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  408. if (s->blend_shape_buffer.is_valid()) {
  409. u.append_id(s->blend_shape_buffer);
  410. } else {
  411. u.append_id(default_rd_storage_buffer);
  412. }
  413. uniforms.push_back(u);
  414. }
  415. s->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SURFACE);
  416. }
  417. if (mesh->surface_count == 0) {
  418. mesh->aabb = new_surface.aabb;
  419. } else {
  420. mesh->aabb.merge_with(new_surface.aabb);
  421. }
  422. mesh->skeleton_aabb_version = 0;
  423. s->material = new_surface.material;
  424. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
  425. mesh->surfaces[mesh->surface_count] = s;
  426. mesh->surface_count++;
  427. for (MeshInstance *mi : mesh->instances) {
  428. _mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
  429. }
  430. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  431. for (Mesh *E : mesh->shadow_owners) {
  432. Mesh *shadow_owner = E;
  433. shadow_owner->shadow_mesh = RID();
  434. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  435. }
  436. mesh->material_cache.clear();
  437. }
  438. void MeshStorage::_mesh_surface_clear(Mesh *p_mesh, int p_surface) {
  439. Mesh::Surface &s = *p_mesh->surfaces[p_surface];
  440. if (s.vertex_buffer.is_valid()) {
  441. RD::get_singleton()->free(s.vertex_buffer); // Clears arrays as dependency automatically, including all versions.
  442. }
  443. if (s.attribute_buffer.is_valid()) {
  444. RD::get_singleton()->free(s.attribute_buffer);
  445. }
  446. if (s.skin_buffer.is_valid()) {
  447. RD::get_singleton()->free(s.skin_buffer);
  448. }
  449. if (s.versions) {
  450. memfree(s.versions); // reallocs, so free with memfree.
  451. }
  452. if (s.index_buffer.is_valid()) {
  453. RD::get_singleton()->free(s.index_buffer);
  454. }
  455. if (s.lod_count) {
  456. for (uint32_t j = 0; j < s.lod_count; j++) {
  457. RD::get_singleton()->free(s.lods[j].index_buffer);
  458. }
  459. memdelete_arr(s.lods);
  460. }
  461. if (s.blend_shape_buffer.is_valid()) {
  462. RD::get_singleton()->free(s.blend_shape_buffer);
  463. }
  464. memdelete(p_mesh->surfaces[p_surface]);
  465. }
  466. int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
  467. const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  468. ERR_FAIL_NULL_V(mesh, -1);
  469. return mesh->blend_shape_count;
  470. }
  471. void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
  472. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  473. ERR_FAIL_NULL(mesh);
  474. ERR_FAIL_INDEX((int)p_mode, 2);
  475. mesh->blend_shape_mode = p_mode;
  476. }
  477. RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
  478. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  479. ERR_FAIL_NULL_V(mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
  480. return mesh->blend_shape_mode;
  481. }
  482. void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  483. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  484. ERR_FAIL_NULL(mesh);
  485. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  486. ERR_FAIL_COND(p_data.is_empty());
  487. ERR_FAIL_COND(mesh->surfaces[p_surface]->vertex_buffer.is_null());
  488. uint64_t data_size = p_data.size();
  489. const uint8_t *r = p_data.ptr();
  490. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->vertex_buffer, p_offset, data_size, r);
  491. }
  492. void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  493. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  494. ERR_FAIL_NULL(mesh);
  495. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  496. ERR_FAIL_COND(p_data.is_empty());
  497. ERR_FAIL_COND(mesh->surfaces[p_surface]->attribute_buffer.is_null());
  498. uint64_t data_size = p_data.size();
  499. const uint8_t *r = p_data.ptr();
  500. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->attribute_buffer, p_offset, data_size, r);
  501. }
  502. void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  503. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  504. ERR_FAIL_NULL(mesh);
  505. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  506. ERR_FAIL_COND(p_data.is_empty());
  507. ERR_FAIL_COND(mesh->surfaces[p_surface]->skin_buffer.is_null());
  508. uint64_t data_size = p_data.size();
  509. const uint8_t *r = p_data.ptr();
  510. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->skin_buffer, p_offset, data_size, r);
  511. }
  512. void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
  513. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  514. ERR_FAIL_NULL(mesh);
  515. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  516. mesh->surfaces[p_surface]->material = p_material;
  517. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
  518. mesh->material_cache.clear();
  519. }
  520. RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
  521. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  522. ERR_FAIL_NULL_V(mesh, RID());
  523. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
  524. return mesh->surfaces[p_surface]->material;
  525. }
  526. RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
  527. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  528. ERR_FAIL_NULL_V(mesh, RS::SurfaceData());
  529. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
  530. Mesh::Surface &s = *mesh->surfaces[p_surface];
  531. RS::SurfaceData sd;
  532. sd.format = s.format;
  533. if (s.vertex_buffer.is_valid()) {
  534. sd.vertex_data = RD::get_singleton()->buffer_get_data(s.vertex_buffer);
  535. // When using an uncompressed buffer with normals, but without tangents, we have to trim the padding.
  536. if (!(s.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) && (s.format & RS::ARRAY_FORMAT_NORMAL) && !(s.format & RS::ARRAY_FORMAT_TANGENT)) {
  537. sd.vertex_data.resize(sd.vertex_data.size() - sizeof(uint16_t) * 2);
  538. }
  539. }
  540. if (s.attribute_buffer.is_valid()) {
  541. sd.attribute_data = RD::get_singleton()->buffer_get_data(s.attribute_buffer);
  542. }
  543. if (s.skin_buffer.is_valid()) {
  544. sd.skin_data = RD::get_singleton()->buffer_get_data(s.skin_buffer);
  545. }
  546. sd.vertex_count = s.vertex_count;
  547. sd.index_count = s.index_count;
  548. sd.primitive = s.primitive;
  549. if (sd.index_count) {
  550. sd.index_data = RD::get_singleton()->buffer_get_data(s.index_buffer);
  551. }
  552. sd.aabb = s.aabb;
  553. sd.uv_scale = s.uv_scale;
  554. for (uint32_t i = 0; i < s.lod_count; i++) {
  555. RS::SurfaceData::LOD lod;
  556. lod.edge_length = s.lods[i].edge_length;
  557. lod.index_data = RD::get_singleton()->buffer_get_data(s.lods[i].index_buffer);
  558. sd.lods.push_back(lod);
  559. }
  560. sd.bone_aabbs = s.bone_aabbs;
  561. sd.mesh_to_skeleton_xform = s.mesh_to_skeleton_xform;
  562. if (s.blend_shape_buffer.is_valid()) {
  563. sd.blend_shape_data = RD::get_singleton()->buffer_get_data(s.blend_shape_buffer);
  564. }
  565. return sd;
  566. }
  567. int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
  568. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  569. ERR_FAIL_NULL_V(mesh, 0);
  570. return mesh->surface_count;
  571. }
  572. void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
  573. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  574. ERR_FAIL_NULL(mesh);
  575. mesh->custom_aabb = p_aabb;
  576. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  577. }
  578. AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
  579. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  580. ERR_FAIL_NULL_V(mesh, AABB());
  581. return mesh->custom_aabb;
  582. }
  583. AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
  584. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  585. ERR_FAIL_NULL_V(mesh, AABB());
  586. if (mesh->custom_aabb != AABB()) {
  587. return mesh->custom_aabb;
  588. }
  589. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  590. // A mesh can be shared by multiple skeletons and we need to avoid using the AABB from a different skeleton.
  591. if (!skeleton || skeleton->size == 0 || (mesh->skeleton_aabb_version == skeleton->version && mesh->skeleton_aabb_rid == p_skeleton)) {
  592. return mesh->aabb;
  593. }
  594. AABB aabb;
  595. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  596. AABB laabb;
  597. const Mesh::Surface &surface = *mesh->surfaces[i];
  598. if ((surface.format & RS::ARRAY_FORMAT_BONES) && surface.bone_aabbs.size()) {
  599. int bs = surface.bone_aabbs.size();
  600. const AABB *skbones = surface.bone_aabbs.ptr();
  601. int sbs = skeleton->size;
  602. ERR_CONTINUE(bs > sbs);
  603. const float *baseptr = skeleton->data.ptr();
  604. bool found_bone_aabb = false;
  605. if (skeleton->use_2d) {
  606. for (int j = 0; j < bs; j++) {
  607. if (skbones[j].size == Vector3(-1, -1, -1)) {
  608. continue; //bone is unused
  609. }
  610. const float *dataptr = baseptr + j * 8;
  611. Transform3D mtx;
  612. mtx.basis.rows[0][0] = dataptr[0];
  613. mtx.basis.rows[0][1] = dataptr[1];
  614. mtx.origin.x = dataptr[3];
  615. mtx.basis.rows[1][0] = dataptr[4];
  616. mtx.basis.rows[1][1] = dataptr[5];
  617. mtx.origin.y = dataptr[7];
  618. // Transform bounds to skeleton's space before applying animation data.
  619. AABB baabb = surface.mesh_to_skeleton_xform.xform(skbones[j]);
  620. baabb = mtx.xform(baabb);
  621. if (!found_bone_aabb) {
  622. laabb = baabb;
  623. found_bone_aabb = true;
  624. } else {
  625. laabb.merge_with(baabb);
  626. }
  627. }
  628. } else {
  629. for (int j = 0; j < bs; j++) {
  630. if (skbones[j].size == Vector3(-1, -1, -1)) {
  631. continue; //bone is unused
  632. }
  633. const float *dataptr = baseptr + j * 12;
  634. Transform3D mtx;
  635. mtx.basis.rows[0][0] = dataptr[0];
  636. mtx.basis.rows[0][1] = dataptr[1];
  637. mtx.basis.rows[0][2] = dataptr[2];
  638. mtx.origin.x = dataptr[3];
  639. mtx.basis.rows[1][0] = dataptr[4];
  640. mtx.basis.rows[1][1] = dataptr[5];
  641. mtx.basis.rows[1][2] = dataptr[6];
  642. mtx.origin.y = dataptr[7];
  643. mtx.basis.rows[2][0] = dataptr[8];
  644. mtx.basis.rows[2][1] = dataptr[9];
  645. mtx.basis.rows[2][2] = dataptr[10];
  646. mtx.origin.z = dataptr[11];
  647. // Transform bounds to skeleton's space before applying animation data.
  648. AABB baabb = surface.mesh_to_skeleton_xform.xform(skbones[j]);
  649. baabb = mtx.xform(baabb);
  650. if (!found_bone_aabb) {
  651. laabb = baabb;
  652. found_bone_aabb = true;
  653. } else {
  654. laabb.merge_with(baabb);
  655. }
  656. }
  657. }
  658. if (found_bone_aabb) {
  659. // Transform skeleton bounds back to mesh's space if any animated AABB applied.
  660. laabb = surface.mesh_to_skeleton_xform.affine_inverse().xform(laabb);
  661. }
  662. if (laabb.size == Vector3()) {
  663. laabb = surface.aabb;
  664. }
  665. } else {
  666. laabb = surface.aabb;
  667. }
  668. if (i == 0) {
  669. aabb = laabb;
  670. } else {
  671. aabb.merge_with(laabb);
  672. }
  673. }
  674. mesh->aabb = aabb;
  675. mesh->skeleton_aabb_version = skeleton->version;
  676. mesh->skeleton_aabb_rid = p_skeleton;
  677. return aabb;
  678. }
  679. void MeshStorage::mesh_set_path(RID p_mesh, const String &p_path) {
  680. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  681. ERR_FAIL_NULL(mesh);
  682. mesh->path = p_path;
  683. }
  684. String MeshStorage::mesh_get_path(RID p_mesh) const {
  685. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  686. ERR_FAIL_NULL_V(mesh, String());
  687. return mesh->path;
  688. }
  689. void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
  690. ERR_FAIL_COND_MSG(p_mesh == p_shadow_mesh, "Cannot set a mesh as its own shadow mesh.");
  691. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  692. ERR_FAIL_NULL(mesh);
  693. Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  694. if (shadow_mesh) {
  695. shadow_mesh->shadow_owners.erase(mesh);
  696. }
  697. mesh->shadow_mesh = p_shadow_mesh;
  698. shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  699. if (shadow_mesh) {
  700. shadow_mesh->shadow_owners.insert(mesh);
  701. }
  702. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  703. }
  704. void MeshStorage::mesh_clear(RID p_mesh) {
  705. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  706. ERR_FAIL_NULL(mesh);
  707. // Clear instance data before mesh data.
  708. for (MeshInstance *mi : mesh->instances) {
  709. _mesh_instance_clear(mi);
  710. }
  711. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  712. _mesh_surface_clear(mesh, i);
  713. }
  714. if (mesh->surfaces) {
  715. memfree(mesh->surfaces);
  716. }
  717. mesh->surfaces = nullptr;
  718. mesh->surface_count = 0;
  719. mesh->material_cache.clear();
  720. mesh->has_bone_weights = false;
  721. mesh->aabb = AABB();
  722. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  723. for (Mesh *E : mesh->shadow_owners) {
  724. Mesh *shadow_owner = E;
  725. shadow_owner->shadow_mesh = RID();
  726. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  727. }
  728. }
  729. void MeshStorage::mesh_surface_remove(RID p_mesh, int p_surface) {
  730. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  731. ERR_FAIL_NULL(mesh);
  732. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  733. // Clear instance data before mesh data.
  734. for (MeshInstance *mi : mesh->instances) {
  735. _mesh_instance_remove_surface(mi, p_surface);
  736. }
  737. _mesh_surface_clear(mesh, p_surface);
  738. if ((uint32_t)p_surface < mesh->surface_count - 1) {
  739. memmove(mesh->surfaces + p_surface, mesh->surfaces + p_surface + 1, sizeof(Mesh::Surface *) * (mesh->surface_count - (p_surface + 1)));
  740. }
  741. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count - 1));
  742. --mesh->surface_count;
  743. mesh->material_cache.clear();
  744. mesh->skeleton_aabb_version = 0;
  745. if (mesh->has_bone_weights) {
  746. mesh->has_bone_weights = false;
  747. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  748. if (mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) {
  749. mesh->has_bone_weights = true;
  750. break;
  751. }
  752. }
  753. }
  754. if (mesh->surface_count == 0) {
  755. mesh->aabb = AABB();
  756. } else {
  757. mesh->aabb = mesh->surfaces[0]->aabb;
  758. for (uint32_t i = 1; i < mesh->surface_count; i++) {
  759. mesh->aabb.merge_with(mesh->surfaces[i]->aabb);
  760. }
  761. }
  762. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  763. for (Mesh *E : mesh->shadow_owners) {
  764. Mesh *shadow_owner = E;
  765. shadow_owner->shadow_mesh = RID();
  766. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  767. }
  768. }
  769. void MeshStorage::mesh_debug_usage(List<RS::MeshInfo> *r_info) {
  770. for (const RID &mesh_rid : mesh_owner.get_owned_list()) {
  771. Mesh *mesh = mesh_owner.get_or_null(mesh_rid);
  772. if (!mesh) {
  773. continue;
  774. }
  775. RS::MeshInfo mesh_info;
  776. mesh_info.mesh = mesh_rid;
  777. mesh_info.path = mesh->path;
  778. for (uint32_t surface_index = 0; surface_index < mesh->surface_count; surface_index++) {
  779. MeshStorage::Mesh::Surface *surface = mesh->surfaces[surface_index];
  780. mesh_info.vertex_buffer_size += surface->vertex_buffer_size;
  781. mesh_info.attribute_buffer_size += surface->attribute_buffer_size;
  782. mesh_info.skin_buffer_size += surface->skin_buffer_size;
  783. mesh_info.index_buffer_size += surface->index_buffer_size;
  784. mesh_info.blend_shape_buffer_size += surface->blend_shape_buffer_size;
  785. mesh_info.vertex_count += surface->vertex_count;
  786. for (uint32_t lod_index = 0; lod_index < surface->lod_count; lod_index++) {
  787. mesh_info.lod_index_buffers_size += surface->lods[lod_index].index_buffer_size;
  788. }
  789. }
  790. r_info->push_back(mesh_info);
  791. }
  792. }
  793. bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
  794. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  795. ERR_FAIL_NULL_V(mesh, false);
  796. return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
  797. }
  798. Dependency *MeshStorage::mesh_get_dependency(RID p_mesh) const {
  799. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  800. ERR_FAIL_NULL_V(mesh, nullptr);
  801. return &mesh->dependency;
  802. }
  803. /* MESH INSTANCE */
  804. RID MeshStorage::mesh_instance_create(RID p_base) {
  805. Mesh *mesh = mesh_owner.get_or_null(p_base);
  806. ERR_FAIL_NULL_V(mesh, RID());
  807. RID rid = mesh_instance_owner.make_rid();
  808. MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
  809. mi->mesh = mesh;
  810. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  811. _mesh_instance_add_surface(mi, mesh, i);
  812. }
  813. mi->I = mesh->instances.push_back(mi);
  814. mi->dirty = true;
  815. return rid;
  816. }
  817. void MeshStorage::mesh_instance_free(RID p_rid) {
  818. MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
  819. _mesh_instance_clear(mi);
  820. mi->mesh->instances.erase(mi->I);
  821. mi->I = nullptr;
  822. mesh_instance_owner.free(p_rid);
  823. }
  824. void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
  825. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  826. if (mi->skeleton == p_skeleton) {
  827. return;
  828. }
  829. mi->skeleton = p_skeleton;
  830. mi->skeleton_version = 0;
  831. mi->dirty = true;
  832. }
  833. void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
  834. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  835. ERR_FAIL_NULL(mi);
  836. ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
  837. mi->blend_weights[p_shape] = p_weight;
  838. mi->weights_dirty = true;
  839. //will be eventually updated
  840. }
  841. void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
  842. while (mi->surfaces.size()) {
  843. _mesh_instance_remove_surface(mi, mi->surfaces.size() - 1);
  844. }
  845. mi->dirty = false;
  846. }
  847. void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
  848. if (mesh->blend_shape_count > 0 && mi->blend_weights_buffer.is_null()) {
  849. mi->blend_weights.resize(mesh->blend_shape_count);
  850. for (float &weight : mi->blend_weights) {
  851. weight = 0;
  852. }
  853. mi->blend_weights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(float) * mi->blend_weights.size(), mi->blend_weights.to_byte_array());
  854. mi->weights_dirty = true;
  855. }
  856. MeshInstance::Surface s;
  857. if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) {
  858. _mesh_instance_add_surface_buffer(mi, mesh, &s, p_surface, 0);
  859. }
  860. mi->surfaces.push_back(s);
  861. mi->dirty = true;
  862. }
  863. void MeshStorage::_mesh_instance_add_surface_buffer(MeshInstance *mi, Mesh *mesh, MeshInstance::Surface *s, uint32_t p_surface, uint32_t p_buffer_index) {
  864. s->vertex_buffer[p_buffer_index] = RD::get_singleton()->vertex_buffer_create(mesh->surfaces[p_surface]->vertex_buffer_size, Vector<uint8_t>(), RD::BUFFER_CREATION_AS_STORAGE_BIT);
  865. Vector<RD::Uniform> uniforms;
  866. {
  867. RD::Uniform u;
  868. u.binding = 1;
  869. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  870. u.append_id(s->vertex_buffer[p_buffer_index]);
  871. uniforms.push_back(u);
  872. }
  873. {
  874. RD::Uniform u;
  875. u.binding = 2;
  876. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  877. if (mi->blend_weights_buffer.is_valid()) {
  878. u.append_id(mi->blend_weights_buffer);
  879. } else {
  880. u.append_id(default_rd_storage_buffer);
  881. }
  882. uniforms.push_back(u);
  883. }
  884. s->uniform_set[p_buffer_index] = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_INSTANCE);
  885. }
  886. void MeshStorage::_mesh_instance_remove_surface(MeshInstance *mi, int p_surface) {
  887. MeshInstance::Surface &surface = mi->surfaces[p_surface];
  888. if (surface.versions) {
  889. for (uint32_t j = 0; j < surface.version_count; j++) {
  890. RD::get_singleton()->free(surface.versions[j].vertex_array);
  891. }
  892. memfree(surface.versions);
  893. }
  894. for (uint32_t i = 0; i < 2; i++) {
  895. if (surface.vertex_buffer[i].is_valid()) {
  896. RD::get_singleton()->free(surface.vertex_buffer[i]);
  897. }
  898. }
  899. mi->surfaces.remove_at(p_surface);
  900. if (mi->surfaces.is_empty()) {
  901. if (mi->blend_weights_buffer.is_valid()) {
  902. RD::get_singleton()->free(mi->blend_weights_buffer);
  903. mi->blend_weights_buffer = RID();
  904. }
  905. mi->blend_weights.clear();
  906. mi->weights_dirty = false;
  907. mi->skeleton_version = 0;
  908. }
  909. mi->dirty = true;
  910. }
  911. void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
  912. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  913. bool needs_update = mi->dirty;
  914. if (mi->weights_dirty && !mi->weight_update_list.in_list()) {
  915. dirty_mesh_instance_weights.add(&mi->weight_update_list);
  916. needs_update = true;
  917. }
  918. if (mi->array_update_list.in_list()) {
  919. return;
  920. }
  921. if (!needs_update && mi->skeleton.is_valid()) {
  922. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  923. if (sk && sk->version != mi->skeleton_version) {
  924. needs_update = true;
  925. }
  926. }
  927. if (needs_update) {
  928. dirty_mesh_instance_arrays.add(&mi->array_update_list);
  929. }
  930. }
  931. void MeshStorage::mesh_instance_set_canvas_item_transform(RID p_mesh_instance, const Transform2D &p_transform) {
  932. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  933. mi->canvas_item_transform_2d = p_transform;
  934. }
  935. void MeshStorage::update_mesh_instances() {
  936. while (dirty_mesh_instance_weights.first()) {
  937. MeshInstance *mi = dirty_mesh_instance_weights.first()->self();
  938. if (mi->blend_weights_buffer.is_valid()) {
  939. RD::get_singleton()->buffer_update(mi->blend_weights_buffer, 0, mi->blend_weights.size() * sizeof(float), mi->blend_weights.ptr());
  940. }
  941. dirty_mesh_instance_weights.remove(&mi->weight_update_list);
  942. mi->weights_dirty = false;
  943. }
  944. if (dirty_mesh_instance_arrays.first() == nullptr) {
  945. return; //nothing to do
  946. }
  947. //process skeletons and blend shapes
  948. uint64_t frame = RSG::rasterizer->get_frame_number();
  949. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0) || (RendererCompositorStorage::get_singleton()->get_num_compositor_effects_with_motion_vectors() > 0);
  950. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  951. while (dirty_mesh_instance_arrays.first()) {
  952. MeshInstance *mi = dirty_mesh_instance_arrays.first()->self();
  953. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  954. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  955. if (mi->surfaces[i].uniform_set[0].is_null() || mi->mesh->surfaces[i]->uniform_set.is_null()) {
  956. // Skip over mesh instances that don't require their own uniform buffers.
  957. continue;
  958. }
  959. mi->surfaces[i].previous_buffer = mi->surfaces[i].current_buffer;
  960. if (uses_motion_vectors && mi->surfaces[i].last_change && (frame - mi->surfaces[i].last_change) <= 2) {
  961. // Use a 2-frame tolerance so that stepped skeletal animations have correct motion vectors
  962. // (stepped animation is common for distant NPCs).
  963. uint32_t new_buffer_index = mi->surfaces[i].current_buffer ^ 1;
  964. if (mi->surfaces[i].uniform_set[new_buffer_index].is_null()) {
  965. // Create the new vertex buffer on demand where the result for the current frame will be stored.
  966. _mesh_instance_add_surface_buffer(mi, mi->mesh, &mi->surfaces[i], i, new_buffer_index);
  967. }
  968. mi->surfaces[i].current_buffer = new_buffer_index;
  969. }
  970. mi->surfaces[i].last_change = frame;
  971. RID mi_surface_uniform_set = mi->surfaces[i].uniform_set[mi->surfaces[i].current_buffer];
  972. if (mi_surface_uniform_set.is_null()) {
  973. continue;
  974. }
  975. bool array_is_2d = mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_2D_VERTICES;
  976. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, skeleton_shader.pipeline[array_is_2d ? SkeletonShader::SHADER_MODE_2D : SkeletonShader::SHADER_MODE_3D]);
  977. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi_surface_uniform_set, SkeletonShader::UNIFORM_SET_INSTANCE);
  978. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->mesh->surfaces[i]->uniform_set, SkeletonShader::UNIFORM_SET_SURFACE);
  979. if (sk && sk->uniform_set_mi.is_valid()) {
  980. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sk->uniform_set_mi, SkeletonShader::UNIFORM_SET_SKELETON);
  981. } else {
  982. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, skeleton_shader.default_skeleton_uniform_set, SkeletonShader::UNIFORM_SET_SKELETON);
  983. }
  984. SkeletonShader::PushConstant push_constant;
  985. push_constant.has_normal = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_NORMAL;
  986. push_constant.has_tangent = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_TANGENT;
  987. push_constant.has_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES);
  988. push_constant.has_blend_shape = mi->mesh->blend_shape_count > 0;
  989. push_constant.normal_tangent_stride = (push_constant.has_normal ? 1 : 0) + (push_constant.has_tangent ? 1 : 0);
  990. push_constant.vertex_count = mi->mesh->surfaces[i]->vertex_count;
  991. push_constant.vertex_stride = ((mi->mesh->surfaces[i]->vertex_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4) - push_constant.normal_tangent_stride;
  992. push_constant.skin_stride = (mi->mesh->surfaces[i]->skin_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  993. push_constant.skin_weight_offset = (mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS) ? 4 : 2;
  994. Transform2D transform = Transform2D();
  995. if (sk && sk->use_2d) {
  996. transform = mi->canvas_item_transform_2d.affine_inverse() * sk->base_transform_2d;
  997. }
  998. push_constant.skeleton_transform_x[0] = transform.columns[0][0];
  999. push_constant.skeleton_transform_x[1] = transform.columns[0][1];
  1000. push_constant.skeleton_transform_y[0] = transform.columns[1][0];
  1001. push_constant.skeleton_transform_y[1] = transform.columns[1][1];
  1002. push_constant.skeleton_transform_offset[0] = transform.columns[2][0];
  1003. push_constant.skeleton_transform_offset[1] = transform.columns[2][1];
  1004. Transform2D inverse_transform = transform.affine_inverse();
  1005. push_constant.inverse_transform_x[0] = inverse_transform.columns[0][0];
  1006. push_constant.inverse_transform_x[1] = inverse_transform.columns[0][1];
  1007. push_constant.inverse_transform_y[0] = inverse_transform.columns[1][0];
  1008. push_constant.inverse_transform_y[1] = inverse_transform.columns[1][1];
  1009. push_constant.inverse_transform_offset[0] = inverse_transform.columns[2][0];
  1010. push_constant.inverse_transform_offset[1] = inverse_transform.columns[2][1];
  1011. push_constant.blend_shape_count = mi->mesh->blend_shape_count;
  1012. push_constant.normalized_blend_shapes = mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED;
  1013. push_constant.pad1 = 0;
  1014. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SkeletonShader::PushConstant));
  1015. //dispatch without barrier, so all is done at the same time
  1016. RD::get_singleton()->compute_list_dispatch_threads(compute_list, push_constant.vertex_count, 1, 1);
  1017. }
  1018. mi->dirty = false;
  1019. if (sk) {
  1020. mi->skeleton_version = sk->version;
  1021. }
  1022. dirty_mesh_instance_arrays.remove(&mi->array_update_list);
  1023. }
  1024. RD::get_singleton()->compute_list_end();
  1025. }
  1026. RD::VertexFormatID MeshStorage::_mesh_surface_generate_vertex_format(uint64_t p_surface_format, uint64_t p_input_mask, bool p_instanced_surface, bool p_input_motion_vectors, uint32_t &r_position_stride) {
  1027. Vector<RD::VertexAttribute> attributes;
  1028. uint32_t normal_tangent_stride = 0;
  1029. uint32_t attribute_stride = 0;
  1030. uint32_t skin_stride = 0;
  1031. r_position_stride = 0;
  1032. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  1033. RD::VertexAttribute vd;
  1034. vd.location = i;
  1035. if (!(p_surface_format & (1ULL << i))) {
  1036. vd.stride = 0;
  1037. switch (i) {
  1038. case RS::ARRAY_VERTEX:
  1039. case RS::ARRAY_NORMAL:
  1040. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  1041. break;
  1042. case RS::ARRAY_TEX_UV:
  1043. case RS::ARRAY_TEX_UV2:
  1044. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  1045. break;
  1046. case RS::ARRAY_BONES:
  1047. vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
  1048. break;
  1049. case RS::ARRAY_TANGENT:
  1050. case RS::ARRAY_COLOR:
  1051. case RS::ARRAY_CUSTOM0:
  1052. case RS::ARRAY_CUSTOM1:
  1053. case RS::ARRAY_CUSTOM2:
  1054. case RS::ARRAY_CUSTOM3:
  1055. case RS::ARRAY_WEIGHTS:
  1056. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  1057. break;
  1058. default:
  1059. DEV_ASSERT(false && "Unknown vertex format element.");
  1060. break;
  1061. }
  1062. } else {
  1063. // Mark that it needs a stride set (default uses 0).
  1064. vd.stride = 1;
  1065. switch (i) {
  1066. case RS::ARRAY_VERTEX: {
  1067. vd.offset = r_position_stride;
  1068. if (p_surface_format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  1069. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  1070. r_position_stride = sizeof(float) * 2;
  1071. } else {
  1072. if (!p_instanced_surface && (p_surface_format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  1073. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  1074. r_position_stride = sizeof(uint16_t) * 4;
  1075. } else {
  1076. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  1077. r_position_stride = sizeof(float) * 3;
  1078. }
  1079. }
  1080. } break;
  1081. case RS::ARRAY_NORMAL: {
  1082. vd.offset = 0;
  1083. if (!p_instanced_surface && (p_surface_format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  1084. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  1085. normal_tangent_stride += sizeof(uint16_t) * 2;
  1086. } else {
  1087. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  1088. // A small trick here: if we are uncompressed and we have normals, but no tangents. We need
  1089. // the shader to think there are 4 components to "axis_tangent_attrib". So we give a size of 4,
  1090. // but a stride based on only having 2 elements.
  1091. if (!(p_surface_format & RS::ARRAY_FORMAT_TANGENT)) {
  1092. normal_tangent_stride += sizeof(uint16_t) * 2;
  1093. } else {
  1094. normal_tangent_stride += sizeof(uint16_t) * 4;
  1095. }
  1096. }
  1097. } break;
  1098. case RS::ARRAY_TANGENT: {
  1099. vd.stride = 0;
  1100. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  1101. } break;
  1102. case RS::ARRAY_COLOR: {
  1103. vd.offset = attribute_stride;
  1104. vd.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  1105. attribute_stride += sizeof(int8_t) * 4;
  1106. } break;
  1107. case RS::ARRAY_TEX_UV: {
  1108. vd.offset = attribute_stride;
  1109. if (p_surface_format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  1110. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  1111. attribute_stride += sizeof(uint16_t) * 2;
  1112. } else {
  1113. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  1114. attribute_stride += sizeof(float) * 2;
  1115. }
  1116. } break;
  1117. case RS::ARRAY_TEX_UV2: {
  1118. vd.offset = attribute_stride;
  1119. if (p_surface_format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  1120. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  1121. attribute_stride += sizeof(uint16_t) * 2;
  1122. } else {
  1123. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  1124. attribute_stride += sizeof(float) * 2;
  1125. }
  1126. } break;
  1127. case RS::ARRAY_CUSTOM0:
  1128. case RS::ARRAY_CUSTOM1:
  1129. case RS::ARRAY_CUSTOM2:
  1130. case RS::ARRAY_CUSTOM3: {
  1131. vd.offset = attribute_stride;
  1132. int idx = i - RS::ARRAY_CUSTOM0;
  1133. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  1134. uint32_t fmt = (p_surface_format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  1135. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  1136. const RD::DataFormat fmtrd[RS::ARRAY_CUSTOM_MAX] = { RD::DATA_FORMAT_R8G8B8A8_UNORM, RD::DATA_FORMAT_R8G8B8A8_SNORM, RD::DATA_FORMAT_R16G16_SFLOAT, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, RD::DATA_FORMAT_R32_SFLOAT, RD::DATA_FORMAT_R32G32_SFLOAT, RD::DATA_FORMAT_R32G32B32_SFLOAT, RD::DATA_FORMAT_R32G32B32A32_SFLOAT };
  1137. vd.format = fmtrd[fmt];
  1138. attribute_stride += fmtsize[fmt];
  1139. } break;
  1140. case RS::ARRAY_BONES: {
  1141. vd.offset = skin_stride;
  1142. vd.format = RD::DATA_FORMAT_R16G16B16A16_UINT;
  1143. skin_stride += sizeof(int16_t) * 4;
  1144. } break;
  1145. case RS::ARRAY_WEIGHTS: {
  1146. vd.offset = skin_stride;
  1147. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  1148. skin_stride += sizeof(int16_t) * 4;
  1149. } break;
  1150. }
  1151. }
  1152. if (!(p_input_mask & (1ULL << i))) {
  1153. continue; // Shader does not need this, skip it (but computing stride was important anyway)
  1154. }
  1155. attributes.push_back(vd);
  1156. if (p_input_motion_vectors) {
  1157. // Since the previous vertex, normal and tangent can't be part of the vertex format but they are required when
  1158. // motion vectors are enabled, we opt to push a copy of the vertex attribute with a different location.
  1159. switch (i) {
  1160. case RS::ARRAY_VERTEX: {
  1161. vd.location = ATTRIBUTE_LOCATION_PREV_VERTEX;
  1162. } break;
  1163. case RS::ARRAY_NORMAL: {
  1164. vd.location = ATTRIBUTE_LOCATION_PREV_NORMAL;
  1165. } break;
  1166. case RS::ARRAY_TANGENT: {
  1167. vd.location = ATTRIBUTE_LOCATION_PREV_TANGENT;
  1168. } break;
  1169. }
  1170. if (int(vd.location) != i) {
  1171. attributes.push_back(vd);
  1172. }
  1173. }
  1174. }
  1175. // Update final stride.
  1176. for (int i = 0; i < attributes.size(); i++) {
  1177. if (attributes[i].stride == 0) {
  1178. // Default location.
  1179. continue;
  1180. }
  1181. int loc = attributes[i].location;
  1182. if (loc == RS::ARRAY_VERTEX || loc == ATTRIBUTE_LOCATION_PREV_VERTEX) {
  1183. attributes.write[i].stride = r_position_stride;
  1184. } else if ((loc < RS::ARRAY_COLOR) || ((loc >= ATTRIBUTE_LOCATION_PREV_NORMAL) && (loc <= ATTRIBUTE_LOCATION_PREV_TANGENT))) {
  1185. attributes.write[i].stride = normal_tangent_stride;
  1186. } else if (loc < RS::ARRAY_BONES) {
  1187. attributes.write[i].stride = attribute_stride;
  1188. } else {
  1189. attributes.write[i].stride = skin_stride;
  1190. }
  1191. }
  1192. return RD::get_singleton()->vertex_format_create(attributes);
  1193. }
  1194. void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint64_t p_input_mask, bool p_input_motion_vectors, MeshInstance::Surface *mis, uint32_t p_current_buffer, uint32_t p_previous_buffer) {
  1195. uint32_t position_stride = 0;
  1196. v.vertex_format = _mesh_surface_generate_vertex_format(s->format, p_input_mask, mis != nullptr, p_input_motion_vectors, position_stride);
  1197. Vector<RID> buffers;
  1198. Vector<uint64_t> offsets;
  1199. RID buffer;
  1200. uint64_t offset = 0;
  1201. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  1202. offset = 0;
  1203. if (!(s->format & (1ULL << i))) {
  1204. // Not supplied by surface, use default buffers.
  1205. buffer = mesh_default_rd_buffers[i];
  1206. } else {
  1207. // Supplied by surface, use buffer.
  1208. switch (i) {
  1209. case RS::ARRAY_VERTEX:
  1210. case RS::ARRAY_NORMAL:
  1211. offset = i == RS::ARRAY_NORMAL ? position_stride * s->vertex_count : 0;
  1212. buffer = mis != nullptr ? mis->vertex_buffer[p_current_buffer] : s->vertex_buffer;
  1213. break;
  1214. case RS::ARRAY_TANGENT:
  1215. buffer = mesh_default_rd_buffers[i];
  1216. break;
  1217. case RS::ARRAY_COLOR:
  1218. case RS::ARRAY_TEX_UV:
  1219. case RS::ARRAY_TEX_UV2:
  1220. case RS::ARRAY_CUSTOM0:
  1221. case RS::ARRAY_CUSTOM1:
  1222. case RS::ARRAY_CUSTOM2:
  1223. case RS::ARRAY_CUSTOM3:
  1224. buffer = s->attribute_buffer;
  1225. break;
  1226. case RS::ARRAY_BONES:
  1227. case RS::ARRAY_WEIGHTS:
  1228. buffer = s->skin_buffer;
  1229. break;
  1230. }
  1231. }
  1232. if (!(p_input_mask & (1ULL << i))) {
  1233. continue; // Shader does not need this, skip it (but computing stride was important anyway)
  1234. }
  1235. buffers.push_back(buffer);
  1236. offsets.push_back(offset);
  1237. if (p_input_motion_vectors) {
  1238. // Push the buffer for motion vector inputs.
  1239. if (i == RS::ARRAY_VERTEX || i == RS::ARRAY_NORMAL || i == RS::ARRAY_TANGENT) {
  1240. if (mis && buffer != mesh_default_rd_buffers[i]) {
  1241. buffers.push_back(mis->vertex_buffer[p_previous_buffer]);
  1242. } else {
  1243. buffers.push_back(buffer);
  1244. }
  1245. offsets.push_back(offset);
  1246. }
  1247. }
  1248. }
  1249. v.input_mask = p_input_mask;
  1250. v.current_buffer = p_current_buffer;
  1251. v.previous_buffer = p_previous_buffer;
  1252. v.input_motion_vectors = p_input_motion_vectors;
  1253. v.vertex_array = RD::get_singleton()->vertex_array_create(s->vertex_count, v.vertex_format, buffers, offsets);
  1254. }
  1255. ////////////////// MULTIMESH
  1256. RID MeshStorage::_multimesh_allocate() {
  1257. return multimesh_owner.allocate_rid();
  1258. }
  1259. void MeshStorage::_multimesh_initialize(RID p_rid) {
  1260. multimesh_owner.initialize_rid(p_rid, MultiMesh());
  1261. }
  1262. void MeshStorage::_multimesh_free(RID p_rid) {
  1263. // Remove from interpolator.
  1264. _interpolation_data.notify_free_multimesh(p_rid);
  1265. _update_dirty_multimeshes();
  1266. multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
  1267. MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
  1268. multimesh->dependency.deleted_notify(p_rid);
  1269. multimesh_owner.free(p_rid);
  1270. }
  1271. void MeshStorage::_multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data, bool p_use_indirect) {
  1272. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1273. ERR_FAIL_NULL(multimesh);
  1274. if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
  1275. return;
  1276. }
  1277. if (multimesh->buffer.is_valid()) {
  1278. RD::get_singleton()->free(multimesh->buffer);
  1279. multimesh->buffer = RID();
  1280. multimesh->uniform_set_2d = RID(); //cleared by dependency
  1281. multimesh->uniform_set_3d = RID(); //cleared by dependency
  1282. }
  1283. if (multimesh->data_cache_dirty_regions) {
  1284. memdelete_arr(multimesh->data_cache_dirty_regions);
  1285. multimesh->data_cache_dirty_regions = nullptr;
  1286. multimesh->data_cache_dirty_region_count = 0;
  1287. }
  1288. if (multimesh->previous_data_cache_dirty_regions) {
  1289. memdelete_arr(multimesh->previous_data_cache_dirty_regions);
  1290. multimesh->previous_data_cache_dirty_regions = nullptr;
  1291. multimesh->previous_data_cache_dirty_region_count = 0;
  1292. }
  1293. multimesh->instances = p_instances;
  1294. multimesh->xform_format = p_transform_format;
  1295. multimesh->uses_colors = p_use_colors;
  1296. multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1297. multimesh->uses_custom_data = p_use_custom_data;
  1298. multimesh->custom_data_offset_cache = multimesh->color_offset_cache + (p_use_colors ? 4 : 0);
  1299. multimesh->stride_cache = multimesh->custom_data_offset_cache + (p_use_custom_data ? 4 : 0);
  1300. multimesh->buffer_set = false;
  1301. multimesh->indirect = p_use_indirect;
  1302. multimesh->command_buffer = RID();
  1303. //print_line("allocate, elements: " + itos(p_instances) + " 2D: " + itos(p_transform_format == RS::MULTIMESH_TRANSFORM_2D) + " colors " + itos(multimesh->uses_colors) + " data " + itos(multimesh->uses_custom_data) + " stride " + itos(multimesh->stride_cache) + " total size " + itos(multimesh->stride_cache * multimesh->instances));
  1304. multimesh->data_cache = Vector<float>();
  1305. multimesh->aabb = AABB();
  1306. multimesh->aabb_dirty = false;
  1307. multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
  1308. multimesh->motion_vectors_current_offset = 0;
  1309. multimesh->motion_vectors_previous_offset = 0;
  1310. multimesh->motion_vectors_last_change = -1;
  1311. multimesh->motion_vectors_enabled = false;
  1312. if (multimesh->instances) {
  1313. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1314. multimesh->buffer = RD::get_singleton()->storage_buffer_create(buffer_size);
  1315. }
  1316. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1317. }
  1318. void MeshStorage::_multimesh_enable_motion_vectors(MultiMesh *multimesh) {
  1319. if (multimesh->motion_vectors_enabled) {
  1320. return;
  1321. }
  1322. multimesh->motion_vectors_enabled = true;
  1323. multimesh->motion_vectors_current_offset = 0;
  1324. multimesh->motion_vectors_previous_offset = 0;
  1325. multimesh->motion_vectors_last_change = -1;
  1326. if (!multimesh->data_cache.is_empty()) {
  1327. multimesh->data_cache.append_array(multimesh->data_cache);
  1328. }
  1329. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1330. uint32_t new_buffer_size = buffer_size * 2;
  1331. RID new_buffer = RD::get_singleton()->storage_buffer_create(new_buffer_size);
  1332. if (multimesh->buffer_set && multimesh->data_cache.is_empty()) {
  1333. // If the buffer was set but there's no data cached in the CPU, we copy the buffer directly on the GPU.
  1334. RD::get_singleton()->buffer_copy(multimesh->buffer, new_buffer, 0, 0, buffer_size);
  1335. RD::get_singleton()->buffer_copy(multimesh->buffer, new_buffer, 0, buffer_size, buffer_size);
  1336. } else if (!multimesh->data_cache.is_empty()) {
  1337. // Simply upload the data cached in the CPU, which should already be doubled in size.
  1338. ERR_FAIL_COND(multimesh->data_cache.size() * sizeof(float) != size_t(new_buffer_size));
  1339. RD::get_singleton()->buffer_update(new_buffer, 0, new_buffer_size, multimesh->data_cache.ptr());
  1340. }
  1341. if (multimesh->buffer.is_valid()) {
  1342. RD::get_singleton()->free(multimesh->buffer);
  1343. }
  1344. multimesh->buffer = new_buffer;
  1345. multimesh->uniform_set_3d = RID(); // Cleared by dependency.
  1346. // Invalidate any references to the buffer that was released and the uniform set that was pointing to it.
  1347. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1348. }
  1349. void MeshStorage::_multimesh_get_motion_vectors_offsets(RID p_multimesh, uint32_t &r_current_offset, uint32_t &r_prev_offset) {
  1350. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1351. ERR_FAIL_NULL(multimesh);
  1352. r_current_offset = multimesh->motion_vectors_current_offset;
  1353. if (!_multimesh_uses_motion_vectors(multimesh)) {
  1354. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1355. }
  1356. r_prev_offset = multimesh->motion_vectors_previous_offset;
  1357. }
  1358. bool MeshStorage::_multimesh_uses_motion_vectors_offsets(RID p_multimesh) {
  1359. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1360. ERR_FAIL_NULL_V(multimesh, false);
  1361. return _multimesh_uses_motion_vectors(multimesh);
  1362. }
  1363. int MeshStorage::_multimesh_get_instance_count(RID p_multimesh) const {
  1364. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1365. ERR_FAIL_NULL_V(multimesh, 0);
  1366. return multimesh->instances;
  1367. }
  1368. void MeshStorage::_multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
  1369. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1370. ERR_FAIL_NULL(multimesh);
  1371. if (multimesh->mesh == p_mesh) {
  1372. return;
  1373. }
  1374. multimesh->mesh = p_mesh;
  1375. if (multimesh->indirect) {
  1376. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  1377. ERR_FAIL_NULL(mesh);
  1378. if (mesh->surface_count > 0) {
  1379. if (multimesh->command_buffer.is_valid()) {
  1380. RD::get_singleton()->free(multimesh->command_buffer);
  1381. }
  1382. Vector<uint8_t> newVector;
  1383. newVector.resize_initialized(sizeof(uint32_t) * INDIRECT_MULTIMESH_COMMAND_STRIDE * mesh->surface_count);
  1384. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  1385. uint32_t count = mesh_surface_get_vertices_drawn_count(mesh->surfaces[i]);
  1386. newVector.set(i * sizeof(uint32_t) * INDIRECT_MULTIMESH_COMMAND_STRIDE, static_cast<uint8_t>(count));
  1387. newVector.set(i * sizeof(uint32_t) * INDIRECT_MULTIMESH_COMMAND_STRIDE + 1, static_cast<uint8_t>(count >> 8));
  1388. newVector.set(i * sizeof(uint32_t) * INDIRECT_MULTIMESH_COMMAND_STRIDE + 2, static_cast<uint8_t>(count >> 16));
  1389. newVector.set(i * sizeof(uint32_t) * INDIRECT_MULTIMESH_COMMAND_STRIDE + 3, static_cast<uint8_t>(count >> 24));
  1390. }
  1391. RID newBuffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * INDIRECT_MULTIMESH_COMMAND_STRIDE * mesh->surface_count, newVector, RD::STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT);
  1392. multimesh->command_buffer = newBuffer;
  1393. }
  1394. }
  1395. if (multimesh->instances == 0) {
  1396. return;
  1397. }
  1398. if (multimesh->data_cache.size()) {
  1399. //we have a data cache, just mark it dirt
  1400. _multimesh_mark_all_dirty(multimesh, false, true);
  1401. } else if (multimesh->instances) {
  1402. //need to re-create AABB unfortunately, calling this has a penalty
  1403. if (multimesh->buffer_set) {
  1404. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1405. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1406. const float *data = reinterpret_cast<const float *>(r);
  1407. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1408. }
  1409. }
  1410. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  1411. }
  1412. #define MULTIMESH_DIRTY_REGION_SIZE 512
  1413. void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
  1414. if (multimesh->data_cache.size() > 0) {
  1415. return; //already local
  1416. }
  1417. // this means that the user wants to load/save individual elements,
  1418. // for this, the data must reside on CPU, so just copy it there.
  1419. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache;
  1420. if (multimesh->motion_vectors_enabled) {
  1421. buffer_size *= 2;
  1422. }
  1423. multimesh->data_cache.resize(buffer_size);
  1424. {
  1425. float *w = multimesh->data_cache.ptrw();
  1426. if (multimesh->buffer_set) {
  1427. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1428. {
  1429. const uint8_t *r = buffer.ptr();
  1430. memcpy(w, r, buffer.size());
  1431. }
  1432. } else {
  1433. memset(w, 0, buffer_size * sizeof(float));
  1434. }
  1435. }
  1436. uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
  1437. multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1438. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1439. multimesh->data_cache_dirty_region_count = 0;
  1440. multimesh->previous_data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1441. memset(multimesh->previous_data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1442. multimesh->previous_data_cache_dirty_region_count = 0;
  1443. }
  1444. void MeshStorage::_multimesh_update_motion_vectors_data_cache(MultiMesh *multimesh) {
  1445. ERR_FAIL_COND(multimesh->data_cache.is_empty());
  1446. if (!multimesh->motion_vectors_enabled) {
  1447. return;
  1448. }
  1449. uint32_t frame = RSG::rasterizer->get_frame_number();
  1450. if (multimesh->motion_vectors_last_change != frame) {
  1451. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1452. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1453. multimesh->motion_vectors_last_change = frame;
  1454. if (multimesh->previous_data_cache_dirty_region_count > 0) {
  1455. uint8_t *data = (uint8_t *)multimesh->data_cache.ptrw();
  1456. uint32_t current_ofs = multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1457. uint32_t previous_ofs = multimesh->motion_vectors_previous_offset * multimesh->stride_cache * sizeof(float);
  1458. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1459. uint32_t visible_region_count = visible_instances == 0 ? 0 : Math::division_round_up(visible_instances, (uint32_t)MULTIMESH_DIRTY_REGION_SIZE);
  1460. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1461. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1462. for (uint32_t i = 0; i < visible_region_count; i++) {
  1463. if (multimesh->previous_data_cache_dirty_regions[i]) {
  1464. uint32_t offset = i * region_size;
  1465. memcpy(data + current_ofs + offset, data + previous_ofs + offset, MIN(region_size, size - offset));
  1466. }
  1467. }
  1468. }
  1469. }
  1470. }
  1471. bool MeshStorage::_multimesh_uses_motion_vectors(MultiMesh *multimesh) {
  1472. return (RSG::rasterizer->get_frame_number() - multimesh->motion_vectors_last_change) < 2;
  1473. }
  1474. void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
  1475. uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
  1476. #ifdef DEBUG_ENABLED
  1477. uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
  1478. ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
  1479. #endif
  1480. if (!multimesh->data_cache_dirty_regions[region_index]) {
  1481. multimesh->data_cache_dirty_regions[region_index] = true;
  1482. multimesh->data_cache_dirty_region_count++;
  1483. }
  1484. if (p_aabb) {
  1485. multimesh->aabb_dirty = true;
  1486. }
  1487. if (!multimesh->dirty) {
  1488. multimesh->dirty_list = multimesh_dirty_list;
  1489. multimesh_dirty_list = multimesh;
  1490. multimesh->dirty = true;
  1491. }
  1492. }
  1493. void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
  1494. if (p_data) {
  1495. uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, MULTIMESH_DIRTY_REGION_SIZE);
  1496. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1497. if (!multimesh->data_cache_dirty_regions[i]) {
  1498. multimesh->data_cache_dirty_regions[i] = true;
  1499. multimesh->data_cache_dirty_region_count++;
  1500. }
  1501. }
  1502. }
  1503. if (p_aabb) {
  1504. multimesh->aabb_dirty = true;
  1505. }
  1506. if (!multimesh->dirty) {
  1507. multimesh->dirty_list = multimesh_dirty_list;
  1508. multimesh_dirty_list = multimesh;
  1509. multimesh->dirty = true;
  1510. }
  1511. }
  1512. void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
  1513. ERR_FAIL_COND(multimesh->mesh.is_null());
  1514. if (multimesh->custom_aabb != AABB()) {
  1515. return;
  1516. }
  1517. AABB aabb;
  1518. AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
  1519. for (int i = 0; i < p_instances; i++) {
  1520. const float *data = p_data + multimesh->stride_cache * i;
  1521. Transform3D t;
  1522. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1523. t.basis.rows[0][0] = data[0];
  1524. t.basis.rows[0][1] = data[1];
  1525. t.basis.rows[0][2] = data[2];
  1526. t.origin.x = data[3];
  1527. t.basis.rows[1][0] = data[4];
  1528. t.basis.rows[1][1] = data[5];
  1529. t.basis.rows[1][2] = data[6];
  1530. t.origin.y = data[7];
  1531. t.basis.rows[2][0] = data[8];
  1532. t.basis.rows[2][1] = data[9];
  1533. t.basis.rows[2][2] = data[10];
  1534. t.origin.z = data[11];
  1535. } else {
  1536. t.basis.rows[0][0] = data[0];
  1537. t.basis.rows[0][1] = data[1];
  1538. t.origin.x = data[3];
  1539. t.basis.rows[1][0] = data[4];
  1540. t.basis.rows[1][1] = data[5];
  1541. t.origin.y = data[7];
  1542. }
  1543. if (i == 0) {
  1544. aabb = t.xform(mesh_aabb);
  1545. } else {
  1546. aabb.merge_with(t.xform(mesh_aabb));
  1547. }
  1548. }
  1549. multimesh->aabb = aabb;
  1550. }
  1551. void MeshStorage::_multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
  1552. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1553. ERR_FAIL_NULL(multimesh);
  1554. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1555. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
  1556. _multimesh_make_local(multimesh);
  1557. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0) || (RendererCompositorStorage::get_singleton()->get_num_compositor_effects_with_motion_vectors() > 0);
  1558. if (uses_motion_vectors) {
  1559. _multimesh_enable_motion_vectors(multimesh);
  1560. }
  1561. _multimesh_update_motion_vectors_data_cache(multimesh);
  1562. {
  1563. float *w = multimesh->data_cache.ptrw();
  1564. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1565. dataptr[0] = p_transform.basis.rows[0][0];
  1566. dataptr[1] = p_transform.basis.rows[0][1];
  1567. dataptr[2] = p_transform.basis.rows[0][2];
  1568. dataptr[3] = p_transform.origin.x;
  1569. dataptr[4] = p_transform.basis.rows[1][0];
  1570. dataptr[5] = p_transform.basis.rows[1][1];
  1571. dataptr[6] = p_transform.basis.rows[1][2];
  1572. dataptr[7] = p_transform.origin.y;
  1573. dataptr[8] = p_transform.basis.rows[2][0];
  1574. dataptr[9] = p_transform.basis.rows[2][1];
  1575. dataptr[10] = p_transform.basis.rows[2][2];
  1576. dataptr[11] = p_transform.origin.z;
  1577. }
  1578. _multimesh_mark_dirty(multimesh, p_index, true);
  1579. }
  1580. void MeshStorage::_multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
  1581. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1582. ERR_FAIL_NULL(multimesh);
  1583. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1584. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
  1585. _multimesh_make_local(multimesh);
  1586. _multimesh_update_motion_vectors_data_cache(multimesh);
  1587. {
  1588. float *w = multimesh->data_cache.ptrw();
  1589. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1590. dataptr[0] = p_transform.columns[0][0];
  1591. dataptr[1] = p_transform.columns[1][0];
  1592. dataptr[2] = 0;
  1593. dataptr[3] = p_transform.columns[2][0];
  1594. dataptr[4] = p_transform.columns[0][1];
  1595. dataptr[5] = p_transform.columns[1][1];
  1596. dataptr[6] = 0;
  1597. dataptr[7] = p_transform.columns[2][1];
  1598. }
  1599. _multimesh_mark_dirty(multimesh, p_index, true);
  1600. }
  1601. void MeshStorage::_multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
  1602. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1603. ERR_FAIL_NULL(multimesh);
  1604. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1605. ERR_FAIL_COND(!multimesh->uses_colors);
  1606. _multimesh_make_local(multimesh);
  1607. _multimesh_update_motion_vectors_data_cache(multimesh);
  1608. {
  1609. float *w = multimesh->data_cache.ptrw();
  1610. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1611. dataptr[0] = p_color.r;
  1612. dataptr[1] = p_color.g;
  1613. dataptr[2] = p_color.b;
  1614. dataptr[3] = p_color.a;
  1615. }
  1616. _multimesh_mark_dirty(multimesh, p_index, false);
  1617. }
  1618. void MeshStorage::_multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
  1619. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1620. ERR_FAIL_NULL(multimesh);
  1621. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1622. ERR_FAIL_COND(!multimesh->uses_custom_data);
  1623. _multimesh_make_local(multimesh);
  1624. _multimesh_update_motion_vectors_data_cache(multimesh);
  1625. {
  1626. float *w = multimesh->data_cache.ptrw();
  1627. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1628. dataptr[0] = p_color.r;
  1629. dataptr[1] = p_color.g;
  1630. dataptr[2] = p_color.b;
  1631. dataptr[3] = p_color.a;
  1632. }
  1633. _multimesh_mark_dirty(multimesh, p_index, false);
  1634. }
  1635. RID MeshStorage::_multimesh_get_mesh(RID p_multimesh) const {
  1636. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1637. ERR_FAIL_NULL_V(multimesh, RID());
  1638. return multimesh->mesh;
  1639. }
  1640. Dependency *MeshStorage::multimesh_get_dependency(RID p_multimesh) const {
  1641. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1642. ERR_FAIL_NULL_V(multimesh, nullptr);
  1643. return &multimesh->dependency;
  1644. }
  1645. Transform3D MeshStorage::_multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
  1646. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1647. ERR_FAIL_NULL_V(multimesh, Transform3D());
  1648. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
  1649. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
  1650. _multimesh_make_local(multimesh);
  1651. Transform3D t;
  1652. {
  1653. const float *r = multimesh->data_cache.ptr();
  1654. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1655. t.basis.rows[0][0] = dataptr[0];
  1656. t.basis.rows[0][1] = dataptr[1];
  1657. t.basis.rows[0][2] = dataptr[2];
  1658. t.origin.x = dataptr[3];
  1659. t.basis.rows[1][0] = dataptr[4];
  1660. t.basis.rows[1][1] = dataptr[5];
  1661. t.basis.rows[1][2] = dataptr[6];
  1662. t.origin.y = dataptr[7];
  1663. t.basis.rows[2][0] = dataptr[8];
  1664. t.basis.rows[2][1] = dataptr[9];
  1665. t.basis.rows[2][2] = dataptr[10];
  1666. t.origin.z = dataptr[11];
  1667. }
  1668. return t;
  1669. }
  1670. Transform2D MeshStorage::_multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
  1671. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1672. ERR_FAIL_NULL_V(multimesh, Transform2D());
  1673. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
  1674. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
  1675. _multimesh_make_local(multimesh);
  1676. Transform2D t;
  1677. {
  1678. const float *r = multimesh->data_cache.ptr();
  1679. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1680. t.columns[0][0] = dataptr[0];
  1681. t.columns[1][0] = dataptr[1];
  1682. t.columns[2][0] = dataptr[3];
  1683. t.columns[0][1] = dataptr[4];
  1684. t.columns[1][1] = dataptr[5];
  1685. t.columns[2][1] = dataptr[7];
  1686. }
  1687. return t;
  1688. }
  1689. Color MeshStorage::_multimesh_instance_get_color(RID p_multimesh, int p_index) const {
  1690. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1691. ERR_FAIL_NULL_V(multimesh, Color());
  1692. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1693. ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
  1694. _multimesh_make_local(multimesh);
  1695. Color c;
  1696. {
  1697. const float *r = multimesh->data_cache.ptr();
  1698. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1699. c.r = dataptr[0];
  1700. c.g = dataptr[1];
  1701. c.b = dataptr[2];
  1702. c.a = dataptr[3];
  1703. }
  1704. return c;
  1705. }
  1706. Color MeshStorage::_multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
  1707. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1708. ERR_FAIL_NULL_V(multimesh, Color());
  1709. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1710. ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
  1711. _multimesh_make_local(multimesh);
  1712. Color c;
  1713. {
  1714. const float *r = multimesh->data_cache.ptr();
  1715. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1716. c.r = dataptr[0];
  1717. c.g = dataptr[1];
  1718. c.b = dataptr[2];
  1719. c.a = dataptr[3];
  1720. }
  1721. return c;
  1722. }
  1723. void MeshStorage::_multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
  1724. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1725. ERR_FAIL_NULL(multimesh);
  1726. ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
  1727. bool used_motion_vectors = multimesh->motion_vectors_enabled;
  1728. bool uses_motion_vectors = (RSG::viewport->get_num_viewports_with_motion_vectors() > 0) || (RendererCompositorStorage::get_singleton()->get_num_compositor_effects_with_motion_vectors() > 0);
  1729. if (uses_motion_vectors) {
  1730. _multimesh_enable_motion_vectors(multimesh);
  1731. }
  1732. if (multimesh->motion_vectors_enabled) {
  1733. uint32_t frame = RSG::rasterizer->get_frame_number();
  1734. if (multimesh->motion_vectors_last_change != frame) {
  1735. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1736. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1737. multimesh->motion_vectors_last_change = frame;
  1738. }
  1739. }
  1740. {
  1741. const float *r = p_buffer.ptr();
  1742. RD::get_singleton()->buffer_update(multimesh->buffer, multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float), p_buffer.size() * sizeof(float), r);
  1743. if (multimesh->motion_vectors_enabled && !used_motion_vectors) {
  1744. // Motion vectors were just enabled, and the other half of the buffer will be empty.
  1745. // Need to ensure that both halves are filled for correct operation.
  1746. RD::get_singleton()->buffer_update(multimesh->buffer, multimesh->motion_vectors_previous_offset * multimesh->stride_cache * sizeof(float), p_buffer.size() * sizeof(float), r);
  1747. }
  1748. multimesh->buffer_set = true;
  1749. }
  1750. if (multimesh->data_cache.size()) {
  1751. float *cache_data = multimesh->data_cache.ptrw();
  1752. memcpy(cache_data + (multimesh->motion_vectors_current_offset * multimesh->stride_cache), p_buffer.ptr(), p_buffer.size() * sizeof(float));
  1753. _multimesh_mark_all_dirty(multimesh, true, true); //update AABB
  1754. } else if (multimesh->mesh.is_valid()) {
  1755. //if we have a mesh set, we need to re-generate the AABB from the new data
  1756. const float *data = p_buffer.ptr();
  1757. if (multimesh->custom_aabb == AABB()) {
  1758. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1759. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1760. }
  1761. }
  1762. }
  1763. RID MeshStorage::_multimesh_get_command_buffer_rd_rid(RID p_multimesh) const {
  1764. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1765. ERR_FAIL_NULL_V(multimesh, RID());
  1766. return multimesh->command_buffer;
  1767. }
  1768. RID MeshStorage::_multimesh_get_buffer_rd_rid(RID p_multimesh) const {
  1769. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1770. ERR_FAIL_NULL_V(multimesh, RID());
  1771. return multimesh->buffer;
  1772. }
  1773. Vector<float> MeshStorage::_multimesh_get_buffer(RID p_multimesh) const {
  1774. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1775. ERR_FAIL_NULL_V(multimesh, Vector<float>());
  1776. if (multimesh->buffer.is_null()) {
  1777. return Vector<float>();
  1778. } else {
  1779. Vector<float> ret;
  1780. ret.resize(multimesh->instances * multimesh->stride_cache);
  1781. float *w = ret.ptrw();
  1782. if (multimesh->data_cache.size()) {
  1783. const uint8_t *r = (uint8_t *)multimesh->data_cache.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1784. memcpy(w, r, ret.size() * sizeof(float));
  1785. } else {
  1786. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1787. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1788. memcpy(w, r, ret.size() * sizeof(float));
  1789. }
  1790. return ret;
  1791. }
  1792. }
  1793. void MeshStorage::_multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
  1794. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1795. ERR_FAIL_NULL(multimesh);
  1796. ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
  1797. if (multimesh->visible_instances == p_visible) {
  1798. return;
  1799. }
  1800. if (multimesh->data_cache.size()) {
  1801. // There is a data cache, but we may need to update some sections.
  1802. _multimesh_mark_all_dirty(multimesh, false, true);
  1803. int start = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1804. for (int i = start; i < p_visible; i++) {
  1805. _multimesh_mark_dirty(multimesh, i, true);
  1806. }
  1807. }
  1808. multimesh->visible_instances = p_visible;
  1809. if (multimesh->indirect) { //we have to update the command buffer for the instance counts, in each stride this will be the second integer.
  1810. Mesh *mesh = mesh_owner.get_or_null(multimesh->mesh);
  1811. if (mesh != nullptr) {
  1812. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  1813. RD::get_singleton()->buffer_update(multimesh->command_buffer, (i * sizeof(uint32_t) * INDIRECT_MULTIMESH_COMMAND_STRIDE) + sizeof(uint32_t), sizeof(uint32_t), &p_visible);
  1814. }
  1815. }
  1816. }
  1817. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
  1818. }
  1819. int MeshStorage::_multimesh_get_visible_instances(RID p_multimesh) const {
  1820. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1821. ERR_FAIL_NULL_V(multimesh, 0);
  1822. return multimesh->visible_instances;
  1823. }
  1824. void MeshStorage::_multimesh_set_custom_aabb(RID p_multimesh, const AABB &p_aabb) {
  1825. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1826. ERR_FAIL_NULL(multimesh);
  1827. multimesh->custom_aabb = p_aabb;
  1828. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1829. }
  1830. AABB MeshStorage::_multimesh_get_custom_aabb(RID p_multimesh) const {
  1831. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1832. ERR_FAIL_NULL_V(multimesh, AABB());
  1833. return multimesh->custom_aabb;
  1834. }
  1835. AABB MeshStorage::_multimesh_get_aabb(RID p_multimesh) {
  1836. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1837. ERR_FAIL_NULL_V(multimesh, AABB());
  1838. if (multimesh->custom_aabb != AABB()) {
  1839. return multimesh->custom_aabb;
  1840. }
  1841. if (multimesh->aabb_dirty) {
  1842. _update_dirty_multimeshes();
  1843. }
  1844. return multimesh->aabb;
  1845. }
  1846. MeshStorage::MultiMeshInterpolator *MeshStorage::_multimesh_get_interpolator(RID p_multimesh) const {
  1847. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1848. ERR_FAIL_NULL_V_MSG(multimesh, nullptr, "Multimesh not found: " + itos(p_multimesh.get_id()));
  1849. return &multimesh->interpolator;
  1850. }
  1851. void MeshStorage::_update_dirty_multimeshes() {
  1852. while (multimesh_dirty_list) {
  1853. MultiMesh *multimesh = multimesh_dirty_list;
  1854. if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
  1855. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1856. uint32_t buffer_offset = multimesh->motion_vectors_current_offset * multimesh->stride_cache;
  1857. const float *data = multimesh->data_cache.ptr() + buffer_offset;
  1858. uint32_t total_dirty_regions = multimesh->data_cache_dirty_region_count + multimesh->previous_data_cache_dirty_region_count;
  1859. if (total_dirty_regions != 0) {
  1860. uint32_t data_cache_dirty_region_count = Math::division_round_up(multimesh->instances, (int)MULTIMESH_DIRTY_REGION_SIZE);
  1861. uint32_t visible_region_count = visible_instances == 0 ? 0 : Math::division_round_up(visible_instances, (uint32_t)MULTIMESH_DIRTY_REGION_SIZE);
  1862. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1863. if (total_dirty_regions > 32 || total_dirty_regions > visible_region_count / 2) {
  1864. //if there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
  1865. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float), MIN(visible_region_count * region_size, multimesh->instances * (uint32_t)multimesh->stride_cache * (uint32_t)sizeof(float)), data);
  1866. } else {
  1867. //not that many regions? update them all
  1868. for (uint32_t i = 0; i < visible_region_count; i++) {
  1869. if (multimesh->data_cache_dirty_regions[i] || multimesh->previous_data_cache_dirty_regions[i]) {
  1870. uint32_t offset = i * region_size;
  1871. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1872. uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
  1873. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float) + offset, MIN(region_size, size - offset), &data[region_start_index]);
  1874. }
  1875. }
  1876. }
  1877. memcpy(multimesh->previous_data_cache_dirty_regions, multimesh->data_cache_dirty_regions, data_cache_dirty_region_count * sizeof(bool));
  1878. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1879. multimesh->previous_data_cache_dirty_region_count = multimesh->data_cache_dirty_region_count;
  1880. multimesh->data_cache_dirty_region_count = 0;
  1881. }
  1882. if (multimesh->aabb_dirty) {
  1883. //aabb is dirty..
  1884. multimesh->aabb_dirty = false;
  1885. if (multimesh->custom_aabb == AABB()) {
  1886. _multimesh_re_create_aabb(multimesh, data, visible_instances);
  1887. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1888. }
  1889. }
  1890. }
  1891. multimesh_dirty_list = multimesh->dirty_list;
  1892. multimesh->dirty_list = nullptr;
  1893. multimesh->dirty = false;
  1894. }
  1895. multimesh_dirty_list = nullptr;
  1896. }
  1897. /* SKELETON API */
  1898. RID MeshStorage::skeleton_allocate() {
  1899. return skeleton_owner.allocate_rid();
  1900. }
  1901. void MeshStorage::skeleton_initialize(RID p_rid) {
  1902. skeleton_owner.initialize_rid(p_rid, Skeleton());
  1903. }
  1904. void MeshStorage::skeleton_free(RID p_rid) {
  1905. _update_dirty_skeletons();
  1906. skeleton_allocate_data(p_rid, 0);
  1907. Skeleton *skeleton = skeleton_owner.get_or_null(p_rid);
  1908. skeleton->dependency.deleted_notify(p_rid);
  1909. skeleton_owner.free(p_rid);
  1910. }
  1911. void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) {
  1912. if (!skeleton->dirty) {
  1913. skeleton->dirty = true;
  1914. skeleton->dirty_list = skeleton_dirty_list;
  1915. skeleton_dirty_list = skeleton;
  1916. }
  1917. }
  1918. void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
  1919. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1920. ERR_FAIL_NULL(skeleton);
  1921. ERR_FAIL_COND(p_bones < 0);
  1922. if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
  1923. return;
  1924. }
  1925. skeleton->size = p_bones;
  1926. skeleton->use_2d = p_2d_skeleton;
  1927. skeleton->uniform_set_3d = RID();
  1928. if (skeleton->buffer.is_valid()) {
  1929. RD::get_singleton()->free(skeleton->buffer);
  1930. skeleton->buffer = RID();
  1931. skeleton->data.clear();
  1932. skeleton->uniform_set_mi = RID();
  1933. }
  1934. if (skeleton->size) {
  1935. skeleton->data.resize(skeleton->size * (skeleton->use_2d ? 8 : 12));
  1936. skeleton->buffer = RD::get_singleton()->storage_buffer_create(skeleton->data.size() * sizeof(float));
  1937. memset(skeleton->data.ptr(), 0, skeleton->data.size() * sizeof(float));
  1938. _skeleton_make_dirty(skeleton);
  1939. {
  1940. Vector<RD::Uniform> uniforms;
  1941. {
  1942. RD::Uniform u;
  1943. u.binding = 0;
  1944. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1945. u.append_id(skeleton->buffer);
  1946. uniforms.push_back(u);
  1947. }
  1948. skeleton->uniform_set_mi = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  1949. }
  1950. }
  1951. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA);
  1952. }
  1953. int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
  1954. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1955. ERR_FAIL_NULL_V(skeleton, 0);
  1956. return skeleton->size;
  1957. }
  1958. void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
  1959. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1960. ERR_FAIL_NULL(skeleton);
  1961. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1962. ERR_FAIL_COND(skeleton->use_2d);
  1963. float *dataptr = skeleton->data.ptr() + p_bone * 12;
  1964. dataptr[0] = p_transform.basis.rows[0][0];
  1965. dataptr[1] = p_transform.basis.rows[0][1];
  1966. dataptr[2] = p_transform.basis.rows[0][2];
  1967. dataptr[3] = p_transform.origin.x;
  1968. dataptr[4] = p_transform.basis.rows[1][0];
  1969. dataptr[5] = p_transform.basis.rows[1][1];
  1970. dataptr[6] = p_transform.basis.rows[1][2];
  1971. dataptr[7] = p_transform.origin.y;
  1972. dataptr[8] = p_transform.basis.rows[2][0];
  1973. dataptr[9] = p_transform.basis.rows[2][1];
  1974. dataptr[10] = p_transform.basis.rows[2][2];
  1975. dataptr[11] = p_transform.origin.z;
  1976. _skeleton_make_dirty(skeleton);
  1977. }
  1978. Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
  1979. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1980. ERR_FAIL_NULL_V(skeleton, Transform3D());
  1981. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D());
  1982. ERR_FAIL_COND_V(skeleton->use_2d, Transform3D());
  1983. const float *dataptr = skeleton->data.ptr() + p_bone * 12;
  1984. Transform3D t;
  1985. t.basis.rows[0][0] = dataptr[0];
  1986. t.basis.rows[0][1] = dataptr[1];
  1987. t.basis.rows[0][2] = dataptr[2];
  1988. t.origin.x = dataptr[3];
  1989. t.basis.rows[1][0] = dataptr[4];
  1990. t.basis.rows[1][1] = dataptr[5];
  1991. t.basis.rows[1][2] = dataptr[6];
  1992. t.origin.y = dataptr[7];
  1993. t.basis.rows[2][0] = dataptr[8];
  1994. t.basis.rows[2][1] = dataptr[9];
  1995. t.basis.rows[2][2] = dataptr[10];
  1996. t.origin.z = dataptr[11];
  1997. return t;
  1998. }
  1999. void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
  2000. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  2001. ERR_FAIL_NULL(skeleton);
  2002. ERR_FAIL_INDEX(p_bone, skeleton->size);
  2003. ERR_FAIL_COND(!skeleton->use_2d);
  2004. float *dataptr = skeleton->data.ptr() + p_bone * 8;
  2005. dataptr[0] = p_transform.columns[0][0];
  2006. dataptr[1] = p_transform.columns[1][0];
  2007. dataptr[2] = 0;
  2008. dataptr[3] = p_transform.columns[2][0];
  2009. dataptr[4] = p_transform.columns[0][1];
  2010. dataptr[5] = p_transform.columns[1][1];
  2011. dataptr[6] = 0;
  2012. dataptr[7] = p_transform.columns[2][1];
  2013. _skeleton_make_dirty(skeleton);
  2014. }
  2015. Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
  2016. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  2017. ERR_FAIL_NULL_V(skeleton, Transform2D());
  2018. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
  2019. ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
  2020. const float *dataptr = skeleton->data.ptr() + p_bone * 8;
  2021. Transform2D t;
  2022. t.columns[0][0] = dataptr[0];
  2023. t.columns[1][0] = dataptr[1];
  2024. t.columns[2][0] = dataptr[3];
  2025. t.columns[0][1] = dataptr[4];
  2026. t.columns[1][1] = dataptr[5];
  2027. t.columns[2][1] = dataptr[7];
  2028. return t;
  2029. }
  2030. void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
  2031. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  2032. ERR_FAIL_NULL(skeleton);
  2033. ERR_FAIL_COND(!skeleton->use_2d);
  2034. skeleton->base_transform_2d = p_base_transform;
  2035. }
  2036. void MeshStorage::_update_dirty_skeletons() {
  2037. while (skeleton_dirty_list) {
  2038. Skeleton *skeleton = skeleton_dirty_list;
  2039. if (skeleton->size) {
  2040. RD::get_singleton()->buffer_update(skeleton->buffer, 0, skeleton->data.size() * sizeof(float), skeleton->data.ptr());
  2041. }
  2042. skeleton_dirty_list = skeleton->dirty_list;
  2043. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES);
  2044. skeleton->version++;
  2045. skeleton->dirty = false;
  2046. skeleton->dirty_list = nullptr;
  2047. }
  2048. skeleton_dirty_list = nullptr;
  2049. }
  2050. void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) {
  2051. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  2052. ERR_FAIL_NULL(skeleton);
  2053. p_instance->update_dependency(&skeleton->dependency);
  2054. }