rasterizer_scene_rd.cpp 321 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389
  1. /*************************************************************************/
  2. /* rasterizer_scene_rd.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "rasterizer_scene_rd.h"
  31. #include "core/os/os.h"
  32. #include "core/project_settings.h"
  33. #include "rasterizer_rd.h"
  34. #include "servers/rendering/rendering_server_raster.h"
  35. uint64_t RasterizerSceneRD::auto_exposure_counter = 2;
  36. void get_vogel_disk(float *r_kernel, int p_sample_count) {
  37. const float golden_angle = 2.4;
  38. for (int i = 0; i < p_sample_count; i++) {
  39. float r = Math::sqrt(float(i) + 0.5) / Math::sqrt(float(p_sample_count));
  40. float theta = float(i) * golden_angle;
  41. r_kernel[i * 4] = Math::cos(theta) * r;
  42. r_kernel[i * 4 + 1] = Math::sin(theta) * r;
  43. }
  44. }
  45. void RasterizerSceneRD::_clear_reflection_data(ReflectionData &rd) {
  46. rd.layers.clear();
  47. rd.radiance_base_cubemap = RID();
  48. if (rd.downsampled_radiance_cubemap.is_valid()) {
  49. RD::get_singleton()->free(rd.downsampled_radiance_cubemap);
  50. }
  51. rd.downsampled_radiance_cubemap = RID();
  52. rd.downsampled_layer.mipmaps.clear();
  53. rd.coefficient_buffer = RID();
  54. }
  55. void RasterizerSceneRD::_update_reflection_data(ReflectionData &rd, int p_size, int p_mipmaps, bool p_use_array, RID p_base_cube, int p_base_layer, bool p_low_quality) {
  56. //recreate radiance and all data
  57. int mipmaps = p_mipmaps;
  58. uint32_t w = p_size, h = p_size;
  59. if (p_use_array) {
  60. int layers = p_low_quality ? 8 : roughness_layers;
  61. for (int i = 0; i < layers; i++) {
  62. ReflectionData::Layer layer;
  63. uint32_t mmw = w;
  64. uint32_t mmh = h;
  65. layer.mipmaps.resize(mipmaps);
  66. layer.views.resize(mipmaps);
  67. for (int j = 0; j < mipmaps; j++) {
  68. ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j];
  69. mm.size.width = mmw;
  70. mm.size.height = mmh;
  71. for (int k = 0; k < 6; k++) {
  72. mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6 + k, j);
  73. Vector<RID> fbtex;
  74. fbtex.push_back(mm.views[k]);
  75. mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex);
  76. }
  77. layer.views.write[j] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6, j, RD::TEXTURE_SLICE_CUBEMAP);
  78. mmw = MAX(1, mmw >> 1);
  79. mmh = MAX(1, mmh >> 1);
  80. }
  81. rd.layers.push_back(layer);
  82. }
  83. } else {
  84. mipmaps = p_low_quality ? 8 : mipmaps;
  85. //regular cubemap, lower quality (aliasing, less memory)
  86. ReflectionData::Layer layer;
  87. uint32_t mmw = w;
  88. uint32_t mmh = h;
  89. layer.mipmaps.resize(mipmaps);
  90. layer.views.resize(mipmaps);
  91. for (int j = 0; j < mipmaps; j++) {
  92. ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j];
  93. mm.size.width = mmw;
  94. mm.size.height = mmh;
  95. for (int k = 0; k < 6; k++) {
  96. mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + k, j);
  97. Vector<RID> fbtex;
  98. fbtex.push_back(mm.views[k]);
  99. mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex);
  100. }
  101. layer.views.write[j] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, j, RD::TEXTURE_SLICE_CUBEMAP);
  102. mmw = MAX(1, mmw >> 1);
  103. mmh = MAX(1, mmh >> 1);
  104. }
  105. rd.layers.push_back(layer);
  106. }
  107. rd.radiance_base_cubemap = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, 0, RD::TEXTURE_SLICE_CUBEMAP);
  108. RD::TextureFormat tf;
  109. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  110. tf.width = 64; // Always 64x64
  111. tf.height = 64;
  112. tf.type = RD::TEXTURE_TYPE_CUBE;
  113. tf.array_layers = 6;
  114. tf.mipmaps = 7;
  115. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  116. rd.downsampled_radiance_cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView());
  117. {
  118. uint32_t mmw = 64;
  119. uint32_t mmh = 64;
  120. rd.downsampled_layer.mipmaps.resize(7);
  121. for (int j = 0; j < rd.downsampled_layer.mipmaps.size(); j++) {
  122. ReflectionData::DownsampleLayer::Mipmap &mm = rd.downsampled_layer.mipmaps.write[j];
  123. mm.size.width = mmw;
  124. mm.size.height = mmh;
  125. mm.view = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rd.downsampled_radiance_cubemap, 0, j, RD::TEXTURE_SLICE_CUBEMAP);
  126. mmw = MAX(1, mmw >> 1);
  127. mmh = MAX(1, mmh >> 1);
  128. }
  129. }
  130. }
  131. void RasterizerSceneRD::_create_reflection_fast_filter(ReflectionData &rd, bool p_use_arrays) {
  132. storage->get_effects()->cubemap_downsample(rd.radiance_base_cubemap, rd.downsampled_layer.mipmaps[0].view, rd.downsampled_layer.mipmaps[0].size);
  133. for (int i = 1; i < rd.downsampled_layer.mipmaps.size(); i++) {
  134. storage->get_effects()->cubemap_downsample(rd.downsampled_layer.mipmaps[i - 1].view, rd.downsampled_layer.mipmaps[i].view, rd.downsampled_layer.mipmaps[i].size);
  135. }
  136. Vector<RID> views;
  137. if (p_use_arrays) {
  138. for (int i = 1; i < rd.layers.size(); i++) {
  139. views.push_back(rd.layers[i].views[0]);
  140. }
  141. } else {
  142. for (int i = 1; i < rd.layers[0].views.size(); i++) {
  143. views.push_back(rd.layers[0].views[i]);
  144. }
  145. }
  146. storage->get_effects()->cubemap_filter(rd.downsampled_radiance_cubemap, views, p_use_arrays);
  147. }
  148. void RasterizerSceneRD::_create_reflection_importance_sample(ReflectionData &rd, bool p_use_arrays, int p_cube_side, int p_base_layer) {
  149. if (p_use_arrays) {
  150. //render directly to the layers
  151. storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, rd.layers[p_base_layer].views[0], p_cube_side, sky_ggx_samples_quality, float(p_base_layer) / (rd.layers.size() - 1.0), rd.layers[p_base_layer].mipmaps[0].size.x);
  152. } else {
  153. storage->get_effects()->cubemap_roughness(rd.layers[0].views[p_base_layer - 1], rd.layers[0].views[p_base_layer], p_cube_side, sky_ggx_samples_quality, float(p_base_layer) / (rd.layers[0].mipmaps.size() - 1.0), rd.layers[0].mipmaps[p_base_layer].size.x);
  154. }
  155. }
  156. void RasterizerSceneRD::_update_reflection_mipmaps(ReflectionData &rd, int p_start, int p_end) {
  157. for (int i = p_start; i < p_end; i++) {
  158. for (int j = 0; j < rd.layers[i].mipmaps.size() - 1; j++) {
  159. for (int k = 0; k < 6; k++) {
  160. RID view = rd.layers[i].mipmaps[j].views[k];
  161. RID texture = rd.layers[i].mipmaps[j + 1].views[k];
  162. Size2i size = rd.layers[i].mipmaps[j + 1].size;
  163. storage->get_effects()->make_mipmap(view, texture, size);
  164. }
  165. }
  166. }
  167. }
  168. void RasterizerSceneRD::_sdfgi_erase(RenderBuffers *rb) {
  169. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  170. const SDFGI::Cascade &c = rb->sdfgi->cascades[i];
  171. RD::get_singleton()->free(c.light_data);
  172. RD::get_singleton()->free(c.light_aniso_0_tex);
  173. RD::get_singleton()->free(c.light_aniso_1_tex);
  174. RD::get_singleton()->free(c.sdf_tex);
  175. RD::get_singleton()->free(c.solid_cell_dispatch_buffer);
  176. RD::get_singleton()->free(c.solid_cell_buffer);
  177. RD::get_singleton()->free(c.lightprobe_history_tex);
  178. RD::get_singleton()->free(c.lightprobe_average_tex);
  179. RD::get_singleton()->free(c.lights_buffer);
  180. }
  181. RD::get_singleton()->free(rb->sdfgi->render_albedo);
  182. RD::get_singleton()->free(rb->sdfgi->render_emission);
  183. RD::get_singleton()->free(rb->sdfgi->render_emission_aniso);
  184. RD::get_singleton()->free(rb->sdfgi->render_sdf[0]);
  185. RD::get_singleton()->free(rb->sdfgi->render_sdf[1]);
  186. RD::get_singleton()->free(rb->sdfgi->render_sdf_half[0]);
  187. RD::get_singleton()->free(rb->sdfgi->render_sdf_half[1]);
  188. for (int i = 0; i < 8; i++) {
  189. RD::get_singleton()->free(rb->sdfgi->render_occlusion[i]);
  190. }
  191. RD::get_singleton()->free(rb->sdfgi->render_geom_facing);
  192. RD::get_singleton()->free(rb->sdfgi->lightprobe_data);
  193. RD::get_singleton()->free(rb->sdfgi->lightprobe_history_scroll);
  194. RD::get_singleton()->free(rb->sdfgi->occlusion_data);
  195. RD::get_singleton()->free(rb->sdfgi->ambient_texture);
  196. RD::get_singleton()->free(rb->sdfgi->cascades_ubo);
  197. memdelete(rb->sdfgi);
  198. rb->sdfgi = nullptr;
  199. }
  200. const Vector3i RasterizerSceneRD::SDFGI::Cascade::DIRTY_ALL = Vector3i(0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF);
  201. void RasterizerSceneRD::sdfgi_update(RID p_render_buffers, RID p_environment, const Vector3 &p_world_position) {
  202. Environment *env = environment_owner.getornull(p_environment);
  203. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  204. bool needs_sdfgi = env && env->sdfgi_enabled;
  205. if (!needs_sdfgi) {
  206. if (rb->sdfgi != nullptr) {
  207. //erase it
  208. _sdfgi_erase(rb);
  209. _render_buffers_uniform_set_changed(p_render_buffers);
  210. }
  211. return;
  212. }
  213. static const uint32_t history_frames_to_converge[RS::ENV_SDFGI_CONVERGE_MAX] = { 5, 10, 15, 20, 25, 30 };
  214. uint32_t requested_history_size = history_frames_to_converge[sdfgi_frames_to_converge];
  215. if (rb->sdfgi && (rb->sdfgi->cascade_mode != env->sdfgi_cascades || rb->sdfgi->min_cell_size != env->sdfgi_min_cell_size || requested_history_size != rb->sdfgi->history_size || rb->sdfgi->uses_occlusion != env->sdfgi_use_occlusion || rb->sdfgi->y_scale_mode != env->sdfgi_y_scale)) {
  216. //configuration changed, erase
  217. _sdfgi_erase(rb);
  218. }
  219. SDFGI *sdfgi = rb->sdfgi;
  220. if (sdfgi == nullptr) {
  221. //re-create
  222. rb->sdfgi = memnew(SDFGI);
  223. sdfgi = rb->sdfgi;
  224. sdfgi->cascade_mode = env->sdfgi_cascades;
  225. sdfgi->min_cell_size = env->sdfgi_min_cell_size;
  226. sdfgi->uses_occlusion = env->sdfgi_use_occlusion;
  227. sdfgi->y_scale_mode = env->sdfgi_y_scale;
  228. static const float y_scale[3] = { 1.0, 1.5, 2.0 };
  229. sdfgi->y_mult = y_scale[sdfgi->y_scale_mode];
  230. static const int cascasde_size[3] = { 4, 6, 8 };
  231. sdfgi->cascades.resize(cascasde_size[sdfgi->cascade_mode]);
  232. sdfgi->probe_axis_count = SDFGI::PROBE_DIVISOR + 1;
  233. sdfgi->solid_cell_ratio = sdfgi_solid_cell_ratio;
  234. sdfgi->solid_cell_count = uint32_t(float(sdfgi->cascade_size * sdfgi->cascade_size * sdfgi->cascade_size) * sdfgi->solid_cell_ratio);
  235. float base_cell_size = sdfgi->min_cell_size;
  236. RD::TextureFormat tf_sdf;
  237. tf_sdf.format = RD::DATA_FORMAT_R8_UNORM;
  238. tf_sdf.width = sdfgi->cascade_size; // Always 64x64
  239. tf_sdf.height = sdfgi->cascade_size;
  240. tf_sdf.depth = sdfgi->cascade_size;
  241. tf_sdf.type = RD::TEXTURE_TYPE_3D;
  242. tf_sdf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  243. {
  244. RD::TextureFormat tf_render = tf_sdf;
  245. tf_render.format = RD::DATA_FORMAT_R16_UINT;
  246. sdfgi->render_albedo = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  247. tf_render.format = RD::DATA_FORMAT_R32_UINT;
  248. sdfgi->render_emission = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  249. sdfgi->render_emission_aniso = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  250. tf_render.format = RD::DATA_FORMAT_R8_UNORM; //at least its easy to visualize
  251. for (int i = 0; i < 8; i++) {
  252. sdfgi->render_occlusion[i] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  253. }
  254. tf_render.format = RD::DATA_FORMAT_R32_UINT;
  255. sdfgi->render_geom_facing = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  256. tf_render.format = RD::DATA_FORMAT_R8G8B8A8_UINT;
  257. sdfgi->render_sdf[0] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  258. sdfgi->render_sdf[1] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  259. tf_render.width /= 2;
  260. tf_render.height /= 2;
  261. tf_render.depth /= 2;
  262. sdfgi->render_sdf_half[0] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  263. sdfgi->render_sdf_half[1] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  264. }
  265. RD::TextureFormat tf_occlusion = tf_sdf;
  266. tf_occlusion.format = RD::DATA_FORMAT_R16_UINT;
  267. tf_occlusion.shareable_formats.push_back(RD::DATA_FORMAT_R16_UINT);
  268. tf_occlusion.shareable_formats.push_back(RD::DATA_FORMAT_R4G4B4A4_UNORM_PACK16);
  269. tf_occlusion.depth *= sdfgi->cascades.size(); //use depth for occlusion slices
  270. tf_occlusion.width *= 2; //use width for the other half
  271. RD::TextureFormat tf_light = tf_sdf;
  272. tf_light.format = RD::DATA_FORMAT_R32_UINT;
  273. tf_light.shareable_formats.push_back(RD::DATA_FORMAT_R32_UINT);
  274. tf_light.shareable_formats.push_back(RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32);
  275. RD::TextureFormat tf_aniso0 = tf_sdf;
  276. tf_aniso0.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  277. RD::TextureFormat tf_aniso1 = tf_sdf;
  278. tf_aniso1.format = RD::DATA_FORMAT_R8G8_UNORM;
  279. int passes = nearest_shift(sdfgi->cascade_size) - 1;
  280. //store lightprobe SH
  281. RD::TextureFormat tf_probes;
  282. tf_probes.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  283. tf_probes.width = sdfgi->probe_axis_count * sdfgi->probe_axis_count;
  284. tf_probes.height = sdfgi->probe_axis_count * SDFGI::SH_SIZE;
  285. tf_probes.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  286. tf_probes.type = RD::TEXTURE_TYPE_2D_ARRAY;
  287. sdfgi->history_size = requested_history_size;
  288. RD::TextureFormat tf_probe_history = tf_probes;
  289. tf_probe_history.format = RD::DATA_FORMAT_R16G16B16A16_SINT; //signed integer because SH are signed
  290. tf_probe_history.array_layers = sdfgi->history_size;
  291. RD::TextureFormat tf_probe_average = tf_probes;
  292. tf_probe_average.format = RD::DATA_FORMAT_R32G32B32A32_SINT; //signed integer because SH are signed
  293. tf_probe_average.type = RD::TEXTURE_TYPE_2D_ARRAY;
  294. tf_probe_average.array_layers = 1;
  295. sdfgi->lightprobe_history_scroll = RD::get_singleton()->texture_create(tf_probe_history, RD::TextureView());
  296. sdfgi->lightprobe_average_scroll = RD::get_singleton()->texture_create(tf_probe_average, RD::TextureView());
  297. {
  298. //octahedral lightprobes
  299. RD::TextureFormat tf_octprobes = tf_probes;
  300. tf_octprobes.array_layers = sdfgi->cascades.size() * 2;
  301. tf_octprobes.format = RD::DATA_FORMAT_R32_UINT; //pack well with RGBE
  302. tf_octprobes.width = sdfgi->probe_axis_count * sdfgi->probe_axis_count * (SDFGI::LIGHTPROBE_OCT_SIZE + 2);
  303. tf_octprobes.height = sdfgi->probe_axis_count * (SDFGI::LIGHTPROBE_OCT_SIZE + 2);
  304. tf_octprobes.shareable_formats.push_back(RD::DATA_FORMAT_R32_UINT);
  305. tf_octprobes.shareable_formats.push_back(RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32);
  306. //lightprobe texture is an octahedral texture
  307. sdfgi->lightprobe_data = RD::get_singleton()->texture_create(tf_octprobes, RD::TextureView());
  308. RD::TextureView tv;
  309. tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32;
  310. sdfgi->lightprobe_texture = RD::get_singleton()->texture_create_shared(tv, sdfgi->lightprobe_data);
  311. //texture handling ambient data, to integrate with volumetric foc
  312. RD::TextureFormat tf_ambient = tf_probes;
  313. tf_ambient.array_layers = sdfgi->cascades.size();
  314. tf_ambient.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; //pack well with RGBE
  315. tf_ambient.width = sdfgi->probe_axis_count * sdfgi->probe_axis_count;
  316. tf_ambient.height = sdfgi->probe_axis_count;
  317. tf_ambient.type = RD::TEXTURE_TYPE_2D_ARRAY;
  318. //lightprobe texture is an octahedral texture
  319. sdfgi->ambient_texture = RD::get_singleton()->texture_create(tf_ambient, RD::TextureView());
  320. }
  321. sdfgi->cascades_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES);
  322. sdfgi->occlusion_data = RD::get_singleton()->texture_create(tf_occlusion, RD::TextureView());
  323. {
  324. RD::TextureView tv;
  325. tv.format_override = RD::DATA_FORMAT_R4G4B4A4_UNORM_PACK16;
  326. sdfgi->occlusion_texture = RD::get_singleton()->texture_create_shared(tv, sdfgi->occlusion_data);
  327. }
  328. for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) {
  329. SDFGI::Cascade &cascade = sdfgi->cascades[i];
  330. /* 3D Textures */
  331. cascade.sdf_tex = RD::get_singleton()->texture_create(tf_sdf, RD::TextureView());
  332. cascade.light_data = RD::get_singleton()->texture_create(tf_light, RD::TextureView());
  333. cascade.light_aniso_0_tex = RD::get_singleton()->texture_create(tf_aniso0, RD::TextureView());
  334. cascade.light_aniso_1_tex = RD::get_singleton()->texture_create(tf_aniso1, RD::TextureView());
  335. {
  336. RD::TextureView tv;
  337. tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32;
  338. cascade.light_tex = RD::get_singleton()->texture_create_shared(tv, cascade.light_data);
  339. RD::get_singleton()->texture_clear(cascade.light_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  340. RD::get_singleton()->texture_clear(cascade.light_aniso_0_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  341. RD::get_singleton()->texture_clear(cascade.light_aniso_1_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  342. }
  343. cascade.cell_size = base_cell_size;
  344. Vector3 world_position = p_world_position;
  345. world_position.y *= sdfgi->y_mult;
  346. int32_t probe_cells = sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  347. Vector3 probe_size = Vector3(1, 1, 1) * cascade.cell_size * probe_cells;
  348. Vector3i probe_pos = Vector3i((world_position / probe_size + Vector3(0.5, 0.5, 0.5)).floor());
  349. cascade.position = probe_pos * probe_cells;
  350. cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
  351. base_cell_size *= 2.0;
  352. /* Probe History */
  353. cascade.lightprobe_history_tex = RD::get_singleton()->texture_create(tf_probe_history, RD::TextureView());
  354. RD::get_singleton()->texture_clear(cascade.lightprobe_history_tex, Color(0, 0, 0, 0), 0, 1, 0, tf_probe_history.array_layers); //needs to be cleared for average to work
  355. cascade.lightprobe_average_tex = RD::get_singleton()->texture_create(tf_probe_average, RD::TextureView());
  356. RD::get_singleton()->texture_clear(cascade.lightprobe_average_tex, Color(0, 0, 0, 0), 0, 1, 0, 1); //needs to be cleared for average to work
  357. /* Buffers */
  358. cascade.solid_cell_buffer = RD::get_singleton()->storage_buffer_create(sizeof(SDFGI::Cascade::SolidCell) * sdfgi->solid_cell_count);
  359. cascade.solid_cell_dispatch_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4, Vector<uint8_t>(), RD::STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT);
  360. cascade.lights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(SDGIShader::Light) * MAX(SDFGI::MAX_STATIC_LIGHTS, SDFGI::MAX_DYNAMIC_LIGHTS));
  361. {
  362. Vector<RD::Uniform> uniforms;
  363. {
  364. RD::Uniform u;
  365. u.type = RD::UNIFORM_TYPE_IMAGE;
  366. u.binding = 1;
  367. u.ids.push_back(sdfgi->render_sdf[(passes & 1) ? 1 : 0]); //if passes are even, we read from buffer 0, else we read from buffer 1
  368. uniforms.push_back(u);
  369. }
  370. {
  371. RD::Uniform u;
  372. u.type = RD::UNIFORM_TYPE_IMAGE;
  373. u.binding = 2;
  374. u.ids.push_back(sdfgi->render_albedo);
  375. uniforms.push_back(u);
  376. }
  377. {
  378. RD::Uniform u;
  379. u.type = RD::UNIFORM_TYPE_IMAGE;
  380. u.binding = 3;
  381. for (int j = 0; j < 8; j++) {
  382. u.ids.push_back(sdfgi->render_occlusion[j]);
  383. }
  384. uniforms.push_back(u);
  385. }
  386. {
  387. RD::Uniform u;
  388. u.type = RD::UNIFORM_TYPE_IMAGE;
  389. u.binding = 4;
  390. u.ids.push_back(sdfgi->render_emission);
  391. uniforms.push_back(u);
  392. }
  393. {
  394. RD::Uniform u;
  395. u.type = RD::UNIFORM_TYPE_IMAGE;
  396. u.binding = 5;
  397. u.ids.push_back(sdfgi->render_emission_aniso);
  398. uniforms.push_back(u);
  399. }
  400. {
  401. RD::Uniform u;
  402. u.type = RD::UNIFORM_TYPE_IMAGE;
  403. u.binding = 6;
  404. u.ids.push_back(sdfgi->render_geom_facing);
  405. uniforms.push_back(u);
  406. }
  407. {
  408. RD::Uniform u;
  409. u.type = RD::UNIFORM_TYPE_IMAGE;
  410. u.binding = 7;
  411. u.ids.push_back(cascade.sdf_tex);
  412. uniforms.push_back(u);
  413. }
  414. {
  415. RD::Uniform u;
  416. u.type = RD::UNIFORM_TYPE_IMAGE;
  417. u.binding = 8;
  418. u.ids.push_back(sdfgi->occlusion_data);
  419. uniforms.push_back(u);
  420. }
  421. {
  422. RD::Uniform u;
  423. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  424. u.binding = 10;
  425. u.ids.push_back(cascade.solid_cell_dispatch_buffer);
  426. uniforms.push_back(u);
  427. }
  428. {
  429. RD::Uniform u;
  430. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  431. u.binding = 11;
  432. u.ids.push_back(cascade.solid_cell_buffer);
  433. uniforms.push_back(u);
  434. }
  435. cascade.sdf_store_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_STORE), 0);
  436. }
  437. {
  438. Vector<RD::Uniform> uniforms;
  439. {
  440. RD::Uniform u;
  441. u.type = RD::UNIFORM_TYPE_IMAGE;
  442. u.binding = 1;
  443. u.ids.push_back(sdfgi->render_albedo);
  444. uniforms.push_back(u);
  445. }
  446. {
  447. RD::Uniform u;
  448. u.type = RD::UNIFORM_TYPE_IMAGE;
  449. u.binding = 2;
  450. u.ids.push_back(sdfgi->render_geom_facing);
  451. uniforms.push_back(u);
  452. }
  453. {
  454. RD::Uniform u;
  455. u.type = RD::UNIFORM_TYPE_IMAGE;
  456. u.binding = 3;
  457. u.ids.push_back(sdfgi->render_emission);
  458. uniforms.push_back(u);
  459. }
  460. {
  461. RD::Uniform u;
  462. u.type = RD::UNIFORM_TYPE_IMAGE;
  463. u.binding = 4;
  464. u.ids.push_back(sdfgi->render_emission_aniso);
  465. uniforms.push_back(u);
  466. }
  467. {
  468. RD::Uniform u;
  469. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  470. u.binding = 5;
  471. u.ids.push_back(cascade.solid_cell_dispatch_buffer);
  472. uniforms.push_back(u);
  473. }
  474. {
  475. RD::Uniform u;
  476. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  477. u.binding = 6;
  478. u.ids.push_back(cascade.solid_cell_buffer);
  479. uniforms.push_back(u);
  480. }
  481. cascade.scroll_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_SCROLL), 0);
  482. }
  483. {
  484. Vector<RD::Uniform> uniforms;
  485. {
  486. RD::Uniform u;
  487. u.type = RD::UNIFORM_TYPE_IMAGE;
  488. u.binding = 1;
  489. for (int j = 0; j < 8; j++) {
  490. u.ids.push_back(sdfgi->render_occlusion[j]);
  491. }
  492. uniforms.push_back(u);
  493. }
  494. {
  495. RD::Uniform u;
  496. u.type = RD::UNIFORM_TYPE_IMAGE;
  497. u.binding = 2;
  498. u.ids.push_back(sdfgi->occlusion_data);
  499. uniforms.push_back(u);
  500. }
  501. cascade.scroll_occlusion_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_SCROLL_OCCLUSION), 0);
  502. }
  503. }
  504. //direct light
  505. for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) {
  506. SDFGI::Cascade &cascade = sdfgi->cascades[i];
  507. Vector<RD::Uniform> uniforms;
  508. {
  509. RD::Uniform u;
  510. u.binding = 1;
  511. u.type = RD::UNIFORM_TYPE_TEXTURE;
  512. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  513. if (j < rb->sdfgi->cascades.size()) {
  514. u.ids.push_back(rb->sdfgi->cascades[j].sdf_tex);
  515. } else {
  516. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  517. }
  518. }
  519. uniforms.push_back(u);
  520. }
  521. {
  522. RD::Uniform u;
  523. u.binding = 2;
  524. u.type = RD::UNIFORM_TYPE_SAMPLER;
  525. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  526. uniforms.push_back(u);
  527. }
  528. {
  529. RD::Uniform u;
  530. u.binding = 3;
  531. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  532. u.ids.push_back(cascade.solid_cell_dispatch_buffer);
  533. uniforms.push_back(u);
  534. }
  535. {
  536. RD::Uniform u;
  537. u.binding = 4;
  538. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  539. u.ids.push_back(cascade.solid_cell_buffer);
  540. uniforms.push_back(u);
  541. }
  542. {
  543. RD::Uniform u;
  544. u.binding = 5;
  545. u.type = RD::UNIFORM_TYPE_IMAGE;
  546. u.ids.push_back(cascade.light_data);
  547. uniforms.push_back(u);
  548. }
  549. {
  550. RD::Uniform u;
  551. u.binding = 6;
  552. u.type = RD::UNIFORM_TYPE_IMAGE;
  553. u.ids.push_back(cascade.light_aniso_0_tex);
  554. uniforms.push_back(u);
  555. }
  556. {
  557. RD::Uniform u;
  558. u.binding = 7;
  559. u.type = RD::UNIFORM_TYPE_IMAGE;
  560. u.ids.push_back(cascade.light_aniso_1_tex);
  561. uniforms.push_back(u);
  562. }
  563. {
  564. RD::Uniform u;
  565. u.binding = 8;
  566. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  567. u.ids.push_back(rb->sdfgi->cascades_ubo);
  568. uniforms.push_back(u);
  569. }
  570. {
  571. RD::Uniform u;
  572. u.binding = 9;
  573. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  574. u.ids.push_back(cascade.lights_buffer);
  575. uniforms.push_back(u);
  576. }
  577. {
  578. RD::Uniform u;
  579. u.binding = 10;
  580. u.type = RD::UNIFORM_TYPE_TEXTURE;
  581. u.ids.push_back(rb->sdfgi->lightprobe_texture);
  582. uniforms.push_back(u);
  583. }
  584. cascade.sdf_direct_light_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.direct_light.version_get_shader(sdfgi_shader.direct_light_shader, 0), 0);
  585. }
  586. //preprocess initialize uniform set
  587. {
  588. Vector<RD::Uniform> uniforms;
  589. {
  590. RD::Uniform u;
  591. u.type = RD::UNIFORM_TYPE_IMAGE;
  592. u.binding = 1;
  593. u.ids.push_back(sdfgi->render_albedo);
  594. uniforms.push_back(u);
  595. }
  596. {
  597. RD::Uniform u;
  598. u.type = RD::UNIFORM_TYPE_IMAGE;
  599. u.binding = 2;
  600. u.ids.push_back(sdfgi->render_sdf[0]);
  601. uniforms.push_back(u);
  602. }
  603. sdfgi->sdf_initialize_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE), 0);
  604. }
  605. {
  606. Vector<RD::Uniform> uniforms;
  607. {
  608. RD::Uniform u;
  609. u.type = RD::UNIFORM_TYPE_IMAGE;
  610. u.binding = 1;
  611. u.ids.push_back(sdfgi->render_albedo);
  612. uniforms.push_back(u);
  613. }
  614. {
  615. RD::Uniform u;
  616. u.type = RD::UNIFORM_TYPE_IMAGE;
  617. u.binding = 2;
  618. u.ids.push_back(sdfgi->render_sdf_half[0]);
  619. uniforms.push_back(u);
  620. }
  621. sdfgi->sdf_initialize_half_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF), 0);
  622. }
  623. //jump flood uniform set
  624. {
  625. Vector<RD::Uniform> uniforms;
  626. {
  627. RD::Uniform u;
  628. u.type = RD::UNIFORM_TYPE_IMAGE;
  629. u.binding = 1;
  630. u.ids.push_back(sdfgi->render_sdf[0]);
  631. uniforms.push_back(u);
  632. }
  633. {
  634. RD::Uniform u;
  635. u.type = RD::UNIFORM_TYPE_IMAGE;
  636. u.binding = 2;
  637. u.ids.push_back(sdfgi->render_sdf[1]);
  638. uniforms.push_back(u);
  639. }
  640. sdfgi->jump_flood_uniform_set[0] = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  641. SWAP(uniforms.write[0].ids.write[0], uniforms.write[1].ids.write[0]);
  642. sdfgi->jump_flood_uniform_set[1] = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  643. }
  644. //jump flood half uniform set
  645. {
  646. Vector<RD::Uniform> uniforms;
  647. {
  648. RD::Uniform u;
  649. u.type = RD::UNIFORM_TYPE_IMAGE;
  650. u.binding = 1;
  651. u.ids.push_back(sdfgi->render_sdf_half[0]);
  652. uniforms.push_back(u);
  653. }
  654. {
  655. RD::Uniform u;
  656. u.type = RD::UNIFORM_TYPE_IMAGE;
  657. u.binding = 2;
  658. u.ids.push_back(sdfgi->render_sdf_half[1]);
  659. uniforms.push_back(u);
  660. }
  661. sdfgi->jump_flood_half_uniform_set[0] = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  662. SWAP(uniforms.write[0].ids.write[0], uniforms.write[1].ids.write[0]);
  663. sdfgi->jump_flood_half_uniform_set[1] = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  664. }
  665. //upscale half size sdf
  666. {
  667. Vector<RD::Uniform> uniforms;
  668. {
  669. RD::Uniform u;
  670. u.type = RD::UNIFORM_TYPE_IMAGE;
  671. u.binding = 1;
  672. u.ids.push_back(sdfgi->render_albedo);
  673. uniforms.push_back(u);
  674. }
  675. {
  676. RD::Uniform u;
  677. u.type = RD::UNIFORM_TYPE_IMAGE;
  678. u.binding = 2;
  679. u.ids.push_back(sdfgi->render_sdf_half[(passes & 1) ? 0 : 1]); //reverse pass order because half size
  680. uniforms.push_back(u);
  681. }
  682. {
  683. RD::Uniform u;
  684. u.type = RD::UNIFORM_TYPE_IMAGE;
  685. u.binding = 3;
  686. u.ids.push_back(sdfgi->render_sdf[(passes & 1) ? 0 : 1]); //reverse pass order because it needs an extra JFA pass
  687. uniforms.push_back(u);
  688. }
  689. sdfgi->upscale_jfa_uniform_set_index = (passes & 1) ? 0 : 1;
  690. sdfgi->sdf_upscale_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD_UPSCALE), 0);
  691. }
  692. //occlusion uniform set
  693. {
  694. Vector<RD::Uniform> uniforms;
  695. {
  696. RD::Uniform u;
  697. u.type = RD::UNIFORM_TYPE_IMAGE;
  698. u.binding = 1;
  699. u.ids.push_back(sdfgi->render_albedo);
  700. uniforms.push_back(u);
  701. }
  702. {
  703. RD::Uniform u;
  704. u.type = RD::UNIFORM_TYPE_IMAGE;
  705. u.binding = 2;
  706. for (int i = 0; i < 8; i++) {
  707. u.ids.push_back(sdfgi->render_occlusion[i]);
  708. }
  709. uniforms.push_back(u);
  710. }
  711. {
  712. RD::Uniform u;
  713. u.type = RD::UNIFORM_TYPE_IMAGE;
  714. u.binding = 3;
  715. u.ids.push_back(sdfgi->render_geom_facing);
  716. uniforms.push_back(u);
  717. }
  718. sdfgi->occlusion_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_OCCLUSION), 0);
  719. }
  720. for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) {
  721. //integrate uniform
  722. Vector<RD::Uniform> uniforms;
  723. {
  724. RD::Uniform u;
  725. u.binding = 1;
  726. u.type = RD::UNIFORM_TYPE_TEXTURE;
  727. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  728. if (j < sdfgi->cascades.size()) {
  729. u.ids.push_back(sdfgi->cascades[j].sdf_tex);
  730. } else {
  731. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  732. }
  733. }
  734. uniforms.push_back(u);
  735. }
  736. {
  737. RD::Uniform u;
  738. u.binding = 2;
  739. u.type = RD::UNIFORM_TYPE_TEXTURE;
  740. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  741. if (j < sdfgi->cascades.size()) {
  742. u.ids.push_back(sdfgi->cascades[j].light_tex);
  743. } else {
  744. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  745. }
  746. }
  747. uniforms.push_back(u);
  748. }
  749. {
  750. RD::Uniform u;
  751. u.binding = 3;
  752. u.type = RD::UNIFORM_TYPE_TEXTURE;
  753. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  754. if (j < sdfgi->cascades.size()) {
  755. u.ids.push_back(sdfgi->cascades[j].light_aniso_0_tex);
  756. } else {
  757. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  758. }
  759. }
  760. uniforms.push_back(u);
  761. }
  762. {
  763. RD::Uniform u;
  764. u.binding = 4;
  765. u.type = RD::UNIFORM_TYPE_TEXTURE;
  766. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  767. if (j < sdfgi->cascades.size()) {
  768. u.ids.push_back(sdfgi->cascades[j].light_aniso_1_tex);
  769. } else {
  770. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  771. }
  772. }
  773. uniforms.push_back(u);
  774. }
  775. {
  776. RD::Uniform u;
  777. u.type = RD::UNIFORM_TYPE_SAMPLER;
  778. u.binding = 6;
  779. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  780. uniforms.push_back(u);
  781. }
  782. {
  783. RD::Uniform u;
  784. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  785. u.binding = 7;
  786. u.ids.push_back(sdfgi->cascades_ubo);
  787. uniforms.push_back(u);
  788. }
  789. {
  790. RD::Uniform u;
  791. u.type = RD::UNIFORM_TYPE_IMAGE;
  792. u.binding = 8;
  793. u.ids.push_back(sdfgi->lightprobe_data);
  794. uniforms.push_back(u);
  795. }
  796. {
  797. RD::Uniform u;
  798. u.type = RD::UNIFORM_TYPE_IMAGE;
  799. u.binding = 9;
  800. u.ids.push_back(sdfgi->cascades[i].lightprobe_history_tex);
  801. uniforms.push_back(u);
  802. }
  803. {
  804. RD::Uniform u;
  805. u.type = RD::UNIFORM_TYPE_IMAGE;
  806. u.binding = 10;
  807. u.ids.push_back(sdfgi->cascades[i].lightprobe_average_tex);
  808. uniforms.push_back(u);
  809. }
  810. {
  811. RD::Uniform u;
  812. u.type = RD::UNIFORM_TYPE_IMAGE;
  813. u.binding = 11;
  814. u.ids.push_back(sdfgi->lightprobe_history_scroll);
  815. uniforms.push_back(u);
  816. }
  817. {
  818. RD::Uniform u;
  819. u.type = RD::UNIFORM_TYPE_IMAGE;
  820. u.binding = 12;
  821. u.ids.push_back(sdfgi->lightprobe_average_scroll);
  822. uniforms.push_back(u);
  823. }
  824. {
  825. RD::Uniform u;
  826. u.type = RD::UNIFORM_TYPE_IMAGE;
  827. u.binding = 13;
  828. RID parent_average;
  829. if (i < sdfgi->cascades.size() - 1) {
  830. parent_average = sdfgi->cascades[i + 1].lightprobe_average_tex;
  831. } else {
  832. parent_average = sdfgi->cascades[i - 1].lightprobe_average_tex; //to use something, but it won't be used
  833. }
  834. u.ids.push_back(parent_average);
  835. uniforms.push_back(u);
  836. }
  837. {
  838. RD::Uniform u;
  839. u.type = RD::UNIFORM_TYPE_IMAGE;
  840. u.binding = 14;
  841. u.ids.push_back(sdfgi->ambient_texture);
  842. uniforms.push_back(u);
  843. }
  844. sdfgi->cascades[i].integrate_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, 0), 0);
  845. }
  846. sdfgi->uses_multibounce = env->sdfgi_use_multibounce;
  847. sdfgi->energy = env->sdfgi_energy;
  848. sdfgi->normal_bias = env->sdfgi_normal_bias;
  849. sdfgi->probe_bias = env->sdfgi_probe_bias;
  850. sdfgi->reads_sky = env->sdfgi_read_sky_light;
  851. _render_buffers_uniform_set_changed(p_render_buffers);
  852. return; //done. all levels will need to be rendered which its going to take a bit
  853. }
  854. //check for updates
  855. sdfgi->uses_multibounce = env->sdfgi_use_multibounce;
  856. sdfgi->energy = env->sdfgi_energy;
  857. sdfgi->normal_bias = env->sdfgi_normal_bias;
  858. sdfgi->probe_bias = env->sdfgi_probe_bias;
  859. sdfgi->reads_sky = env->sdfgi_read_sky_light;
  860. int32_t drag_margin = (sdfgi->cascade_size / SDFGI::PROBE_DIVISOR) / 2;
  861. for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) {
  862. SDFGI::Cascade &cascade = sdfgi->cascades[i];
  863. cascade.dirty_regions = Vector3i();
  864. Vector3 probe_half_size = Vector3(1, 1, 1) * cascade.cell_size * float(sdfgi->cascade_size / SDFGI::PROBE_DIVISOR) * 0.5;
  865. probe_half_size = Vector3(0, 0, 0);
  866. Vector3 world_position = p_world_position;
  867. world_position.y *= sdfgi->y_mult;
  868. Vector3i pos_in_cascade = Vector3i((world_position + probe_half_size) / cascade.cell_size);
  869. for (int j = 0; j < 3; j++) {
  870. if (pos_in_cascade[j] < cascade.position[j]) {
  871. while (pos_in_cascade[j] < (cascade.position[j] - drag_margin)) {
  872. cascade.position[j] -= drag_margin * 2;
  873. cascade.dirty_regions[j] += drag_margin * 2;
  874. }
  875. } else if (pos_in_cascade[j] > cascade.position[j]) {
  876. while (pos_in_cascade[j] > (cascade.position[j] + drag_margin)) {
  877. cascade.position[j] += drag_margin * 2;
  878. cascade.dirty_regions[j] -= drag_margin * 2;
  879. }
  880. }
  881. if (cascade.dirty_regions[j] == 0) {
  882. continue; // not dirty
  883. } else if (uint32_t(ABS(cascade.dirty_regions[j])) >= sdfgi->cascade_size) {
  884. //moved too much, just redraw everything (make all dirty)
  885. cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
  886. break;
  887. }
  888. }
  889. if (cascade.dirty_regions != Vector3i() && cascade.dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
  890. //see how much the total dirty volume represents from the total volume
  891. uint32_t total_volume = sdfgi->cascade_size * sdfgi->cascade_size * sdfgi->cascade_size;
  892. uint32_t safe_volume = 1;
  893. for (int j = 0; j < 3; j++) {
  894. safe_volume *= sdfgi->cascade_size - ABS(cascade.dirty_regions[j]);
  895. }
  896. uint32_t dirty_volume = total_volume - safe_volume;
  897. if (dirty_volume > (safe_volume / 2)) {
  898. //more than half the volume is dirty, make all dirty so its only rendered once
  899. cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
  900. }
  901. }
  902. }
  903. }
  904. int RasterizerSceneRD::sdfgi_get_pending_region_count(RID p_render_buffers) const {
  905. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  906. ERR_FAIL_COND_V(rb == nullptr, 0);
  907. if (rb->sdfgi == nullptr) {
  908. return 0;
  909. }
  910. int dirty_count = 0;
  911. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  912. const SDFGI::Cascade &c = rb->sdfgi->cascades[i];
  913. if (c.dirty_regions == SDFGI::Cascade::DIRTY_ALL) {
  914. dirty_count++;
  915. } else {
  916. for (int j = 0; j < 3; j++) {
  917. if (c.dirty_regions[j] != 0) {
  918. dirty_count++;
  919. }
  920. }
  921. }
  922. }
  923. return dirty_count;
  924. }
  925. int RasterizerSceneRD::_sdfgi_get_pending_region_data(RID p_render_buffers, int p_region, Vector3i &r_local_offset, Vector3i &r_local_size, AABB &r_bounds) const {
  926. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  927. ERR_FAIL_COND_V(rb == nullptr, -1);
  928. ERR_FAIL_COND_V(rb->sdfgi == nullptr, -1);
  929. int dirty_count = 0;
  930. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  931. const SDFGI::Cascade &c = rb->sdfgi->cascades[i];
  932. if (c.dirty_regions == SDFGI::Cascade::DIRTY_ALL) {
  933. if (dirty_count == p_region) {
  934. r_local_offset = Vector3i();
  935. r_local_size = Vector3i(1, 1, 1) * rb->sdfgi->cascade_size;
  936. r_bounds.position = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + c.position)) * c.cell_size * Vector3(1, 1.0 / rb->sdfgi->y_mult, 1);
  937. r_bounds.size = Vector3(r_local_size) * c.cell_size * Vector3(1, 1.0 / rb->sdfgi->y_mult, 1);
  938. return i;
  939. }
  940. dirty_count++;
  941. } else {
  942. for (int j = 0; j < 3; j++) {
  943. if (c.dirty_regions[j] != 0) {
  944. if (dirty_count == p_region) {
  945. Vector3i from = Vector3i(0, 0, 0);
  946. Vector3i to = Vector3i(1, 1, 1) * rb->sdfgi->cascade_size;
  947. if (c.dirty_regions[j] > 0) {
  948. //fill from the beginning
  949. to[j] = c.dirty_regions[j];
  950. } else {
  951. //fill from the end
  952. from[j] = to[j] + c.dirty_regions[j];
  953. }
  954. for (int k = 0; k < j; k++) {
  955. // "chip" away previous regions to avoid re-voxelizing the same thing
  956. if (c.dirty_regions[k] > 0) {
  957. from[k] += c.dirty_regions[k];
  958. } else if (c.dirty_regions[k] < 0) {
  959. to[k] += c.dirty_regions[k];
  960. }
  961. }
  962. r_local_offset = from;
  963. r_local_size = to - from;
  964. r_bounds.position = Vector3(from + Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + c.position) * c.cell_size * Vector3(1, 1.0 / rb->sdfgi->y_mult, 1);
  965. r_bounds.size = Vector3(r_local_size) * c.cell_size * Vector3(1, 1.0 / rb->sdfgi->y_mult, 1);
  966. return i;
  967. }
  968. dirty_count++;
  969. }
  970. }
  971. }
  972. }
  973. return -1;
  974. }
  975. AABB RasterizerSceneRD::sdfgi_get_pending_region_bounds(RID p_render_buffers, int p_region) const {
  976. AABB bounds;
  977. Vector3i from;
  978. Vector3i size;
  979. int c = _sdfgi_get_pending_region_data(p_render_buffers, p_region, from, size, bounds);
  980. ERR_FAIL_COND_V(c == -1, AABB());
  981. return bounds;
  982. }
  983. uint32_t RasterizerSceneRD::sdfgi_get_pending_region_cascade(RID p_render_buffers, int p_region) const {
  984. AABB bounds;
  985. Vector3i from;
  986. Vector3i size;
  987. return _sdfgi_get_pending_region_data(p_render_buffers, p_region, from, size, bounds);
  988. }
  989. void RasterizerSceneRD::_sdfgi_update_cascades(RID p_render_buffers) {
  990. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  991. ERR_FAIL_COND(rb == nullptr);
  992. if (rb->sdfgi == nullptr) {
  993. return;
  994. }
  995. //update cascades
  996. SDFGI::Cascade::UBO cascade_data[SDFGI::MAX_CASCADES];
  997. int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  998. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  999. Vector3 pos = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[i].position)) * rb->sdfgi->cascades[i].cell_size;
  1000. cascade_data[i].offset[0] = pos.x;
  1001. cascade_data[i].offset[1] = pos.y;
  1002. cascade_data[i].offset[2] = pos.z;
  1003. cascade_data[i].to_cell = 1.0 / rb->sdfgi->cascades[i].cell_size;
  1004. cascade_data[i].probe_offset[0] = rb->sdfgi->cascades[i].position.x / probe_divisor;
  1005. cascade_data[i].probe_offset[1] = rb->sdfgi->cascades[i].position.y / probe_divisor;
  1006. cascade_data[i].probe_offset[2] = rb->sdfgi->cascades[i].position.z / probe_divisor;
  1007. cascade_data[i].pad = 0;
  1008. }
  1009. RD::get_singleton()->buffer_update(rb->sdfgi->cascades_ubo, 0, sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES, cascade_data, true);
  1010. }
  1011. void RasterizerSceneRD::sdfgi_update_probes(RID p_render_buffers, RID p_environment, const RID *p_directional_light_instances, uint32_t p_directional_light_count, const RID *p_positional_light_instances, uint32_t p_positional_light_count) {
  1012. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1013. ERR_FAIL_COND(rb == nullptr);
  1014. if (rb->sdfgi == nullptr) {
  1015. return;
  1016. }
  1017. Environment *env = environment_owner.getornull(p_environment);
  1018. RENDER_TIMESTAMP(">SDFGI Update Probes");
  1019. /* Update Cascades UBO */
  1020. _sdfgi_update_cascades(p_render_buffers);
  1021. /* Update Dynamic Lights Buffer */
  1022. RENDER_TIMESTAMP("Update Lights");
  1023. /* Update dynamic lights */
  1024. {
  1025. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1026. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.direct_light_pipeline[SDGIShader::DIRECT_LIGHT_MODE_DYNAMIC]);
  1027. SDGIShader::DirectLightPushConstant push_constant;
  1028. push_constant.grid_size[0] = rb->sdfgi->cascade_size;
  1029. push_constant.grid_size[1] = rb->sdfgi->cascade_size;
  1030. push_constant.grid_size[2] = rb->sdfgi->cascade_size;
  1031. push_constant.max_cascades = rb->sdfgi->cascades.size();
  1032. push_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  1033. push_constant.multibounce = rb->sdfgi->uses_multibounce;
  1034. push_constant.y_mult = rb->sdfgi->y_mult;
  1035. push_constant.process_offset = 0;
  1036. push_constant.process_increment = 1;
  1037. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  1038. SDFGI::Cascade &cascade = rb->sdfgi->cascades[i];
  1039. { //fill light buffer
  1040. SDGIShader::Light lights[SDFGI::MAX_DYNAMIC_LIGHTS];
  1041. uint32_t idx = 0;
  1042. for (uint32_t j = 0; j < p_directional_light_count; j++) {
  1043. if (idx == SDFGI::MAX_DYNAMIC_LIGHTS) {
  1044. break;
  1045. }
  1046. LightInstance *li = light_instance_owner.getornull(p_directional_light_instances[j]);
  1047. ERR_CONTINUE(!li);
  1048. Vector3 dir = -li->transform.basis.get_axis(Vector3::AXIS_Z);
  1049. dir.y *= rb->sdfgi->y_mult;
  1050. dir.normalize();
  1051. lights[idx].direction[0] = dir.x;
  1052. lights[idx].direction[1] = dir.y;
  1053. lights[idx].direction[2] = dir.z;
  1054. Color color = storage->light_get_color(li->light);
  1055. color = color.to_linear();
  1056. lights[idx].color[0] = color.r;
  1057. lights[idx].color[1] = color.g;
  1058. lights[idx].color[2] = color.b;
  1059. lights[idx].type = RS::LIGHT_DIRECTIONAL;
  1060. lights[idx].energy = storage->light_get_param(li->light, RS::LIGHT_PARAM_ENERGY);
  1061. lights[idx].has_shadow = storage->light_has_shadow(li->light);
  1062. idx++;
  1063. }
  1064. AABB cascade_aabb;
  1065. cascade_aabb.position = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + cascade.position)) * cascade.cell_size;
  1066. cascade_aabb.size = Vector3(1, 1, 1) * rb->sdfgi->cascade_size * cascade.cell_size;
  1067. for (uint32_t j = 0; j < p_positional_light_count; j++) {
  1068. if (idx == SDFGI::MAX_DYNAMIC_LIGHTS) {
  1069. break;
  1070. }
  1071. LightInstance *li = light_instance_owner.getornull(p_positional_light_instances[j]);
  1072. ERR_CONTINUE(!li);
  1073. uint32_t max_sdfgi_cascade = storage->light_get_max_sdfgi_cascade(li->light);
  1074. if (i > max_sdfgi_cascade) {
  1075. continue;
  1076. }
  1077. if (!cascade_aabb.intersects(li->aabb)) {
  1078. continue;
  1079. }
  1080. Vector3 dir = -li->transform.basis.get_axis(Vector3::AXIS_Z);
  1081. //faster to not do this here
  1082. //dir.y *= rb->sdfgi->y_mult;
  1083. //dir.normalize();
  1084. lights[idx].direction[0] = dir.x;
  1085. lights[idx].direction[1] = dir.y;
  1086. lights[idx].direction[2] = dir.z;
  1087. Vector3 pos = li->transform.origin;
  1088. pos.y *= rb->sdfgi->y_mult;
  1089. lights[idx].position[0] = pos.x;
  1090. lights[idx].position[1] = pos.y;
  1091. lights[idx].position[2] = pos.z;
  1092. Color color = storage->light_get_color(li->light);
  1093. color = color.to_linear();
  1094. lights[idx].color[0] = color.r;
  1095. lights[idx].color[1] = color.g;
  1096. lights[idx].color[2] = color.b;
  1097. lights[idx].type = storage->light_get_type(li->light);
  1098. lights[idx].energy = storage->light_get_param(li->light, RS::LIGHT_PARAM_ENERGY);
  1099. lights[idx].has_shadow = storage->light_has_shadow(li->light);
  1100. lights[idx].attenuation = storage->light_get_param(li->light, RS::LIGHT_PARAM_ATTENUATION);
  1101. lights[idx].radius = storage->light_get_param(li->light, RS::LIGHT_PARAM_RANGE);
  1102. lights[idx].spot_angle = Math::deg2rad(storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ANGLE));
  1103. lights[idx].spot_attenuation = storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  1104. idx++;
  1105. }
  1106. if (idx > 0) {
  1107. RD::get_singleton()->buffer_update(cascade.lights_buffer, 0, idx * sizeof(SDGIShader::Light), lights, true);
  1108. }
  1109. push_constant.light_count = idx;
  1110. }
  1111. push_constant.cascade = i;
  1112. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascade.sdf_direct_light_uniform_set, 0);
  1113. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::DirectLightPushConstant));
  1114. RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cascade.solid_cell_dispatch_buffer, 0);
  1115. }
  1116. RD::get_singleton()->compute_list_end();
  1117. }
  1118. RENDER_TIMESTAMP("Raytrace");
  1119. SDGIShader::IntegratePushConstant push_constant;
  1120. push_constant.grid_size[1] = rb->sdfgi->cascade_size;
  1121. push_constant.grid_size[2] = rb->sdfgi->cascade_size;
  1122. push_constant.grid_size[0] = rb->sdfgi->cascade_size;
  1123. push_constant.max_cascades = rb->sdfgi->cascades.size();
  1124. push_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  1125. push_constant.history_index = rb->sdfgi->render_pass % rb->sdfgi->history_size;
  1126. push_constant.history_size = rb->sdfgi->history_size;
  1127. static const uint32_t ray_count[RS::ENV_SDFGI_RAY_COUNT_MAX] = { 8, 16, 32, 64, 96, 128 };
  1128. push_constant.ray_count = ray_count[sdfgi_ray_count];
  1129. push_constant.ray_bias = rb->sdfgi->probe_bias;
  1130. push_constant.image_size[0] = rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count;
  1131. push_constant.image_size[1] = rb->sdfgi->probe_axis_count;
  1132. push_constant.store_ambient_texture = env->volumetric_fog_enabled;
  1133. RID sky_uniform_set = sdfgi_shader.integrate_default_sky_uniform_set;
  1134. push_constant.sky_mode = SDGIShader::IntegratePushConstant::SKY_MODE_DISABLED;
  1135. push_constant.y_mult = rb->sdfgi->y_mult;
  1136. if (rb->sdfgi->reads_sky && env) {
  1137. push_constant.sky_energy = env->bg_energy;
  1138. if (env->background == RS::ENV_BG_CLEAR_COLOR) {
  1139. push_constant.sky_mode = SDGIShader::IntegratePushConstant::SKY_MODE_COLOR;
  1140. Color c = storage->get_default_clear_color().to_linear();
  1141. push_constant.sky_color[0] = c.r;
  1142. push_constant.sky_color[1] = c.g;
  1143. push_constant.sky_color[2] = c.b;
  1144. } else if (env->background == RS::ENV_BG_COLOR) {
  1145. push_constant.sky_mode = SDGIShader::IntegratePushConstant::SKY_MODE_COLOR;
  1146. Color c = env->bg_color;
  1147. push_constant.sky_color[0] = c.r;
  1148. push_constant.sky_color[1] = c.g;
  1149. push_constant.sky_color[2] = c.b;
  1150. } else if (env->background == RS::ENV_BG_SKY) {
  1151. Sky *sky = sky_owner.getornull(env->sky);
  1152. if (sky && sky->radiance.is_valid()) {
  1153. if (sky->sdfgi_integrate_sky_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(sky->sdfgi_integrate_sky_uniform_set)) {
  1154. Vector<RD::Uniform> uniforms;
  1155. {
  1156. RD::Uniform u;
  1157. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1158. u.binding = 0;
  1159. u.ids.push_back(sky->radiance);
  1160. uniforms.push_back(u);
  1161. }
  1162. {
  1163. RD::Uniform u;
  1164. u.type = RD::UNIFORM_TYPE_SAMPLER;
  1165. u.binding = 1;
  1166. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1167. uniforms.push_back(u);
  1168. }
  1169. sky->sdfgi_integrate_sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, 0), 1);
  1170. }
  1171. sky_uniform_set = sky->sdfgi_integrate_sky_uniform_set;
  1172. push_constant.sky_mode = SDGIShader::IntegratePushConstant::SKY_MODE_SKY;
  1173. }
  1174. }
  1175. }
  1176. rb->sdfgi->render_pass++;
  1177. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1178. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.integrate_pipeline[SDGIShader::INTEGRATE_MODE_PROCESS]);
  1179. int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  1180. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  1181. push_constant.cascade = i;
  1182. push_constant.world_offset[0] = rb->sdfgi->cascades[i].position.x / probe_divisor;
  1183. push_constant.world_offset[1] = rb->sdfgi->cascades[i].position.y / probe_divisor;
  1184. push_constant.world_offset[2] = rb->sdfgi->cascades[i].position.z / probe_divisor;
  1185. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[i].integrate_uniform_set, 0);
  1186. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sky_uniform_set, 1);
  1187. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::IntegratePushConstant));
  1188. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count, rb->sdfgi->probe_axis_count, 1, 8, 8, 1);
  1189. }
  1190. RD::get_singleton()->compute_list_add_barrier(compute_list); //wait until done
  1191. // Then store values into the lightprobe texture. Separating these steps has a small performance hit, but it allows for multiple bounces
  1192. RENDER_TIMESTAMP("Average Probes");
  1193. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.integrate_pipeline[SDGIShader::INTEGRATE_MODE_STORE]);
  1194. //convert to octahedral to store
  1195. push_constant.image_size[0] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  1196. push_constant.image_size[1] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  1197. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  1198. push_constant.cascade = i;
  1199. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[i].integrate_uniform_set, 0);
  1200. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::IntegratePushConstant));
  1201. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, rb->sdfgi->probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, 1, 8, 8, 1);
  1202. }
  1203. RD::get_singleton()->compute_list_end();
  1204. RENDER_TIMESTAMP("<SDFGI Update Probes");
  1205. }
  1206. void RasterizerSceneRD::_setup_giprobes(RID p_render_buffers, const Transform &p_transform, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, uint32_t &r_gi_probes_used) {
  1207. r_gi_probes_used = 0;
  1208. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1209. ERR_FAIL_COND(rb == nullptr);
  1210. RID gi_probe_buffer = render_buffers_get_gi_probe_buffer(p_render_buffers);
  1211. GI::GIProbeData gi_probe_data[RenderBuffers::MAX_GIPROBES];
  1212. bool giprobes_changed = false;
  1213. Transform to_camera;
  1214. to_camera.origin = p_transform.origin; //only translation, make local
  1215. for (int i = 0; i < RenderBuffers::MAX_GIPROBES; i++) {
  1216. RID texture;
  1217. if (i < p_gi_probe_cull_count) {
  1218. GIProbeInstance *gipi = gi_probe_instance_owner.getornull(p_gi_probe_cull_result[i]);
  1219. if (gipi) {
  1220. texture = gipi->texture;
  1221. GI::GIProbeData &gipd = gi_probe_data[i];
  1222. RID base_probe = gipi->probe;
  1223. Transform to_cell = storage->gi_probe_get_to_cell_xform(gipi->probe) * gipi->transform.affine_inverse() * to_camera;
  1224. gipd.xform[0] = to_cell.basis.elements[0][0];
  1225. gipd.xform[1] = to_cell.basis.elements[1][0];
  1226. gipd.xform[2] = to_cell.basis.elements[2][0];
  1227. gipd.xform[3] = 0;
  1228. gipd.xform[4] = to_cell.basis.elements[0][1];
  1229. gipd.xform[5] = to_cell.basis.elements[1][1];
  1230. gipd.xform[6] = to_cell.basis.elements[2][1];
  1231. gipd.xform[7] = 0;
  1232. gipd.xform[8] = to_cell.basis.elements[0][2];
  1233. gipd.xform[9] = to_cell.basis.elements[1][2];
  1234. gipd.xform[10] = to_cell.basis.elements[2][2];
  1235. gipd.xform[11] = 0;
  1236. gipd.xform[12] = to_cell.origin.x;
  1237. gipd.xform[13] = to_cell.origin.y;
  1238. gipd.xform[14] = to_cell.origin.z;
  1239. gipd.xform[15] = 1;
  1240. Vector3 bounds = storage->gi_probe_get_octree_size(base_probe);
  1241. gipd.bounds[0] = bounds.x;
  1242. gipd.bounds[1] = bounds.y;
  1243. gipd.bounds[2] = bounds.z;
  1244. gipd.dynamic_range = storage->gi_probe_get_dynamic_range(base_probe) * storage->gi_probe_get_energy(base_probe);
  1245. gipd.bias = storage->gi_probe_get_bias(base_probe);
  1246. gipd.normal_bias = storage->gi_probe_get_normal_bias(base_probe);
  1247. gipd.blend_ambient = !storage->gi_probe_is_interior(base_probe);
  1248. gipd.anisotropy_strength = 0;
  1249. gipd.ao = storage->gi_probe_get_ao(base_probe);
  1250. gipd.ao_size = Math::pow(storage->gi_probe_get_ao_size(base_probe), 4.0f);
  1251. gipd.mipmaps = gipi->mipmaps.size();
  1252. }
  1253. r_gi_probes_used++;
  1254. }
  1255. if (texture == RID()) {
  1256. texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE);
  1257. }
  1258. if (texture != rb->giprobe_textures[i]) {
  1259. giprobes_changed = true;
  1260. rb->giprobe_textures[i] = texture;
  1261. }
  1262. }
  1263. if (giprobes_changed) {
  1264. RD::get_singleton()->free(rb->gi_uniform_set);
  1265. rb->gi_uniform_set = RID();
  1266. if (rb->volumetric_fog) {
  1267. if (RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
  1268. RD::get_singleton()->free(rb->volumetric_fog->uniform_set);
  1269. RD::get_singleton()->free(rb->volumetric_fog->uniform_set2);
  1270. }
  1271. rb->volumetric_fog->uniform_set = RID();
  1272. rb->volumetric_fog->uniform_set2 = RID();
  1273. }
  1274. }
  1275. if (p_gi_probe_cull_count > 0) {
  1276. RD::get_singleton()->buffer_update(gi_probe_buffer, 0, sizeof(GI::GIProbeData) * MIN(RenderBuffers::MAX_GIPROBES, p_gi_probe_cull_count), gi_probe_data, true);
  1277. }
  1278. }
  1279. void RasterizerSceneRD::_process_gi(RID p_render_buffers, RID p_normal_roughness_buffer, RID p_ambient_buffer, RID p_reflection_buffer, RID p_gi_probe_buffer, RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count) {
  1280. RENDER_TIMESTAMP("Render GI");
  1281. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1282. ERR_FAIL_COND(rb == nullptr);
  1283. Environment *env = environment_owner.getornull(p_environment);
  1284. GI::PushConstant push_constant;
  1285. push_constant.screen_size[0] = rb->width;
  1286. push_constant.screen_size[1] = rb->height;
  1287. push_constant.z_near = p_projection.get_z_near();
  1288. push_constant.z_far = p_projection.get_z_far();
  1289. push_constant.orthogonal = p_projection.is_orthogonal();
  1290. push_constant.proj_info[0] = -2.0f / (rb->width * p_projection.matrix[0][0]);
  1291. push_constant.proj_info[1] = -2.0f / (rb->height * p_projection.matrix[1][1]);
  1292. push_constant.proj_info[2] = (1.0f - p_projection.matrix[0][2]) / p_projection.matrix[0][0];
  1293. push_constant.proj_info[3] = (1.0f + p_projection.matrix[1][2]) / p_projection.matrix[1][1];
  1294. push_constant.max_giprobes = MIN(RenderBuffers::MAX_GIPROBES, p_gi_probe_cull_count);
  1295. push_constant.high_quality_vct = gi_probe_quality == RS::GI_PROBE_QUALITY_HIGH;
  1296. push_constant.use_sdfgi = rb->sdfgi != nullptr;
  1297. if (env) {
  1298. push_constant.ao_color[0] = env->ao_color.r;
  1299. push_constant.ao_color[1] = env->ao_color.g;
  1300. push_constant.ao_color[2] = env->ao_color.b;
  1301. } else {
  1302. push_constant.ao_color[0] = 0;
  1303. push_constant.ao_color[1] = 0;
  1304. push_constant.ao_color[2] = 0;
  1305. }
  1306. push_constant.cam_rotation[0] = p_transform.basis[0][0];
  1307. push_constant.cam_rotation[1] = p_transform.basis[1][0];
  1308. push_constant.cam_rotation[2] = p_transform.basis[2][0];
  1309. push_constant.cam_rotation[3] = 0;
  1310. push_constant.cam_rotation[4] = p_transform.basis[0][1];
  1311. push_constant.cam_rotation[5] = p_transform.basis[1][1];
  1312. push_constant.cam_rotation[6] = p_transform.basis[2][1];
  1313. push_constant.cam_rotation[7] = 0;
  1314. push_constant.cam_rotation[8] = p_transform.basis[0][2];
  1315. push_constant.cam_rotation[9] = p_transform.basis[1][2];
  1316. push_constant.cam_rotation[10] = p_transform.basis[2][2];
  1317. push_constant.cam_rotation[11] = 0;
  1318. if (rb->sdfgi) {
  1319. GI::SDFGIData sdfgi_data;
  1320. sdfgi_data.grid_size[0] = rb->sdfgi->cascade_size;
  1321. sdfgi_data.grid_size[1] = rb->sdfgi->cascade_size;
  1322. sdfgi_data.grid_size[2] = rb->sdfgi->cascade_size;
  1323. sdfgi_data.max_cascades = rb->sdfgi->cascades.size();
  1324. sdfgi_data.probe_axis_size = rb->sdfgi->probe_axis_count;
  1325. sdfgi_data.cascade_probe_size[0] = sdfgi_data.probe_axis_size - 1; //float version for performance
  1326. sdfgi_data.cascade_probe_size[1] = sdfgi_data.probe_axis_size - 1;
  1327. sdfgi_data.cascade_probe_size[2] = sdfgi_data.probe_axis_size - 1;
  1328. float csize = rb->sdfgi->cascade_size;
  1329. sdfgi_data.probe_to_uvw = 1.0 / float(sdfgi_data.cascade_probe_size[0]);
  1330. sdfgi_data.use_occlusion = rb->sdfgi->uses_occlusion;
  1331. //sdfgi_data.energy = rb->sdfgi->energy;
  1332. sdfgi_data.y_mult = rb->sdfgi->y_mult;
  1333. float cascade_voxel_size = (csize / sdfgi_data.cascade_probe_size[0]);
  1334. float occlusion_clamp = (cascade_voxel_size - 0.5) / cascade_voxel_size;
  1335. sdfgi_data.occlusion_clamp[0] = occlusion_clamp;
  1336. sdfgi_data.occlusion_clamp[1] = occlusion_clamp;
  1337. sdfgi_data.occlusion_clamp[2] = occlusion_clamp;
  1338. sdfgi_data.normal_bias = (rb->sdfgi->normal_bias / csize) * sdfgi_data.cascade_probe_size[0];
  1339. //vec2 tex_pixel_size = 1.0 / vec2(ivec2( (OCT_SIZE+2) * params.probe_axis_size * params.probe_axis_size, (OCT_SIZE+2) * params.probe_axis_size ) );
  1340. //vec3 probe_uv_offset = (ivec3(OCT_SIZE+2,OCT_SIZE+2,(OCT_SIZE+2) * params.probe_axis_size)) * tex_pixel_size.xyx;
  1341. uint32_t oct_size = SDFGI::LIGHTPROBE_OCT_SIZE;
  1342. sdfgi_data.lightprobe_tex_pixel_size[0] = 1.0 / ((oct_size + 2) * sdfgi_data.probe_axis_size * sdfgi_data.probe_axis_size);
  1343. sdfgi_data.lightprobe_tex_pixel_size[1] = 1.0 / ((oct_size + 2) * sdfgi_data.probe_axis_size);
  1344. sdfgi_data.lightprobe_tex_pixel_size[2] = 1.0;
  1345. sdfgi_data.energy = rb->sdfgi->energy;
  1346. sdfgi_data.lightprobe_uv_offset[0] = float(oct_size + 2) * sdfgi_data.lightprobe_tex_pixel_size[0];
  1347. sdfgi_data.lightprobe_uv_offset[1] = float(oct_size + 2) * sdfgi_data.lightprobe_tex_pixel_size[1];
  1348. sdfgi_data.lightprobe_uv_offset[2] = float((oct_size + 2) * sdfgi_data.probe_axis_size) * sdfgi_data.lightprobe_tex_pixel_size[0];
  1349. sdfgi_data.occlusion_renormalize[0] = 0.5;
  1350. sdfgi_data.occlusion_renormalize[1] = 1.0;
  1351. sdfgi_data.occlusion_renormalize[2] = 1.0 / float(sdfgi_data.max_cascades);
  1352. int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  1353. for (uint32_t i = 0; i < sdfgi_data.max_cascades; i++) {
  1354. GI::SDFGIData::ProbeCascadeData &c = sdfgi_data.cascades[i];
  1355. Vector3 pos = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[i].position)) * rb->sdfgi->cascades[i].cell_size;
  1356. Vector3 cam_origin = p_transform.origin;
  1357. cam_origin.y *= rb->sdfgi->y_mult;
  1358. pos -= cam_origin; //make pos local to camera, to reduce numerical error
  1359. c.position[0] = pos.x;
  1360. c.position[1] = pos.y;
  1361. c.position[2] = pos.z;
  1362. c.to_probe = 1.0 / (float(rb->sdfgi->cascade_size) * rb->sdfgi->cascades[i].cell_size / float(rb->sdfgi->probe_axis_count - 1));
  1363. Vector3i probe_ofs = rb->sdfgi->cascades[i].position / probe_divisor;
  1364. c.probe_world_offset[0] = probe_ofs.x;
  1365. c.probe_world_offset[1] = probe_ofs.y;
  1366. c.probe_world_offset[2] = probe_ofs.z;
  1367. c.to_cell = 1.0 / rb->sdfgi->cascades[i].cell_size;
  1368. }
  1369. RD::get_singleton()->buffer_update(gi.sdfgi_ubo, 0, sizeof(GI::SDFGIData), &sdfgi_data, true);
  1370. }
  1371. if (rb->gi_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->gi_uniform_set)) {
  1372. Vector<RD::Uniform> uniforms;
  1373. {
  1374. RD::Uniform u;
  1375. u.binding = 1;
  1376. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1377. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  1378. if (rb->sdfgi && j < rb->sdfgi->cascades.size()) {
  1379. u.ids.push_back(rb->sdfgi->cascades[j].sdf_tex);
  1380. } else {
  1381. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1382. }
  1383. }
  1384. uniforms.push_back(u);
  1385. }
  1386. {
  1387. RD::Uniform u;
  1388. u.binding = 2;
  1389. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1390. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  1391. if (rb->sdfgi && j < rb->sdfgi->cascades.size()) {
  1392. u.ids.push_back(rb->sdfgi->cascades[j].light_tex);
  1393. } else {
  1394. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1395. }
  1396. }
  1397. uniforms.push_back(u);
  1398. }
  1399. {
  1400. RD::Uniform u;
  1401. u.binding = 3;
  1402. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1403. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  1404. if (rb->sdfgi && j < rb->sdfgi->cascades.size()) {
  1405. u.ids.push_back(rb->sdfgi->cascades[j].light_aniso_0_tex);
  1406. } else {
  1407. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1408. }
  1409. }
  1410. uniforms.push_back(u);
  1411. }
  1412. {
  1413. RD::Uniform u;
  1414. u.binding = 4;
  1415. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1416. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  1417. if (rb->sdfgi && j < rb->sdfgi->cascades.size()) {
  1418. u.ids.push_back(rb->sdfgi->cascades[j].light_aniso_1_tex);
  1419. } else {
  1420. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1421. }
  1422. }
  1423. uniforms.push_back(u);
  1424. }
  1425. {
  1426. RD::Uniform u;
  1427. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1428. u.binding = 5;
  1429. if (rb->sdfgi) {
  1430. u.ids.push_back(rb->sdfgi->occlusion_texture);
  1431. } else {
  1432. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1433. }
  1434. uniforms.push_back(u);
  1435. }
  1436. {
  1437. RD::Uniform u;
  1438. u.type = RD::UNIFORM_TYPE_SAMPLER;
  1439. u.binding = 6;
  1440. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1441. uniforms.push_back(u);
  1442. }
  1443. {
  1444. RD::Uniform u;
  1445. u.type = RD::UNIFORM_TYPE_SAMPLER;
  1446. u.binding = 7;
  1447. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1448. uniforms.push_back(u);
  1449. }
  1450. {
  1451. RD::Uniform u;
  1452. u.type = RD::UNIFORM_TYPE_IMAGE;
  1453. u.binding = 9;
  1454. u.ids.push_back(p_ambient_buffer);
  1455. uniforms.push_back(u);
  1456. }
  1457. {
  1458. RD::Uniform u;
  1459. u.type = RD::UNIFORM_TYPE_IMAGE;
  1460. u.binding = 10;
  1461. u.ids.push_back(p_reflection_buffer);
  1462. uniforms.push_back(u);
  1463. }
  1464. {
  1465. RD::Uniform u;
  1466. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1467. u.binding = 11;
  1468. if (rb->sdfgi) {
  1469. u.ids.push_back(rb->sdfgi->lightprobe_texture);
  1470. } else {
  1471. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE));
  1472. }
  1473. uniforms.push_back(u);
  1474. }
  1475. {
  1476. RD::Uniform u;
  1477. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1478. u.binding = 12;
  1479. u.ids.push_back(rb->depth_texture);
  1480. uniforms.push_back(u);
  1481. }
  1482. {
  1483. RD::Uniform u;
  1484. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1485. u.binding = 13;
  1486. u.ids.push_back(p_normal_roughness_buffer);
  1487. uniforms.push_back(u);
  1488. }
  1489. {
  1490. RD::Uniform u;
  1491. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1492. u.binding = 14;
  1493. RID buffer = p_gi_probe_buffer.is_valid() ? p_gi_probe_buffer : storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK);
  1494. u.ids.push_back(buffer);
  1495. uniforms.push_back(u);
  1496. }
  1497. {
  1498. RD::Uniform u;
  1499. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1500. u.binding = 15;
  1501. u.ids.push_back(gi.sdfgi_ubo);
  1502. uniforms.push_back(u);
  1503. }
  1504. {
  1505. RD::Uniform u;
  1506. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1507. u.binding = 16;
  1508. u.ids.push_back(rb->giprobe_buffer);
  1509. uniforms.push_back(u);
  1510. }
  1511. {
  1512. RD::Uniform u;
  1513. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1514. u.binding = 17;
  1515. for (int i = 0; i < RenderBuffers::MAX_GIPROBES; i++) {
  1516. u.ids.push_back(rb->giprobe_textures[i]);
  1517. }
  1518. uniforms.push_back(u);
  1519. }
  1520. rb->gi_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi.shader.version_get_shader(gi.shader_version, 0), 0);
  1521. }
  1522. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1523. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi.pipelines[0]);
  1524. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->gi_uniform_set, 0);
  1525. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GI::PushConstant));
  1526. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->width, rb->height, 1, 8, 8, 1);
  1527. RD::get_singleton()->compute_list_end();
  1528. }
  1529. RID RasterizerSceneRD::sky_create() {
  1530. return sky_owner.make_rid(Sky());
  1531. }
  1532. void RasterizerSceneRD::_sky_invalidate(Sky *p_sky) {
  1533. if (!p_sky->dirty) {
  1534. p_sky->dirty = true;
  1535. p_sky->dirty_list = dirty_sky_list;
  1536. dirty_sky_list = p_sky;
  1537. }
  1538. }
  1539. void RasterizerSceneRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) {
  1540. Sky *sky = sky_owner.getornull(p_sky);
  1541. ERR_FAIL_COND(!sky);
  1542. ERR_FAIL_COND(p_radiance_size < 32 || p_radiance_size > 2048);
  1543. if (sky->radiance_size == p_radiance_size) {
  1544. return;
  1545. }
  1546. sky->radiance_size = p_radiance_size;
  1547. if (sky->mode == RS::SKY_MODE_REALTIME && sky->radiance_size != 256) {
  1548. WARN_PRINT("Realtime Skies can only use a radiance size of 256. Radiance size will be set to 256 internally.");
  1549. sky->radiance_size = 256;
  1550. }
  1551. _sky_invalidate(sky);
  1552. if (sky->radiance.is_valid()) {
  1553. RD::get_singleton()->free(sky->radiance);
  1554. sky->radiance = RID();
  1555. }
  1556. _clear_reflection_data(sky->reflection);
  1557. }
  1558. void RasterizerSceneRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) {
  1559. Sky *sky = sky_owner.getornull(p_sky);
  1560. ERR_FAIL_COND(!sky);
  1561. if (sky->mode == p_mode) {
  1562. return;
  1563. }
  1564. sky->mode = p_mode;
  1565. if (sky->mode == RS::SKY_MODE_REALTIME && sky->radiance_size != 256) {
  1566. WARN_PRINT("Realtime Skies can only use a radiance size of 256. Radiance size will be set to 256 internally.");
  1567. sky_set_radiance_size(p_sky, 256);
  1568. }
  1569. _sky_invalidate(sky);
  1570. if (sky->radiance.is_valid()) {
  1571. RD::get_singleton()->free(sky->radiance);
  1572. sky->radiance = RID();
  1573. }
  1574. _clear_reflection_data(sky->reflection);
  1575. }
  1576. void RasterizerSceneRD::sky_set_material(RID p_sky, RID p_material) {
  1577. Sky *sky = sky_owner.getornull(p_sky);
  1578. ERR_FAIL_COND(!sky);
  1579. sky->material = p_material;
  1580. _sky_invalidate(sky);
  1581. }
  1582. Ref<Image> RasterizerSceneRD::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) {
  1583. Sky *sky = sky_owner.getornull(p_sky);
  1584. ERR_FAIL_COND_V(!sky, Ref<Image>());
  1585. _update_dirty_skys();
  1586. if (sky->radiance.is_valid()) {
  1587. RD::TextureFormat tf;
  1588. tf.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  1589. tf.width = p_size.width;
  1590. tf.height = p_size.height;
  1591. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  1592. RID rad_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1593. storage->get_effects()->copy_cubemap_to_panorama(sky->radiance, rad_tex, p_size, p_bake_irradiance ? roughness_layers : 0, sky->reflection.layers.size() > 1);
  1594. Vector<uint8_t> data = RD::get_singleton()->texture_get_data(rad_tex, 0);
  1595. RD::get_singleton()->free(rad_tex);
  1596. Ref<Image> img;
  1597. img.instance();
  1598. img->create(p_size.width, p_size.height, false, Image::FORMAT_RGBAF, data);
  1599. for (int i = 0; i < p_size.width; i++) {
  1600. for (int j = 0; j < p_size.height; j++) {
  1601. Color c = img->get_pixel(i, j);
  1602. c.r *= p_energy;
  1603. c.g *= p_energy;
  1604. c.b *= p_energy;
  1605. img->set_pixel(i, j, c);
  1606. }
  1607. }
  1608. return img;
  1609. }
  1610. return Ref<Image>();
  1611. }
  1612. void RasterizerSceneRD::_update_dirty_skys() {
  1613. Sky *sky = dirty_sky_list;
  1614. while (sky) {
  1615. bool texture_set_dirty = false;
  1616. //update sky configuration if texture is missing
  1617. if (sky->radiance.is_null()) {
  1618. int mipmaps = Image::get_image_required_mipmaps(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBAH) + 1;
  1619. uint32_t w = sky->radiance_size, h = sky->radiance_size;
  1620. int layers = roughness_layers;
  1621. if (sky->mode == RS::SKY_MODE_REALTIME) {
  1622. layers = 8;
  1623. if (roughness_layers != 8) {
  1624. WARN_PRINT("When using REALTIME skies, roughness_layers should be set to 8 in the project settings for best quality reflections");
  1625. }
  1626. }
  1627. if (sky_use_cubemap_array) {
  1628. //array (higher quality, 6 times more memory)
  1629. RD::TextureFormat tf;
  1630. tf.array_layers = layers * 6;
  1631. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1632. tf.type = RD::TEXTURE_TYPE_CUBE_ARRAY;
  1633. tf.mipmaps = mipmaps;
  1634. tf.width = w;
  1635. tf.height = h;
  1636. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1637. sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1638. _update_reflection_data(sky->reflection, sky->radiance_size, mipmaps, true, sky->radiance, 0, sky->mode == RS::SKY_MODE_REALTIME);
  1639. } else {
  1640. //regular cubemap, lower quality (aliasing, less memory)
  1641. RD::TextureFormat tf;
  1642. tf.array_layers = 6;
  1643. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1644. tf.type = RD::TEXTURE_TYPE_CUBE;
  1645. tf.mipmaps = MIN(mipmaps, layers);
  1646. tf.width = w;
  1647. tf.height = h;
  1648. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1649. sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1650. _update_reflection_data(sky->reflection, sky->radiance_size, MIN(mipmaps, layers), false, sky->radiance, 0, sky->mode == RS::SKY_MODE_REALTIME);
  1651. }
  1652. texture_set_dirty = true;
  1653. }
  1654. // Create subpass buffers if they haven't been created already
  1655. if (sky->half_res_pass.is_null() && !RD::get_singleton()->texture_is_valid(sky->half_res_pass) && sky->screen_size.x >= 4 && sky->screen_size.y >= 4) {
  1656. RD::TextureFormat tformat;
  1657. tformat.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1658. tformat.width = sky->screen_size.x / 2;
  1659. tformat.height = sky->screen_size.y / 2;
  1660. tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  1661. tformat.type = RD::TEXTURE_TYPE_2D;
  1662. sky->half_res_pass = RD::get_singleton()->texture_create(tformat, RD::TextureView());
  1663. Vector<RID> texs;
  1664. texs.push_back(sky->half_res_pass);
  1665. sky->half_res_framebuffer = RD::get_singleton()->framebuffer_create(texs);
  1666. texture_set_dirty = true;
  1667. }
  1668. if (sky->quarter_res_pass.is_null() && !RD::get_singleton()->texture_is_valid(sky->quarter_res_pass) && sky->screen_size.x >= 4 && sky->screen_size.y >= 4) {
  1669. RD::TextureFormat tformat;
  1670. tformat.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1671. tformat.width = sky->screen_size.x / 4;
  1672. tformat.height = sky->screen_size.y / 4;
  1673. tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  1674. tformat.type = RD::TEXTURE_TYPE_2D;
  1675. sky->quarter_res_pass = RD::get_singleton()->texture_create(tformat, RD::TextureView());
  1676. Vector<RID> texs;
  1677. texs.push_back(sky->quarter_res_pass);
  1678. sky->quarter_res_framebuffer = RD::get_singleton()->framebuffer_create(texs);
  1679. texture_set_dirty = true;
  1680. }
  1681. if (texture_set_dirty) {
  1682. for (int i = 0; i < SKY_TEXTURE_SET_MAX; i++) {
  1683. if (sky->texture_uniform_sets[i].is_valid() && RD::get_singleton()->uniform_set_is_valid(sky->texture_uniform_sets[i])) {
  1684. RD::get_singleton()->free(sky->texture_uniform_sets[i]);
  1685. sky->texture_uniform_sets[i] = RID();
  1686. }
  1687. }
  1688. }
  1689. sky->reflection.dirty = true;
  1690. sky->processing_layer = 0;
  1691. Sky *next = sky->dirty_list;
  1692. sky->dirty_list = nullptr;
  1693. sky->dirty = false;
  1694. sky = next;
  1695. }
  1696. dirty_sky_list = nullptr;
  1697. }
  1698. RID RasterizerSceneRD::sky_get_radiance_texture_rd(RID p_sky) const {
  1699. Sky *sky = sky_owner.getornull(p_sky);
  1700. ERR_FAIL_COND_V(!sky, RID());
  1701. return sky->radiance;
  1702. }
  1703. RID RasterizerSceneRD::sky_get_radiance_uniform_set_rd(RID p_sky, RID p_shader, int p_set) const {
  1704. Sky *sky = sky_owner.getornull(p_sky);
  1705. ERR_FAIL_COND_V(!sky, RID());
  1706. if (sky->uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(sky->uniform_set)) {
  1707. sky->uniform_set = RID();
  1708. if (sky->radiance.is_valid()) {
  1709. Vector<RD::Uniform> uniforms;
  1710. {
  1711. RD::Uniform u;
  1712. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1713. u.binding = 0;
  1714. u.ids.push_back(sky->radiance);
  1715. uniforms.push_back(u);
  1716. }
  1717. sky->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_set);
  1718. }
  1719. }
  1720. return sky->uniform_set;
  1721. }
  1722. RID RasterizerSceneRD::_get_sky_textures(Sky *p_sky, SkyTextureSetVersion p_version) {
  1723. if (p_sky->texture_uniform_sets[p_version].is_valid() && RD::get_singleton()->uniform_set_is_valid(p_sky->texture_uniform_sets[p_version])) {
  1724. return p_sky->texture_uniform_sets[p_version];
  1725. }
  1726. Vector<RD::Uniform> uniforms;
  1727. {
  1728. RD::Uniform u;
  1729. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1730. u.binding = 0;
  1731. if (p_sky->radiance.is_valid() && p_version <= SKY_TEXTURE_SET_QUARTER_RES) {
  1732. u.ids.push_back(p_sky->radiance);
  1733. } else {
  1734. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
  1735. }
  1736. uniforms.push_back(u);
  1737. }
  1738. {
  1739. RD::Uniform u;
  1740. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1741. u.binding = 1; // half res
  1742. if (p_sky->half_res_pass.is_valid() && p_version != SKY_TEXTURE_SET_HALF_RES && p_version != SKY_TEXTURE_SET_CUBEMAP_HALF_RES) {
  1743. if (p_version >= SKY_TEXTURE_SET_CUBEMAP) {
  1744. u.ids.push_back(p_sky->reflection.layers[0].views[1]);
  1745. } else {
  1746. u.ids.push_back(p_sky->half_res_pass);
  1747. }
  1748. } else {
  1749. if (p_version < SKY_TEXTURE_SET_CUBEMAP) {
  1750. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE));
  1751. } else {
  1752. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
  1753. }
  1754. }
  1755. uniforms.push_back(u);
  1756. }
  1757. {
  1758. RD::Uniform u;
  1759. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1760. u.binding = 2; // quarter res
  1761. if (p_sky->quarter_res_pass.is_valid() && p_version != SKY_TEXTURE_SET_QUARTER_RES && p_version != SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES) {
  1762. if (p_version >= SKY_TEXTURE_SET_CUBEMAP) {
  1763. u.ids.push_back(p_sky->reflection.layers[0].views[2]);
  1764. } else {
  1765. u.ids.push_back(p_sky->quarter_res_pass);
  1766. }
  1767. } else {
  1768. if (p_version < SKY_TEXTURE_SET_CUBEMAP) {
  1769. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE));
  1770. } else {
  1771. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
  1772. }
  1773. }
  1774. uniforms.push_back(u);
  1775. }
  1776. p_sky->texture_uniform_sets[p_version] = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_TEXTURES);
  1777. return p_sky->texture_uniform_sets[p_version];
  1778. }
  1779. RID RasterizerSceneRD::sky_get_material(RID p_sky) const {
  1780. Sky *sky = sky_owner.getornull(p_sky);
  1781. ERR_FAIL_COND_V(!sky, RID());
  1782. return sky->material;
  1783. }
  1784. void RasterizerSceneRD::_draw_sky(bool p_can_continue_color, bool p_can_continue_depth, RID p_fb, RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform) {
  1785. ERR_FAIL_COND(!is_environment(p_environment));
  1786. SkyMaterialData *material = nullptr;
  1787. Sky *sky = sky_owner.getornull(environment_get_sky(p_environment));
  1788. RID sky_material;
  1789. RS::EnvironmentBG background = environment_get_background(p_environment);
  1790. if (!(background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) || sky) {
  1791. ERR_FAIL_COND(!sky);
  1792. sky_material = sky_get_material(environment_get_sky(p_environment));
  1793. if (sky_material.is_valid()) {
  1794. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  1795. if (!material || !material->shader_data->valid) {
  1796. material = nullptr;
  1797. }
  1798. }
  1799. if (!material) {
  1800. sky_material = sky_shader.default_material;
  1801. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  1802. }
  1803. }
  1804. if (background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) {
  1805. sky_material = sky_scene_state.fog_material;
  1806. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  1807. }
  1808. ERR_FAIL_COND(!material);
  1809. SkyShaderData *shader_data = material->shader_data;
  1810. ERR_FAIL_COND(!shader_data);
  1811. Basis sky_transform = environment_get_sky_orientation(p_environment);
  1812. sky_transform.invert();
  1813. float multiplier = environment_get_bg_energy(p_environment);
  1814. float custom_fov = environment_get_sky_custom_fov(p_environment);
  1815. // Camera
  1816. CameraMatrix camera;
  1817. if (custom_fov) {
  1818. float near_plane = p_projection.get_z_near();
  1819. float far_plane = p_projection.get_z_far();
  1820. float aspect = p_projection.get_aspect();
  1821. camera.set_perspective(custom_fov, aspect, near_plane, far_plane);
  1822. } else {
  1823. camera = p_projection;
  1824. }
  1825. sky_transform = p_transform.basis * sky_transform;
  1826. if (shader_data->uses_quarter_res) {
  1827. RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_QUARTER_RES];
  1828. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_QUARTER_RES);
  1829. Vector<Color> clear_colors;
  1830. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  1831. RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(sky->quarter_res_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors);
  1832. storage->get_effects()->render_sky(draw_list, time, sky->quarter_res_framebuffer, sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin);
  1833. RD::get_singleton()->draw_list_end();
  1834. }
  1835. if (shader_data->uses_half_res) {
  1836. RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_HALF_RES];
  1837. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_HALF_RES);
  1838. Vector<Color> clear_colors;
  1839. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  1840. RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(sky->half_res_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors);
  1841. storage->get_effects()->render_sky(draw_list, time, sky->half_res_framebuffer, sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin);
  1842. RD::get_singleton()->draw_list_end();
  1843. }
  1844. RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_BACKGROUND];
  1845. RID texture_uniform_set;
  1846. if (sky) {
  1847. texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_BACKGROUND);
  1848. } else {
  1849. texture_uniform_set = sky_scene_state.fog_only_texture_uniform_set;
  1850. }
  1851. RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_fb, RD::INITIAL_ACTION_CONTINUE, p_can_continue_color ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CONTINUE, p_can_continue_depth ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ);
  1852. storage->get_effects()->render_sky(draw_list, time, p_fb, sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin);
  1853. RD::get_singleton()->draw_list_end();
  1854. }
  1855. void RasterizerSceneRD::_setup_sky(RID p_environment, RID p_render_buffers, const CameraMatrix &p_projection, const Transform &p_transform, const Size2i p_screen_size) {
  1856. ERR_FAIL_COND(!is_environment(p_environment));
  1857. SkyMaterialData *material = nullptr;
  1858. Sky *sky = sky_owner.getornull(environment_get_sky(p_environment));
  1859. RID sky_material;
  1860. SkyShaderData *shader_data = nullptr;
  1861. RS::EnvironmentBG background = environment_get_background(p_environment);
  1862. if (!(background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) || sky) {
  1863. ERR_FAIL_COND(!sky);
  1864. sky_material = sky_get_material(environment_get_sky(p_environment));
  1865. if (sky_material.is_valid()) {
  1866. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  1867. if (!material || !material->shader_data->valid) {
  1868. material = nullptr;
  1869. }
  1870. }
  1871. if (!material) {
  1872. sky_material = sky_shader.default_material;
  1873. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  1874. }
  1875. ERR_FAIL_COND(!material);
  1876. shader_data = material->shader_data;
  1877. ERR_FAIL_COND(!shader_data);
  1878. }
  1879. if (sky) {
  1880. // Invalidate supbass buffers if screen size changes
  1881. if (sky->screen_size != p_screen_size) {
  1882. sky->screen_size = p_screen_size;
  1883. sky->screen_size.x = sky->screen_size.x < 4 ? 4 : sky->screen_size.x;
  1884. sky->screen_size.y = sky->screen_size.y < 4 ? 4 : sky->screen_size.y;
  1885. if (shader_data->uses_half_res) {
  1886. if (sky->half_res_pass.is_valid()) {
  1887. RD::get_singleton()->free(sky->half_res_pass);
  1888. sky->half_res_pass = RID();
  1889. }
  1890. _sky_invalidate(sky);
  1891. }
  1892. if (shader_data->uses_quarter_res) {
  1893. if (sky->quarter_res_pass.is_valid()) {
  1894. RD::get_singleton()->free(sky->quarter_res_pass);
  1895. sky->quarter_res_pass = RID();
  1896. }
  1897. _sky_invalidate(sky);
  1898. }
  1899. }
  1900. // Create new subpass buffers if necessary
  1901. if ((shader_data->uses_half_res && sky->half_res_pass.is_null()) ||
  1902. (shader_data->uses_quarter_res && sky->quarter_res_pass.is_null()) ||
  1903. sky->radiance.is_null()) {
  1904. _sky_invalidate(sky);
  1905. _update_dirty_skys();
  1906. }
  1907. if (shader_data->uses_time && time - sky->prev_time > 0.00001) {
  1908. sky->prev_time = time;
  1909. sky->reflection.dirty = true;
  1910. RenderingServerRaster::redraw_request();
  1911. }
  1912. if (material != sky->prev_material) {
  1913. sky->prev_material = material;
  1914. sky->reflection.dirty = true;
  1915. }
  1916. if (material->uniform_set_updated) {
  1917. material->uniform_set_updated = false;
  1918. sky->reflection.dirty = true;
  1919. }
  1920. if (!p_transform.origin.is_equal_approx(sky->prev_position) && shader_data->uses_position) {
  1921. sky->prev_position = p_transform.origin;
  1922. sky->reflection.dirty = true;
  1923. }
  1924. if (shader_data->uses_light) {
  1925. // Check whether the directional_light_buffer changes
  1926. bool light_data_dirty = false;
  1927. if (sky_scene_state.ubo.directional_light_count != sky_scene_state.last_frame_directional_light_count) {
  1928. light_data_dirty = true;
  1929. for (uint32_t i = sky_scene_state.ubo.directional_light_count; i < sky_scene_state.max_directional_lights; i++) {
  1930. sky_scene_state.directional_lights[i].enabled = false;
  1931. }
  1932. }
  1933. if (!light_data_dirty) {
  1934. for (uint32_t i = 0; i < sky_scene_state.ubo.directional_light_count; i++) {
  1935. if (sky_scene_state.directional_lights[i].direction[0] != sky_scene_state.last_frame_directional_lights[i].direction[0] ||
  1936. sky_scene_state.directional_lights[i].direction[1] != sky_scene_state.last_frame_directional_lights[i].direction[1] ||
  1937. sky_scene_state.directional_lights[i].direction[2] != sky_scene_state.last_frame_directional_lights[i].direction[2] ||
  1938. sky_scene_state.directional_lights[i].energy != sky_scene_state.last_frame_directional_lights[i].energy ||
  1939. sky_scene_state.directional_lights[i].color[0] != sky_scene_state.last_frame_directional_lights[i].color[0] ||
  1940. sky_scene_state.directional_lights[i].color[1] != sky_scene_state.last_frame_directional_lights[i].color[1] ||
  1941. sky_scene_state.directional_lights[i].color[2] != sky_scene_state.last_frame_directional_lights[i].color[2] ||
  1942. sky_scene_state.directional_lights[i].enabled != sky_scene_state.last_frame_directional_lights[i].enabled ||
  1943. sky_scene_state.directional_lights[i].size != sky_scene_state.last_frame_directional_lights[i].size) {
  1944. light_data_dirty = true;
  1945. break;
  1946. }
  1947. }
  1948. }
  1949. if (light_data_dirty) {
  1950. RD::get_singleton()->buffer_update(sky_scene_state.directional_light_buffer, 0, sizeof(SkyDirectionalLightData) * sky_scene_state.max_directional_lights, sky_scene_state.directional_lights, true);
  1951. RasterizerSceneRD::SkyDirectionalLightData *temp = sky_scene_state.last_frame_directional_lights;
  1952. sky_scene_state.last_frame_directional_lights = sky_scene_state.directional_lights;
  1953. sky_scene_state.directional_lights = temp;
  1954. sky_scene_state.last_frame_directional_light_count = sky_scene_state.ubo.directional_light_count;
  1955. sky->reflection.dirty = true;
  1956. }
  1957. }
  1958. }
  1959. //setup fog variables
  1960. sky_scene_state.ubo.volumetric_fog_enabled = false;
  1961. if (p_render_buffers.is_valid()) {
  1962. if (render_buffers_has_volumetric_fog(p_render_buffers)) {
  1963. sky_scene_state.ubo.volumetric_fog_enabled = true;
  1964. float fog_end = render_buffers_get_volumetric_fog_end(p_render_buffers);
  1965. if (fog_end > 0.0) {
  1966. sky_scene_state.ubo.volumetric_fog_inv_length = 1.0 / fog_end;
  1967. } else {
  1968. sky_scene_state.ubo.volumetric_fog_inv_length = 1.0;
  1969. }
  1970. float fog_detail_spread = render_buffers_get_volumetric_fog_detail_spread(p_render_buffers); //reverse lookup
  1971. if (fog_detail_spread > 0.0) {
  1972. sky_scene_state.ubo.volumetric_fog_detail_spread = 1.0 / fog_detail_spread;
  1973. } else {
  1974. sky_scene_state.ubo.volumetric_fog_detail_spread = 1.0;
  1975. }
  1976. }
  1977. RID fog_uniform_set = render_buffers_get_volumetric_fog_sky_uniform_set(p_render_buffers);
  1978. if (fog_uniform_set != RID()) {
  1979. sky_scene_state.fog_uniform_set = fog_uniform_set;
  1980. } else {
  1981. sky_scene_state.fog_uniform_set = sky_scene_state.default_fog_uniform_set;
  1982. }
  1983. }
  1984. sky_scene_state.ubo.z_far = p_projection.get_z_far();
  1985. sky_scene_state.ubo.fog_enabled = environment_is_fog_enabled(p_environment);
  1986. sky_scene_state.ubo.fog_density = environment_get_fog_density(p_environment);
  1987. Color fog_color = environment_get_fog_light_color(p_environment).to_linear();
  1988. float fog_energy = environment_get_fog_light_energy(p_environment);
  1989. sky_scene_state.ubo.fog_light_color[0] = fog_color.r * fog_energy;
  1990. sky_scene_state.ubo.fog_light_color[1] = fog_color.g * fog_energy;
  1991. sky_scene_state.ubo.fog_light_color[2] = fog_color.b * fog_energy;
  1992. sky_scene_state.ubo.fog_sun_scatter = environment_get_fog_sun_scatter(p_environment);
  1993. RD::get_singleton()->buffer_update(sky_scene_state.uniform_buffer, 0, sizeof(SkySceneState::UBO), &sky_scene_state.ubo, true);
  1994. }
  1995. void RasterizerSceneRD::_update_sky(RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform) {
  1996. ERR_FAIL_COND(!is_environment(p_environment));
  1997. Sky *sky = sky_owner.getornull(environment_get_sky(p_environment));
  1998. ERR_FAIL_COND(!sky);
  1999. RID sky_material = sky_get_material(environment_get_sky(p_environment));
  2000. SkyMaterialData *material = nullptr;
  2001. if (sky_material.is_valid()) {
  2002. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  2003. if (!material || !material->shader_data->valid) {
  2004. material = nullptr;
  2005. }
  2006. }
  2007. if (!material) {
  2008. sky_material = sky_shader.default_material;
  2009. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  2010. }
  2011. ERR_FAIL_COND(!material);
  2012. SkyShaderData *shader_data = material->shader_data;
  2013. ERR_FAIL_COND(!shader_data);
  2014. float multiplier = environment_get_bg_energy(p_environment);
  2015. bool update_single_frame = sky->mode == RS::SKY_MODE_REALTIME || sky->mode == RS::SKY_MODE_QUALITY;
  2016. RS::SkyMode sky_mode = sky->mode;
  2017. if (sky_mode == RS::SKY_MODE_AUTOMATIC) {
  2018. if (shader_data->uses_time || shader_data->uses_position) {
  2019. update_single_frame = true;
  2020. sky_mode = RS::SKY_MODE_REALTIME;
  2021. } else if (shader_data->uses_light || shader_data->ubo_size > 0) {
  2022. update_single_frame = false;
  2023. sky_mode = RS::SKY_MODE_INCREMENTAL;
  2024. } else {
  2025. update_single_frame = true;
  2026. sky_mode = RS::SKY_MODE_QUALITY;
  2027. }
  2028. }
  2029. if (sky->processing_layer == 0 && sky_mode == RS::SKY_MODE_INCREMENTAL) {
  2030. // On the first frame after creating sky, rebuild in single frame
  2031. update_single_frame = true;
  2032. sky_mode = RS::SKY_MODE_QUALITY;
  2033. }
  2034. int max_processing_layer = sky_use_cubemap_array ? sky->reflection.layers.size() : sky->reflection.layers[0].mipmaps.size();
  2035. // Update radiance cubemap
  2036. if (sky->reflection.dirty && (sky->processing_layer >= max_processing_layer || update_single_frame)) {
  2037. static const Vector3 view_normals[6] = {
  2038. Vector3(+1, 0, 0),
  2039. Vector3(-1, 0, 0),
  2040. Vector3(0, +1, 0),
  2041. Vector3(0, -1, 0),
  2042. Vector3(0, 0, +1),
  2043. Vector3(0, 0, -1)
  2044. };
  2045. static const Vector3 view_up[6] = {
  2046. Vector3(0, -1, 0),
  2047. Vector3(0, -1, 0),
  2048. Vector3(0, 0, +1),
  2049. Vector3(0, 0, -1),
  2050. Vector3(0, -1, 0),
  2051. Vector3(0, -1, 0)
  2052. };
  2053. CameraMatrix cm;
  2054. cm.set_perspective(90, 1, 0.01, 10.0);
  2055. CameraMatrix correction;
  2056. correction.set_depth_correction(true);
  2057. cm = correction * cm;
  2058. if (shader_data->uses_quarter_res) {
  2059. RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP_QUARTER_RES];
  2060. Vector<Color> clear_colors;
  2061. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  2062. RD::DrawListID cubemap_draw_list;
  2063. for (int i = 0; i < 6; i++) {
  2064. Transform local_view;
  2065. local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]);
  2066. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES);
  2067. cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[2].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD);
  2068. storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[2].framebuffers[i], sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin);
  2069. RD::get_singleton()->draw_list_end();
  2070. }
  2071. }
  2072. if (shader_data->uses_half_res) {
  2073. RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP_HALF_RES];
  2074. Vector<Color> clear_colors;
  2075. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  2076. RD::DrawListID cubemap_draw_list;
  2077. for (int i = 0; i < 6; i++) {
  2078. Transform local_view;
  2079. local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]);
  2080. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP_HALF_RES);
  2081. cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[1].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD);
  2082. storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[1].framebuffers[i], sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin);
  2083. RD::get_singleton()->draw_list_end();
  2084. }
  2085. }
  2086. RD::DrawListID cubemap_draw_list;
  2087. RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP];
  2088. for (int i = 0; i < 6; i++) {
  2089. Transform local_view;
  2090. local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]);
  2091. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP);
  2092. cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[0].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD);
  2093. storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[0].framebuffers[i], sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin);
  2094. RD::get_singleton()->draw_list_end();
  2095. }
  2096. if (sky_mode == RS::SKY_MODE_REALTIME) {
  2097. _create_reflection_fast_filter(sky->reflection, sky_use_cubemap_array);
  2098. if (sky_use_cubemap_array) {
  2099. _update_reflection_mipmaps(sky->reflection, 0, sky->reflection.layers.size());
  2100. }
  2101. } else {
  2102. if (update_single_frame) {
  2103. for (int i = 1; i < max_processing_layer; i++) {
  2104. _create_reflection_importance_sample(sky->reflection, sky_use_cubemap_array, 10, i);
  2105. }
  2106. if (sky_use_cubemap_array) {
  2107. _update_reflection_mipmaps(sky->reflection, 0, sky->reflection.layers.size());
  2108. }
  2109. } else {
  2110. if (sky_use_cubemap_array) {
  2111. // Multi-Frame so just update the first array level
  2112. _update_reflection_mipmaps(sky->reflection, 0, 1);
  2113. }
  2114. }
  2115. sky->processing_layer = 1;
  2116. }
  2117. sky->reflection.dirty = false;
  2118. } else {
  2119. if (sky_mode == RS::SKY_MODE_INCREMENTAL && sky->processing_layer < max_processing_layer) {
  2120. _create_reflection_importance_sample(sky->reflection, sky_use_cubemap_array, 10, sky->processing_layer);
  2121. if (sky_use_cubemap_array) {
  2122. _update_reflection_mipmaps(sky->reflection, sky->processing_layer, sky->processing_layer + 1);
  2123. }
  2124. sky->processing_layer++;
  2125. }
  2126. }
  2127. }
  2128. /* SKY SHADER */
  2129. void RasterizerSceneRD::SkyShaderData::set_code(const String &p_code) {
  2130. //compile
  2131. code = p_code;
  2132. valid = false;
  2133. ubo_size = 0;
  2134. uniforms.clear();
  2135. if (code == String()) {
  2136. return; //just invalid, but no error
  2137. }
  2138. ShaderCompilerRD::GeneratedCode gen_code;
  2139. ShaderCompilerRD::IdentifierActions actions;
  2140. uses_time = false;
  2141. uses_half_res = false;
  2142. uses_quarter_res = false;
  2143. uses_position = false;
  2144. uses_light = false;
  2145. actions.render_mode_flags["use_half_res_pass"] = &uses_half_res;
  2146. actions.render_mode_flags["use_quarter_res_pass"] = &uses_quarter_res;
  2147. actions.usage_flag_pointers["TIME"] = &uses_time;
  2148. actions.usage_flag_pointers["POSITION"] = &uses_position;
  2149. actions.usage_flag_pointers["LIGHT0_ENABLED"] = &uses_light;
  2150. actions.usage_flag_pointers["LIGHT0_ENERGY"] = &uses_light;
  2151. actions.usage_flag_pointers["LIGHT0_DIRECTION"] = &uses_light;
  2152. actions.usage_flag_pointers["LIGHT0_COLOR"] = &uses_light;
  2153. actions.usage_flag_pointers["LIGHT0_SIZE"] = &uses_light;
  2154. actions.usage_flag_pointers["LIGHT1_ENABLED"] = &uses_light;
  2155. actions.usage_flag_pointers["LIGHT1_ENERGY"] = &uses_light;
  2156. actions.usage_flag_pointers["LIGHT1_DIRECTION"] = &uses_light;
  2157. actions.usage_flag_pointers["LIGHT1_COLOR"] = &uses_light;
  2158. actions.usage_flag_pointers["LIGHT1_SIZE"] = &uses_light;
  2159. actions.usage_flag_pointers["LIGHT2_ENABLED"] = &uses_light;
  2160. actions.usage_flag_pointers["LIGHT2_ENERGY"] = &uses_light;
  2161. actions.usage_flag_pointers["LIGHT2_DIRECTION"] = &uses_light;
  2162. actions.usage_flag_pointers["LIGHT2_COLOR"] = &uses_light;
  2163. actions.usage_flag_pointers["LIGHT2_SIZE"] = &uses_light;
  2164. actions.usage_flag_pointers["LIGHT3_ENABLED"] = &uses_light;
  2165. actions.usage_flag_pointers["LIGHT3_ENERGY"] = &uses_light;
  2166. actions.usage_flag_pointers["LIGHT3_DIRECTION"] = &uses_light;
  2167. actions.usage_flag_pointers["LIGHT3_COLOR"] = &uses_light;
  2168. actions.usage_flag_pointers["LIGHT3_SIZE"] = &uses_light;
  2169. actions.uniforms = &uniforms;
  2170. RasterizerSceneRD *scene_singleton = (RasterizerSceneRD *)RasterizerSceneRD::singleton;
  2171. Error err = scene_singleton->sky_shader.compiler.compile(RS::SHADER_SKY, code, &actions, path, gen_code);
  2172. ERR_FAIL_COND(err != OK);
  2173. if (version.is_null()) {
  2174. version = scene_singleton->sky_shader.shader.version_create();
  2175. }
  2176. #if 0
  2177. print_line("**compiling shader:");
  2178. print_line("**defines:\n");
  2179. for (int i = 0; i < gen_code.defines.size(); i++) {
  2180. print_line(gen_code.defines[i]);
  2181. }
  2182. print_line("\n**uniforms:\n" + gen_code.uniforms);
  2183. // print_line("\n**vertex_globals:\n" + gen_code.vertex_global);
  2184. // print_line("\n**vertex_code:\n" + gen_code.vertex);
  2185. print_line("\n**fragment_globals:\n" + gen_code.fragment_global);
  2186. print_line("\n**fragment_code:\n" + gen_code.fragment);
  2187. print_line("\n**light_code:\n" + gen_code.light);
  2188. #endif
  2189. scene_singleton->sky_shader.shader.version_set_code(version, gen_code.uniforms, gen_code.vertex_global, gen_code.vertex, gen_code.fragment_global, gen_code.light, gen_code.fragment, gen_code.defines);
  2190. ERR_FAIL_COND(!scene_singleton->sky_shader.shader.version_is_valid(version));
  2191. ubo_size = gen_code.uniform_total_size;
  2192. ubo_offsets = gen_code.uniform_offsets;
  2193. texture_uniforms = gen_code.texture_uniforms;
  2194. //update pipelines
  2195. for (int i = 0; i < SKY_VERSION_MAX; i++) {
  2196. RD::PipelineDepthStencilState depth_stencil_state;
  2197. depth_stencil_state.enable_depth_test = true;
  2198. depth_stencil_state.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL;
  2199. RID shader_variant = scene_singleton->sky_shader.shader.version_get_shader(version, i);
  2200. pipelines[i].setup(shader_variant, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), depth_stencil_state, RD::PipelineColorBlendState::create_disabled(), 0);
  2201. }
  2202. valid = true;
  2203. }
  2204. void RasterizerSceneRD::SkyShaderData::set_default_texture_param(const StringName &p_name, RID p_texture) {
  2205. if (!p_texture.is_valid()) {
  2206. default_texture_params.erase(p_name);
  2207. } else {
  2208. default_texture_params[p_name] = p_texture;
  2209. }
  2210. }
  2211. void RasterizerSceneRD::SkyShaderData::get_param_list(List<PropertyInfo> *p_param_list) const {
  2212. Map<int, StringName> order;
  2213. for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = uniforms.front(); E; E = E->next()) {
  2214. if (E->get().scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_GLOBAL || E->get().scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
  2215. continue;
  2216. }
  2217. if (E->get().texture_order >= 0) {
  2218. order[E->get().texture_order + 100000] = E->key();
  2219. } else {
  2220. order[E->get().order] = E->key();
  2221. }
  2222. }
  2223. for (Map<int, StringName>::Element *E = order.front(); E; E = E->next()) {
  2224. PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniforms[E->get()]);
  2225. pi.name = E->get();
  2226. p_param_list->push_back(pi);
  2227. }
  2228. }
  2229. void RasterizerSceneRD::SkyShaderData::get_instance_param_list(List<RasterizerStorage::InstanceShaderParam> *p_param_list) const {
  2230. for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = uniforms.front(); E; E = E->next()) {
  2231. if (E->get().scope != ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
  2232. continue;
  2233. }
  2234. RasterizerStorage::InstanceShaderParam p;
  2235. p.info = ShaderLanguage::uniform_to_property_info(E->get());
  2236. p.info.name = E->key(); //supply name
  2237. p.index = E->get().instance_index;
  2238. p.default_value = ShaderLanguage::constant_value_to_variant(E->get().default_value, E->get().type, E->get().hint);
  2239. p_param_list->push_back(p);
  2240. }
  2241. }
  2242. bool RasterizerSceneRD::SkyShaderData::is_param_texture(const StringName &p_param) const {
  2243. if (!uniforms.has(p_param)) {
  2244. return false;
  2245. }
  2246. return uniforms[p_param].texture_order >= 0;
  2247. }
  2248. bool RasterizerSceneRD::SkyShaderData::is_animated() const {
  2249. return false;
  2250. }
  2251. bool RasterizerSceneRD::SkyShaderData::casts_shadows() const {
  2252. return false;
  2253. }
  2254. Variant RasterizerSceneRD::SkyShaderData::get_default_parameter(const StringName &p_parameter) const {
  2255. if (uniforms.has(p_parameter)) {
  2256. ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter];
  2257. Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value;
  2258. return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint);
  2259. }
  2260. return Variant();
  2261. }
  2262. RasterizerSceneRD::SkyShaderData::SkyShaderData() {
  2263. valid = false;
  2264. }
  2265. RasterizerSceneRD::SkyShaderData::~SkyShaderData() {
  2266. RasterizerSceneRD *scene_singleton = (RasterizerSceneRD *)RasterizerSceneRD::singleton;
  2267. ERR_FAIL_COND(!scene_singleton);
  2268. //pipeline variants will clear themselves if shader is gone
  2269. if (version.is_valid()) {
  2270. scene_singleton->sky_shader.shader.version_free(version);
  2271. }
  2272. }
  2273. RasterizerStorageRD::ShaderData *RasterizerSceneRD::_create_sky_shader_func() {
  2274. SkyShaderData *shader_data = memnew(SkyShaderData);
  2275. return shader_data;
  2276. }
  2277. void RasterizerSceneRD::SkyMaterialData::update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
  2278. RasterizerSceneRD *scene_singleton = (RasterizerSceneRD *)RasterizerSceneRD::singleton;
  2279. uniform_set_updated = true;
  2280. if ((uint32_t)ubo_data.size() != shader_data->ubo_size) {
  2281. p_uniform_dirty = true;
  2282. if (uniform_buffer.is_valid()) {
  2283. RD::get_singleton()->free(uniform_buffer);
  2284. uniform_buffer = RID();
  2285. }
  2286. ubo_data.resize(shader_data->ubo_size);
  2287. if (ubo_data.size()) {
  2288. uniform_buffer = RD::get_singleton()->uniform_buffer_create(ubo_data.size());
  2289. memset(ubo_data.ptrw(), 0, ubo_data.size()); //clear
  2290. }
  2291. //clear previous uniform set
  2292. if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  2293. RD::get_singleton()->free(uniform_set);
  2294. uniform_set = RID();
  2295. }
  2296. }
  2297. //check whether buffer changed
  2298. if (p_uniform_dirty && ubo_data.size()) {
  2299. update_uniform_buffer(shader_data->uniforms, shader_data->ubo_offsets.ptr(), p_parameters, ubo_data.ptrw(), ubo_data.size(), false);
  2300. RD::get_singleton()->buffer_update(uniform_buffer, 0, ubo_data.size(), ubo_data.ptrw());
  2301. }
  2302. uint32_t tex_uniform_count = shader_data->texture_uniforms.size();
  2303. if ((uint32_t)texture_cache.size() != tex_uniform_count) {
  2304. texture_cache.resize(tex_uniform_count);
  2305. p_textures_dirty = true;
  2306. //clear previous uniform set
  2307. if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  2308. RD::get_singleton()->free(uniform_set);
  2309. uniform_set = RID();
  2310. }
  2311. }
  2312. if (p_textures_dirty && tex_uniform_count) {
  2313. update_textures(p_parameters, shader_data->default_texture_params, shader_data->texture_uniforms, texture_cache.ptrw(), true);
  2314. }
  2315. if (shader_data->ubo_size == 0 && shader_data->texture_uniforms.size() == 0) {
  2316. // This material does not require an uniform set, so don't create it.
  2317. return;
  2318. }
  2319. if (!p_textures_dirty && uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  2320. //no reason to update uniform set, only UBO (or nothing) was needed to update
  2321. return;
  2322. }
  2323. Vector<RD::Uniform> uniforms;
  2324. {
  2325. if (shader_data->ubo_size) {
  2326. RD::Uniform u;
  2327. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  2328. u.binding = 0;
  2329. u.ids.push_back(uniform_buffer);
  2330. uniforms.push_back(u);
  2331. }
  2332. const RID *textures = texture_cache.ptrw();
  2333. for (uint32_t i = 0; i < tex_uniform_count; i++) {
  2334. RD::Uniform u;
  2335. u.type = RD::UNIFORM_TYPE_TEXTURE;
  2336. u.binding = 1 + i;
  2337. u.ids.push_back(textures[i]);
  2338. uniforms.push_back(u);
  2339. }
  2340. }
  2341. uniform_set = RD::get_singleton()->uniform_set_create(uniforms, scene_singleton->sky_shader.shader.version_get_shader(shader_data->version, 0), SKY_SET_MATERIAL);
  2342. }
  2343. RasterizerSceneRD::SkyMaterialData::~SkyMaterialData() {
  2344. if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  2345. RD::get_singleton()->free(uniform_set);
  2346. }
  2347. if (uniform_buffer.is_valid()) {
  2348. RD::get_singleton()->free(uniform_buffer);
  2349. }
  2350. }
  2351. RasterizerStorageRD::MaterialData *RasterizerSceneRD::_create_sky_material_func(SkyShaderData *p_shader) {
  2352. SkyMaterialData *material_data = memnew(SkyMaterialData);
  2353. material_data->shader_data = p_shader;
  2354. material_data->last_frame = false;
  2355. //update will happen later anyway so do nothing.
  2356. return material_data;
  2357. }
  2358. RID RasterizerSceneRD::environment_create() {
  2359. return environment_owner.make_rid(Environment());
  2360. }
  2361. void RasterizerSceneRD::environment_set_background(RID p_env, RS::EnvironmentBG p_bg) {
  2362. Environment *env = environment_owner.getornull(p_env);
  2363. ERR_FAIL_COND(!env);
  2364. env->background = p_bg;
  2365. }
  2366. void RasterizerSceneRD::environment_set_sky(RID p_env, RID p_sky) {
  2367. Environment *env = environment_owner.getornull(p_env);
  2368. ERR_FAIL_COND(!env);
  2369. env->sky = p_sky;
  2370. }
  2371. void RasterizerSceneRD::environment_set_sky_custom_fov(RID p_env, float p_scale) {
  2372. Environment *env = environment_owner.getornull(p_env);
  2373. ERR_FAIL_COND(!env);
  2374. env->sky_custom_fov = p_scale;
  2375. }
  2376. void RasterizerSceneRD::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) {
  2377. Environment *env = environment_owner.getornull(p_env);
  2378. ERR_FAIL_COND(!env);
  2379. env->sky_orientation = p_orientation;
  2380. }
  2381. void RasterizerSceneRD::environment_set_bg_color(RID p_env, const Color &p_color) {
  2382. Environment *env = environment_owner.getornull(p_env);
  2383. ERR_FAIL_COND(!env);
  2384. env->bg_color = p_color;
  2385. }
  2386. void RasterizerSceneRD::environment_set_bg_energy(RID p_env, float p_energy) {
  2387. Environment *env = environment_owner.getornull(p_env);
  2388. ERR_FAIL_COND(!env);
  2389. env->bg_energy = p_energy;
  2390. }
  2391. void RasterizerSceneRD::environment_set_canvas_max_layer(RID p_env, int p_max_layer) {
  2392. Environment *env = environment_owner.getornull(p_env);
  2393. ERR_FAIL_COND(!env);
  2394. env->canvas_max_layer = p_max_layer;
  2395. }
  2396. void RasterizerSceneRD::environment_set_ambient_light(RID p_env, const Color &p_color, RS::EnvironmentAmbientSource p_ambient, float p_energy, float p_sky_contribution, RS::EnvironmentReflectionSource p_reflection_source, const Color &p_ao_color) {
  2397. Environment *env = environment_owner.getornull(p_env);
  2398. ERR_FAIL_COND(!env);
  2399. env->ambient_light = p_color;
  2400. env->ambient_source = p_ambient;
  2401. env->ambient_light_energy = p_energy;
  2402. env->ambient_sky_contribution = p_sky_contribution;
  2403. env->reflection_source = p_reflection_source;
  2404. env->ao_color = p_ao_color;
  2405. }
  2406. RS::EnvironmentBG RasterizerSceneRD::environment_get_background(RID p_env) const {
  2407. Environment *env = environment_owner.getornull(p_env);
  2408. ERR_FAIL_COND_V(!env, RS::ENV_BG_MAX);
  2409. return env->background;
  2410. }
  2411. RID RasterizerSceneRD::environment_get_sky(RID p_env) const {
  2412. Environment *env = environment_owner.getornull(p_env);
  2413. ERR_FAIL_COND_V(!env, RID());
  2414. return env->sky;
  2415. }
  2416. float RasterizerSceneRD::environment_get_sky_custom_fov(RID p_env) const {
  2417. Environment *env = environment_owner.getornull(p_env);
  2418. ERR_FAIL_COND_V(!env, 0);
  2419. return env->sky_custom_fov;
  2420. }
  2421. Basis RasterizerSceneRD::environment_get_sky_orientation(RID p_env) const {
  2422. Environment *env = environment_owner.getornull(p_env);
  2423. ERR_FAIL_COND_V(!env, Basis());
  2424. return env->sky_orientation;
  2425. }
  2426. Color RasterizerSceneRD::environment_get_bg_color(RID p_env) const {
  2427. Environment *env = environment_owner.getornull(p_env);
  2428. ERR_FAIL_COND_V(!env, Color());
  2429. return env->bg_color;
  2430. }
  2431. float RasterizerSceneRD::environment_get_bg_energy(RID p_env) const {
  2432. Environment *env = environment_owner.getornull(p_env);
  2433. ERR_FAIL_COND_V(!env, 0);
  2434. return env->bg_energy;
  2435. }
  2436. int RasterizerSceneRD::environment_get_canvas_max_layer(RID p_env) const {
  2437. Environment *env = environment_owner.getornull(p_env);
  2438. ERR_FAIL_COND_V(!env, 0);
  2439. return env->canvas_max_layer;
  2440. }
  2441. Color RasterizerSceneRD::environment_get_ambient_light_color(RID p_env) const {
  2442. Environment *env = environment_owner.getornull(p_env);
  2443. ERR_FAIL_COND_V(!env, Color());
  2444. return env->ambient_light;
  2445. }
  2446. RS::EnvironmentAmbientSource RasterizerSceneRD::environment_get_ambient_source(RID p_env) const {
  2447. Environment *env = environment_owner.getornull(p_env);
  2448. ERR_FAIL_COND_V(!env, RS::ENV_AMBIENT_SOURCE_BG);
  2449. return env->ambient_source;
  2450. }
  2451. float RasterizerSceneRD::environment_get_ambient_light_energy(RID p_env) const {
  2452. Environment *env = environment_owner.getornull(p_env);
  2453. ERR_FAIL_COND_V(!env, 0);
  2454. return env->ambient_light_energy;
  2455. }
  2456. float RasterizerSceneRD::environment_get_ambient_sky_contribution(RID p_env) const {
  2457. Environment *env = environment_owner.getornull(p_env);
  2458. ERR_FAIL_COND_V(!env, 0);
  2459. return env->ambient_sky_contribution;
  2460. }
  2461. RS::EnvironmentReflectionSource RasterizerSceneRD::environment_get_reflection_source(RID p_env) const {
  2462. Environment *env = environment_owner.getornull(p_env);
  2463. ERR_FAIL_COND_V(!env, RS::ENV_REFLECTION_SOURCE_DISABLED);
  2464. return env->reflection_source;
  2465. }
  2466. Color RasterizerSceneRD::environment_get_ao_color(RID p_env) const {
  2467. Environment *env = environment_owner.getornull(p_env);
  2468. ERR_FAIL_COND_V(!env, Color());
  2469. return env->ao_color;
  2470. }
  2471. void RasterizerSceneRD::environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) {
  2472. Environment *env = environment_owner.getornull(p_env);
  2473. ERR_FAIL_COND(!env);
  2474. env->exposure = p_exposure;
  2475. env->tone_mapper = p_tone_mapper;
  2476. if (!env->auto_exposure && p_auto_exposure) {
  2477. env->auto_exposure_version = ++auto_exposure_counter;
  2478. }
  2479. env->auto_exposure = p_auto_exposure;
  2480. env->white = p_white;
  2481. env->min_luminance = p_min_luminance;
  2482. env->max_luminance = p_max_luminance;
  2483. env->auto_exp_speed = p_auto_exp_speed;
  2484. env->auto_exp_scale = p_auto_exp_scale;
  2485. }
  2486. void RasterizerSceneRD::environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap) {
  2487. Environment *env = environment_owner.getornull(p_env);
  2488. ERR_FAIL_COND(!env);
  2489. env->glow_enabled = p_enable;
  2490. env->glow_levels = p_level_flags;
  2491. env->glow_intensity = p_intensity;
  2492. env->glow_strength = p_strength;
  2493. env->glow_mix = p_mix;
  2494. env->glow_bloom = p_bloom_threshold;
  2495. env->glow_blend_mode = p_blend_mode;
  2496. env->glow_hdr_bleed_threshold = p_hdr_bleed_threshold;
  2497. env->glow_hdr_bleed_scale = p_hdr_bleed_scale;
  2498. env->glow_hdr_luminance_cap = p_hdr_luminance_cap;
  2499. }
  2500. void RasterizerSceneRD::environment_glow_set_use_bicubic_upscale(bool p_enable) {
  2501. glow_bicubic_upscale = p_enable;
  2502. }
  2503. void RasterizerSceneRD::environment_set_sdfgi(RID p_env, bool p_enable, RS::EnvironmentSDFGICascades p_cascades, float p_min_cell_size, RS::EnvironmentSDFGIYScale p_y_scale, bool p_use_occlusion, bool p_use_multibounce, bool p_read_sky, float p_energy, float p_normal_bias, float p_probe_bias) {
  2504. Environment *env = environment_owner.getornull(p_env);
  2505. ERR_FAIL_COND(!env);
  2506. env->sdfgi_enabled = p_enable;
  2507. env->sdfgi_cascades = p_cascades;
  2508. env->sdfgi_min_cell_size = p_min_cell_size;
  2509. env->sdfgi_use_occlusion = p_use_occlusion;
  2510. env->sdfgi_use_multibounce = p_use_multibounce;
  2511. env->sdfgi_read_sky_light = p_read_sky;
  2512. env->sdfgi_energy = p_energy;
  2513. env->sdfgi_normal_bias = p_normal_bias;
  2514. env->sdfgi_probe_bias = p_probe_bias;
  2515. env->sdfgi_y_scale = p_y_scale;
  2516. }
  2517. void RasterizerSceneRD::environment_set_fog(RID p_env, bool p_enable, const Color &p_light_color, float p_light_energy, float p_sun_scatter, float p_density, float p_height, float p_height_density) {
  2518. Environment *env = environment_owner.getornull(p_env);
  2519. ERR_FAIL_COND(!env);
  2520. env->fog_enabled = p_enable;
  2521. env->fog_light_color = p_light_color;
  2522. env->fog_light_energy = p_light_energy;
  2523. env->fog_sun_scatter = p_sun_scatter;
  2524. env->fog_density = p_density;
  2525. env->fog_height = p_height;
  2526. env->fog_height_density = p_height_density;
  2527. }
  2528. bool RasterizerSceneRD::environment_is_fog_enabled(RID p_env) const {
  2529. const Environment *env = environment_owner.getornull(p_env);
  2530. ERR_FAIL_COND_V(!env, false);
  2531. return env->fog_enabled;
  2532. }
  2533. Color RasterizerSceneRD::environment_get_fog_light_color(RID p_env) const {
  2534. const Environment *env = environment_owner.getornull(p_env);
  2535. ERR_FAIL_COND_V(!env, Color());
  2536. return env->fog_light_color;
  2537. }
  2538. float RasterizerSceneRD::environment_get_fog_light_energy(RID p_env) const {
  2539. const Environment *env = environment_owner.getornull(p_env);
  2540. ERR_FAIL_COND_V(!env, 0);
  2541. return env->fog_light_energy;
  2542. }
  2543. float RasterizerSceneRD::environment_get_fog_sun_scatter(RID p_env) const {
  2544. const Environment *env = environment_owner.getornull(p_env);
  2545. ERR_FAIL_COND_V(!env, 0);
  2546. return env->fog_sun_scatter;
  2547. }
  2548. float RasterizerSceneRD::environment_get_fog_density(RID p_env) const {
  2549. const Environment *env = environment_owner.getornull(p_env);
  2550. ERR_FAIL_COND_V(!env, 0);
  2551. return env->fog_density;
  2552. }
  2553. float RasterizerSceneRD::environment_get_fog_height(RID p_env) const {
  2554. const Environment *env = environment_owner.getornull(p_env);
  2555. ERR_FAIL_COND_V(!env, 0);
  2556. return env->fog_height;
  2557. }
  2558. float RasterizerSceneRD::environment_get_fog_height_density(RID p_env) const {
  2559. const Environment *env = environment_owner.getornull(p_env);
  2560. ERR_FAIL_COND_V(!env, 0);
  2561. return env->fog_height_density;
  2562. }
  2563. void RasterizerSceneRD::environment_set_volumetric_fog(RID p_env, bool p_enable, float p_density, const Color &p_light, float p_light_energy, float p_length, float p_detail_spread, float p_gi_inject, RenderingServer::EnvVolumetricFogShadowFilter p_shadow_filter) {
  2564. Environment *env = environment_owner.getornull(p_env);
  2565. ERR_FAIL_COND(!env);
  2566. env->volumetric_fog_enabled = p_enable;
  2567. env->volumetric_fog_density = p_density;
  2568. env->volumetric_fog_light = p_light;
  2569. env->volumetric_fog_light_energy = p_light_energy;
  2570. env->volumetric_fog_length = p_length;
  2571. env->volumetric_fog_detail_spread = p_detail_spread;
  2572. env->volumetric_fog_shadow_filter = p_shadow_filter;
  2573. env->volumetric_fog_gi_inject = p_gi_inject;
  2574. }
  2575. void RasterizerSceneRD::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) {
  2576. volumetric_fog_size = p_size;
  2577. volumetric_fog_depth = p_depth;
  2578. }
  2579. void RasterizerSceneRD::environment_set_volumetric_fog_filter_active(bool p_enable) {
  2580. volumetric_fog_filter_active = p_enable;
  2581. }
  2582. void RasterizerSceneRD::environment_set_volumetric_fog_directional_shadow_shrink_size(int p_shrink_size) {
  2583. p_shrink_size = nearest_power_of_2_templated(p_shrink_size);
  2584. if (volumetric_fog_directional_shadow_shrink == (uint32_t)p_shrink_size) {
  2585. return;
  2586. }
  2587. _clear_shadow_shrink_stages(directional_shadow.shrink_stages);
  2588. }
  2589. void RasterizerSceneRD::environment_set_volumetric_fog_positional_shadow_shrink_size(int p_shrink_size) {
  2590. p_shrink_size = nearest_power_of_2_templated(p_shrink_size);
  2591. if (volumetric_fog_positional_shadow_shrink == (uint32_t)p_shrink_size) {
  2592. return;
  2593. }
  2594. for (uint32_t i = 0; i < shadow_atlas_owner.get_rid_count(); i++) {
  2595. ShadowAtlas *sa = shadow_atlas_owner.get_ptr_by_index(i);
  2596. _clear_shadow_shrink_stages(sa->shrink_stages);
  2597. }
  2598. }
  2599. void RasterizerSceneRD::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) {
  2600. sdfgi_ray_count = p_ray_count;
  2601. }
  2602. void RasterizerSceneRD::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) {
  2603. sdfgi_frames_to_converge = p_frames;
  2604. }
  2605. void RasterizerSceneRD::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance) {
  2606. Environment *env = environment_owner.getornull(p_env);
  2607. ERR_FAIL_COND(!env);
  2608. env->ssr_enabled = p_enable;
  2609. env->ssr_max_steps = p_max_steps;
  2610. env->ssr_fade_in = p_fade_int;
  2611. env->ssr_fade_out = p_fade_out;
  2612. env->ssr_depth_tolerance = p_depth_tolerance;
  2613. }
  2614. void RasterizerSceneRD::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) {
  2615. ssr_roughness_quality = p_quality;
  2616. }
  2617. RS::EnvironmentSSRRoughnessQuality RasterizerSceneRD::environment_get_ssr_roughness_quality() const {
  2618. return ssr_roughness_quality;
  2619. }
  2620. void RasterizerSceneRD::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_bias, float p_light_affect, float p_ao_channel_affect, RS::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) {
  2621. Environment *env = environment_owner.getornull(p_env);
  2622. ERR_FAIL_COND(!env);
  2623. env->ssao_enabled = p_enable;
  2624. env->ssao_radius = p_radius;
  2625. env->ssao_intensity = p_intensity;
  2626. env->ssao_bias = p_bias;
  2627. env->ssao_direct_light_affect = p_light_affect;
  2628. env->ssao_ao_channel_affect = p_ao_channel_affect;
  2629. env->ssao_blur = p_blur;
  2630. }
  2631. void RasterizerSceneRD::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size) {
  2632. ssao_quality = p_quality;
  2633. ssao_half_size = p_half_size;
  2634. }
  2635. bool RasterizerSceneRD::environment_is_ssao_enabled(RID p_env) const {
  2636. Environment *env = environment_owner.getornull(p_env);
  2637. ERR_FAIL_COND_V(!env, false);
  2638. return env->ssao_enabled;
  2639. }
  2640. float RasterizerSceneRD::environment_get_ssao_ao_affect(RID p_env) const {
  2641. Environment *env = environment_owner.getornull(p_env);
  2642. ERR_FAIL_COND_V(!env, false);
  2643. return env->ssao_ao_channel_affect;
  2644. }
  2645. float RasterizerSceneRD::environment_get_ssao_light_affect(RID p_env) const {
  2646. Environment *env = environment_owner.getornull(p_env);
  2647. ERR_FAIL_COND_V(!env, false);
  2648. return env->ssao_direct_light_affect;
  2649. }
  2650. bool RasterizerSceneRD::environment_is_ssr_enabled(RID p_env) const {
  2651. Environment *env = environment_owner.getornull(p_env);
  2652. ERR_FAIL_COND_V(!env, false);
  2653. return env->ssr_enabled;
  2654. }
  2655. bool RasterizerSceneRD::environment_is_sdfgi_enabled(RID p_env) const {
  2656. Environment *env = environment_owner.getornull(p_env);
  2657. ERR_FAIL_COND_V(!env, false);
  2658. return env->sdfgi_enabled;
  2659. }
  2660. bool RasterizerSceneRD::is_environment(RID p_env) const {
  2661. return environment_owner.owns(p_env);
  2662. }
  2663. Ref<Image> RasterizerSceneRD::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) {
  2664. Environment *env = environment_owner.getornull(p_env);
  2665. ERR_FAIL_COND_V(!env, Ref<Image>());
  2666. if (env->background == RS::ENV_BG_CAMERA_FEED || env->background == RS::ENV_BG_CANVAS || env->background == RS::ENV_BG_KEEP) {
  2667. return Ref<Image>(); //nothing to bake
  2668. }
  2669. if (env->background == RS::ENV_BG_CLEAR_COLOR || env->background == RS::ENV_BG_COLOR) {
  2670. Color color;
  2671. if (env->background == RS::ENV_BG_CLEAR_COLOR) {
  2672. color = storage->get_default_clear_color();
  2673. } else {
  2674. color = env->bg_color;
  2675. }
  2676. color.r *= env->bg_energy;
  2677. color.g *= env->bg_energy;
  2678. color.b *= env->bg_energy;
  2679. Ref<Image> ret;
  2680. ret.instance();
  2681. ret->create(p_size.width, p_size.height, false, Image::FORMAT_RGBAF);
  2682. for (int i = 0; i < p_size.width; i++) {
  2683. for (int j = 0; j < p_size.height; j++) {
  2684. ret->set_pixel(i, j, color);
  2685. }
  2686. }
  2687. return ret;
  2688. }
  2689. if (env->background == RS::ENV_BG_SKY && env->sky.is_valid()) {
  2690. return sky_bake_panorama(env->sky, env->bg_energy, p_bake_irradiance, p_size);
  2691. }
  2692. return Ref<Image>();
  2693. }
  2694. ////////////////////////////////////////////////////////////
  2695. RID RasterizerSceneRD::reflection_atlas_create() {
  2696. ReflectionAtlas ra;
  2697. ra.count = GLOBAL_GET("rendering/quality/reflection_atlas/reflection_count");
  2698. ra.size = GLOBAL_GET("rendering/quality/reflection_atlas/reflection_size");
  2699. return reflection_atlas_owner.make_rid(ra);
  2700. }
  2701. void RasterizerSceneRD::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) {
  2702. ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_ref_atlas);
  2703. ERR_FAIL_COND(!ra);
  2704. if (ra->size == p_reflection_size && ra->count == p_reflection_count) {
  2705. return; //no changes
  2706. }
  2707. ra->size = p_reflection_size;
  2708. ra->count = p_reflection_count;
  2709. if (ra->reflection.is_valid()) {
  2710. //clear and invalidate everything
  2711. RD::get_singleton()->free(ra->reflection);
  2712. ra->reflection = RID();
  2713. RD::get_singleton()->free(ra->depth_buffer);
  2714. ra->depth_buffer = RID();
  2715. for (int i = 0; i < ra->reflections.size(); i++) {
  2716. _clear_reflection_data(ra->reflections.write[i].data);
  2717. if (ra->reflections[i].owner.is_null()) {
  2718. continue;
  2719. }
  2720. reflection_probe_release_atlas_index(ra->reflections[i].owner);
  2721. //rp->atlasindex clear
  2722. }
  2723. ra->reflections.clear();
  2724. }
  2725. }
  2726. ////////////////////////
  2727. RID RasterizerSceneRD::reflection_probe_instance_create(RID p_probe) {
  2728. ReflectionProbeInstance rpi;
  2729. rpi.probe = p_probe;
  2730. return reflection_probe_instance_owner.make_rid(rpi);
  2731. }
  2732. void RasterizerSceneRD::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) {
  2733. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2734. ERR_FAIL_COND(!rpi);
  2735. rpi->transform = p_transform;
  2736. rpi->dirty = true;
  2737. }
  2738. void RasterizerSceneRD::reflection_probe_release_atlas_index(RID p_instance) {
  2739. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2740. ERR_FAIL_COND(!rpi);
  2741. if (rpi->atlas.is_null()) {
  2742. return; //nothing to release
  2743. }
  2744. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  2745. ERR_FAIL_COND(!atlas);
  2746. ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size());
  2747. atlas->reflections.write[rpi->atlas_index].owner = RID();
  2748. rpi->atlas_index = -1;
  2749. rpi->atlas = RID();
  2750. }
  2751. bool RasterizerSceneRD::reflection_probe_instance_needs_redraw(RID p_instance) {
  2752. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2753. ERR_FAIL_COND_V(!rpi, false);
  2754. if (rpi->rendering) {
  2755. return false;
  2756. }
  2757. if (rpi->dirty) {
  2758. return true;
  2759. }
  2760. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
  2761. return true;
  2762. }
  2763. return rpi->atlas_index == -1;
  2764. }
  2765. bool RasterizerSceneRD::reflection_probe_instance_has_reflection(RID p_instance) {
  2766. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2767. ERR_FAIL_COND_V(!rpi, false);
  2768. return rpi->atlas.is_valid();
  2769. }
  2770. bool RasterizerSceneRD::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
  2771. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(p_reflection_atlas);
  2772. ERR_FAIL_COND_V(!atlas, false);
  2773. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2774. ERR_FAIL_COND_V(!rpi, false);
  2775. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->size != 256) {
  2776. WARN_PRINT("ReflectionProbes set to UPDATE_ALWAYS must have an atlas size of 256. Please update the atlas size in the ProjectSettings.");
  2777. reflection_atlas_set_size(p_reflection_atlas, 256, atlas->count);
  2778. }
  2779. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->reflections[0].data.layers[0].mipmaps.size() != 8) {
  2780. // Invalidate reflection atlas, need to regenerate
  2781. RD::get_singleton()->free(atlas->reflection);
  2782. atlas->reflection = RID();
  2783. for (int i = 0; i < atlas->reflections.size(); i++) {
  2784. if (atlas->reflections[i].owner.is_null()) {
  2785. continue;
  2786. }
  2787. reflection_probe_release_atlas_index(atlas->reflections[i].owner);
  2788. }
  2789. atlas->reflections.clear();
  2790. }
  2791. if (atlas->reflection.is_null()) {
  2792. int mipmaps = MIN(roughness_layers, Image::get_image_required_mipmaps(atlas->size, atlas->size, Image::FORMAT_RGBAH) + 1);
  2793. mipmaps = storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS ? 8 : mipmaps; // always use 8 mipmaps with real time filtering
  2794. {
  2795. //reflection atlas was unused, create:
  2796. RD::TextureFormat tf;
  2797. tf.array_layers = 6 * atlas->count;
  2798. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  2799. tf.type = RD::TEXTURE_TYPE_CUBE_ARRAY;
  2800. tf.mipmaps = mipmaps;
  2801. tf.width = atlas->size;
  2802. tf.height = atlas->size;
  2803. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  2804. atlas->reflection = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2805. }
  2806. {
  2807. RD::TextureFormat tf;
  2808. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  2809. tf.width = atlas->size;
  2810. tf.height = atlas->size;
  2811. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  2812. atlas->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2813. }
  2814. atlas->reflections.resize(atlas->count);
  2815. for (int i = 0; i < atlas->count; i++) {
  2816. _update_reflection_data(atlas->reflections.write[i].data, atlas->size, mipmaps, false, atlas->reflection, i * 6, storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS);
  2817. for (int j = 0; j < 6; j++) {
  2818. Vector<RID> fb;
  2819. fb.push_back(atlas->reflections.write[i].data.layers[0].mipmaps[0].views[j]);
  2820. fb.push_back(atlas->depth_buffer);
  2821. atlas->reflections.write[i].fbs[j] = RD::get_singleton()->framebuffer_create(fb);
  2822. }
  2823. }
  2824. Vector<RID> fb;
  2825. fb.push_back(atlas->depth_buffer);
  2826. atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb);
  2827. }
  2828. if (rpi->atlas_index == -1) {
  2829. for (int i = 0; i < atlas->reflections.size(); i++) {
  2830. if (atlas->reflections[i].owner.is_null()) {
  2831. rpi->atlas_index = i;
  2832. break;
  2833. }
  2834. }
  2835. //find the one used last
  2836. if (rpi->atlas_index == -1) {
  2837. //everything is in use, find the one least used via LRU
  2838. uint64_t pass_min = 0;
  2839. for (int i = 0; i < atlas->reflections.size(); i++) {
  2840. ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.getornull(atlas->reflections[i].owner);
  2841. if (rpi2->last_pass < pass_min) {
  2842. pass_min = rpi2->last_pass;
  2843. rpi->atlas_index = i;
  2844. }
  2845. }
  2846. }
  2847. }
  2848. rpi->atlas = p_reflection_atlas;
  2849. rpi->rendering = true;
  2850. rpi->dirty = false;
  2851. rpi->processing_layer = 1;
  2852. rpi->processing_side = 0;
  2853. return true;
  2854. }
  2855. bool RasterizerSceneRD::reflection_probe_instance_postprocess_step(RID p_instance) {
  2856. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2857. ERR_FAIL_COND_V(!rpi, false);
  2858. ERR_FAIL_COND_V(!rpi->rendering, false);
  2859. ERR_FAIL_COND_V(rpi->atlas.is_null(), false);
  2860. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  2861. if (!atlas || rpi->atlas_index == -1) {
  2862. //does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering)
  2863. rpi->rendering = false;
  2864. return false;
  2865. }
  2866. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
  2867. // Using real time reflections, all roughness is done in one step
  2868. _create_reflection_fast_filter(atlas->reflections.write[rpi->atlas_index].data, false);
  2869. rpi->rendering = false;
  2870. rpi->processing_side = 0;
  2871. rpi->processing_layer = 1;
  2872. return true;
  2873. }
  2874. if (rpi->processing_layer > 1) {
  2875. _create_reflection_importance_sample(atlas->reflections.write[rpi->atlas_index].data, false, 10, rpi->processing_layer);
  2876. rpi->processing_layer++;
  2877. if (rpi->processing_layer == atlas->reflections[rpi->atlas_index].data.layers[0].mipmaps.size()) {
  2878. rpi->rendering = false;
  2879. rpi->processing_side = 0;
  2880. rpi->processing_layer = 1;
  2881. return true;
  2882. }
  2883. return false;
  2884. } else {
  2885. _create_reflection_importance_sample(atlas->reflections.write[rpi->atlas_index].data, false, rpi->processing_side, rpi->processing_layer);
  2886. }
  2887. rpi->processing_side++;
  2888. if (rpi->processing_side == 6) {
  2889. rpi->processing_side = 0;
  2890. rpi->processing_layer++;
  2891. }
  2892. return false;
  2893. }
  2894. uint32_t RasterizerSceneRD::reflection_probe_instance_get_resolution(RID p_instance) {
  2895. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2896. ERR_FAIL_COND_V(!rpi, 0);
  2897. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  2898. ERR_FAIL_COND_V(!atlas, 0);
  2899. return atlas->size;
  2900. }
  2901. RID RasterizerSceneRD::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) {
  2902. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2903. ERR_FAIL_COND_V(!rpi, RID());
  2904. ERR_FAIL_INDEX_V(p_index, 6, RID());
  2905. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  2906. ERR_FAIL_COND_V(!atlas, RID());
  2907. return atlas->reflections[rpi->atlas_index].fbs[p_index];
  2908. }
  2909. RID RasterizerSceneRD::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) {
  2910. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2911. ERR_FAIL_COND_V(!rpi, RID());
  2912. ERR_FAIL_INDEX_V(p_index, 6, RID());
  2913. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  2914. ERR_FAIL_COND_V(!atlas, RID());
  2915. return atlas->depth_fb;
  2916. }
  2917. ///////////////////////////////////////////////////////////
  2918. RID RasterizerSceneRD::shadow_atlas_create() {
  2919. return shadow_atlas_owner.make_rid(ShadowAtlas());
  2920. }
  2921. void RasterizerSceneRD::shadow_atlas_set_size(RID p_atlas, int p_size) {
  2922. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  2923. ERR_FAIL_COND(!shadow_atlas);
  2924. ERR_FAIL_COND(p_size < 0);
  2925. p_size = next_power_of_2(p_size);
  2926. if (p_size == shadow_atlas->size) {
  2927. return;
  2928. }
  2929. // erasing atlas
  2930. if (shadow_atlas->depth.is_valid()) {
  2931. RD::get_singleton()->free(shadow_atlas->depth);
  2932. shadow_atlas->depth = RID();
  2933. _clear_shadow_shrink_stages(shadow_atlas->shrink_stages);
  2934. }
  2935. for (int i = 0; i < 4; i++) {
  2936. //clear subdivisions
  2937. shadow_atlas->quadrants[i].shadows.resize(0);
  2938. shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision);
  2939. }
  2940. //erase shadow atlas reference from lights
  2941. for (Map<RID, uint32_t>::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) {
  2942. LightInstance *li = light_instance_owner.getornull(E->key());
  2943. ERR_CONTINUE(!li);
  2944. li->shadow_atlases.erase(p_atlas);
  2945. }
  2946. //clear owners
  2947. shadow_atlas->shadow_owners.clear();
  2948. shadow_atlas->size = p_size;
  2949. if (shadow_atlas->size) {
  2950. RD::TextureFormat tf;
  2951. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  2952. tf.width = shadow_atlas->size;
  2953. tf.height = shadow_atlas->size;
  2954. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  2955. shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2956. }
  2957. }
  2958. void RasterizerSceneRD::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
  2959. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  2960. ERR_FAIL_COND(!shadow_atlas);
  2961. ERR_FAIL_INDEX(p_quadrant, 4);
  2962. ERR_FAIL_INDEX(p_subdivision, 16384);
  2963. uint32_t subdiv = next_power_of_2(p_subdivision);
  2964. if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer
  2965. subdiv <<= 1;
  2966. }
  2967. subdiv = int(Math::sqrt((float)subdiv));
  2968. //obtain the number that will be x*x
  2969. if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) {
  2970. return;
  2971. }
  2972. //erase all data from quadrant
  2973. for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
  2974. if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
  2975. shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  2976. LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  2977. ERR_CONTINUE(!li);
  2978. li->shadow_atlases.erase(p_atlas);
  2979. }
  2980. }
  2981. shadow_atlas->quadrants[p_quadrant].shadows.resize(0);
  2982. shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv);
  2983. shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;
  2984. //cache the smallest subdiv (for faster allocation in light update)
  2985. shadow_atlas->smallest_subdiv = 1 << 30;
  2986. for (int i = 0; i < 4; i++) {
  2987. if (shadow_atlas->quadrants[i].subdivision) {
  2988. shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
  2989. }
  2990. }
  2991. if (shadow_atlas->smallest_subdiv == 1 << 30) {
  2992. shadow_atlas->smallest_subdiv = 0;
  2993. }
  2994. //resort the size orders, simple bublesort for 4 elements..
  2995. int swaps = 0;
  2996. do {
  2997. swaps = 0;
  2998. for (int i = 0; i < 3; i++) {
  2999. if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
  3000. SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
  3001. swaps++;
  3002. }
  3003. }
  3004. } while (swaps > 0);
  3005. }
  3006. bool RasterizerSceneRD::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
  3007. for (int i = p_quadrant_count - 1; i >= 0; i--) {
  3008. int qidx = p_in_quadrants[i];
  3009. if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
  3010. return false;
  3011. }
  3012. //look for an empty space
  3013. int sc = shadow_atlas->quadrants[qidx].shadows.size();
  3014. ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw();
  3015. int found_free_idx = -1; //found a free one
  3016. int found_used_idx = -1; //found existing one, must steal it
  3017. uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion)
  3018. for (int j = 0; j < sc; j++) {
  3019. if (!sarr[j].owner.is_valid()) {
  3020. found_free_idx = j;
  3021. break;
  3022. }
  3023. LightInstance *sli = light_instance_owner.getornull(sarr[j].owner);
  3024. ERR_CONTINUE(!sli);
  3025. if (sli->last_scene_pass != scene_pass) {
  3026. //was just allocated, don't kill it so soon, wait a bit..
  3027. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
  3028. continue;
  3029. }
  3030. if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
  3031. found_used_idx = j;
  3032. min_pass = sli->last_scene_pass;
  3033. }
  3034. }
  3035. }
  3036. if (found_free_idx == -1 && found_used_idx == -1) {
  3037. continue; //nothing found
  3038. }
  3039. if (found_free_idx == -1 && found_used_idx != -1) {
  3040. found_free_idx = found_used_idx;
  3041. }
  3042. r_quadrant = qidx;
  3043. r_shadow = found_free_idx;
  3044. return true;
  3045. }
  3046. return false;
  3047. }
  3048. bool RasterizerSceneRD::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) {
  3049. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  3050. ERR_FAIL_COND_V(!shadow_atlas, false);
  3051. LightInstance *li = light_instance_owner.getornull(p_light_intance);
  3052. ERR_FAIL_COND_V(!li, false);
  3053. if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
  3054. return false;
  3055. }
  3056. uint32_t quad_size = shadow_atlas->size >> 1;
  3057. int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));
  3058. int valid_quadrants[4];
  3059. int valid_quadrant_count = 0;
  3060. int best_size = -1; //best size found
  3061. int best_subdiv = -1; //subdiv for the best size
  3062. //find the quadrants this fits into, and the best possible size it can fit into
  3063. for (int i = 0; i < 4; i++) {
  3064. int q = shadow_atlas->size_order[i];
  3065. int sd = shadow_atlas->quadrants[q].subdivision;
  3066. if (sd == 0) {
  3067. continue; //unused
  3068. }
  3069. int max_fit = quad_size / sd;
  3070. if (best_size != -1 && max_fit > best_size) {
  3071. break; //too large
  3072. }
  3073. valid_quadrants[valid_quadrant_count++] = q;
  3074. best_subdiv = sd;
  3075. if (max_fit >= desired_fit) {
  3076. best_size = max_fit;
  3077. }
  3078. }
  3079. ERR_FAIL_COND_V(valid_quadrant_count == 0, false);
  3080. uint64_t tick = OS::get_singleton()->get_ticks_msec();
  3081. //see if it already exists
  3082. if (shadow_atlas->shadow_owners.has(p_light_intance)) {
  3083. //it does!
  3084. uint32_t key = shadow_atlas->shadow_owners[p_light_intance];
  3085. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  3086. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  3087. bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
  3088. bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version;
  3089. if (!should_realloc) {
  3090. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  3091. //already existing, see if it should redraw or it's just OK
  3092. return should_redraw;
  3093. }
  3094. int new_quadrant, new_shadow;
  3095. //find a better place
  3096. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) {
  3097. //found a better place!
  3098. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  3099. if (sh->owner.is_valid()) {
  3100. //is taken, but is invalid, erasing it
  3101. shadow_atlas->shadow_owners.erase(sh->owner);
  3102. LightInstance *sli = light_instance_owner.getornull(sh->owner);
  3103. sli->shadow_atlases.erase(p_atlas);
  3104. }
  3105. //erase previous
  3106. shadow_atlas->quadrants[q].shadows.write[s].version = 0;
  3107. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  3108. sh->owner = p_light_intance;
  3109. sh->alloc_tick = tick;
  3110. sh->version = p_light_version;
  3111. li->shadow_atlases.insert(p_atlas);
  3112. //make new key
  3113. key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  3114. key |= new_shadow;
  3115. //update it in map
  3116. shadow_atlas->shadow_owners[p_light_intance] = key;
  3117. //make it dirty, as it should redraw anyway
  3118. return true;
  3119. }
  3120. //no better place for this shadow found, keep current
  3121. //already existing, see if it should redraw or it's just OK
  3122. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  3123. return should_redraw;
  3124. }
  3125. int new_quadrant, new_shadow;
  3126. //find a better place
  3127. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) {
  3128. //found a better place!
  3129. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  3130. if (sh->owner.is_valid()) {
  3131. //is taken, but is invalid, erasing it
  3132. shadow_atlas->shadow_owners.erase(sh->owner);
  3133. LightInstance *sli = light_instance_owner.getornull(sh->owner);
  3134. sli->shadow_atlases.erase(p_atlas);
  3135. }
  3136. sh->owner = p_light_intance;
  3137. sh->alloc_tick = tick;
  3138. sh->version = p_light_version;
  3139. li->shadow_atlases.insert(p_atlas);
  3140. //make new key
  3141. uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  3142. key |= new_shadow;
  3143. //update it in map
  3144. shadow_atlas->shadow_owners[p_light_intance] = key;
  3145. //make it dirty, as it should redraw anyway
  3146. return true;
  3147. }
  3148. //no place to allocate this light, apologies
  3149. return false;
  3150. }
  3151. void RasterizerSceneRD::directional_shadow_atlas_set_size(int p_size) {
  3152. p_size = nearest_power_of_2_templated(p_size);
  3153. if (directional_shadow.size == p_size) {
  3154. return;
  3155. }
  3156. directional_shadow.size = p_size;
  3157. if (directional_shadow.depth.is_valid()) {
  3158. RD::get_singleton()->free(directional_shadow.depth);
  3159. _clear_shadow_shrink_stages(directional_shadow.shrink_stages);
  3160. directional_shadow.depth = RID();
  3161. }
  3162. if (p_size > 0) {
  3163. RD::TextureFormat tf;
  3164. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  3165. tf.width = p_size;
  3166. tf.height = p_size;
  3167. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  3168. directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3169. }
  3170. _base_uniforms_changed();
  3171. }
  3172. void RasterizerSceneRD::set_directional_shadow_count(int p_count) {
  3173. directional_shadow.light_count = p_count;
  3174. directional_shadow.current_light = 0;
  3175. }
  3176. static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) {
  3177. int split_h = 1;
  3178. int split_v = 1;
  3179. while (split_h * split_v < p_shadow_count) {
  3180. if (split_h == split_v) {
  3181. split_h <<= 1;
  3182. } else {
  3183. split_v <<= 1;
  3184. }
  3185. }
  3186. Rect2i rect(0, 0, p_size, p_size);
  3187. rect.size.width /= split_h;
  3188. rect.size.height /= split_v;
  3189. rect.position.x = rect.size.width * (p_shadow_index % split_h);
  3190. rect.position.y = rect.size.height * (p_shadow_index / split_h);
  3191. return rect;
  3192. }
  3193. int RasterizerSceneRD::get_directional_light_shadow_size(RID p_light_intance) {
  3194. ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);
  3195. Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0);
  3196. LightInstance *light_instance = light_instance_owner.getornull(p_light_intance);
  3197. ERR_FAIL_COND_V(!light_instance, 0);
  3198. switch (storage->light_directional_get_shadow_mode(light_instance->light)) {
  3199. case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
  3200. break; //none
  3201. case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
  3202. r.size.height /= 2;
  3203. break;
  3204. case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
  3205. r.size /= 2;
  3206. break;
  3207. }
  3208. return MAX(r.size.width, r.size.height);
  3209. }
  3210. //////////////////////////////////////////////////
  3211. RID RasterizerSceneRD::camera_effects_create() {
  3212. return camera_effects_owner.make_rid(CameraEffects());
  3213. }
  3214. void RasterizerSceneRD::camera_effects_set_dof_blur_quality(RS::DOFBlurQuality p_quality, bool p_use_jitter) {
  3215. dof_blur_quality = p_quality;
  3216. dof_blur_use_jitter = p_use_jitter;
  3217. }
  3218. void RasterizerSceneRD::camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape p_shape) {
  3219. dof_blur_bokeh_shape = p_shape;
  3220. }
  3221. void RasterizerSceneRD::camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount) {
  3222. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  3223. ERR_FAIL_COND(!camfx);
  3224. camfx->dof_blur_far_enabled = p_far_enable;
  3225. camfx->dof_blur_far_distance = p_far_distance;
  3226. camfx->dof_blur_far_transition = p_far_transition;
  3227. camfx->dof_blur_near_enabled = p_near_enable;
  3228. camfx->dof_blur_near_distance = p_near_distance;
  3229. camfx->dof_blur_near_transition = p_near_transition;
  3230. camfx->dof_blur_amount = p_amount;
  3231. }
  3232. void RasterizerSceneRD::camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure) {
  3233. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  3234. ERR_FAIL_COND(!camfx);
  3235. camfx->override_exposure_enabled = p_enable;
  3236. camfx->override_exposure = p_exposure;
  3237. }
  3238. RID RasterizerSceneRD::light_instance_create(RID p_light) {
  3239. RID li = light_instance_owner.make_rid(LightInstance());
  3240. LightInstance *light_instance = light_instance_owner.getornull(li);
  3241. light_instance->self = li;
  3242. light_instance->light = p_light;
  3243. light_instance->light_type = storage->light_get_type(p_light);
  3244. return li;
  3245. }
  3246. void RasterizerSceneRD::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) {
  3247. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  3248. ERR_FAIL_COND(!light_instance);
  3249. light_instance->transform = p_transform;
  3250. }
  3251. void RasterizerSceneRD::light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) {
  3252. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  3253. ERR_FAIL_COND(!light_instance);
  3254. light_instance->aabb = p_aabb;
  3255. }
  3256. void RasterizerSceneRD::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) {
  3257. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  3258. ERR_FAIL_COND(!light_instance);
  3259. if (storage->light_get_type(light_instance->light) != RS::LIGHT_DIRECTIONAL) {
  3260. p_pass = 0;
  3261. }
  3262. ERR_FAIL_INDEX(p_pass, 4);
  3263. light_instance->shadow_transform[p_pass].camera = p_projection;
  3264. light_instance->shadow_transform[p_pass].transform = p_transform;
  3265. light_instance->shadow_transform[p_pass].farplane = p_far;
  3266. light_instance->shadow_transform[p_pass].split = p_split;
  3267. light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
  3268. light_instance->shadow_transform[p_pass].range_begin = p_range_begin;
  3269. light_instance->shadow_transform[p_pass].shadow_texel_size = p_shadow_texel_size;
  3270. light_instance->shadow_transform[p_pass].uv_scale = p_uv_scale;
  3271. }
  3272. void RasterizerSceneRD::light_instance_mark_visible(RID p_light_instance) {
  3273. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  3274. ERR_FAIL_COND(!light_instance);
  3275. light_instance->last_scene_pass = scene_pass;
  3276. }
  3277. RasterizerSceneRD::ShadowCubemap *RasterizerSceneRD::_get_shadow_cubemap(int p_size) {
  3278. if (!shadow_cubemaps.has(p_size)) {
  3279. ShadowCubemap sc;
  3280. {
  3281. RD::TextureFormat tf;
  3282. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  3283. tf.width = p_size;
  3284. tf.height = p_size;
  3285. tf.type = RD::TEXTURE_TYPE_CUBE;
  3286. tf.array_layers = 6;
  3287. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  3288. sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3289. }
  3290. for (int i = 0; i < 6; i++) {
  3291. RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0);
  3292. Vector<RID> fbtex;
  3293. fbtex.push_back(side_texture);
  3294. sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex);
  3295. }
  3296. shadow_cubemaps[p_size] = sc;
  3297. }
  3298. return &shadow_cubemaps[p_size];
  3299. }
  3300. RasterizerSceneRD::ShadowMap *RasterizerSceneRD::_get_shadow_map(const Size2i &p_size) {
  3301. if (!shadow_maps.has(p_size)) {
  3302. ShadowMap sm;
  3303. {
  3304. RD::TextureFormat tf;
  3305. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  3306. tf.width = p_size.width;
  3307. tf.height = p_size.height;
  3308. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  3309. sm.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3310. }
  3311. Vector<RID> fbtex;
  3312. fbtex.push_back(sm.depth);
  3313. sm.fb = RD::get_singleton()->framebuffer_create(fbtex);
  3314. shadow_maps[p_size] = sm;
  3315. }
  3316. return &shadow_maps[p_size];
  3317. }
  3318. //////////////////////////
  3319. RID RasterizerSceneRD::decal_instance_create(RID p_decal) {
  3320. DecalInstance di;
  3321. di.decal = p_decal;
  3322. return decal_instance_owner.make_rid(di);
  3323. }
  3324. void RasterizerSceneRD::decal_instance_set_transform(RID p_decal, const Transform &p_transform) {
  3325. DecalInstance *di = decal_instance_owner.getornull(p_decal);
  3326. ERR_FAIL_COND(!di);
  3327. di->transform = p_transform;
  3328. }
  3329. /////////////////////////////////
  3330. RID RasterizerSceneRD::gi_probe_instance_create(RID p_base) {
  3331. GIProbeInstance gi_probe;
  3332. gi_probe.probe = p_base;
  3333. RID rid = gi_probe_instance_owner.make_rid(gi_probe);
  3334. return rid;
  3335. }
  3336. void RasterizerSceneRD::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) {
  3337. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
  3338. ERR_FAIL_COND(!gi_probe);
  3339. gi_probe->transform = p_xform;
  3340. }
  3341. bool RasterizerSceneRD::gi_probe_needs_update(RID p_probe) const {
  3342. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
  3343. ERR_FAIL_COND_V(!gi_probe, false);
  3344. //return true;
  3345. return gi_probe->last_probe_version != storage->gi_probe_get_version(gi_probe->probe);
  3346. }
  3347. void RasterizerSceneRD::gi_probe_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, int p_dynamic_object_count, InstanceBase **p_dynamic_objects) {
  3348. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
  3349. ERR_FAIL_COND(!gi_probe);
  3350. uint32_t data_version = storage->gi_probe_get_data_version(gi_probe->probe);
  3351. // (RE)CREATE IF NEEDED
  3352. if (gi_probe->last_probe_data_version != data_version) {
  3353. //need to re-create everything
  3354. if (gi_probe->texture.is_valid()) {
  3355. RD::get_singleton()->free(gi_probe->texture);
  3356. RD::get_singleton()->free(gi_probe->write_buffer);
  3357. gi_probe->mipmaps.clear();
  3358. }
  3359. for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) {
  3360. RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture);
  3361. RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth);
  3362. }
  3363. gi_probe->dynamic_maps.clear();
  3364. Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  3365. if (octree_size != Vector3i()) {
  3366. //can create a 3D texture
  3367. Vector<int> levels = storage->gi_probe_get_level_counts(gi_probe->probe);
  3368. RD::TextureFormat tf;
  3369. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  3370. tf.width = octree_size.x;
  3371. tf.height = octree_size.y;
  3372. tf.depth = octree_size.z;
  3373. tf.type = RD::TEXTURE_TYPE_3D;
  3374. tf.mipmaps = levels.size();
  3375. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  3376. gi_probe->texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3377. RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false);
  3378. {
  3379. int total_elements = 0;
  3380. for (int i = 0; i < levels.size(); i++) {
  3381. total_elements += levels[i];
  3382. }
  3383. gi_probe->write_buffer = RD::get_singleton()->storage_buffer_create(total_elements * 16);
  3384. }
  3385. for (int i = 0; i < levels.size(); i++) {
  3386. GIProbeInstance::Mipmap mipmap;
  3387. mipmap.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), gi_probe->texture, 0, i, RD::TEXTURE_SLICE_3D);
  3388. mipmap.level = levels.size() - i - 1;
  3389. mipmap.cell_offset = 0;
  3390. for (uint32_t j = 0; j < mipmap.level; j++) {
  3391. mipmap.cell_offset += levels[j];
  3392. }
  3393. mipmap.cell_count = levels[mipmap.level];
  3394. Vector<RD::Uniform> uniforms;
  3395. {
  3396. RD::Uniform u;
  3397. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  3398. u.binding = 1;
  3399. u.ids.push_back(storage->gi_probe_get_octree_buffer(gi_probe->probe));
  3400. uniforms.push_back(u);
  3401. }
  3402. {
  3403. RD::Uniform u;
  3404. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  3405. u.binding = 2;
  3406. u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe));
  3407. uniforms.push_back(u);
  3408. }
  3409. {
  3410. RD::Uniform u;
  3411. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  3412. u.binding = 4;
  3413. u.ids.push_back(gi_probe->write_buffer);
  3414. uniforms.push_back(u);
  3415. }
  3416. {
  3417. RD::Uniform u;
  3418. u.type = RD::UNIFORM_TYPE_TEXTURE;
  3419. u.binding = 9;
  3420. u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe));
  3421. uniforms.push_back(u);
  3422. }
  3423. {
  3424. RD::Uniform u;
  3425. u.type = RD::UNIFORM_TYPE_SAMPLER;
  3426. u.binding = 10;
  3427. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  3428. uniforms.push_back(u);
  3429. }
  3430. {
  3431. Vector<RD::Uniform> copy_uniforms = uniforms;
  3432. if (i == 0) {
  3433. {
  3434. RD::Uniform u;
  3435. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  3436. u.binding = 3;
  3437. u.ids.push_back(gi_probe_lights_uniform);
  3438. copy_uniforms.push_back(u);
  3439. }
  3440. mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT], 0);
  3441. copy_uniforms = uniforms; //restore
  3442. {
  3443. RD::Uniform u;
  3444. u.type = RD::UNIFORM_TYPE_TEXTURE;
  3445. u.binding = 5;
  3446. u.ids.push_back(gi_probe->texture);
  3447. copy_uniforms.push_back(u);
  3448. }
  3449. mipmap.second_bounce_uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE], 0);
  3450. } else {
  3451. mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP], 0);
  3452. }
  3453. }
  3454. {
  3455. RD::Uniform u;
  3456. u.type = RD::UNIFORM_TYPE_IMAGE;
  3457. u.binding = 5;
  3458. u.ids.push_back(mipmap.texture);
  3459. uniforms.push_back(u);
  3460. }
  3461. mipmap.write_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE], 0);
  3462. gi_probe->mipmaps.push_back(mipmap);
  3463. }
  3464. {
  3465. uint32_t dynamic_map_size = MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
  3466. uint32_t oversample = nearest_power_of_2_templated(4);
  3467. int mipmap_index = 0;
  3468. while (mipmap_index < gi_probe->mipmaps.size()) {
  3469. GIProbeInstance::DynamicMap dmap;
  3470. if (oversample > 0) {
  3471. dmap.size = dynamic_map_size * (1 << oversample);
  3472. dmap.mipmap = -1;
  3473. oversample--;
  3474. } else {
  3475. dmap.size = dynamic_map_size >> mipmap_index;
  3476. dmap.mipmap = mipmap_index;
  3477. mipmap_index++;
  3478. }
  3479. RD::TextureFormat dtf;
  3480. dtf.width = dmap.size;
  3481. dtf.height = dmap.size;
  3482. dtf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  3483. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  3484. if (gi_probe->dynamic_maps.size() == 0) {
  3485. dtf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  3486. }
  3487. dmap.texture = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  3488. if (gi_probe->dynamic_maps.size() == 0) {
  3489. //render depth for first one
  3490. dtf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  3491. dtf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  3492. dmap.fb_depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  3493. }
  3494. //just use depth as-is
  3495. dtf.format = RD::DATA_FORMAT_R32_SFLOAT;
  3496. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  3497. dmap.depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  3498. if (gi_probe->dynamic_maps.size() == 0) {
  3499. dtf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  3500. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  3501. dmap.albedo = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  3502. dmap.normal = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  3503. dmap.orm = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  3504. Vector<RID> fb;
  3505. fb.push_back(dmap.albedo);
  3506. fb.push_back(dmap.normal);
  3507. fb.push_back(dmap.orm);
  3508. fb.push_back(dmap.texture); //emission
  3509. fb.push_back(dmap.depth);
  3510. fb.push_back(dmap.fb_depth);
  3511. dmap.fb = RD::get_singleton()->framebuffer_create(fb);
  3512. {
  3513. Vector<RD::Uniform> uniforms;
  3514. {
  3515. RD::Uniform u;
  3516. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  3517. u.binding = 3;
  3518. u.ids.push_back(gi_probe_lights_uniform);
  3519. uniforms.push_back(u);
  3520. }
  3521. {
  3522. RD::Uniform u;
  3523. u.type = RD::UNIFORM_TYPE_IMAGE;
  3524. u.binding = 5;
  3525. u.ids.push_back(dmap.albedo);
  3526. uniforms.push_back(u);
  3527. }
  3528. {
  3529. RD::Uniform u;
  3530. u.type = RD::UNIFORM_TYPE_IMAGE;
  3531. u.binding = 6;
  3532. u.ids.push_back(dmap.normal);
  3533. uniforms.push_back(u);
  3534. }
  3535. {
  3536. RD::Uniform u;
  3537. u.type = RD::UNIFORM_TYPE_IMAGE;
  3538. u.binding = 7;
  3539. u.ids.push_back(dmap.orm);
  3540. uniforms.push_back(u);
  3541. }
  3542. {
  3543. RD::Uniform u;
  3544. u.type = RD::UNIFORM_TYPE_TEXTURE;
  3545. u.binding = 8;
  3546. u.ids.push_back(dmap.fb_depth);
  3547. uniforms.push_back(u);
  3548. }
  3549. {
  3550. RD::Uniform u;
  3551. u.type = RD::UNIFORM_TYPE_TEXTURE;
  3552. u.binding = 9;
  3553. u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe));
  3554. uniforms.push_back(u);
  3555. }
  3556. {
  3557. RD::Uniform u;
  3558. u.type = RD::UNIFORM_TYPE_SAMPLER;
  3559. u.binding = 10;
  3560. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  3561. uniforms.push_back(u);
  3562. }
  3563. {
  3564. RD::Uniform u;
  3565. u.type = RD::UNIFORM_TYPE_IMAGE;
  3566. u.binding = 11;
  3567. u.ids.push_back(dmap.texture);
  3568. uniforms.push_back(u);
  3569. }
  3570. {
  3571. RD::Uniform u;
  3572. u.type = RD::UNIFORM_TYPE_IMAGE;
  3573. u.binding = 12;
  3574. u.ids.push_back(dmap.depth);
  3575. uniforms.push_back(u);
  3576. }
  3577. dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING], 0);
  3578. }
  3579. } else {
  3580. bool plot = dmap.mipmap >= 0;
  3581. bool write = dmap.mipmap < (gi_probe->mipmaps.size() - 1);
  3582. Vector<RD::Uniform> uniforms;
  3583. {
  3584. RD::Uniform u;
  3585. u.type = RD::UNIFORM_TYPE_IMAGE;
  3586. u.binding = 5;
  3587. u.ids.push_back(gi_probe->dynamic_maps[gi_probe->dynamic_maps.size() - 1].texture);
  3588. uniforms.push_back(u);
  3589. }
  3590. {
  3591. RD::Uniform u;
  3592. u.type = RD::UNIFORM_TYPE_IMAGE;
  3593. u.binding = 6;
  3594. u.ids.push_back(gi_probe->dynamic_maps[gi_probe->dynamic_maps.size() - 1].depth);
  3595. uniforms.push_back(u);
  3596. }
  3597. if (write) {
  3598. {
  3599. RD::Uniform u;
  3600. u.type = RD::UNIFORM_TYPE_IMAGE;
  3601. u.binding = 7;
  3602. u.ids.push_back(dmap.texture);
  3603. uniforms.push_back(u);
  3604. }
  3605. {
  3606. RD::Uniform u;
  3607. u.type = RD::UNIFORM_TYPE_IMAGE;
  3608. u.binding = 8;
  3609. u.ids.push_back(dmap.depth);
  3610. uniforms.push_back(u);
  3611. }
  3612. }
  3613. {
  3614. RD::Uniform u;
  3615. u.type = RD::UNIFORM_TYPE_TEXTURE;
  3616. u.binding = 9;
  3617. u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe));
  3618. uniforms.push_back(u);
  3619. }
  3620. {
  3621. RD::Uniform u;
  3622. u.type = RD::UNIFORM_TYPE_SAMPLER;
  3623. u.binding = 10;
  3624. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  3625. uniforms.push_back(u);
  3626. }
  3627. if (plot) {
  3628. {
  3629. RD::Uniform u;
  3630. u.type = RD::UNIFORM_TYPE_IMAGE;
  3631. u.binding = 11;
  3632. u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].texture);
  3633. uniforms.push_back(u);
  3634. }
  3635. }
  3636. dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[(write && plot) ? GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT : write ? GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE : GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT], 0);
  3637. }
  3638. gi_probe->dynamic_maps.push_back(dmap);
  3639. }
  3640. }
  3641. }
  3642. gi_probe->last_probe_data_version = data_version;
  3643. p_update_light_instances = true; //just in case
  3644. _base_uniforms_changed();
  3645. }
  3646. // UDPDATE TIME
  3647. if (gi_probe->has_dynamic_object_data) {
  3648. //if it has dynamic object data, it needs to be cleared
  3649. RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, gi_probe->mipmaps.size(), 0, 1, true);
  3650. }
  3651. uint32_t light_count = 0;
  3652. if (p_update_light_instances || p_dynamic_object_count > 0) {
  3653. light_count = MIN(gi_probe_max_lights, (uint32_t)p_light_instances.size());
  3654. {
  3655. Transform to_cell = storage->gi_probe_get_to_cell_xform(gi_probe->probe);
  3656. Transform to_probe_xform = (gi_probe->transform * to_cell.affine_inverse()).affine_inverse();
  3657. //update lights
  3658. for (uint32_t i = 0; i < light_count; i++) {
  3659. GIProbeLight &l = gi_probe_lights[i];
  3660. RID light_instance = p_light_instances[i];
  3661. RID light = light_instance_get_base_light(light_instance);
  3662. l.type = storage->light_get_type(light);
  3663. l.attenuation = storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION);
  3664. l.energy = storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
  3665. l.radius = to_cell.basis.xform(Vector3(storage->light_get_param(light, RS::LIGHT_PARAM_RANGE), 0, 0)).length();
  3666. Color color = storage->light_get_color(light).to_linear();
  3667. l.color[0] = color.r;
  3668. l.color[1] = color.g;
  3669. l.color[2] = color.b;
  3670. l.spot_angle_radians = Math::deg2rad(storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE));
  3671. l.spot_attenuation = storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  3672. Transform xform = light_instance_get_base_transform(light_instance);
  3673. Vector3 pos = to_probe_xform.xform(xform.origin);
  3674. Vector3 dir = to_probe_xform.basis.xform(-xform.basis.get_axis(2)).normalized();
  3675. l.position[0] = pos.x;
  3676. l.position[1] = pos.y;
  3677. l.position[2] = pos.z;
  3678. l.direction[0] = dir.x;
  3679. l.direction[1] = dir.y;
  3680. l.direction[2] = dir.z;
  3681. l.has_shadow = storage->light_has_shadow(light);
  3682. }
  3683. RD::get_singleton()->buffer_update(gi_probe_lights_uniform, 0, sizeof(GIProbeLight) * light_count, gi_probe_lights, true);
  3684. }
  3685. }
  3686. if (gi_probe->has_dynamic_object_data || p_update_light_instances || p_dynamic_object_count) {
  3687. // PROCESS MIPMAPS
  3688. if (gi_probe->mipmaps.size()) {
  3689. //can update mipmaps
  3690. Vector3i probe_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  3691. GIProbePushConstant push_constant;
  3692. push_constant.limits[0] = probe_size.x;
  3693. push_constant.limits[1] = probe_size.y;
  3694. push_constant.limits[2] = probe_size.z;
  3695. push_constant.stack_size = gi_probe->mipmaps.size();
  3696. push_constant.emission_scale = 1.0;
  3697. push_constant.propagation = storage->gi_probe_get_propagation(gi_probe->probe);
  3698. push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe);
  3699. push_constant.light_count = light_count;
  3700. push_constant.aniso_strength = 0;
  3701. /* print_line("probe update to version " + itos(gi_probe->last_probe_version));
  3702. print_line("propagation " + rtos(push_constant.propagation));
  3703. print_line("dynrange " + rtos(push_constant.dynamic_range));
  3704. */
  3705. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  3706. int passes;
  3707. if (p_update_light_instances) {
  3708. passes = storage->gi_probe_is_using_two_bounces(gi_probe->probe) ? 2 : 1;
  3709. } else {
  3710. passes = 1; //only re-blitting is necessary
  3711. }
  3712. int wg_size = 64;
  3713. int wg_limit_x = RD::get_singleton()->limit_get(RD::LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X);
  3714. for (int pass = 0; pass < passes; pass++) {
  3715. if (p_update_light_instances) {
  3716. for (int i = 0; i < gi_probe->mipmaps.size(); i++) {
  3717. if (i == 0) {
  3718. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[pass == 0 ? GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT : GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE]);
  3719. } else if (i == 1) {
  3720. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP]);
  3721. }
  3722. if (pass == 1 || i > 0) {
  3723. RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
  3724. }
  3725. if (pass == 0 || i > 0) {
  3726. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].uniform_set, 0);
  3727. } else {
  3728. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].second_bounce_uniform_set, 0);
  3729. }
  3730. push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset;
  3731. push_constant.cell_count = gi_probe->mipmaps[i].cell_count;
  3732. int wg_todo = (gi_probe->mipmaps[i].cell_count - 1) / wg_size + 1;
  3733. while (wg_todo) {
  3734. int wg_count = MIN(wg_todo, wg_limit_x);
  3735. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant));
  3736. RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
  3737. wg_todo -= wg_count;
  3738. push_constant.cell_offset += wg_count * wg_size;
  3739. }
  3740. }
  3741. RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
  3742. }
  3743. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE]);
  3744. for (int i = 0; i < gi_probe->mipmaps.size(); i++) {
  3745. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].write_uniform_set, 0);
  3746. push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset;
  3747. push_constant.cell_count = gi_probe->mipmaps[i].cell_count;
  3748. int wg_todo = (gi_probe->mipmaps[i].cell_count - 1) / wg_size + 1;
  3749. while (wg_todo) {
  3750. int wg_count = MIN(wg_todo, wg_limit_x);
  3751. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant));
  3752. RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
  3753. wg_todo -= wg_count;
  3754. push_constant.cell_offset += wg_count * wg_size;
  3755. }
  3756. }
  3757. }
  3758. RD::get_singleton()->compute_list_end();
  3759. }
  3760. }
  3761. gi_probe->has_dynamic_object_data = false; //clear until dynamic object data is used again
  3762. if (p_dynamic_object_count && gi_probe->dynamic_maps.size()) {
  3763. Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  3764. int multiplier = gi_probe->dynamic_maps[0].size / MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
  3765. Transform oversample_scale;
  3766. oversample_scale.basis.scale(Vector3(multiplier, multiplier, multiplier));
  3767. Transform to_cell = oversample_scale * storage->gi_probe_get_to_cell_xform(gi_probe->probe);
  3768. Transform to_world_xform = gi_probe->transform * to_cell.affine_inverse();
  3769. Transform to_probe_xform = to_world_xform.affine_inverse();
  3770. AABB probe_aabb(Vector3(), octree_size);
  3771. //this could probably be better parallelized in compute..
  3772. for (int i = 0; i < p_dynamic_object_count; i++) {
  3773. InstanceBase *instance = p_dynamic_objects[i];
  3774. //not used, so clear
  3775. instance->depth_layer = 0;
  3776. instance->depth = 0;
  3777. //transform aabb to giprobe
  3778. AABB aabb = (to_probe_xform * instance->transform).xform(instance->aabb);
  3779. //this needs to wrap to grid resolution to avoid jitter
  3780. //also extend margin a bit just in case
  3781. Vector3i begin = aabb.position - Vector3i(1, 1, 1);
  3782. Vector3i end = aabb.position + aabb.size + Vector3i(1, 1, 1);
  3783. for (int j = 0; j < 3; j++) {
  3784. if ((end[j] - begin[j]) & 1) {
  3785. end[j]++; //for half extents split, it needs to be even
  3786. }
  3787. begin[j] = MAX(begin[j], 0);
  3788. end[j] = MIN(end[j], octree_size[j] * multiplier);
  3789. }
  3790. //aabb = aabb.intersection(probe_aabb); //intersect
  3791. aabb.position = begin;
  3792. aabb.size = end - begin;
  3793. //print_line("aabb: " + aabb);
  3794. for (int j = 0; j < 6; j++) {
  3795. //if (j != 0 && j != 3) {
  3796. // continue;
  3797. //}
  3798. static const Vector3 render_z[6] = {
  3799. Vector3(1, 0, 0),
  3800. Vector3(0, 1, 0),
  3801. Vector3(0, 0, 1),
  3802. Vector3(-1, 0, 0),
  3803. Vector3(0, -1, 0),
  3804. Vector3(0, 0, -1),
  3805. };
  3806. static const Vector3 render_up[6] = {
  3807. Vector3(0, 1, 0),
  3808. Vector3(0, 0, 1),
  3809. Vector3(0, 1, 0),
  3810. Vector3(0, 1, 0),
  3811. Vector3(0, 0, 1),
  3812. Vector3(0, 1, 0),
  3813. };
  3814. Vector3 render_dir = render_z[j];
  3815. Vector3 up_dir = render_up[j];
  3816. Vector3 center = aabb.position + aabb.size * 0.5;
  3817. Transform xform;
  3818. xform.set_look_at(center - aabb.size * 0.5 * render_dir, center, up_dir);
  3819. Vector3 x_dir = xform.basis.get_axis(0).abs();
  3820. int x_axis = int(Vector3(0, 1, 2).dot(x_dir));
  3821. Vector3 y_dir = xform.basis.get_axis(1).abs();
  3822. int y_axis = int(Vector3(0, 1, 2).dot(y_dir));
  3823. Vector3 z_dir = -xform.basis.get_axis(2);
  3824. int z_axis = int(Vector3(0, 1, 2).dot(z_dir.abs()));
  3825. Rect2i rect(aabb.position[x_axis], aabb.position[y_axis], aabb.size[x_axis], aabb.size[y_axis]);
  3826. bool x_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(0)) < 0);
  3827. bool y_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(1)) < 0);
  3828. bool z_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(2)) > 0);
  3829. CameraMatrix cm;
  3830. cm.set_orthogonal(-rect.size.width / 2, rect.size.width / 2, -rect.size.height / 2, rect.size.height / 2, 0.0001, aabb.size[z_axis]);
  3831. _render_material(to_world_xform * xform, cm, true, &instance, 1, gi_probe->dynamic_maps[0].fb, Rect2i(Vector2i(), rect.size));
  3832. GIProbeDynamicPushConstant push_constant;
  3833. zeromem(&push_constant, sizeof(GIProbeDynamicPushConstant));
  3834. push_constant.limits[0] = octree_size.x;
  3835. push_constant.limits[1] = octree_size.y;
  3836. push_constant.limits[2] = octree_size.z;
  3837. push_constant.light_count = p_light_instances.size();
  3838. push_constant.x_dir[0] = x_dir[0];
  3839. push_constant.x_dir[1] = x_dir[1];
  3840. push_constant.x_dir[2] = x_dir[2];
  3841. push_constant.y_dir[0] = y_dir[0];
  3842. push_constant.y_dir[1] = y_dir[1];
  3843. push_constant.y_dir[2] = y_dir[2];
  3844. push_constant.z_dir[0] = z_dir[0];
  3845. push_constant.z_dir[1] = z_dir[1];
  3846. push_constant.z_dir[2] = z_dir[2];
  3847. push_constant.z_base = xform.origin[z_axis];
  3848. push_constant.z_sign = (z_flip ? -1.0 : 1.0);
  3849. push_constant.pos_multiplier = float(1.0) / multiplier;
  3850. push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe);
  3851. push_constant.flip_x = x_flip;
  3852. push_constant.flip_y = y_flip;
  3853. push_constant.rect_pos[0] = rect.position[0];
  3854. push_constant.rect_pos[1] = rect.position[1];
  3855. push_constant.rect_size[0] = rect.size[0];
  3856. push_constant.rect_size[1] = rect.size[1];
  3857. push_constant.prev_rect_ofs[0] = 0;
  3858. push_constant.prev_rect_ofs[1] = 0;
  3859. push_constant.prev_rect_size[0] = 0;
  3860. push_constant.prev_rect_size[1] = 0;
  3861. push_constant.on_mipmap = false;
  3862. push_constant.propagation = storage->gi_probe_get_propagation(gi_probe->probe);
  3863. push_constant.pad[0] = 0;
  3864. push_constant.pad[1] = 0;
  3865. push_constant.pad[2] = 0;
  3866. //process lighting
  3867. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  3868. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING]);
  3869. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->dynamic_maps[0].uniform_set, 0);
  3870. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbeDynamicPushConstant));
  3871. RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1);
  3872. //print_line("rect: " + itos(i) + ": " + rect);
  3873. for (int k = 1; k < gi_probe->dynamic_maps.size(); k++) {
  3874. // enlarge the rect if needed so all pixels fit when downscaled,
  3875. // this ensures downsampling is smooth and optimal because no pixels are left behind
  3876. //x
  3877. if (rect.position.x & 1) {
  3878. rect.size.x++;
  3879. push_constant.prev_rect_ofs[0] = 1; //this is used to ensure reading is also optimal
  3880. } else {
  3881. push_constant.prev_rect_ofs[0] = 0;
  3882. }
  3883. if (rect.size.x & 1) {
  3884. rect.size.x++;
  3885. }
  3886. rect.position.x >>= 1;
  3887. rect.size.x = MAX(1, rect.size.x >> 1);
  3888. //y
  3889. if (rect.position.y & 1) {
  3890. rect.size.y++;
  3891. push_constant.prev_rect_ofs[1] = 1;
  3892. } else {
  3893. push_constant.prev_rect_ofs[1] = 0;
  3894. }
  3895. if (rect.size.y & 1) {
  3896. rect.size.y++;
  3897. }
  3898. rect.position.y >>= 1;
  3899. rect.size.y = MAX(1, rect.size.y >> 1);
  3900. //shrink limits to ensure plot does not go outside map
  3901. if (gi_probe->dynamic_maps[k].mipmap > 0) {
  3902. for (int l = 0; l < 3; l++) {
  3903. push_constant.limits[l] = MAX(1, push_constant.limits[l] >> 1);
  3904. }
  3905. }
  3906. //print_line("rect: " + itos(i) + ": " + rect);
  3907. push_constant.rect_pos[0] = rect.position[0];
  3908. push_constant.rect_pos[1] = rect.position[1];
  3909. push_constant.prev_rect_size[0] = push_constant.rect_size[0];
  3910. push_constant.prev_rect_size[1] = push_constant.rect_size[1];
  3911. push_constant.rect_size[0] = rect.size[0];
  3912. push_constant.rect_size[1] = rect.size[1];
  3913. push_constant.on_mipmap = gi_probe->dynamic_maps[k].mipmap > 0;
  3914. RD::get_singleton()->compute_list_add_barrier(compute_list);
  3915. if (gi_probe->dynamic_maps[k].mipmap < 0) {
  3916. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE]);
  3917. } else if (k < gi_probe->dynamic_maps.size() - 1) {
  3918. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT]);
  3919. } else {
  3920. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT]);
  3921. }
  3922. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->dynamic_maps[k].uniform_set, 0);
  3923. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbeDynamicPushConstant));
  3924. RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1);
  3925. }
  3926. RD::get_singleton()->compute_list_end();
  3927. }
  3928. }
  3929. gi_probe->has_dynamic_object_data = true; //clear until dynamic object data is used again
  3930. }
  3931. gi_probe->last_probe_version = storage->gi_probe_get_version(gi_probe->probe);
  3932. }
  3933. void RasterizerSceneRD::_debug_giprobe(RID p_gi_probe, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) {
  3934. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_gi_probe);
  3935. ERR_FAIL_COND(!gi_probe);
  3936. if (gi_probe->mipmaps.size() == 0) {
  3937. return;
  3938. }
  3939. CameraMatrix transform = (p_camera_with_transform * CameraMatrix(gi_probe->transform)) * CameraMatrix(storage->gi_probe_get_to_cell_xform(gi_probe->probe).affine_inverse());
  3940. int level = 0;
  3941. Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  3942. GIProbeDebugPushConstant push_constant;
  3943. push_constant.alpha = p_alpha;
  3944. push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe);
  3945. push_constant.cell_offset = gi_probe->mipmaps[level].cell_offset;
  3946. push_constant.level = level;
  3947. push_constant.bounds[0] = octree_size.x >> level;
  3948. push_constant.bounds[1] = octree_size.y >> level;
  3949. push_constant.bounds[2] = octree_size.z >> level;
  3950. push_constant.pad = 0;
  3951. for (int i = 0; i < 4; i++) {
  3952. for (int j = 0; j < 4; j++) {
  3953. push_constant.projection[i * 4 + j] = transform.matrix[i][j];
  3954. }
  3955. }
  3956. if (giprobe_debug_uniform_set.is_valid()) {
  3957. RD::get_singleton()->free(giprobe_debug_uniform_set);
  3958. }
  3959. Vector<RD::Uniform> uniforms;
  3960. {
  3961. RD::Uniform u;
  3962. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  3963. u.binding = 1;
  3964. u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe));
  3965. uniforms.push_back(u);
  3966. }
  3967. {
  3968. RD::Uniform u;
  3969. u.type = RD::UNIFORM_TYPE_TEXTURE;
  3970. u.binding = 2;
  3971. u.ids.push_back(gi_probe->texture);
  3972. uniforms.push_back(u);
  3973. }
  3974. {
  3975. RD::Uniform u;
  3976. u.type = RD::UNIFORM_TYPE_SAMPLER;
  3977. u.binding = 3;
  3978. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  3979. uniforms.push_back(u);
  3980. }
  3981. int cell_count;
  3982. if (!p_emission && p_lighting && gi_probe->has_dynamic_object_data) {
  3983. cell_count = push_constant.bounds[0] * push_constant.bounds[1] * push_constant.bounds[2];
  3984. } else {
  3985. cell_count = gi_probe->mipmaps[level].cell_count;
  3986. }
  3987. giprobe_debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_debug_shader_version_shaders[0], 0);
  3988. RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, giprobe_debug_shader_version_pipelines[p_emission ? GI_PROBE_DEBUG_EMISSION : p_lighting ? (gi_probe->has_dynamic_object_data ? GI_PROBE_DEBUG_LIGHT_FULL : GI_PROBE_DEBUG_LIGHT) : GI_PROBE_DEBUG_COLOR].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  3989. RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, giprobe_debug_uniform_set, 0);
  3990. RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(GIProbeDebugPushConstant));
  3991. RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, 36);
  3992. }
  3993. void RasterizerSceneRD::_debug_sdfgi_probes(RID p_render_buffers, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform) {
  3994. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  3995. ERR_FAIL_COND(!rb);
  3996. if (!rb->sdfgi) {
  3997. return; //nothing to debug
  3998. }
  3999. SDGIShader::DebugProbesPushConstant push_constant;
  4000. for (int i = 0; i < 4; i++) {
  4001. for (int j = 0; j < 4; j++) {
  4002. push_constant.projection[i * 4 + j] = p_camera_with_transform.matrix[i][j];
  4003. }
  4004. }
  4005. //gen spheres from strips
  4006. uint32_t band_points = 16;
  4007. push_constant.band_power = 4;
  4008. push_constant.sections_in_band = ((band_points / 2) - 1);
  4009. push_constant.band_mask = band_points - 2;
  4010. push_constant.section_arc = (Math_PI * 2.0) / float(push_constant.sections_in_band);
  4011. push_constant.y_mult = rb->sdfgi->y_mult;
  4012. uint32_t total_points = push_constant.sections_in_band * band_points;
  4013. uint32_t total_probes = rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count;
  4014. push_constant.grid_size[0] = rb->sdfgi->cascade_size;
  4015. push_constant.grid_size[1] = rb->sdfgi->cascade_size;
  4016. push_constant.grid_size[2] = rb->sdfgi->cascade_size;
  4017. push_constant.cascade = 0;
  4018. push_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  4019. if (!rb->sdfgi->debug_probes_uniform_set.is_valid() || !RD::get_singleton()->uniform_set_is_valid(rb->sdfgi->debug_probes_uniform_set)) {
  4020. Vector<RD::Uniform> uniforms;
  4021. {
  4022. RD::Uniform u;
  4023. u.binding = 1;
  4024. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  4025. u.ids.push_back(rb->sdfgi->cascades_ubo);
  4026. uniforms.push_back(u);
  4027. }
  4028. {
  4029. RD::Uniform u;
  4030. u.binding = 2;
  4031. u.type = RD::UNIFORM_TYPE_TEXTURE;
  4032. u.ids.push_back(rb->sdfgi->lightprobe_texture);
  4033. uniforms.push_back(u);
  4034. }
  4035. {
  4036. RD::Uniform u;
  4037. u.binding = 3;
  4038. u.type = RD::UNIFORM_TYPE_SAMPLER;
  4039. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  4040. uniforms.push_back(u);
  4041. }
  4042. {
  4043. RD::Uniform u;
  4044. u.binding = 4;
  4045. u.type = RD::UNIFORM_TYPE_TEXTURE;
  4046. u.ids.push_back(rb->sdfgi->occlusion_texture);
  4047. uniforms.push_back(u);
  4048. }
  4049. rb->sdfgi->debug_probes_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.debug_probes.version_get_shader(sdfgi_shader.debug_probes_shader, 0), 0);
  4050. }
  4051. RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, sdfgi_shader.debug_probes_pipeline[SDGIShader::PROBE_DEBUG_PROBES].get_render_pipeline(RD::INVALID_FORMAT_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  4052. RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, rb->sdfgi->debug_probes_uniform_set, 0);
  4053. RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(SDGIShader::DebugProbesPushConstant));
  4054. RD::get_singleton()->draw_list_draw(p_draw_list, false, total_probes, total_points);
  4055. if (sdfgi_debug_probe_dir != Vector3()) {
  4056. print_line("CLICK DEBUG ME?");
  4057. uint32_t cascade = 0;
  4058. Vector3 offset = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[cascade].position)) * rb->sdfgi->cascades[cascade].cell_size * Vector3(1.0, 1.0 / rb->sdfgi->y_mult, 1.0);
  4059. Vector3 probe_size = rb->sdfgi->cascades[cascade].cell_size * (rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR) * Vector3(1.0, 1.0 / rb->sdfgi->y_mult, 1.0);
  4060. Vector3 ray_from = sdfgi_debug_probe_pos;
  4061. Vector3 ray_to = sdfgi_debug_probe_pos + sdfgi_debug_probe_dir * rb->sdfgi->cascades[cascade].cell_size * Math::sqrt(3.0) * rb->sdfgi->cascade_size;
  4062. float sphere_radius = 0.2;
  4063. float closest_dist = 1e20;
  4064. sdfgi_debug_probe_enabled = false;
  4065. Vector3i probe_from = rb->sdfgi->cascades[cascade].position / (rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR);
  4066. for (int i = 0; i < (SDFGI::PROBE_DIVISOR + 1); i++) {
  4067. for (int j = 0; j < (SDFGI::PROBE_DIVISOR + 1); j++) {
  4068. for (int k = 0; k < (SDFGI::PROBE_DIVISOR + 1); k++) {
  4069. Vector3 pos = offset + probe_size * Vector3(i, j, k);
  4070. Vector3 res;
  4071. if (Geometry3D::segment_intersects_sphere(ray_from, ray_to, pos, sphere_radius, &res)) {
  4072. float d = ray_from.distance_to(res);
  4073. if (d < closest_dist) {
  4074. closest_dist = d;
  4075. sdfgi_debug_probe_enabled = true;
  4076. sdfgi_debug_probe_index = probe_from + Vector3i(i, j, k);
  4077. }
  4078. }
  4079. }
  4080. }
  4081. }
  4082. if (sdfgi_debug_probe_enabled) {
  4083. print_line("found: " + sdfgi_debug_probe_index);
  4084. } else {
  4085. print_line("no found");
  4086. }
  4087. sdfgi_debug_probe_dir = Vector3();
  4088. }
  4089. if (sdfgi_debug_probe_enabled) {
  4090. uint32_t cascade = 0;
  4091. uint32_t probe_cells = (rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR);
  4092. Vector3i probe_from = rb->sdfgi->cascades[cascade].position / probe_cells;
  4093. Vector3i ofs = sdfgi_debug_probe_index - probe_from;
  4094. if (ofs.x < 0 || ofs.y < 0 || ofs.z < 0) {
  4095. return;
  4096. }
  4097. if (ofs.x > SDFGI::PROBE_DIVISOR || ofs.y > SDFGI::PROBE_DIVISOR || ofs.z > SDFGI::PROBE_DIVISOR) {
  4098. return;
  4099. }
  4100. uint32_t mult = (SDFGI::PROBE_DIVISOR + 1);
  4101. uint32_t index = ofs.z * mult * mult + ofs.y * mult + ofs.x;
  4102. push_constant.probe_debug_index = index;
  4103. uint32_t cell_count = probe_cells * 2 * probe_cells * 2 * probe_cells * 2;
  4104. RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, sdfgi_shader.debug_probes_pipeline[SDGIShader::PROBE_DEBUG_VISIBILITY].get_render_pipeline(RD::INVALID_FORMAT_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  4105. RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, rb->sdfgi->debug_probes_uniform_set, 0);
  4106. RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(SDGIShader::DebugProbesPushConstant));
  4107. RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, total_points);
  4108. }
  4109. }
  4110. ////////////////////////////////
  4111. RID RasterizerSceneRD::render_buffers_create() {
  4112. RenderBuffers rb;
  4113. rb.data = _create_render_buffer_data();
  4114. return render_buffers_owner.make_rid(rb);
  4115. }
  4116. void RasterizerSceneRD::_allocate_blur_textures(RenderBuffers *rb) {
  4117. ERR_FAIL_COND(!rb->blur[0].texture.is_null());
  4118. uint32_t mipmaps_required = Image::get_image_required_mipmaps(rb->width, rb->height, Image::FORMAT_RGBAH);
  4119. RD::TextureFormat tf;
  4120. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  4121. tf.width = rb->width;
  4122. tf.height = rb->height;
  4123. tf.type = RD::TEXTURE_TYPE_2D;
  4124. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  4125. tf.mipmaps = mipmaps_required;
  4126. rb->blur[0].texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4127. //the second one is smaller (only used for separatable part of blur)
  4128. tf.width >>= 1;
  4129. tf.height >>= 1;
  4130. tf.mipmaps--;
  4131. rb->blur[1].texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4132. int base_width = rb->width;
  4133. int base_height = rb->height;
  4134. for (uint32_t i = 0; i < mipmaps_required; i++) {
  4135. RenderBuffers::Blur::Mipmap mm;
  4136. mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[0].texture, 0, i);
  4137. mm.width = base_width;
  4138. mm.height = base_height;
  4139. rb->blur[0].mipmaps.push_back(mm);
  4140. if (i > 0) {
  4141. mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[1].texture, 0, i - 1);
  4142. rb->blur[1].mipmaps.push_back(mm);
  4143. }
  4144. base_width = MAX(1, base_width >> 1);
  4145. base_height = MAX(1, base_height >> 1);
  4146. }
  4147. }
  4148. void RasterizerSceneRD::_allocate_luminance_textures(RenderBuffers *rb) {
  4149. ERR_FAIL_COND(!rb->luminance.current.is_null());
  4150. int w = rb->width;
  4151. int h = rb->height;
  4152. while (true) {
  4153. w = MAX(w / 8, 1);
  4154. h = MAX(h / 8, 1);
  4155. RD::TextureFormat tf;
  4156. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  4157. tf.width = w;
  4158. tf.height = h;
  4159. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  4160. bool final = w == 1 && h == 1;
  4161. if (final) {
  4162. tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT;
  4163. }
  4164. RID texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4165. rb->luminance.reduce.push_back(texture);
  4166. if (final) {
  4167. rb->luminance.current = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4168. break;
  4169. }
  4170. }
  4171. }
  4172. void RasterizerSceneRD::_free_render_buffer_data(RenderBuffers *rb) {
  4173. if (rb->texture.is_valid()) {
  4174. RD::get_singleton()->free(rb->texture);
  4175. rb->texture = RID();
  4176. }
  4177. if (rb->depth_texture.is_valid()) {
  4178. RD::get_singleton()->free(rb->depth_texture);
  4179. rb->depth_texture = RID();
  4180. }
  4181. for (int i = 0; i < 2; i++) {
  4182. if (rb->blur[i].texture.is_valid()) {
  4183. RD::get_singleton()->free(rb->blur[i].texture);
  4184. rb->blur[i].texture = RID();
  4185. rb->blur[i].mipmaps.clear();
  4186. }
  4187. }
  4188. for (int i = 0; i < rb->luminance.reduce.size(); i++) {
  4189. RD::get_singleton()->free(rb->luminance.reduce[i]);
  4190. }
  4191. for (int i = 0; i < rb->luminance.reduce.size(); i++) {
  4192. RD::get_singleton()->free(rb->luminance.reduce[i]);
  4193. }
  4194. rb->luminance.reduce.clear();
  4195. if (rb->luminance.current.is_valid()) {
  4196. RD::get_singleton()->free(rb->luminance.current);
  4197. rb->luminance.current = RID();
  4198. }
  4199. if (rb->ssao.ao[0].is_valid()) {
  4200. RD::get_singleton()->free(rb->ssao.depth);
  4201. RD::get_singleton()->free(rb->ssao.ao[0]);
  4202. if (rb->ssao.ao[1].is_valid()) {
  4203. RD::get_singleton()->free(rb->ssao.ao[1]);
  4204. }
  4205. if (rb->ssao.ao_full.is_valid()) {
  4206. RD::get_singleton()->free(rb->ssao.ao_full);
  4207. }
  4208. rb->ssao.depth = RID();
  4209. rb->ssao.ao[0] = RID();
  4210. rb->ssao.ao[1] = RID();
  4211. rb->ssao.ao_full = RID();
  4212. rb->ssao.depth_slices.clear();
  4213. }
  4214. if (rb->ssr.blur_radius[0].is_valid()) {
  4215. RD::get_singleton()->free(rb->ssr.blur_radius[0]);
  4216. RD::get_singleton()->free(rb->ssr.blur_radius[1]);
  4217. rb->ssr.blur_radius[0] = RID();
  4218. rb->ssr.blur_radius[1] = RID();
  4219. }
  4220. if (rb->ssr.depth_scaled.is_valid()) {
  4221. RD::get_singleton()->free(rb->ssr.depth_scaled);
  4222. rb->ssr.depth_scaled = RID();
  4223. RD::get_singleton()->free(rb->ssr.normal_scaled);
  4224. rb->ssr.normal_scaled = RID();
  4225. }
  4226. }
  4227. void RasterizerSceneRD::_process_sss(RID p_render_buffers, const CameraMatrix &p_camera) {
  4228. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4229. ERR_FAIL_COND(!rb);
  4230. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  4231. if (!can_use_effects) {
  4232. //just copy
  4233. return;
  4234. }
  4235. if (rb->blur[0].texture.is_null()) {
  4236. _allocate_blur_textures(rb);
  4237. _render_buffers_uniform_set_changed(p_render_buffers);
  4238. }
  4239. storage->get_effects()->sub_surface_scattering(rb->texture, rb->blur[0].mipmaps[0].texture, rb->depth_texture, p_camera, Size2i(rb->width, rb->height), sss_scale, sss_depth_scale, sss_quality);
  4240. }
  4241. void RasterizerSceneRD::_process_ssr(RID p_render_buffers, RID p_dest_framebuffer, RID p_normal_buffer, RID p_specular_buffer, RID p_metallic, const Color &p_metallic_mask, RID p_environment, const CameraMatrix &p_projection, bool p_use_additive) {
  4242. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4243. ERR_FAIL_COND(!rb);
  4244. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  4245. if (!can_use_effects) {
  4246. //just copy
  4247. storage->get_effects()->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : rb->texture, RID());
  4248. return;
  4249. }
  4250. Environment *env = environment_owner.getornull(p_environment);
  4251. ERR_FAIL_COND(!env);
  4252. ERR_FAIL_COND(!env->ssr_enabled);
  4253. if (rb->ssr.depth_scaled.is_null()) {
  4254. RD::TextureFormat tf;
  4255. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  4256. tf.width = rb->width / 2;
  4257. tf.height = rb->height / 2;
  4258. tf.type = RD::TEXTURE_TYPE_2D;
  4259. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  4260. rb->ssr.depth_scaled = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4261. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  4262. rb->ssr.normal_scaled = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4263. }
  4264. if (ssr_roughness_quality != RS::ENV_SSR_ROUGNESS_QUALITY_DISABLED && !rb->ssr.blur_radius[0].is_valid()) {
  4265. RD::TextureFormat tf;
  4266. tf.format = RD::DATA_FORMAT_R8_UNORM;
  4267. tf.width = rb->width / 2;
  4268. tf.height = rb->height / 2;
  4269. tf.type = RD::TEXTURE_TYPE_2D;
  4270. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  4271. rb->ssr.blur_radius[0] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4272. rb->ssr.blur_radius[1] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4273. }
  4274. if (rb->blur[0].texture.is_null()) {
  4275. _allocate_blur_textures(rb);
  4276. _render_buffers_uniform_set_changed(p_render_buffers);
  4277. }
  4278. storage->get_effects()->screen_space_reflection(rb->texture, p_normal_buffer, ssr_roughness_quality, rb->ssr.blur_radius[0], rb->ssr.blur_radius[1], p_metallic, p_metallic_mask, rb->depth_texture, rb->ssr.depth_scaled, rb->ssr.normal_scaled, rb->blur[0].mipmaps[1].texture, rb->blur[1].mipmaps[0].texture, Size2i(rb->width / 2, rb->height / 2), env->ssr_max_steps, env->ssr_fade_in, env->ssr_fade_out, env->ssr_depth_tolerance, p_projection);
  4279. storage->get_effects()->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : rb->texture, rb->blur[0].mipmaps[1].texture);
  4280. }
  4281. void RasterizerSceneRD::_process_ssao(RID p_render_buffers, RID p_environment, RID p_normal_buffer, const CameraMatrix &p_projection) {
  4282. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4283. ERR_FAIL_COND(!rb);
  4284. Environment *env = environment_owner.getornull(p_environment);
  4285. ERR_FAIL_COND(!env);
  4286. RENDER_TIMESTAMP("Process SSAO");
  4287. if (rb->ssao.ao[0].is_valid() && rb->ssao.ao_full.is_valid() != ssao_half_size) {
  4288. RD::get_singleton()->free(rb->ssao.depth);
  4289. RD::get_singleton()->free(rb->ssao.ao[0]);
  4290. if (rb->ssao.ao[1].is_valid()) {
  4291. RD::get_singleton()->free(rb->ssao.ao[1]);
  4292. }
  4293. if (rb->ssao.ao_full.is_valid()) {
  4294. RD::get_singleton()->free(rb->ssao.ao_full);
  4295. }
  4296. rb->ssao.depth = RID();
  4297. rb->ssao.ao[0] = RID();
  4298. rb->ssao.ao[1] = RID();
  4299. rb->ssao.ao_full = RID();
  4300. rb->ssao.depth_slices.clear();
  4301. }
  4302. if (!rb->ssao.ao[0].is_valid()) {
  4303. //allocate depth slices
  4304. {
  4305. RD::TextureFormat tf;
  4306. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  4307. tf.width = rb->width / 2;
  4308. tf.height = rb->height / 2;
  4309. tf.mipmaps = Image::get_image_required_mipmaps(tf.width, tf.height, Image::FORMAT_RF) + 1;
  4310. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4311. rb->ssao.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4312. for (uint32_t i = 0; i < tf.mipmaps; i++) {
  4313. RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.depth, 0, i);
  4314. rb->ssao.depth_slices.push_back(slice);
  4315. }
  4316. }
  4317. {
  4318. RD::TextureFormat tf;
  4319. tf.format = RD::DATA_FORMAT_R8_UNORM;
  4320. tf.width = ssao_half_size ? rb->width / 2 : rb->width;
  4321. tf.height = ssao_half_size ? rb->height / 2 : rb->height;
  4322. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4323. rb->ssao.ao[0] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4324. rb->ssao.ao[1] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4325. }
  4326. if (ssao_half_size) {
  4327. //upsample texture
  4328. RD::TextureFormat tf;
  4329. tf.format = RD::DATA_FORMAT_R8_UNORM;
  4330. tf.width = rb->width;
  4331. tf.height = rb->height;
  4332. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4333. rb->ssao.ao_full = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4334. }
  4335. _render_buffers_uniform_set_changed(p_render_buffers);
  4336. }
  4337. storage->get_effects()->generate_ssao(rb->depth_texture, p_normal_buffer, Size2i(rb->width, rb->height), rb->ssao.depth, rb->ssao.depth_slices, rb->ssao.ao[0], rb->ssao.ao_full.is_valid(), rb->ssao.ao[1], rb->ssao.ao_full, env->ssao_intensity, env->ssao_radius, env->ssao_bias, p_projection, ssao_quality, env->ssao_blur, env->ssao_blur_edge_sharpness);
  4338. }
  4339. void RasterizerSceneRD::_render_buffers_post_process_and_tonemap(RID p_render_buffers, RID p_environment, RID p_camera_effects, const CameraMatrix &p_projection) {
  4340. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4341. ERR_FAIL_COND(!rb);
  4342. Environment *env = environment_owner.getornull(p_environment);
  4343. //glow (if enabled)
  4344. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  4345. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  4346. if (can_use_effects && camfx && (camfx->dof_blur_near_enabled || camfx->dof_blur_far_enabled) && camfx->dof_blur_amount > 0.0) {
  4347. if (rb->blur[0].texture.is_null()) {
  4348. _allocate_blur_textures(rb);
  4349. _render_buffers_uniform_set_changed(p_render_buffers);
  4350. }
  4351. float bokeh_size = camfx->dof_blur_amount * 64.0;
  4352. storage->get_effects()->bokeh_dof(rb->texture, rb->depth_texture, Size2i(rb->width, rb->height), rb->blur[0].mipmaps[0].texture, rb->blur[1].mipmaps[0].texture, rb->blur[0].mipmaps[1].texture, camfx->dof_blur_far_enabled, camfx->dof_blur_far_distance, camfx->dof_blur_far_transition, camfx->dof_blur_near_enabled, camfx->dof_blur_near_distance, camfx->dof_blur_near_transition, bokeh_size, dof_blur_bokeh_shape, dof_blur_quality, dof_blur_use_jitter, p_projection.get_z_near(), p_projection.get_z_far(), p_projection.is_orthogonal());
  4353. }
  4354. if (can_use_effects && env && env->auto_exposure) {
  4355. if (rb->luminance.current.is_null()) {
  4356. _allocate_luminance_textures(rb);
  4357. _render_buffers_uniform_set_changed(p_render_buffers);
  4358. }
  4359. bool set_immediate = env->auto_exposure_version != rb->auto_exposure_version;
  4360. rb->auto_exposure_version = env->auto_exposure_version;
  4361. double step = env->auto_exp_speed * time_step;
  4362. storage->get_effects()->luminance_reduction(rb->texture, Size2i(rb->width, rb->height), rb->luminance.reduce, rb->luminance.current, env->min_luminance, env->max_luminance, step, set_immediate);
  4363. //swap final reduce with prev luminance
  4364. SWAP(rb->luminance.current, rb->luminance.reduce.write[rb->luminance.reduce.size() - 1]);
  4365. RenderingServerRaster::redraw_request(); //redraw all the time if auto exposure rendering is on
  4366. }
  4367. int max_glow_level = -1;
  4368. int glow_mask = 0;
  4369. if (can_use_effects && env && env->glow_enabled) {
  4370. /* see that blur textures are allocated */
  4371. if (rb->blur[0].texture.is_null()) {
  4372. _allocate_blur_textures(rb);
  4373. _render_buffers_uniform_set_changed(p_render_buffers);
  4374. }
  4375. for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
  4376. if (env->glow_levels & (1 << i)) {
  4377. if (i >= rb->blur[1].mipmaps.size()) {
  4378. max_glow_level = rb->blur[1].mipmaps.size() - 1;
  4379. glow_mask |= 1 << max_glow_level;
  4380. } else {
  4381. max_glow_level = i;
  4382. glow_mask |= (1 << i);
  4383. }
  4384. }
  4385. }
  4386. for (int i = 0; i < (max_glow_level + 1); i++) {
  4387. int vp_w = rb->blur[1].mipmaps[i].width;
  4388. int vp_h = rb->blur[1].mipmaps[i].height;
  4389. if (i == 0) {
  4390. RID luminance_texture;
  4391. if (env->auto_exposure && rb->luminance.current.is_valid()) {
  4392. luminance_texture = rb->luminance.current;
  4393. }
  4394. storage->get_effects()->gaussian_glow(rb->texture, rb->blur[0].mipmaps[i + 1].texture, rb->blur[1].mipmaps[i].texture, Size2i(vp_w, vp_h), env->glow_strength, true, env->glow_hdr_luminance_cap, env->exposure, env->glow_bloom, env->glow_hdr_bleed_threshold, env->glow_hdr_bleed_scale, luminance_texture, env->auto_exp_scale);
  4395. } else {
  4396. storage->get_effects()->gaussian_glow(rb->blur[1].mipmaps[i - 1].texture, rb->blur[0].mipmaps[i + 1].texture, rb->blur[1].mipmaps[i].texture, Size2i(vp_w, vp_h), env->glow_strength);
  4397. }
  4398. }
  4399. }
  4400. {
  4401. //tonemap
  4402. RasterizerEffectsRD::TonemapSettings tonemap;
  4403. tonemap.color_correction_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE);
  4404. if (can_use_effects && env && env->auto_exposure && rb->luminance.current.is_valid()) {
  4405. tonemap.use_auto_exposure = true;
  4406. tonemap.exposure_texture = rb->luminance.current;
  4407. tonemap.auto_exposure_grey = env->auto_exp_scale;
  4408. } else {
  4409. tonemap.exposure_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE);
  4410. }
  4411. if (can_use_effects && env && env->glow_enabled) {
  4412. tonemap.use_glow = true;
  4413. tonemap.glow_mode = RasterizerEffectsRD::TonemapSettings::GlowMode(env->glow_blend_mode);
  4414. tonemap.glow_intensity = env->glow_blend_mode == RS::ENV_GLOW_BLEND_MODE_MIX ? env->glow_mix : env->glow_intensity;
  4415. tonemap.glow_level_flags = glow_mask;
  4416. tonemap.glow_texture_size.x = rb->blur[1].mipmaps[0].width;
  4417. tonemap.glow_texture_size.y = rb->blur[1].mipmaps[0].height;
  4418. tonemap.glow_use_bicubic_upscale = glow_bicubic_upscale;
  4419. tonemap.glow_texture = rb->blur[1].texture;
  4420. } else {
  4421. tonemap.glow_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK);
  4422. }
  4423. if (rb->screen_space_aa == RS::VIEWPORT_SCREEN_SPACE_AA_FXAA) {
  4424. tonemap.use_fxaa = true;
  4425. }
  4426. tonemap.texture_size = Vector2i(rb->width, rb->height);
  4427. if (env) {
  4428. tonemap.tonemap_mode = env->tone_mapper;
  4429. tonemap.white = env->white;
  4430. tonemap.exposure = env->exposure;
  4431. }
  4432. storage->get_effects()->tonemapper(rb->texture, storage->render_target_get_rd_framebuffer(rb->render_target), tonemap);
  4433. }
  4434. storage->render_target_disable_clear_request(rb->render_target);
  4435. }
  4436. void RasterizerSceneRD::_render_buffers_debug_draw(RID p_render_buffers, RID p_shadow_atlas) {
  4437. RasterizerEffectsRD *effects = storage->get_effects();
  4438. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4439. ERR_FAIL_COND(!rb);
  4440. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) {
  4441. if (p_shadow_atlas.is_valid()) {
  4442. RID shadow_atlas_texture = shadow_atlas_get_texture(p_shadow_atlas);
  4443. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4444. effects->copy_to_fb_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, true);
  4445. }
  4446. }
  4447. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) {
  4448. if (directional_shadow_get_texture().is_valid()) {
  4449. RID shadow_atlas_texture = directional_shadow_get_texture();
  4450. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4451. effects->copy_to_fb_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, true);
  4452. }
  4453. }
  4454. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DECAL_ATLAS) {
  4455. RID decal_atlas = storage->decal_atlas_get_texture();
  4456. if (decal_atlas.is_valid()) {
  4457. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4458. effects->copy_to_fb_rect(decal_atlas, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, false, true);
  4459. }
  4460. }
  4461. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE) {
  4462. if (rb->luminance.current.is_valid()) {
  4463. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4464. effects->copy_to_fb_rect(rb->luminance.current, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize / 8), false, true);
  4465. }
  4466. }
  4467. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSAO && rb->ssao.ao[0].is_valid()) {
  4468. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4469. RID ao_buf = rb->ssao.ao_full.is_valid() ? rb->ssao.ao_full : rb->ssao.ao[0];
  4470. effects->copy_to_fb_rect(ao_buf, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, true);
  4471. }
  4472. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(p_render_buffers).is_valid()) {
  4473. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4474. effects->copy_to_fb_rect(_render_buffers_get_normal_texture(p_render_buffers), storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, false);
  4475. }
  4476. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_GI_BUFFER && _render_buffers_get_ambient_texture(p_render_buffers).is_valid()) {
  4477. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4478. RID ambient_texture = _render_buffers_get_ambient_texture(p_render_buffers);
  4479. RID reflection_texture = _render_buffers_get_reflection_texture(p_render_buffers);
  4480. effects->copy_to_fb_rect(ambient_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, false, false, true, reflection_texture);
  4481. }
  4482. }
  4483. void RasterizerSceneRD::_sdfgi_debug_draw(RID p_render_buffers, const CameraMatrix &p_projection, const Transform &p_transform) {
  4484. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4485. ERR_FAIL_COND(!rb);
  4486. if (!rb->sdfgi) {
  4487. return; //eh
  4488. }
  4489. if (!rb->sdfgi->debug_uniform_set.is_valid() || !RD::get_singleton()->uniform_set_is_valid(rb->sdfgi->debug_uniform_set)) {
  4490. Vector<RD::Uniform> uniforms;
  4491. {
  4492. RD::Uniform u;
  4493. u.binding = 1;
  4494. u.type = RD::UNIFORM_TYPE_TEXTURE;
  4495. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  4496. if (i < rb->sdfgi->cascades.size()) {
  4497. u.ids.push_back(rb->sdfgi->cascades[i].sdf_tex);
  4498. } else {
  4499. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  4500. }
  4501. }
  4502. uniforms.push_back(u);
  4503. }
  4504. {
  4505. RD::Uniform u;
  4506. u.binding = 2;
  4507. u.type = RD::UNIFORM_TYPE_TEXTURE;
  4508. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  4509. if (i < rb->sdfgi->cascades.size()) {
  4510. u.ids.push_back(rb->sdfgi->cascades[i].light_tex);
  4511. } else {
  4512. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  4513. }
  4514. }
  4515. uniforms.push_back(u);
  4516. }
  4517. {
  4518. RD::Uniform u;
  4519. u.binding = 3;
  4520. u.type = RD::UNIFORM_TYPE_TEXTURE;
  4521. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  4522. if (i < rb->sdfgi->cascades.size()) {
  4523. u.ids.push_back(rb->sdfgi->cascades[i].light_aniso_0_tex);
  4524. } else {
  4525. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  4526. }
  4527. }
  4528. uniforms.push_back(u);
  4529. }
  4530. {
  4531. RD::Uniform u;
  4532. u.binding = 4;
  4533. u.type = RD::UNIFORM_TYPE_TEXTURE;
  4534. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  4535. if (i < rb->sdfgi->cascades.size()) {
  4536. u.ids.push_back(rb->sdfgi->cascades[i].light_aniso_1_tex);
  4537. } else {
  4538. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  4539. }
  4540. }
  4541. uniforms.push_back(u);
  4542. }
  4543. {
  4544. RD::Uniform u;
  4545. u.binding = 5;
  4546. u.type = RD::UNIFORM_TYPE_TEXTURE;
  4547. u.ids.push_back(rb->sdfgi->occlusion_texture);
  4548. uniforms.push_back(u);
  4549. }
  4550. {
  4551. RD::Uniform u;
  4552. u.binding = 8;
  4553. u.type = RD::UNIFORM_TYPE_SAMPLER;
  4554. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  4555. uniforms.push_back(u);
  4556. }
  4557. {
  4558. RD::Uniform u;
  4559. u.binding = 9;
  4560. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  4561. u.ids.push_back(rb->sdfgi->cascades_ubo);
  4562. uniforms.push_back(u);
  4563. }
  4564. {
  4565. RD::Uniform u;
  4566. u.binding = 10;
  4567. u.type = RD::UNIFORM_TYPE_IMAGE;
  4568. u.ids.push_back(rb->texture);
  4569. uniforms.push_back(u);
  4570. }
  4571. {
  4572. RD::Uniform u;
  4573. u.binding = 11;
  4574. u.type = RD::UNIFORM_TYPE_TEXTURE;
  4575. u.ids.push_back(rb->sdfgi->lightprobe_texture);
  4576. uniforms.push_back(u);
  4577. }
  4578. rb->sdfgi->debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.debug_shader_version, 0);
  4579. }
  4580. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  4581. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.debug_pipeline);
  4582. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->debug_uniform_set, 0);
  4583. SDGIShader::DebugPushConstant push_constant;
  4584. push_constant.grid_size[0] = rb->sdfgi->cascade_size;
  4585. push_constant.grid_size[1] = rb->sdfgi->cascade_size;
  4586. push_constant.grid_size[2] = rb->sdfgi->cascade_size;
  4587. push_constant.max_cascades = rb->sdfgi->cascades.size();
  4588. push_constant.screen_size[0] = rb->width;
  4589. push_constant.screen_size[1] = rb->height;
  4590. push_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  4591. push_constant.use_occlusion = rb->sdfgi->uses_occlusion;
  4592. push_constant.y_mult = rb->sdfgi->y_mult;
  4593. Vector2 vp_half = p_projection.get_viewport_half_extents();
  4594. push_constant.cam_extent[0] = vp_half.x;
  4595. push_constant.cam_extent[1] = vp_half.y;
  4596. push_constant.cam_extent[2] = -p_projection.get_z_near();
  4597. push_constant.cam_transform[0] = p_transform.basis.elements[0][0];
  4598. push_constant.cam_transform[1] = p_transform.basis.elements[1][0];
  4599. push_constant.cam_transform[2] = p_transform.basis.elements[2][0];
  4600. push_constant.cam_transform[3] = 0;
  4601. push_constant.cam_transform[4] = p_transform.basis.elements[0][1];
  4602. push_constant.cam_transform[5] = p_transform.basis.elements[1][1];
  4603. push_constant.cam_transform[6] = p_transform.basis.elements[2][1];
  4604. push_constant.cam_transform[7] = 0;
  4605. push_constant.cam_transform[8] = p_transform.basis.elements[0][2];
  4606. push_constant.cam_transform[9] = p_transform.basis.elements[1][2];
  4607. push_constant.cam_transform[10] = p_transform.basis.elements[2][2];
  4608. push_constant.cam_transform[11] = 0;
  4609. push_constant.cam_transform[12] = p_transform.origin.x;
  4610. push_constant.cam_transform[13] = p_transform.origin.y;
  4611. push_constant.cam_transform[14] = p_transform.origin.z;
  4612. push_constant.cam_transform[15] = 1;
  4613. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::DebugPushConstant));
  4614. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->width, rb->height, 1, 8, 8, 1);
  4615. RD::get_singleton()->compute_list_end();
  4616. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4617. storage->get_effects()->copy_to_fb_rect(rb->texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), true);
  4618. }
  4619. RID RasterizerSceneRD::render_buffers_get_back_buffer_texture(RID p_render_buffers) {
  4620. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4621. ERR_FAIL_COND_V(!rb, RID());
  4622. if (!rb->blur[0].texture.is_valid()) {
  4623. return RID(); //not valid at the moment
  4624. }
  4625. return rb->blur[0].texture;
  4626. }
  4627. RID RasterizerSceneRD::render_buffers_get_ao_texture(RID p_render_buffers) {
  4628. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4629. ERR_FAIL_COND_V(!rb, RID());
  4630. return rb->ssao.ao_full.is_valid() ? rb->ssao.ao_full : rb->ssao.ao[0];
  4631. }
  4632. RID RasterizerSceneRD::render_buffers_get_gi_probe_buffer(RID p_render_buffers) {
  4633. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4634. ERR_FAIL_COND_V(!rb, RID());
  4635. if (rb->giprobe_buffer.is_null()) {
  4636. rb->giprobe_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(GI::GIProbeData) * RenderBuffers::MAX_GIPROBES);
  4637. }
  4638. return rb->giprobe_buffer;
  4639. }
  4640. RID RasterizerSceneRD::render_buffers_get_default_gi_probe_buffer() {
  4641. return default_giprobe_buffer;
  4642. }
  4643. uint32_t RasterizerSceneRD::render_buffers_get_sdfgi_cascade_count(RID p_render_buffers) const {
  4644. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4645. ERR_FAIL_COND_V(!rb, 0);
  4646. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  4647. return rb->sdfgi->cascades.size();
  4648. }
  4649. bool RasterizerSceneRD::render_buffers_is_sdfgi_enabled(RID p_render_buffers) const {
  4650. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4651. ERR_FAIL_COND_V(!rb, false);
  4652. return rb->sdfgi != nullptr;
  4653. }
  4654. RID RasterizerSceneRD::render_buffers_get_sdfgi_irradiance_probes(RID p_render_buffers) const {
  4655. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4656. ERR_FAIL_COND_V(!rb, RID());
  4657. ERR_FAIL_COND_V(!rb->sdfgi, RID());
  4658. return rb->sdfgi->lightprobe_texture;
  4659. }
  4660. Vector3 RasterizerSceneRD::render_buffers_get_sdfgi_cascade_offset(RID p_render_buffers, uint32_t p_cascade) const {
  4661. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4662. ERR_FAIL_COND_V(!rb, Vector3());
  4663. ERR_FAIL_COND_V(!rb->sdfgi, Vector3());
  4664. ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), Vector3());
  4665. return Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[p_cascade].position)) * rb->sdfgi->cascades[p_cascade].cell_size;
  4666. }
  4667. Vector3i RasterizerSceneRD::render_buffers_get_sdfgi_cascade_probe_offset(RID p_render_buffers, uint32_t p_cascade) const {
  4668. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4669. ERR_FAIL_COND_V(!rb, Vector3i());
  4670. ERR_FAIL_COND_V(!rb->sdfgi, Vector3i());
  4671. ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), Vector3i());
  4672. int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  4673. return rb->sdfgi->cascades[p_cascade].position / probe_divisor;
  4674. }
  4675. float RasterizerSceneRD::render_buffers_get_sdfgi_normal_bias(RID p_render_buffers) const {
  4676. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4677. ERR_FAIL_COND_V(!rb, 0);
  4678. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  4679. return rb->sdfgi->normal_bias;
  4680. }
  4681. float RasterizerSceneRD::render_buffers_get_sdfgi_cascade_probe_size(RID p_render_buffers, uint32_t p_cascade) const {
  4682. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4683. ERR_FAIL_COND_V(!rb, 0);
  4684. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  4685. ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), 0);
  4686. return float(rb->sdfgi->cascade_size) * rb->sdfgi->cascades[p_cascade].cell_size / float(rb->sdfgi->probe_axis_count - 1);
  4687. }
  4688. uint32_t RasterizerSceneRD::render_buffers_get_sdfgi_cascade_probe_count(RID p_render_buffers) const {
  4689. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4690. ERR_FAIL_COND_V(!rb, 0);
  4691. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  4692. return rb->sdfgi->probe_axis_count;
  4693. }
  4694. uint32_t RasterizerSceneRD::render_buffers_get_sdfgi_cascade_size(RID p_render_buffers) const {
  4695. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4696. ERR_FAIL_COND_V(!rb, 0);
  4697. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  4698. return rb->sdfgi->cascade_size;
  4699. }
  4700. bool RasterizerSceneRD::render_buffers_is_sdfgi_using_occlusion(RID p_render_buffers) const {
  4701. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4702. ERR_FAIL_COND_V(!rb, false);
  4703. ERR_FAIL_COND_V(!rb->sdfgi, false);
  4704. return rb->sdfgi->uses_occlusion;
  4705. }
  4706. float RasterizerSceneRD::render_buffers_get_sdfgi_energy(RID p_render_buffers) const {
  4707. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4708. ERR_FAIL_COND_V(!rb, 0);
  4709. ERR_FAIL_COND_V(!rb->sdfgi, false);
  4710. return rb->sdfgi->energy;
  4711. }
  4712. RID RasterizerSceneRD::render_buffers_get_sdfgi_occlusion_texture(RID p_render_buffers) const {
  4713. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4714. ERR_FAIL_COND_V(!rb, RID());
  4715. ERR_FAIL_COND_V(!rb->sdfgi, RID());
  4716. return rb->sdfgi->occlusion_texture;
  4717. }
  4718. bool RasterizerSceneRD::render_buffers_has_volumetric_fog(RID p_render_buffers) const {
  4719. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4720. ERR_FAIL_COND_V(!rb, false);
  4721. return rb->volumetric_fog != nullptr;
  4722. }
  4723. RID RasterizerSceneRD::render_buffers_get_volumetric_fog_texture(RID p_render_buffers) {
  4724. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4725. ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, RID());
  4726. return rb->volumetric_fog->fog_map;
  4727. }
  4728. RID RasterizerSceneRD::render_buffers_get_volumetric_fog_sky_uniform_set(RID p_render_buffers) {
  4729. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4730. ERR_FAIL_COND_V(!rb, RID());
  4731. if (!rb->volumetric_fog) {
  4732. return RID();
  4733. }
  4734. return rb->volumetric_fog->sky_uniform_set;
  4735. }
  4736. float RasterizerSceneRD::render_buffers_get_volumetric_fog_end(RID p_render_buffers) {
  4737. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4738. ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, 0);
  4739. return rb->volumetric_fog->length;
  4740. }
  4741. float RasterizerSceneRD::render_buffers_get_volumetric_fog_detail_spread(RID p_render_buffers) {
  4742. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4743. ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, 0);
  4744. return rb->volumetric_fog->spread;
  4745. }
  4746. void RasterizerSceneRD::render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, RS::ViewportMSAA p_msaa, RenderingServer::ViewportScreenSpaceAA p_screen_space_aa) {
  4747. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4748. rb->width = p_width;
  4749. rb->height = p_height;
  4750. rb->render_target = p_render_target;
  4751. rb->msaa = p_msaa;
  4752. rb->screen_space_aa = p_screen_space_aa;
  4753. _free_render_buffer_data(rb);
  4754. {
  4755. RD::TextureFormat tf;
  4756. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  4757. tf.width = rb->width;
  4758. tf.height = rb->height;
  4759. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4760. if (rb->msaa != RS::VIEWPORT_MSAA_DISABLED) {
  4761. tf.usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4762. } else {
  4763. tf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  4764. }
  4765. rb->texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4766. }
  4767. {
  4768. RD::TextureFormat tf;
  4769. if (rb->msaa == RS::VIEWPORT_MSAA_DISABLED) {
  4770. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D24_UNORM_S8_UINT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D24_UNORM_S8_UINT : RD::DATA_FORMAT_D32_SFLOAT_S8_UINT;
  4771. } else {
  4772. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  4773. }
  4774. tf.width = p_width;
  4775. tf.height = p_height;
  4776. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT;
  4777. if (rb->msaa != RS::VIEWPORT_MSAA_DISABLED) {
  4778. tf.usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4779. } else {
  4780. tf.usage_bits |= RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  4781. }
  4782. rb->depth_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4783. }
  4784. rb->data->configure(rb->texture, rb->depth_texture, p_width, p_height, p_msaa);
  4785. _render_buffers_uniform_set_changed(p_render_buffers);
  4786. }
  4787. void RasterizerSceneRD::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) {
  4788. sss_quality = p_quality;
  4789. }
  4790. RS::SubSurfaceScatteringQuality RasterizerSceneRD::sub_surface_scattering_get_quality() const {
  4791. return sss_quality;
  4792. }
  4793. void RasterizerSceneRD::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) {
  4794. sss_scale = p_scale;
  4795. sss_depth_scale = p_depth_scale;
  4796. }
  4797. void RasterizerSceneRD::shadows_quality_set(RS::ShadowQuality p_quality) {
  4798. ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");
  4799. if (shadows_quality != p_quality) {
  4800. shadows_quality = p_quality;
  4801. switch (shadows_quality) {
  4802. case RS::SHADOW_QUALITY_HARD: {
  4803. penumbra_shadow_samples = 4;
  4804. soft_shadow_samples = 1;
  4805. shadows_quality_radius = 1.0;
  4806. } break;
  4807. case RS::SHADOW_QUALITY_SOFT_LOW: {
  4808. penumbra_shadow_samples = 8;
  4809. soft_shadow_samples = 4;
  4810. shadows_quality_radius = 2.0;
  4811. } break;
  4812. case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
  4813. penumbra_shadow_samples = 12;
  4814. soft_shadow_samples = 8;
  4815. shadows_quality_radius = 2.0;
  4816. } break;
  4817. case RS::SHADOW_QUALITY_SOFT_HIGH: {
  4818. penumbra_shadow_samples = 24;
  4819. soft_shadow_samples = 16;
  4820. shadows_quality_radius = 3.0;
  4821. } break;
  4822. case RS::SHADOW_QUALITY_SOFT_ULTRA: {
  4823. penumbra_shadow_samples = 32;
  4824. soft_shadow_samples = 32;
  4825. shadows_quality_radius = 4.0;
  4826. } break;
  4827. case RS::SHADOW_QUALITY_MAX:
  4828. break;
  4829. }
  4830. get_vogel_disk(penumbra_shadow_kernel, penumbra_shadow_samples);
  4831. get_vogel_disk(soft_shadow_kernel, soft_shadow_samples);
  4832. }
  4833. }
  4834. void RasterizerSceneRD::directional_shadow_quality_set(RS::ShadowQuality p_quality) {
  4835. ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");
  4836. if (directional_shadow_quality != p_quality) {
  4837. directional_shadow_quality = p_quality;
  4838. switch (directional_shadow_quality) {
  4839. case RS::SHADOW_QUALITY_HARD: {
  4840. directional_penumbra_shadow_samples = 4;
  4841. directional_soft_shadow_samples = 1;
  4842. directional_shadow_quality_radius = 1.0;
  4843. } break;
  4844. case RS::SHADOW_QUALITY_SOFT_LOW: {
  4845. directional_penumbra_shadow_samples = 8;
  4846. directional_soft_shadow_samples = 4;
  4847. directional_shadow_quality_radius = 2.0;
  4848. } break;
  4849. case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
  4850. directional_penumbra_shadow_samples = 12;
  4851. directional_soft_shadow_samples = 8;
  4852. directional_shadow_quality_radius = 2.0;
  4853. } break;
  4854. case RS::SHADOW_QUALITY_SOFT_HIGH: {
  4855. directional_penumbra_shadow_samples = 24;
  4856. directional_soft_shadow_samples = 16;
  4857. directional_shadow_quality_radius = 3.0;
  4858. } break;
  4859. case RS::SHADOW_QUALITY_SOFT_ULTRA: {
  4860. directional_penumbra_shadow_samples = 32;
  4861. directional_soft_shadow_samples = 32;
  4862. directional_shadow_quality_radius = 4.0;
  4863. } break;
  4864. case RS::SHADOW_QUALITY_MAX:
  4865. break;
  4866. }
  4867. get_vogel_disk(directional_penumbra_shadow_kernel, directional_penumbra_shadow_samples);
  4868. get_vogel_disk(directional_soft_shadow_kernel, directional_soft_shadow_samples);
  4869. }
  4870. }
  4871. int RasterizerSceneRD::get_roughness_layers() const {
  4872. return roughness_layers;
  4873. }
  4874. bool RasterizerSceneRD::is_using_radiance_cubemap_array() const {
  4875. return sky_use_cubemap_array;
  4876. }
  4877. RasterizerSceneRD::RenderBufferData *RasterizerSceneRD::render_buffers_get_data(RID p_render_buffers) {
  4878. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4879. ERR_FAIL_COND_V(!rb, nullptr);
  4880. return rb->data;
  4881. }
  4882. void RasterizerSceneRD::_setup_reflections(RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, const Transform &p_camera_inverse_transform, RID p_environment) {
  4883. for (int i = 0; i < p_reflection_probe_cull_count; i++) {
  4884. RID rpi = p_reflection_probe_cull_result[i];
  4885. if (i >= (int)cluster.max_reflections) {
  4886. reflection_probe_instance_set_render_index(rpi, 0); //invalid, but something needs to be set
  4887. continue;
  4888. }
  4889. reflection_probe_instance_set_render_index(rpi, i);
  4890. RID base_probe = reflection_probe_instance_get_probe(rpi);
  4891. Cluster::ReflectionData &reflection_ubo = cluster.reflections[i];
  4892. Vector3 extents = storage->reflection_probe_get_extents(base_probe);
  4893. reflection_ubo.box_extents[0] = extents.x;
  4894. reflection_ubo.box_extents[1] = extents.y;
  4895. reflection_ubo.box_extents[2] = extents.z;
  4896. reflection_ubo.index = reflection_probe_instance_get_atlas_index(rpi);
  4897. Vector3 origin_offset = storage->reflection_probe_get_origin_offset(base_probe);
  4898. reflection_ubo.box_offset[0] = origin_offset.x;
  4899. reflection_ubo.box_offset[1] = origin_offset.y;
  4900. reflection_ubo.box_offset[2] = origin_offset.z;
  4901. reflection_ubo.mask = storage->reflection_probe_get_cull_mask(base_probe);
  4902. float intensity = storage->reflection_probe_get_intensity(base_probe);
  4903. bool interior = storage->reflection_probe_is_interior(base_probe);
  4904. bool box_projection = storage->reflection_probe_is_box_projection(base_probe);
  4905. reflection_ubo.params[0] = intensity;
  4906. reflection_ubo.params[1] = 0;
  4907. reflection_ubo.params[2] = interior ? 1.0 : 0.0;
  4908. reflection_ubo.params[3] = box_projection ? 1.0 : 0.0;
  4909. Color ambient_linear = storage->reflection_probe_get_ambient_color(base_probe).to_linear();
  4910. float interior_ambient_energy = storage->reflection_probe_get_ambient_color_energy(base_probe);
  4911. uint32_t ambient_mode = storage->reflection_probe_get_ambient_mode(base_probe);
  4912. reflection_ubo.ambient[0] = ambient_linear.r * interior_ambient_energy;
  4913. reflection_ubo.ambient[1] = ambient_linear.g * interior_ambient_energy;
  4914. reflection_ubo.ambient[2] = ambient_linear.b * interior_ambient_energy;
  4915. reflection_ubo.ambient_mode = ambient_mode;
  4916. Transform transform = reflection_probe_instance_get_transform(rpi);
  4917. Transform proj = (p_camera_inverse_transform * transform).inverse();
  4918. RasterizerStorageRD::store_transform(proj, reflection_ubo.local_matrix);
  4919. cluster.builder.add_reflection_probe(transform, extents);
  4920. reflection_probe_instance_set_render_pass(rpi, RSG::rasterizer->get_frame_number());
  4921. }
  4922. if (p_reflection_probe_cull_count) {
  4923. RD::get_singleton()->buffer_update(cluster.reflection_buffer, 0, MIN(cluster.max_reflections, (unsigned int)p_reflection_probe_cull_count) * sizeof(ReflectionData), cluster.reflections, true);
  4924. }
  4925. }
  4926. void RasterizerSceneRD::_setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_positional_light_count) {
  4927. uint32_t light_count = 0;
  4928. r_directional_light_count = 0;
  4929. r_positional_light_count = 0;
  4930. sky_scene_state.ubo.directional_light_count = 0;
  4931. for (int i = 0; i < p_light_cull_count; i++) {
  4932. RID li = p_light_cull_result[i];
  4933. RID base = light_instance_get_base_light(li);
  4934. ERR_CONTINUE(base.is_null());
  4935. RS::LightType type = storage->light_get_type(base);
  4936. switch (type) {
  4937. case RS::LIGHT_DIRECTIONAL: {
  4938. if (r_directional_light_count >= cluster.max_directional_lights) {
  4939. continue;
  4940. }
  4941. Cluster::DirectionalLightData &light_data = cluster.directional_lights[r_directional_light_count];
  4942. Transform light_transform = light_instance_get_base_transform(li);
  4943. Vector3 direction = p_camera_inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized();
  4944. light_data.direction[0] = direction.x;
  4945. light_data.direction[1] = direction.y;
  4946. light_data.direction[2] = direction.z;
  4947. float sign = storage->light_is_negative(base) ? -1 : 1;
  4948. light_data.energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI;
  4949. Color linear_col = storage->light_get_color(base).to_linear();
  4950. light_data.color[0] = linear_col.r;
  4951. light_data.color[1] = linear_col.g;
  4952. light_data.color[2] = linear_col.b;
  4953. light_data.specular = storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR);
  4954. light_data.mask = storage->light_get_cull_mask(base);
  4955. float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  4956. light_data.size = 1.0 - Math::cos(Math::deg2rad(size)); //angle to cosine offset
  4957. Color shadow_col = storage->light_get_shadow_color(base).to_linear();
  4958. if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_PSSM_SPLITS) {
  4959. light_data.shadow_color1[0] = 1.0;
  4960. light_data.shadow_color1[1] = 0.0;
  4961. light_data.shadow_color1[2] = 0.0;
  4962. light_data.shadow_color1[3] = 1.0;
  4963. light_data.shadow_color2[0] = 0.0;
  4964. light_data.shadow_color2[1] = 1.0;
  4965. light_data.shadow_color2[2] = 0.0;
  4966. light_data.shadow_color2[3] = 1.0;
  4967. light_data.shadow_color3[0] = 0.0;
  4968. light_data.shadow_color3[1] = 0.0;
  4969. light_data.shadow_color3[2] = 1.0;
  4970. light_data.shadow_color3[3] = 1.0;
  4971. light_data.shadow_color4[0] = 1.0;
  4972. light_data.shadow_color4[1] = 1.0;
  4973. light_data.shadow_color4[2] = 0.0;
  4974. light_data.shadow_color4[3] = 1.0;
  4975. } else {
  4976. light_data.shadow_color1[0] = shadow_col.r;
  4977. light_data.shadow_color1[1] = shadow_col.g;
  4978. light_data.shadow_color1[2] = shadow_col.b;
  4979. light_data.shadow_color1[3] = 1.0;
  4980. light_data.shadow_color2[0] = shadow_col.r;
  4981. light_data.shadow_color2[1] = shadow_col.g;
  4982. light_data.shadow_color2[2] = shadow_col.b;
  4983. light_data.shadow_color2[3] = 1.0;
  4984. light_data.shadow_color3[0] = shadow_col.r;
  4985. light_data.shadow_color3[1] = shadow_col.g;
  4986. light_data.shadow_color3[2] = shadow_col.b;
  4987. light_data.shadow_color3[3] = 1.0;
  4988. light_data.shadow_color4[0] = shadow_col.r;
  4989. light_data.shadow_color4[1] = shadow_col.g;
  4990. light_data.shadow_color4[2] = shadow_col.b;
  4991. light_data.shadow_color4[3] = 1.0;
  4992. }
  4993. light_data.shadow_enabled = p_using_shadows && storage->light_has_shadow(base);
  4994. float angular_diameter = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  4995. if (angular_diameter > 0.0) {
  4996. // I know tan(0) is 0, but let's not risk it with numerical precision.
  4997. // technically this will keep expanding until reaching the sun, but all we care
  4998. // is expand until we reach the radius of the near plane (there can't be more occluders than that)
  4999. angular_diameter = Math::tan(Math::deg2rad(angular_diameter));
  5000. } else {
  5001. angular_diameter = 0.0;
  5002. }
  5003. if (light_data.shadow_enabled) {
  5004. RS::LightDirectionalShadowMode smode = storage->light_directional_get_shadow_mode(base);
  5005. int limit = smode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (smode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3);
  5006. light_data.blend_splits = storage->light_directional_get_blend_splits(base);
  5007. for (int j = 0; j < 4; j++) {
  5008. Rect2 atlas_rect = light_instance_get_directional_shadow_atlas_rect(li, j);
  5009. CameraMatrix matrix = light_instance_get_shadow_camera(li, j);
  5010. float split = light_instance_get_directional_shadow_split(li, MIN(limit, j));
  5011. CameraMatrix bias;
  5012. bias.set_light_bias();
  5013. CameraMatrix rectm;
  5014. rectm.set_light_atlas_rect(atlas_rect);
  5015. Transform modelview = (p_camera_inverse_transform * light_instance_get_shadow_transform(li, j)).inverse();
  5016. CameraMatrix shadow_mtx = rectm * bias * matrix * modelview;
  5017. light_data.shadow_split_offsets[j] = split;
  5018. float bias_scale = light_instance_get_shadow_bias_scale(li, j);
  5019. light_data.shadow_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * bias_scale;
  5020. light_data.shadow_normal_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * light_instance_get_directional_shadow_texel_size(li, j);
  5021. light_data.shadow_transmittance_bias[j] = storage->light_get_transmittance_bias(base) * bias_scale;
  5022. light_data.shadow_z_range[j] = light_instance_get_shadow_range(li, j);
  5023. light_data.shadow_range_begin[j] = light_instance_get_shadow_range_begin(li, j);
  5024. RasterizerStorageRD::store_camera(shadow_mtx, light_data.shadow_matrices[j]);
  5025. Vector2 uv_scale = light_instance_get_shadow_uv_scale(li, j);
  5026. uv_scale *= atlas_rect.size; //adapt to atlas size
  5027. switch (j) {
  5028. case 0: {
  5029. light_data.uv_scale1[0] = uv_scale.x;
  5030. light_data.uv_scale1[1] = uv_scale.y;
  5031. } break;
  5032. case 1: {
  5033. light_data.uv_scale2[0] = uv_scale.x;
  5034. light_data.uv_scale2[1] = uv_scale.y;
  5035. } break;
  5036. case 2: {
  5037. light_data.uv_scale3[0] = uv_scale.x;
  5038. light_data.uv_scale3[1] = uv_scale.y;
  5039. } break;
  5040. case 3: {
  5041. light_data.uv_scale4[0] = uv_scale.x;
  5042. light_data.uv_scale4[1] = uv_scale.y;
  5043. } break;
  5044. }
  5045. }
  5046. float fade_start = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START);
  5047. light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep
  5048. light_data.fade_to = -light_data.shadow_split_offsets[3];
  5049. light_data.shadow_volumetric_fog_fade = 1.0 / storage->light_get_shadow_volumetric_fog_fade(base);
  5050. light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
  5051. light_data.softshadow_angle = angular_diameter;
  5052. if (angular_diameter <= 0.0) {
  5053. light_data.soft_shadow_scale *= directional_shadow_quality_radius_get(); // Only use quality radius for PCF
  5054. }
  5055. }
  5056. // Copy to SkyDirectionalLightData
  5057. if (r_directional_light_count < sky_scene_state.max_directional_lights) {
  5058. SkyDirectionalLightData &sky_light_data = sky_scene_state.directional_lights[r_directional_light_count];
  5059. Vector3 world_direction = light_transform.basis.xform(Vector3(0, 0, 1)).normalized();
  5060. sky_light_data.direction[0] = world_direction.x;
  5061. sky_light_data.direction[1] = world_direction.y;
  5062. sky_light_data.direction[2] = -world_direction.z;
  5063. sky_light_data.energy = light_data.energy / Math_PI;
  5064. sky_light_data.color[0] = light_data.color[0];
  5065. sky_light_data.color[1] = light_data.color[1];
  5066. sky_light_data.color[2] = light_data.color[2];
  5067. sky_light_data.enabled = true;
  5068. sky_light_data.size = angular_diameter;
  5069. sky_scene_state.ubo.directional_light_count++;
  5070. }
  5071. r_directional_light_count++;
  5072. } break;
  5073. case RS::LIGHT_SPOT:
  5074. case RS::LIGHT_OMNI: {
  5075. if (light_count >= cluster.max_lights) {
  5076. continue;
  5077. }
  5078. Transform light_transform = light_instance_get_base_transform(li);
  5079. Cluster::LightData &light_data = cluster.lights[light_count];
  5080. cluster.lights_instances[light_count] = li;
  5081. float sign = storage->light_is_negative(base) ? -1 : 1;
  5082. Color linear_col = storage->light_get_color(base).to_linear();
  5083. light_data.attenuation_energy[0] = Math::make_half_float(storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION));
  5084. light_data.attenuation_energy[1] = Math::make_half_float(sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI);
  5085. light_data.color_specular[0] = MIN(uint32_t(linear_col.r * 255), 255);
  5086. light_data.color_specular[1] = MIN(uint32_t(linear_col.g * 255), 255);
  5087. light_data.color_specular[2] = MIN(uint32_t(linear_col.b * 255), 255);
  5088. light_data.color_specular[3] = MIN(uint32_t(storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 255), 255);
  5089. float radius = MAX(0.001, storage->light_get_param(base, RS::LIGHT_PARAM_RANGE));
  5090. light_data.inv_radius = 1.0 / radius;
  5091. Vector3 pos = p_camera_inverse_transform.xform(light_transform.origin);
  5092. light_data.position[0] = pos.x;
  5093. light_data.position[1] = pos.y;
  5094. light_data.position[2] = pos.z;
  5095. Vector3 direction = p_camera_inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized();
  5096. light_data.direction[0] = direction.x;
  5097. light_data.direction[1] = direction.y;
  5098. light_data.direction[2] = direction.z;
  5099. float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  5100. light_data.size = size;
  5101. light_data.cone_attenuation_angle[0] = Math::make_half_float(storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION));
  5102. float spot_angle = storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE);
  5103. light_data.cone_attenuation_angle[1] = Math::make_half_float(Math::cos(Math::deg2rad(spot_angle)));
  5104. light_data.mask = storage->light_get_cull_mask(base);
  5105. light_data.atlas_rect[0] = 0;
  5106. light_data.atlas_rect[1] = 0;
  5107. light_data.atlas_rect[2] = 0;
  5108. light_data.atlas_rect[3] = 0;
  5109. RID projector = storage->light_get_projector(base);
  5110. if (projector.is_valid()) {
  5111. Rect2 rect = storage->decal_atlas_get_texture_rect(projector);
  5112. if (type == RS::LIGHT_SPOT) {
  5113. light_data.projector_rect[0] = rect.position.x;
  5114. light_data.projector_rect[1] = rect.position.y + rect.size.height; //flip because shadow is flipped
  5115. light_data.projector_rect[2] = rect.size.width;
  5116. light_data.projector_rect[3] = -rect.size.height;
  5117. } else {
  5118. light_data.projector_rect[0] = rect.position.x;
  5119. light_data.projector_rect[1] = rect.position.y;
  5120. light_data.projector_rect[2] = rect.size.width;
  5121. light_data.projector_rect[3] = rect.size.height * 0.5; //used by dp, so needs to be half
  5122. }
  5123. } else {
  5124. light_data.projector_rect[0] = 0;
  5125. light_data.projector_rect[1] = 0;
  5126. light_data.projector_rect[2] = 0;
  5127. light_data.projector_rect[3] = 0;
  5128. }
  5129. if (p_using_shadows && p_shadow_atlas.is_valid() && shadow_atlas_owns_light_instance(p_shadow_atlas, li)) {
  5130. // fill in the shadow information
  5131. Color shadow_color = storage->light_get_shadow_color(base);
  5132. light_data.shadow_color_enabled[0] = MIN(uint32_t(shadow_color.r * 255), 255);
  5133. light_data.shadow_color_enabled[1] = MIN(uint32_t(shadow_color.g * 255), 255);
  5134. light_data.shadow_color_enabled[2] = MIN(uint32_t(shadow_color.b * 255), 255);
  5135. light_data.shadow_color_enabled[3] = 255;
  5136. if (type == RS::LIGHT_SPOT) {
  5137. light_data.shadow_bias = (storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0);
  5138. float shadow_texel_size = Math::tan(Math::deg2rad(spot_angle)) * radius * 2.0;
  5139. shadow_texel_size *= light_instance_get_shadow_texel_size(li, p_shadow_atlas);
  5140. light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size;
  5141. } else { //omni
  5142. light_data.shadow_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0;
  5143. float shadow_texel_size = light_instance_get_shadow_texel_size(li, p_shadow_atlas);
  5144. light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 2.0; // applied in -1 .. 1 space
  5145. }
  5146. light_data.transmittance_bias = storage->light_get_transmittance_bias(base);
  5147. Rect2 rect = light_instance_get_shadow_atlas_rect(li, p_shadow_atlas);
  5148. light_data.atlas_rect[0] = rect.position.x;
  5149. light_data.atlas_rect[1] = rect.position.y;
  5150. light_data.atlas_rect[2] = rect.size.width;
  5151. light_data.atlas_rect[3] = rect.size.height;
  5152. light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
  5153. light_data.shadow_volumetric_fog_fade = 1.0 / storage->light_get_shadow_volumetric_fog_fade(base);
  5154. if (type == RS::LIGHT_OMNI) {
  5155. light_data.atlas_rect[3] *= 0.5; //one paraboloid on top of another
  5156. Transform proj = (p_camera_inverse_transform * light_transform).inverse();
  5157. RasterizerStorageRD::store_transform(proj, light_data.shadow_matrix);
  5158. if (size > 0.0) {
  5159. light_data.soft_shadow_size = size;
  5160. } else {
  5161. light_data.soft_shadow_size = 0.0;
  5162. light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
  5163. }
  5164. } else if (type == RS::LIGHT_SPOT) {
  5165. Transform modelview = (p_camera_inverse_transform * light_transform).inverse();
  5166. CameraMatrix bias;
  5167. bias.set_light_bias();
  5168. CameraMatrix shadow_mtx = bias * light_instance_get_shadow_camera(li, 0) * modelview;
  5169. RasterizerStorageRD::store_camera(shadow_mtx, light_data.shadow_matrix);
  5170. if (size > 0.0) {
  5171. CameraMatrix cm = light_instance_get_shadow_camera(li, 0);
  5172. float half_np = cm.get_z_near() * Math::tan(Math::deg2rad(spot_angle));
  5173. light_data.soft_shadow_size = (size * 0.5 / radius) / (half_np / cm.get_z_near()) * rect.size.width;
  5174. } else {
  5175. light_data.soft_shadow_size = 0.0;
  5176. light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
  5177. }
  5178. }
  5179. } else {
  5180. light_data.shadow_color_enabled[3] = 0;
  5181. }
  5182. light_instance_set_index(li, light_count);
  5183. cluster.builder.add_light(type == RS::LIGHT_SPOT ? LightClusterBuilder::LIGHT_TYPE_SPOT : LightClusterBuilder::LIGHT_TYPE_OMNI, light_transform, radius, spot_angle);
  5184. light_count++;
  5185. r_positional_light_count++;
  5186. } break;
  5187. }
  5188. light_instance_set_render_pass(li, RSG::rasterizer->get_frame_number());
  5189. //update UBO for forward rendering, blit to texture for clustered
  5190. }
  5191. if (light_count) {
  5192. RD::get_singleton()->buffer_update(cluster.light_buffer, 0, sizeof(Cluster::LightData) * light_count, cluster.lights, true);
  5193. }
  5194. if (r_directional_light_count) {
  5195. RD::get_singleton()->buffer_update(cluster.directional_light_buffer, 0, sizeof(Cluster::DirectionalLightData) * r_directional_light_count, cluster.directional_lights, true);
  5196. }
  5197. }
  5198. void RasterizerSceneRD::_setup_decals(const RID *p_decal_instances, int p_decal_count, const Transform &p_camera_inverse_xform) {
  5199. Transform uv_xform;
  5200. uv_xform.basis.scale(Vector3(2.0, 1.0, 2.0));
  5201. uv_xform.origin = Vector3(-1.0, 0.0, -1.0);
  5202. p_decal_count = MIN((uint32_t)p_decal_count, cluster.max_decals);
  5203. int idx = 0;
  5204. for (int i = 0; i < p_decal_count; i++) {
  5205. RID di = p_decal_instances[i];
  5206. RID decal = decal_instance_get_base(di);
  5207. Transform xform = decal_instance_get_transform(di);
  5208. float fade = 1.0;
  5209. if (storage->decal_is_distance_fade_enabled(decal)) {
  5210. real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;
  5211. float fade_begin = storage->decal_get_distance_fade_begin(decal);
  5212. float fade_length = storage->decal_get_distance_fade_length(decal);
  5213. if (distance > fade_begin) {
  5214. if (distance > fade_begin + fade_length) {
  5215. continue; // do not use this decal, its invisible
  5216. }
  5217. fade = 1.0 - (distance - fade_begin) / fade_length;
  5218. }
  5219. }
  5220. Cluster::DecalData &dd = cluster.decals[idx];
  5221. Vector3 decal_extents = storage->decal_get_extents(decal);
  5222. Transform scale_xform;
  5223. scale_xform.basis.scale(Vector3(decal_extents.x, decal_extents.y, decal_extents.z));
  5224. Transform to_decal_xform = (p_camera_inverse_xform * decal_instance_get_transform(di) * scale_xform * uv_xform).affine_inverse();
  5225. RasterizerStorageRD::store_transform(to_decal_xform, dd.xform);
  5226. Vector3 normal = xform.basis.get_axis(Vector3::AXIS_Y).normalized();
  5227. normal = p_camera_inverse_xform.basis.xform(normal); //camera is normalized, so fine
  5228. dd.normal[0] = normal.x;
  5229. dd.normal[1] = normal.y;
  5230. dd.normal[2] = normal.z;
  5231. dd.normal_fade = storage->decal_get_normal_fade(decal);
  5232. RID albedo_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ALBEDO);
  5233. RID emission_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_EMISSION);
  5234. if (albedo_tex.is_valid()) {
  5235. Rect2 rect = storage->decal_atlas_get_texture_rect(albedo_tex);
  5236. dd.albedo_rect[0] = rect.position.x;
  5237. dd.albedo_rect[1] = rect.position.y;
  5238. dd.albedo_rect[2] = rect.size.x;
  5239. dd.albedo_rect[3] = rect.size.y;
  5240. } else {
  5241. if (!emission_tex.is_valid()) {
  5242. continue; //no albedo, no emission, no decal.
  5243. }
  5244. dd.albedo_rect[0] = 0;
  5245. dd.albedo_rect[1] = 0;
  5246. dd.albedo_rect[2] = 0;
  5247. dd.albedo_rect[3] = 0;
  5248. }
  5249. RID normal_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_NORMAL);
  5250. if (normal_tex.is_valid()) {
  5251. Rect2 rect = storage->decal_atlas_get_texture_rect(normal_tex);
  5252. dd.normal_rect[0] = rect.position.x;
  5253. dd.normal_rect[1] = rect.position.y;
  5254. dd.normal_rect[2] = rect.size.x;
  5255. dd.normal_rect[3] = rect.size.y;
  5256. Basis normal_xform = p_camera_inverse_xform.basis * xform.basis.orthonormalized();
  5257. RasterizerStorageRD::store_basis_3x4(normal_xform, dd.normal_xform);
  5258. } else {
  5259. dd.normal_rect[0] = 0;
  5260. dd.normal_rect[1] = 0;
  5261. dd.normal_rect[2] = 0;
  5262. dd.normal_rect[3] = 0;
  5263. }
  5264. RID orm_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ORM);
  5265. if (orm_tex.is_valid()) {
  5266. Rect2 rect = storage->decal_atlas_get_texture_rect(orm_tex);
  5267. dd.orm_rect[0] = rect.position.x;
  5268. dd.orm_rect[1] = rect.position.y;
  5269. dd.orm_rect[2] = rect.size.x;
  5270. dd.orm_rect[3] = rect.size.y;
  5271. } else {
  5272. dd.orm_rect[0] = 0;
  5273. dd.orm_rect[1] = 0;
  5274. dd.orm_rect[2] = 0;
  5275. dd.orm_rect[3] = 0;
  5276. }
  5277. if (emission_tex.is_valid()) {
  5278. Rect2 rect = storage->decal_atlas_get_texture_rect(emission_tex);
  5279. dd.emission_rect[0] = rect.position.x;
  5280. dd.emission_rect[1] = rect.position.y;
  5281. dd.emission_rect[2] = rect.size.x;
  5282. dd.emission_rect[3] = rect.size.y;
  5283. } else {
  5284. dd.emission_rect[0] = 0;
  5285. dd.emission_rect[1] = 0;
  5286. dd.emission_rect[2] = 0;
  5287. dd.emission_rect[3] = 0;
  5288. }
  5289. Color modulate = storage->decal_get_modulate(decal);
  5290. dd.modulate[0] = modulate.r;
  5291. dd.modulate[1] = modulate.g;
  5292. dd.modulate[2] = modulate.b;
  5293. dd.modulate[3] = modulate.a * fade;
  5294. dd.emission_energy = storage->decal_get_emission_energy(decal) * fade;
  5295. dd.albedo_mix = storage->decal_get_albedo_mix(decal);
  5296. dd.mask = storage->decal_get_cull_mask(decal);
  5297. dd.upper_fade = storage->decal_get_upper_fade(decal);
  5298. dd.lower_fade = storage->decal_get_lower_fade(decal);
  5299. cluster.builder.add_decal(xform, decal_extents);
  5300. idx++;
  5301. }
  5302. if (idx > 0) {
  5303. RD::get_singleton()->buffer_update(cluster.decal_buffer, 0, sizeof(Cluster::DecalData) * idx, cluster.decals, true);
  5304. }
  5305. }
  5306. void RasterizerSceneRD::_volumetric_fog_erase(RenderBuffers *rb) {
  5307. ERR_FAIL_COND(!rb->volumetric_fog);
  5308. RD::get_singleton()->free(rb->volumetric_fog->light_density_map);
  5309. RD::get_singleton()->free(rb->volumetric_fog->fog_map);
  5310. if (rb->volumetric_fog->uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
  5311. RD::get_singleton()->free(rb->volumetric_fog->uniform_set);
  5312. }
  5313. if (rb->volumetric_fog->uniform_set2.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set2)) {
  5314. RD::get_singleton()->free(rb->volumetric_fog->uniform_set2);
  5315. }
  5316. if (rb->volumetric_fog->sdfgi_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sdfgi_uniform_set)) {
  5317. RD::get_singleton()->free(rb->volumetric_fog->sdfgi_uniform_set);
  5318. }
  5319. if (rb->volumetric_fog->sky_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sky_uniform_set)) {
  5320. RD::get_singleton()->free(rb->volumetric_fog->sky_uniform_set);
  5321. }
  5322. memdelete(rb->volumetric_fog);
  5323. rb->volumetric_fog = nullptr;
  5324. }
  5325. void RasterizerSceneRD::_allocate_shadow_shrink_stages(RID p_base, int p_base_size, Vector<ShadowShrinkStage> &shrink_stages, uint32_t p_target_size) {
  5326. //create fog mipmaps
  5327. uint32_t fog_texture_size = p_target_size;
  5328. uint32_t base_texture_size = p_base_size;
  5329. ShadowShrinkStage first;
  5330. first.size = base_texture_size;
  5331. first.texture = p_base;
  5332. shrink_stages.push_back(first); //put depth first in case we dont find smaller ones
  5333. while (fog_texture_size < base_texture_size) {
  5334. base_texture_size = MAX(base_texture_size / 8, fog_texture_size);
  5335. ShadowShrinkStage s;
  5336. s.size = base_texture_size;
  5337. RD::TextureFormat tf;
  5338. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  5339. tf.width = base_texture_size;
  5340. tf.height = base_texture_size;
  5341. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  5342. if (base_texture_size == fog_texture_size) {
  5343. s.filter_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  5344. tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT;
  5345. }
  5346. s.texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  5347. shrink_stages.push_back(s);
  5348. }
  5349. }
  5350. void RasterizerSceneRD::_clear_shadow_shrink_stages(Vector<ShadowShrinkStage> &shrink_stages) {
  5351. for (int i = 1; i < shrink_stages.size(); i++) {
  5352. RD::get_singleton()->free(shrink_stages[i].texture);
  5353. if (shrink_stages[i].filter_texture.is_valid()) {
  5354. RD::get_singleton()->free(shrink_stages[i].filter_texture);
  5355. }
  5356. }
  5357. shrink_stages.clear();
  5358. }
  5359. void RasterizerSceneRD::_update_volumetric_fog(RID p_render_buffers, RID p_environment, const CameraMatrix &p_cam_projection, const Transform &p_cam_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_gi_probe_count) {
  5360. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  5361. ERR_FAIL_COND(!rb);
  5362. Environment *env = environment_owner.getornull(p_environment);
  5363. float ratio = float(rb->width) / float((rb->width + rb->height) / 2);
  5364. uint32_t target_width = uint32_t(float(volumetric_fog_size) * ratio);
  5365. uint32_t target_height = uint32_t(float(volumetric_fog_size) / ratio);
  5366. if (rb->volumetric_fog) {
  5367. //validate
  5368. if (!env || !env->volumetric_fog_enabled || rb->volumetric_fog->width != target_width || rb->volumetric_fog->height != target_height || rb->volumetric_fog->depth != volumetric_fog_depth) {
  5369. _volumetric_fog_erase(rb);
  5370. _render_buffers_uniform_set_changed(p_render_buffers);
  5371. }
  5372. }
  5373. if (!env || !env->volumetric_fog_enabled) {
  5374. //no reason to enable or update, bye
  5375. return;
  5376. }
  5377. if (env && env->volumetric_fog_enabled && !rb->volumetric_fog) {
  5378. //required volumetric fog but not existing, create
  5379. rb->volumetric_fog = memnew(VolumetricFog);
  5380. rb->volumetric_fog->width = target_width;
  5381. rb->volumetric_fog->height = target_height;
  5382. rb->volumetric_fog->depth = volumetric_fog_depth;
  5383. RD::TextureFormat tf;
  5384. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  5385. tf.width = target_width;
  5386. tf.height = target_height;
  5387. tf.depth = volumetric_fog_depth;
  5388. tf.type = RD::TEXTURE_TYPE_3D;
  5389. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  5390. rb->volumetric_fog->light_density_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  5391. tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT;
  5392. rb->volumetric_fog->fog_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  5393. _render_buffers_uniform_set_changed(p_render_buffers);
  5394. Vector<RD::Uniform> uniforms;
  5395. {
  5396. RD::Uniform u;
  5397. u.binding = 0;
  5398. u.type = RD::UNIFORM_TYPE_TEXTURE;
  5399. u.ids.push_back(rb->volumetric_fog->fog_map);
  5400. uniforms.push_back(u);
  5401. }
  5402. rb->volumetric_fog->sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_FOG);
  5403. }
  5404. //update directional shadow
  5405. if (p_use_directional_shadows) {
  5406. if (directional_shadow.shrink_stages.empty()) {
  5407. if (rb->volumetric_fog->uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
  5408. //invalidate uniform set, we will need a new one
  5409. RD::get_singleton()->free(rb->volumetric_fog->uniform_set);
  5410. rb->volumetric_fog->uniform_set = RID();
  5411. }
  5412. _allocate_shadow_shrink_stages(directional_shadow.depth, directional_shadow.size, directional_shadow.shrink_stages, volumetric_fog_directional_shadow_shrink);
  5413. }
  5414. if (directional_shadow.shrink_stages.size() > 1) {
  5415. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  5416. for (int i = 1; i < directional_shadow.shrink_stages.size(); i++) {
  5417. int32_t src_size = directional_shadow.shrink_stages[i - 1].size;
  5418. int32_t dst_size = directional_shadow.shrink_stages[i].size;
  5419. Rect2i r(0, 0, src_size, src_size);
  5420. int32_t shrink_limit = 8 / (src_size / dst_size);
  5421. storage->get_effects()->reduce_shadow(directional_shadow.shrink_stages[i - 1].texture, directional_shadow.shrink_stages[i].texture, Size2i(src_size, src_size), r, shrink_limit, compute_list);
  5422. RD::get_singleton()->compute_list_add_barrier(compute_list);
  5423. if (env->volumetric_fog_shadow_filter != RS::ENV_VOLUMETRIC_FOG_SHADOW_FILTER_DISABLED && directional_shadow.shrink_stages[i].filter_texture.is_valid()) {
  5424. Rect2i rf(0, 0, dst_size, dst_size);
  5425. storage->get_effects()->filter_shadow(directional_shadow.shrink_stages[i].texture, directional_shadow.shrink_stages[i].filter_texture, Size2i(dst_size, dst_size), rf, env->volumetric_fog_shadow_filter, compute_list);
  5426. }
  5427. }
  5428. RD::get_singleton()->compute_list_end();
  5429. }
  5430. }
  5431. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  5432. if (shadow_atlas) {
  5433. //shrink shadows that need to be shrunk
  5434. bool force_shrink_shadows = false;
  5435. if (shadow_atlas->shrink_stages.empty()) {
  5436. if (rb->volumetric_fog->uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
  5437. //invalidate uniform set, we will need a new one
  5438. RD::get_singleton()->free(rb->volumetric_fog->uniform_set);
  5439. rb->volumetric_fog->uniform_set = RID();
  5440. }
  5441. _allocate_shadow_shrink_stages(shadow_atlas->depth, shadow_atlas->size, shadow_atlas->shrink_stages, volumetric_fog_positional_shadow_shrink);
  5442. force_shrink_shadows = true;
  5443. }
  5444. if (rb->volumetric_fog->last_shadow_filter != env->volumetric_fog_shadow_filter) {
  5445. //if shadow filter changed, invalidate caches
  5446. rb->volumetric_fog->last_shadow_filter = env->volumetric_fog_shadow_filter;
  5447. force_shrink_shadows = true;
  5448. }
  5449. cluster.lights_shadow_rect_cache_count = 0;
  5450. for (int i = 0; i < p_positional_light_count; i++) {
  5451. if (cluster.lights[i].shadow_color_enabled[3] > 127) {
  5452. RID li = cluster.lights_instances[i];
  5453. ERR_CONTINUE(!shadow_atlas->shadow_owners.has(li));
  5454. uint32_t key = shadow_atlas->shadow_owners[li];
  5455. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  5456. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  5457. ERR_CONTINUE((int)shadow >= shadow_atlas->quadrants[quadrant].shadows.size());
  5458. ShadowAtlas::Quadrant::Shadow &s = shadow_atlas->quadrants[quadrant].shadows.write[shadow];
  5459. if (!force_shrink_shadows && s.fog_version == s.version) {
  5460. continue; //do not update, no need
  5461. }
  5462. s.fog_version = s.version;
  5463. uint32_t quadrant_size = shadow_atlas->size >> 1;
  5464. Rect2i atlas_rect;
  5465. atlas_rect.position.x = (quadrant & 1) * quadrant_size;
  5466. atlas_rect.position.y = (quadrant >> 1) * quadrant_size;
  5467. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  5468. atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  5469. atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  5470. atlas_rect.size.x = shadow_size;
  5471. atlas_rect.size.y = shadow_size;
  5472. cluster.lights_shadow_rect_cache[cluster.lights_shadow_rect_cache_count] = atlas_rect;
  5473. cluster.lights_shadow_rect_cache_count++;
  5474. if (cluster.lights_shadow_rect_cache_count == cluster.max_lights) {
  5475. break; //light limit reached
  5476. }
  5477. }
  5478. }
  5479. if (cluster.lights_shadow_rect_cache_count > 0) {
  5480. //there are shadows to be shrunk, try to do them in parallel
  5481. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  5482. for (int i = 1; i < shadow_atlas->shrink_stages.size(); i++) {
  5483. int32_t base_size = shadow_atlas->shrink_stages[0].size;
  5484. int32_t src_size = shadow_atlas->shrink_stages[i - 1].size;
  5485. int32_t dst_size = shadow_atlas->shrink_stages[i].size;
  5486. uint32_t rect_divisor = base_size / src_size;
  5487. int32_t shrink_limit = 8 / (src_size / dst_size);
  5488. //shrink in parallel for more performance
  5489. for (uint32_t j = 0; j < cluster.lights_shadow_rect_cache_count; j++) {
  5490. Rect2i src_rect = cluster.lights_shadow_rect_cache[j];
  5491. src_rect.position /= rect_divisor;
  5492. src_rect.size /= rect_divisor;
  5493. storage->get_effects()->reduce_shadow(shadow_atlas->shrink_stages[i - 1].texture, shadow_atlas->shrink_stages[i].texture, Size2i(src_size, src_size), src_rect, shrink_limit, compute_list);
  5494. }
  5495. RD::get_singleton()->compute_list_add_barrier(compute_list);
  5496. if (env->volumetric_fog_shadow_filter != RS::ENV_VOLUMETRIC_FOG_SHADOW_FILTER_DISABLED && shadow_atlas->shrink_stages[i].filter_texture.is_valid()) {
  5497. uint32_t filter_divisor = base_size / dst_size;
  5498. //filter in parallel for more performance
  5499. for (uint32_t j = 0; j < cluster.lights_shadow_rect_cache_count; j++) {
  5500. Rect2i dst_rect = cluster.lights_shadow_rect_cache[j];
  5501. dst_rect.position /= filter_divisor;
  5502. dst_rect.size /= filter_divisor;
  5503. storage->get_effects()->filter_shadow(shadow_atlas->shrink_stages[i].texture, shadow_atlas->shrink_stages[i].filter_texture, Size2i(dst_size, dst_size), dst_rect, env->volumetric_fog_shadow_filter, compute_list, true, false);
  5504. }
  5505. RD::get_singleton()->compute_list_add_barrier(compute_list);
  5506. for (uint32_t j = 0; j < cluster.lights_shadow_rect_cache_count; j++) {
  5507. Rect2i dst_rect = cluster.lights_shadow_rect_cache[j];
  5508. dst_rect.position /= filter_divisor;
  5509. dst_rect.size /= filter_divisor;
  5510. storage->get_effects()->filter_shadow(shadow_atlas->shrink_stages[i].texture, shadow_atlas->shrink_stages[i].filter_texture, Size2i(dst_size, dst_size), dst_rect, env->volumetric_fog_shadow_filter, compute_list, false, true);
  5511. }
  5512. }
  5513. }
  5514. RD::get_singleton()->compute_list_end();
  5515. }
  5516. }
  5517. //update volumetric fog
  5518. if (rb->volumetric_fog->uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
  5519. //re create uniform set if needed
  5520. Vector<RD::Uniform> uniforms;
  5521. {
  5522. RD::Uniform u;
  5523. u.type = RD::UNIFORM_TYPE_TEXTURE;
  5524. u.binding = 1;
  5525. if (shadow_atlas == nullptr || shadow_atlas->shrink_stages.size() == 0) {
  5526. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK));
  5527. } else {
  5528. u.ids.push_back(shadow_atlas->shrink_stages[shadow_atlas->shrink_stages.size() - 1].texture);
  5529. }
  5530. uniforms.push_back(u);
  5531. }
  5532. {
  5533. RD::Uniform u;
  5534. u.type = RD::UNIFORM_TYPE_TEXTURE;
  5535. u.binding = 2;
  5536. if (directional_shadow.shrink_stages.size() == 0) {
  5537. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK));
  5538. } else {
  5539. u.ids.push_back(directional_shadow.shrink_stages[directional_shadow.shrink_stages.size() - 1].texture);
  5540. }
  5541. uniforms.push_back(u);
  5542. }
  5543. {
  5544. RD::Uniform u;
  5545. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  5546. u.binding = 3;
  5547. u.ids.push_back(get_positional_light_buffer());
  5548. uniforms.push_back(u);
  5549. }
  5550. {
  5551. RD::Uniform u;
  5552. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  5553. u.binding = 4;
  5554. u.ids.push_back(get_directional_light_buffer());
  5555. uniforms.push_back(u);
  5556. }
  5557. {
  5558. RD::Uniform u;
  5559. u.type = RD::UNIFORM_TYPE_TEXTURE;
  5560. u.binding = 5;
  5561. u.ids.push_back(get_cluster_builder_texture());
  5562. uniforms.push_back(u);
  5563. }
  5564. {
  5565. RD::Uniform u;
  5566. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  5567. u.binding = 6;
  5568. u.ids.push_back(get_cluster_builder_indices_buffer());
  5569. uniforms.push_back(u);
  5570. }
  5571. {
  5572. RD::Uniform u;
  5573. u.type = RD::UNIFORM_TYPE_SAMPLER;
  5574. u.binding = 7;
  5575. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  5576. uniforms.push_back(u);
  5577. }
  5578. {
  5579. RD::Uniform u;
  5580. u.type = RD::UNIFORM_TYPE_IMAGE;
  5581. u.binding = 8;
  5582. u.ids.push_back(rb->volumetric_fog->light_density_map);
  5583. uniforms.push_back(u);
  5584. }
  5585. {
  5586. RD::Uniform u;
  5587. u.type = RD::UNIFORM_TYPE_IMAGE;
  5588. u.binding = 9;
  5589. u.ids.push_back(rb->volumetric_fog->fog_map);
  5590. uniforms.push_back(u);
  5591. }
  5592. {
  5593. RD::Uniform u;
  5594. u.type = RD::UNIFORM_TYPE_SAMPLER;
  5595. u.binding = 10;
  5596. u.ids.push_back(shadow_sampler);
  5597. uniforms.push_back(u);
  5598. }
  5599. {
  5600. RD::Uniform u;
  5601. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  5602. u.binding = 11;
  5603. u.ids.push_back(render_buffers_get_gi_probe_buffer(p_render_buffers));
  5604. uniforms.push_back(u);
  5605. }
  5606. {
  5607. RD::Uniform u;
  5608. u.type = RD::UNIFORM_TYPE_TEXTURE;
  5609. u.binding = 12;
  5610. for (int i = 0; i < RenderBuffers::MAX_GIPROBES; i++) {
  5611. u.ids.push_back(rb->giprobe_textures[i]);
  5612. }
  5613. uniforms.push_back(u);
  5614. }
  5615. {
  5616. RD::Uniform u;
  5617. u.type = RD::UNIFORM_TYPE_SAMPLER;
  5618. u.binding = 13;
  5619. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  5620. uniforms.push_back(u);
  5621. }
  5622. rb->volumetric_fog->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, 0), 0);
  5623. SWAP(uniforms.write[7].ids.write[0], uniforms.write[8].ids.write[0]);
  5624. rb->volumetric_fog->uniform_set2 = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, 0), 0);
  5625. }
  5626. bool using_sdfgi = env->volumetric_fog_gi_inject > 0.0001 && env->sdfgi_enabled && (rb->sdfgi != nullptr);
  5627. if (using_sdfgi) {
  5628. if (rb->volumetric_fog->sdfgi_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sdfgi_uniform_set)) {
  5629. Vector<RD::Uniform> uniforms;
  5630. {
  5631. RD::Uniform u;
  5632. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  5633. u.binding = 0;
  5634. u.ids.push_back(gi.sdfgi_ubo);
  5635. uniforms.push_back(u);
  5636. }
  5637. {
  5638. RD::Uniform u;
  5639. u.type = RD::UNIFORM_TYPE_TEXTURE;
  5640. u.binding = 1;
  5641. u.ids.push_back(rb->sdfgi->ambient_texture);
  5642. uniforms.push_back(u);
  5643. }
  5644. {
  5645. RD::Uniform u;
  5646. u.type = RD::UNIFORM_TYPE_TEXTURE;
  5647. u.binding = 2;
  5648. u.ids.push_back(rb->sdfgi->occlusion_texture);
  5649. uniforms.push_back(u);
  5650. }
  5651. rb->volumetric_fog->sdfgi_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI), 1);
  5652. }
  5653. }
  5654. rb->volumetric_fog->length = env->volumetric_fog_length;
  5655. rb->volumetric_fog->spread = env->volumetric_fog_detail_spread;
  5656. VolumetricFogShader::PushConstant push_constant;
  5657. Vector2 frustum_near_size = p_cam_projection.get_viewport_half_extents();
  5658. Vector2 frustum_far_size = p_cam_projection.get_far_plane_half_extents();
  5659. float z_near = p_cam_projection.get_z_near();
  5660. float z_far = p_cam_projection.get_z_far();
  5661. float fog_end = env->volumetric_fog_length;
  5662. Vector2 fog_far_size = frustum_near_size.lerp(frustum_far_size, (fog_end - z_near) / (z_far - z_near));
  5663. Vector2 fog_near_size;
  5664. if (p_cam_projection.is_orthogonal()) {
  5665. fog_near_size = fog_far_size;
  5666. } else {
  5667. fog_near_size = Vector2();
  5668. }
  5669. push_constant.fog_frustum_size_begin[0] = fog_near_size.x;
  5670. push_constant.fog_frustum_size_begin[1] = fog_near_size.y;
  5671. push_constant.fog_frustum_size_end[0] = fog_far_size.x;
  5672. push_constant.fog_frustum_size_end[1] = fog_far_size.y;
  5673. push_constant.z_near = z_near;
  5674. push_constant.z_far = z_far;
  5675. push_constant.fog_frustum_end = fog_end;
  5676. push_constant.fog_volume_size[0] = rb->volumetric_fog->width;
  5677. push_constant.fog_volume_size[1] = rb->volumetric_fog->height;
  5678. push_constant.fog_volume_size[2] = rb->volumetric_fog->depth;
  5679. push_constant.directional_light_count = p_directional_light_count;
  5680. Color light = env->volumetric_fog_light.to_linear();
  5681. push_constant.light_energy[0] = light.r * env->volumetric_fog_light_energy;
  5682. push_constant.light_energy[1] = light.g * env->volumetric_fog_light_energy;
  5683. push_constant.light_energy[2] = light.b * env->volumetric_fog_light_energy;
  5684. push_constant.base_density = env->volumetric_fog_density;
  5685. push_constant.detail_spread = env->volumetric_fog_detail_spread;
  5686. push_constant.gi_inject = env->volumetric_fog_gi_inject;
  5687. push_constant.cam_rotation[0] = p_cam_transform.basis[0][0];
  5688. push_constant.cam_rotation[1] = p_cam_transform.basis[1][0];
  5689. push_constant.cam_rotation[2] = p_cam_transform.basis[2][0];
  5690. push_constant.cam_rotation[3] = 0;
  5691. push_constant.cam_rotation[4] = p_cam_transform.basis[0][1];
  5692. push_constant.cam_rotation[5] = p_cam_transform.basis[1][1];
  5693. push_constant.cam_rotation[6] = p_cam_transform.basis[2][1];
  5694. push_constant.cam_rotation[7] = 0;
  5695. push_constant.cam_rotation[8] = p_cam_transform.basis[0][2];
  5696. push_constant.cam_rotation[9] = p_cam_transform.basis[1][2];
  5697. push_constant.cam_rotation[10] = p_cam_transform.basis[2][2];
  5698. push_constant.cam_rotation[11] = 0;
  5699. push_constant.filter_axis = 0;
  5700. push_constant.max_gi_probes = env->volumetric_fog_gi_inject > 0.001 ? p_gi_probe_count : 0;
  5701. /* Vector2 dssize = directional_shadow_get_size();
  5702. push_constant.directional_shadow_pixel_size[0] = 1.0 / dssize.x;
  5703. push_constant.directional_shadow_pixel_size[1] = 1.0 / dssize.y;
  5704. */
  5705. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  5706. bool use_filter = volumetric_fog_filter_active;
  5707. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[using_sdfgi ? VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI : VOLUMETRIC_FOG_SHADER_DENSITY]);
  5708. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0);
  5709. if (using_sdfgi) {
  5710. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->sdfgi_uniform_set, 1);
  5711. }
  5712. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VolumetricFogShader::PushConstant));
  5713. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth, 4, 4, 4);
  5714. RD::get_singleton()->compute_list_add_barrier(compute_list);
  5715. if (use_filter) {
  5716. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FILTER]);
  5717. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0);
  5718. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VolumetricFogShader::PushConstant));
  5719. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth, 8, 8, 1);
  5720. RD::get_singleton()->compute_list_add_barrier(compute_list);
  5721. push_constant.filter_axis = 1;
  5722. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set2, 0);
  5723. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VolumetricFogShader::PushConstant));
  5724. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth, 8, 8, 1);
  5725. RD::get_singleton()->compute_list_add_barrier(compute_list);
  5726. }
  5727. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FOG]);
  5728. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0);
  5729. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VolumetricFogShader::PushConstant));
  5730. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, 1, 8, 8, 1);
  5731. RD::get_singleton()->compute_list_end();
  5732. }
  5733. void RasterizerSceneRD::render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID *p_decal_cull_result, int p_decal_cull_count, InstanceBase **p_lightmap_cull_result, int p_lightmap_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {
  5734. Color clear_color;
  5735. if (p_render_buffers.is_valid()) {
  5736. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  5737. ERR_FAIL_COND(!rb);
  5738. clear_color = storage->render_target_get_clear_request_color(rb->render_target);
  5739. } else {
  5740. clear_color = storage->get_default_clear_color();
  5741. }
  5742. //assign render indices to giprobes
  5743. for (int i = 0; i < p_gi_probe_cull_count; i++) {
  5744. GIProbeInstance *giprobe_inst = gi_probe_instance_owner.getornull(p_gi_probe_cull_result[i]);
  5745. if (giprobe_inst) {
  5746. giprobe_inst->render_index = i;
  5747. }
  5748. }
  5749. if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) {
  5750. p_light_cull_count = 0;
  5751. p_reflection_probe_cull_count = 0;
  5752. p_gi_probe_cull_count = 0;
  5753. }
  5754. cluster.builder.begin(p_cam_transform.affine_inverse(), p_cam_projection); //prepare cluster
  5755. bool using_shadows = true;
  5756. if (p_reflection_probe.is_valid()) {
  5757. if (!storage->reflection_probe_renders_shadows(reflection_probe_instance_get_probe(p_reflection_probe))) {
  5758. using_shadows = false;
  5759. }
  5760. } else {
  5761. //do not render reflections when rendering a reflection probe
  5762. _setup_reflections(p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_cam_transform.affine_inverse(), p_environment);
  5763. }
  5764. uint32_t directional_light_count = 0;
  5765. uint32_t positional_light_count = 0;
  5766. _setup_lights(p_light_cull_result, p_light_cull_count, p_cam_transform.affine_inverse(), p_shadow_atlas, using_shadows, directional_light_count, positional_light_count);
  5767. _setup_decals(p_decal_cull_result, p_decal_cull_count, p_cam_transform.affine_inverse());
  5768. cluster.builder.bake_cluster(); //bake to cluster
  5769. uint32_t gi_probe_count = 0;
  5770. _setup_giprobes(p_render_buffers, p_cam_transform, p_gi_probe_cull_result, p_gi_probe_cull_count, gi_probe_count);
  5771. if (p_render_buffers.is_valid()) {
  5772. bool directional_shadows = false;
  5773. for (uint32_t i = 0; i < directional_light_count; i++) {
  5774. if (cluster.directional_lights[i].shadow_enabled) {
  5775. directional_shadows = true;
  5776. break;
  5777. }
  5778. }
  5779. _update_volumetric_fog(p_render_buffers, p_environment, p_cam_projection, p_cam_transform, p_shadow_atlas, directional_light_count, directional_shadows, positional_light_count, gi_probe_count);
  5780. }
  5781. _render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, directional_light_count, p_gi_probe_cull_result, p_gi_probe_cull_count, p_lightmap_cull_result, p_lightmap_cull_count, p_environment, p_camera_effects, p_shadow_atlas, p_reflection_atlas, p_reflection_probe, p_reflection_probe_pass, clear_color);
  5782. if (p_render_buffers.is_valid()) {
  5783. RENDER_TIMESTAMP("Tonemap");
  5784. _render_buffers_post_process_and_tonemap(p_render_buffers, p_environment, p_camera_effects, p_cam_projection);
  5785. _render_buffers_debug_draw(p_render_buffers, p_shadow_atlas);
  5786. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SDFGI) {
  5787. _sdfgi_debug_draw(p_render_buffers, p_cam_projection, p_cam_transform);
  5788. }
  5789. }
  5790. }
  5791. void RasterizerSceneRD::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) {
  5792. LightInstance *light_instance = light_instance_owner.getornull(p_light);
  5793. ERR_FAIL_COND(!light_instance);
  5794. Rect2i atlas_rect;
  5795. RID atlas_texture;
  5796. bool using_dual_paraboloid = false;
  5797. bool using_dual_paraboloid_flip = false;
  5798. float znear = 0;
  5799. float zfar = 0;
  5800. RID render_fb;
  5801. RID render_texture;
  5802. float bias = 0;
  5803. float normal_bias = 0;
  5804. bool use_pancake = false;
  5805. bool use_linear_depth = false;
  5806. bool render_cubemap = false;
  5807. bool finalize_cubemap = false;
  5808. CameraMatrix light_projection;
  5809. Transform light_transform;
  5810. if (storage->light_get_type(light_instance->light) == RS::LIGHT_DIRECTIONAL) {
  5811. //set pssm stuff
  5812. if (light_instance->last_scene_shadow_pass != scene_pass) {
  5813. light_instance->directional_rect = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light);
  5814. directional_shadow.current_light++;
  5815. light_instance->last_scene_shadow_pass = scene_pass;
  5816. }
  5817. use_pancake = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE) > 0;
  5818. light_projection = light_instance->shadow_transform[p_pass].camera;
  5819. light_transform = light_instance->shadow_transform[p_pass].transform;
  5820. atlas_rect.position.x = light_instance->directional_rect.position.x;
  5821. atlas_rect.position.y = light_instance->directional_rect.position.y;
  5822. atlas_rect.size.width = light_instance->directional_rect.size.x;
  5823. atlas_rect.size.height = light_instance->directional_rect.size.y;
  5824. if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  5825. atlas_rect.size.width /= 2;
  5826. atlas_rect.size.height /= 2;
  5827. if (p_pass == 1) {
  5828. atlas_rect.position.x += atlas_rect.size.width;
  5829. } else if (p_pass == 2) {
  5830. atlas_rect.position.y += atlas_rect.size.height;
  5831. } else if (p_pass == 3) {
  5832. atlas_rect.position.x += atlas_rect.size.width;
  5833. atlas_rect.position.y += atlas_rect.size.height;
  5834. }
  5835. } else if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  5836. atlas_rect.size.height /= 2;
  5837. if (p_pass == 0) {
  5838. } else {
  5839. atlas_rect.position.y += atlas_rect.size.height;
  5840. }
  5841. }
  5842. light_instance->shadow_transform[p_pass].atlas_rect = atlas_rect;
  5843. light_instance->shadow_transform[p_pass].atlas_rect.position /= directional_shadow.size;
  5844. light_instance->shadow_transform[p_pass].atlas_rect.size /= directional_shadow.size;
  5845. float bias_mult = light_instance->shadow_transform[p_pass].bias_scale;
  5846. zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
  5847. bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_BIAS) * bias_mult;
  5848. normal_bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * bias_mult;
  5849. ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size);
  5850. render_fb = shadow_map->fb;
  5851. render_texture = shadow_map->depth;
  5852. atlas_texture = directional_shadow.depth;
  5853. } else {
  5854. //set from shadow atlas
  5855. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  5856. ERR_FAIL_COND(!shadow_atlas);
  5857. ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
  5858. uint32_t key = shadow_atlas->shadow_owners[p_light];
  5859. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  5860. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  5861. ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size());
  5862. uint32_t quadrant_size = shadow_atlas->size >> 1;
  5863. atlas_rect.position.x = (quadrant & 1) * quadrant_size;
  5864. atlas_rect.position.y = (quadrant >> 1) * quadrant_size;
  5865. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  5866. atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  5867. atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  5868. atlas_rect.size.width = shadow_size;
  5869. atlas_rect.size.height = shadow_size;
  5870. atlas_texture = shadow_atlas->depth;
  5871. zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
  5872. bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_BIAS);
  5873. normal_bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS);
  5874. if (storage->light_get_type(light_instance->light) == RS::LIGHT_OMNI) {
  5875. if (storage->light_omni_get_shadow_mode(light_instance->light) == RS::LIGHT_OMNI_SHADOW_CUBE) {
  5876. ShadowCubemap *cubemap = _get_shadow_cubemap(shadow_size / 2);
  5877. render_fb = cubemap->side_fb[p_pass];
  5878. render_texture = cubemap->cubemap;
  5879. light_projection = light_instance->shadow_transform[0].camera;
  5880. light_transform = light_instance->shadow_transform[0].transform;
  5881. render_cubemap = true;
  5882. finalize_cubemap = p_pass == 5;
  5883. } else {
  5884. light_projection = light_instance->shadow_transform[0].camera;
  5885. light_transform = light_instance->shadow_transform[0].transform;
  5886. atlas_rect.size.height /= 2;
  5887. atlas_rect.position.y += p_pass * atlas_rect.size.height;
  5888. using_dual_paraboloid = true;
  5889. using_dual_paraboloid_flip = p_pass == 1;
  5890. ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size);
  5891. render_fb = shadow_map->fb;
  5892. render_texture = shadow_map->depth;
  5893. }
  5894. } else if (storage->light_get_type(light_instance->light) == RS::LIGHT_SPOT) {
  5895. light_projection = light_instance->shadow_transform[0].camera;
  5896. light_transform = light_instance->shadow_transform[0].transform;
  5897. ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size);
  5898. render_fb = shadow_map->fb;
  5899. render_texture = shadow_map->depth;
  5900. znear = light_instance->shadow_transform[0].camera.get_z_near();
  5901. use_linear_depth = true;
  5902. }
  5903. }
  5904. if (render_cubemap) {
  5905. //rendering to cubemap
  5906. _render_shadow(render_fb, p_cull_result, p_cull_count, light_projection, light_transform, zfar, 0, 0, false, false, use_pancake);
  5907. if (finalize_cubemap) {
  5908. //reblit
  5909. atlas_rect.size.height /= 2;
  5910. storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_texture, atlas_rect, light_projection.get_z_near(), light_projection.get_z_far(), 0.0, false);
  5911. atlas_rect.position.y += atlas_rect.size.height;
  5912. storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_texture, atlas_rect, light_projection.get_z_near(), light_projection.get_z_far(), 0.0, true);
  5913. }
  5914. } else {
  5915. //render shadow
  5916. _render_shadow(render_fb, p_cull_result, p_cull_count, light_projection, light_transform, zfar, bias, normal_bias, using_dual_paraboloid, using_dual_paraboloid_flip, use_pancake);
  5917. //copy to atlas
  5918. if (use_linear_depth) {
  5919. storage->get_effects()->copy_depth_to_rect_and_linearize(render_texture, atlas_texture, atlas_rect, true, znear, zfar);
  5920. } else {
  5921. storage->get_effects()->copy_depth_to_rect(render_texture, atlas_texture, atlas_rect, true);
  5922. }
  5923. //does not work from depth to color
  5924. //RD::get_singleton()->texture_copy(render_texture, atlas_texture, Vector3(0, 0, 0), Vector3(atlas_rect.position.x, atlas_rect.position.y, 0), Vector3(atlas_rect.size.x, atlas_rect.size.y, 1), 0, 0, 0, 0, true);
  5925. }
  5926. }
  5927. void RasterizerSceneRD::render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region) {
  5928. _render_material(p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, p_framebuffer, p_region);
  5929. }
  5930. void RasterizerSceneRD::render_sdfgi(RID p_render_buffers, int p_region, InstanceBase **p_cull_result, int p_cull_count) {
  5931. //print_line("rendering region " + itos(p_region));
  5932. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  5933. ERR_FAIL_COND(!rb);
  5934. ERR_FAIL_COND(!rb->sdfgi);
  5935. AABB bounds;
  5936. Vector3i from;
  5937. Vector3i size;
  5938. int cascade_prev = _sdfgi_get_pending_region_data(p_render_buffers, p_region - 1, from, size, bounds);
  5939. int cascade_next = _sdfgi_get_pending_region_data(p_render_buffers, p_region + 1, from, size, bounds);
  5940. int cascade = _sdfgi_get_pending_region_data(p_render_buffers, p_region, from, size, bounds);
  5941. ERR_FAIL_COND(cascade < 0);
  5942. if (cascade_prev != cascade) {
  5943. //initialize render
  5944. RD::get_singleton()->texture_clear(rb->sdfgi->render_albedo, Color(0, 0, 0, 0), 0, 1, 0, 1, true);
  5945. RD::get_singleton()->texture_clear(rb->sdfgi->render_emission, Color(0, 0, 0, 0), 0, 1, 0, 1, true);
  5946. RD::get_singleton()->texture_clear(rb->sdfgi->render_emission_aniso, Color(0, 0, 0, 0), 0, 1, 0, 1, true);
  5947. RD::get_singleton()->texture_clear(rb->sdfgi->render_geom_facing, Color(0, 0, 0, 0), 0, 1, 0, 1, true);
  5948. }
  5949. //print_line("rendering cascade " + itos(p_region) + " objects: " + itos(p_cull_count) + " bounds: " + bounds + " from: " + from + " size: " + size + " cell size: " + rtos(rb->sdfgi->cascades[cascade].cell_size));
  5950. _render_sdfgi(p_render_buffers, from, size, bounds, p_cull_result, p_cull_count, rb->sdfgi->render_albedo, rb->sdfgi->render_emission, rb->sdfgi->render_emission_aniso, rb->sdfgi->render_geom_facing);
  5951. if (cascade_next != cascade) {
  5952. RENDER_TIMESTAMP(">SDFGI Update SDF");
  5953. //done rendering! must update SDF
  5954. //clear dispatch indirect data
  5955. SDGIShader::PreprocessPushConstant push_constant;
  5956. zeromem(&push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  5957. RENDER_TIMESTAMP("Scroll SDF");
  5958. //scroll
  5959. if (rb->sdfgi->cascades[cascade].dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
  5960. //for scroll
  5961. Vector3i dirty = rb->sdfgi->cascades[cascade].dirty_regions;
  5962. push_constant.scroll[0] = dirty.x;
  5963. push_constant.scroll[1] = dirty.y;
  5964. push_constant.scroll[2] = dirty.z;
  5965. } else {
  5966. //for no scroll
  5967. push_constant.scroll[0] = 0;
  5968. push_constant.scroll[1] = 0;
  5969. push_constant.scroll[2] = 0;
  5970. }
  5971. push_constant.grid_size = rb->sdfgi->cascade_size;
  5972. push_constant.cascade = cascade;
  5973. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  5974. if (rb->sdfgi->cascades[cascade].dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
  5975. //must pre scroll existing data because not all is dirty
  5976. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_SCROLL]);
  5977. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].scroll_uniform_set, 0);
  5978. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  5979. RD::get_singleton()->compute_list_dispatch_indirect(compute_list, rb->sdfgi->cascades[cascade].solid_cell_dispatch_buffer, 0);
  5980. // no barrier do all together
  5981. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_SCROLL_OCCLUSION]);
  5982. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].scroll_occlusion_uniform_set, 0);
  5983. Vector3i dirty = rb->sdfgi->cascades[cascade].dirty_regions;
  5984. Vector3i groups;
  5985. groups.x = rb->sdfgi->cascade_size - ABS(dirty.x);
  5986. groups.y = rb->sdfgi->cascade_size - ABS(dirty.y);
  5987. groups.z = rb->sdfgi->cascade_size - ABS(dirty.z);
  5988. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  5989. RD::get_singleton()->compute_list_dispatch_threads(compute_list, groups.x, groups.y, groups.z, 4, 4, 4);
  5990. //no barrier, continue together
  5991. {
  5992. //scroll probes and their history also
  5993. SDGIShader::IntegratePushConstant ipush_constant;
  5994. ipush_constant.grid_size[1] = rb->sdfgi->cascade_size;
  5995. ipush_constant.grid_size[2] = rb->sdfgi->cascade_size;
  5996. ipush_constant.grid_size[0] = rb->sdfgi->cascade_size;
  5997. ipush_constant.max_cascades = rb->sdfgi->cascades.size();
  5998. ipush_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  5999. ipush_constant.history_index = 0;
  6000. ipush_constant.history_size = rb->sdfgi->history_size;
  6001. ipush_constant.ray_count = 0;
  6002. ipush_constant.ray_bias = 0;
  6003. ipush_constant.sky_mode = 0;
  6004. ipush_constant.sky_energy = 0;
  6005. ipush_constant.sky_color[0] = 0;
  6006. ipush_constant.sky_color[1] = 0;
  6007. ipush_constant.sky_color[2] = 0;
  6008. ipush_constant.y_mult = rb->sdfgi->y_mult;
  6009. ipush_constant.store_ambient_texture = false;
  6010. ipush_constant.image_size[0] = rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count;
  6011. ipush_constant.image_size[1] = rb->sdfgi->probe_axis_count;
  6012. ipush_constant.image_size[1] = rb->sdfgi->probe_axis_count;
  6013. int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  6014. ipush_constant.cascade = cascade;
  6015. ipush_constant.world_offset[0] = rb->sdfgi->cascades[cascade].position.x / probe_divisor;
  6016. ipush_constant.world_offset[1] = rb->sdfgi->cascades[cascade].position.y / probe_divisor;
  6017. ipush_constant.world_offset[2] = rb->sdfgi->cascades[cascade].position.z / probe_divisor;
  6018. ipush_constant.scroll[0] = dirty.x / probe_divisor;
  6019. ipush_constant.scroll[1] = dirty.y / probe_divisor;
  6020. ipush_constant.scroll[2] = dirty.z / probe_divisor;
  6021. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.integrate_pipeline[SDGIShader::INTEGRATE_MODE_SCROLL]);
  6022. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].integrate_uniform_set, 0);
  6023. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdfgi_shader.integrate_default_sky_uniform_set, 1);
  6024. RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDGIShader::IntegratePushConstant));
  6025. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count, rb->sdfgi->probe_axis_count, 1, 8, 8, 1);
  6026. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6027. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.integrate_pipeline[SDGIShader::INTEGRATE_MODE_SCROLL_STORE]);
  6028. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].integrate_uniform_set, 0);
  6029. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdfgi_shader.integrate_default_sky_uniform_set, 1);
  6030. RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDGIShader::IntegratePushConstant));
  6031. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count, rb->sdfgi->probe_axis_count, 1, 8, 8, 1);
  6032. }
  6033. //ok finally barrier
  6034. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6035. }
  6036. //clear dispatch indirect data
  6037. uint32_t dispatch_indirct_data[4] = { 0, 0, 0, 0 };
  6038. RD::get_singleton()->buffer_update(rb->sdfgi->cascades[cascade].solid_cell_dispatch_buffer, 0, sizeof(uint32_t) * 4, dispatch_indirct_data, true);
  6039. bool half_size = true; //much faster, very little difference
  6040. static const int optimized_jf_group_size = 8;
  6041. if (half_size) {
  6042. push_constant.grid_size >>= 1;
  6043. uint32_t cascade_half_size = rb->sdfgi->cascade_size >> 1;
  6044. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF]);
  6045. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->sdf_initialize_half_uniform_set, 0);
  6046. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6047. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size, 4, 4, 4);
  6048. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6049. //must start with regular jumpflood
  6050. push_constant.half_size = true;
  6051. {
  6052. RENDER_TIMESTAMP("SDFGI Jump Flood (Half Size)");
  6053. uint32_t s = cascade_half_size;
  6054. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD]);
  6055. int jf_us = 0;
  6056. //start with regular jump flood for very coarse reads, as this is impossible to optimize
  6057. while (s > 1) {
  6058. s /= 2;
  6059. push_constant.step_size = s;
  6060. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_half_uniform_set[jf_us], 0);
  6061. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6062. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size, 4, 4, 4);
  6063. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6064. jf_us = jf_us == 0 ? 1 : 0;
  6065. if (cascade_half_size / (s / 2) >= optimized_jf_group_size) {
  6066. break;
  6067. }
  6068. }
  6069. RENDER_TIMESTAMP("SDFGI Jump Flood Optimized (Half Size)");
  6070. //continue with optimized jump flood for smaller reads
  6071. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]);
  6072. while (s > 1) {
  6073. s /= 2;
  6074. push_constant.step_size = s;
  6075. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_half_uniform_set[jf_us], 0);
  6076. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6077. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size, optimized_jf_group_size, optimized_jf_group_size, optimized_jf_group_size);
  6078. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6079. jf_us = jf_us == 0 ? 1 : 0;
  6080. }
  6081. }
  6082. // restore grid size for last passes
  6083. push_constant.grid_size = rb->sdfgi->cascade_size;
  6084. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_UPSCALE]);
  6085. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->sdf_upscale_uniform_set, 0);
  6086. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6087. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, 4, 4, 4);
  6088. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6089. //run one pass of fullsize jumpflood to fix up half size arctifacts
  6090. push_constant.half_size = false;
  6091. push_constant.step_size = 1;
  6092. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]);
  6093. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_uniform_set[rb->sdfgi->upscale_jfa_uniform_set_index], 0);
  6094. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6095. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, optimized_jf_group_size, optimized_jf_group_size, optimized_jf_group_size);
  6096. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6097. } else {
  6098. //full size jumpflood
  6099. RENDER_TIMESTAMP("SDFGI Jump Flood");
  6100. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE]);
  6101. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->sdf_initialize_uniform_set, 0);
  6102. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6103. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, 4, 4, 4);
  6104. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6105. push_constant.half_size = false;
  6106. {
  6107. uint32_t s = rb->sdfgi->cascade_size;
  6108. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD]);
  6109. int jf_us = 0;
  6110. //start with regular jump flood for very coarse reads, as this is impossible to optimize
  6111. while (s > 1) {
  6112. s /= 2;
  6113. push_constant.step_size = s;
  6114. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_uniform_set[jf_us], 0);
  6115. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6116. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, 4, 4, 4);
  6117. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6118. jf_us = jf_us == 0 ? 1 : 0;
  6119. if (rb->sdfgi->cascade_size / (s / 2) >= optimized_jf_group_size) {
  6120. break;
  6121. }
  6122. }
  6123. RENDER_TIMESTAMP("SDFGI Jump Flood Optimized");
  6124. //continue with optimized jump flood for smaller reads
  6125. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]);
  6126. while (s > 1) {
  6127. s /= 2;
  6128. push_constant.step_size = s;
  6129. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_uniform_set[jf_us], 0);
  6130. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6131. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, optimized_jf_group_size, optimized_jf_group_size, optimized_jf_group_size);
  6132. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6133. jf_us = jf_us == 0 ? 1 : 0;
  6134. }
  6135. }
  6136. }
  6137. RENDER_TIMESTAMP("SDFGI Occlusion");
  6138. // occlusion
  6139. {
  6140. uint32_t probe_size = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  6141. Vector3i probe_global_pos = rb->sdfgi->cascades[cascade].position / probe_size;
  6142. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_OCCLUSION]);
  6143. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->occlusion_uniform_set, 0);
  6144. for (int i = 0; i < 8; i++) {
  6145. //dispatch all at once for performance
  6146. Vector3i offset(i & 1, (i >> 1) & 1, (i >> 2) & 1);
  6147. if ((probe_global_pos.x & 1) != 0) {
  6148. offset.x = (offset.x + 1) & 1;
  6149. }
  6150. if ((probe_global_pos.y & 1) != 0) {
  6151. offset.y = (offset.y + 1) & 1;
  6152. }
  6153. if ((probe_global_pos.z & 1) != 0) {
  6154. offset.z = (offset.z + 1) & 1;
  6155. }
  6156. push_constant.probe_offset[0] = offset.x;
  6157. push_constant.probe_offset[1] = offset.y;
  6158. push_constant.probe_offset[2] = offset.z;
  6159. push_constant.occlusion_index = i;
  6160. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6161. Vector3i groups = Vector3i(probe_size + 1, probe_size + 1, probe_size + 1) - offset; //if offset, it's one less probe per axis to compute
  6162. RD::get_singleton()->compute_list_dispatch(compute_list, groups.x, groups.y, groups.z);
  6163. }
  6164. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6165. }
  6166. RENDER_TIMESTAMP("SDFGI Store");
  6167. // store
  6168. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_STORE]);
  6169. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].sdf_store_uniform_set, 0);
  6170. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6171. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, 4, 4, 4);
  6172. RD::get_singleton()->compute_list_end();
  6173. //clear these textures, as they will have previous garbage on next draw
  6174. RD::get_singleton()->texture_clear(rb->sdfgi->cascades[cascade].light_tex, Color(0, 0, 0, 0), 0, 1, 0, 1, true);
  6175. RD::get_singleton()->texture_clear(rb->sdfgi->cascades[cascade].light_aniso_0_tex, Color(0, 0, 0, 0), 0, 1, 0, 1, true);
  6176. RD::get_singleton()->texture_clear(rb->sdfgi->cascades[cascade].light_aniso_1_tex, Color(0, 0, 0, 0), 0, 1, 0, 1, true);
  6177. #if 0
  6178. Vector<uint8_t> data = RD::get_singleton()->texture_get_data(rb->sdfgi->cascades[cascade].sdf, 0);
  6179. Ref<Image> img;
  6180. img.instance();
  6181. for (uint32_t i = 0; i < rb->sdfgi->cascade_size; i++) {
  6182. Vector<uint8_t> subarr = data.subarray(128 * 128 * i, 128 * 128 * (i + 1) - 1);
  6183. img->create(rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, false, Image::FORMAT_L8, subarr);
  6184. img->save_png("res://cascade_sdf_" + itos(cascade) + "_" + itos(i) + ".png");
  6185. }
  6186. //finalize render and update sdf
  6187. #endif
  6188. #if 0
  6189. Vector<uint8_t> data = RD::get_singleton()->texture_get_data(rb->sdfgi->render_albedo, 0);
  6190. Ref<Image> img;
  6191. img.instance();
  6192. for (uint32_t i = 0; i < rb->sdfgi->cascade_size; i++) {
  6193. Vector<uint8_t> subarr = data.subarray(128 * 128 * i * 2, 128 * 128 * (i + 1) * 2 - 1);
  6194. img->create(rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, false, Image::FORMAT_RGB565, subarr);
  6195. img->convert(Image::FORMAT_RGBA8);
  6196. img->save_png("res://cascade_" + itos(cascade) + "_" + itos(i) + ".png");
  6197. }
  6198. //finalize render and update sdf
  6199. #endif
  6200. RENDER_TIMESTAMP("<SDFGI Update SDF");
  6201. }
  6202. }
  6203. void RasterizerSceneRD::render_sdfgi_static_lights(RID p_render_buffers, uint32_t p_cascade_count, const uint32_t *p_cascade_indices, const RID **p_positional_light_cull_result, const uint32_t *p_positional_light_cull_count) {
  6204. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  6205. ERR_FAIL_COND(!rb);
  6206. ERR_FAIL_COND(!rb->sdfgi);
  6207. ERR_FAIL_COND(p_positional_light_cull_count == 0);
  6208. _sdfgi_update_cascades(p_render_buffers); //need cascades updated for this
  6209. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  6210. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.direct_light_pipeline[SDGIShader::DIRECT_LIGHT_MODE_STATIC]);
  6211. SDGIShader::DirectLightPushConstant dl_push_constant;
  6212. dl_push_constant.grid_size[0] = rb->sdfgi->cascade_size;
  6213. dl_push_constant.grid_size[1] = rb->sdfgi->cascade_size;
  6214. dl_push_constant.grid_size[2] = rb->sdfgi->cascade_size;
  6215. dl_push_constant.max_cascades = rb->sdfgi->cascades.size();
  6216. dl_push_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  6217. dl_push_constant.multibounce = false; // this is static light, do not multibounce yet
  6218. dl_push_constant.y_mult = rb->sdfgi->y_mult;
  6219. //all must be processed
  6220. dl_push_constant.process_offset = 0;
  6221. dl_push_constant.process_increment = 1;
  6222. SDGIShader::Light lights[SDFGI::MAX_STATIC_LIGHTS];
  6223. for (uint32_t i = 0; i < p_cascade_count; i++) {
  6224. ERR_CONTINUE(p_cascade_indices[i] >= rb->sdfgi->cascades.size());
  6225. SDFGI::Cascade &cc = rb->sdfgi->cascades[p_cascade_indices[i]];
  6226. { //fill light buffer
  6227. AABB cascade_aabb;
  6228. cascade_aabb.position = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + cc.position)) * cc.cell_size;
  6229. cascade_aabb.size = Vector3(1, 1, 1) * rb->sdfgi->cascade_size * cc.cell_size;
  6230. int idx = 0;
  6231. for (uint32_t j = 0; j < p_positional_light_cull_count[i]; j++) {
  6232. if (idx == SDFGI::MAX_STATIC_LIGHTS) {
  6233. break;
  6234. }
  6235. LightInstance *li = light_instance_owner.getornull(p_positional_light_cull_result[i][j]);
  6236. ERR_CONTINUE(!li);
  6237. uint32_t max_sdfgi_cascade = storage->light_get_max_sdfgi_cascade(li->light);
  6238. if (p_cascade_indices[i] > max_sdfgi_cascade) {
  6239. continue;
  6240. }
  6241. if (!cascade_aabb.intersects(li->aabb)) {
  6242. continue;
  6243. }
  6244. lights[idx].type = storage->light_get_type(li->light);
  6245. Vector3 dir = -li->transform.basis.get_axis(Vector3::AXIS_Z);
  6246. if (lights[idx].type == RS::LIGHT_DIRECTIONAL) {
  6247. dir.y *= rb->sdfgi->y_mult; //only makes sense for directional
  6248. dir.normalize();
  6249. }
  6250. lights[idx].direction[0] = dir.x;
  6251. lights[idx].direction[1] = dir.y;
  6252. lights[idx].direction[2] = dir.z;
  6253. Vector3 pos = li->transform.origin;
  6254. pos.y *= rb->sdfgi->y_mult;
  6255. lights[idx].position[0] = pos.x;
  6256. lights[idx].position[1] = pos.y;
  6257. lights[idx].position[2] = pos.z;
  6258. Color color = storage->light_get_color(li->light);
  6259. color = color.to_linear();
  6260. lights[idx].color[0] = color.r;
  6261. lights[idx].color[1] = color.g;
  6262. lights[idx].color[2] = color.b;
  6263. lights[idx].energy = storage->light_get_param(li->light, RS::LIGHT_PARAM_ENERGY);
  6264. lights[idx].has_shadow = storage->light_has_shadow(li->light);
  6265. lights[idx].attenuation = storage->light_get_param(li->light, RS::LIGHT_PARAM_ATTENUATION);
  6266. lights[idx].radius = storage->light_get_param(li->light, RS::LIGHT_PARAM_RANGE);
  6267. lights[idx].spot_angle = Math::deg2rad(storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ANGLE));
  6268. lights[idx].spot_attenuation = storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  6269. idx++;
  6270. }
  6271. if (idx > 0) {
  6272. RD::get_singleton()->buffer_update(cc.lights_buffer, 0, idx * sizeof(SDGIShader::Light), lights, true);
  6273. }
  6274. dl_push_constant.light_count = idx;
  6275. }
  6276. dl_push_constant.cascade = p_cascade_indices[i];
  6277. if (dl_push_constant.light_count > 0) {
  6278. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cc.sdf_direct_light_uniform_set, 0);
  6279. RD::get_singleton()->compute_list_set_push_constant(compute_list, &dl_push_constant, sizeof(SDGIShader::DirectLightPushConstant));
  6280. RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cc.solid_cell_dispatch_buffer, 0);
  6281. }
  6282. }
  6283. RD::get_singleton()->compute_list_end();
  6284. }
  6285. bool RasterizerSceneRD::free(RID p_rid) {
  6286. if (render_buffers_owner.owns(p_rid)) {
  6287. RenderBuffers *rb = render_buffers_owner.getornull(p_rid);
  6288. _free_render_buffer_data(rb);
  6289. memdelete(rb->data);
  6290. if (rb->sdfgi) {
  6291. _sdfgi_erase(rb);
  6292. }
  6293. if (rb->volumetric_fog) {
  6294. _volumetric_fog_erase(rb);
  6295. }
  6296. render_buffers_owner.free(p_rid);
  6297. } else if (environment_owner.owns(p_rid)) {
  6298. //not much to delete, just free it
  6299. environment_owner.free(p_rid);
  6300. } else if (camera_effects_owner.owns(p_rid)) {
  6301. //not much to delete, just free it
  6302. camera_effects_owner.free(p_rid);
  6303. } else if (reflection_atlas_owner.owns(p_rid)) {
  6304. reflection_atlas_set_size(p_rid, 0, 0);
  6305. reflection_atlas_owner.free(p_rid);
  6306. } else if (reflection_probe_instance_owner.owns(p_rid)) {
  6307. //not much to delete, just free it
  6308. //ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_rid);
  6309. reflection_probe_release_atlas_index(p_rid);
  6310. reflection_probe_instance_owner.free(p_rid);
  6311. } else if (decal_instance_owner.owns(p_rid)) {
  6312. decal_instance_owner.free(p_rid);
  6313. } else if (gi_probe_instance_owner.owns(p_rid)) {
  6314. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_rid);
  6315. if (gi_probe->texture.is_valid()) {
  6316. RD::get_singleton()->free(gi_probe->texture);
  6317. RD::get_singleton()->free(gi_probe->write_buffer);
  6318. }
  6319. for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) {
  6320. RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture);
  6321. RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth);
  6322. }
  6323. gi_probe_instance_owner.free(p_rid);
  6324. } else if (sky_owner.owns(p_rid)) {
  6325. _update_dirty_skys();
  6326. Sky *sky = sky_owner.getornull(p_rid);
  6327. if (sky->radiance.is_valid()) {
  6328. RD::get_singleton()->free(sky->radiance);
  6329. sky->radiance = RID();
  6330. }
  6331. _clear_reflection_data(sky->reflection);
  6332. if (sky->uniform_buffer.is_valid()) {
  6333. RD::get_singleton()->free(sky->uniform_buffer);
  6334. sky->uniform_buffer = RID();
  6335. }
  6336. if (sky->half_res_pass.is_valid()) {
  6337. RD::get_singleton()->free(sky->half_res_pass);
  6338. sky->half_res_pass = RID();
  6339. }
  6340. if (sky->quarter_res_pass.is_valid()) {
  6341. RD::get_singleton()->free(sky->quarter_res_pass);
  6342. sky->quarter_res_pass = RID();
  6343. }
  6344. if (sky->material.is_valid()) {
  6345. storage->free(sky->material);
  6346. }
  6347. sky_owner.free(p_rid);
  6348. } else if (light_instance_owner.owns(p_rid)) {
  6349. LightInstance *light_instance = light_instance_owner.getornull(p_rid);
  6350. //remove from shadow atlases..
  6351. for (Set<RID>::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) {
  6352. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(E->get());
  6353. ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
  6354. uint32_t key = shadow_atlas->shadow_owners[p_rid];
  6355. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  6356. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  6357. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  6358. shadow_atlas->shadow_owners.erase(p_rid);
  6359. }
  6360. light_instance_owner.free(p_rid);
  6361. } else if (shadow_atlas_owner.owns(p_rid)) {
  6362. shadow_atlas_set_size(p_rid, 0);
  6363. shadow_atlas_owner.free(p_rid);
  6364. } else {
  6365. return false;
  6366. }
  6367. return true;
  6368. }
  6369. void RasterizerSceneRD::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) {
  6370. debug_draw = p_debug_draw;
  6371. }
  6372. void RasterizerSceneRD::update() {
  6373. _update_dirty_skys();
  6374. }
  6375. void RasterizerSceneRD::set_time(double p_time, double p_step) {
  6376. time = p_time;
  6377. time_step = p_step;
  6378. }
  6379. void RasterizerSceneRD::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_limit) {
  6380. screen_space_roughness_limiter = p_enable;
  6381. screen_space_roughness_limiter_amount = p_amount;
  6382. screen_space_roughness_limiter_limit = p_limit;
  6383. }
  6384. bool RasterizerSceneRD::screen_space_roughness_limiter_is_active() const {
  6385. return screen_space_roughness_limiter;
  6386. }
  6387. float RasterizerSceneRD::screen_space_roughness_limiter_get_amount() const {
  6388. return screen_space_roughness_limiter_amount;
  6389. }
  6390. float RasterizerSceneRD::screen_space_roughness_limiter_get_limit() const {
  6391. return screen_space_roughness_limiter_limit;
  6392. }
  6393. TypedArray<Image> RasterizerSceneRD::bake_render_uv2(RID p_base, const Vector<RID> &p_material_overrides, const Size2i &p_image_size) {
  6394. RD::TextureFormat tf;
  6395. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  6396. tf.width = p_image_size.width; // Always 64x64
  6397. tf.height = p_image_size.height;
  6398. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  6399. RID albedo_alpha_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  6400. RID normal_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  6401. RID orm_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  6402. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  6403. RID emission_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  6404. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  6405. RID depth_write_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  6406. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  6407. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  6408. RID depth_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  6409. Vector<RID> fb_tex;
  6410. fb_tex.push_back(albedo_alpha_tex);
  6411. fb_tex.push_back(normal_tex);
  6412. fb_tex.push_back(orm_tex);
  6413. fb_tex.push_back(emission_tex);
  6414. fb_tex.push_back(depth_write_tex);
  6415. fb_tex.push_back(depth_tex);
  6416. RID fb = RD::get_singleton()->framebuffer_create(fb_tex);
  6417. //RID sampled_light;
  6418. InstanceBase ins;
  6419. ins.base_type = RSG::storage->get_base_type(p_base);
  6420. ins.base = p_base;
  6421. ins.materials.resize(RSG::storage->mesh_get_surface_count(p_base));
  6422. for (int i = 0; i < ins.materials.size(); i++) {
  6423. if (i < p_material_overrides.size()) {
  6424. ins.materials.write[i] = p_material_overrides[i];
  6425. }
  6426. }
  6427. InstanceBase *cull = &ins;
  6428. _render_uv2(&cull, 1, fb, Rect2i(0, 0, p_image_size.width, p_image_size.height));
  6429. TypedArray<Image> ret;
  6430. {
  6431. PackedByteArray data = RD::get_singleton()->texture_get_data(albedo_alpha_tex, 0);
  6432. Ref<Image> img;
  6433. img.instance();
  6434. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  6435. RD::get_singleton()->free(albedo_alpha_tex);
  6436. ret.push_back(img);
  6437. }
  6438. {
  6439. PackedByteArray data = RD::get_singleton()->texture_get_data(normal_tex, 0);
  6440. Ref<Image> img;
  6441. img.instance();
  6442. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  6443. RD::get_singleton()->free(normal_tex);
  6444. ret.push_back(img);
  6445. }
  6446. {
  6447. PackedByteArray data = RD::get_singleton()->texture_get_data(orm_tex, 0);
  6448. Ref<Image> img;
  6449. img.instance();
  6450. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  6451. RD::get_singleton()->free(orm_tex);
  6452. ret.push_back(img);
  6453. }
  6454. {
  6455. PackedByteArray data = RD::get_singleton()->texture_get_data(emission_tex, 0);
  6456. Ref<Image> img;
  6457. img.instance();
  6458. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBAH, data);
  6459. RD::get_singleton()->free(emission_tex);
  6460. ret.push_back(img);
  6461. }
  6462. RD::get_singleton()->free(depth_write_tex);
  6463. RD::get_singleton()->free(depth_tex);
  6464. return ret;
  6465. }
  6466. void RasterizerSceneRD::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) {
  6467. sdfgi_debug_probe_pos = p_position;
  6468. sdfgi_debug_probe_dir = p_dir;
  6469. }
  6470. RasterizerSceneRD *RasterizerSceneRD::singleton = nullptr;
  6471. RID RasterizerSceneRD::get_cluster_builder_texture() {
  6472. return cluster.builder.get_cluster_texture();
  6473. }
  6474. RID RasterizerSceneRD::get_cluster_builder_indices_buffer() {
  6475. return cluster.builder.get_cluster_indices_buffer();
  6476. }
  6477. RID RasterizerSceneRD::get_reflection_probe_buffer() {
  6478. return cluster.reflection_buffer;
  6479. }
  6480. RID RasterizerSceneRD::get_positional_light_buffer() {
  6481. return cluster.light_buffer;
  6482. }
  6483. RID RasterizerSceneRD::get_directional_light_buffer() {
  6484. return cluster.directional_light_buffer;
  6485. }
  6486. RID RasterizerSceneRD::get_decal_buffer() {
  6487. return cluster.decal_buffer;
  6488. }
  6489. int RasterizerSceneRD::get_max_directional_lights() const {
  6490. return cluster.max_directional_lights;
  6491. }
  6492. RasterizerSceneRD::RasterizerSceneRD(RasterizerStorageRD *p_storage) {
  6493. storage = p_storage;
  6494. singleton = this;
  6495. roughness_layers = GLOBAL_GET("rendering/quality/reflections/roughness_layers");
  6496. sky_ggx_samples_quality = GLOBAL_GET("rendering/quality/reflections/ggx_samples");
  6497. sky_use_cubemap_array = GLOBAL_GET("rendering/quality/reflections/texture_array_reflections");
  6498. // sky_use_cubemap_array = false;
  6499. //uint32_t textures_per_stage = RD::get_singleton()->limit_get(RD::LIMIT_MAX_TEXTURES_PER_SHADER_STAGE);
  6500. {
  6501. //kinda complicated to compute the amount of slots, we try to use as many as we can
  6502. gi_probe_max_lights = 32;
  6503. gi_probe_lights = memnew_arr(GIProbeLight, gi_probe_max_lights);
  6504. gi_probe_lights_uniform = RD::get_singleton()->uniform_buffer_create(gi_probe_max_lights * sizeof(GIProbeLight));
  6505. gi_probe_quality = RS::GIProbeQuality(CLAMP(int(GLOBAL_GET("rendering/quality/gi_probes/quality")), 0, 1));
  6506. String defines = "\n#define MAX_LIGHTS " + itos(gi_probe_max_lights) + "\n";
  6507. Vector<String> versions;
  6508. versions.push_back("\n#define MODE_COMPUTE_LIGHT\n");
  6509. versions.push_back("\n#define MODE_SECOND_BOUNCE\n");
  6510. versions.push_back("\n#define MODE_UPDATE_MIPMAPS\n");
  6511. versions.push_back("\n#define MODE_WRITE_TEXTURE\n");
  6512. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_LIGHTING\n");
  6513. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
  6514. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n");
  6515. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
  6516. giprobe_shader.initialize(versions, defines);
  6517. giprobe_lighting_shader_version = giprobe_shader.version_create();
  6518. for (int i = 0; i < GI_PROBE_SHADER_VERSION_MAX; i++) {
  6519. giprobe_lighting_shader_version_shaders[i] = giprobe_shader.version_get_shader(giprobe_lighting_shader_version, i);
  6520. giprobe_lighting_shader_version_pipelines[i] = RD::get_singleton()->compute_pipeline_create(giprobe_lighting_shader_version_shaders[i]);
  6521. }
  6522. }
  6523. {
  6524. String defines;
  6525. Vector<String> versions;
  6526. versions.push_back("\n#define MODE_DEBUG_COLOR\n");
  6527. versions.push_back("\n#define MODE_DEBUG_LIGHT\n");
  6528. versions.push_back("\n#define MODE_DEBUG_EMISSION\n");
  6529. versions.push_back("\n#define MODE_DEBUG_LIGHT\n#define MODE_DEBUG_LIGHT_FULL\n");
  6530. giprobe_debug_shader.initialize(versions, defines);
  6531. giprobe_debug_shader_version = giprobe_debug_shader.version_create();
  6532. for (int i = 0; i < GI_PROBE_DEBUG_MAX; i++) {
  6533. giprobe_debug_shader_version_shaders[i] = giprobe_debug_shader.version_get_shader(giprobe_debug_shader_version, i);
  6534. RD::PipelineRasterizationState rs;
  6535. rs.cull_mode = RD::POLYGON_CULL_FRONT;
  6536. RD::PipelineDepthStencilState ds;
  6537. ds.enable_depth_test = true;
  6538. ds.enable_depth_write = true;
  6539. ds.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL;
  6540. giprobe_debug_shader_version_pipelines[i].setup(giprobe_debug_shader_version_shaders[i], RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
  6541. }
  6542. }
  6543. /* SKY SHADER */
  6544. {
  6545. // Start with the directional lights for the sky
  6546. sky_scene_state.max_directional_lights = 4;
  6547. uint32_t directional_light_buffer_size = sky_scene_state.max_directional_lights * sizeof(SkyDirectionalLightData);
  6548. sky_scene_state.directional_lights = memnew_arr(SkyDirectionalLightData, sky_scene_state.max_directional_lights);
  6549. sky_scene_state.last_frame_directional_lights = memnew_arr(SkyDirectionalLightData, sky_scene_state.max_directional_lights);
  6550. sky_scene_state.last_frame_directional_light_count = sky_scene_state.max_directional_lights + 1;
  6551. sky_scene_state.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size);
  6552. String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(sky_scene_state.max_directional_lights) + "\n";
  6553. // Initialize sky
  6554. Vector<String> sky_modes;
  6555. sky_modes.push_back(""); // Full size
  6556. sky_modes.push_back("\n#define USE_HALF_RES_PASS\n"); // Half Res
  6557. sky_modes.push_back("\n#define USE_QUARTER_RES_PASS\n"); // Quarter res
  6558. sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n"); // Cubemap
  6559. sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n#define USE_HALF_RES_PASS\n"); // Half Res Cubemap
  6560. sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n#define USE_QUARTER_RES_PASS\n"); // Quarter res Cubemap
  6561. sky_shader.shader.initialize(sky_modes, defines);
  6562. }
  6563. // register our shader funds
  6564. storage->shader_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_SKY, _create_sky_shader_funcs);
  6565. storage->material_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_SKY, _create_sky_material_funcs);
  6566. {
  6567. ShaderCompilerRD::DefaultIdentifierActions actions;
  6568. actions.renames["COLOR"] = "color";
  6569. actions.renames["ALPHA"] = "alpha";
  6570. actions.renames["EYEDIR"] = "cube_normal";
  6571. actions.renames["POSITION"] = "params.position_multiplier.xyz";
  6572. actions.renames["SKY_COORDS"] = "panorama_coords";
  6573. actions.renames["SCREEN_UV"] = "uv";
  6574. actions.renames["TIME"] = "params.time";
  6575. actions.renames["HALF_RES_COLOR"] = "half_res_color";
  6576. actions.renames["QUARTER_RES_COLOR"] = "quarter_res_color";
  6577. actions.renames["RADIANCE"] = "radiance";
  6578. actions.renames["LIGHT0_ENABLED"] = "directional_lights.data[0].enabled";
  6579. actions.renames["LIGHT0_DIRECTION"] = "directional_lights.data[0].direction_energy.xyz";
  6580. actions.renames["LIGHT0_ENERGY"] = "directional_lights.data[0].direction_energy.w";
  6581. actions.renames["LIGHT0_COLOR"] = "directional_lights.data[0].color_size.xyz";
  6582. actions.renames["LIGHT0_SIZE"] = "directional_lights.data[0].color_size.w";
  6583. actions.renames["LIGHT1_ENABLED"] = "directional_lights.data[1].enabled";
  6584. actions.renames["LIGHT1_DIRECTION"] = "directional_lights.data[1].direction_energy.xyz";
  6585. actions.renames["LIGHT1_ENERGY"] = "directional_lights.data[1].direction_energy.w";
  6586. actions.renames["LIGHT1_COLOR"] = "directional_lights.data[1].color_size.xyz";
  6587. actions.renames["LIGHT1_SIZE"] = "directional_lights.data[1].color_size.w";
  6588. actions.renames["LIGHT2_ENABLED"] = "directional_lights.data[2].enabled";
  6589. actions.renames["LIGHT2_DIRECTION"] = "directional_lights.data[2].direction_energy.xyz";
  6590. actions.renames["LIGHT2_ENERGY"] = "directional_lights.data[2].direction_energy.w";
  6591. actions.renames["LIGHT2_COLOR"] = "directional_lights.data[2].color_size.xyz";
  6592. actions.renames["LIGHT2_SIZE"] = "directional_lights.data[2].color_size.w";
  6593. actions.renames["LIGHT3_ENABLED"] = "directional_lights.data[3].enabled";
  6594. actions.renames["LIGHT3_DIRECTION"] = "directional_lights.data[3].direction_energy.xyz";
  6595. actions.renames["LIGHT3_ENERGY"] = "directional_lights.data[3].direction_energy.w";
  6596. actions.renames["LIGHT3_COLOR"] = "directional_lights.data[3].color_size.xyz";
  6597. actions.renames["LIGHT3_SIZE"] = "directional_lights.data[3].color_size.w";
  6598. actions.renames["AT_CUBEMAP_PASS"] = "AT_CUBEMAP_PASS";
  6599. actions.renames["AT_HALF_RES_PASS"] = "AT_HALF_RES_PASS";
  6600. actions.renames["AT_QUARTER_RES_PASS"] = "AT_QUARTER_RES_PASS";
  6601. actions.custom_samplers["RADIANCE"] = "material_samplers[3]";
  6602. actions.usage_defines["HALF_RES_COLOR"] = "\n#define USES_HALF_RES_COLOR\n";
  6603. actions.usage_defines["QUARTER_RES_COLOR"] = "\n#define USES_QUARTER_RES_COLOR\n";
  6604. actions.render_mode_defines["disable_fog"] = "#define DISABLE_FOG\n";
  6605. actions.sampler_array_name = "material_samplers";
  6606. actions.base_texture_binding_index = 1;
  6607. actions.texture_layout_set = 1;
  6608. actions.base_uniform_string = "material.";
  6609. actions.base_varying_index = 10;
  6610. actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP;
  6611. actions.default_repeat = ShaderLanguage::REPEAT_ENABLE;
  6612. actions.global_buffer_array_variable = "global_variables.data";
  6613. sky_shader.compiler.initialize(actions);
  6614. }
  6615. {
  6616. // default material and shader for sky shader
  6617. sky_shader.default_shader = storage->shader_create();
  6618. storage->shader_set_code(sky_shader.default_shader, "shader_type sky; void fragment() { COLOR = vec3(0.0); } \n");
  6619. sky_shader.default_material = storage->material_create();
  6620. storage->material_set_shader(sky_shader.default_material, sky_shader.default_shader);
  6621. SkyMaterialData *md = (SkyMaterialData *)storage->material_get_data(sky_shader.default_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  6622. sky_shader.default_shader_rd = sky_shader.shader.version_get_shader(md->shader_data->version, SKY_VERSION_BACKGROUND);
  6623. sky_scene_state.uniform_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(SkySceneState::UBO));
  6624. Vector<RD::Uniform> uniforms;
  6625. {
  6626. RD::Uniform u;
  6627. u.type = RD::UNIFORM_TYPE_SAMPLER;
  6628. u.binding = 0;
  6629. u.ids.resize(12);
  6630. RID *ids_ptr = u.ids.ptrw();
  6631. ids_ptr[0] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  6632. ids_ptr[1] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  6633. ids_ptr[2] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  6634. ids_ptr[3] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  6635. ids_ptr[4] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  6636. ids_ptr[5] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  6637. ids_ptr[6] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  6638. ids_ptr[7] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  6639. ids_ptr[8] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  6640. ids_ptr[9] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  6641. ids_ptr[10] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  6642. ids_ptr[11] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  6643. uniforms.push_back(u);
  6644. }
  6645. {
  6646. RD::Uniform u;
  6647. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  6648. u.binding = 1;
  6649. u.ids.push_back(storage->global_variables_get_storage_buffer());
  6650. uniforms.push_back(u);
  6651. }
  6652. {
  6653. RD::Uniform u;
  6654. u.binding = 2;
  6655. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  6656. u.ids.push_back(sky_scene_state.uniform_buffer);
  6657. uniforms.push_back(u);
  6658. }
  6659. {
  6660. RD::Uniform u;
  6661. u.binding = 3;
  6662. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  6663. u.ids.push_back(sky_scene_state.directional_light_buffer);
  6664. uniforms.push_back(u);
  6665. }
  6666. sky_scene_state.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_UNIFORMS);
  6667. }
  6668. {
  6669. Vector<RD::Uniform> uniforms;
  6670. {
  6671. RD::Uniform u;
  6672. u.binding = 0;
  6673. u.type = RD::UNIFORM_TYPE_TEXTURE;
  6674. RID vfog = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE);
  6675. u.ids.push_back(vfog);
  6676. uniforms.push_back(u);
  6677. }
  6678. sky_scene_state.default_fog_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_FOG);
  6679. }
  6680. {
  6681. // Need defaults for using fog with clear color
  6682. sky_scene_state.fog_shader = storage->shader_create();
  6683. storage->shader_set_code(sky_scene_state.fog_shader, "shader_type sky; uniform vec4 clear_color; void fragment() { COLOR = clear_color.rgb; } \n");
  6684. sky_scene_state.fog_material = storage->material_create();
  6685. storage->material_set_shader(sky_scene_state.fog_material, sky_scene_state.fog_shader);
  6686. Vector<RD::Uniform> uniforms;
  6687. {
  6688. RD::Uniform u;
  6689. u.type = RD::UNIFORM_TYPE_TEXTURE;
  6690. u.binding = 0;
  6691. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
  6692. uniforms.push_back(u);
  6693. }
  6694. {
  6695. RD::Uniform u;
  6696. u.type = RD::UNIFORM_TYPE_TEXTURE;
  6697. u.binding = 1;
  6698. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE));
  6699. uniforms.push_back(u);
  6700. }
  6701. {
  6702. RD::Uniform u;
  6703. u.type = RD::UNIFORM_TYPE_TEXTURE;
  6704. u.binding = 2;
  6705. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE));
  6706. uniforms.push_back(u);
  6707. }
  6708. sky_scene_state.fog_only_texture_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_TEXTURES);
  6709. }
  6710. {
  6711. Vector<String> preprocess_modes;
  6712. preprocess_modes.push_back("\n#define MODE_SCROLL\n");
  6713. preprocess_modes.push_back("\n#define MODE_SCROLL_OCCLUSION\n");
  6714. preprocess_modes.push_back("\n#define MODE_INITIALIZE_JUMP_FLOOD\n");
  6715. preprocess_modes.push_back("\n#define MODE_INITIALIZE_JUMP_FLOOD_HALF\n");
  6716. preprocess_modes.push_back("\n#define MODE_JUMPFLOOD\n");
  6717. preprocess_modes.push_back("\n#define MODE_JUMPFLOOD_OPTIMIZED\n");
  6718. preprocess_modes.push_back("\n#define MODE_UPSCALE_JUMP_FLOOD\n");
  6719. preprocess_modes.push_back("\n#define MODE_OCCLUSION\n");
  6720. preprocess_modes.push_back("\n#define MODE_STORE\n");
  6721. String defines = "\n#define OCCLUSION_SIZE " + itos(SDFGI::CASCADE_SIZE / SDFGI::PROBE_DIVISOR) + "\n";
  6722. sdfgi_shader.preprocess.initialize(preprocess_modes, defines);
  6723. sdfgi_shader.preprocess_shader = sdfgi_shader.preprocess.version_create();
  6724. for (int i = 0; i < SDGIShader::PRE_PROCESS_MAX; i++) {
  6725. sdfgi_shader.preprocess_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, i));
  6726. }
  6727. }
  6728. {
  6729. //calculate tables
  6730. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  6731. Vector<String> direct_light_modes;
  6732. direct_light_modes.push_back("\n#define MODE_PROCESS_STATIC\n");
  6733. direct_light_modes.push_back("\n#define MODE_PROCESS_DYNAMIC\n");
  6734. sdfgi_shader.direct_light.initialize(direct_light_modes, defines);
  6735. sdfgi_shader.direct_light_shader = sdfgi_shader.direct_light.version_create();
  6736. for (int i = 0; i < SDGIShader::DIRECT_LIGHT_MODE_MAX; i++) {
  6737. sdfgi_shader.direct_light_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.direct_light.version_get_shader(sdfgi_shader.direct_light_shader, i));
  6738. }
  6739. }
  6740. {
  6741. //calculate tables
  6742. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  6743. defines += "\n#define SH_SIZE " + itos(SDFGI::SH_SIZE) + "\n";
  6744. Vector<String> integrate_modes;
  6745. integrate_modes.push_back("\n#define MODE_PROCESS\n");
  6746. integrate_modes.push_back("\n#define MODE_STORE\n");
  6747. integrate_modes.push_back("\n#define MODE_SCROLL\n");
  6748. integrate_modes.push_back("\n#define MODE_SCROLL_STORE\n");
  6749. sdfgi_shader.integrate.initialize(integrate_modes, defines);
  6750. sdfgi_shader.integrate_shader = sdfgi_shader.integrate.version_create();
  6751. for (int i = 0; i < SDGIShader::INTEGRATE_MODE_MAX; i++) {
  6752. sdfgi_shader.integrate_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, i));
  6753. }
  6754. {
  6755. Vector<RD::Uniform> uniforms;
  6756. {
  6757. RD::Uniform u;
  6758. u.type = RD::UNIFORM_TYPE_TEXTURE;
  6759. u.binding = 0;
  6760. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  6761. uniforms.push_back(u);
  6762. }
  6763. {
  6764. RD::Uniform u;
  6765. u.type = RD::UNIFORM_TYPE_SAMPLER;
  6766. u.binding = 1;
  6767. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  6768. uniforms.push_back(u);
  6769. }
  6770. sdfgi_shader.integrate_default_sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, 0), 1);
  6771. }
  6772. }
  6773. {
  6774. //calculate tables
  6775. String defines = "\n#define SDFGI_OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  6776. Vector<String> gi_modes;
  6777. gi_modes.push_back("");
  6778. gi.shader.initialize(gi_modes, defines);
  6779. gi.shader_version = gi.shader.version_create();
  6780. for (int i = 0; i < GI::MODE_MAX; i++) {
  6781. gi.pipelines[i] = RD::get_singleton()->compute_pipeline_create(gi.shader.version_get_shader(gi.shader_version, i));
  6782. }
  6783. gi.sdfgi_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(GI::SDFGIData));
  6784. }
  6785. {
  6786. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  6787. Vector<String> debug_modes;
  6788. debug_modes.push_back("");
  6789. sdfgi_shader.debug.initialize(debug_modes, defines);
  6790. sdfgi_shader.debug_shader = sdfgi_shader.debug.version_create();
  6791. sdfgi_shader.debug_shader_version = sdfgi_shader.debug.version_get_shader(sdfgi_shader.debug_shader, 0);
  6792. sdfgi_shader.debug_pipeline = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.debug_shader_version);
  6793. }
  6794. {
  6795. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  6796. Vector<String> versions;
  6797. versions.push_back("\n#define MODE_PROBES\n");
  6798. versions.push_back("\n#define MODE_VISIBILITY\n");
  6799. sdfgi_shader.debug_probes.initialize(versions, defines);
  6800. sdfgi_shader.debug_probes_shader = sdfgi_shader.debug_probes.version_create();
  6801. {
  6802. RD::PipelineRasterizationState rs;
  6803. rs.cull_mode = RD::POLYGON_CULL_DISABLED;
  6804. RD::PipelineDepthStencilState ds;
  6805. ds.enable_depth_test = true;
  6806. ds.enable_depth_write = true;
  6807. ds.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL;
  6808. for (int i = 0; i < SDGIShader::PROBE_DEBUG_MAX; i++) {
  6809. RID debug_probes_shader_version = sdfgi_shader.debug_probes.version_get_shader(sdfgi_shader.debug_probes_shader, i);
  6810. sdfgi_shader.debug_probes_pipeline[i].setup(debug_probes_shader_version, RD::RENDER_PRIMITIVE_TRIANGLE_STRIPS, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
  6811. }
  6812. }
  6813. }
  6814. //cluster setup
  6815. uint32_t uniform_max_size = RD::get_singleton()->limit_get(RD::LIMIT_MAX_UNIFORM_BUFFER_SIZE);
  6816. { //reflections
  6817. uint32_t reflection_buffer_size;
  6818. if (uniform_max_size < 65536) {
  6819. //Yes, you guessed right, ARM again
  6820. reflection_buffer_size = uniform_max_size;
  6821. } else {
  6822. reflection_buffer_size = 65536;
  6823. }
  6824. cluster.max_reflections = reflection_buffer_size / sizeof(Cluster::ReflectionData);
  6825. cluster.reflections = memnew_arr(Cluster::ReflectionData, cluster.max_reflections);
  6826. cluster.reflection_buffer = RD::get_singleton()->storage_buffer_create(reflection_buffer_size);
  6827. }
  6828. { //lights
  6829. cluster.max_lights = MIN(1024 * 1024, uniform_max_size) / sizeof(Cluster::LightData); //1mb of lights
  6830. uint32_t light_buffer_size = cluster.max_lights * sizeof(Cluster::LightData);
  6831. cluster.lights = memnew_arr(Cluster::LightData, cluster.max_lights);
  6832. cluster.light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
  6833. //defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(cluster.max_lights) + "\n";
  6834. cluster.lights_instances = memnew_arr(RID, cluster.max_lights);
  6835. cluster.lights_shadow_rect_cache = memnew_arr(Rect2i, cluster.max_lights);
  6836. cluster.max_directional_lights = 8;
  6837. uint32_t directional_light_buffer_size = cluster.max_directional_lights * sizeof(Cluster::DirectionalLightData);
  6838. cluster.directional_lights = memnew_arr(Cluster::DirectionalLightData, cluster.max_directional_lights);
  6839. cluster.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size);
  6840. }
  6841. { //decals
  6842. cluster.max_decals = MIN(1024 * 1024, uniform_max_size) / sizeof(Cluster::DecalData); //1mb of decals
  6843. uint32_t decal_buffer_size = cluster.max_decals * sizeof(Cluster::DecalData);
  6844. cluster.decals = memnew_arr(Cluster::DecalData, cluster.max_decals);
  6845. cluster.decal_buffer = RD::get_singleton()->storage_buffer_create(decal_buffer_size);
  6846. }
  6847. cluster.builder.setup(16, 8, 24);
  6848. {
  6849. String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(cluster.max_directional_lights) + "\n";
  6850. Vector<String> volumetric_fog_modes;
  6851. volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n");
  6852. volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n#define ENABLE_SDFGI\n");
  6853. volumetric_fog_modes.push_back("\n#define MODE_FILTER\n");
  6854. volumetric_fog_modes.push_back("\n#define MODE_FOG\n");
  6855. volumetric_fog.shader.initialize(volumetric_fog_modes, defines);
  6856. volumetric_fog.shader_version = volumetric_fog.shader.version_create();
  6857. for (int i = 0; i < VOLUMETRIC_FOG_SHADER_MAX; i++) {
  6858. volumetric_fog.pipelines[i] = RD::get_singleton()->compute_pipeline_create(volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, i));
  6859. }
  6860. }
  6861. default_giprobe_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(GI::GIProbeData) * RenderBuffers::MAX_GIPROBES);
  6862. {
  6863. RD::SamplerState sampler;
  6864. sampler.mag_filter = RD::SAMPLER_FILTER_LINEAR;
  6865. sampler.min_filter = RD::SAMPLER_FILTER_LINEAR;
  6866. sampler.enable_compare = true;
  6867. sampler.compare_op = RD::COMPARE_OP_LESS;
  6868. shadow_sampler = RD::get_singleton()->sampler_create(sampler);
  6869. }
  6870. camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_bokeh_shape"))));
  6871. camera_effects_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_use_jitter"));
  6872. environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/quality/ssao/quality"))), GLOBAL_GET("rendering/quality/ssao/half_size"));
  6873. screen_space_roughness_limiter = GLOBAL_GET("rendering/quality/screen_filters/screen_space_roughness_limiter_enabled");
  6874. screen_space_roughness_limiter_amount = GLOBAL_GET("rendering/quality/screen_filters/screen_space_roughness_limiter_amount");
  6875. screen_space_roughness_limiter_limit = GLOBAL_GET("rendering/quality/screen_filters/screen_space_roughness_limiter_limit");
  6876. glow_bicubic_upscale = int(GLOBAL_GET("rendering/quality/glow/upscale_mode")) > 0;
  6877. ssr_roughness_quality = RS::EnvironmentSSRRoughnessQuality(int(GLOBAL_GET("rendering/quality/screen_space_reflection/roughness_quality")));
  6878. sss_quality = RS::SubSurfaceScatteringQuality(int(GLOBAL_GET("rendering/quality/subsurface_scattering/subsurface_scattering_quality")));
  6879. sss_scale = GLOBAL_GET("rendering/quality/subsurface_scattering/subsurface_scattering_scale");
  6880. sss_depth_scale = GLOBAL_GET("rendering/quality/subsurface_scattering/subsurface_scattering_depth_scale");
  6881. directional_penumbra_shadow_kernel = memnew_arr(float, 128);
  6882. directional_soft_shadow_kernel = memnew_arr(float, 128);
  6883. penumbra_shadow_kernel = memnew_arr(float, 128);
  6884. soft_shadow_kernel = memnew_arr(float, 128);
  6885. shadows_quality_set(RS::ShadowQuality(int(GLOBAL_GET("rendering/quality/shadows/soft_shadow_quality"))));
  6886. directional_shadow_quality_set(RS::ShadowQuality(int(GLOBAL_GET("rendering/quality/directional_shadow/soft_shadow_quality"))));
  6887. environment_set_volumetric_fog_volume_size(GLOBAL_GET("rendering/volumetric_fog/volume_size"), GLOBAL_GET("rendering/volumetric_fog/volume_depth"));
  6888. environment_set_volumetric_fog_filter_active(GLOBAL_GET("rendering/volumetric_fog/use_filter"));
  6889. environment_set_volumetric_fog_directional_shadow_shrink_size(GLOBAL_GET("rendering/volumetric_fog/directional_shadow_shrink"));
  6890. environment_set_volumetric_fog_positional_shadow_shrink_size(GLOBAL_GET("rendering/volumetric_fog/positional_shadow_shrink"));
  6891. }
  6892. RasterizerSceneRD::~RasterizerSceneRD() {
  6893. for (Map<Vector2i, ShadowMap>::Element *E = shadow_maps.front(); E; E = E->next()) {
  6894. RD::get_singleton()->free(E->get().depth);
  6895. }
  6896. for (Map<int, ShadowCubemap>::Element *E = shadow_cubemaps.front(); E; E = E->next()) {
  6897. RD::get_singleton()->free(E->get().cubemap);
  6898. }
  6899. if (sky_scene_state.uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_scene_state.uniform_set)) {
  6900. RD::get_singleton()->free(sky_scene_state.uniform_set);
  6901. }
  6902. RD::get_singleton()->free(default_giprobe_buffer);
  6903. RD::get_singleton()->free(gi_probe_lights_uniform);
  6904. RD::get_singleton()->free(gi.sdfgi_ubo);
  6905. giprobe_debug_shader.version_free(giprobe_debug_shader_version);
  6906. giprobe_shader.version_free(giprobe_lighting_shader_version);
  6907. gi.shader.version_free(gi.shader_version);
  6908. sdfgi_shader.debug_probes.version_free(sdfgi_shader.debug_probes_shader);
  6909. sdfgi_shader.debug.version_free(sdfgi_shader.debug_shader);
  6910. sdfgi_shader.direct_light.version_free(sdfgi_shader.direct_light_shader);
  6911. sdfgi_shader.integrate.version_free(sdfgi_shader.integrate_shader);
  6912. sdfgi_shader.preprocess.version_free(sdfgi_shader.preprocess_shader);
  6913. volumetric_fog.shader.version_free(volumetric_fog.shader_version);
  6914. memdelete_arr(gi_probe_lights);
  6915. SkyMaterialData *md = (SkyMaterialData *)storage->material_get_data(sky_shader.default_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  6916. sky_shader.shader.version_free(md->shader_data->version);
  6917. RD::get_singleton()->free(sky_scene_state.directional_light_buffer);
  6918. RD::get_singleton()->free(sky_scene_state.uniform_buffer);
  6919. memdelete_arr(sky_scene_state.directional_lights);
  6920. memdelete_arr(sky_scene_state.last_frame_directional_lights);
  6921. storage->free(sky_shader.default_shader);
  6922. storage->free(sky_shader.default_material);
  6923. storage->free(sky_scene_state.fog_shader);
  6924. storage->free(sky_scene_state.fog_material);
  6925. memdelete_arr(directional_penumbra_shadow_kernel);
  6926. memdelete_arr(directional_soft_shadow_kernel);
  6927. memdelete_arr(penumbra_shadow_kernel);
  6928. memdelete_arr(soft_shadow_kernel);
  6929. {
  6930. RD::get_singleton()->free(cluster.directional_light_buffer);
  6931. RD::get_singleton()->free(cluster.light_buffer);
  6932. RD::get_singleton()->free(cluster.reflection_buffer);
  6933. RD::get_singleton()->free(cluster.decal_buffer);
  6934. memdelete_arr(cluster.directional_lights);
  6935. memdelete_arr(cluster.lights);
  6936. memdelete_arr(cluster.lights_shadow_rect_cache);
  6937. memdelete_arr(cluster.lights_instances);
  6938. memdelete_arr(cluster.reflections);
  6939. memdelete_arr(cluster.decals);
  6940. }
  6941. RD::get_singleton()->free(shadow_sampler);
  6942. directional_shadow_atlas_set_size(0);
  6943. }