rasterizer_scene_rd.cpp 153 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185
  1. /*************************************************************************/
  2. /* rasterizer_scene_rd.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "rasterizer_scene_rd.h"
  31. #include "core/os/os.h"
  32. #include "core/project_settings.h"
  33. #include "servers/rendering/rendering_server_raster.h"
  34. uint64_t RasterizerSceneRD::auto_exposure_counter = 2;
  35. void RasterizerSceneRD::_clear_reflection_data(ReflectionData &rd) {
  36. rd.layers.clear();
  37. rd.radiance_base_cubemap = RID();
  38. if (rd.downsampled_radiance_cubemap.is_valid()) {
  39. RD::get_singleton()->free(rd.downsampled_radiance_cubemap);
  40. }
  41. rd.downsampled_radiance_cubemap = RID();
  42. rd.downsampled_layer.mipmaps.clear();
  43. rd.coefficient_buffer = RID();
  44. }
  45. void RasterizerSceneRD::_update_reflection_data(ReflectionData &rd, int p_size, int p_mipmaps, bool p_use_array, RID p_base_cube, int p_base_layer, bool p_low_quality) {
  46. //recreate radiance and all data
  47. int mipmaps = p_mipmaps;
  48. uint32_t w = p_size, h = p_size;
  49. if (p_use_array) {
  50. int layers = p_low_quality ? 8 : roughness_layers;
  51. for (int i = 0; i < layers; i++) {
  52. ReflectionData::Layer layer;
  53. uint32_t mmw = w;
  54. uint32_t mmh = h;
  55. layer.mipmaps.resize(mipmaps);
  56. layer.views.resize(mipmaps);
  57. for (int j = 0; j < mipmaps; j++) {
  58. ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j];
  59. mm.size.width = mmw;
  60. mm.size.height = mmh;
  61. for (int k = 0; k < 6; k++) {
  62. mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6 + k, j);
  63. Vector<RID> fbtex;
  64. fbtex.push_back(mm.views[k]);
  65. mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex);
  66. }
  67. layer.views.write[j] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6, j, RD::TEXTURE_SLICE_CUBEMAP);
  68. mmw = MAX(1, mmw >> 1);
  69. mmh = MAX(1, mmh >> 1);
  70. }
  71. rd.layers.push_back(layer);
  72. }
  73. } else {
  74. mipmaps = p_low_quality ? 8 : mipmaps;
  75. //regular cubemap, lower quality (aliasing, less memory)
  76. ReflectionData::Layer layer;
  77. uint32_t mmw = w;
  78. uint32_t mmh = h;
  79. layer.mipmaps.resize(mipmaps);
  80. layer.views.resize(mipmaps);
  81. for (int j = 0; j < mipmaps; j++) {
  82. ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j];
  83. mm.size.width = mmw;
  84. mm.size.height = mmh;
  85. for (int k = 0; k < 6; k++) {
  86. mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + k, j);
  87. Vector<RID> fbtex;
  88. fbtex.push_back(mm.views[k]);
  89. mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex);
  90. }
  91. layer.views.write[j] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, j, RD::TEXTURE_SLICE_CUBEMAP);
  92. mmw = MAX(1, mmw >> 1);
  93. mmh = MAX(1, mmh >> 1);
  94. }
  95. rd.layers.push_back(layer);
  96. }
  97. rd.radiance_base_cubemap = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, 0, RD::TEXTURE_SLICE_CUBEMAP);
  98. RD::TextureFormat tf;
  99. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  100. tf.width = 64; // Always 64x64
  101. tf.height = 64;
  102. tf.type = RD::TEXTURE_TYPE_CUBE;
  103. tf.array_layers = 6;
  104. tf.mipmaps = 7;
  105. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  106. rd.downsampled_radiance_cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView());
  107. {
  108. uint32_t mmw = 64;
  109. uint32_t mmh = 64;
  110. rd.downsampled_layer.mipmaps.resize(7);
  111. for (int j = 0; j < rd.downsampled_layer.mipmaps.size(); j++) {
  112. ReflectionData::DownsampleLayer::Mipmap &mm = rd.downsampled_layer.mipmaps.write[j];
  113. mm.size.width = mmw;
  114. mm.size.height = mmh;
  115. mm.view = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rd.downsampled_radiance_cubemap, 0, j, RD::TEXTURE_SLICE_CUBEMAP);
  116. mmw = MAX(1, mmw >> 1);
  117. mmh = MAX(1, mmh >> 1);
  118. }
  119. }
  120. }
  121. void RasterizerSceneRD::_create_reflection_fast_filter(ReflectionData &rd, bool p_use_arrays) {
  122. storage->get_effects()->cubemap_downsample(rd.radiance_base_cubemap, rd.downsampled_layer.mipmaps[0].view, rd.downsampled_layer.mipmaps[0].size);
  123. for (int i = 1; i < rd.downsampled_layer.mipmaps.size(); i++) {
  124. storage->get_effects()->cubemap_downsample(rd.downsampled_layer.mipmaps[i - 1].view, rd.downsampled_layer.mipmaps[i].view, rd.downsampled_layer.mipmaps[i].size);
  125. }
  126. Vector<RID> views;
  127. if (p_use_arrays) {
  128. for (int i = 1; i < rd.layers.size(); i++) {
  129. views.push_back(rd.layers[i].views[0]);
  130. }
  131. } else {
  132. for (int i = 1; i < rd.layers[0].views.size(); i++) {
  133. views.push_back(rd.layers[0].views[i]);
  134. }
  135. }
  136. storage->get_effects()->cubemap_filter(rd.downsampled_radiance_cubemap, views, p_use_arrays);
  137. }
  138. void RasterizerSceneRD::_create_reflection_importance_sample(ReflectionData &rd, bool p_use_arrays, int p_cube_side, int p_base_layer) {
  139. if (p_use_arrays) {
  140. //render directly to the layers
  141. storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, rd.layers[p_base_layer].views[0], p_cube_side, sky_ggx_samples_quality, float(p_base_layer) / (rd.layers.size() - 1.0), rd.layers[p_base_layer].mipmaps[0].size.x);
  142. } else {
  143. storage->get_effects()->cubemap_roughness(rd.layers[0].views[p_base_layer - 1], rd.layers[0].views[p_base_layer], p_cube_side, sky_ggx_samples_quality, float(p_base_layer) / (rd.layers[0].mipmaps.size() - 1.0), rd.layers[0].mipmaps[p_base_layer].size.x);
  144. }
  145. }
  146. void RasterizerSceneRD::_update_reflection_mipmaps(ReflectionData &rd) {
  147. if (sky_use_cubemap_array) {
  148. for (int i = 0; i < rd.layers.size(); i++) {
  149. for (int j = 0; j < rd.layers[i].mipmaps.size() - 1; j++) {
  150. for (int k = 0; k < 6; k++) {
  151. RID view = rd.layers[i].mipmaps[j].views[k];
  152. RID fb = rd.layers[i].mipmaps[j + 1].framebuffers[k];
  153. Vector2 size = rd.layers[i].mipmaps[j].size;
  154. size = Vector2(1.0 / size.x, 1.0 / size.y);
  155. storage->get_effects()->make_mipmap(view, fb, size);
  156. }
  157. }
  158. }
  159. }
  160. }
  161. RID RasterizerSceneRD::sky_create() {
  162. return sky_owner.make_rid(Sky());
  163. }
  164. void RasterizerSceneRD::_sky_invalidate(Sky *p_sky) {
  165. if (!p_sky->dirty) {
  166. p_sky->dirty = true;
  167. p_sky->dirty_list = dirty_sky_list;
  168. dirty_sky_list = p_sky;
  169. }
  170. }
  171. void RasterizerSceneRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) {
  172. Sky *sky = sky_owner.getornull(p_sky);
  173. ERR_FAIL_COND(!sky);
  174. ERR_FAIL_COND(p_radiance_size < 32 || p_radiance_size > 2048);
  175. if (sky->radiance_size == p_radiance_size) {
  176. return;
  177. }
  178. sky->radiance_size = p_radiance_size;
  179. if (sky->mode == RS::SKY_MODE_REALTIME && sky->radiance_size != 256) {
  180. WARN_PRINT("Realtime Skies can only use a radiance size of 256. Radiance size will be set to 256 internally.");
  181. sky->radiance_size = 256;
  182. }
  183. _sky_invalidate(sky);
  184. if (sky->radiance.is_valid()) {
  185. RD::get_singleton()->free(sky->radiance);
  186. sky->radiance = RID();
  187. }
  188. _clear_reflection_data(sky->reflection);
  189. }
  190. void RasterizerSceneRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) {
  191. Sky *sky = sky_owner.getornull(p_sky);
  192. ERR_FAIL_COND(!sky);
  193. if (sky->mode == p_mode) {
  194. return;
  195. }
  196. sky->mode = p_mode;
  197. if (sky->mode == RS::SKY_MODE_REALTIME && sky->radiance_size != 256) {
  198. WARN_PRINT("Realtime Skies can only use a radiance size of 256. Radiance size will be set to 256 internally.");
  199. sky_set_radiance_size(p_sky, 256);
  200. }
  201. _sky_invalidate(sky);
  202. if (sky->radiance.is_valid()) {
  203. RD::get_singleton()->free(sky->radiance);
  204. sky->radiance = RID();
  205. }
  206. _clear_reflection_data(sky->reflection);
  207. }
  208. void RasterizerSceneRD::sky_set_material(RID p_sky, RID p_material) {
  209. Sky *sky = sky_owner.getornull(p_sky);
  210. ERR_FAIL_COND(!sky);
  211. sky->material = p_material;
  212. }
  213. void RasterizerSceneRD::_update_dirty_skys() {
  214. Sky *sky = dirty_sky_list;
  215. while (sky) {
  216. bool texture_set_dirty = false;
  217. //update sky configuration if texture is missing
  218. if (sky->radiance.is_null()) {
  219. int mipmaps = Image::get_image_required_mipmaps(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBAH) + 1;
  220. uint32_t w = sky->radiance_size, h = sky->radiance_size;
  221. int layers = roughness_layers;
  222. if (sky->mode == RS::SKY_MODE_REALTIME) {
  223. layers = 8;
  224. if (roughness_layers != 8) {
  225. WARN_PRINT("When using REALTIME skies, roughness_layers should be set to 8 in the project settings for best quality reflections");
  226. }
  227. }
  228. if (sky_use_cubemap_array) {
  229. //array (higher quality, 6 times more memory)
  230. RD::TextureFormat tf;
  231. tf.array_layers = layers * 6;
  232. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  233. tf.type = RD::TEXTURE_TYPE_CUBE_ARRAY;
  234. tf.mipmaps = mipmaps;
  235. tf.width = w;
  236. tf.height = h;
  237. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  238. sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView());
  239. _update_reflection_data(sky->reflection, sky->radiance_size, mipmaps, true, sky->radiance, 0, sky->mode == RS::SKY_MODE_REALTIME);
  240. } else {
  241. //regular cubemap, lower quality (aliasing, less memory)
  242. RD::TextureFormat tf;
  243. tf.array_layers = 6;
  244. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  245. tf.type = RD::TEXTURE_TYPE_CUBE;
  246. tf.mipmaps = MIN(mipmaps, layers);
  247. tf.width = w;
  248. tf.height = h;
  249. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  250. sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView());
  251. _update_reflection_data(sky->reflection, sky->radiance_size, MIN(mipmaps, layers), false, sky->radiance, 0, sky->mode == RS::SKY_MODE_REALTIME);
  252. }
  253. texture_set_dirty = true;
  254. }
  255. // Create subpass buffers if they havent been created already
  256. if (sky->half_res_pass.is_null() && !RD::get_singleton()->texture_is_valid(sky->half_res_pass) && sky->screen_size.x >= 4 && sky->screen_size.y >= 4) {
  257. RD::TextureFormat tformat;
  258. tformat.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  259. tformat.width = sky->screen_size.x / 2;
  260. tformat.height = sky->screen_size.y / 2;
  261. tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  262. tformat.type = RD::TEXTURE_TYPE_2D;
  263. sky->half_res_pass = RD::get_singleton()->texture_create(tformat, RD::TextureView());
  264. Vector<RID> texs;
  265. texs.push_back(sky->half_res_pass);
  266. sky->half_res_framebuffer = RD::get_singleton()->framebuffer_create(texs);
  267. texture_set_dirty = true;
  268. }
  269. if (sky->quarter_res_pass.is_null() && !RD::get_singleton()->texture_is_valid(sky->quarter_res_pass) && sky->screen_size.x >= 4 && sky->screen_size.y >= 4) {
  270. RD::TextureFormat tformat;
  271. tformat.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  272. tformat.width = sky->screen_size.x / 4;
  273. tformat.height = sky->screen_size.y / 4;
  274. tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  275. tformat.type = RD::TEXTURE_TYPE_2D;
  276. sky->quarter_res_pass = RD::get_singleton()->texture_create(tformat, RD::TextureView());
  277. Vector<RID> texs;
  278. texs.push_back(sky->quarter_res_pass);
  279. sky->quarter_res_framebuffer = RD::get_singleton()->framebuffer_create(texs);
  280. texture_set_dirty = true;
  281. }
  282. if (texture_set_dirty) {
  283. for (int i = 0; i < SKY_TEXTURE_SET_MAX; i++) {
  284. if (sky->texture_uniform_sets[i].is_valid() && RD::get_singleton()->uniform_set_is_valid(sky->texture_uniform_sets[i])) {
  285. RD::get_singleton()->free(sky->texture_uniform_sets[i]);
  286. sky->texture_uniform_sets[i] = RID();
  287. }
  288. }
  289. }
  290. sky->reflection.dirty = true;
  291. Sky *next = sky->dirty_list;
  292. sky->dirty_list = nullptr;
  293. sky->dirty = false;
  294. sky = next;
  295. }
  296. dirty_sky_list = nullptr;
  297. }
  298. RID RasterizerSceneRD::sky_get_radiance_texture_rd(RID p_sky) const {
  299. Sky *sky = sky_owner.getornull(p_sky);
  300. ERR_FAIL_COND_V(!sky, RID());
  301. return sky->radiance;
  302. }
  303. RID RasterizerSceneRD::sky_get_radiance_uniform_set_rd(RID p_sky, RID p_shader, int p_set) const {
  304. Sky *sky = sky_owner.getornull(p_sky);
  305. ERR_FAIL_COND_V(!sky, RID());
  306. if (sky->uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(sky->uniform_set)) {
  307. sky->uniform_set = RID();
  308. if (sky->radiance.is_valid()) {
  309. Vector<RD::Uniform> uniforms;
  310. {
  311. RD::Uniform u;
  312. u.type = RD::UNIFORM_TYPE_TEXTURE;
  313. u.binding = 0;
  314. u.ids.push_back(sky->radiance);
  315. uniforms.push_back(u);
  316. }
  317. sky->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_set);
  318. }
  319. }
  320. return sky->uniform_set;
  321. }
  322. RID RasterizerSceneRD::_get_sky_textures(Sky *p_sky, SkyTextureSetVersion p_version) {
  323. if (p_sky->texture_uniform_sets[p_version].is_valid() && RD::get_singleton()->uniform_set_is_valid(p_sky->texture_uniform_sets[p_version])) {
  324. return p_sky->texture_uniform_sets[p_version];
  325. }
  326. Vector<RD::Uniform> uniforms;
  327. {
  328. RD::Uniform u;
  329. u.type = RD::UNIFORM_TYPE_TEXTURE;
  330. u.binding = 0;
  331. if (p_sky->radiance.is_valid() && p_version <= SKY_TEXTURE_SET_QUARTER_RES) {
  332. u.ids.push_back(p_sky->radiance);
  333. } else {
  334. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
  335. }
  336. uniforms.push_back(u);
  337. }
  338. {
  339. RD::Uniform u;
  340. u.type = RD::UNIFORM_TYPE_TEXTURE;
  341. u.binding = 1; // half res
  342. if (p_sky->half_res_pass.is_valid() && p_version != SKY_TEXTURE_SET_HALF_RES && p_version != SKY_TEXTURE_SET_CUBEMAP_HALF_RES) {
  343. if (p_version >= SKY_TEXTURE_SET_CUBEMAP) {
  344. u.ids.push_back(p_sky->reflection.layers[0].views[1]);
  345. } else {
  346. u.ids.push_back(p_sky->half_res_pass);
  347. }
  348. } else {
  349. if (p_version < SKY_TEXTURE_SET_CUBEMAP) {
  350. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE));
  351. } else {
  352. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
  353. }
  354. }
  355. uniforms.push_back(u);
  356. }
  357. {
  358. RD::Uniform u;
  359. u.type = RD::UNIFORM_TYPE_TEXTURE;
  360. u.binding = 2; // quarter res
  361. if (p_sky->quarter_res_pass.is_valid() && p_version != SKY_TEXTURE_SET_QUARTER_RES && p_version != SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES) {
  362. if (p_version >= SKY_TEXTURE_SET_CUBEMAP) {
  363. u.ids.push_back(p_sky->reflection.layers[0].views[2]);
  364. } else {
  365. u.ids.push_back(p_sky->quarter_res_pass);
  366. }
  367. } else {
  368. if (p_version < SKY_TEXTURE_SET_CUBEMAP) {
  369. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE));
  370. } else {
  371. u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
  372. }
  373. }
  374. uniforms.push_back(u);
  375. }
  376. p_sky->texture_uniform_sets[p_version] = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_TEXTURES);
  377. return p_sky->texture_uniform_sets[p_version];
  378. }
  379. RID RasterizerSceneRD::sky_get_material(RID p_sky) const {
  380. Sky *sky = sky_owner.getornull(p_sky);
  381. ERR_FAIL_COND_V(!sky, RID());
  382. return sky->material;
  383. }
  384. void RasterizerSceneRD::_draw_sky(bool p_can_continue_color, bool p_can_continue_depth, RID p_fb, RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform) {
  385. ERR_FAIL_COND(!is_environment(p_environment));
  386. Sky *sky = sky_owner.getornull(environment_get_sky(p_environment));
  387. ERR_FAIL_COND(!sky);
  388. RID sky_material = sky_get_material(environment_get_sky(p_environment));
  389. SkyMaterialData *material = nullptr;
  390. if (sky_material.is_valid()) {
  391. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  392. if (!material || !material->shader_data->valid) {
  393. material = nullptr;
  394. }
  395. }
  396. if (!material) {
  397. sky_material = sky_shader.default_material;
  398. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  399. }
  400. ERR_FAIL_COND(!material);
  401. SkyShaderData *shader_data = material->shader_data;
  402. ERR_FAIL_COND(!shader_data);
  403. Basis sky_transform = environment_get_sky_orientation(p_environment);
  404. sky_transform.invert();
  405. float multiplier = environment_get_bg_energy(p_environment);
  406. float custom_fov = environment_get_sky_custom_fov(p_environment);
  407. // Camera
  408. CameraMatrix camera;
  409. if (custom_fov) {
  410. float near_plane = p_projection.get_z_near();
  411. float far_plane = p_projection.get_z_far();
  412. float aspect = p_projection.get_aspect();
  413. camera.set_perspective(custom_fov, aspect, near_plane, far_plane);
  414. } else {
  415. camera = p_projection;
  416. }
  417. sky_transform = p_transform.basis * sky_transform;
  418. if (shader_data->uses_quarter_res) {
  419. RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_QUARTER_RES];
  420. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_QUARTER_RES);
  421. Vector<Color> clear_colors;
  422. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  423. RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(sky->quarter_res_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors);
  424. storage->get_effects()->render_sky(draw_list, time, sky->quarter_res_framebuffer, sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin);
  425. RD::get_singleton()->draw_list_end();
  426. }
  427. if (shader_data->uses_half_res) {
  428. RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_HALF_RES];
  429. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_HALF_RES);
  430. Vector<Color> clear_colors;
  431. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  432. RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(sky->half_res_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors);
  433. storage->get_effects()->render_sky(draw_list, time, sky->half_res_framebuffer, sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin);
  434. RD::get_singleton()->draw_list_end();
  435. }
  436. RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_BACKGROUND];
  437. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_BACKGROUND);
  438. RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_fb, RD::INITIAL_ACTION_CONTINUE, p_can_continue_color ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CONTINUE, p_can_continue_depth ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ);
  439. storage->get_effects()->render_sky(draw_list, time, p_fb, sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin);
  440. RD::get_singleton()->draw_list_end();
  441. }
  442. void RasterizerSceneRD::_setup_sky(RID p_environment, const Vector3 &p_position, const Size2i p_screen_size) {
  443. ERR_FAIL_COND(!is_environment(p_environment));
  444. Sky *sky = sky_owner.getornull(environment_get_sky(p_environment));
  445. ERR_FAIL_COND(!sky);
  446. RID sky_material = sky_get_material(environment_get_sky(p_environment));
  447. SkyMaterialData *material = nullptr;
  448. if (sky_material.is_valid()) {
  449. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  450. if (!material || !material->shader_data->valid) {
  451. material = nullptr;
  452. }
  453. }
  454. if (!material) {
  455. sky_material = sky_shader.default_material;
  456. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  457. }
  458. ERR_FAIL_COND(!material);
  459. SkyShaderData *shader_data = material->shader_data;
  460. ERR_FAIL_COND(!shader_data);
  461. // Invalidate supbass buffers if screen size changes
  462. if (sky->screen_size != p_screen_size) {
  463. sky->screen_size = p_screen_size;
  464. sky->screen_size.x = sky->screen_size.x < 4 ? 4 : sky->screen_size.x;
  465. sky->screen_size.y = sky->screen_size.y < 4 ? 4 : sky->screen_size.y;
  466. if (shader_data->uses_half_res) {
  467. if (sky->half_res_pass.is_valid()) {
  468. RD::get_singleton()->free(sky->half_res_pass);
  469. sky->half_res_pass = RID();
  470. }
  471. _sky_invalidate(sky);
  472. }
  473. if (shader_data->uses_quarter_res) {
  474. if (sky->quarter_res_pass.is_valid()) {
  475. RD::get_singleton()->free(sky->quarter_res_pass);
  476. sky->quarter_res_pass = RID();
  477. }
  478. _sky_invalidate(sky);
  479. }
  480. }
  481. // Create new subpass buffers if necessary
  482. if ((shader_data->uses_half_res && sky->half_res_pass.is_null()) ||
  483. (shader_data->uses_quarter_res && sky->quarter_res_pass.is_null()) ||
  484. sky->radiance.is_null()) {
  485. _sky_invalidate(sky);
  486. _update_dirty_skys();
  487. }
  488. if (shader_data->uses_time && time - sky->prev_time > 0.00001) {
  489. sky->prev_time = time;
  490. sky->reflection.dirty = true;
  491. RenderingServerRaster::redraw_request();
  492. }
  493. if (material != sky->prev_material) {
  494. sky->prev_material = material;
  495. sky->reflection.dirty = true;
  496. }
  497. if (material->uniform_set_updated) {
  498. material->uniform_set_updated = false;
  499. sky->reflection.dirty = true;
  500. }
  501. if (!p_position.is_equal_approx(sky->prev_position) && shader_data->uses_position) {
  502. sky->prev_position = p_position;
  503. sky->reflection.dirty = true;
  504. }
  505. if (shader_data->uses_light || sky_scene_state.light_uniform_set.is_null()) {
  506. // Check whether the directional_light_buffer changes
  507. bool light_data_dirty = false;
  508. if (sky_scene_state.directional_light_count != sky_scene_state.last_frame_directional_light_count) {
  509. light_data_dirty = true;
  510. for (uint32_t i = sky_scene_state.directional_light_count; i < sky_scene_state.max_directional_lights; i++) {
  511. sky_scene_state.directional_lights[i].enabled = false;
  512. }
  513. }
  514. if (!light_data_dirty) {
  515. for (uint32_t i = 0; i < sky_scene_state.directional_light_count; i++) {
  516. if (sky_scene_state.directional_lights[i].direction[0] != sky_scene_state.last_frame_directional_lights[i].direction[0] ||
  517. sky_scene_state.directional_lights[i].direction[1] != sky_scene_state.last_frame_directional_lights[i].direction[1] ||
  518. sky_scene_state.directional_lights[i].direction[2] != sky_scene_state.last_frame_directional_lights[i].direction[2] ||
  519. sky_scene_state.directional_lights[i].energy != sky_scene_state.last_frame_directional_lights[i].energy ||
  520. sky_scene_state.directional_lights[i].color[0] != sky_scene_state.last_frame_directional_lights[i].color[0] ||
  521. sky_scene_state.directional_lights[i].color[1] != sky_scene_state.last_frame_directional_lights[i].color[1] ||
  522. sky_scene_state.directional_lights[i].color[2] != sky_scene_state.last_frame_directional_lights[i].color[2] ||
  523. sky_scene_state.directional_lights[i].enabled != sky_scene_state.last_frame_directional_lights[i].enabled) {
  524. light_data_dirty = true;
  525. break;
  526. }
  527. }
  528. }
  529. if (light_data_dirty || sky_scene_state.light_uniform_set.is_null()) {
  530. RD::get_singleton()->buffer_update(sky_scene_state.directional_light_buffer, 0, sizeof(SkyDirectionalLightData) * sky_scene_state.max_directional_lights, sky_scene_state.directional_lights, true);
  531. if (sky_scene_state.light_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_scene_state.light_uniform_set)) {
  532. RD::get_singleton()->free(sky_scene_state.light_uniform_set);
  533. }
  534. Vector<RD::Uniform> uniforms;
  535. {
  536. RD::Uniform u;
  537. u.binding = 0;
  538. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  539. u.ids.push_back(sky_scene_state.directional_light_buffer);
  540. uniforms.push_back(u);
  541. }
  542. sky_scene_state.light_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_LIGHTS);
  543. RasterizerSceneRD::SkyDirectionalLightData *temp = sky_scene_state.last_frame_directional_lights;
  544. sky_scene_state.last_frame_directional_lights = sky_scene_state.directional_lights;
  545. sky_scene_state.directional_lights = temp;
  546. sky_scene_state.last_frame_directional_light_count = sky_scene_state.directional_light_count;
  547. sky->reflection.dirty = true;
  548. }
  549. }
  550. }
  551. void RasterizerSceneRD::_update_sky(RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform) {
  552. ERR_FAIL_COND(!is_environment(p_environment));
  553. Sky *sky = sky_owner.getornull(environment_get_sky(p_environment));
  554. ERR_FAIL_COND(!sky);
  555. RID sky_material = sky_get_material(environment_get_sky(p_environment));
  556. SkyMaterialData *material = nullptr;
  557. if (sky_material.is_valid()) {
  558. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  559. if (!material || !material->shader_data->valid) {
  560. material = nullptr;
  561. }
  562. }
  563. if (!material) {
  564. sky_material = sky_shader.default_material;
  565. material = (SkyMaterialData *)storage->material_get_data(sky_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  566. }
  567. ERR_FAIL_COND(!material);
  568. SkyShaderData *shader_data = material->shader_data;
  569. ERR_FAIL_COND(!shader_data);
  570. float multiplier = environment_get_bg_energy(p_environment);
  571. // Update radiance cubemap
  572. if (sky->reflection.dirty) {
  573. static const Vector3 view_normals[6] = {
  574. Vector3(+1, 0, 0),
  575. Vector3(-1, 0, 0),
  576. Vector3(0, +1, 0),
  577. Vector3(0, -1, 0),
  578. Vector3(0, 0, +1),
  579. Vector3(0, 0, -1)
  580. };
  581. static const Vector3 view_up[6] = {
  582. Vector3(0, -1, 0),
  583. Vector3(0, -1, 0),
  584. Vector3(0, 0, +1),
  585. Vector3(0, 0, -1),
  586. Vector3(0, -1, 0),
  587. Vector3(0, -1, 0)
  588. };
  589. CameraMatrix cm;
  590. cm.set_perspective(90, 1, 0.01, 10.0);
  591. CameraMatrix correction;
  592. correction.set_depth_correction(true);
  593. cm = correction * cm;
  594. if (shader_data->uses_quarter_res) {
  595. RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP_QUARTER_RES];
  596. Vector<Color> clear_colors;
  597. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  598. RD::DrawListID cubemap_draw_list;
  599. for (int i = 0; i < 6; i++) {
  600. Transform local_view;
  601. local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]);
  602. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES);
  603. cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[2].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD);
  604. storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[2].framebuffers[i], sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin);
  605. RD::get_singleton()->draw_list_end();
  606. }
  607. }
  608. if (shader_data->uses_half_res) {
  609. RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP_HALF_RES];
  610. Vector<Color> clear_colors;
  611. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  612. RD::DrawListID cubemap_draw_list;
  613. for (int i = 0; i < 6; i++) {
  614. Transform local_view;
  615. local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]);
  616. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP_HALF_RES);
  617. cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[1].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD);
  618. storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[1].framebuffers[i], sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin);
  619. RD::get_singleton()->draw_list_end();
  620. }
  621. }
  622. RD::DrawListID cubemap_draw_list;
  623. RenderPipelineVertexFormatCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP];
  624. for (int i = 0; i < 6; i++) {
  625. Transform local_view;
  626. local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]);
  627. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP);
  628. cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[0].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD);
  629. storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[0].framebuffers[i], sky_scene_state.sampler_uniform_set, sky_scene_state.light_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin);
  630. RD::get_singleton()->draw_list_end();
  631. }
  632. if (sky_use_cubemap_array) {
  633. if (sky->mode == RS::SKY_MODE_QUALITY) {
  634. for (int i = 1; i < sky->reflection.layers.size(); i++) {
  635. _create_reflection_importance_sample(sky->reflection, sky_use_cubemap_array, 10, i);
  636. }
  637. } else {
  638. _create_reflection_fast_filter(sky->reflection, sky_use_cubemap_array);
  639. }
  640. _update_reflection_mipmaps(sky->reflection);
  641. } else {
  642. if (sky->mode == RS::SKY_MODE_QUALITY) {
  643. for (int i = 1; i < sky->reflection.layers[0].mipmaps.size(); i++) {
  644. _create_reflection_importance_sample(sky->reflection, sky_use_cubemap_array, 10, i);
  645. }
  646. } else {
  647. _create_reflection_fast_filter(sky->reflection, sky_use_cubemap_array);
  648. }
  649. }
  650. sky->reflection.dirty = false;
  651. }
  652. }
  653. /* SKY SHADER */
  654. void RasterizerSceneRD::SkyShaderData::set_code(const String &p_code) {
  655. //compile
  656. code = p_code;
  657. valid = false;
  658. ubo_size = 0;
  659. uniforms.clear();
  660. if (code == String()) {
  661. return; //just invalid, but no error
  662. }
  663. ShaderCompilerRD::GeneratedCode gen_code;
  664. ShaderCompilerRD::IdentifierActions actions;
  665. uses_time = false;
  666. uses_half_res = false;
  667. uses_quarter_res = false;
  668. uses_position = false;
  669. uses_light = false;
  670. actions.render_mode_flags["use_half_res_pass"] = &uses_half_res;
  671. actions.render_mode_flags["use_quarter_res_pass"] = &uses_quarter_res;
  672. actions.usage_flag_pointers["TIME"] = &uses_time;
  673. actions.usage_flag_pointers["POSITION"] = &uses_position;
  674. actions.usage_flag_pointers["LIGHT0_ENABLED"] = &uses_light;
  675. actions.usage_flag_pointers["LIGHT0_ENERGY"] = &uses_light;
  676. actions.usage_flag_pointers["LIGHT0_DIRECTION"] = &uses_light;
  677. actions.usage_flag_pointers["LIGHT0_COLOR"] = &uses_light;
  678. actions.usage_flag_pointers["LIGHT1_ENABLED"] = &uses_light;
  679. actions.usage_flag_pointers["LIGHT1_ENERGY"] = &uses_light;
  680. actions.usage_flag_pointers["LIGHT1_DIRECTION"] = &uses_light;
  681. actions.usage_flag_pointers["LIGHT1_COLOR"] = &uses_light;
  682. actions.usage_flag_pointers["LIGHT2_ENABLED"] = &uses_light;
  683. actions.usage_flag_pointers["LIGHT2_ENERGY"] = &uses_light;
  684. actions.usage_flag_pointers["LIGHT2_DIRECTION"] = &uses_light;
  685. actions.usage_flag_pointers["LIGHT2_COLOR"] = &uses_light;
  686. actions.usage_flag_pointers["LIGHT3_ENABLED"] = &uses_light;
  687. actions.usage_flag_pointers["LIGHT3_ENERGY"] = &uses_light;
  688. actions.usage_flag_pointers["LIGHT3_DIRECTION"] = &uses_light;
  689. actions.usage_flag_pointers["LIGHT3_COLOR"] = &uses_light;
  690. actions.uniforms = &uniforms;
  691. RasterizerSceneRD *scene_singleton = (RasterizerSceneRD *)RasterizerSceneRD::singleton;
  692. Error err = scene_singleton->sky_shader.compiler.compile(RS::SHADER_SKY, code, &actions, path, gen_code);
  693. ERR_FAIL_COND(err != OK);
  694. if (version.is_null()) {
  695. version = scene_singleton->sky_shader.shader.version_create();
  696. }
  697. #if 0
  698. print_line("**compiling shader:");
  699. print_line("**defines:\n");
  700. for (int i = 0; i < gen_code.defines.size(); i++) {
  701. print_line(gen_code.defines[i]);
  702. }
  703. print_line("\n**uniforms:\n" + gen_code.uniforms);
  704. // print_line("\n**vertex_globals:\n" + gen_code.vertex_global);
  705. // print_line("\n**vertex_code:\n" + gen_code.vertex);
  706. print_line("\n**fragment_globals:\n" + gen_code.fragment_global);
  707. print_line("\n**fragment_code:\n" + gen_code.fragment);
  708. print_line("\n**light_code:\n" + gen_code.light);
  709. #endif
  710. scene_singleton->sky_shader.shader.version_set_code(version, gen_code.uniforms, gen_code.vertex_global, gen_code.vertex, gen_code.fragment_global, gen_code.light, gen_code.fragment, gen_code.defines);
  711. ERR_FAIL_COND(!scene_singleton->sky_shader.shader.version_is_valid(version));
  712. ubo_size = gen_code.uniform_total_size;
  713. ubo_offsets = gen_code.uniform_offsets;
  714. texture_uniforms = gen_code.texture_uniforms;
  715. //update pipelines
  716. for (int i = 0; i < SKY_VERSION_MAX; i++) {
  717. RD::PipelineDepthStencilState depth_stencil_state;
  718. depth_stencil_state.enable_depth_test = true;
  719. depth_stencil_state.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL;
  720. RID shader_variant = scene_singleton->sky_shader.shader.version_get_shader(version, i);
  721. pipelines[i].setup(shader_variant, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), depth_stencil_state, RD::PipelineColorBlendState::create_disabled(), 0);
  722. }
  723. valid = true;
  724. }
  725. void RasterizerSceneRD::SkyShaderData::set_default_texture_param(const StringName &p_name, RID p_texture) {
  726. if (!p_texture.is_valid()) {
  727. default_texture_params.erase(p_name);
  728. } else {
  729. default_texture_params[p_name] = p_texture;
  730. }
  731. }
  732. void RasterizerSceneRD::SkyShaderData::get_param_list(List<PropertyInfo> *p_param_list) const {
  733. Map<int, StringName> order;
  734. for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = uniforms.front(); E; E = E->next()) {
  735. if (E->get().texture_order >= 0) {
  736. order[E->get().texture_order + 100000] = E->key();
  737. } else {
  738. order[E->get().order] = E->key();
  739. }
  740. }
  741. for (Map<int, StringName>::Element *E = order.front(); E; E = E->next()) {
  742. PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniforms[E->get()]);
  743. pi.name = E->get();
  744. p_param_list->push_back(pi);
  745. }
  746. }
  747. bool RasterizerSceneRD::SkyShaderData::is_param_texture(const StringName &p_param) const {
  748. if (!uniforms.has(p_param)) {
  749. return false;
  750. }
  751. return uniforms[p_param].texture_order >= 0;
  752. }
  753. bool RasterizerSceneRD::SkyShaderData::is_animated() const {
  754. return false;
  755. }
  756. bool RasterizerSceneRD::SkyShaderData::casts_shadows() const {
  757. return false;
  758. }
  759. Variant RasterizerSceneRD::SkyShaderData::get_default_parameter(const StringName &p_parameter) const {
  760. if (uniforms.has(p_parameter)) {
  761. ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter];
  762. Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value;
  763. return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint);
  764. }
  765. return Variant();
  766. }
  767. RasterizerSceneRD::SkyShaderData::SkyShaderData() {
  768. valid = false;
  769. }
  770. RasterizerSceneRD::SkyShaderData::~SkyShaderData() {
  771. RasterizerSceneRD *scene_singleton = (RasterizerSceneRD *)RasterizerSceneRD::singleton;
  772. ERR_FAIL_COND(!scene_singleton);
  773. //pipeline variants will clear themselves if shader is gone
  774. if (version.is_valid()) {
  775. scene_singleton->sky_shader.shader.version_free(version);
  776. }
  777. }
  778. RasterizerStorageRD::ShaderData *RasterizerSceneRD::_create_sky_shader_func() {
  779. SkyShaderData *shader_data = memnew(SkyShaderData);
  780. return shader_data;
  781. }
  782. void RasterizerSceneRD::SkyMaterialData::update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
  783. RasterizerSceneRD *scene_singleton = (RasterizerSceneRD *)RasterizerSceneRD::singleton;
  784. uniform_set_updated = true;
  785. if ((uint32_t)ubo_data.size() != shader_data->ubo_size) {
  786. p_uniform_dirty = true;
  787. if (uniform_buffer.is_valid()) {
  788. RD::get_singleton()->free(uniform_buffer);
  789. uniform_buffer = RID();
  790. }
  791. ubo_data.resize(shader_data->ubo_size);
  792. if (ubo_data.size()) {
  793. uniform_buffer = RD::get_singleton()->uniform_buffer_create(ubo_data.size());
  794. memset(ubo_data.ptrw(), 0, ubo_data.size()); //clear
  795. }
  796. //clear previous uniform set
  797. if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  798. RD::get_singleton()->free(uniform_set);
  799. uniform_set = RID();
  800. }
  801. }
  802. //check whether buffer changed
  803. if (p_uniform_dirty && ubo_data.size()) {
  804. update_uniform_buffer(shader_data->uniforms, shader_data->ubo_offsets.ptr(), p_parameters, ubo_data.ptrw(), ubo_data.size(), false);
  805. RD::get_singleton()->buffer_update(uniform_buffer, 0, ubo_data.size(), ubo_data.ptrw());
  806. }
  807. uint32_t tex_uniform_count = shader_data->texture_uniforms.size();
  808. if ((uint32_t)texture_cache.size() != tex_uniform_count) {
  809. texture_cache.resize(tex_uniform_count);
  810. p_textures_dirty = true;
  811. //clear previous uniform set
  812. if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  813. RD::get_singleton()->free(uniform_set);
  814. uniform_set = RID();
  815. }
  816. }
  817. if (p_textures_dirty && tex_uniform_count) {
  818. update_textures(p_parameters, shader_data->default_texture_params, shader_data->texture_uniforms, texture_cache.ptrw(), true);
  819. }
  820. if (shader_data->ubo_size == 0 && shader_data->texture_uniforms.size() == 0) {
  821. // This material does not require an uniform set, so don't create it.
  822. return;
  823. }
  824. if (!p_textures_dirty && uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  825. //no reason to update uniform set, only UBO (or nothing) was needed to update
  826. return;
  827. }
  828. Vector<RD::Uniform> uniforms;
  829. {
  830. if (shader_data->ubo_size) {
  831. RD::Uniform u;
  832. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  833. u.binding = 0;
  834. u.ids.push_back(uniform_buffer);
  835. uniforms.push_back(u);
  836. }
  837. const RID *textures = texture_cache.ptrw();
  838. for (uint32_t i = 0; i < tex_uniform_count; i++) {
  839. RD::Uniform u;
  840. u.type = RD::UNIFORM_TYPE_TEXTURE;
  841. u.binding = 1 + i;
  842. u.ids.push_back(textures[i]);
  843. uniforms.push_back(u);
  844. }
  845. }
  846. uniform_set = RD::get_singleton()->uniform_set_create(uniforms, scene_singleton->sky_shader.shader.version_get_shader(shader_data->version, 0), SKY_SET_MATERIAL);
  847. }
  848. RasterizerSceneRD::SkyMaterialData::~SkyMaterialData() {
  849. if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  850. RD::get_singleton()->free(uniform_set);
  851. }
  852. if (uniform_buffer.is_valid()) {
  853. RD::get_singleton()->free(uniform_buffer);
  854. }
  855. }
  856. RasterizerStorageRD::MaterialData *RasterizerSceneRD::_create_sky_material_func(SkyShaderData *p_shader) {
  857. SkyMaterialData *material_data = memnew(SkyMaterialData);
  858. material_data->shader_data = p_shader;
  859. material_data->last_frame = false;
  860. //update will happen later anyway so do nothing.
  861. return material_data;
  862. }
  863. RID RasterizerSceneRD::environment_create() {
  864. return environment_owner.make_rid(Environent());
  865. }
  866. void RasterizerSceneRD::environment_set_background(RID p_env, RS::EnvironmentBG p_bg) {
  867. Environent *env = environment_owner.getornull(p_env);
  868. ERR_FAIL_COND(!env);
  869. env->background = p_bg;
  870. }
  871. void RasterizerSceneRD::environment_set_sky(RID p_env, RID p_sky) {
  872. Environent *env = environment_owner.getornull(p_env);
  873. ERR_FAIL_COND(!env);
  874. env->sky = p_sky;
  875. }
  876. void RasterizerSceneRD::environment_set_sky_custom_fov(RID p_env, float p_scale) {
  877. Environent *env = environment_owner.getornull(p_env);
  878. ERR_FAIL_COND(!env);
  879. env->sky_custom_fov = p_scale;
  880. }
  881. void RasterizerSceneRD::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) {
  882. Environent *env = environment_owner.getornull(p_env);
  883. ERR_FAIL_COND(!env);
  884. env->sky_orientation = p_orientation;
  885. }
  886. void RasterizerSceneRD::environment_set_bg_color(RID p_env, const Color &p_color) {
  887. Environent *env = environment_owner.getornull(p_env);
  888. ERR_FAIL_COND(!env);
  889. env->bg_color = p_color;
  890. }
  891. void RasterizerSceneRD::environment_set_bg_energy(RID p_env, float p_energy) {
  892. Environent *env = environment_owner.getornull(p_env);
  893. ERR_FAIL_COND(!env);
  894. env->bg_energy = p_energy;
  895. }
  896. void RasterizerSceneRD::environment_set_canvas_max_layer(RID p_env, int p_max_layer) {
  897. Environent *env = environment_owner.getornull(p_env);
  898. ERR_FAIL_COND(!env);
  899. env->canvas_max_layer = p_max_layer;
  900. }
  901. void RasterizerSceneRD::environment_set_ambient_light(RID p_env, const Color &p_color, RS::EnvironmentAmbientSource p_ambient, float p_energy, float p_sky_contribution, RS::EnvironmentReflectionSource p_reflection_source, const Color &p_ao_color) {
  902. Environent *env = environment_owner.getornull(p_env);
  903. ERR_FAIL_COND(!env);
  904. env->ambient_light = p_color;
  905. env->ambient_source = p_ambient;
  906. env->ambient_light_energy = p_energy;
  907. env->ambient_sky_contribution = p_sky_contribution;
  908. env->reflection_source = p_reflection_source;
  909. env->ao_color = p_ao_color;
  910. }
  911. RS::EnvironmentBG RasterizerSceneRD::environment_get_background(RID p_env) const {
  912. Environent *env = environment_owner.getornull(p_env);
  913. ERR_FAIL_COND_V(!env, RS::ENV_BG_MAX);
  914. return env->background;
  915. }
  916. RID RasterizerSceneRD::environment_get_sky(RID p_env) const {
  917. Environent *env = environment_owner.getornull(p_env);
  918. ERR_FAIL_COND_V(!env, RID());
  919. return env->sky;
  920. }
  921. float RasterizerSceneRD::environment_get_sky_custom_fov(RID p_env) const {
  922. Environent *env = environment_owner.getornull(p_env);
  923. ERR_FAIL_COND_V(!env, 0);
  924. return env->sky_custom_fov;
  925. }
  926. Basis RasterizerSceneRD::environment_get_sky_orientation(RID p_env) const {
  927. Environent *env = environment_owner.getornull(p_env);
  928. ERR_FAIL_COND_V(!env, Basis());
  929. return env->sky_orientation;
  930. }
  931. Color RasterizerSceneRD::environment_get_bg_color(RID p_env) const {
  932. Environent *env = environment_owner.getornull(p_env);
  933. ERR_FAIL_COND_V(!env, Color());
  934. return env->bg_color;
  935. }
  936. float RasterizerSceneRD::environment_get_bg_energy(RID p_env) const {
  937. Environent *env = environment_owner.getornull(p_env);
  938. ERR_FAIL_COND_V(!env, 0);
  939. return env->bg_energy;
  940. }
  941. int RasterizerSceneRD::environment_get_canvas_max_layer(RID p_env) const {
  942. Environent *env = environment_owner.getornull(p_env);
  943. ERR_FAIL_COND_V(!env, 0);
  944. return env->canvas_max_layer;
  945. }
  946. Color RasterizerSceneRD::environment_get_ambient_light_color(RID p_env) const {
  947. Environent *env = environment_owner.getornull(p_env);
  948. ERR_FAIL_COND_V(!env, Color());
  949. return env->ambient_light;
  950. }
  951. RS::EnvironmentAmbientSource RasterizerSceneRD::environment_get_ambient_light_ambient_source(RID p_env) const {
  952. Environent *env = environment_owner.getornull(p_env);
  953. ERR_FAIL_COND_V(!env, RS::ENV_AMBIENT_SOURCE_BG);
  954. return env->ambient_source;
  955. }
  956. float RasterizerSceneRD::environment_get_ambient_light_ambient_energy(RID p_env) const {
  957. Environent *env = environment_owner.getornull(p_env);
  958. ERR_FAIL_COND_V(!env, 0);
  959. return env->ambient_light_energy;
  960. }
  961. float RasterizerSceneRD::environment_get_ambient_sky_contribution(RID p_env) const {
  962. Environent *env = environment_owner.getornull(p_env);
  963. ERR_FAIL_COND_V(!env, 0);
  964. return env->ambient_sky_contribution;
  965. }
  966. RS::EnvironmentReflectionSource RasterizerSceneRD::environment_get_reflection_source(RID p_env) const {
  967. Environent *env = environment_owner.getornull(p_env);
  968. ERR_FAIL_COND_V(!env, RS::ENV_REFLECTION_SOURCE_DISABLED);
  969. return env->reflection_source;
  970. }
  971. Color RasterizerSceneRD::environment_get_ao_color(RID p_env) const {
  972. Environent *env = environment_owner.getornull(p_env);
  973. ERR_FAIL_COND_V(!env, Color());
  974. return env->ao_color;
  975. }
  976. void RasterizerSceneRD::environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) {
  977. Environent *env = environment_owner.getornull(p_env);
  978. ERR_FAIL_COND(!env);
  979. env->exposure = p_exposure;
  980. env->tone_mapper = p_tone_mapper;
  981. if (!env->auto_exposure && p_auto_exposure) {
  982. env->auto_exposure_version = ++auto_exposure_counter;
  983. }
  984. env->auto_exposure = p_auto_exposure;
  985. env->white = p_white;
  986. env->min_luminance = p_min_luminance;
  987. env->max_luminance = p_max_luminance;
  988. env->auto_exp_speed = p_auto_exp_speed;
  989. env->auto_exp_scale = p_auto_exp_scale;
  990. }
  991. void RasterizerSceneRD::environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap) {
  992. Environent *env = environment_owner.getornull(p_env);
  993. ERR_FAIL_COND(!env);
  994. env->glow_enabled = p_enable;
  995. env->glow_levels = p_level_flags;
  996. env->glow_intensity = p_intensity;
  997. env->glow_strength = p_strength;
  998. env->glow_mix = p_mix;
  999. env->glow_bloom = p_bloom_threshold;
  1000. env->glow_blend_mode = p_blend_mode;
  1001. env->glow_hdr_bleed_threshold = p_hdr_bleed_threshold;
  1002. env->glow_hdr_bleed_scale = p_hdr_bleed_scale;
  1003. env->glow_hdr_luminance_cap = p_hdr_luminance_cap;
  1004. }
  1005. void RasterizerSceneRD::environment_glow_set_use_bicubic_upscale(bool p_enable) {
  1006. glow_bicubic_upscale = p_enable;
  1007. }
  1008. void RasterizerSceneRD::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance) {
  1009. Environent *env = environment_owner.getornull(p_env);
  1010. ERR_FAIL_COND(!env);
  1011. env->ssr_enabled = p_enable;
  1012. env->ssr_max_steps = p_max_steps;
  1013. env->ssr_fade_in = p_fade_int;
  1014. env->ssr_fade_out = p_fade_out;
  1015. env->ssr_depth_tolerance = p_depth_tolerance;
  1016. }
  1017. void RasterizerSceneRD::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) {
  1018. ssr_roughness_quality = p_quality;
  1019. }
  1020. RS::EnvironmentSSRRoughnessQuality RasterizerSceneRD::environment_get_ssr_roughness_quality() const {
  1021. return ssr_roughness_quality;
  1022. }
  1023. void RasterizerSceneRD::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_bias, float p_light_affect, float p_ao_channel_affect, RS::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) {
  1024. Environent *env = environment_owner.getornull(p_env);
  1025. ERR_FAIL_COND(!env);
  1026. env->ssao_enabled = p_enable;
  1027. env->ssao_radius = p_radius;
  1028. env->ssao_intensity = p_intensity;
  1029. env->ssao_bias = p_bias;
  1030. env->ssao_direct_light_affect = p_light_affect;
  1031. env->ssao_ao_channel_affect = p_ao_channel_affect;
  1032. env->ssao_blur = p_blur;
  1033. }
  1034. void RasterizerSceneRD::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size) {
  1035. ssao_quality = p_quality;
  1036. ssao_half_size = p_half_size;
  1037. }
  1038. bool RasterizerSceneRD::environment_is_ssao_enabled(RID p_env) const {
  1039. Environent *env = environment_owner.getornull(p_env);
  1040. ERR_FAIL_COND_V(!env, false);
  1041. return env->ssao_enabled;
  1042. }
  1043. float RasterizerSceneRD::environment_get_ssao_ao_affect(RID p_env) const {
  1044. Environent *env = environment_owner.getornull(p_env);
  1045. ERR_FAIL_COND_V(!env, false);
  1046. return env->ssao_ao_channel_affect;
  1047. }
  1048. float RasterizerSceneRD::environment_get_ssao_light_affect(RID p_env) const {
  1049. Environent *env = environment_owner.getornull(p_env);
  1050. ERR_FAIL_COND_V(!env, false);
  1051. return env->ssao_direct_light_affect;
  1052. }
  1053. bool RasterizerSceneRD::environment_is_ssr_enabled(RID p_env) const {
  1054. Environent *env = environment_owner.getornull(p_env);
  1055. ERR_FAIL_COND_V(!env, false);
  1056. return env->ssr_enabled;
  1057. }
  1058. bool RasterizerSceneRD::is_environment(RID p_env) const {
  1059. return environment_owner.owns(p_env);
  1060. }
  1061. ////////////////////////////////////////////////////////////
  1062. RID RasterizerSceneRD::reflection_atlas_create() {
  1063. ReflectionAtlas ra;
  1064. ra.count = GLOBAL_GET("rendering/quality/reflection_atlas/reflection_count");
  1065. ra.size = GLOBAL_GET("rendering/quality/reflection_atlas/reflection_size");
  1066. return reflection_atlas_owner.make_rid(ra);
  1067. }
  1068. void RasterizerSceneRD::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) {
  1069. ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_ref_atlas);
  1070. ERR_FAIL_COND(!ra);
  1071. if (ra->size == p_reflection_size && ra->count == p_reflection_count) {
  1072. return; //no changes
  1073. }
  1074. ra->size = p_reflection_size;
  1075. ra->count = p_reflection_count;
  1076. if (ra->reflection.is_valid()) {
  1077. //clear and invalidate everything
  1078. RD::get_singleton()->free(ra->reflection);
  1079. ra->reflection = RID();
  1080. RD::get_singleton()->free(ra->depth_buffer);
  1081. ra->depth_buffer = RID();
  1082. for (int i = 0; i < ra->reflections.size(); i++) {
  1083. _clear_reflection_data(ra->reflections.write[i].data);
  1084. if (ra->reflections[i].owner.is_null()) {
  1085. continue;
  1086. }
  1087. reflection_probe_release_atlas_index(ra->reflections[i].owner);
  1088. //rp->atlasindex clear
  1089. }
  1090. ra->reflections.clear();
  1091. }
  1092. }
  1093. ////////////////////////
  1094. RID RasterizerSceneRD::reflection_probe_instance_create(RID p_probe) {
  1095. ReflectionProbeInstance rpi;
  1096. rpi.probe = p_probe;
  1097. return reflection_probe_instance_owner.make_rid(rpi);
  1098. }
  1099. void RasterizerSceneRD::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) {
  1100. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  1101. ERR_FAIL_COND(!rpi);
  1102. rpi->transform = p_transform;
  1103. rpi->dirty = true;
  1104. }
  1105. void RasterizerSceneRD::reflection_probe_release_atlas_index(RID p_instance) {
  1106. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  1107. ERR_FAIL_COND(!rpi);
  1108. if (rpi->atlas.is_null()) {
  1109. return; //nothing to release
  1110. }
  1111. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  1112. ERR_FAIL_COND(!atlas);
  1113. ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size());
  1114. atlas->reflections.write[rpi->atlas_index].owner = RID();
  1115. rpi->atlas_index = -1;
  1116. rpi->atlas = RID();
  1117. }
  1118. bool RasterizerSceneRD::reflection_probe_instance_needs_redraw(RID p_instance) {
  1119. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  1120. ERR_FAIL_COND_V(!rpi, false);
  1121. if (rpi->rendering) {
  1122. return false;
  1123. }
  1124. if (rpi->dirty) {
  1125. return true;
  1126. }
  1127. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
  1128. return true;
  1129. }
  1130. return rpi->atlas_index == -1;
  1131. }
  1132. bool RasterizerSceneRD::reflection_probe_instance_has_reflection(RID p_instance) {
  1133. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  1134. ERR_FAIL_COND_V(!rpi, false);
  1135. return rpi->atlas.is_valid();
  1136. }
  1137. bool RasterizerSceneRD::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
  1138. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(p_reflection_atlas);
  1139. ERR_FAIL_COND_V(!atlas, false);
  1140. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  1141. ERR_FAIL_COND_V(!rpi, false);
  1142. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->size != 256) {
  1143. WARN_PRINT("ReflectionProbes set to UPDATE_ALWAYS must have an atlas size of 256. Please update the atlas size in the ProjectSettings.");
  1144. reflection_atlas_set_size(p_reflection_atlas, 256, atlas->count);
  1145. }
  1146. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->reflections[0].data.layers[0].mipmaps.size() != 8) {
  1147. // Invalidate reflection atlas, need to regenerate
  1148. RD::get_singleton()->free(atlas->reflection);
  1149. atlas->reflection = RID();
  1150. for (int i = 0; i < atlas->reflections.size(); i++) {
  1151. if (atlas->reflections[i].owner.is_null()) {
  1152. continue;
  1153. }
  1154. reflection_probe_release_atlas_index(atlas->reflections[i].owner);
  1155. }
  1156. atlas->reflections.clear();
  1157. }
  1158. if (atlas->reflection.is_null()) {
  1159. int mipmaps = MIN(roughness_layers, Image::get_image_required_mipmaps(atlas->size, atlas->size, Image::FORMAT_RGBAH) + 1);
  1160. mipmaps = storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS ? 8 : mipmaps; // always use 8 mipmaps with real time filtering
  1161. {
  1162. //reflection atlas was unused, create:
  1163. RD::TextureFormat tf;
  1164. tf.array_layers = 6 * atlas->count;
  1165. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1166. tf.type = RD::TEXTURE_TYPE_CUBE_ARRAY;
  1167. tf.mipmaps = mipmaps;
  1168. tf.width = atlas->size;
  1169. tf.height = atlas->size;
  1170. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1171. atlas->reflection = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1172. }
  1173. {
  1174. RD::TextureFormat tf;
  1175. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  1176. tf.width = atlas->size;
  1177. tf.height = atlas->size;
  1178. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  1179. atlas->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1180. }
  1181. atlas->reflections.resize(atlas->count);
  1182. for (int i = 0; i < atlas->count; i++) {
  1183. _update_reflection_data(atlas->reflections.write[i].data, atlas->size, mipmaps, false, atlas->reflection, i * 6, storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS);
  1184. for (int j = 0; j < 6; j++) {
  1185. Vector<RID> fb;
  1186. fb.push_back(atlas->reflections.write[i].data.layers[0].mipmaps[0].views[j]);
  1187. fb.push_back(atlas->depth_buffer);
  1188. atlas->reflections.write[i].fbs[j] = RD::get_singleton()->framebuffer_create(fb);
  1189. }
  1190. }
  1191. Vector<RID> fb;
  1192. fb.push_back(atlas->depth_buffer);
  1193. atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb);
  1194. }
  1195. if (rpi->atlas_index == -1) {
  1196. for (int i = 0; i < atlas->reflections.size(); i++) {
  1197. if (atlas->reflections[i].owner.is_null()) {
  1198. rpi->atlas_index = i;
  1199. break;
  1200. }
  1201. }
  1202. //find the one used last
  1203. if (rpi->atlas_index == -1) {
  1204. //everything is in use, find the one least used via LRU
  1205. uint64_t pass_min = 0;
  1206. for (int i = 0; i < atlas->reflections.size(); i++) {
  1207. ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.getornull(atlas->reflections[i].owner);
  1208. if (rpi2->last_pass < pass_min) {
  1209. pass_min = rpi2->last_pass;
  1210. rpi->atlas_index = i;
  1211. }
  1212. }
  1213. }
  1214. }
  1215. rpi->atlas = p_reflection_atlas;
  1216. rpi->rendering = true;
  1217. rpi->dirty = false;
  1218. rpi->processing_layer = 1;
  1219. rpi->processing_side = 0;
  1220. return true;
  1221. }
  1222. bool RasterizerSceneRD::reflection_probe_instance_postprocess_step(RID p_instance) {
  1223. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  1224. ERR_FAIL_COND_V(!rpi, false);
  1225. ERR_FAIL_COND_V(!rpi->rendering, false);
  1226. ERR_FAIL_COND_V(rpi->atlas.is_null(), false);
  1227. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  1228. if (!atlas || rpi->atlas_index == -1) {
  1229. //does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering)
  1230. rpi->rendering = false;
  1231. return false;
  1232. }
  1233. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
  1234. // Using real time reflections, all roughness is done in one step
  1235. _create_reflection_fast_filter(atlas->reflections.write[rpi->atlas_index].data, false);
  1236. rpi->rendering = false;
  1237. rpi->processing_side = 0;
  1238. rpi->processing_layer = 1;
  1239. return true;
  1240. }
  1241. if (rpi->processing_layer > 1) {
  1242. _create_reflection_importance_sample(atlas->reflections.write[rpi->atlas_index].data, false, 10, rpi->processing_layer);
  1243. rpi->processing_layer++;
  1244. if (rpi->processing_layer == atlas->reflections[rpi->atlas_index].data.layers[0].mipmaps.size()) {
  1245. rpi->rendering = false;
  1246. rpi->processing_side = 0;
  1247. rpi->processing_layer = 1;
  1248. return true;
  1249. }
  1250. return false;
  1251. } else {
  1252. _create_reflection_importance_sample(atlas->reflections.write[rpi->atlas_index].data, false, rpi->processing_side, rpi->processing_layer);
  1253. }
  1254. rpi->processing_side++;
  1255. if (rpi->processing_side == 6) {
  1256. rpi->processing_side = 0;
  1257. rpi->processing_layer++;
  1258. }
  1259. return false;
  1260. }
  1261. uint32_t RasterizerSceneRD::reflection_probe_instance_get_resolution(RID p_instance) {
  1262. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  1263. ERR_FAIL_COND_V(!rpi, 0);
  1264. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  1265. ERR_FAIL_COND_V(!atlas, 0);
  1266. return atlas->size;
  1267. }
  1268. RID RasterizerSceneRD::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) {
  1269. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  1270. ERR_FAIL_COND_V(!rpi, RID());
  1271. ERR_FAIL_INDEX_V(p_index, 6, RID());
  1272. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  1273. ERR_FAIL_COND_V(!atlas, RID());
  1274. return atlas->reflections[rpi->atlas_index].fbs[p_index];
  1275. }
  1276. RID RasterizerSceneRD::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) {
  1277. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  1278. ERR_FAIL_COND_V(!rpi, RID());
  1279. ERR_FAIL_INDEX_V(p_index, 6, RID());
  1280. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  1281. ERR_FAIL_COND_V(!atlas, RID());
  1282. return atlas->depth_fb;
  1283. }
  1284. ///////////////////////////////////////////////////////////
  1285. RID RasterizerSceneRD::shadow_atlas_create() {
  1286. return shadow_atlas_owner.make_rid(ShadowAtlas());
  1287. }
  1288. void RasterizerSceneRD::shadow_atlas_set_size(RID p_atlas, int p_size) {
  1289. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  1290. ERR_FAIL_COND(!shadow_atlas);
  1291. ERR_FAIL_COND(p_size < 0);
  1292. p_size = next_power_of_2(p_size);
  1293. if (p_size == shadow_atlas->size)
  1294. return;
  1295. // erasing atlas
  1296. if (shadow_atlas->depth.is_valid()) {
  1297. RD::get_singleton()->free(shadow_atlas->depth);
  1298. shadow_atlas->depth = RID();
  1299. shadow_atlas->fb = RID();
  1300. }
  1301. for (int i = 0; i < 4; i++) {
  1302. //clear subdivisions
  1303. shadow_atlas->quadrants[i].shadows.resize(0);
  1304. shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision);
  1305. }
  1306. //erase shadow atlas reference from lights
  1307. for (Map<RID, uint32_t>::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) {
  1308. LightInstance *li = light_instance_owner.getornull(E->key());
  1309. ERR_CONTINUE(!li);
  1310. li->shadow_atlases.erase(p_atlas);
  1311. }
  1312. //clear owners
  1313. shadow_atlas->shadow_owners.clear();
  1314. shadow_atlas->size = p_size;
  1315. if (shadow_atlas->size) {
  1316. RD::TextureFormat tf;
  1317. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  1318. tf.width = shadow_atlas->size;
  1319. tf.height = shadow_atlas->size;
  1320. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  1321. shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1322. Vector<RID> fb;
  1323. fb.push_back(shadow_atlas->depth);
  1324. shadow_atlas->fb = RD::get_singleton()->framebuffer_create(fb);
  1325. }
  1326. }
  1327. void RasterizerSceneRD::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
  1328. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  1329. ERR_FAIL_COND(!shadow_atlas);
  1330. ERR_FAIL_INDEX(p_quadrant, 4);
  1331. ERR_FAIL_INDEX(p_subdivision, 16384);
  1332. uint32_t subdiv = next_power_of_2(p_subdivision);
  1333. if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer
  1334. subdiv <<= 1;
  1335. }
  1336. subdiv = int(Math::sqrt((float)subdiv));
  1337. //obtain the number that will be x*x
  1338. if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv)
  1339. return;
  1340. //erase all data from quadrant
  1341. for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
  1342. if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
  1343. shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  1344. LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  1345. ERR_CONTINUE(!li);
  1346. li->shadow_atlases.erase(p_atlas);
  1347. }
  1348. }
  1349. shadow_atlas->quadrants[p_quadrant].shadows.resize(0);
  1350. shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv);
  1351. shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;
  1352. //cache the smallest subdiv (for faster allocation in light update)
  1353. shadow_atlas->smallest_subdiv = 1 << 30;
  1354. for (int i = 0; i < 4; i++) {
  1355. if (shadow_atlas->quadrants[i].subdivision) {
  1356. shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
  1357. }
  1358. }
  1359. if (shadow_atlas->smallest_subdiv == 1 << 30) {
  1360. shadow_atlas->smallest_subdiv = 0;
  1361. }
  1362. //resort the size orders, simple bublesort for 4 elements..
  1363. int swaps = 0;
  1364. do {
  1365. swaps = 0;
  1366. for (int i = 0; i < 3; i++) {
  1367. if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
  1368. SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
  1369. swaps++;
  1370. }
  1371. }
  1372. } while (swaps > 0);
  1373. }
  1374. bool RasterizerSceneRD::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
  1375. for (int i = p_quadrant_count - 1; i >= 0; i--) {
  1376. int qidx = p_in_quadrants[i];
  1377. if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
  1378. return false;
  1379. }
  1380. //look for an empty space
  1381. int sc = shadow_atlas->quadrants[qidx].shadows.size();
  1382. ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw();
  1383. int found_free_idx = -1; //found a free one
  1384. int found_used_idx = -1; //found existing one, must steal it
  1385. uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion)
  1386. for (int j = 0; j < sc; j++) {
  1387. if (!sarr[j].owner.is_valid()) {
  1388. found_free_idx = j;
  1389. break;
  1390. }
  1391. LightInstance *sli = light_instance_owner.getornull(sarr[j].owner);
  1392. ERR_CONTINUE(!sli);
  1393. if (sli->last_scene_pass != scene_pass) {
  1394. //was just allocated, don't kill it so soon, wait a bit..
  1395. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec)
  1396. continue;
  1397. if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
  1398. found_used_idx = j;
  1399. min_pass = sli->last_scene_pass;
  1400. }
  1401. }
  1402. }
  1403. if (found_free_idx == -1 && found_used_idx == -1)
  1404. continue; //nothing found
  1405. if (found_free_idx == -1 && found_used_idx != -1) {
  1406. found_free_idx = found_used_idx;
  1407. }
  1408. r_quadrant = qidx;
  1409. r_shadow = found_free_idx;
  1410. return true;
  1411. }
  1412. return false;
  1413. }
  1414. bool RasterizerSceneRD::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) {
  1415. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  1416. ERR_FAIL_COND_V(!shadow_atlas, false);
  1417. LightInstance *li = light_instance_owner.getornull(p_light_intance);
  1418. ERR_FAIL_COND_V(!li, false);
  1419. if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
  1420. return false;
  1421. }
  1422. uint32_t quad_size = shadow_atlas->size >> 1;
  1423. int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));
  1424. int valid_quadrants[4];
  1425. int valid_quadrant_count = 0;
  1426. int best_size = -1; //best size found
  1427. int best_subdiv = -1; //subdiv for the best size
  1428. //find the quadrants this fits into, and the best possible size it can fit into
  1429. for (int i = 0; i < 4; i++) {
  1430. int q = shadow_atlas->size_order[i];
  1431. int sd = shadow_atlas->quadrants[q].subdivision;
  1432. if (sd == 0)
  1433. continue; //unused
  1434. int max_fit = quad_size / sd;
  1435. if (best_size != -1 && max_fit > best_size)
  1436. break; //too large
  1437. valid_quadrants[valid_quadrant_count++] = q;
  1438. best_subdiv = sd;
  1439. if (max_fit >= desired_fit) {
  1440. best_size = max_fit;
  1441. }
  1442. }
  1443. ERR_FAIL_COND_V(valid_quadrant_count == 0, false);
  1444. uint64_t tick = OS::get_singleton()->get_ticks_msec();
  1445. //see if it already exists
  1446. if (shadow_atlas->shadow_owners.has(p_light_intance)) {
  1447. //it does!
  1448. uint32_t key = shadow_atlas->shadow_owners[p_light_intance];
  1449. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  1450. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  1451. bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
  1452. bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version;
  1453. if (!should_realloc) {
  1454. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  1455. //already existing, see if it should redraw or it's just OK
  1456. return should_redraw;
  1457. }
  1458. int new_quadrant, new_shadow;
  1459. //find a better place
  1460. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) {
  1461. //found a better place!
  1462. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  1463. if (sh->owner.is_valid()) {
  1464. //is taken, but is invalid, erasing it
  1465. shadow_atlas->shadow_owners.erase(sh->owner);
  1466. LightInstance *sli = light_instance_owner.getornull(sh->owner);
  1467. sli->shadow_atlases.erase(p_atlas);
  1468. }
  1469. //erase previous
  1470. shadow_atlas->quadrants[q].shadows.write[s].version = 0;
  1471. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  1472. sh->owner = p_light_intance;
  1473. sh->alloc_tick = tick;
  1474. sh->version = p_light_version;
  1475. li->shadow_atlases.insert(p_atlas);
  1476. //make new key
  1477. key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  1478. key |= new_shadow;
  1479. //update it in map
  1480. shadow_atlas->shadow_owners[p_light_intance] = key;
  1481. //make it dirty, as it should redraw anyway
  1482. return true;
  1483. }
  1484. //no better place for this shadow found, keep current
  1485. //already existing, see if it should redraw or it's just OK
  1486. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  1487. return should_redraw;
  1488. }
  1489. int new_quadrant, new_shadow;
  1490. //find a better place
  1491. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) {
  1492. //found a better place!
  1493. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  1494. if (sh->owner.is_valid()) {
  1495. //is taken, but is invalid, erasing it
  1496. shadow_atlas->shadow_owners.erase(sh->owner);
  1497. LightInstance *sli = light_instance_owner.getornull(sh->owner);
  1498. sli->shadow_atlases.erase(p_atlas);
  1499. }
  1500. sh->owner = p_light_intance;
  1501. sh->alloc_tick = tick;
  1502. sh->version = p_light_version;
  1503. li->shadow_atlases.insert(p_atlas);
  1504. //make new key
  1505. uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  1506. key |= new_shadow;
  1507. //update it in map
  1508. shadow_atlas->shadow_owners[p_light_intance] = key;
  1509. //make it dirty, as it should redraw anyway
  1510. return true;
  1511. }
  1512. //no place to allocate this light, apologies
  1513. return false;
  1514. }
  1515. void RasterizerSceneRD::directional_shadow_atlas_set_size(int p_size) {
  1516. p_size = nearest_power_of_2_templated(p_size);
  1517. if (directional_shadow.size == p_size) {
  1518. return;
  1519. }
  1520. directional_shadow.size = p_size;
  1521. if (directional_shadow.depth.is_valid()) {
  1522. RD::get_singleton()->free(directional_shadow.depth);
  1523. directional_shadow.depth = RID();
  1524. directional_shadow.fb = RID();
  1525. }
  1526. if (p_size > 0) {
  1527. RD::TextureFormat tf;
  1528. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  1529. tf.width = p_size;
  1530. tf.height = p_size;
  1531. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  1532. directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1533. Vector<RID> fb;
  1534. fb.push_back(directional_shadow.depth);
  1535. directional_shadow.fb = RD::get_singleton()->framebuffer_create(fb);
  1536. }
  1537. _base_uniforms_changed();
  1538. }
  1539. void RasterizerSceneRD::set_directional_shadow_count(int p_count) {
  1540. directional_shadow.light_count = p_count;
  1541. directional_shadow.current_light = 0;
  1542. }
  1543. static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) {
  1544. int split_h = 1;
  1545. int split_v = 1;
  1546. while (split_h * split_v < p_shadow_count) {
  1547. if (split_h == split_v) {
  1548. split_h <<= 1;
  1549. } else {
  1550. split_v <<= 1;
  1551. }
  1552. }
  1553. Rect2i rect(0, 0, p_size, p_size);
  1554. rect.size.width /= split_h;
  1555. rect.size.height /= split_v;
  1556. rect.position.x = rect.size.width * (p_shadow_index % split_h);
  1557. rect.position.y = rect.size.height * (p_shadow_index / split_h);
  1558. return rect;
  1559. }
  1560. int RasterizerSceneRD::get_directional_light_shadow_size(RID p_light_intance) {
  1561. ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);
  1562. Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0);
  1563. LightInstance *light_instance = light_instance_owner.getornull(p_light_intance);
  1564. ERR_FAIL_COND_V(!light_instance, 0);
  1565. switch (storage->light_directional_get_shadow_mode(light_instance->light)) {
  1566. case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
  1567. break; //none
  1568. case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: r.size.height /= 2; break;
  1569. case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: r.size /= 2; break;
  1570. }
  1571. return MAX(r.size.width, r.size.height);
  1572. }
  1573. //////////////////////////////////////////////////
  1574. RID RasterizerSceneRD::camera_effects_create() {
  1575. return camera_effects_owner.make_rid(CameraEffects());
  1576. }
  1577. void RasterizerSceneRD::camera_effects_set_dof_blur_quality(RS::DOFBlurQuality p_quality, bool p_use_jitter) {
  1578. dof_blur_quality = p_quality;
  1579. dof_blur_use_jitter = p_use_jitter;
  1580. }
  1581. void RasterizerSceneRD::camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape p_shape) {
  1582. dof_blur_bokeh_shape = p_shape;
  1583. }
  1584. void RasterizerSceneRD::camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount) {
  1585. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  1586. ERR_FAIL_COND(!camfx);
  1587. camfx->dof_blur_far_enabled = p_far_enable;
  1588. camfx->dof_blur_far_distance = p_far_distance;
  1589. camfx->dof_blur_far_transition = p_far_transition;
  1590. camfx->dof_blur_near_enabled = p_near_enable;
  1591. camfx->dof_blur_near_distance = p_near_distance;
  1592. camfx->dof_blur_near_transition = p_near_transition;
  1593. camfx->dof_blur_amount = p_amount;
  1594. }
  1595. void RasterizerSceneRD::camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure) {
  1596. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  1597. ERR_FAIL_COND(!camfx);
  1598. camfx->override_exposure_enabled = p_enable;
  1599. camfx->override_exposure = p_exposure;
  1600. }
  1601. RID RasterizerSceneRD::light_instance_create(RID p_light) {
  1602. RID li = light_instance_owner.make_rid(LightInstance());
  1603. LightInstance *light_instance = light_instance_owner.getornull(li);
  1604. light_instance->self = li;
  1605. light_instance->light = p_light;
  1606. light_instance->light_type = storage->light_get_type(p_light);
  1607. return li;
  1608. }
  1609. void RasterizerSceneRD::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) {
  1610. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  1611. ERR_FAIL_COND(!light_instance);
  1612. light_instance->transform = p_transform;
  1613. }
  1614. void RasterizerSceneRD::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale) {
  1615. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  1616. ERR_FAIL_COND(!light_instance);
  1617. if (storage->light_get_type(light_instance->light) != RS::LIGHT_DIRECTIONAL) {
  1618. p_pass = 0;
  1619. }
  1620. ERR_FAIL_INDEX(p_pass, 4);
  1621. light_instance->shadow_transform[p_pass].camera = p_projection;
  1622. light_instance->shadow_transform[p_pass].transform = p_transform;
  1623. light_instance->shadow_transform[p_pass].farplane = p_far;
  1624. light_instance->shadow_transform[p_pass].split = p_split;
  1625. light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
  1626. light_instance->shadow_transform[p_pass].shadow_texel_size = p_shadow_texel_size;
  1627. }
  1628. void RasterizerSceneRD::light_instance_mark_visible(RID p_light_instance) {
  1629. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  1630. ERR_FAIL_COND(!light_instance);
  1631. light_instance->last_scene_pass = scene_pass;
  1632. }
  1633. RasterizerSceneRD::ShadowCubemap *RasterizerSceneRD::_get_shadow_cubemap(int p_size) {
  1634. if (!shadow_cubemaps.has(p_size)) {
  1635. ShadowCubemap sc;
  1636. {
  1637. RD::TextureFormat tf;
  1638. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  1639. tf.width = p_size;
  1640. tf.height = p_size;
  1641. tf.type = RD::TEXTURE_TYPE_CUBE;
  1642. tf.array_layers = 6;
  1643. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  1644. sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1645. }
  1646. for (int i = 0; i < 6; i++) {
  1647. RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0);
  1648. Vector<RID> fbtex;
  1649. fbtex.push_back(side_texture);
  1650. sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex);
  1651. }
  1652. shadow_cubemaps[p_size] = sc;
  1653. }
  1654. return &shadow_cubemaps[p_size];
  1655. }
  1656. RasterizerSceneRD::ShadowMap *RasterizerSceneRD::_get_shadow_map(const Size2i &p_size) {
  1657. if (!shadow_maps.has(p_size)) {
  1658. ShadowMap sm;
  1659. {
  1660. RD::TextureFormat tf;
  1661. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  1662. tf.width = p_size.width;
  1663. tf.height = p_size.height;
  1664. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  1665. sm.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1666. }
  1667. Vector<RID> fbtex;
  1668. fbtex.push_back(sm.depth);
  1669. sm.fb = RD::get_singleton()->framebuffer_create(fbtex);
  1670. shadow_maps[p_size] = sm;
  1671. }
  1672. return &shadow_maps[p_size];
  1673. }
  1674. /////////////////////////////////
  1675. RID RasterizerSceneRD::gi_probe_instance_create(RID p_base) {
  1676. //find a free slot
  1677. int index = -1;
  1678. for (int i = 0; i < gi_probe_slots.size(); i++) {
  1679. if (gi_probe_slots[i] == RID()) {
  1680. index = i;
  1681. break;
  1682. }
  1683. }
  1684. ERR_FAIL_COND_V(index == -1, RID());
  1685. GIProbeInstance gi_probe;
  1686. gi_probe.slot = index;
  1687. gi_probe.probe = p_base;
  1688. RID rid = gi_probe_instance_owner.make_rid(gi_probe);
  1689. gi_probe_slots.write[index] = rid;
  1690. return rid;
  1691. }
  1692. void RasterizerSceneRD::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) {
  1693. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
  1694. ERR_FAIL_COND(!gi_probe);
  1695. gi_probe->transform = p_xform;
  1696. }
  1697. bool RasterizerSceneRD::gi_probe_needs_update(RID p_probe) const {
  1698. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
  1699. ERR_FAIL_COND_V(!gi_probe, false);
  1700. //return true;
  1701. return gi_probe->last_probe_version != storage->gi_probe_get_version(gi_probe->probe);
  1702. }
  1703. void RasterizerSceneRD::gi_probe_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, int p_dynamic_object_count, InstanceBase **p_dynamic_objects) {
  1704. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
  1705. ERR_FAIL_COND(!gi_probe);
  1706. uint32_t data_version = storage->gi_probe_get_data_version(gi_probe->probe);
  1707. // (RE)CREATE IF NEEDED
  1708. if (gi_probe->last_probe_data_version != data_version) {
  1709. //need to re-create everything
  1710. if (gi_probe->texture.is_valid()) {
  1711. RD::get_singleton()->free(gi_probe->texture);
  1712. if (gi_probe_use_anisotropy) {
  1713. RD::get_singleton()->free(gi_probe->anisotropy_r16[0]);
  1714. RD::get_singleton()->free(gi_probe->anisotropy_r16[1]);
  1715. }
  1716. RD::get_singleton()->free(gi_probe->write_buffer);
  1717. gi_probe->mipmaps.clear();
  1718. }
  1719. for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) {
  1720. RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture);
  1721. RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth);
  1722. }
  1723. gi_probe->dynamic_maps.clear();
  1724. Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  1725. if (octree_size != Vector3i()) {
  1726. //can create a 3D texture
  1727. Vector<int> levels = storage->gi_probe_get_level_counts(gi_probe->probe);
  1728. RD::TextureFormat tf;
  1729. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  1730. tf.width = octree_size.x;
  1731. tf.height = octree_size.y;
  1732. tf.depth = octree_size.z;
  1733. tf.type = RD::TEXTURE_TYPE_3D;
  1734. tf.mipmaps = levels.size();
  1735. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  1736. gi_probe->texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1737. RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false);
  1738. if (gi_probe_use_anisotropy) {
  1739. tf.format = RD::DATA_FORMAT_R16_UINT;
  1740. tf.shareable_formats.push_back(RD::DATA_FORMAT_R16_UINT);
  1741. tf.shareable_formats.push_back(RD::DATA_FORMAT_R5G6B5_UNORM_PACK16);
  1742. //need to create R16 first, else driver does not like the storage bit for compute..
  1743. gi_probe->anisotropy_r16[0] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1744. gi_probe->anisotropy_r16[1] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1745. RD::TextureView tv;
  1746. tv.format_override = RD::DATA_FORMAT_R5G6B5_UNORM_PACK16;
  1747. gi_probe->anisotropy[0] = RD::get_singleton()->texture_create_shared(tv, gi_probe->anisotropy_r16[0]);
  1748. gi_probe->anisotropy[1] = RD::get_singleton()->texture_create_shared(tv, gi_probe->anisotropy_r16[1]);
  1749. RD::get_singleton()->texture_clear(gi_probe->anisotropy[0], Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false);
  1750. RD::get_singleton()->texture_clear(gi_probe->anisotropy[1], Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false);
  1751. }
  1752. {
  1753. int total_elements = 0;
  1754. for (int i = 0; i < levels.size(); i++) {
  1755. total_elements += levels[i];
  1756. }
  1757. if (gi_probe_use_anisotropy) {
  1758. total_elements *= 6;
  1759. }
  1760. gi_probe->write_buffer = RD::get_singleton()->storage_buffer_create(total_elements * 16);
  1761. }
  1762. for (int i = 0; i < levels.size(); i++) {
  1763. GIProbeInstance::Mipmap mipmap;
  1764. mipmap.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), gi_probe->texture, 0, i, RD::TEXTURE_SLICE_3D);
  1765. if (gi_probe_use_anisotropy) {
  1766. RD::TextureView tv;
  1767. tv.format_override = RD::DATA_FORMAT_R16_UINT;
  1768. mipmap.anisotropy[0] = RD::get_singleton()->texture_create_shared_from_slice(tv, gi_probe->anisotropy[0], 0, i, RD::TEXTURE_SLICE_3D);
  1769. mipmap.anisotropy[1] = RD::get_singleton()->texture_create_shared_from_slice(tv, gi_probe->anisotropy[1], 0, i, RD::TEXTURE_SLICE_3D);
  1770. }
  1771. mipmap.level = levels.size() - i - 1;
  1772. mipmap.cell_offset = 0;
  1773. for (uint32_t j = 0; j < mipmap.level; j++) {
  1774. mipmap.cell_offset += levels[j];
  1775. }
  1776. mipmap.cell_count = levels[mipmap.level];
  1777. Vector<RD::Uniform> uniforms;
  1778. {
  1779. RD::Uniform u;
  1780. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1781. u.binding = 1;
  1782. u.ids.push_back(storage->gi_probe_get_octree_buffer(gi_probe->probe));
  1783. uniforms.push_back(u);
  1784. }
  1785. {
  1786. RD::Uniform u;
  1787. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1788. u.binding = 2;
  1789. u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe));
  1790. uniforms.push_back(u);
  1791. }
  1792. {
  1793. RD::Uniform u;
  1794. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1795. u.binding = 4;
  1796. u.ids.push_back(gi_probe->write_buffer);
  1797. uniforms.push_back(u);
  1798. }
  1799. {
  1800. RD::Uniform u;
  1801. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1802. u.binding = 9;
  1803. u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe));
  1804. uniforms.push_back(u);
  1805. }
  1806. {
  1807. RD::Uniform u;
  1808. u.type = RD::UNIFORM_TYPE_SAMPLER;
  1809. u.binding = 10;
  1810. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1811. uniforms.push_back(u);
  1812. }
  1813. {
  1814. Vector<RD::Uniform> copy_uniforms = uniforms;
  1815. if (i == 0) {
  1816. {
  1817. RD::Uniform u;
  1818. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1819. u.binding = 3;
  1820. u.ids.push_back(gi_probe_lights_uniform);
  1821. copy_uniforms.push_back(u);
  1822. }
  1823. mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT], 0);
  1824. copy_uniforms = uniforms; //restore
  1825. {
  1826. RD::Uniform u;
  1827. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1828. u.binding = 5;
  1829. u.ids.push_back(gi_probe->texture);
  1830. copy_uniforms.push_back(u);
  1831. }
  1832. if (gi_probe_use_anisotropy) {
  1833. {
  1834. RD::Uniform u;
  1835. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1836. u.binding = 7;
  1837. u.ids.push_back(gi_probe->anisotropy[0]);
  1838. copy_uniforms.push_back(u);
  1839. }
  1840. {
  1841. RD::Uniform u;
  1842. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1843. u.binding = 8;
  1844. u.ids.push_back(gi_probe->anisotropy[1]);
  1845. copy_uniforms.push_back(u);
  1846. }
  1847. }
  1848. mipmap.second_bounce_uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE], 0);
  1849. } else {
  1850. mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP], 0);
  1851. }
  1852. }
  1853. {
  1854. RD::Uniform u;
  1855. u.type = RD::UNIFORM_TYPE_IMAGE;
  1856. u.binding = 5;
  1857. u.ids.push_back(mipmap.texture);
  1858. uniforms.push_back(u);
  1859. }
  1860. if (gi_probe_use_anisotropy) {
  1861. {
  1862. RD::Uniform u;
  1863. u.type = RD::UNIFORM_TYPE_IMAGE;
  1864. u.binding = 6;
  1865. u.ids.push_back(mipmap.anisotropy[0]);
  1866. uniforms.push_back(u);
  1867. }
  1868. {
  1869. RD::Uniform u;
  1870. u.type = RD::UNIFORM_TYPE_IMAGE;
  1871. u.binding = 7;
  1872. u.ids.push_back(mipmap.anisotropy[1]);
  1873. uniforms.push_back(u);
  1874. }
  1875. }
  1876. mipmap.write_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE], 0);
  1877. gi_probe->mipmaps.push_back(mipmap);
  1878. }
  1879. {
  1880. uint32_t dynamic_map_size = MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
  1881. uint32_t oversample = nearest_power_of_2_templated(4);
  1882. int mipmap_index = 0;
  1883. while (mipmap_index < gi_probe->mipmaps.size()) {
  1884. GIProbeInstance::DynamicMap dmap;
  1885. if (oversample > 0) {
  1886. dmap.size = dynamic_map_size * (1 << oversample);
  1887. dmap.mipmap = -1;
  1888. oversample--;
  1889. } else {
  1890. dmap.size = dynamic_map_size >> mipmap_index;
  1891. dmap.mipmap = mipmap_index;
  1892. mipmap_index++;
  1893. }
  1894. RD::TextureFormat dtf;
  1895. dtf.width = dmap.size;
  1896. dtf.height = dmap.size;
  1897. dtf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1898. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  1899. if (gi_probe->dynamic_maps.size() == 0) {
  1900. dtf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  1901. }
  1902. dmap.texture = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  1903. if (gi_probe->dynamic_maps.size() == 0) {
  1904. //render depth for first one
  1905. dtf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  1906. dtf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  1907. dmap.fb_depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  1908. }
  1909. //just use depth as-is
  1910. dtf.format = RD::DATA_FORMAT_R32_SFLOAT;
  1911. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  1912. dmap.depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  1913. if (gi_probe->dynamic_maps.size() == 0) {
  1914. dtf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  1915. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  1916. dmap.albedo = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  1917. dmap.normal = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  1918. dmap.orm = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  1919. Vector<RID> fb;
  1920. fb.push_back(dmap.albedo);
  1921. fb.push_back(dmap.normal);
  1922. fb.push_back(dmap.orm);
  1923. fb.push_back(dmap.texture); //emission
  1924. fb.push_back(dmap.depth);
  1925. fb.push_back(dmap.fb_depth);
  1926. dmap.fb = RD::get_singleton()->framebuffer_create(fb);
  1927. {
  1928. Vector<RD::Uniform> uniforms;
  1929. {
  1930. RD::Uniform u;
  1931. u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1932. u.binding = 3;
  1933. u.ids.push_back(gi_probe_lights_uniform);
  1934. uniforms.push_back(u);
  1935. }
  1936. {
  1937. RD::Uniform u;
  1938. u.type = RD::UNIFORM_TYPE_IMAGE;
  1939. u.binding = 5;
  1940. u.ids.push_back(dmap.albedo);
  1941. uniforms.push_back(u);
  1942. }
  1943. {
  1944. RD::Uniform u;
  1945. u.type = RD::UNIFORM_TYPE_IMAGE;
  1946. u.binding = 6;
  1947. u.ids.push_back(dmap.normal);
  1948. uniforms.push_back(u);
  1949. }
  1950. {
  1951. RD::Uniform u;
  1952. u.type = RD::UNIFORM_TYPE_IMAGE;
  1953. u.binding = 7;
  1954. u.ids.push_back(dmap.orm);
  1955. uniforms.push_back(u);
  1956. }
  1957. {
  1958. RD::Uniform u;
  1959. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1960. u.binding = 8;
  1961. u.ids.push_back(dmap.fb_depth);
  1962. uniforms.push_back(u);
  1963. }
  1964. {
  1965. RD::Uniform u;
  1966. u.type = RD::UNIFORM_TYPE_TEXTURE;
  1967. u.binding = 9;
  1968. u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe));
  1969. uniforms.push_back(u);
  1970. }
  1971. {
  1972. RD::Uniform u;
  1973. u.type = RD::UNIFORM_TYPE_SAMPLER;
  1974. u.binding = 10;
  1975. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1976. uniforms.push_back(u);
  1977. }
  1978. {
  1979. RD::Uniform u;
  1980. u.type = RD::UNIFORM_TYPE_IMAGE;
  1981. u.binding = 11;
  1982. u.ids.push_back(dmap.texture);
  1983. uniforms.push_back(u);
  1984. }
  1985. {
  1986. RD::Uniform u;
  1987. u.type = RD::UNIFORM_TYPE_IMAGE;
  1988. u.binding = 12;
  1989. u.ids.push_back(dmap.depth);
  1990. uniforms.push_back(u);
  1991. }
  1992. dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING], 0);
  1993. }
  1994. } else {
  1995. bool plot = dmap.mipmap >= 0;
  1996. bool write = dmap.mipmap < (gi_probe->mipmaps.size() - 1);
  1997. Vector<RD::Uniform> uniforms;
  1998. {
  1999. RD::Uniform u;
  2000. u.type = RD::UNIFORM_TYPE_IMAGE;
  2001. u.binding = 5;
  2002. u.ids.push_back(gi_probe->dynamic_maps[gi_probe->dynamic_maps.size() - 1].texture);
  2003. uniforms.push_back(u);
  2004. }
  2005. {
  2006. RD::Uniform u;
  2007. u.type = RD::UNIFORM_TYPE_IMAGE;
  2008. u.binding = 6;
  2009. u.ids.push_back(gi_probe->dynamic_maps[gi_probe->dynamic_maps.size() - 1].depth);
  2010. uniforms.push_back(u);
  2011. }
  2012. if (write) {
  2013. {
  2014. RD::Uniform u;
  2015. u.type = RD::UNIFORM_TYPE_IMAGE;
  2016. u.binding = 7;
  2017. u.ids.push_back(dmap.texture);
  2018. uniforms.push_back(u);
  2019. }
  2020. {
  2021. RD::Uniform u;
  2022. u.type = RD::UNIFORM_TYPE_IMAGE;
  2023. u.binding = 8;
  2024. u.ids.push_back(dmap.depth);
  2025. uniforms.push_back(u);
  2026. }
  2027. }
  2028. {
  2029. RD::Uniform u;
  2030. u.type = RD::UNIFORM_TYPE_TEXTURE;
  2031. u.binding = 9;
  2032. u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe));
  2033. uniforms.push_back(u);
  2034. }
  2035. {
  2036. RD::Uniform u;
  2037. u.type = RD::UNIFORM_TYPE_SAMPLER;
  2038. u.binding = 10;
  2039. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2040. uniforms.push_back(u);
  2041. }
  2042. if (plot) {
  2043. {
  2044. RD::Uniform u;
  2045. u.type = RD::UNIFORM_TYPE_IMAGE;
  2046. u.binding = 11;
  2047. u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].texture);
  2048. uniforms.push_back(u);
  2049. }
  2050. if (gi_probe_is_anisotropic()) {
  2051. {
  2052. RD::Uniform u;
  2053. u.type = RD::UNIFORM_TYPE_IMAGE;
  2054. u.binding = 12;
  2055. u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].anisotropy[0]);
  2056. uniforms.push_back(u);
  2057. }
  2058. {
  2059. RD::Uniform u;
  2060. u.type = RD::UNIFORM_TYPE_IMAGE;
  2061. u.binding = 13;
  2062. u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].anisotropy[1]);
  2063. uniforms.push_back(u);
  2064. }
  2065. }
  2066. }
  2067. dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[(write && plot) ? GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT : write ? GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE : GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT], 0);
  2068. }
  2069. gi_probe->dynamic_maps.push_back(dmap);
  2070. }
  2071. }
  2072. }
  2073. gi_probe->last_probe_data_version = data_version;
  2074. p_update_light_instances = true; //just in case
  2075. _base_uniforms_changed();
  2076. }
  2077. // UDPDATE TIME
  2078. if (gi_probe->has_dynamic_object_data) {
  2079. //if it has dynamic object data, it needs to be cleared
  2080. RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, gi_probe->mipmaps.size(), 0, 1, true);
  2081. if (gi_probe_is_anisotropic()) {
  2082. RD::get_singleton()->texture_clear(gi_probe->anisotropy[0], Color(0, 0, 0, 0), 0, gi_probe->mipmaps.size(), 0, 1, true);
  2083. RD::get_singleton()->texture_clear(gi_probe->anisotropy[1], Color(0, 0, 0, 0), 0, gi_probe->mipmaps.size(), 0, 1, true);
  2084. }
  2085. }
  2086. uint32_t light_count = 0;
  2087. if (p_update_light_instances || p_dynamic_object_count > 0) {
  2088. light_count = MIN(gi_probe_max_lights, (uint32_t)p_light_instances.size());
  2089. {
  2090. Transform to_cell = storage->gi_probe_get_to_cell_xform(gi_probe->probe);
  2091. Transform to_probe_xform = (gi_probe->transform * to_cell.affine_inverse()).affine_inverse();
  2092. //update lights
  2093. for (uint32_t i = 0; i < light_count; i++) {
  2094. GIProbeLight &l = gi_probe_lights[i];
  2095. RID light_instance = p_light_instances[i];
  2096. RID light = light_instance_get_base_light(light_instance);
  2097. l.type = storage->light_get_type(light);
  2098. l.attenuation = storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION);
  2099. l.energy = storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
  2100. l.radius = to_cell.basis.xform(Vector3(storage->light_get_param(light, RS::LIGHT_PARAM_RANGE), 0, 0)).length();
  2101. Color color = storage->light_get_color(light).to_linear();
  2102. l.color[0] = color.r;
  2103. l.color[1] = color.g;
  2104. l.color[2] = color.b;
  2105. l.spot_angle_radians = Math::deg2rad(storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE));
  2106. l.spot_attenuation = storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  2107. Transform xform = light_instance_get_base_transform(light_instance);
  2108. Vector3 pos = to_probe_xform.xform(xform.origin);
  2109. Vector3 dir = to_probe_xform.basis.xform(-xform.basis.get_axis(2)).normalized();
  2110. l.position[0] = pos.x;
  2111. l.position[1] = pos.y;
  2112. l.position[2] = pos.z;
  2113. l.direction[0] = dir.x;
  2114. l.direction[1] = dir.y;
  2115. l.direction[2] = dir.z;
  2116. l.has_shadow = storage->light_has_shadow(light);
  2117. }
  2118. RD::get_singleton()->buffer_update(gi_probe_lights_uniform, 0, sizeof(GIProbeLight) * light_count, gi_probe_lights, true);
  2119. }
  2120. }
  2121. if (gi_probe->has_dynamic_object_data || p_update_light_instances || p_dynamic_object_count) {
  2122. // PROCESS MIPMAPS
  2123. if (gi_probe->mipmaps.size()) {
  2124. //can update mipmaps
  2125. Vector3i probe_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  2126. GIProbePushConstant push_constant;
  2127. push_constant.limits[0] = probe_size.x;
  2128. push_constant.limits[1] = probe_size.y;
  2129. push_constant.limits[2] = probe_size.z;
  2130. push_constant.stack_size = gi_probe->mipmaps.size();
  2131. push_constant.emission_scale = 1.0;
  2132. push_constant.propagation = storage->gi_probe_get_propagation(gi_probe->probe);
  2133. push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe);
  2134. push_constant.light_count = light_count;
  2135. push_constant.aniso_strength = storage->gi_probe_get_anisotropy_strength(gi_probe->probe);
  2136. /* print_line("probe update to version " + itos(gi_probe->last_probe_version));
  2137. print_line("propagation " + rtos(push_constant.propagation));
  2138. print_line("dynrange " + rtos(push_constant.dynamic_range));
  2139. */
  2140. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  2141. int passes;
  2142. if (p_update_light_instances) {
  2143. passes = storage->gi_probe_is_using_two_bounces(gi_probe->probe) ? 2 : 1;
  2144. } else {
  2145. passes = 1; //only re-blitting is necessary
  2146. }
  2147. int wg_size = 64;
  2148. int wg_limit_x = RD::get_singleton()->limit_get(RD::LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X);
  2149. for (int pass = 0; pass < passes; pass++) {
  2150. if (p_update_light_instances) {
  2151. for (int i = 0; i < gi_probe->mipmaps.size(); i++) {
  2152. if (i == 0) {
  2153. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[pass == 0 ? GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT : GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE]);
  2154. } else if (i == 1) {
  2155. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP]);
  2156. }
  2157. if (pass == 1 || i > 0) {
  2158. RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
  2159. }
  2160. if (pass == 0 || i > 0) {
  2161. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].uniform_set, 0);
  2162. } else {
  2163. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].second_bounce_uniform_set, 0);
  2164. }
  2165. push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset;
  2166. push_constant.cell_count = gi_probe->mipmaps[i].cell_count;
  2167. int wg_todo = (gi_probe->mipmaps[i].cell_count - 1) / wg_size + 1;
  2168. while (wg_todo) {
  2169. int wg_count = MIN(wg_todo, wg_limit_x);
  2170. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant));
  2171. RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
  2172. wg_todo -= wg_count;
  2173. push_constant.cell_offset += wg_count * wg_size;
  2174. }
  2175. }
  2176. RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
  2177. }
  2178. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE]);
  2179. for (int i = 0; i < gi_probe->mipmaps.size(); i++) {
  2180. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].write_uniform_set, 0);
  2181. push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset;
  2182. push_constant.cell_count = gi_probe->mipmaps[i].cell_count;
  2183. int wg_todo = (gi_probe->mipmaps[i].cell_count - 1) / wg_size + 1;
  2184. while (wg_todo) {
  2185. int wg_count = MIN(wg_todo, wg_limit_x);
  2186. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant));
  2187. RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
  2188. wg_todo -= wg_count;
  2189. push_constant.cell_offset += wg_count * wg_size;
  2190. }
  2191. }
  2192. }
  2193. RD::get_singleton()->compute_list_end();
  2194. }
  2195. }
  2196. gi_probe->has_dynamic_object_data = false; //clear until dynamic object data is used again
  2197. if (p_dynamic_object_count && gi_probe->dynamic_maps.size()) {
  2198. Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  2199. int multiplier = gi_probe->dynamic_maps[0].size / MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
  2200. Transform oversample_scale;
  2201. oversample_scale.basis.scale(Vector3(multiplier, multiplier, multiplier));
  2202. Transform to_cell = oversample_scale * storage->gi_probe_get_to_cell_xform(gi_probe->probe);
  2203. Transform to_world_xform = gi_probe->transform * to_cell.affine_inverse();
  2204. Transform to_probe_xform = to_world_xform.affine_inverse();
  2205. AABB probe_aabb(Vector3(), octree_size);
  2206. //this could probably be better parallelized in compute..
  2207. for (int i = 0; i < p_dynamic_object_count; i++) {
  2208. InstanceBase *instance = p_dynamic_objects[i];
  2209. //not used, so clear
  2210. instance->depth_layer = 0;
  2211. instance->depth = 0;
  2212. //transform aabb to giprobe
  2213. AABB aabb = (to_probe_xform * instance->transform).xform(instance->aabb);
  2214. //this needs to wrap to grid resolution to avoid jitter
  2215. //also extend margin a bit just in case
  2216. Vector3i begin = aabb.position - Vector3i(1, 1, 1);
  2217. Vector3i end = aabb.position + aabb.size + Vector3i(1, 1, 1);
  2218. for (int j = 0; j < 3; j++) {
  2219. if ((end[j] - begin[j]) & 1) {
  2220. end[j]++; //for half extents split, it needs to be even
  2221. }
  2222. begin[j] = MAX(begin[j], 0);
  2223. end[j] = MIN(end[j], octree_size[j] * multiplier);
  2224. }
  2225. //aabb = aabb.intersection(probe_aabb); //intersect
  2226. aabb.position = begin;
  2227. aabb.size = end - begin;
  2228. //print_line("aabb: " + aabb);
  2229. for (int j = 0; j < 6; j++) {
  2230. //if (j != 0 && j != 3) {
  2231. // continue;
  2232. //}
  2233. static const Vector3 render_z[6] = {
  2234. Vector3(1, 0, 0),
  2235. Vector3(0, 1, 0),
  2236. Vector3(0, 0, 1),
  2237. Vector3(-1, 0, 0),
  2238. Vector3(0, -1, 0),
  2239. Vector3(0, 0, -1),
  2240. };
  2241. static const Vector3 render_up[6] = {
  2242. Vector3(0, 1, 0),
  2243. Vector3(0, 0, 1),
  2244. Vector3(0, 1, 0),
  2245. Vector3(0, 1, 0),
  2246. Vector3(0, 0, 1),
  2247. Vector3(0, 1, 0),
  2248. };
  2249. Vector3 render_dir = render_z[j];
  2250. Vector3 up_dir = render_up[j];
  2251. Vector3 center = aabb.position + aabb.size * 0.5;
  2252. Transform xform;
  2253. xform.set_look_at(center - aabb.size * 0.5 * render_dir, center, up_dir);
  2254. Vector3 x_dir = xform.basis.get_axis(0).abs();
  2255. int x_axis = int(Vector3(0, 1, 2).dot(x_dir));
  2256. Vector3 y_dir = xform.basis.get_axis(1).abs();
  2257. int y_axis = int(Vector3(0, 1, 2).dot(y_dir));
  2258. Vector3 z_dir = -xform.basis.get_axis(2);
  2259. int z_axis = int(Vector3(0, 1, 2).dot(z_dir.abs()));
  2260. Rect2i rect(aabb.position[x_axis], aabb.position[y_axis], aabb.size[x_axis], aabb.size[y_axis]);
  2261. bool x_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(0)) < 0);
  2262. bool y_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(1)) < 0);
  2263. bool z_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(2)) > 0);
  2264. CameraMatrix cm;
  2265. cm.set_orthogonal(-rect.size.width / 2, rect.size.width / 2, -rect.size.height / 2, rect.size.height / 2, 0.0001, aabb.size[z_axis]);
  2266. _render_material(to_world_xform * xform, cm, true, &instance, 1, gi_probe->dynamic_maps[0].fb, Rect2i(Vector2i(), rect.size));
  2267. GIProbeDynamicPushConstant push_constant;
  2268. zeromem(&push_constant, sizeof(GIProbeDynamicPushConstant));
  2269. push_constant.limits[0] = octree_size.x;
  2270. push_constant.limits[1] = octree_size.y;
  2271. push_constant.limits[2] = octree_size.z;
  2272. push_constant.light_count = p_light_instances.size();
  2273. push_constant.x_dir[0] = x_dir[0];
  2274. push_constant.x_dir[1] = x_dir[1];
  2275. push_constant.x_dir[2] = x_dir[2];
  2276. push_constant.y_dir[0] = y_dir[0];
  2277. push_constant.y_dir[1] = y_dir[1];
  2278. push_constant.y_dir[2] = y_dir[2];
  2279. push_constant.z_dir[0] = z_dir[0];
  2280. push_constant.z_dir[1] = z_dir[1];
  2281. push_constant.z_dir[2] = z_dir[2];
  2282. push_constant.z_base = xform.origin[z_axis];
  2283. push_constant.z_sign = (z_flip ? -1.0 : 1.0);
  2284. push_constant.pos_multiplier = float(1.0) / multiplier;
  2285. push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe);
  2286. push_constant.flip_x = x_flip;
  2287. push_constant.flip_y = y_flip;
  2288. push_constant.rect_pos[0] = rect.position[0];
  2289. push_constant.rect_pos[1] = rect.position[1];
  2290. push_constant.rect_size[0] = rect.size[0];
  2291. push_constant.rect_size[1] = rect.size[1];
  2292. push_constant.prev_rect_ofs[0] = 0;
  2293. push_constant.prev_rect_ofs[1] = 0;
  2294. push_constant.prev_rect_size[0] = 0;
  2295. push_constant.prev_rect_size[1] = 0;
  2296. push_constant.on_mipmap = false;
  2297. push_constant.propagation = storage->gi_probe_get_propagation(gi_probe->probe);
  2298. push_constant.pad[0] = 0;
  2299. push_constant.pad[1] = 0;
  2300. push_constant.pad[2] = 0;
  2301. //process lighting
  2302. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  2303. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING]);
  2304. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->dynamic_maps[0].uniform_set, 0);
  2305. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbeDynamicPushConstant));
  2306. RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1);
  2307. //print_line("rect: " + itos(i) + ": " + rect);
  2308. for (int k = 1; k < gi_probe->dynamic_maps.size(); k++) {
  2309. // enlarge the rect if needed so all pixels fit when downscaled,
  2310. // this ensures downsampling is smooth and optimal because no pixels are left behind
  2311. //x
  2312. if (rect.position.x & 1) {
  2313. rect.size.x++;
  2314. push_constant.prev_rect_ofs[0] = 1; //this is used to ensure reading is also optimal
  2315. } else {
  2316. push_constant.prev_rect_ofs[0] = 0;
  2317. }
  2318. if (rect.size.x & 1) {
  2319. rect.size.x++;
  2320. }
  2321. rect.position.x >>= 1;
  2322. rect.size.x = MAX(1, rect.size.x >> 1);
  2323. //y
  2324. if (rect.position.y & 1) {
  2325. rect.size.y++;
  2326. push_constant.prev_rect_ofs[1] = 1;
  2327. } else {
  2328. push_constant.prev_rect_ofs[1] = 0;
  2329. }
  2330. if (rect.size.y & 1) {
  2331. rect.size.y++;
  2332. }
  2333. rect.position.y >>= 1;
  2334. rect.size.y = MAX(1, rect.size.y >> 1);
  2335. //shrink limits to ensure plot does not go outside map
  2336. if (gi_probe->dynamic_maps[k].mipmap > 0) {
  2337. for (int l = 0; l < 3; l++) {
  2338. push_constant.limits[l] = MAX(1, push_constant.limits[l] >> 1);
  2339. }
  2340. }
  2341. //print_line("rect: " + itos(i) + ": " + rect);
  2342. push_constant.rect_pos[0] = rect.position[0];
  2343. push_constant.rect_pos[1] = rect.position[1];
  2344. push_constant.prev_rect_size[0] = push_constant.rect_size[0];
  2345. push_constant.prev_rect_size[1] = push_constant.rect_size[1];
  2346. push_constant.rect_size[0] = rect.size[0];
  2347. push_constant.rect_size[1] = rect.size[1];
  2348. push_constant.on_mipmap = gi_probe->dynamic_maps[k].mipmap > 0;
  2349. RD::get_singleton()->compute_list_add_barrier(compute_list);
  2350. if (gi_probe->dynamic_maps[k].mipmap < 0) {
  2351. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE]);
  2352. } else if (k < gi_probe->dynamic_maps.size() - 1) {
  2353. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT]);
  2354. } else {
  2355. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT]);
  2356. }
  2357. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->dynamic_maps[k].uniform_set, 0);
  2358. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbeDynamicPushConstant));
  2359. RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1);
  2360. }
  2361. RD::get_singleton()->compute_list_end();
  2362. }
  2363. }
  2364. gi_probe->has_dynamic_object_data = true; //clear until dynamic object data is used again
  2365. }
  2366. gi_probe->last_probe_version = storage->gi_probe_get_version(gi_probe->probe);
  2367. }
  2368. void RasterizerSceneRD::_debug_giprobe(RID p_gi_probe, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) {
  2369. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_gi_probe);
  2370. ERR_FAIL_COND(!gi_probe);
  2371. if (gi_probe->mipmaps.size() == 0) {
  2372. return;
  2373. }
  2374. CameraMatrix transform = (p_camera_with_transform * CameraMatrix(gi_probe->transform)) * CameraMatrix(storage->gi_probe_get_to_cell_xform(gi_probe->probe).affine_inverse());
  2375. int level = 0;
  2376. Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  2377. GIProbeDebugPushConstant push_constant;
  2378. push_constant.alpha = p_alpha;
  2379. push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe);
  2380. push_constant.cell_offset = gi_probe->mipmaps[level].cell_offset;
  2381. push_constant.level = level;
  2382. push_constant.bounds[0] = octree_size.x >> level;
  2383. push_constant.bounds[1] = octree_size.y >> level;
  2384. push_constant.bounds[2] = octree_size.z >> level;
  2385. push_constant.pad = 0;
  2386. for (int i = 0; i < 4; i++) {
  2387. for (int j = 0; j < 4; j++) {
  2388. push_constant.projection[i * 4 + j] = transform.matrix[i][j];
  2389. }
  2390. }
  2391. if (giprobe_debug_uniform_set.is_valid()) {
  2392. RD::get_singleton()->free(giprobe_debug_uniform_set);
  2393. }
  2394. Vector<RD::Uniform> uniforms;
  2395. {
  2396. RD::Uniform u;
  2397. u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2398. u.binding = 1;
  2399. u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe));
  2400. uniforms.push_back(u);
  2401. }
  2402. {
  2403. RD::Uniform u;
  2404. u.type = RD::UNIFORM_TYPE_TEXTURE;
  2405. u.binding = 2;
  2406. u.ids.push_back(gi_probe->texture);
  2407. uniforms.push_back(u);
  2408. }
  2409. {
  2410. RD::Uniform u;
  2411. u.type = RD::UNIFORM_TYPE_SAMPLER;
  2412. u.binding = 3;
  2413. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2414. uniforms.push_back(u);
  2415. }
  2416. if (gi_probe_use_anisotropy) {
  2417. {
  2418. RD::Uniform u;
  2419. u.type = RD::UNIFORM_TYPE_TEXTURE;
  2420. u.binding = 4;
  2421. u.ids.push_back(gi_probe->anisotropy[0]);
  2422. uniforms.push_back(u);
  2423. }
  2424. {
  2425. RD::Uniform u;
  2426. u.type = RD::UNIFORM_TYPE_TEXTURE;
  2427. u.binding = 5;
  2428. u.ids.push_back(gi_probe->anisotropy[1]);
  2429. uniforms.push_back(u);
  2430. }
  2431. }
  2432. int cell_count;
  2433. if (!p_emission && p_lighting && gi_probe->has_dynamic_object_data) {
  2434. cell_count = push_constant.bounds[0] * push_constant.bounds[1] * push_constant.bounds[2];
  2435. } else {
  2436. cell_count = gi_probe->mipmaps[level].cell_count;
  2437. }
  2438. giprobe_debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_debug_shader_version_shaders[0], 0);
  2439. RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, giprobe_debug_shader_version_pipelines[p_emission ? GI_PROBE_DEBUG_EMISSION : p_lighting ? (gi_probe->has_dynamic_object_data ? GI_PROBE_DEBUG_LIGHT_FULL : GI_PROBE_DEBUG_LIGHT) : GI_PROBE_DEBUG_COLOR].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  2440. RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, giprobe_debug_uniform_set, 0);
  2441. RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(GIProbeDebugPushConstant));
  2442. RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, 36);
  2443. }
  2444. const Vector<RID> &RasterizerSceneRD::gi_probe_get_slots() const {
  2445. return gi_probe_slots;
  2446. }
  2447. RasterizerSceneRD::GIProbeQuality RasterizerSceneRD::gi_probe_get_quality() const {
  2448. return gi_probe_quality;
  2449. }
  2450. ////////////////////////////////
  2451. RID RasterizerSceneRD::render_buffers_create() {
  2452. RenderBuffers rb;
  2453. rb.data = _create_render_buffer_data();
  2454. return render_buffers_owner.make_rid(rb);
  2455. }
  2456. void RasterizerSceneRD::_allocate_blur_textures(RenderBuffers *rb) {
  2457. ERR_FAIL_COND(!rb->blur[0].texture.is_null());
  2458. uint32_t mipmaps_required = Image::get_image_required_mipmaps(rb->width, rb->height, Image::FORMAT_RGBAH);
  2459. RD::TextureFormat tf;
  2460. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  2461. tf.width = rb->width;
  2462. tf.height = rb->height;
  2463. tf.type = RD::TEXTURE_TYPE_2D;
  2464. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  2465. tf.mipmaps = mipmaps_required;
  2466. rb->blur[0].texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2467. //the second one is smaller (only used for separatable part of blur)
  2468. tf.width >>= 1;
  2469. tf.height >>= 1;
  2470. tf.mipmaps--;
  2471. rb->blur[1].texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2472. int base_width = rb->width;
  2473. int base_height = rb->height;
  2474. for (uint32_t i = 0; i < mipmaps_required; i++) {
  2475. RenderBuffers::Blur::Mipmap mm;
  2476. mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[0].texture, 0, i);
  2477. {
  2478. Vector<RID> fbs;
  2479. fbs.push_back(mm.texture);
  2480. mm.framebuffer = RD::get_singleton()->framebuffer_create(fbs);
  2481. }
  2482. mm.width = base_width;
  2483. mm.height = base_height;
  2484. rb->blur[0].mipmaps.push_back(mm);
  2485. if (i > 0) {
  2486. mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[1].texture, 0, i - 1);
  2487. {
  2488. Vector<RID> fbs;
  2489. fbs.push_back(mm.texture);
  2490. mm.framebuffer = RD::get_singleton()->framebuffer_create(fbs);
  2491. }
  2492. rb->blur[1].mipmaps.push_back(mm);
  2493. }
  2494. base_width = MAX(1, base_width >> 1);
  2495. base_height = MAX(1, base_height >> 1);
  2496. }
  2497. }
  2498. void RasterizerSceneRD::_allocate_luminance_textures(RenderBuffers *rb) {
  2499. ERR_FAIL_COND(!rb->luminance.current.is_null());
  2500. int w = rb->width;
  2501. int h = rb->height;
  2502. while (true) {
  2503. w = MAX(w / 8, 1);
  2504. h = MAX(h / 8, 1);
  2505. RD::TextureFormat tf;
  2506. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  2507. tf.width = w;
  2508. tf.height = h;
  2509. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  2510. bool final = w == 1 && h == 1;
  2511. if (final) {
  2512. tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT;
  2513. }
  2514. RID texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2515. rb->luminance.reduce.push_back(texture);
  2516. if (final) {
  2517. rb->luminance.current = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2518. break;
  2519. }
  2520. }
  2521. }
  2522. void RasterizerSceneRD::_free_render_buffer_data(RenderBuffers *rb) {
  2523. if (rb->texture.is_valid()) {
  2524. RD::get_singleton()->free(rb->texture);
  2525. rb->texture = RID();
  2526. }
  2527. if (rb->depth_texture.is_valid()) {
  2528. RD::get_singleton()->free(rb->depth_texture);
  2529. rb->depth_texture = RID();
  2530. }
  2531. for (int i = 0; i < 2; i++) {
  2532. if (rb->blur[i].texture.is_valid()) {
  2533. RD::get_singleton()->free(rb->blur[i].texture);
  2534. rb->blur[i].texture = RID();
  2535. rb->blur[i].mipmaps.clear();
  2536. }
  2537. }
  2538. for (int i = 0; i < rb->luminance.reduce.size(); i++) {
  2539. RD::get_singleton()->free(rb->luminance.reduce[i]);
  2540. }
  2541. for (int i = 0; i < rb->luminance.reduce.size(); i++) {
  2542. RD::get_singleton()->free(rb->luminance.reduce[i]);
  2543. }
  2544. rb->luminance.reduce.clear();
  2545. if (rb->luminance.current.is_valid()) {
  2546. RD::get_singleton()->free(rb->luminance.current);
  2547. rb->luminance.current = RID();
  2548. }
  2549. if (rb->ssao.ao[0].is_valid()) {
  2550. RD::get_singleton()->free(rb->ssao.depth);
  2551. RD::get_singleton()->free(rb->ssao.ao[0]);
  2552. if (rb->ssao.ao[1].is_valid()) {
  2553. RD::get_singleton()->free(rb->ssao.ao[1]);
  2554. }
  2555. if (rb->ssao.ao_full.is_valid()) {
  2556. RD::get_singleton()->free(rb->ssao.ao_full);
  2557. }
  2558. rb->ssao.depth = RID();
  2559. rb->ssao.ao[0] = RID();
  2560. rb->ssao.ao[1] = RID();
  2561. rb->ssao.ao_full = RID();
  2562. rb->ssao.depth_slices.clear();
  2563. }
  2564. if (rb->ssr.blur_radius[0].is_valid()) {
  2565. RD::get_singleton()->free(rb->ssr.blur_radius[0]);
  2566. RD::get_singleton()->free(rb->ssr.blur_radius[1]);
  2567. rb->ssr.blur_radius[0] = RID();
  2568. rb->ssr.blur_radius[1] = RID();
  2569. }
  2570. if (rb->ssr.depth_scaled.is_valid()) {
  2571. RD::get_singleton()->free(rb->ssr.depth_scaled);
  2572. rb->ssr.depth_scaled = RID();
  2573. RD::get_singleton()->free(rb->ssr.normal_scaled);
  2574. rb->ssr.normal_scaled = RID();
  2575. }
  2576. }
  2577. void RasterizerSceneRD::_process_sss(RID p_render_buffers, const CameraMatrix &p_camera) {
  2578. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2579. ERR_FAIL_COND(!rb);
  2580. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  2581. if (!can_use_effects) {
  2582. //just copy
  2583. return;
  2584. }
  2585. if (rb->blur[0].texture.is_null()) {
  2586. _allocate_blur_textures(rb);
  2587. _render_buffers_uniform_set_changed(p_render_buffers);
  2588. }
  2589. storage->get_effects()->sub_surface_scattering(rb->texture, rb->blur[0].mipmaps[0].texture, rb->depth_texture, p_camera, Size2i(rb->width, rb->height), sss_scale, sss_depth_scale, sss_quality);
  2590. }
  2591. void RasterizerSceneRD::_process_ssr(RID p_render_buffers, RID p_dest_framebuffer, RID p_normal_buffer, RID p_roughness_buffer, RID p_specular_buffer, RID p_metallic, const Color &p_metallic_mask, RID p_environment, const CameraMatrix &p_projection, bool p_use_additive) {
  2592. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2593. ERR_FAIL_COND(!rb);
  2594. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  2595. if (!can_use_effects) {
  2596. //just copy
  2597. storage->get_effects()->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : rb->texture, RID());
  2598. return;
  2599. }
  2600. Environent *env = environment_owner.getornull(p_environment);
  2601. ERR_FAIL_COND(!env);
  2602. ERR_FAIL_COND(!env->ssr_enabled);
  2603. if (rb->ssr.depth_scaled.is_null()) {
  2604. RD::TextureFormat tf;
  2605. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  2606. tf.width = rb->width / 2;
  2607. tf.height = rb->height / 2;
  2608. tf.type = RD::TEXTURE_TYPE_2D;
  2609. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  2610. rb->ssr.depth_scaled = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2611. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  2612. rb->ssr.normal_scaled = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2613. }
  2614. if (ssr_roughness_quality != RS::ENV_SSR_ROUGNESS_QUALITY_DISABLED && !rb->ssr.blur_radius[0].is_valid()) {
  2615. RD::TextureFormat tf;
  2616. tf.format = RD::DATA_FORMAT_R8_UNORM;
  2617. tf.width = rb->width / 2;
  2618. tf.height = rb->height / 2;
  2619. tf.type = RD::TEXTURE_TYPE_2D;
  2620. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  2621. rb->ssr.blur_radius[0] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2622. rb->ssr.blur_radius[1] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2623. }
  2624. if (rb->blur[0].texture.is_null()) {
  2625. _allocate_blur_textures(rb);
  2626. _render_buffers_uniform_set_changed(p_render_buffers);
  2627. }
  2628. storage->get_effects()->screen_space_reflection(rb->texture, p_normal_buffer, ssr_roughness_quality, p_roughness_buffer, rb->ssr.blur_radius[0], rb->ssr.blur_radius[1], p_metallic, p_metallic_mask, rb->depth_texture, rb->ssr.depth_scaled, rb->ssr.normal_scaled, rb->blur[0].mipmaps[1].texture, rb->blur[1].mipmaps[0].texture, Size2i(rb->width / 2, rb->height / 2), env->ssr_max_steps, env->ssr_fade_in, env->ssr_fade_out, env->ssr_depth_tolerance, p_projection);
  2629. storage->get_effects()->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : rb->texture, rb->blur[0].mipmaps[1].texture);
  2630. }
  2631. void RasterizerSceneRD::_process_ssao(RID p_render_buffers, RID p_environment, RID p_normal_buffer, const CameraMatrix &p_projection) {
  2632. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2633. ERR_FAIL_COND(!rb);
  2634. Environent *env = environment_owner.getornull(p_environment);
  2635. ERR_FAIL_COND(!env);
  2636. if (rb->ssao.ao[0].is_valid() && rb->ssao.ao_full.is_valid() != ssao_half_size) {
  2637. RD::get_singleton()->free(rb->ssao.depth);
  2638. RD::get_singleton()->free(rb->ssao.ao[0]);
  2639. if (rb->ssao.ao[1].is_valid()) {
  2640. RD::get_singleton()->free(rb->ssao.ao[1]);
  2641. }
  2642. if (rb->ssao.ao_full.is_valid()) {
  2643. RD::get_singleton()->free(rb->ssao.ao_full);
  2644. }
  2645. rb->ssao.depth = RID();
  2646. rb->ssao.ao[0] = RID();
  2647. rb->ssao.ao[1] = RID();
  2648. rb->ssao.ao_full = RID();
  2649. rb->ssao.depth_slices.clear();
  2650. }
  2651. if (!rb->ssao.ao[0].is_valid()) {
  2652. //allocate depth slices
  2653. {
  2654. RD::TextureFormat tf;
  2655. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  2656. tf.width = rb->width / 2;
  2657. tf.height = rb->height / 2;
  2658. tf.mipmaps = Image::get_image_required_mipmaps(tf.width, tf.height, Image::FORMAT_RF) + 1;
  2659. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  2660. rb->ssao.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2661. for (uint32_t i = 0; i < tf.mipmaps; i++) {
  2662. RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.depth, 0, i);
  2663. rb->ssao.depth_slices.push_back(slice);
  2664. }
  2665. }
  2666. {
  2667. RD::TextureFormat tf;
  2668. tf.format = RD::DATA_FORMAT_R8_UNORM;
  2669. tf.width = ssao_half_size ? rb->width / 2 : rb->width;
  2670. tf.height = ssao_half_size ? rb->height / 2 : rb->height;
  2671. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  2672. rb->ssao.ao[0] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2673. rb->ssao.ao[1] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2674. }
  2675. if (ssao_half_size) {
  2676. //upsample texture
  2677. RD::TextureFormat tf;
  2678. tf.format = RD::DATA_FORMAT_R8_UNORM;
  2679. tf.width = rb->width;
  2680. tf.height = rb->height;
  2681. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  2682. rb->ssao.ao_full = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2683. }
  2684. _render_buffers_uniform_set_changed(p_render_buffers);
  2685. }
  2686. storage->get_effects()->generate_ssao(rb->depth_texture, p_normal_buffer, Size2i(rb->width, rb->height), rb->ssao.depth, rb->ssao.depth_slices, rb->ssao.ao[0], rb->ssao.ao_full.is_valid(), rb->ssao.ao[1], rb->ssao.ao_full, env->ssao_intensity, env->ssao_radius, env->ssao_bias, p_projection, ssao_quality, env->ssao_blur, env->ssao_blur_edge_sharpness);
  2687. }
  2688. void RasterizerSceneRD::_render_buffers_post_process_and_tonemap(RID p_render_buffers, RID p_environment, RID p_camera_effects, const CameraMatrix &p_projection) {
  2689. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2690. ERR_FAIL_COND(!rb);
  2691. Environent *env = environment_owner.getornull(p_environment);
  2692. //glow (if enabled)
  2693. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  2694. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  2695. if (can_use_effects && camfx && (camfx->dof_blur_near_enabled || camfx->dof_blur_far_enabled) && camfx->dof_blur_amount > 0.0) {
  2696. if (rb->blur[0].texture.is_null()) {
  2697. _allocate_blur_textures(rb);
  2698. _render_buffers_uniform_set_changed(p_render_buffers);
  2699. }
  2700. float bokeh_size = camfx->dof_blur_amount * 64.0;
  2701. storage->get_effects()->bokeh_dof(rb->texture, rb->depth_texture, Size2i(rb->width, rb->height), rb->blur[0].mipmaps[0].texture, rb->blur[1].mipmaps[0].texture, rb->blur[0].mipmaps[1].texture, camfx->dof_blur_far_enabled, camfx->dof_blur_far_distance, camfx->dof_blur_far_transition, camfx->dof_blur_near_enabled, camfx->dof_blur_near_distance, camfx->dof_blur_near_transition, bokeh_size, dof_blur_bokeh_shape, dof_blur_quality, dof_blur_use_jitter, p_projection.get_z_near(), p_projection.get_z_far(), p_projection.is_orthogonal());
  2702. }
  2703. if (can_use_effects && env && env->auto_exposure) {
  2704. if (rb->luminance.current.is_null()) {
  2705. _allocate_luminance_textures(rb);
  2706. _render_buffers_uniform_set_changed(p_render_buffers);
  2707. }
  2708. bool set_immediate = env->auto_exposure_version != rb->auto_exposure_version;
  2709. rb->auto_exposure_version = env->auto_exposure_version;
  2710. double step = env->auto_exp_speed * time_step;
  2711. storage->get_effects()->luminance_reduction(rb->texture, Size2i(rb->width, rb->height), rb->luminance.reduce, rb->luminance.current, env->min_luminance, env->max_luminance, step, set_immediate);
  2712. //swap final reduce with prev luminance
  2713. SWAP(rb->luminance.current, rb->luminance.reduce.write[rb->luminance.reduce.size() - 1]);
  2714. RenderingServerRaster::redraw_request(); //redraw all the time if auto exposure rendering is on
  2715. }
  2716. int max_glow_level = -1;
  2717. int glow_mask = 0;
  2718. if (can_use_effects && env && env->glow_enabled) {
  2719. /* see that blur textures are allocated */
  2720. if (rb->blur[0].texture.is_null()) {
  2721. _allocate_blur_textures(rb);
  2722. _render_buffers_uniform_set_changed(p_render_buffers);
  2723. }
  2724. for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
  2725. if (env->glow_levels & (1 << i)) {
  2726. if (i >= rb->blur[1].mipmaps.size()) {
  2727. max_glow_level = rb->blur[1].mipmaps.size() - 1;
  2728. glow_mask |= 1 << max_glow_level;
  2729. } else {
  2730. max_glow_level = i;
  2731. glow_mask |= (1 << i);
  2732. }
  2733. }
  2734. }
  2735. for (int i = 0; i < (max_glow_level + 1); i++) {
  2736. int vp_w = rb->blur[1].mipmaps[i].width;
  2737. int vp_h = rb->blur[1].mipmaps[i].height;
  2738. if (i == 0) {
  2739. RID luminance_texture;
  2740. if (env->auto_exposure && rb->luminance.current.is_valid()) {
  2741. luminance_texture = rb->luminance.current;
  2742. }
  2743. storage->get_effects()->gaussian_glow(rb->texture, rb->blur[0].mipmaps[i + 1].framebuffer, rb->blur[0].mipmaps[i + 1].texture, rb->blur[1].mipmaps[i].framebuffer, Vector2(1.0 / vp_w, 1.0 / vp_h), env->glow_strength, true, env->glow_hdr_luminance_cap, env->exposure, env->glow_bloom, env->glow_hdr_bleed_threshold, env->glow_hdr_bleed_scale, luminance_texture, env->auto_exp_scale);
  2744. } else {
  2745. storage->get_effects()->gaussian_glow(rb->blur[1].mipmaps[i - 1].texture, rb->blur[0].mipmaps[i + 1].framebuffer, rb->blur[0].mipmaps[i + 1].texture, rb->blur[1].mipmaps[i].framebuffer, Vector2(1.0 / vp_w, 1.0 / vp_h), env->glow_strength);
  2746. }
  2747. }
  2748. }
  2749. {
  2750. //tonemap
  2751. RasterizerEffectsRD::TonemapSettings tonemap;
  2752. tonemap.color_correction_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE);
  2753. if (can_use_effects && env && env->auto_exposure && rb->luminance.current.is_valid()) {
  2754. tonemap.use_auto_exposure = true;
  2755. tonemap.exposure_texture = rb->luminance.current;
  2756. tonemap.auto_exposure_grey = env->auto_exp_scale;
  2757. } else {
  2758. tonemap.exposure_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_WHITE);
  2759. }
  2760. if (can_use_effects && env && env->glow_enabled) {
  2761. tonemap.use_glow = true;
  2762. tonemap.glow_mode = RasterizerEffectsRD::TonemapSettings::GlowMode(env->glow_blend_mode);
  2763. tonemap.glow_intensity = env->glow_blend_mode == RS::ENV_GLOW_BLEND_MODE_MIX ? env->glow_mix : env->glow_intensity;
  2764. tonemap.glow_level_flags = glow_mask;
  2765. tonemap.glow_texture_size.x = rb->blur[1].mipmaps[0].width;
  2766. tonemap.glow_texture_size.y = rb->blur[1].mipmaps[0].height;
  2767. tonemap.glow_use_bicubic_upscale = glow_bicubic_upscale;
  2768. tonemap.glow_texture = rb->blur[1].texture;
  2769. } else {
  2770. tonemap.glow_texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK);
  2771. }
  2772. if (env) {
  2773. tonemap.tonemap_mode = env->tone_mapper;
  2774. tonemap.white = env->white;
  2775. tonemap.exposure = env->exposure;
  2776. }
  2777. storage->get_effects()->tonemapper(rb->texture, storage->render_target_get_rd_framebuffer(rb->render_target), tonemap);
  2778. }
  2779. storage->render_target_disable_clear_request(rb->render_target);
  2780. }
  2781. void RasterizerSceneRD::_render_buffers_debug_draw(RID p_render_buffers, RID p_shadow_atlas) {
  2782. RasterizerEffectsRD *effects = storage->get_effects();
  2783. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2784. ERR_FAIL_COND(!rb);
  2785. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) {
  2786. if (p_shadow_atlas.is_valid()) {
  2787. RID shadow_atlas_texture = shadow_atlas_get_texture(p_shadow_atlas);
  2788. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  2789. effects->copy_to_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize / 2), false, true);
  2790. }
  2791. }
  2792. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) {
  2793. if (directional_shadow_get_texture().is_valid()) {
  2794. RID shadow_atlas_texture = directional_shadow_get_texture();
  2795. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  2796. effects->copy_to_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize / 2), false, true);
  2797. }
  2798. }
  2799. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE) {
  2800. if (rb->luminance.current.is_valid()) {
  2801. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  2802. effects->copy_to_rect(rb->luminance.current, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize / 8), false, true);
  2803. }
  2804. }
  2805. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSAO && rb->ssao.ao[0].is_valid()) {
  2806. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  2807. RID ao_buf = rb->ssao.ao_full.is_valid() ? rb->ssao.ao_full : rb->ssao.ao[0];
  2808. effects->copy_to_rect(ao_buf, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, true);
  2809. }
  2810. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_ROUGHNESS_LIMITER && _render_buffers_get_roughness_texture(p_render_buffers).is_valid()) {
  2811. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  2812. effects->copy_to_rect(_render_buffers_get_roughness_texture(p_render_buffers), storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, true);
  2813. }
  2814. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(p_render_buffers).is_valid()) {
  2815. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  2816. effects->copy_to_rect(_render_buffers_get_normal_texture(p_render_buffers), storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize));
  2817. }
  2818. }
  2819. RID RasterizerSceneRD::render_buffers_get_back_buffer_texture(RID p_render_buffers) {
  2820. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2821. ERR_FAIL_COND_V(!rb, RID());
  2822. if (!rb->blur[0].texture.is_valid()) {
  2823. return RID(); //not valid at the moment
  2824. }
  2825. return rb->blur[0].texture;
  2826. }
  2827. RID RasterizerSceneRD::render_buffers_get_ao_texture(RID p_render_buffers) {
  2828. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2829. ERR_FAIL_COND_V(!rb, RID());
  2830. return rb->ssao.ao_full.is_valid() ? rb->ssao.ao_full : rb->ssao.ao[0];
  2831. }
  2832. void RasterizerSceneRD::render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, RS::ViewportMSAA p_msaa) {
  2833. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2834. rb->width = p_width;
  2835. rb->height = p_height;
  2836. rb->render_target = p_render_target;
  2837. rb->msaa = p_msaa;
  2838. _free_render_buffer_data(rb);
  2839. {
  2840. RD::TextureFormat tf;
  2841. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  2842. tf.width = rb->width;
  2843. tf.height = rb->height;
  2844. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  2845. rb->texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2846. }
  2847. {
  2848. RD::TextureFormat tf;
  2849. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D24_UNORM_S8_UINT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D24_UNORM_S8_UINT : RD::DATA_FORMAT_D32_SFLOAT_S8_UINT;
  2850. tf.width = p_width;
  2851. tf.height = p_height;
  2852. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  2853. rb->depth_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2854. }
  2855. rb->data->configure(rb->texture, rb->depth_texture, p_width, p_height, p_msaa);
  2856. _render_buffers_uniform_set_changed(p_render_buffers);
  2857. }
  2858. void RasterizerSceneRD::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) {
  2859. sss_quality = p_quality;
  2860. }
  2861. RS::SubSurfaceScatteringQuality RasterizerSceneRD::sub_surface_scattering_get_quality() const {
  2862. return sss_quality;
  2863. }
  2864. void RasterizerSceneRD::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) {
  2865. sss_scale = p_scale;
  2866. sss_depth_scale = p_depth_scale;
  2867. }
  2868. void RasterizerSceneRD::shadow_filter_set(RS::ShadowFilter p_filter) {
  2869. shadow_filter = p_filter;
  2870. }
  2871. int RasterizerSceneRD::get_roughness_layers() const {
  2872. return roughness_layers;
  2873. }
  2874. bool RasterizerSceneRD::is_using_radiance_cubemap_array() const {
  2875. return sky_use_cubemap_array;
  2876. }
  2877. RasterizerSceneRD::RenderBufferData *RasterizerSceneRD::render_buffers_get_data(RID p_render_buffers) {
  2878. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2879. ERR_FAIL_COND_V(!rb, nullptr);
  2880. return rb->data;
  2881. }
  2882. void RasterizerSceneRD::render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {
  2883. Color clear_color;
  2884. if (p_render_buffers.is_valid()) {
  2885. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  2886. ERR_FAIL_COND(!rb);
  2887. clear_color = storage->render_target_get_clear_request_color(rb->render_target);
  2888. } else {
  2889. clear_color = storage->get_default_clear_color();
  2890. }
  2891. _render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, p_light_cull_result, p_light_cull_count, p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_gi_probe_cull_result, p_gi_probe_cull_count, p_environment, p_camera_effects, p_shadow_atlas, p_reflection_atlas, p_reflection_probe, p_reflection_probe_pass, clear_color);
  2892. if (p_render_buffers.is_valid()) {
  2893. RENDER_TIMESTAMP("Tonemap");
  2894. _render_buffers_post_process_and_tonemap(p_render_buffers, p_environment, p_camera_effects, p_cam_projection);
  2895. _render_buffers_debug_draw(p_render_buffers, p_shadow_atlas);
  2896. }
  2897. }
  2898. void RasterizerSceneRD::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) {
  2899. LightInstance *light_instance = light_instance_owner.getornull(p_light);
  2900. ERR_FAIL_COND(!light_instance);
  2901. Rect2i atlas_rect;
  2902. RID atlas_fb;
  2903. bool using_dual_paraboloid = false;
  2904. bool using_dual_paraboloid_flip = false;
  2905. float znear = 0;
  2906. float zfar = 0;
  2907. RID render_fb;
  2908. RID render_texture;
  2909. float bias = 0;
  2910. float normal_bias = 0;
  2911. bool use_pancake = false;
  2912. bool use_linear_depth = false;
  2913. bool render_cubemap = false;
  2914. bool finalize_cubemap = false;
  2915. CameraMatrix light_projection;
  2916. Transform light_transform;
  2917. if (storage->light_get_type(light_instance->light) == RS::LIGHT_DIRECTIONAL) {
  2918. //set pssm stuff
  2919. if (light_instance->last_scene_shadow_pass != scene_pass) {
  2920. light_instance->directional_rect = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light);
  2921. directional_shadow.current_light++;
  2922. light_instance->last_scene_shadow_pass = scene_pass;
  2923. }
  2924. use_pancake = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE) > 0;
  2925. light_projection = light_instance->shadow_transform[p_pass].camera;
  2926. light_transform = light_instance->shadow_transform[p_pass].transform;
  2927. atlas_rect.position.x = light_instance->directional_rect.position.x;
  2928. atlas_rect.position.y = light_instance->directional_rect.position.y;
  2929. atlas_rect.size.width = light_instance->directional_rect.size.x;
  2930. atlas_rect.size.height = light_instance->directional_rect.size.y;
  2931. if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  2932. atlas_rect.size.width /= 2;
  2933. atlas_rect.size.height /= 2;
  2934. if (p_pass == 1) {
  2935. atlas_rect.position.x += atlas_rect.size.width;
  2936. } else if (p_pass == 2) {
  2937. atlas_rect.position.y += atlas_rect.size.height;
  2938. } else if (p_pass == 3) {
  2939. atlas_rect.position.x += atlas_rect.size.width;
  2940. atlas_rect.position.y += atlas_rect.size.height;
  2941. }
  2942. } else if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  2943. atlas_rect.size.height /= 2;
  2944. if (p_pass == 0) {
  2945. } else {
  2946. atlas_rect.position.y += atlas_rect.size.height;
  2947. }
  2948. }
  2949. light_instance->shadow_transform[p_pass].atlas_rect = atlas_rect;
  2950. light_instance->shadow_transform[p_pass].atlas_rect.position /= directional_shadow.size;
  2951. light_instance->shadow_transform[p_pass].atlas_rect.size /= directional_shadow.size;
  2952. float bias_mult = light_instance->shadow_transform[p_pass].bias_scale;
  2953. zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
  2954. bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_BIAS) * bias_mult;
  2955. normal_bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * bias_mult;
  2956. ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size);
  2957. render_fb = shadow_map->fb;
  2958. render_texture = shadow_map->depth;
  2959. atlas_fb = directional_shadow.fb;
  2960. } else {
  2961. //set from shadow atlas
  2962. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2963. ERR_FAIL_COND(!shadow_atlas);
  2964. ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
  2965. uint32_t key = shadow_atlas->shadow_owners[p_light];
  2966. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  2967. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  2968. ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size());
  2969. uint32_t quadrant_size = shadow_atlas->size >> 1;
  2970. atlas_rect.position.x = (quadrant & 1) * quadrant_size;
  2971. atlas_rect.position.y = (quadrant >> 1) * quadrant_size;
  2972. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  2973. atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  2974. atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  2975. atlas_rect.size.width = shadow_size;
  2976. atlas_rect.size.height = shadow_size;
  2977. atlas_fb = shadow_atlas->fb;
  2978. zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
  2979. bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_BIAS);
  2980. normal_bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS);
  2981. if (storage->light_get_type(light_instance->light) == RS::LIGHT_OMNI) {
  2982. if (storage->light_omni_get_shadow_mode(light_instance->light) == RS::LIGHT_OMNI_SHADOW_CUBE) {
  2983. ShadowCubemap *cubemap = _get_shadow_cubemap(shadow_size / 2);
  2984. render_fb = cubemap->side_fb[p_pass];
  2985. render_texture = cubemap->cubemap;
  2986. light_projection = light_instance->shadow_transform[0].camera;
  2987. light_transform = light_instance->shadow_transform[0].transform;
  2988. render_cubemap = true;
  2989. finalize_cubemap = p_pass == 5;
  2990. } else {
  2991. light_projection = light_instance->shadow_transform[0].camera;
  2992. light_transform = light_instance->shadow_transform[0].transform;
  2993. atlas_rect.size.height /= 2;
  2994. atlas_rect.position.y += p_pass * atlas_rect.size.height;
  2995. using_dual_paraboloid = true;
  2996. using_dual_paraboloid_flip = p_pass == 1;
  2997. ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size);
  2998. render_fb = shadow_map->fb;
  2999. render_texture = shadow_map->depth;
  3000. }
  3001. } else if (storage->light_get_type(light_instance->light) == RS::LIGHT_SPOT) {
  3002. light_projection = light_instance->shadow_transform[0].camera;
  3003. light_transform = light_instance->shadow_transform[0].transform;
  3004. ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size);
  3005. render_fb = shadow_map->fb;
  3006. render_texture = shadow_map->depth;
  3007. znear = light_instance->shadow_transform[0].camera.get_z_near();
  3008. use_linear_depth = true;
  3009. }
  3010. }
  3011. if (render_cubemap) {
  3012. //rendering to cubemap
  3013. _render_shadow(render_fb, p_cull_result, p_cull_count, light_projection, light_transform, zfar, 0, 0, false, false, use_pancake);
  3014. if (finalize_cubemap) {
  3015. //reblit
  3016. atlas_rect.size.height /= 2;
  3017. storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect, light_projection.get_z_near(), light_projection.get_z_far(), 0.0, false);
  3018. atlas_rect.position.y += atlas_rect.size.height;
  3019. storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect, light_projection.get_z_near(), light_projection.get_z_far(), 0.0, true);
  3020. }
  3021. } else {
  3022. //render shadow
  3023. _render_shadow(render_fb, p_cull_result, p_cull_count, light_projection, light_transform, zfar, bias, normal_bias, using_dual_paraboloid, using_dual_paraboloid_flip, use_pancake);
  3024. //copy to atlas
  3025. if (use_linear_depth) {
  3026. storage->get_effects()->copy_to_rect_and_linearize(render_texture, atlas_fb, atlas_rect, true, znear, zfar);
  3027. } else {
  3028. storage->get_effects()->copy_to_rect(render_texture, atlas_fb, atlas_rect, true);
  3029. }
  3030. //does not work from depth to color
  3031. //RD::get_singleton()->texture_copy(render_texture, atlas_texture, Vector3(0, 0, 0), Vector3(atlas_rect.position.x, atlas_rect.position.y, 0), Vector3(atlas_rect.size.x, atlas_rect.size.y, 1), 0, 0, 0, 0, true);
  3032. }
  3033. }
  3034. void RasterizerSceneRD::render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID p_framebuffer, const Rect2i &p_region) {
  3035. _render_material(p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, p_framebuffer, p_region);
  3036. }
  3037. bool RasterizerSceneRD::free(RID p_rid) {
  3038. if (render_buffers_owner.owns(p_rid)) {
  3039. RenderBuffers *rb = render_buffers_owner.getornull(p_rid);
  3040. _free_render_buffer_data(rb);
  3041. memdelete(rb->data);
  3042. render_buffers_owner.free(p_rid);
  3043. } else if (environment_owner.owns(p_rid)) {
  3044. //not much to delete, just free it
  3045. environment_owner.free(p_rid);
  3046. } else if (camera_effects_owner.owns(p_rid)) {
  3047. //not much to delete, just free it
  3048. camera_effects_owner.free(p_rid);
  3049. } else if (reflection_atlas_owner.owns(p_rid)) {
  3050. reflection_atlas_set_size(p_rid, 0, 0);
  3051. reflection_atlas_owner.free(p_rid);
  3052. } else if (reflection_probe_instance_owner.owns(p_rid)) {
  3053. //not much to delete, just free it
  3054. //ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_rid);
  3055. reflection_probe_release_atlas_index(p_rid);
  3056. reflection_probe_instance_owner.free(p_rid);
  3057. } else if (gi_probe_instance_owner.owns(p_rid)) {
  3058. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_rid);
  3059. if (gi_probe->texture.is_valid()) {
  3060. RD::get_singleton()->free(gi_probe->texture);
  3061. RD::get_singleton()->free(gi_probe->write_buffer);
  3062. }
  3063. if (gi_probe->anisotropy[0].is_valid()) {
  3064. RD::get_singleton()->free(gi_probe->anisotropy[0]);
  3065. RD::get_singleton()->free(gi_probe->anisotropy[1]);
  3066. }
  3067. for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) {
  3068. RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture);
  3069. RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth);
  3070. }
  3071. gi_probe_slots.write[gi_probe->slot] = RID();
  3072. gi_probe_instance_owner.free(p_rid);
  3073. } else if (sky_owner.owns(p_rid)) {
  3074. _update_dirty_skys();
  3075. Sky *sky = sky_owner.getornull(p_rid);
  3076. if (sky->radiance.is_valid()) {
  3077. RD::get_singleton()->free(sky->radiance);
  3078. sky->radiance = RID();
  3079. }
  3080. _clear_reflection_data(sky->reflection);
  3081. if (sky->uniform_buffer.is_valid()) {
  3082. RD::get_singleton()->free(sky->uniform_buffer);
  3083. sky->uniform_buffer = RID();
  3084. }
  3085. if (sky->half_res_pass.is_valid()) {
  3086. RD::get_singleton()->free(sky->half_res_pass);
  3087. sky->half_res_pass = RID();
  3088. }
  3089. if (sky->quarter_res_pass.is_valid()) {
  3090. RD::get_singleton()->free(sky->quarter_res_pass);
  3091. sky->quarter_res_pass = RID();
  3092. }
  3093. if (sky->material.is_valid()) {
  3094. storage->free(sky->material);
  3095. }
  3096. sky_owner.free(p_rid);
  3097. } else if (light_instance_owner.owns(p_rid)) {
  3098. LightInstance *light_instance = light_instance_owner.getornull(p_rid);
  3099. //remove from shadow atlases..
  3100. for (Set<RID>::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) {
  3101. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(E->get());
  3102. ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
  3103. uint32_t key = shadow_atlas->shadow_owners[p_rid];
  3104. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  3105. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  3106. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  3107. shadow_atlas->shadow_owners.erase(p_rid);
  3108. }
  3109. light_instance_owner.free(p_rid);
  3110. } else if (shadow_atlas_owner.owns(p_rid)) {
  3111. shadow_atlas_set_size(p_rid, 0);
  3112. shadow_atlas_owner.free(p_rid);
  3113. } else {
  3114. return false;
  3115. }
  3116. return true;
  3117. }
  3118. void RasterizerSceneRD::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) {
  3119. debug_draw = p_debug_draw;
  3120. }
  3121. void RasterizerSceneRD::update() {
  3122. _update_dirty_skys();
  3123. }
  3124. void RasterizerSceneRD::set_time(double p_time, double p_step) {
  3125. time = p_time;
  3126. time_step = p_step;
  3127. }
  3128. void RasterizerSceneRD::screen_space_roughness_limiter_set_active(bool p_enable, float p_curve) {
  3129. screen_space_roughness_limiter = p_enable;
  3130. screen_space_roughness_limiter_curve = p_curve;
  3131. }
  3132. bool RasterizerSceneRD::screen_space_roughness_limiter_is_active() const {
  3133. return screen_space_roughness_limiter;
  3134. }
  3135. float RasterizerSceneRD::screen_space_roughness_limiter_get_curve() const {
  3136. return screen_space_roughness_limiter_curve;
  3137. }
  3138. RasterizerSceneRD *RasterizerSceneRD::singleton = nullptr;
  3139. RasterizerSceneRD::RasterizerSceneRD(RasterizerStorageRD *p_storage) {
  3140. storage = p_storage;
  3141. singleton = this;
  3142. roughness_layers = GLOBAL_GET("rendering/quality/reflections/roughness_layers");
  3143. sky_ggx_samples_quality = GLOBAL_GET("rendering/quality/reflections/ggx_samples");
  3144. sky_use_cubemap_array = GLOBAL_GET("rendering/quality/reflections/texture_array_reflections");
  3145. // sky_use_cubemap_array = false;
  3146. uint32_t textures_per_stage = RD::get_singleton()->limit_get(RD::LIMIT_MAX_TEXTURES_PER_SHADER_STAGE);
  3147. {
  3148. //kinda complicated to compute the amount of slots, we try to use as many as we can
  3149. gi_probe_max_lights = 32;
  3150. gi_probe_lights = memnew_arr(GIProbeLight, gi_probe_max_lights);
  3151. gi_probe_lights_uniform = RD::get_singleton()->uniform_buffer_create(gi_probe_max_lights * sizeof(GIProbeLight));
  3152. gi_probe_use_anisotropy = GLOBAL_GET("rendering/quality/gi_probes/anisotropic");
  3153. gi_probe_quality = GIProbeQuality(CLAMP(int(GLOBAL_GET("rendering/quality/gi_probes/quality")), 0, 2));
  3154. if (textures_per_stage <= 16) {
  3155. gi_probe_slots.resize(2); //thats all you can get
  3156. gi_probe_use_anisotropy = false;
  3157. } else if (textures_per_stage <= 31) {
  3158. gi_probe_slots.resize(4); //thats all you can get, iOS
  3159. gi_probe_use_anisotropy = false;
  3160. } else if (textures_per_stage <= 128) {
  3161. gi_probe_slots.resize(32); //old intel
  3162. gi_probe_use_anisotropy = false;
  3163. } else if (textures_per_stage <= 256) {
  3164. gi_probe_slots.resize(64); //old intel too
  3165. gi_probe_use_anisotropy = false;
  3166. } else {
  3167. if (gi_probe_use_anisotropy) {
  3168. gi_probe_slots.resize(1024 / 3); //needs 3 textures
  3169. } else {
  3170. gi_probe_slots.resize(1024); //modern intel, nvidia, 8192 or greater
  3171. }
  3172. }
  3173. String defines = "\n#define MAX_LIGHTS " + itos(gi_probe_max_lights) + "\n";
  3174. if (gi_probe_use_anisotropy) {
  3175. defines += "\n#define MODE_ANISOTROPIC\n";
  3176. }
  3177. Vector<String> versions;
  3178. versions.push_back("\n#define MODE_COMPUTE_LIGHT\n");
  3179. versions.push_back("\n#define MODE_SECOND_BOUNCE\n");
  3180. versions.push_back("\n#define MODE_UPDATE_MIPMAPS\n");
  3181. versions.push_back("\n#define MODE_WRITE_TEXTURE\n");
  3182. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_LIGHTING\n");
  3183. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
  3184. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n");
  3185. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
  3186. giprobe_shader.initialize(versions, defines);
  3187. giprobe_lighting_shader_version = giprobe_shader.version_create();
  3188. for (int i = 0; i < GI_PROBE_SHADER_VERSION_MAX; i++) {
  3189. giprobe_lighting_shader_version_shaders[i] = giprobe_shader.version_get_shader(giprobe_lighting_shader_version, i);
  3190. giprobe_lighting_shader_version_pipelines[i] = RD::get_singleton()->compute_pipeline_create(giprobe_lighting_shader_version_shaders[i]);
  3191. }
  3192. }
  3193. {
  3194. String defines;
  3195. if (gi_probe_use_anisotropy) {
  3196. defines += "\n#define USE_ANISOTROPY\n";
  3197. }
  3198. Vector<String> versions;
  3199. versions.push_back("\n#define MODE_DEBUG_COLOR\n");
  3200. versions.push_back("\n#define MODE_DEBUG_LIGHT\n");
  3201. versions.push_back("\n#define MODE_DEBUG_EMISSION\n");
  3202. versions.push_back("\n#define MODE_DEBUG_LIGHT\n#define MODE_DEBUG_LIGHT_FULL\n");
  3203. giprobe_debug_shader.initialize(versions, defines);
  3204. giprobe_debug_shader_version = giprobe_debug_shader.version_create();
  3205. for (int i = 0; i < GI_PROBE_DEBUG_MAX; i++) {
  3206. giprobe_debug_shader_version_shaders[i] = giprobe_debug_shader.version_get_shader(giprobe_debug_shader_version, i);
  3207. RD::PipelineRasterizationState rs;
  3208. rs.cull_mode = RD::POLYGON_CULL_FRONT;
  3209. RD::PipelineDepthStencilState ds;
  3210. ds.enable_depth_test = true;
  3211. ds.enable_depth_write = true;
  3212. ds.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL;
  3213. giprobe_debug_shader_version_pipelines[i].setup(giprobe_debug_shader_version_shaders[i], RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
  3214. }
  3215. }
  3216. /* SKY SHADER */
  3217. {
  3218. // Start with the directional lights for the sky
  3219. sky_scene_state.max_directional_lights = 4;
  3220. uint32_t directional_light_buffer_size = sky_scene_state.max_directional_lights * sizeof(SkyDirectionalLightData);
  3221. sky_scene_state.directional_lights = memnew_arr(SkyDirectionalLightData, sky_scene_state.max_directional_lights);
  3222. sky_scene_state.last_frame_directional_lights = memnew_arr(SkyDirectionalLightData, sky_scene_state.max_directional_lights);
  3223. sky_scene_state.last_frame_directional_light_count = sky_scene_state.max_directional_lights + 1;
  3224. sky_scene_state.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size);
  3225. String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(sky_scene_state.max_directional_lights) + "\n";
  3226. // Initialize sky
  3227. Vector<String> sky_modes;
  3228. sky_modes.push_back(""); // Full size
  3229. sky_modes.push_back("\n#define USE_HALF_RES_PASS\n"); // Half Res
  3230. sky_modes.push_back("\n#define USE_QUARTER_RES_PASS\n"); // Quarter res
  3231. sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n"); // Cubemap
  3232. sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n#define USE_HALF_RES_PASS\n"); // Half Res Cubemap
  3233. sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n#define USE_QUARTER_RES_PASS\n"); // Quarter res Cubemap
  3234. sky_shader.shader.initialize(sky_modes, defines);
  3235. }
  3236. // register our shader funds
  3237. storage->shader_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_SKY, _create_sky_shader_funcs);
  3238. storage->material_set_data_request_function(RasterizerStorageRD::SHADER_TYPE_SKY, _create_sky_material_funcs);
  3239. {
  3240. ShaderCompilerRD::DefaultIdentifierActions actions;
  3241. actions.renames["COLOR"] = "color";
  3242. actions.renames["ALPHA"] = "alpha";
  3243. actions.renames["EYEDIR"] = "cube_normal";
  3244. actions.renames["POSITION"] = "params.position_multiplier.xyz";
  3245. actions.renames["SKY_COORDS"] = "panorama_coords";
  3246. actions.renames["SCREEN_UV"] = "uv";
  3247. actions.renames["TIME"] = "params.time";
  3248. actions.renames["HALF_RES_COLOR"] = "half_res_color";
  3249. actions.renames["QUARTER_RES_COLOR"] = "quarter_res_color";
  3250. actions.renames["RADIANCE"] = "radiance";
  3251. actions.renames["LIGHT0_ENABLED"] = "directional_lights.data[0].enabled";
  3252. actions.renames["LIGHT0_DIRECTION"] = "directional_lights.data[0].direction";
  3253. actions.renames["LIGHT0_ENERGY"] = "directional_lights.data[0].energy";
  3254. actions.renames["LIGHT0_COLOR"] = "directional_lights.data[0].color";
  3255. actions.renames["LIGHT1_ENABLED"] = "directional_lights.data[1].enabled";
  3256. actions.renames["LIGHT1_DIRECTION"] = "directional_lights.data[1].direction";
  3257. actions.renames["LIGHT1_ENERGY"] = "directional_lights.data[1].energy";
  3258. actions.renames["LIGHT1_COLOR"] = "directional_lights.data[1].color";
  3259. actions.renames["LIGHT2_ENABLED"] = "directional_lights.data[2].enabled";
  3260. actions.renames["LIGHT2_DIRECTION"] = "directional_lights.data[2].direction";
  3261. actions.renames["LIGHT2_ENERGY"] = "directional_lights.data[2].energy";
  3262. actions.renames["LIGHT2_COLOR"] = "directional_lights.data[2].color";
  3263. actions.renames["LIGHT3_ENABLED"] = "directional_lights.data[3].enabled";
  3264. actions.renames["LIGHT3_DIRECTION"] = "directional_lights.data[3].direction";
  3265. actions.renames["LIGHT3_ENERGY"] = "directional_lights.data[3].energy";
  3266. actions.renames["LIGHT3_COLOR"] = "directional_lights.data[3].color";
  3267. actions.renames["AT_CUBEMAP_PASS"] = "AT_CUBEMAP_PASS";
  3268. actions.renames["AT_HALF_RES_PASS"] = "AT_HALF_RES_PASS";
  3269. actions.renames["AT_QUARTER_RES_PASS"] = "AT_QUARTER_RES_PASS";
  3270. actions.custom_samplers["RADIANCE"] = "material_samplers[3]";
  3271. actions.usage_defines["HALF_RES_COLOR"] = "\n#define USES_HALF_RES_COLOR\n";
  3272. actions.usage_defines["QUARTER_RES_COLOR"] = "\n#define USES_QUARTER_RES_COLOR\n";
  3273. actions.sampler_array_name = "material_samplers";
  3274. actions.base_texture_binding_index = 1;
  3275. actions.texture_layout_set = 1;
  3276. actions.base_uniform_string = "material.";
  3277. actions.base_varying_index = 10;
  3278. actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP;
  3279. actions.default_repeat = ShaderLanguage::REPEAT_ENABLE;
  3280. sky_shader.compiler.initialize(actions);
  3281. }
  3282. {
  3283. // default material and shader for sky shader
  3284. sky_shader.default_shader = storage->shader_create();
  3285. storage->shader_set_code(sky_shader.default_shader, "shader_type sky; void fragment() { COLOR = mix(vec3(0.3), vec3(0.2, 0.4, 0.9), smoothstep(0.0, 0.05, EYEDIR.y)); } \n");
  3286. sky_shader.default_material = storage->material_create();
  3287. storage->material_set_shader(sky_shader.default_material, sky_shader.default_shader);
  3288. SkyMaterialData *md = (SkyMaterialData *)storage->material_get_data(sky_shader.default_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  3289. sky_shader.default_shader_rd = sky_shader.shader.version_get_shader(md->shader_data->version, SKY_VERSION_BACKGROUND);
  3290. Vector<RD::Uniform> uniforms;
  3291. {
  3292. RD::Uniform u;
  3293. u.type = RD::UNIFORM_TYPE_SAMPLER;
  3294. u.binding = 0;
  3295. u.ids.resize(12);
  3296. RID *ids_ptr = u.ids.ptrw();
  3297. ids_ptr[0] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  3298. ids_ptr[1] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  3299. ids_ptr[2] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  3300. ids_ptr[3] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  3301. ids_ptr[4] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  3302. ids_ptr[5] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  3303. ids_ptr[6] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  3304. ids_ptr[7] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  3305. ids_ptr[8] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  3306. ids_ptr[9] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  3307. ids_ptr[10] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  3308. ids_ptr[11] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  3309. uniforms.push_back(u);
  3310. }
  3311. sky_scene_state.sampler_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_SAMPLERS);
  3312. }
  3313. camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/quality/filters/depth_of_field_bokeh_shape"))));
  3314. camera_effects_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/quality/filters/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/quality/filters/depth_of_field_use_jitter"));
  3315. environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/quality/ssao/quality"))), GLOBAL_GET("rendering/quality/ssao/half_size"));
  3316. screen_space_roughness_limiter = GLOBAL_GET("rendering/quality/filters/screen_space_roughness_limiter");
  3317. screen_space_roughness_limiter_curve = GLOBAL_GET("rendering/quality/filters/screen_space_roughness_limiter_curve");
  3318. glow_bicubic_upscale = int(GLOBAL_GET("rendering/quality/glow/upscale_mode")) > 0;
  3319. ssr_roughness_quality = RS::EnvironmentSSRRoughnessQuality(int(GLOBAL_GET("rendering/quality/screen_space_reflection/roughness_quality")));
  3320. sss_quality = RS::SubSurfaceScatteringQuality(int(GLOBAL_GET("rendering/quality/subsurface_scattering/subsurface_scattering_quality")));
  3321. sss_scale = GLOBAL_GET("rendering/quality/subsurface_scattering/subsurface_scattering_scale");
  3322. sss_depth_scale = GLOBAL_GET("rendering/quality/subsurface_scattering/subsurface_scattering_depth_scale");
  3323. shadow_filter = RS::ShadowFilter(int(GLOBAL_GET("rendering/quality/shadows/filter_mode")));
  3324. }
  3325. RasterizerSceneRD::~RasterizerSceneRD() {
  3326. for (Map<Vector2i, ShadowMap>::Element *E = shadow_maps.front(); E; E = E->next()) {
  3327. RD::get_singleton()->free(E->get().depth);
  3328. }
  3329. for (Map<int, ShadowCubemap>::Element *E = shadow_cubemaps.front(); E; E = E->next()) {
  3330. RD::get_singleton()->free(E->get().cubemap);
  3331. }
  3332. if (sky_scene_state.sampler_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_scene_state.sampler_uniform_set)) {
  3333. RD::get_singleton()->free(sky_scene_state.sampler_uniform_set);
  3334. }
  3335. if (sky_scene_state.light_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_scene_state.light_uniform_set)) {
  3336. RD::get_singleton()->free(sky_scene_state.light_uniform_set);
  3337. }
  3338. RD::get_singleton()->free(gi_probe_lights_uniform);
  3339. giprobe_debug_shader.version_free(giprobe_debug_shader_version);
  3340. giprobe_shader.version_free(giprobe_lighting_shader_version);
  3341. memdelete_arr(gi_probe_lights);
  3342. SkyMaterialData *md = (SkyMaterialData *)storage->material_get_data(sky_shader.default_material, RasterizerStorageRD::SHADER_TYPE_SKY);
  3343. sky_shader.shader.version_free(md->shader_data->version);
  3344. RD::get_singleton()->free(sky_scene_state.directional_light_buffer);
  3345. memdelete_arr(sky_scene_state.directional_lights);
  3346. memdelete_arr(sky_scene_state.last_frame_directional_lights);
  3347. storage->free(sky_shader.default_shader);
  3348. storage->free(sky_shader.default_material);
  3349. }