mesh_storage.cpp 80 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203
  1. /**************************************************************************/
  2. /* mesh_storage.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #ifdef GLES3_ENABLED
  31. #include "mesh_storage.h"
  32. #include "material_storage.h"
  33. #include "utilities.h"
  34. using namespace GLES3;
  35. MeshStorage *MeshStorage::singleton = nullptr;
  36. MeshStorage *MeshStorage::get_singleton() {
  37. return singleton;
  38. }
  39. MeshStorage::MeshStorage() {
  40. singleton = this;
  41. {
  42. skeleton_shader.shader.initialize();
  43. skeleton_shader.shader_version = skeleton_shader.shader.version_create();
  44. }
  45. }
  46. MeshStorage::~MeshStorage() {
  47. singleton = nullptr;
  48. skeleton_shader.shader.version_free(skeleton_shader.shader_version);
  49. }
  50. /* MESH API */
  51. RID MeshStorage::mesh_allocate() {
  52. return mesh_owner.allocate_rid();
  53. }
  54. void MeshStorage::mesh_initialize(RID p_rid) {
  55. mesh_owner.initialize_rid(p_rid, Mesh());
  56. }
  57. void MeshStorage::mesh_free(RID p_rid) {
  58. mesh_clear(p_rid);
  59. mesh_set_shadow_mesh(p_rid, RID());
  60. Mesh *mesh = mesh_owner.get_or_null(p_rid);
  61. ERR_FAIL_NULL(mesh);
  62. mesh->dependency.deleted_notify(p_rid);
  63. if (mesh->instances.size()) {
  64. ERR_PRINT("deleting mesh with active instances");
  65. }
  66. if (mesh->shadow_owners.size()) {
  67. for (Mesh *E : mesh->shadow_owners) {
  68. Mesh *shadow_owner = E;
  69. shadow_owner->shadow_mesh = RID();
  70. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  71. }
  72. }
  73. mesh_owner.free(p_rid);
  74. }
  75. void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
  76. ERR_FAIL_COND(p_blend_shape_count < 0);
  77. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  78. ERR_FAIL_NULL(mesh);
  79. ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
  80. mesh->blend_shape_count = p_blend_shape_count;
  81. }
  82. bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
  83. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  84. ERR_FAIL_NULL_V(mesh, false);
  85. return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
  86. }
  87. void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
  88. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  89. ERR_FAIL_NULL(mesh);
  90. ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
  91. #ifdef DEBUG_ENABLED
  92. //do a validation, to catch errors first
  93. {
  94. uint32_t stride = 0;
  95. uint32_t attrib_stride = 0;
  96. uint32_t skin_stride = 0;
  97. for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
  98. if ((p_surface.format & (1ULL << i))) {
  99. switch (i) {
  100. case RS::ARRAY_VERTEX: {
  101. if ((p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) || (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  102. stride += sizeof(float) * 2;
  103. } else {
  104. stride += sizeof(float) * 3;
  105. }
  106. } break;
  107. case RS::ARRAY_NORMAL: {
  108. stride += sizeof(uint16_t) * 2;
  109. } break;
  110. case RS::ARRAY_TANGENT: {
  111. if (!(p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  112. stride += sizeof(uint16_t) * 2;
  113. }
  114. } break;
  115. case RS::ARRAY_COLOR: {
  116. attrib_stride += sizeof(uint32_t);
  117. } break;
  118. case RS::ARRAY_TEX_UV: {
  119. if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  120. attrib_stride += sizeof(uint16_t) * 2;
  121. } else {
  122. attrib_stride += sizeof(float) * 2;
  123. }
  124. } break;
  125. case RS::ARRAY_TEX_UV2: {
  126. if (p_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  127. attrib_stride += sizeof(uint16_t) * 2;
  128. } else {
  129. attrib_stride += sizeof(float) * 2;
  130. }
  131. } break;
  132. case RS::ARRAY_CUSTOM0:
  133. case RS::ARRAY_CUSTOM1:
  134. case RS::ARRAY_CUSTOM2:
  135. case RS::ARRAY_CUSTOM3: {
  136. int idx = i - RS::ARRAY_CUSTOM0;
  137. uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  138. uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  139. uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  140. attrib_stride += fmtsize[fmt];
  141. } break;
  142. case RS::ARRAY_WEIGHTS:
  143. case RS::ARRAY_BONES: {
  144. //uses a separate array
  145. bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  146. skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
  147. } break;
  148. }
  149. }
  150. }
  151. int expected_size = stride * p_surface.vertex_count;
  152. ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  153. int bs_expected_size = expected_size * mesh->blend_shape_count;
  154. ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
  155. int expected_attrib_size = attrib_stride * p_surface.vertex_count;
  156. ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
  157. if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
  158. expected_size = skin_stride * p_surface.vertex_count;
  159. ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  160. }
  161. }
  162. #endif
  163. uint64_t surface_version = p_surface.format & (uint64_t(RS::ARRAY_FLAG_FORMAT_VERSION_MASK) << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
  164. RS::SurfaceData new_surface = p_surface;
  165. #ifdef DISABLE_DEPRECATED
  166. ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION, "Surface version provided (" + itos(int(surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT)) + ") does not match current version (" + itos(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) + ")");
  167. #else
  168. if (surface_version != uint64_t(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION)) {
  169. RS::_fix_surface_compatibility(new_surface);
  170. surface_version = new_surface.format & (uint64_t(RS::ARRAY_FLAG_FORMAT_VERSION_MASK) << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
  171. ERR_FAIL_COND_MSG(surface_version != uint64_t(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION),
  172. "Surface version provided (" +
  173. itos((surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK) +
  174. ") does not match current version (" +
  175. itos((uint64_t(RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION) >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK) +
  176. ")");
  177. }
  178. #endif
  179. Mesh::Surface *s = memnew(Mesh::Surface);
  180. s->format = new_surface.format;
  181. s->primitive = new_surface.primitive;
  182. if (new_surface.vertex_data.size()) {
  183. glGenBuffers(1, &s->vertex_buffer);
  184. glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer);
  185. GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->vertex_buffer, new_surface.vertex_data.size(), new_surface.vertex_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh vertex buffer");
  186. s->vertex_buffer_size = new_surface.vertex_data.size();
  187. }
  188. if (new_surface.attribute_data.size()) {
  189. glGenBuffers(1, &s->attribute_buffer);
  190. glBindBuffer(GL_ARRAY_BUFFER, s->attribute_buffer);
  191. GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->attribute_buffer, new_surface.attribute_data.size(), new_surface.attribute_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh attribute buffer");
  192. s->attribute_buffer_size = new_surface.attribute_data.size();
  193. }
  194. if (new_surface.skin_data.size()) {
  195. glGenBuffers(1, &s->skin_buffer);
  196. glBindBuffer(GL_ARRAY_BUFFER, s->skin_buffer);
  197. GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->skin_buffer, new_surface.skin_data.size(), new_surface.skin_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh skin buffer");
  198. s->skin_buffer_size = new_surface.skin_data.size();
  199. }
  200. glBindBuffer(GL_ARRAY_BUFFER, 0);
  201. s->vertex_count = new_surface.vertex_count;
  202. if (new_surface.format & RS::ARRAY_FORMAT_BONES) {
  203. mesh->has_bone_weights = true;
  204. }
  205. if (new_surface.index_count) {
  206. bool is_index_16 = new_surface.vertex_count <= 65536 && new_surface.vertex_count > 0;
  207. glGenBuffers(1, &s->index_buffer);
  208. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_buffer);
  209. GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, s->index_buffer, new_surface.index_data.size(), new_surface.index_data.ptr(), GL_STATIC_DRAW, "Mesh index buffer");
  210. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
  211. s->index_count = new_surface.index_count;
  212. s->index_buffer_size = new_surface.index_data.size();
  213. if (new_surface.lods.size()) {
  214. s->lods = memnew_arr(Mesh::Surface::LOD, new_surface.lods.size());
  215. s->lod_count = new_surface.lods.size();
  216. for (int i = 0; i < new_surface.lods.size(); i++) {
  217. glGenBuffers(1, &s->lods[i].index_buffer);
  218. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->lods[i].index_buffer);
  219. GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, s->lods[i].index_buffer, new_surface.lods[i].index_data.size(), new_surface.lods[i].index_data.ptr(), GL_STATIC_DRAW, "Mesh index buffer LOD[" + itos(i) + "]");
  220. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
  221. s->lods[i].edge_length = new_surface.lods[i].edge_length;
  222. s->lods[i].index_count = new_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
  223. s->lods[i].index_buffer_size = new_surface.lods[i].index_data.size();
  224. }
  225. }
  226. }
  227. ERR_FAIL_COND_MSG(!new_surface.index_count && !new_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
  228. s->aabb = new_surface.aabb;
  229. s->bone_aabbs = new_surface.bone_aabbs; //only really useful for returning them.
  230. s->uv_scale = new_surface.uv_scale;
  231. if (new_surface.skin_data.size() || mesh->blend_shape_count > 0) {
  232. // Size must match the size of the vertex array.
  233. int size = new_surface.vertex_data.size();
  234. int vertex_size = 0;
  235. int position_stride = 0;
  236. int normal_tangent_stride = 0;
  237. int normal_offset = 0;
  238. int tangent_offset = 0;
  239. if ((new_surface.format & (1ULL << RS::ARRAY_VERTEX))) {
  240. if (new_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  241. vertex_size = 2;
  242. position_stride = sizeof(float) * vertex_size;
  243. } else {
  244. if (new_surface.format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  245. vertex_size = 4;
  246. position_stride = sizeof(uint16_t) * vertex_size;
  247. } else {
  248. vertex_size = 3;
  249. position_stride = sizeof(float) * vertex_size;
  250. }
  251. }
  252. }
  253. if ((new_surface.format & (1ULL << RS::ARRAY_NORMAL))) {
  254. normal_offset = position_stride * s->vertex_count;
  255. normal_tangent_stride += sizeof(uint16_t) * 2;
  256. }
  257. if ((new_surface.format & (1ULL << RS::ARRAY_TANGENT))) {
  258. tangent_offset = normal_offset + normal_tangent_stride;
  259. normal_tangent_stride += sizeof(uint16_t) * 2;
  260. }
  261. if (mesh->blend_shape_count > 0) {
  262. // Blend shapes are passed as one large array, for OpenGL, we need to split each of them into their own buffer
  263. s->blend_shapes = memnew_arr(Mesh::Surface::BlendShape, mesh->blend_shape_count);
  264. for (uint32_t i = 0; i < mesh->blend_shape_count; i++) {
  265. glGenVertexArrays(1, &s->blend_shapes[i].vertex_array);
  266. glBindVertexArray(s->blend_shapes[i].vertex_array);
  267. glGenBuffers(1, &s->blend_shapes[i].vertex_buffer);
  268. glBindBuffer(GL_ARRAY_BUFFER, s->blend_shapes[i].vertex_buffer);
  269. GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s->blend_shapes[i].vertex_buffer, size, new_surface.blend_shape_data.ptr() + i * size, (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW, "Mesh blend shape buffer");
  270. if ((new_surface.format & (1ULL << RS::ARRAY_VERTEX))) {
  271. glEnableVertexAttribArray(RS::ARRAY_VERTEX + 3);
  272. glVertexAttribPointer(RS::ARRAY_VERTEX + 3, vertex_size, GL_FLOAT, GL_FALSE, position_stride, CAST_INT_TO_UCHAR_PTR(0));
  273. }
  274. if ((new_surface.format & (1ULL << RS::ARRAY_NORMAL))) {
  275. // Normal and tangent are packed into the same attribute.
  276. glEnableVertexAttribArray(RS::ARRAY_NORMAL + 3);
  277. glVertexAttribPointer(RS::ARRAY_NORMAL + 3, 2, GL_UNSIGNED_SHORT, GL_TRUE, normal_tangent_stride, CAST_INT_TO_UCHAR_PTR(normal_offset));
  278. }
  279. if ((p_surface.format & (1ULL << RS::ARRAY_TANGENT))) {
  280. glEnableVertexAttribArray(RS::ARRAY_TANGENT + 3);
  281. glVertexAttribPointer(RS::ARRAY_TANGENT + 3, 2, GL_UNSIGNED_SHORT, GL_TRUE, normal_tangent_stride, CAST_INT_TO_UCHAR_PTR(tangent_offset));
  282. }
  283. }
  284. glBindVertexArray(0);
  285. glBindBuffer(GL_ARRAY_BUFFER, 0);
  286. }
  287. glBindVertexArray(0);
  288. glBindBuffer(GL_ARRAY_BUFFER, 0);
  289. }
  290. if (mesh->surface_count == 0) {
  291. mesh->aabb = new_surface.aabb;
  292. } else {
  293. mesh->aabb.merge_with(new_surface.aabb);
  294. }
  295. mesh->skeleton_aabb_version = 0;
  296. s->material = new_surface.material;
  297. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
  298. mesh->surfaces[mesh->surface_count] = s;
  299. mesh->surface_count++;
  300. for (MeshInstance *mi : mesh->instances) {
  301. _mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
  302. }
  303. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  304. for (Mesh *E : mesh->shadow_owners) {
  305. Mesh *shadow_owner = E;
  306. shadow_owner->shadow_mesh = RID();
  307. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  308. }
  309. mesh->material_cache.clear();
  310. }
  311. int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
  312. const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  313. ERR_FAIL_NULL_V(mesh, -1);
  314. return mesh->blend_shape_count;
  315. }
  316. void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
  317. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  318. ERR_FAIL_NULL(mesh);
  319. ERR_FAIL_INDEX((int)p_mode, 2);
  320. mesh->blend_shape_mode = p_mode;
  321. }
  322. RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
  323. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  324. ERR_FAIL_NULL_V(mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
  325. return mesh->blend_shape_mode;
  326. }
  327. void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  328. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  329. ERR_FAIL_NULL(mesh);
  330. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  331. ERR_FAIL_COND(p_data.size() == 0);
  332. uint64_t data_size = p_data.size();
  333. ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->vertex_buffer_size);
  334. const uint8_t *r = p_data.ptr();
  335. glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->vertex_buffer);
  336. glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r);
  337. glBindBuffer(GL_ARRAY_BUFFER, 0);
  338. }
  339. void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  340. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  341. ERR_FAIL_NULL(mesh);
  342. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  343. ERR_FAIL_COND(p_data.size() == 0);
  344. uint64_t data_size = p_data.size();
  345. ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->attribute_buffer_size);
  346. const uint8_t *r = p_data.ptr();
  347. glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->attribute_buffer);
  348. glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r);
  349. glBindBuffer(GL_ARRAY_BUFFER, 0);
  350. }
  351. void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  352. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  353. ERR_FAIL_NULL(mesh);
  354. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  355. ERR_FAIL_COND(p_data.size() == 0);
  356. uint64_t data_size = p_data.size();
  357. ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->skin_buffer_size);
  358. const uint8_t *r = p_data.ptr();
  359. glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->skin_buffer);
  360. glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r);
  361. glBindBuffer(GL_ARRAY_BUFFER, 0);
  362. }
  363. void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
  364. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  365. ERR_FAIL_NULL(mesh);
  366. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  367. mesh->surfaces[p_surface]->material = p_material;
  368. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
  369. mesh->material_cache.clear();
  370. }
  371. RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
  372. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  373. ERR_FAIL_NULL_V(mesh, RID());
  374. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
  375. return mesh->surfaces[p_surface]->material;
  376. }
  377. RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
  378. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  379. ERR_FAIL_NULL_V(mesh, RS::SurfaceData());
  380. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
  381. Mesh::Surface &s = *mesh->surfaces[p_surface];
  382. RS::SurfaceData sd;
  383. sd.format = s.format;
  384. if (s.vertex_buffer != 0) {
  385. sd.vertex_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.vertex_buffer, s.vertex_buffer_size);
  386. }
  387. if (s.attribute_buffer != 0) {
  388. sd.attribute_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.attribute_buffer, s.attribute_buffer_size);
  389. }
  390. if (s.skin_buffer != 0) {
  391. sd.skin_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.skin_buffer, s.skin_buffer_size);
  392. }
  393. sd.vertex_count = s.vertex_count;
  394. sd.index_count = s.index_count;
  395. sd.primitive = s.primitive;
  396. if (sd.index_count) {
  397. sd.index_data = Utilities::buffer_get_data(GL_ELEMENT_ARRAY_BUFFER, s.index_buffer, s.index_buffer_size);
  398. }
  399. sd.aabb = s.aabb;
  400. for (uint32_t i = 0; i < s.lod_count; i++) {
  401. RS::SurfaceData::LOD lod;
  402. lod.edge_length = s.lods[i].edge_length;
  403. lod.index_data = Utilities::buffer_get_data(GL_ELEMENT_ARRAY_BUFFER, s.lods[i].index_buffer, s.lods[i].index_buffer_size);
  404. sd.lods.push_back(lod);
  405. }
  406. sd.bone_aabbs = s.bone_aabbs;
  407. if (mesh->blend_shape_count) {
  408. sd.blend_shape_data = Vector<uint8_t>();
  409. for (uint32_t i = 0; i < mesh->blend_shape_count; i++) {
  410. sd.blend_shape_data.append_array(Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.blend_shapes[i].vertex_buffer, s.vertex_buffer_size));
  411. }
  412. }
  413. sd.uv_scale = s.uv_scale;
  414. return sd;
  415. }
  416. int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
  417. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  418. ERR_FAIL_NULL_V(mesh, 0);
  419. return mesh->surface_count;
  420. }
  421. void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
  422. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  423. ERR_FAIL_NULL(mesh);
  424. mesh->custom_aabb = p_aabb;
  425. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  426. }
  427. AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
  428. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  429. ERR_FAIL_NULL_V(mesh, AABB());
  430. return mesh->custom_aabb;
  431. }
  432. AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
  433. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  434. ERR_FAIL_NULL_V(mesh, AABB());
  435. if (mesh->custom_aabb != AABB()) {
  436. return mesh->custom_aabb;
  437. }
  438. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  439. if (!skeleton || skeleton->size == 0 || mesh->skeleton_aabb_version == skeleton->version) {
  440. return mesh->aabb;
  441. }
  442. // Calculate AABB based on Skeleton
  443. AABB aabb;
  444. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  445. AABB laabb;
  446. if ((mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->bone_aabbs.size()) {
  447. int bs = mesh->surfaces[i]->bone_aabbs.size();
  448. const AABB *skbones = mesh->surfaces[i]->bone_aabbs.ptr();
  449. int sbs = skeleton->size;
  450. ERR_CONTINUE(bs > sbs);
  451. const float *baseptr = skeleton->data.ptr();
  452. bool first = true;
  453. if (skeleton->use_2d) {
  454. for (int j = 0; j < bs; j++) {
  455. if (skbones[j].size == Vector3(-1, -1, -1)) {
  456. continue; //bone is unused
  457. }
  458. const float *dataptr = baseptr + j * 8;
  459. Transform3D mtx;
  460. mtx.basis.rows[0][0] = dataptr[0];
  461. mtx.basis.rows[0][1] = dataptr[1];
  462. mtx.origin.x = dataptr[3];
  463. mtx.basis.rows[1][0] = dataptr[4];
  464. mtx.basis.rows[1][1] = dataptr[5];
  465. mtx.origin.y = dataptr[7];
  466. AABB baabb = mtx.xform(skbones[j]);
  467. if (first) {
  468. laabb = baabb;
  469. first = false;
  470. } else {
  471. laabb.merge_with(baabb);
  472. }
  473. }
  474. } else {
  475. for (int j = 0; j < bs; j++) {
  476. if (skbones[j].size == Vector3(-1, -1, -1)) {
  477. continue; //bone is unused
  478. }
  479. const float *dataptr = baseptr + j * 12;
  480. Transform3D mtx;
  481. mtx.basis.rows[0][0] = dataptr[0];
  482. mtx.basis.rows[0][1] = dataptr[1];
  483. mtx.basis.rows[0][2] = dataptr[2];
  484. mtx.origin.x = dataptr[3];
  485. mtx.basis.rows[1][0] = dataptr[4];
  486. mtx.basis.rows[1][1] = dataptr[5];
  487. mtx.basis.rows[1][2] = dataptr[6];
  488. mtx.origin.y = dataptr[7];
  489. mtx.basis.rows[2][0] = dataptr[8];
  490. mtx.basis.rows[2][1] = dataptr[9];
  491. mtx.basis.rows[2][2] = dataptr[10];
  492. mtx.origin.z = dataptr[11];
  493. AABB baabb = mtx.xform(skbones[j]);
  494. if (first) {
  495. laabb = baabb;
  496. first = false;
  497. } else {
  498. laabb.merge_with(baabb);
  499. }
  500. }
  501. }
  502. if (laabb.size == Vector3()) {
  503. laabb = mesh->surfaces[i]->aabb;
  504. }
  505. } else {
  506. laabb = mesh->surfaces[i]->aabb;
  507. }
  508. if (i == 0) {
  509. aabb = laabb;
  510. } else {
  511. aabb.merge_with(laabb);
  512. }
  513. }
  514. mesh->aabb = aabb;
  515. mesh->skeleton_aabb_version = skeleton->version;
  516. return aabb;
  517. }
  518. void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
  519. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  520. ERR_FAIL_NULL(mesh);
  521. Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  522. if (shadow_mesh) {
  523. shadow_mesh->shadow_owners.erase(mesh);
  524. }
  525. mesh->shadow_mesh = p_shadow_mesh;
  526. shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  527. if (shadow_mesh) {
  528. shadow_mesh->shadow_owners.insert(mesh);
  529. }
  530. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  531. }
  532. void MeshStorage::mesh_clear(RID p_mesh) {
  533. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  534. ERR_FAIL_NULL(mesh);
  535. // Clear instance data before mesh data.
  536. for (MeshInstance *mi : mesh->instances) {
  537. _mesh_instance_clear(mi);
  538. }
  539. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  540. Mesh::Surface &s = *mesh->surfaces[i];
  541. if (s.vertex_buffer != 0) {
  542. GLES3::Utilities::get_singleton()->buffer_free_data(s.vertex_buffer);
  543. s.vertex_buffer = 0;
  544. }
  545. if (s.version_count != 0) {
  546. for (uint32_t j = 0; j < s.version_count; j++) {
  547. glDeleteVertexArrays(1, &s.versions[j].vertex_array);
  548. s.versions[j].vertex_array = 0;
  549. }
  550. }
  551. if (s.attribute_buffer != 0) {
  552. GLES3::Utilities::get_singleton()->buffer_free_data(s.attribute_buffer);
  553. s.attribute_buffer = 0;
  554. }
  555. if (s.skin_buffer != 0) {
  556. GLES3::Utilities::get_singleton()->buffer_free_data(s.skin_buffer);
  557. s.skin_buffer = 0;
  558. }
  559. if (s.index_buffer != 0) {
  560. GLES3::Utilities::get_singleton()->buffer_free_data(s.index_buffer);
  561. s.index_buffer = 0;
  562. }
  563. if (s.versions) {
  564. memfree(s.versions); //reallocs, so free with memfree.
  565. }
  566. if (s.lod_count) {
  567. for (uint32_t j = 0; j < s.lod_count; j++) {
  568. if (s.lods[j].index_buffer != 0) {
  569. GLES3::Utilities::get_singleton()->buffer_free_data(s.lods[j].index_buffer);
  570. s.lods[j].index_buffer = 0;
  571. }
  572. }
  573. memdelete_arr(s.lods);
  574. }
  575. if (mesh->blend_shape_count) {
  576. for (uint32_t j = 0; j < mesh->blend_shape_count; j++) {
  577. if (s.blend_shapes[j].vertex_buffer != 0) {
  578. GLES3::Utilities::get_singleton()->buffer_free_data(s.blend_shapes[j].vertex_buffer);
  579. s.blend_shapes[j].vertex_buffer = 0;
  580. }
  581. if (s.blend_shapes[j].vertex_array != 0) {
  582. glDeleteVertexArrays(1, &s.blend_shapes[j].vertex_array);
  583. s.blend_shapes[j].vertex_array = 0;
  584. }
  585. }
  586. memdelete_arr(s.blend_shapes);
  587. }
  588. memdelete(mesh->surfaces[i]);
  589. }
  590. if (mesh->surfaces) {
  591. memfree(mesh->surfaces);
  592. }
  593. mesh->surfaces = nullptr;
  594. mesh->surface_count = 0;
  595. mesh->material_cache.clear();
  596. mesh->has_bone_weights = false;
  597. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  598. for (Mesh *E : mesh->shadow_owners) {
  599. Mesh *shadow_owner = E;
  600. shadow_owner->shadow_mesh = RID();
  601. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  602. }
  603. }
  604. void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint64_t p_input_mask, MeshInstance::Surface *mis) {
  605. Mesh::Surface::Attrib attribs[RS::ARRAY_MAX];
  606. int position_stride = 0; // Vertex position only.
  607. int normal_tangent_stride = 0;
  608. int attributes_stride = 0;
  609. int skin_stride = 0;
  610. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  611. if (!(s->format & (1ULL << i))) {
  612. attribs[i].enabled = false;
  613. attribs[i].integer = false;
  614. continue;
  615. }
  616. attribs[i].enabled = true;
  617. attribs[i].integer = false;
  618. switch (i) {
  619. case RS::ARRAY_VERTEX: {
  620. attribs[i].offset = 0;
  621. attribs[i].type = GL_FLOAT;
  622. attribs[i].normalized = GL_FALSE;
  623. if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  624. attribs[i].size = 2;
  625. position_stride = attribs[i].size * sizeof(float);
  626. } else {
  627. if (!mis && (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  628. attribs[i].size = 4;
  629. position_stride = attribs[i].size * sizeof(uint16_t);
  630. attribs[i].type = GL_UNSIGNED_SHORT;
  631. attribs[i].normalized = GL_TRUE;
  632. } else {
  633. attribs[i].size = 3;
  634. position_stride = attribs[i].size * sizeof(float);
  635. }
  636. }
  637. } break;
  638. case RS::ARRAY_NORMAL: {
  639. if (!mis && (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES)) {
  640. attribs[i].size = 2;
  641. normal_tangent_stride += 2 * attribs[i].size;
  642. } else {
  643. attribs[i].size = 4;
  644. // A small trick here: if we are uncompressed and we have normals, but no tangents. We need
  645. // the shader to think there are 4 components to "axis_tangent_attrib". So we give a size of 4,
  646. // but a stride based on only having 2 elements.
  647. if (!(s->format & RS::ARRAY_FORMAT_TANGENT)) {
  648. normal_tangent_stride += (mis ? sizeof(float) : sizeof(uint16_t)) * 2;
  649. } else {
  650. normal_tangent_stride += (mis ? sizeof(float) : sizeof(uint16_t)) * 4;
  651. }
  652. }
  653. if (mis) {
  654. // Transform feedback has interleave all or no attributes. It can't mix interleaving.
  655. attribs[i].offset = position_stride;
  656. normal_tangent_stride += position_stride;
  657. position_stride = normal_tangent_stride;
  658. } else {
  659. attribs[i].offset = position_stride * s->vertex_count;
  660. }
  661. attribs[i].type = (mis ? GL_FLOAT : GL_UNSIGNED_SHORT);
  662. attribs[i].normalized = GL_TRUE;
  663. } break;
  664. case RS::ARRAY_TANGENT: {
  665. // We never use the tangent attribute. It is always packed in ARRAY_NORMAL, or ARRAY_VERTEX.
  666. attribs[i].enabled = false;
  667. attribs[i].integer = false;
  668. } break;
  669. case RS::ARRAY_COLOR: {
  670. attribs[i].offset = attributes_stride;
  671. attribs[i].size = 4;
  672. attribs[i].type = GL_UNSIGNED_BYTE;
  673. attributes_stride += 4;
  674. attribs[i].normalized = GL_TRUE;
  675. } break;
  676. case RS::ARRAY_TEX_UV: {
  677. attribs[i].offset = attributes_stride;
  678. attribs[i].size = 2;
  679. if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  680. attribs[i].type = GL_UNSIGNED_SHORT;
  681. attributes_stride += 2 * sizeof(uint16_t);
  682. attribs[i].normalized = GL_TRUE;
  683. } else {
  684. attribs[i].type = GL_FLOAT;
  685. attributes_stride += 2 * sizeof(float);
  686. attribs[i].normalized = GL_FALSE;
  687. }
  688. } break;
  689. case RS::ARRAY_TEX_UV2: {
  690. attribs[i].offset = attributes_stride;
  691. attribs[i].size = 2;
  692. if (s->format & RS::ARRAY_FLAG_COMPRESS_ATTRIBUTES) {
  693. attribs[i].type = GL_UNSIGNED_SHORT;
  694. attributes_stride += 2 * sizeof(uint16_t);
  695. attribs[i].normalized = GL_TRUE;
  696. } else {
  697. attribs[i].type = GL_FLOAT;
  698. attributes_stride += 2 * sizeof(float);
  699. attribs[i].normalized = GL_FALSE;
  700. }
  701. } break;
  702. case RS::ARRAY_CUSTOM0:
  703. case RS::ARRAY_CUSTOM1:
  704. case RS::ARRAY_CUSTOM2:
  705. case RS::ARRAY_CUSTOM3: {
  706. attribs[i].offset = attributes_stride;
  707. int idx = i - RS::ARRAY_CUSTOM0;
  708. uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  709. uint32_t fmt = (s->format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  710. uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  711. GLenum gl_type[RS::ARRAY_CUSTOM_MAX] = { GL_UNSIGNED_BYTE, GL_BYTE, GL_HALF_FLOAT, GL_HALF_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT };
  712. GLboolean norm[RS::ARRAY_CUSTOM_MAX] = { GL_TRUE, GL_TRUE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE };
  713. attribs[i].type = gl_type[fmt];
  714. attributes_stride += fmtsize[fmt];
  715. attribs[i].size = fmtsize[fmt] / sizeof(float);
  716. attribs[i].normalized = norm[fmt];
  717. } break;
  718. case RS::ARRAY_BONES: {
  719. attribs[i].offset = skin_stride;
  720. attribs[i].size = 4;
  721. attribs[i].type = GL_UNSIGNED_SHORT;
  722. skin_stride += 4 * sizeof(uint16_t);
  723. attribs[i].normalized = GL_FALSE;
  724. attribs[i].integer = true;
  725. } break;
  726. case RS::ARRAY_WEIGHTS: {
  727. attribs[i].offset = skin_stride;
  728. attribs[i].size = 4;
  729. attribs[i].type = GL_UNSIGNED_SHORT;
  730. skin_stride += 4 * sizeof(uint16_t);
  731. attribs[i].normalized = GL_TRUE;
  732. } break;
  733. }
  734. }
  735. glGenVertexArrays(1, &v.vertex_array);
  736. glBindVertexArray(v.vertex_array);
  737. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  738. if (!attribs[i].enabled) {
  739. glDisableVertexAttribArray(i);
  740. continue;
  741. }
  742. if (i <= RS::ARRAY_TANGENT) {
  743. attribs[i].stride = (i == RS::ARRAY_VERTEX) ? position_stride : normal_tangent_stride;
  744. if (mis) {
  745. glBindBuffer(GL_ARRAY_BUFFER, mis->vertex_buffer);
  746. } else {
  747. glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer);
  748. }
  749. } else if (i <= RS::ARRAY_CUSTOM3) {
  750. attribs[i].stride = attributes_stride;
  751. glBindBuffer(GL_ARRAY_BUFFER, s->attribute_buffer);
  752. } else {
  753. attribs[i].stride = skin_stride;
  754. glBindBuffer(GL_ARRAY_BUFFER, s->skin_buffer);
  755. }
  756. if (attribs[i].integer) {
  757. glVertexAttribIPointer(i, attribs[i].size, attribs[i].type, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset));
  758. } else {
  759. glVertexAttribPointer(i, attribs[i].size, attribs[i].type, attribs[i].normalized, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset));
  760. }
  761. glEnableVertexAttribArray(i);
  762. }
  763. // Do not bind index here as we want to switch between index buffers for LOD
  764. glBindVertexArray(0);
  765. glBindBuffer(GL_ARRAY_BUFFER, 0);
  766. v.input_mask = p_input_mask;
  767. }
  768. /* MESH INSTANCE API */
  769. RID MeshStorage::mesh_instance_create(RID p_base) {
  770. Mesh *mesh = mesh_owner.get_or_null(p_base);
  771. ERR_FAIL_NULL_V(mesh, RID());
  772. RID rid = mesh_instance_owner.make_rid();
  773. MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
  774. mi->mesh = mesh;
  775. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  776. _mesh_instance_add_surface(mi, mesh, i);
  777. }
  778. mi->I = mesh->instances.push_back(mi);
  779. mi->dirty = true;
  780. return rid;
  781. }
  782. void MeshStorage::mesh_instance_free(RID p_rid) {
  783. MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
  784. _mesh_instance_clear(mi);
  785. mi->mesh->instances.erase(mi->I);
  786. mi->I = nullptr;
  787. mesh_instance_owner.free(p_rid);
  788. }
  789. void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
  790. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  791. if (mi->skeleton == p_skeleton) {
  792. return;
  793. }
  794. mi->skeleton = p_skeleton;
  795. mi->skeleton_version = 0;
  796. mi->dirty = true;
  797. }
  798. void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
  799. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  800. ERR_FAIL_NULL(mi);
  801. ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
  802. mi->blend_weights[p_shape] = p_weight;
  803. mi->dirty = true;
  804. }
  805. void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
  806. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  807. if (mi->surfaces[i].version_count != 0) {
  808. for (uint32_t j = 0; j < mi->surfaces[i].version_count; j++) {
  809. glDeleteVertexArrays(1, &mi->surfaces[i].versions[j].vertex_array);
  810. mi->surfaces[i].versions[j].vertex_array = 0;
  811. }
  812. memfree(mi->surfaces[i].versions);
  813. }
  814. if (mi->surfaces[i].vertex_buffers[0] != 0) {
  815. GLES3::Utilities::get_singleton()->buffer_free_data(mi->surfaces[i].vertex_buffers[0]);
  816. GLES3::Utilities::get_singleton()->buffer_free_data(mi->surfaces[i].vertex_buffers[1]);
  817. mi->surfaces[i].vertex_buffers[0] = 0;
  818. mi->surfaces[i].vertex_buffers[1] = 0;
  819. }
  820. if (mi->surfaces[i].vertex_buffer != 0) {
  821. GLES3::Utilities::get_singleton()->buffer_free_data(mi->surfaces[i].vertex_buffer);
  822. mi->surfaces[i].vertex_buffer = 0;
  823. }
  824. }
  825. mi->surfaces.clear();
  826. mi->blend_weights.clear();
  827. mi->skeleton_version = 0;
  828. }
  829. void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
  830. if (mesh->blend_shape_count > 0) {
  831. mi->blend_weights.resize(mesh->blend_shape_count);
  832. for (uint32_t i = 0; i < mi->blend_weights.size(); i++) {
  833. mi->blend_weights[i] = 0.0;
  834. }
  835. }
  836. MeshInstance::Surface s;
  837. if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) {
  838. // Cache surface properties
  839. s.format_cache = mesh->surfaces[p_surface]->format;
  840. if ((s.format_cache & (1ULL << RS::ARRAY_VERTEX))) {
  841. if (s.format_cache & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  842. s.vertex_size_cache = 2;
  843. } else {
  844. s.vertex_size_cache = 3;
  845. }
  846. s.vertex_stride_cache = sizeof(float) * s.vertex_size_cache;
  847. }
  848. if ((s.format_cache & (1ULL << RS::ARRAY_NORMAL))) {
  849. s.vertex_normal_offset_cache = s.vertex_stride_cache;
  850. s.vertex_stride_cache += sizeof(uint32_t) * 2;
  851. }
  852. if ((s.format_cache & (1ULL << RS::ARRAY_TANGENT))) {
  853. s.vertex_tangent_offset_cache = s.vertex_stride_cache;
  854. s.vertex_stride_cache += sizeof(uint32_t) * 2;
  855. }
  856. int buffer_size = s.vertex_stride_cache * mesh->surfaces[p_surface]->vertex_count;
  857. // Buffer to be used for rendering. Final output of skeleton and blend shapes.
  858. glGenBuffers(1, &s.vertex_buffer);
  859. glBindBuffer(GL_ARRAY_BUFFER, s.vertex_buffer);
  860. GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s.vertex_buffer, buffer_size, nullptr, GL_DYNAMIC_DRAW, "MeshInstance vertex buffer");
  861. if (mesh->blend_shape_count > 0) {
  862. // Ping-Pong buffers for processing blendshapes.
  863. glGenBuffers(2, s.vertex_buffers);
  864. for (uint32_t i = 0; i < 2; i++) {
  865. glBindBuffer(GL_ARRAY_BUFFER, s.vertex_buffers[i]);
  866. GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, s.vertex_buffers[i], buffer_size, nullptr, GL_DYNAMIC_DRAW, "MeshInstance process buffer[" + itos(i) + "]");
  867. }
  868. }
  869. glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
  870. }
  871. mi->surfaces.push_back(s);
  872. mi->dirty = true;
  873. }
  874. void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
  875. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  876. bool needs_update = mi->dirty;
  877. if (mi->array_update_list.in_list()) {
  878. return;
  879. }
  880. if (!needs_update && mi->skeleton.is_valid()) {
  881. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  882. if (sk && sk->version != mi->skeleton_version) {
  883. needs_update = true;
  884. }
  885. }
  886. if (needs_update) {
  887. dirty_mesh_instance_arrays.add(&mi->array_update_list);
  888. }
  889. }
  890. void MeshStorage::mesh_instance_set_canvas_item_transform(RID p_mesh_instance, const Transform2D &p_transform) {
  891. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  892. mi->canvas_item_transform_2d = p_transform;
  893. }
  894. void MeshStorage::_blend_shape_bind_mesh_instance_buffer(MeshInstance *p_mi, uint32_t p_surface) {
  895. glBindBuffer(GL_ARRAY_BUFFER, p_mi->surfaces[p_surface].vertex_buffers[0]);
  896. if ((p_mi->surfaces[p_surface].format_cache & (1ULL << RS::ARRAY_VERTEX))) {
  897. glEnableVertexAttribArray(RS::ARRAY_VERTEX);
  898. glVertexAttribPointer(RS::ARRAY_VERTEX, p_mi->surfaces[p_surface].vertex_size_cache, GL_FLOAT, GL_FALSE, p_mi->surfaces[p_surface].vertex_stride_cache, CAST_INT_TO_UCHAR_PTR(0));
  899. } else {
  900. glDisableVertexAttribArray(RS::ARRAY_VERTEX);
  901. }
  902. if ((p_mi->surfaces[p_surface].format_cache & (1ULL << RS::ARRAY_NORMAL))) {
  903. glEnableVertexAttribArray(RS::ARRAY_NORMAL);
  904. glVertexAttribIPointer(RS::ARRAY_NORMAL, 2, GL_UNSIGNED_INT, p_mi->surfaces[p_surface].vertex_stride_cache, CAST_INT_TO_UCHAR_PTR(p_mi->surfaces[p_surface].vertex_normal_offset_cache));
  905. } else {
  906. glDisableVertexAttribArray(RS::ARRAY_NORMAL);
  907. }
  908. if ((p_mi->surfaces[p_surface].format_cache & (1ULL << RS::ARRAY_TANGENT))) {
  909. glEnableVertexAttribArray(RS::ARRAY_TANGENT);
  910. glVertexAttribIPointer(RS::ARRAY_TANGENT, 2, GL_UNSIGNED_INT, p_mi->surfaces[p_surface].vertex_stride_cache, CAST_INT_TO_UCHAR_PTR(p_mi->surfaces[p_surface].vertex_tangent_offset_cache));
  911. } else {
  912. glDisableVertexAttribArray(RS::ARRAY_TANGENT);
  913. }
  914. }
  915. void MeshStorage::_compute_skeleton(MeshInstance *p_mi, Skeleton *p_sk, uint32_t p_surface) {
  916. glBindBuffer(GL_ARRAY_BUFFER, 0);
  917. // Add in the bones and weights.
  918. glBindBuffer(GL_ARRAY_BUFFER, p_mi->mesh->surfaces[p_surface]->skin_buffer);
  919. bool use_8_weights = p_mi->surfaces[p_surface].format_cache & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  920. int skin_stride = sizeof(int16_t) * (use_8_weights ? 16 : 8);
  921. glEnableVertexAttribArray(RS::ARRAY_BONES);
  922. glVertexAttribIPointer(RS::ARRAY_BONES, 4, GL_UNSIGNED_SHORT, skin_stride, CAST_INT_TO_UCHAR_PTR(0));
  923. if (use_8_weights) {
  924. glEnableVertexAttribArray(11);
  925. glVertexAttribIPointer(11, 4, GL_UNSIGNED_SHORT, skin_stride, CAST_INT_TO_UCHAR_PTR(4 * sizeof(uint16_t)));
  926. glEnableVertexAttribArray(12);
  927. glVertexAttribPointer(12, 4, GL_UNSIGNED_SHORT, GL_TRUE, skin_stride, CAST_INT_TO_UCHAR_PTR(8 * sizeof(uint16_t)));
  928. glEnableVertexAttribArray(13);
  929. glVertexAttribPointer(13, 4, GL_UNSIGNED_SHORT, GL_TRUE, skin_stride, CAST_INT_TO_UCHAR_PTR(12 * sizeof(uint16_t)));
  930. } else {
  931. glEnableVertexAttribArray(RS::ARRAY_WEIGHTS);
  932. glVertexAttribPointer(RS::ARRAY_WEIGHTS, 4, GL_UNSIGNED_SHORT, GL_TRUE, skin_stride, CAST_INT_TO_UCHAR_PTR(4 * sizeof(uint16_t)));
  933. }
  934. glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, p_mi->surfaces[p_surface].vertex_buffer);
  935. glActiveTexture(GL_TEXTURE0);
  936. glBindTexture(GL_TEXTURE_2D, p_sk->transforms_texture);
  937. glBeginTransformFeedback(GL_POINTS);
  938. glDrawArrays(GL_POINTS, 0, p_mi->mesh->surfaces[p_surface]->vertex_count);
  939. glEndTransformFeedback();
  940. glDisableVertexAttribArray(RS::ARRAY_BONES);
  941. glDisableVertexAttribArray(RS::ARRAY_WEIGHTS);
  942. glDisableVertexAttribArray(RS::ARRAY_BONES + 2);
  943. glDisableVertexAttribArray(RS::ARRAY_WEIGHTS + 2);
  944. glBindVertexArray(0);
  945. glBindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, 0);
  946. }
  947. void MeshStorage::update_mesh_instances() {
  948. if (dirty_mesh_instance_arrays.first() == nullptr) {
  949. return; //nothing to do
  950. }
  951. glEnable(GL_RASTERIZER_DISCARD);
  952. glBindFramebuffer(GL_FRAMEBUFFER, 0);
  953. // Process skeletons and blend shapes using transform feedback
  954. while (dirty_mesh_instance_arrays.first()) {
  955. MeshInstance *mi = dirty_mesh_instance_arrays.first()->self();
  956. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  957. // Precompute base weight if using blend shapes.
  958. float base_weight = 1.0;
  959. if (mi->mesh->blend_shape_count && mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED) {
  960. for (uint32_t i = 0; i < mi->mesh->blend_shape_count; i++) {
  961. base_weight -= mi->blend_weights[i];
  962. }
  963. }
  964. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  965. if (mi->surfaces[i].vertex_buffer == 0) {
  966. continue;
  967. }
  968. bool array_is_2d = mi->surfaces[i].format_cache & RS::ARRAY_FLAG_USE_2D_VERTICES;
  969. bool can_use_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->surfaces[i].format_cache & RS::ARRAY_FORMAT_BONES);
  970. bool use_8_weights = mi->surfaces[i].format_cache & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  971. // Always process blend shapes first.
  972. if (mi->mesh->blend_shape_count) {
  973. SkeletonShaderGLES3::ShaderVariant variant = SkeletonShaderGLES3::MODE_BASE_PASS;
  974. uint64_t specialization = 0;
  975. specialization |= array_is_2d ? SkeletonShaderGLES3::MODE_2D : 0;
  976. specialization |= SkeletonShaderGLES3::USE_BLEND_SHAPES;
  977. if (!array_is_2d) {
  978. if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_NORMAL))) {
  979. specialization |= SkeletonShaderGLES3::USE_NORMAL;
  980. }
  981. if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_TANGENT))) {
  982. specialization |= SkeletonShaderGLES3::USE_TANGENT;
  983. }
  984. }
  985. bool success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
  986. if (!success) {
  987. continue;
  988. }
  989. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_WEIGHT, base_weight, skeleton_shader.shader_version, variant, specialization);
  990. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_SHAPE_COUNT, float(mi->mesh->blend_shape_count), skeleton_shader.shader_version, variant, specialization);
  991. glBindBuffer(GL_ARRAY_BUFFER, 0);
  992. GLuint vertex_array_gl = 0;
  993. uint64_t mask = ((1 << 10) - 1) << 3; // Mask from ARRAY_FORMAT_COLOR to ARRAY_FORMAT_INDEX.
  994. mask = ~mask;
  995. uint64_t format = mi->surfaces[i].format_cache & mask; // Format should only have vertex, normal, tangent (as necessary) + compressions.
  996. mesh_surface_get_vertex_arrays_and_format(mi->mesh->surfaces[i], format, vertex_array_gl);
  997. glBindVertexArray(vertex_array_gl);
  998. glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, mi->surfaces[i].vertex_buffers[0]);
  999. glBeginTransformFeedback(GL_POINTS);
  1000. glDrawArrays(GL_POINTS, 0, mi->mesh->surfaces[i]->vertex_count);
  1001. glEndTransformFeedback();
  1002. variant = SkeletonShaderGLES3::MODE_BLEND_PASS;
  1003. success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
  1004. if (!success) {
  1005. continue;
  1006. }
  1007. //Do the last blend shape separately, as it can be combined with the skeleton pass.
  1008. for (uint32_t bs = 0; bs < mi->mesh->blend_shape_count - 1; bs++) {
  1009. float weight = mi->blend_weights[bs];
  1010. if (Math::is_zero_approx(weight)) {
  1011. //not bother with this one
  1012. continue;
  1013. }
  1014. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_WEIGHT, weight, skeleton_shader.shader_version, variant, specialization);
  1015. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_SHAPE_COUNT, float(mi->mesh->blend_shape_count), skeleton_shader.shader_version, variant, specialization);
  1016. glBindVertexArray(mi->mesh->surfaces[i]->blend_shapes[bs].vertex_array);
  1017. _blend_shape_bind_mesh_instance_buffer(mi, i);
  1018. glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, mi->surfaces[i].vertex_buffers[1]);
  1019. glBeginTransformFeedback(GL_POINTS);
  1020. glDrawArrays(GL_POINTS, 0, mi->mesh->surfaces[i]->vertex_count);
  1021. glEndTransformFeedback();
  1022. SWAP(mi->surfaces[i].vertex_buffers[0], mi->surfaces[i].vertex_buffers[1]);
  1023. }
  1024. uint32_t bs = mi->mesh->blend_shape_count - 1;
  1025. float weight = mi->blend_weights[bs];
  1026. glBindVertexArray(mi->mesh->surfaces[i]->blend_shapes[bs].vertex_array);
  1027. _blend_shape_bind_mesh_instance_buffer(mi, i);
  1028. specialization |= can_use_skeleton ? SkeletonShaderGLES3::USE_SKELETON : 0;
  1029. specialization |= (can_use_skeleton && use_8_weights) ? SkeletonShaderGLES3::USE_EIGHT_WEIGHTS : 0;
  1030. specialization |= SkeletonShaderGLES3::FINAL_PASS;
  1031. success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
  1032. if (!success) {
  1033. continue;
  1034. }
  1035. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_WEIGHT, weight, skeleton_shader.shader_version, variant, specialization);
  1036. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_SHAPE_COUNT, float(mi->mesh->blend_shape_count), skeleton_shader.shader_version, variant, specialization);
  1037. if (can_use_skeleton) {
  1038. Transform2D transform = mi->canvas_item_transform_2d.affine_inverse() * sk->base_transform_2d;
  1039. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_X, transform[0], skeleton_shader.shader_version, variant, specialization);
  1040. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_Y, transform[1], skeleton_shader.shader_version, variant, specialization);
  1041. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_OFFSET, transform[2], skeleton_shader.shader_version, variant, specialization);
  1042. Transform2D inverse_transform = transform.affine_inverse();
  1043. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_X, inverse_transform[0], skeleton_shader.shader_version, variant, specialization);
  1044. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_Y, inverse_transform[1], skeleton_shader.shader_version, variant, specialization);
  1045. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_OFFSET, inverse_transform[2], skeleton_shader.shader_version, variant, specialization);
  1046. // Do last blendshape in the same pass as the Skeleton.
  1047. _compute_skeleton(mi, sk, i);
  1048. can_use_skeleton = false;
  1049. } else {
  1050. // Do last blendshape by itself and prepare vertex data for use by the renderer.
  1051. glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, mi->surfaces[i].vertex_buffer);
  1052. glBeginTransformFeedback(GL_POINTS);
  1053. glDrawArrays(GL_POINTS, 0, mi->mesh->surfaces[i]->vertex_count);
  1054. glEndTransformFeedback();
  1055. }
  1056. glBindVertexArray(0);
  1057. glBindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, 0);
  1058. }
  1059. // This branch should only execute when Skeleton is run by itself.
  1060. if (can_use_skeleton) {
  1061. SkeletonShaderGLES3::ShaderVariant variant = SkeletonShaderGLES3::MODE_BASE_PASS;
  1062. uint64_t specialization = 0;
  1063. specialization |= array_is_2d ? SkeletonShaderGLES3::MODE_2D : 0;
  1064. specialization |= SkeletonShaderGLES3::USE_SKELETON;
  1065. specialization |= SkeletonShaderGLES3::FINAL_PASS;
  1066. specialization |= use_8_weights ? SkeletonShaderGLES3::USE_EIGHT_WEIGHTS : 0;
  1067. if (!array_is_2d) {
  1068. if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_NORMAL))) {
  1069. specialization |= SkeletonShaderGLES3::USE_NORMAL;
  1070. }
  1071. if ((mi->surfaces[i].format_cache & (1ULL << RS::ARRAY_TANGENT))) {
  1072. specialization |= SkeletonShaderGLES3::USE_TANGENT;
  1073. }
  1074. }
  1075. bool success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
  1076. if (!success) {
  1077. continue;
  1078. }
  1079. Transform2D transform = mi->canvas_item_transform_2d.affine_inverse() * sk->base_transform_2d;
  1080. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_X, transform[0], skeleton_shader.shader_version, variant, specialization);
  1081. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_Y, transform[1], skeleton_shader.shader_version, variant, specialization);
  1082. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::SKELETON_TRANSFORM_OFFSET, transform[2], skeleton_shader.shader_version, variant, specialization);
  1083. Transform2D inverse_transform = transform.affine_inverse();
  1084. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_X, inverse_transform[0], skeleton_shader.shader_version, variant, specialization);
  1085. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_Y, inverse_transform[1], skeleton_shader.shader_version, variant, specialization);
  1086. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::INVERSE_TRANSFORM_OFFSET, inverse_transform[2], skeleton_shader.shader_version, variant, specialization);
  1087. GLuint vertex_array_gl = 0;
  1088. uint64_t mask = ((1 << 10) - 1) << 3; // Mask from ARRAY_FORMAT_COLOR to ARRAY_FORMAT_INDEX.
  1089. mask = ~mask;
  1090. uint64_t format = mi->surfaces[i].format_cache & mask; // Format should only have vertex, normal, tangent (as necessary) + compressions.
  1091. mesh_surface_get_vertex_arrays_and_format(mi->mesh->surfaces[i], format, vertex_array_gl);
  1092. glBindVertexArray(vertex_array_gl);
  1093. _compute_skeleton(mi, sk, i);
  1094. }
  1095. }
  1096. mi->dirty = false;
  1097. if (sk) {
  1098. mi->skeleton_version = sk->version;
  1099. }
  1100. dirty_mesh_instance_arrays.remove(&mi->array_update_list);
  1101. }
  1102. glDisable(GL_RASTERIZER_DISCARD);
  1103. glBindBuffer(GL_ARRAY_BUFFER, 0);
  1104. glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, 0);
  1105. }
  1106. /* MULTIMESH API */
  1107. RID MeshStorage::multimesh_allocate() {
  1108. return multimesh_owner.allocate_rid();
  1109. }
  1110. void MeshStorage::multimesh_initialize(RID p_rid) {
  1111. multimesh_owner.initialize_rid(p_rid, MultiMesh());
  1112. }
  1113. void MeshStorage::multimesh_free(RID p_rid) {
  1114. _update_dirty_multimeshes();
  1115. multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
  1116. MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
  1117. multimesh->dependency.deleted_notify(p_rid);
  1118. multimesh_owner.free(p_rid);
  1119. }
  1120. void MeshStorage::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) {
  1121. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1122. ERR_FAIL_NULL(multimesh);
  1123. if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
  1124. return;
  1125. }
  1126. if (multimesh->buffer) {
  1127. GLES3::Utilities::get_singleton()->buffer_free_data(multimesh->buffer);
  1128. multimesh->buffer = 0;
  1129. }
  1130. if (multimesh->data_cache_dirty_regions) {
  1131. memdelete_arr(multimesh->data_cache_dirty_regions);
  1132. multimesh->data_cache_dirty_regions = nullptr;
  1133. multimesh->data_cache_used_dirty_regions = 0;
  1134. }
  1135. // If we have either color or custom data, reserve space for both to make data handling logic simpler.
  1136. // This way we can always treat them both as a single, compressed uvec4.
  1137. int color_and_custom_strides = (p_use_colors || p_use_custom_data) ? 2 : 0;
  1138. multimesh->instances = p_instances;
  1139. multimesh->xform_format = p_transform_format;
  1140. multimesh->uses_colors = p_use_colors;
  1141. multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1142. multimesh->uses_custom_data = p_use_custom_data;
  1143. multimesh->custom_data_offset_cache = multimesh->color_offset_cache + color_and_custom_strides;
  1144. multimesh->stride_cache = multimesh->custom_data_offset_cache + color_and_custom_strides;
  1145. multimesh->buffer_set = false;
  1146. multimesh->data_cache = Vector<float>();
  1147. multimesh->aabb = AABB();
  1148. multimesh->aabb_dirty = false;
  1149. multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
  1150. if (multimesh->instances) {
  1151. glGenBuffers(1, &multimesh->buffer);
  1152. glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
  1153. GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float), nullptr, GL_STATIC_DRAW, "MultiMesh buffer");
  1154. glBindBuffer(GL_ARRAY_BUFFER, 0);
  1155. }
  1156. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1157. }
  1158. int MeshStorage::multimesh_get_instance_count(RID p_multimesh) const {
  1159. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1160. ERR_FAIL_NULL_V(multimesh, 0);
  1161. return multimesh->instances;
  1162. }
  1163. void MeshStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
  1164. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1165. ERR_FAIL_NULL(multimesh);
  1166. if (multimesh->mesh == p_mesh || p_mesh.is_null()) {
  1167. return;
  1168. }
  1169. multimesh->mesh = p_mesh;
  1170. if (multimesh->instances == 0) {
  1171. return;
  1172. }
  1173. if (multimesh->data_cache.size()) {
  1174. //we have a data cache, just mark it dirty
  1175. _multimesh_mark_all_dirty(multimesh, false, true);
  1176. } else if (multimesh->instances) {
  1177. // Need to re-create AABB. Unfortunately, calling this has a penalty.
  1178. if (multimesh->buffer_set) {
  1179. Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float));
  1180. const uint8_t *r = buffer.ptr();
  1181. const float *data = (const float *)r;
  1182. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1183. }
  1184. }
  1185. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  1186. }
  1187. #define MULTIMESH_DIRTY_REGION_SIZE 512
  1188. void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
  1189. if (multimesh->data_cache.size() > 0 || multimesh->instances == 0) {
  1190. return; //already local
  1191. }
  1192. ERR_FAIL_COND(multimesh->data_cache.size() > 0);
  1193. // this means that the user wants to load/save individual elements,
  1194. // for this, the data must reside on CPU, so just copy it there.
  1195. multimesh->data_cache.resize(multimesh->instances * multimesh->stride_cache);
  1196. {
  1197. float *w = multimesh->data_cache.ptrw();
  1198. if (multimesh->buffer_set) {
  1199. Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float));
  1200. {
  1201. const uint8_t *r = buffer.ptr();
  1202. memcpy(w, r, buffer.size());
  1203. }
  1204. } else {
  1205. memset(w, 0, (size_t)multimesh->instances * multimesh->stride_cache * sizeof(float));
  1206. }
  1207. }
  1208. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1209. multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1210. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1211. multimesh->data_cache_dirty_regions[i] = false;
  1212. }
  1213. multimesh->data_cache_used_dirty_regions = 0;
  1214. }
  1215. void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
  1216. uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
  1217. #ifdef DEBUG_ENABLED
  1218. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1219. ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
  1220. #endif
  1221. if (!multimesh->data_cache_dirty_regions[region_index]) {
  1222. multimesh->data_cache_dirty_regions[region_index] = true;
  1223. multimesh->data_cache_used_dirty_regions++;
  1224. }
  1225. if (p_aabb) {
  1226. multimesh->aabb_dirty = true;
  1227. }
  1228. if (!multimesh->dirty) {
  1229. multimesh->dirty_list = multimesh_dirty_list;
  1230. multimesh_dirty_list = multimesh;
  1231. multimesh->dirty = true;
  1232. }
  1233. }
  1234. void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
  1235. if (p_data) {
  1236. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1237. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1238. if (!multimesh->data_cache_dirty_regions[i]) {
  1239. multimesh->data_cache_dirty_regions[i] = true;
  1240. multimesh->data_cache_used_dirty_regions++;
  1241. }
  1242. }
  1243. }
  1244. if (p_aabb) {
  1245. multimesh->aabb_dirty = true;
  1246. }
  1247. if (!multimesh->dirty) {
  1248. multimesh->dirty_list = multimesh_dirty_list;
  1249. multimesh_dirty_list = multimesh;
  1250. multimesh->dirty = true;
  1251. }
  1252. }
  1253. void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
  1254. ERR_FAIL_COND(multimesh->mesh.is_null());
  1255. AABB aabb;
  1256. AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
  1257. for (int i = 0; i < p_instances; i++) {
  1258. const float *data = p_data + multimesh->stride_cache * i;
  1259. Transform3D t;
  1260. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1261. t.basis.rows[0][0] = data[0];
  1262. t.basis.rows[0][1] = data[1];
  1263. t.basis.rows[0][2] = data[2];
  1264. t.origin.x = data[3];
  1265. t.basis.rows[1][0] = data[4];
  1266. t.basis.rows[1][1] = data[5];
  1267. t.basis.rows[1][2] = data[6];
  1268. t.origin.y = data[7];
  1269. t.basis.rows[2][0] = data[8];
  1270. t.basis.rows[2][1] = data[9];
  1271. t.basis.rows[2][2] = data[10];
  1272. t.origin.z = data[11];
  1273. } else {
  1274. t.basis.rows[0][0] = data[0];
  1275. t.basis.rows[0][1] = data[1];
  1276. t.origin.x = data[3];
  1277. t.basis.rows[1][0] = data[4];
  1278. t.basis.rows[1][1] = data[5];
  1279. t.origin.y = data[7];
  1280. }
  1281. if (i == 0) {
  1282. aabb = t.xform(mesh_aabb);
  1283. } else {
  1284. aabb.merge_with(t.xform(mesh_aabb));
  1285. }
  1286. }
  1287. multimesh->aabb = aabb;
  1288. }
  1289. void MeshStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
  1290. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1291. ERR_FAIL_NULL(multimesh);
  1292. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1293. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
  1294. _multimesh_make_local(multimesh);
  1295. {
  1296. float *w = multimesh->data_cache.ptrw();
  1297. float *dataptr = w + p_index * multimesh->stride_cache;
  1298. dataptr[0] = p_transform.basis.rows[0][0];
  1299. dataptr[1] = p_transform.basis.rows[0][1];
  1300. dataptr[2] = p_transform.basis.rows[0][2];
  1301. dataptr[3] = p_transform.origin.x;
  1302. dataptr[4] = p_transform.basis.rows[1][0];
  1303. dataptr[5] = p_transform.basis.rows[1][1];
  1304. dataptr[6] = p_transform.basis.rows[1][2];
  1305. dataptr[7] = p_transform.origin.y;
  1306. dataptr[8] = p_transform.basis.rows[2][0];
  1307. dataptr[9] = p_transform.basis.rows[2][1];
  1308. dataptr[10] = p_transform.basis.rows[2][2];
  1309. dataptr[11] = p_transform.origin.z;
  1310. }
  1311. _multimesh_mark_dirty(multimesh, p_index, true);
  1312. }
  1313. void MeshStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
  1314. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1315. ERR_FAIL_NULL(multimesh);
  1316. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1317. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
  1318. _multimesh_make_local(multimesh);
  1319. {
  1320. float *w = multimesh->data_cache.ptrw();
  1321. float *dataptr = w + p_index * multimesh->stride_cache;
  1322. dataptr[0] = p_transform.columns[0][0];
  1323. dataptr[1] = p_transform.columns[1][0];
  1324. dataptr[2] = 0;
  1325. dataptr[3] = p_transform.columns[2][0];
  1326. dataptr[4] = p_transform.columns[0][1];
  1327. dataptr[5] = p_transform.columns[1][1];
  1328. dataptr[6] = 0;
  1329. dataptr[7] = p_transform.columns[2][1];
  1330. }
  1331. _multimesh_mark_dirty(multimesh, p_index, true);
  1332. }
  1333. void MeshStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
  1334. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1335. ERR_FAIL_NULL(multimesh);
  1336. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1337. ERR_FAIL_COND(!multimesh->uses_colors);
  1338. _multimesh_make_local(multimesh);
  1339. {
  1340. // Colors are packed into 2 floats.
  1341. float *w = multimesh->data_cache.ptrw();
  1342. float *dataptr = w + p_index * multimesh->stride_cache + multimesh->color_offset_cache;
  1343. uint16_t val[4] = { Math::make_half_float(p_color.r), Math::make_half_float(p_color.g), Math::make_half_float(p_color.b), Math::make_half_float(p_color.a) };
  1344. memcpy(dataptr, val, 2 * 4);
  1345. }
  1346. _multimesh_mark_dirty(multimesh, p_index, false);
  1347. }
  1348. void MeshStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
  1349. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1350. ERR_FAIL_NULL(multimesh);
  1351. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1352. ERR_FAIL_COND(!multimesh->uses_custom_data);
  1353. _multimesh_make_local(multimesh);
  1354. {
  1355. float *w = multimesh->data_cache.ptrw();
  1356. float *dataptr = w + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1357. uint16_t val[4] = { Math::make_half_float(p_color.r), Math::make_half_float(p_color.g), Math::make_half_float(p_color.b), Math::make_half_float(p_color.a) };
  1358. memcpy(dataptr, val, 2 * 4);
  1359. }
  1360. _multimesh_mark_dirty(multimesh, p_index, false);
  1361. }
  1362. RID MeshStorage::multimesh_get_mesh(RID p_multimesh) const {
  1363. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1364. ERR_FAIL_NULL_V(multimesh, RID());
  1365. return multimesh->mesh;
  1366. }
  1367. AABB MeshStorage::multimesh_get_aabb(RID p_multimesh) const {
  1368. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1369. ERR_FAIL_NULL_V(multimesh, AABB());
  1370. if (multimesh->aabb_dirty) {
  1371. const_cast<MeshStorage *>(this)->_update_dirty_multimeshes();
  1372. }
  1373. return multimesh->aabb;
  1374. }
  1375. Transform3D MeshStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
  1376. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1377. ERR_FAIL_NULL_V(multimesh, Transform3D());
  1378. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
  1379. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
  1380. _multimesh_make_local(multimesh);
  1381. Transform3D t;
  1382. {
  1383. const float *r = multimesh->data_cache.ptr();
  1384. const float *dataptr = r + p_index * multimesh->stride_cache;
  1385. t.basis.rows[0][0] = dataptr[0];
  1386. t.basis.rows[0][1] = dataptr[1];
  1387. t.basis.rows[0][2] = dataptr[2];
  1388. t.origin.x = dataptr[3];
  1389. t.basis.rows[1][0] = dataptr[4];
  1390. t.basis.rows[1][1] = dataptr[5];
  1391. t.basis.rows[1][2] = dataptr[6];
  1392. t.origin.y = dataptr[7];
  1393. t.basis.rows[2][0] = dataptr[8];
  1394. t.basis.rows[2][1] = dataptr[9];
  1395. t.basis.rows[2][2] = dataptr[10];
  1396. t.origin.z = dataptr[11];
  1397. }
  1398. return t;
  1399. }
  1400. Transform2D MeshStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
  1401. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1402. ERR_FAIL_NULL_V(multimesh, Transform2D());
  1403. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
  1404. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
  1405. _multimesh_make_local(multimesh);
  1406. Transform2D t;
  1407. {
  1408. const float *r = multimesh->data_cache.ptr();
  1409. const float *dataptr = r + p_index * multimesh->stride_cache;
  1410. t.columns[0][0] = dataptr[0];
  1411. t.columns[1][0] = dataptr[1];
  1412. t.columns[2][0] = dataptr[3];
  1413. t.columns[0][1] = dataptr[4];
  1414. t.columns[1][1] = dataptr[5];
  1415. t.columns[2][1] = dataptr[7];
  1416. }
  1417. return t;
  1418. }
  1419. Color MeshStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
  1420. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1421. ERR_FAIL_NULL_V(multimesh, Color());
  1422. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1423. ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
  1424. _multimesh_make_local(multimesh);
  1425. Color c;
  1426. {
  1427. const float *r = multimesh->data_cache.ptr();
  1428. const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->color_offset_cache;
  1429. uint16_t raw_data[4];
  1430. memcpy(raw_data, dataptr, 2 * 4);
  1431. c.r = Math::half_to_float(raw_data[0]);
  1432. c.g = Math::half_to_float(raw_data[1]);
  1433. c.b = Math::half_to_float(raw_data[2]);
  1434. c.a = Math::half_to_float(raw_data[3]);
  1435. }
  1436. return c;
  1437. }
  1438. Color MeshStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
  1439. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1440. ERR_FAIL_NULL_V(multimesh, Color());
  1441. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1442. ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
  1443. _multimesh_make_local(multimesh);
  1444. Color c;
  1445. {
  1446. const float *r = multimesh->data_cache.ptr();
  1447. const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1448. uint16_t raw_data[4];
  1449. memcpy(raw_data, dataptr, 2 * 4);
  1450. c.r = Math::half_to_float(raw_data[0]);
  1451. c.g = Math::half_to_float(raw_data[1]);
  1452. c.b = Math::half_to_float(raw_data[2]);
  1453. c.a = Math::half_to_float(raw_data[3]);
  1454. }
  1455. return c;
  1456. }
  1457. void MeshStorage::multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
  1458. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1459. ERR_FAIL_NULL(multimesh);
  1460. if (multimesh->uses_colors || multimesh->uses_custom_data) {
  1461. // Color and custom need to be packed so copy buffer to data_cache and pack.
  1462. _multimesh_make_local(multimesh);
  1463. uint32_t old_stride = multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1464. old_stride += multimesh->uses_colors ? 4 : 0;
  1465. old_stride += multimesh->uses_custom_data ? 4 : 0;
  1466. ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)old_stride));
  1467. multimesh->data_cache = p_buffer;
  1468. float *w = multimesh->data_cache.ptrw();
  1469. for (int i = 0; i < multimesh->instances; i++) {
  1470. {
  1471. float *dataptr = w + i * old_stride;
  1472. float *newptr = w + i * multimesh->stride_cache;
  1473. float vals[8] = { dataptr[0], dataptr[1], dataptr[2], dataptr[3], dataptr[4], dataptr[5], dataptr[6], dataptr[7] };
  1474. memcpy(newptr, vals, 8 * 4);
  1475. }
  1476. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1477. float *dataptr = w + i * old_stride + 8;
  1478. float *newptr = w + i * multimesh->stride_cache + 8;
  1479. float vals[8] = { dataptr[0], dataptr[1], dataptr[2], dataptr[3] };
  1480. memcpy(newptr, vals, 4 * 4);
  1481. }
  1482. if (multimesh->uses_colors) {
  1483. float *dataptr = w + i * old_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12);
  1484. float *newptr = w + i * multimesh->stride_cache + multimesh->color_offset_cache;
  1485. uint16_t val[4] = { Math::make_half_float(dataptr[0]), Math::make_half_float(dataptr[1]), Math::make_half_float(dataptr[2]), Math::make_half_float(dataptr[3]) };
  1486. memcpy(newptr, val, 2 * 4);
  1487. }
  1488. if (multimesh->uses_custom_data) {
  1489. float *dataptr = w + i * old_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12) + (multimesh->uses_colors ? 4 : 0);
  1490. float *newptr = w + i * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1491. uint16_t val[4] = { Math::make_half_float(dataptr[0]), Math::make_half_float(dataptr[1]), Math::make_half_float(dataptr[2]), Math::make_half_float(dataptr[3]) };
  1492. memcpy(newptr, val, 2 * 4);
  1493. }
  1494. }
  1495. multimesh->data_cache.resize(multimesh->instances * (int)multimesh->stride_cache);
  1496. const float *r = multimesh->data_cache.ptr();
  1497. glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
  1498. glBufferData(GL_ARRAY_BUFFER, multimesh->data_cache.size() * sizeof(float), r, GL_STATIC_DRAW);
  1499. glBindBuffer(GL_ARRAY_BUFFER, 0);
  1500. } else {
  1501. // Only Transform is being used, so we can upload directly.
  1502. ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
  1503. const float *r = p_buffer.ptr();
  1504. glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
  1505. glBufferData(GL_ARRAY_BUFFER, p_buffer.size() * sizeof(float), r, GL_STATIC_DRAW);
  1506. glBindBuffer(GL_ARRAY_BUFFER, 0);
  1507. }
  1508. multimesh->buffer_set = true;
  1509. if (multimesh->data_cache.size() || multimesh->uses_colors || multimesh->uses_custom_data) {
  1510. //if we have a data cache, just update it
  1511. multimesh->data_cache = multimesh->data_cache;
  1512. {
  1513. //clear dirty since nothing will be dirty anymore
  1514. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1515. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1516. multimesh->data_cache_dirty_regions[i] = false;
  1517. }
  1518. multimesh->data_cache_used_dirty_regions = 0;
  1519. }
  1520. _multimesh_mark_all_dirty(multimesh, false, true); //update AABB
  1521. } else if (multimesh->mesh.is_valid()) {
  1522. //if we have a mesh set, we need to re-generate the AABB from the new data
  1523. const float *data = p_buffer.ptr();
  1524. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1525. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1526. }
  1527. }
  1528. Vector<float> MeshStorage::multimesh_get_buffer(RID p_multimesh) const {
  1529. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1530. ERR_FAIL_NULL_V(multimesh, Vector<float>());
  1531. Vector<float> ret;
  1532. if (multimesh->buffer == 0 || multimesh->instances == 0) {
  1533. return Vector<float>();
  1534. } else if (multimesh->data_cache.size()) {
  1535. ret = multimesh->data_cache;
  1536. } else {
  1537. // Buffer not cached, so fetch from GPU memory. This can be a stalling operation, avoid whenever possible.
  1538. Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float));
  1539. ret.resize(multimesh->instances * multimesh->stride_cache);
  1540. {
  1541. float *w = ret.ptrw();
  1542. const uint8_t *r = buffer.ptr();
  1543. memcpy(w, r, buffer.size());
  1544. }
  1545. }
  1546. if (multimesh->uses_colors || multimesh->uses_custom_data) {
  1547. // Need to decompress buffer.
  1548. uint32_t new_stride = multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1549. new_stride += multimesh->uses_colors ? 4 : 0;
  1550. new_stride += multimesh->uses_custom_data ? 4 : 0;
  1551. Vector<float> decompressed;
  1552. decompressed.resize(multimesh->instances * (int)new_stride);
  1553. float *w = decompressed.ptrw();
  1554. const float *r = ret.ptr();
  1555. for (int i = 0; i < multimesh->instances; i++) {
  1556. {
  1557. float *newptr = w + i * new_stride;
  1558. const float *oldptr = r + i * multimesh->stride_cache;
  1559. float vals[8] = { oldptr[0], oldptr[1], oldptr[2], oldptr[3], oldptr[4], oldptr[5], oldptr[6], oldptr[7] };
  1560. memcpy(newptr, vals, 8 * 4);
  1561. }
  1562. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1563. float *newptr = w + i * new_stride + 8;
  1564. const float *oldptr = r + i * multimesh->stride_cache + 8;
  1565. float vals[8] = { oldptr[0], oldptr[1], oldptr[2], oldptr[3] };
  1566. memcpy(newptr, vals, 4 * 4);
  1567. }
  1568. if (multimesh->uses_colors) {
  1569. float *newptr = w + i * new_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12);
  1570. const float *oldptr = r + i * multimesh->stride_cache + multimesh->color_offset_cache;
  1571. uint16_t raw_data[4];
  1572. memcpy(raw_data, oldptr, 2 * 4);
  1573. newptr[0] = Math::half_to_float(raw_data[0]);
  1574. newptr[1] = Math::half_to_float(raw_data[1]);
  1575. newptr[2] = Math::half_to_float(raw_data[2]);
  1576. newptr[3] = Math::half_to_float(raw_data[3]);
  1577. }
  1578. if (multimesh->uses_custom_data) {
  1579. float *newptr = w + i * new_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12) + (multimesh->uses_colors ? 4 : 0);
  1580. const float *oldptr = r + i * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1581. uint16_t raw_data[4];
  1582. memcpy(raw_data, oldptr, 2 * 4);
  1583. newptr[0] = Math::half_to_float(raw_data[0]);
  1584. newptr[1] = Math::half_to_float(raw_data[1]);
  1585. newptr[2] = Math::half_to_float(raw_data[2]);
  1586. newptr[3] = Math::half_to_float(raw_data[3]);
  1587. }
  1588. }
  1589. return decompressed;
  1590. } else {
  1591. return ret;
  1592. }
  1593. }
  1594. void MeshStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
  1595. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1596. ERR_FAIL_NULL(multimesh);
  1597. ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
  1598. if (multimesh->visible_instances == p_visible) {
  1599. return;
  1600. }
  1601. if (multimesh->data_cache.size()) {
  1602. // There is a data cache, but we may need to update some sections.
  1603. _multimesh_mark_all_dirty(multimesh, false, true);
  1604. int start = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1605. for (int i = start; i < p_visible; i++) {
  1606. _multimesh_mark_dirty(multimesh, i, true);
  1607. }
  1608. }
  1609. multimesh->visible_instances = p_visible;
  1610. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
  1611. }
  1612. int MeshStorage::multimesh_get_visible_instances(RID p_multimesh) const {
  1613. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1614. ERR_FAIL_NULL_V(multimesh, 0);
  1615. return multimesh->visible_instances;
  1616. }
  1617. void MeshStorage::_update_dirty_multimeshes() {
  1618. while (multimesh_dirty_list) {
  1619. MultiMesh *multimesh = multimesh_dirty_list;
  1620. if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
  1621. const float *data = multimesh->data_cache.ptr();
  1622. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1623. if (multimesh->data_cache_used_dirty_regions) {
  1624. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1625. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1626. GLint region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1627. if (multimesh->data_cache_used_dirty_regions > 32 || multimesh->data_cache_used_dirty_regions > visible_region_count / 2) {
  1628. // If there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
  1629. glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
  1630. glBufferSubData(GL_ARRAY_BUFFER, 0, MIN(visible_region_count * region_size, multimesh->instances * multimesh->stride_cache * sizeof(float)), data);
  1631. glBindBuffer(GL_ARRAY_BUFFER, 0);
  1632. } else {
  1633. // Not that many regions? update them all
  1634. // TODO: profile the performance cost on low end
  1635. glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
  1636. for (uint32_t i = 0; i < visible_region_count; i++) {
  1637. if (multimesh->data_cache_dirty_regions[i]) {
  1638. GLint offset = i * region_size;
  1639. GLint size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1640. uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
  1641. glBufferSubData(GL_ARRAY_BUFFER, offset, MIN(region_size, size - offset), &data[region_start_index]);
  1642. }
  1643. }
  1644. glBindBuffer(GL_ARRAY_BUFFER, 0);
  1645. }
  1646. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1647. multimesh->data_cache_dirty_regions[i] = false;
  1648. }
  1649. multimesh->data_cache_used_dirty_regions = 0;
  1650. }
  1651. if (multimesh->aabb_dirty && multimesh->mesh.is_valid()) {
  1652. _multimesh_re_create_aabb(multimesh, data, visible_instances);
  1653. multimesh->aabb_dirty = false;
  1654. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1655. }
  1656. }
  1657. multimesh_dirty_list = multimesh->dirty_list;
  1658. multimesh->dirty_list = nullptr;
  1659. multimesh->dirty = false;
  1660. }
  1661. multimesh_dirty_list = nullptr;
  1662. }
  1663. /* SKELETON API */
  1664. RID MeshStorage::skeleton_allocate() {
  1665. return skeleton_owner.allocate_rid();
  1666. }
  1667. void MeshStorage::skeleton_initialize(RID p_rid) {
  1668. skeleton_owner.initialize_rid(p_rid, Skeleton());
  1669. }
  1670. void MeshStorage::skeleton_free(RID p_rid) {
  1671. _update_dirty_skeletons();
  1672. skeleton_allocate_data(p_rid, 0);
  1673. Skeleton *skeleton = skeleton_owner.get_or_null(p_rid);
  1674. skeleton->dependency.deleted_notify(p_rid);
  1675. skeleton_owner.free(p_rid);
  1676. }
  1677. void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) {
  1678. if (!skeleton->dirty) {
  1679. skeleton->dirty = true;
  1680. skeleton->dirty_list = skeleton_dirty_list;
  1681. skeleton_dirty_list = skeleton;
  1682. }
  1683. }
  1684. void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
  1685. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1686. ERR_FAIL_NULL(skeleton);
  1687. ERR_FAIL_COND(p_bones < 0);
  1688. if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
  1689. return;
  1690. }
  1691. skeleton->size = p_bones;
  1692. skeleton->use_2d = p_2d_skeleton;
  1693. skeleton->height = (p_bones * (p_2d_skeleton ? 2 : 3)) / 256;
  1694. if ((p_bones * (p_2d_skeleton ? 2 : 3)) % 256) {
  1695. skeleton->height++;
  1696. }
  1697. if (skeleton->transforms_texture != 0) {
  1698. GLES3::Utilities::get_singleton()->texture_free_data(skeleton->transforms_texture);
  1699. skeleton->transforms_texture = 0;
  1700. skeleton->data.clear();
  1701. }
  1702. if (skeleton->size) {
  1703. skeleton->data.resize(256 * skeleton->height * 4);
  1704. glGenTextures(1, &skeleton->transforms_texture);
  1705. glBindTexture(GL_TEXTURE_2D, skeleton->transforms_texture);
  1706. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, 256, skeleton->height, 0, GL_RGBA, GL_FLOAT, nullptr);
  1707. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  1708. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  1709. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  1710. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  1711. glBindTexture(GL_TEXTURE_2D, 0);
  1712. GLES3::Utilities::get_singleton()->texture_allocated_data(skeleton->transforms_texture, skeleton->data.size() * sizeof(float), "Skeleton transforms texture");
  1713. memset(skeleton->data.ptrw(), 0, skeleton->data.size() * sizeof(float));
  1714. _skeleton_make_dirty(skeleton);
  1715. }
  1716. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA);
  1717. }
  1718. void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
  1719. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1720. ERR_FAIL_NULL(skeleton);
  1721. ERR_FAIL_COND(!skeleton->use_2d);
  1722. skeleton->base_transform_2d = p_base_transform;
  1723. }
  1724. int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
  1725. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1726. ERR_FAIL_NULL_V(skeleton, 0);
  1727. return skeleton->size;
  1728. }
  1729. void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
  1730. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1731. ERR_FAIL_NULL(skeleton);
  1732. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1733. ERR_FAIL_COND(skeleton->use_2d);
  1734. float *dataptr = skeleton->data.ptrw() + p_bone * 12;
  1735. dataptr[0] = p_transform.basis.rows[0][0];
  1736. dataptr[1] = p_transform.basis.rows[0][1];
  1737. dataptr[2] = p_transform.basis.rows[0][2];
  1738. dataptr[3] = p_transform.origin.x;
  1739. dataptr[4] = p_transform.basis.rows[1][0];
  1740. dataptr[5] = p_transform.basis.rows[1][1];
  1741. dataptr[6] = p_transform.basis.rows[1][2];
  1742. dataptr[7] = p_transform.origin.y;
  1743. dataptr[8] = p_transform.basis.rows[2][0];
  1744. dataptr[9] = p_transform.basis.rows[2][1];
  1745. dataptr[10] = p_transform.basis.rows[2][2];
  1746. dataptr[11] = p_transform.origin.z;
  1747. _skeleton_make_dirty(skeleton);
  1748. }
  1749. Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
  1750. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1751. ERR_FAIL_NULL_V(skeleton, Transform3D());
  1752. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D());
  1753. ERR_FAIL_COND_V(skeleton->use_2d, Transform3D());
  1754. const float *dataptr = skeleton->data.ptr() + p_bone * 12;
  1755. Transform3D t;
  1756. t.basis.rows[0][0] = dataptr[0];
  1757. t.basis.rows[0][1] = dataptr[1];
  1758. t.basis.rows[0][2] = dataptr[2];
  1759. t.origin.x = dataptr[3];
  1760. t.basis.rows[1][0] = dataptr[4];
  1761. t.basis.rows[1][1] = dataptr[5];
  1762. t.basis.rows[1][2] = dataptr[6];
  1763. t.origin.y = dataptr[7];
  1764. t.basis.rows[2][0] = dataptr[8];
  1765. t.basis.rows[2][1] = dataptr[9];
  1766. t.basis.rows[2][2] = dataptr[10];
  1767. t.origin.z = dataptr[11];
  1768. return t;
  1769. }
  1770. void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
  1771. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1772. ERR_FAIL_NULL(skeleton);
  1773. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1774. ERR_FAIL_COND(!skeleton->use_2d);
  1775. float *dataptr = skeleton->data.ptrw() + p_bone * 8;
  1776. dataptr[0] = p_transform.columns[0][0];
  1777. dataptr[1] = p_transform.columns[1][0];
  1778. dataptr[2] = 0;
  1779. dataptr[3] = p_transform.columns[2][0];
  1780. dataptr[4] = p_transform.columns[0][1];
  1781. dataptr[5] = p_transform.columns[1][1];
  1782. dataptr[6] = 0;
  1783. dataptr[7] = p_transform.columns[2][1];
  1784. _skeleton_make_dirty(skeleton);
  1785. }
  1786. Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
  1787. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1788. ERR_FAIL_NULL_V(skeleton, Transform2D());
  1789. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
  1790. ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
  1791. const float *dataptr = skeleton->data.ptr() + p_bone * 8;
  1792. Transform2D t;
  1793. t.columns[0][0] = dataptr[0];
  1794. t.columns[1][0] = dataptr[1];
  1795. t.columns[2][0] = dataptr[3];
  1796. t.columns[0][1] = dataptr[4];
  1797. t.columns[1][1] = dataptr[5];
  1798. t.columns[2][1] = dataptr[7];
  1799. return t;
  1800. }
  1801. void MeshStorage::_update_dirty_skeletons() {
  1802. while (skeleton_dirty_list) {
  1803. Skeleton *skeleton = skeleton_dirty_list;
  1804. if (skeleton->size) {
  1805. glBindTexture(GL_TEXTURE_2D, skeleton->transforms_texture);
  1806. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, 256, skeleton->height, 0, GL_RGBA, GL_FLOAT, skeleton->data.ptr());
  1807. glBindTexture(GL_TEXTURE_2D, 0);
  1808. }
  1809. skeleton_dirty_list = skeleton->dirty_list;
  1810. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES);
  1811. skeleton->version++;
  1812. skeleton->dirty = false;
  1813. skeleton->dirty_list = nullptr;
  1814. }
  1815. skeleton_dirty_list = nullptr;
  1816. }
  1817. void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) {
  1818. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1819. ERR_FAIL_NULL(skeleton);
  1820. p_instance->update_dependency(&skeleton->dependency);
  1821. }
  1822. #endif // GLES3_ENABLED