fog.cpp 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156
  1. /**************************************************************************/
  2. /* fog.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "fog.h"
  31. #include "servers/rendering/renderer_rd/renderer_compositor_rd.h"
  32. #include "servers/rendering/renderer_rd/storage_rd/material_storage.h"
  33. #include "servers/rendering/renderer_rd/storage_rd/texture_storage.h"
  34. #include "servers/rendering/rendering_server_default.h"
  35. using namespace RendererRD;
  36. Fog *Fog::singleton = nullptr;
  37. Fog::Fog() {
  38. singleton = this;
  39. }
  40. Fog::~Fog() {
  41. singleton = nullptr;
  42. }
  43. /* FOG VOLUMES */
  44. RID Fog::fog_volume_allocate() {
  45. return fog_volume_owner.allocate_rid();
  46. }
  47. void Fog::fog_volume_initialize(RID p_rid) {
  48. fog_volume_owner.initialize_rid(p_rid, FogVolume());
  49. }
  50. void Fog::fog_volume_free(RID p_rid) {
  51. FogVolume *fog_volume = fog_volume_owner.get_or_null(p_rid);
  52. fog_volume->dependency.deleted_notify(p_rid);
  53. fog_volume_owner.free(p_rid);
  54. }
  55. Dependency *Fog::fog_volume_get_dependency(RID p_fog_volume) const {
  56. FogVolume *fog_volume = fog_volume_owner.get_or_null(p_fog_volume);
  57. ERR_FAIL_NULL_V(fog_volume, nullptr);
  58. return &fog_volume->dependency;
  59. }
  60. void Fog::fog_volume_set_shape(RID p_fog_volume, RS::FogVolumeShape p_shape) {
  61. FogVolume *fog_volume = fog_volume_owner.get_or_null(p_fog_volume);
  62. ERR_FAIL_NULL(fog_volume);
  63. if (p_shape == fog_volume->shape) {
  64. return;
  65. }
  66. fog_volume->shape = p_shape;
  67. fog_volume->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  68. }
  69. void Fog::fog_volume_set_size(RID p_fog_volume, const Vector3 &p_size) {
  70. FogVolume *fog_volume = fog_volume_owner.get_or_null(p_fog_volume);
  71. ERR_FAIL_NULL(fog_volume);
  72. fog_volume->size = p_size;
  73. fog_volume->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  74. }
  75. void Fog::fog_volume_set_material(RID p_fog_volume, RID p_material) {
  76. FogVolume *fog_volume = fog_volume_owner.get_or_null(p_fog_volume);
  77. ERR_FAIL_NULL(fog_volume);
  78. fog_volume->material = p_material;
  79. }
  80. RID Fog::fog_volume_get_material(RID p_fog_volume) const {
  81. FogVolume *fog_volume = fog_volume_owner.get_or_null(p_fog_volume);
  82. ERR_FAIL_NULL_V(fog_volume, RID());
  83. return fog_volume->material;
  84. }
  85. RS::FogVolumeShape Fog::fog_volume_get_shape(RID p_fog_volume) const {
  86. FogVolume *fog_volume = fog_volume_owner.get_or_null(p_fog_volume);
  87. ERR_FAIL_NULL_V(fog_volume, RS::FOG_VOLUME_SHAPE_BOX);
  88. return fog_volume->shape;
  89. }
  90. AABB Fog::fog_volume_get_aabb(RID p_fog_volume) const {
  91. FogVolume *fog_volume = fog_volume_owner.get_or_null(p_fog_volume);
  92. ERR_FAIL_NULL_V(fog_volume, AABB());
  93. switch (fog_volume->shape) {
  94. case RS::FOG_VOLUME_SHAPE_ELLIPSOID:
  95. case RS::FOG_VOLUME_SHAPE_CONE:
  96. case RS::FOG_VOLUME_SHAPE_CYLINDER:
  97. case RS::FOG_VOLUME_SHAPE_BOX: {
  98. AABB aabb;
  99. aabb.position = -fog_volume->size / 2;
  100. aabb.size = fog_volume->size;
  101. return aabb;
  102. }
  103. default: {
  104. // Need some size otherwise will get culled
  105. return AABB(Vector3(-1, -1, -1), Vector3(2, 2, 2));
  106. }
  107. }
  108. }
  109. Vector3 Fog::fog_volume_get_size(RID p_fog_volume) const {
  110. const FogVolume *fog_volume = fog_volume_owner.get_or_null(p_fog_volume);
  111. ERR_FAIL_NULL_V(fog_volume, Vector3());
  112. return fog_volume->size;
  113. }
  114. ////////////////////////////////////////////////////////////////////////////////
  115. // Fog material
  116. bool Fog::FogMaterialData::update_parameters(const HashMap<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
  117. uniform_set_updated = true;
  118. return update_parameters_uniform_set(p_parameters, p_uniform_dirty, p_textures_dirty, shader_data->uniforms, shader_data->ubo_offsets.ptr(), shader_data->texture_uniforms, shader_data->default_texture_params, shader_data->ubo_size, uniform_set, Fog::get_singleton()->volumetric_fog.shader.version_get_shader(shader_data->version, 0), VolumetricFogShader::FogSet::FOG_SET_MATERIAL, true, true);
  119. }
  120. Fog::FogMaterialData::~FogMaterialData() {
  121. free_parameters_uniform_set(uniform_set);
  122. }
  123. RendererRD::MaterialStorage::ShaderData *Fog::_create_fog_shader_func() {
  124. FogShaderData *shader_data = memnew(FogShaderData);
  125. return shader_data;
  126. }
  127. RendererRD::MaterialStorage::ShaderData *Fog::_create_fog_shader_funcs() {
  128. return Fog::get_singleton()->_create_fog_shader_func();
  129. }
  130. RendererRD::MaterialStorage::MaterialData *Fog::_create_fog_material_func(FogShaderData *p_shader) {
  131. FogMaterialData *material_data = memnew(FogMaterialData);
  132. material_data->shader_data = p_shader;
  133. //update will happen later anyway so do nothing.
  134. return material_data;
  135. }
  136. RendererRD::MaterialStorage::MaterialData *Fog::_create_fog_material_funcs(RendererRD::MaterialStorage::ShaderData *p_shader) {
  137. return Fog::get_singleton()->_create_fog_material_func(static_cast<FogShaderData *>(p_shader));
  138. }
  139. ////////////////////////////////////////////////////////////////////////////////
  140. // FOG VOLUMES INSTANCE
  141. RID Fog::fog_volume_instance_create(RID p_fog_volume) {
  142. FogVolumeInstance fvi;
  143. fvi.volume = p_fog_volume;
  144. return fog_volume_instance_owner.make_rid(fvi);
  145. }
  146. void Fog::fog_instance_free(RID p_rid) {
  147. fog_volume_instance_owner.free(p_rid);
  148. }
  149. ////////////////////////////////////////////////////////////////////////////////
  150. // Volumetric Fog Shader
  151. void Fog::init_fog_shader(uint32_t p_max_directional_lights, int p_roughness_layers, bool p_is_using_radiance_cubemap_array) {
  152. MaterialStorage *material_storage = MaterialStorage::get_singleton();
  153. {
  154. String defines = "#define SAMPLERS_BINDING_FIRST_INDEX " + itos(SAMPLERS_BINDING_FIRST_INDEX) + "\n";
  155. // Initialize local fog shader
  156. Vector<String> volumetric_fog_modes;
  157. volumetric_fog_modes.push_back("");
  158. volumetric_fog.shader.initialize(volumetric_fog_modes, defines);
  159. material_storage->shader_set_data_request_function(RendererRD::MaterialStorage::SHADER_TYPE_FOG, _create_fog_shader_funcs);
  160. material_storage->material_set_data_request_function(RendererRD::MaterialStorage::SHADER_TYPE_FOG, _create_fog_material_funcs);
  161. volumetric_fog.volume_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(VolumetricFogShader::VolumeUBO));
  162. }
  163. {
  164. ShaderCompiler::DefaultIdentifierActions actions;
  165. actions.renames["TIME"] = "scene_params.time";
  166. actions.renames["PI"] = String::num(Math::PI);
  167. actions.renames["TAU"] = String::num(Math::TAU);
  168. actions.renames["E"] = String::num(Math::E);
  169. actions.renames["WORLD_POSITION"] = "world.xyz";
  170. actions.renames["OBJECT_POSITION"] = "params.position";
  171. actions.renames["UVW"] = "uvw";
  172. actions.renames["SIZE"] = "params.size";
  173. actions.renames["ALBEDO"] = "albedo";
  174. actions.renames["DENSITY"] = "density";
  175. actions.renames["EMISSION"] = "emission";
  176. actions.renames["SDF"] = "sdf";
  177. actions.usage_defines["SDF"] = "#define SDF_USED\n";
  178. actions.usage_defines["DENSITY"] = "#define DENSITY_USED\n";
  179. actions.usage_defines["ALBEDO"] = "#define ALBEDO_USED\n";
  180. actions.usage_defines["EMISSION"] = "#define EMISSION_USED\n";
  181. actions.base_texture_binding_index = 1;
  182. actions.texture_layout_set = VolumetricFogShader::FogSet::FOG_SET_MATERIAL;
  183. actions.base_uniform_string = "material.";
  184. actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP;
  185. actions.default_repeat = ShaderLanguage::REPEAT_DISABLE;
  186. actions.global_buffer_array_variable = "global_shader_uniforms.data";
  187. volumetric_fog.compiler.initialize(actions);
  188. }
  189. {
  190. // default material and shader for fog shader
  191. volumetric_fog.default_shader = material_storage->shader_allocate();
  192. material_storage->shader_initialize(volumetric_fog.default_shader);
  193. material_storage->shader_set_code(volumetric_fog.default_shader, R"(
  194. // Default fog shader.
  195. shader_type fog;
  196. void fog() {
  197. DENSITY = 1.0;
  198. ALBEDO = vec3(1.0);
  199. }
  200. )");
  201. volumetric_fog.default_material = material_storage->material_allocate();
  202. material_storage->material_initialize(volumetric_fog.default_material);
  203. material_storage->material_set_shader(volumetric_fog.default_material, volumetric_fog.default_shader);
  204. FogMaterialData *md = static_cast<FogMaterialData *>(material_storage->material_get_data(volumetric_fog.default_material, RendererRD::MaterialStorage::SHADER_TYPE_FOG));
  205. volumetric_fog.default_shader_rd = volumetric_fog.shader.version_get_shader(md->shader_data->version, 0);
  206. Vector<RD::Uniform> uniforms;
  207. {
  208. RD::Uniform u;
  209. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  210. u.binding = 2;
  211. u.append_id(RendererRD::MaterialStorage::get_singleton()->global_shader_uniforms_get_storage_buffer());
  212. uniforms.push_back(u);
  213. }
  214. material_storage->samplers_rd_get_default().append_uniforms(uniforms, SAMPLERS_BINDING_FIRST_INDEX);
  215. volumetric_fog.base_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.default_shader_rd, VolumetricFogShader::FogSet::FOG_SET_BASE);
  216. }
  217. {
  218. String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(p_max_directional_lights) + "\n";
  219. defines += "\n#define MAX_SKY_LOD " + itos(p_roughness_layers - 1) + ".0\n";
  220. if (p_is_using_radiance_cubemap_array) {
  221. defines += "\n#define USE_RADIANCE_CUBEMAP_ARRAY \n";
  222. }
  223. Vector<String> volumetric_fog_modes;
  224. volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n");
  225. volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n#define ENABLE_SDFGI\n");
  226. volumetric_fog_modes.push_back("\n#define MODE_FILTER\n");
  227. volumetric_fog_modes.push_back("\n#define MODE_FOG\n");
  228. volumetric_fog_modes.push_back("\n#define MODE_COPY\n");
  229. volumetric_fog.process_shader.initialize(volumetric_fog_modes, defines);
  230. volumetric_fog.process_shader_version = volumetric_fog.process_shader.version_create();
  231. for (int i = 0; i < VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_MAX; i++) {
  232. volumetric_fog.process_pipelines[i] = RD::get_singleton()->compute_pipeline_create(volumetric_fog.process_shader.version_get_shader(volumetric_fog.process_shader_version, i));
  233. }
  234. volumetric_fog.params_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(VolumetricFogShader::ParamsUBO));
  235. }
  236. }
  237. void Fog::free_fog_shader() {
  238. MaterialStorage *material_storage = MaterialStorage::get_singleton();
  239. if (volumetric_fog.process_shader_version.is_valid()) {
  240. volumetric_fog.process_shader.version_free(volumetric_fog.process_shader_version);
  241. }
  242. if (volumetric_fog.volume_ubo.is_valid()) {
  243. RD::get_singleton()->free(volumetric_fog.volume_ubo);
  244. }
  245. if (volumetric_fog.params_ubo.is_valid()) {
  246. RD::get_singleton()->free(volumetric_fog.params_ubo);
  247. }
  248. if (volumetric_fog.default_shader.is_valid()) {
  249. material_storage->shader_free(volumetric_fog.default_shader);
  250. }
  251. if (volumetric_fog.default_material.is_valid()) {
  252. material_storage->material_free(volumetric_fog.default_material);
  253. }
  254. }
  255. void Fog::FogShaderData::set_code(const String &p_code) {
  256. //compile
  257. code = p_code;
  258. valid = false;
  259. ubo_size = 0;
  260. uniforms.clear();
  261. if (code.is_empty()) {
  262. return; //just invalid, but no error
  263. }
  264. ShaderCompiler::GeneratedCode gen_code;
  265. ShaderCompiler::IdentifierActions actions;
  266. actions.entry_point_stages["fog"] = ShaderCompiler::STAGE_COMPUTE;
  267. uses_time = false;
  268. actions.usage_flag_pointers["TIME"] = &uses_time;
  269. actions.uniforms = &uniforms;
  270. Fog *fog_singleton = Fog::get_singleton();
  271. Error err = fog_singleton->volumetric_fog.compiler.compile(RS::SHADER_FOG, code, &actions, path, gen_code);
  272. ERR_FAIL_COND_MSG(err != OK, "Fog shader compilation failed.");
  273. if (version.is_null()) {
  274. version = fog_singleton->volumetric_fog.shader.version_create();
  275. }
  276. fog_singleton->volumetric_fog.shader.version_set_compute_code(version, gen_code.code, gen_code.uniforms, gen_code.stage_globals[ShaderCompiler::STAGE_COMPUTE], gen_code.defines);
  277. ERR_FAIL_COND(!fog_singleton->volumetric_fog.shader.version_is_valid(version));
  278. ubo_size = gen_code.uniform_total_size;
  279. ubo_offsets = gen_code.uniform_offsets;
  280. texture_uniforms = gen_code.texture_uniforms;
  281. pipeline = RD::get_singleton()->compute_pipeline_create(fog_singleton->volumetric_fog.shader.version_get_shader(version, 0));
  282. valid = true;
  283. }
  284. bool Fog::FogShaderData::is_animated() const {
  285. return false;
  286. }
  287. bool Fog::FogShaderData::casts_shadows() const {
  288. return false;
  289. }
  290. RS::ShaderNativeSourceCode Fog::FogShaderData::get_native_source_code() const {
  291. Fog *fog_singleton = Fog::get_singleton();
  292. return fog_singleton->volumetric_fog.shader.version_get_native_source_code(version);
  293. }
  294. Pair<ShaderRD *, RID> Fog::FogShaderData::get_native_shader_and_version() const {
  295. Fog *fog_singleton = Fog::get_singleton();
  296. return { &fog_singleton->volumetric_fog.shader, version };
  297. }
  298. Fog::FogShaderData::~FogShaderData() {
  299. Fog *fog_singleton = Fog::get_singleton();
  300. ERR_FAIL_NULL(fog_singleton);
  301. //pipeline variants will clear themselves if shader is gone
  302. if (version.is_valid()) {
  303. fog_singleton->volumetric_fog.shader.version_free(version);
  304. }
  305. }
  306. ////////////////////////////////////////////////////////////////////////////////
  307. // Volumetric Fog
  308. bool Fog::VolumetricFog::sync_gi_dependent_sets_validity(bool p_ensure_freed) {
  309. bool null = gi_dependent_sets.process_uniform_set_density.is_null();
  310. bool valid = !null && RD::get_singleton()->uniform_set_is_valid(gi_dependent_sets.process_uniform_set_density);
  311. #ifdef DEV_ENABLED
  312. // It's all-or-nothing, or something else has changed that requires dev attention.
  313. DEV_ASSERT(null == gi_dependent_sets.process_uniform_set.is_null());
  314. DEV_ASSERT(null == gi_dependent_sets.process_uniform_set2.is_null());
  315. DEV_ASSERT(valid == RD::get_singleton()->uniform_set_is_valid(gi_dependent_sets.process_uniform_set));
  316. DEV_ASSERT(valid == RD::get_singleton()->uniform_set_is_valid(gi_dependent_sets.process_uniform_set2));
  317. #endif
  318. if (valid) {
  319. if (p_ensure_freed) {
  320. RD::get_singleton()->free(gi_dependent_sets.process_uniform_set_density);
  321. RD::get_singleton()->free(gi_dependent_sets.process_uniform_set);
  322. RD::get_singleton()->free(gi_dependent_sets.process_uniform_set2);
  323. valid = false;
  324. }
  325. }
  326. if (!valid && !null) {
  327. gi_dependent_sets = {};
  328. }
  329. return valid;
  330. }
  331. void Fog::VolumetricFog::init(const Vector3i &fog_size, RID p_sky_shader) {
  332. width = fog_size.x;
  333. height = fog_size.y;
  334. depth = fog_size.z;
  335. atomic_type = RD::get_singleton()->has_feature(RD::SUPPORTS_IMAGE_ATOMIC_32_BIT) ? RD::UNIFORM_TYPE_IMAGE : RD::UNIFORM_TYPE_STORAGE_BUFFER;
  336. RD::TextureFormat tf;
  337. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  338. tf.width = fog_size.x;
  339. tf.height = fog_size.y;
  340. tf.depth = fog_size.z;
  341. tf.texture_type = RD::TEXTURE_TYPE_3D;
  342. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  343. light_density_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  344. RD::get_singleton()->set_resource_name(light_density_map, "Fog light-density map");
  345. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  346. prev_light_density_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  347. RD::get_singleton()->set_resource_name(prev_light_density_map, "Fog previous light-density map");
  348. RD::get_singleton()->texture_clear(prev_light_density_map, Color(0, 0, 0, 0), 0, 1, 0, 1);
  349. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  350. fog_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  351. RD::get_singleton()->set_resource_name(fog_map, "Fog map");
  352. if (atomic_type == RD::UNIFORM_TYPE_STORAGE_BUFFER) {
  353. Vector<uint8_t> dm;
  354. dm.resize_initialized(fog_size.x * fog_size.y * fog_size.z * 4);
  355. density_map = RD::get_singleton()->storage_buffer_create(dm.size(), dm);
  356. RD::get_singleton()->set_resource_name(density_map, "Fog density map");
  357. light_map = RD::get_singleton()->storage_buffer_create(dm.size(), dm);
  358. RD::get_singleton()->set_resource_name(light_map, "Fog light map");
  359. emissive_map = RD::get_singleton()->storage_buffer_create(dm.size(), dm);
  360. RD::get_singleton()->set_resource_name(emissive_map, "Fog emissive map");
  361. } else {
  362. tf.format = RD::DATA_FORMAT_R32_UINT;
  363. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_ATOMIC_BIT;
  364. density_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  365. RD::get_singleton()->set_resource_name(density_map, "Fog density map");
  366. RD::get_singleton()->texture_clear(density_map, Color(0, 0, 0, 0), 0, 1, 0, 1);
  367. light_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  368. RD::get_singleton()->set_resource_name(light_map, "Fog light map");
  369. RD::get_singleton()->texture_clear(light_map, Color(0, 0, 0, 0), 0, 1, 0, 1);
  370. emissive_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  371. RD::get_singleton()->set_resource_name(emissive_map, "Fog emissive map");
  372. RD::get_singleton()->texture_clear(emissive_map, Color(0, 0, 0, 0), 0, 1, 0, 1);
  373. }
  374. Vector<RD::Uniform> uniforms;
  375. {
  376. RD::Uniform u;
  377. u.binding = 0;
  378. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  379. u.append_id(fog_map);
  380. uniforms.push_back(u);
  381. }
  382. sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, p_sky_shader, RendererRD::SkyRD::SKY_SET_FOG);
  383. }
  384. Fog::VolumetricFog::~VolumetricFog() {
  385. RD::get_singleton()->free(prev_light_density_map);
  386. RD::get_singleton()->free(light_density_map);
  387. RD::get_singleton()->free(fog_map);
  388. RD::get_singleton()->free(density_map);
  389. RD::get_singleton()->free(light_map);
  390. RD::get_singleton()->free(emissive_map);
  391. if (fog_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(fog_uniform_set)) {
  392. RD::get_singleton()->free(fog_uniform_set);
  393. }
  394. if (copy_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(copy_uniform_set)) {
  395. RD::get_singleton()->free(copy_uniform_set);
  396. }
  397. sync_gi_dependent_sets_validity(true);
  398. if (sdfgi_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sdfgi_uniform_set)) {
  399. RD::get_singleton()->free(sdfgi_uniform_set);
  400. }
  401. if (sky_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_uniform_set)) {
  402. RD::get_singleton()->free(sky_uniform_set);
  403. }
  404. }
  405. Vector3i Fog::_point_get_position_in_froxel_volume(const Vector3 &p_point, float fog_end, const Vector2 &fog_near_size, const Vector2 &fog_far_size, float volumetric_fog_detail_spread, const Vector3 &fog_size, const Transform3D &p_cam_transform) {
  406. Vector3 view_position = p_cam_transform.affine_inverse().xform(p_point);
  407. view_position.z = MIN(view_position.z, -0.01); // Clamp to the front of camera
  408. Vector3 fog_position = Vector3(0, 0, 0);
  409. view_position.y = -view_position.y;
  410. fog_position.z = -view_position.z / fog_end;
  411. fog_position.x = (view_position.x / (2 * (fog_near_size.x * (1.0 - fog_position.z) + fog_far_size.x * fog_position.z))) + 0.5;
  412. fog_position.y = (view_position.y / (2 * (fog_near_size.y * (1.0 - fog_position.z) + fog_far_size.y * fog_position.z))) + 0.5;
  413. fog_position.z = Math::pow(float(fog_position.z), float(1.0 / volumetric_fog_detail_spread));
  414. fog_position = fog_position * fog_size - Vector3(0.5, 0.5, 0.5);
  415. fog_position = fog_position.clamp(Vector3(), fog_size);
  416. return Vector3i(fog_position);
  417. }
  418. void Fog::volumetric_fog_update(const VolumetricFogSettings &p_settings, const Projection &p_cam_projection, const Transform3D &p_cam_transform, const Transform3D &p_prev_cam_inv_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_voxel_gi_count, const PagedArray<RID> &p_fog_volumes) {
  419. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  420. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  421. RENDER_TIMESTAMP("> Volumetric Fog");
  422. RD::get_singleton()->draw_command_begin_label("Volumetric Fog");
  423. Ref<VolumetricFog> fog = p_settings.vfog;
  424. if (p_fog_volumes.size() > 0) {
  425. RD::get_singleton()->draw_command_begin_label("Render Volumetric Fog Volumes");
  426. RENDER_TIMESTAMP("Render FogVolumes");
  427. VolumetricFogShader::VolumeUBO params;
  428. Vector2 frustum_near_size = p_cam_projection.get_viewport_half_extents();
  429. Vector2 frustum_far_size = p_cam_projection.get_far_plane_half_extents();
  430. float z_near = p_cam_projection.get_z_near();
  431. float z_far = p_cam_projection.get_z_far();
  432. float fog_end = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_length(p_settings.env);
  433. Vector2 fog_far_size = frustum_near_size.lerp(frustum_far_size, (fog_end - z_near) / (z_far - z_near));
  434. Vector2 fog_near_size;
  435. if (p_cam_projection.is_orthogonal()) {
  436. fog_near_size = fog_far_size;
  437. } else {
  438. fog_near_size = frustum_near_size.maxf(0.001);
  439. }
  440. params.fog_frustum_size_begin[0] = fog_near_size.x;
  441. params.fog_frustum_size_begin[1] = fog_near_size.y;
  442. params.fog_frustum_size_end[0] = fog_far_size.x;
  443. params.fog_frustum_size_end[1] = fog_far_size.y;
  444. params.fog_frustum_end = fog_end;
  445. params.z_near = z_near;
  446. params.z_far = z_far;
  447. params.time = p_settings.time;
  448. params.fog_volume_size[0] = fog->width;
  449. params.fog_volume_size[1] = fog->height;
  450. params.fog_volume_size[2] = fog->depth;
  451. params.use_temporal_reprojection = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_temporal_reprojection(p_settings.env);
  452. params.temporal_frame = RSG::rasterizer->get_frame_number() % VolumetricFog::MAX_TEMPORAL_FRAMES;
  453. params.detail_spread = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_detail_spread(p_settings.env);
  454. params.temporal_blend = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_temporal_reprojection_amount(p_settings.env);
  455. Transform3D to_prev_cam_view = p_prev_cam_inv_transform * p_cam_transform;
  456. RendererRD::MaterialStorage::store_transform(to_prev_cam_view, params.to_prev_view);
  457. RendererRD::MaterialStorage::store_transform(p_cam_transform, params.transform);
  458. RD::get_singleton()->buffer_update(volumetric_fog.volume_ubo, 0, sizeof(VolumetricFogShader::VolumeUBO), &params);
  459. if (fog->fog_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(fog->fog_uniform_set)) {
  460. Vector<RD::Uniform> uniforms;
  461. {
  462. RD::Uniform u;
  463. u.uniform_type = fog->atomic_type;
  464. u.binding = 1;
  465. u.append_id(fog->emissive_map);
  466. uniforms.push_back(u);
  467. }
  468. {
  469. RD::Uniform u;
  470. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  471. u.binding = 2;
  472. u.append_id(volumetric_fog.volume_ubo);
  473. uniforms.push_back(u);
  474. }
  475. {
  476. RD::Uniform u;
  477. u.uniform_type = fog->atomic_type;
  478. u.binding = 3;
  479. u.append_id(fog->density_map);
  480. uniforms.push_back(u);
  481. }
  482. {
  483. RD::Uniform u;
  484. u.uniform_type = fog->atomic_type;
  485. u.binding = 4;
  486. u.append_id(fog->light_map);
  487. uniforms.push_back(u);
  488. }
  489. fog->fog_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.default_shader_rd, VolumetricFogShader::FogSet::FOG_SET_UNIFORMS);
  490. }
  491. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  492. bool any_uses_time = false;
  493. Vector3 cam_position = p_cam_transform.get_origin();
  494. for (int i = 0; i < (int)p_fog_volumes.size(); i++) {
  495. FogVolumeInstance *fog_volume_instance = fog_volume_instance_owner.get_or_null(p_fog_volumes[i]);
  496. ERR_FAIL_NULL(fog_volume_instance);
  497. RID fog_volume = fog_volume_instance->volume;
  498. RID fog_material = RendererRD::Fog::get_singleton()->fog_volume_get_material(fog_volume);
  499. FogMaterialData *material = nullptr;
  500. if (fog_material.is_valid()) {
  501. material = static_cast<FogMaterialData *>(material_storage->material_get_data(fog_material, RendererRD::MaterialStorage::SHADER_TYPE_FOG));
  502. if (!material || !material->shader_data->valid) {
  503. material = nullptr;
  504. }
  505. }
  506. if (!material) {
  507. fog_material = volumetric_fog.default_material;
  508. material = static_cast<FogMaterialData *>(material_storage->material_get_data(fog_material, RendererRD::MaterialStorage::SHADER_TYPE_FOG));
  509. }
  510. ERR_FAIL_NULL(material);
  511. FogShaderData *shader_data = material->shader_data;
  512. ERR_FAIL_NULL(shader_data);
  513. any_uses_time |= shader_data->uses_time;
  514. Vector3i froxel_min;
  515. Vector3i froxel_max;
  516. Vector3i kernel_size;
  517. Vector3 fog_position = fog_volume_instance->transform.get_origin();
  518. RS::FogVolumeShape volume_type = RendererRD::Fog::get_singleton()->fog_volume_get_shape(fog_volume);
  519. Vector3 extents = RendererRD::Fog::get_singleton()->fog_volume_get_size(fog_volume) / 2;
  520. if (volume_type != RS::FOG_VOLUME_SHAPE_WORLD) {
  521. // Local fog volume.
  522. Vector3 fog_size = Vector3(fog->width, fog->height, fog->depth);
  523. float volumetric_fog_detail_spread = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_detail_spread(p_settings.env);
  524. Vector3 corners[8]{
  525. fog_volume_instance->transform.xform(Vector3(extents.x, extents.y, extents.z)),
  526. fog_volume_instance->transform.xform(Vector3(-extents.x, extents.y, extents.z)),
  527. fog_volume_instance->transform.xform(Vector3(extents.x, -extents.y, extents.z)),
  528. fog_volume_instance->transform.xform(Vector3(-extents.x, -extents.y, extents.z)),
  529. fog_volume_instance->transform.xform(Vector3(extents.x, extents.y, -extents.z)),
  530. fog_volume_instance->transform.xform(Vector3(-extents.x, extents.y, -extents.z)),
  531. fog_volume_instance->transform.xform(Vector3(extents.x, -extents.y, -extents.z)),
  532. fog_volume_instance->transform.xform(Vector3(-extents.x, -extents.y, -extents.z))
  533. };
  534. Vector3i froxels[8];
  535. Vector3 corner_min = corners[0];
  536. Vector3 corner_max = corners[0];
  537. for (int j = 0; j < 8; j++) {
  538. froxels[j] = _point_get_position_in_froxel_volume(corners[j], fog_end, fog_near_size, fog_far_size, volumetric_fog_detail_spread, fog_size, p_cam_transform);
  539. corner_min = corner_min.min(corners[j]);
  540. corner_max = corner_max.max(corners[j]);
  541. }
  542. froxel_min = Vector3i(int32_t(fog->width) - 1, int32_t(fog->height) - 1, int32_t(fog->depth) - 1);
  543. froxel_max = Vector3i(1, 1, 1);
  544. // Tracking just the corners of the fog volume can result in missing some fog:
  545. // when the camera's near plane is inside the fog, we must always consider the entire screen
  546. Vector3 near_plane_corner(frustum_near_size.x, frustum_near_size.y, z_near);
  547. float expand = near_plane_corner.length();
  548. if (cam_position.x > (corner_min.x - expand) && cam_position.x < (corner_max.x + expand) &&
  549. cam_position.y > (corner_min.y - expand) && cam_position.y < (corner_max.y + expand) &&
  550. cam_position.z > (corner_min.z - expand) && cam_position.z < (corner_max.z + expand)) {
  551. froxel_min.x = 0;
  552. froxel_min.y = 0;
  553. froxel_min.z = 0;
  554. froxel_max.x = int32_t(fog->width);
  555. froxel_max.y = int32_t(fog->height);
  556. for (int j = 0; j < 8; j++) {
  557. froxel_max.z = MAX(froxel_max.z, froxels[j].z);
  558. }
  559. } else {
  560. // Camera is guaranteed to be outside the fog volume
  561. for (int j = 0; j < 8; j++) {
  562. froxel_min = froxel_min.min(froxels[j]);
  563. froxel_max = froxel_max.max(froxels[j]);
  564. }
  565. }
  566. kernel_size = froxel_max - froxel_min;
  567. } else {
  568. // Volume type global runs on all cells
  569. extents = Vector3(fog->width, fog->height, fog->depth);
  570. froxel_min = Vector3i(0, 0, 0);
  571. kernel_size = Vector3i(int32_t(fog->width), int32_t(fog->height), int32_t(fog->depth));
  572. }
  573. if (kernel_size.x == 0 || kernel_size.y == 0 || kernel_size.z == 0) {
  574. continue;
  575. }
  576. VolumetricFogShader::FogPushConstant push_constant;
  577. push_constant.position[0] = fog_position.x;
  578. push_constant.position[1] = fog_position.y;
  579. push_constant.position[2] = fog_position.z;
  580. push_constant.size[0] = extents.x * 2;
  581. push_constant.size[1] = extents.y * 2;
  582. push_constant.size[2] = extents.z * 2;
  583. push_constant.corner[0] = froxel_min.x;
  584. push_constant.corner[1] = froxel_min.y;
  585. push_constant.corner[2] = froxel_min.z;
  586. push_constant.shape = uint32_t(RendererRD::Fog::get_singleton()->fog_volume_get_shape(fog_volume));
  587. RendererRD::MaterialStorage::store_transform(fog_volume_instance->transform.affine_inverse(), push_constant.transform);
  588. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, shader_data->pipeline);
  589. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, fog->fog_uniform_set, VolumetricFogShader::FogSet::FOG_SET_UNIFORMS);
  590. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VolumetricFogShader::FogPushConstant));
  591. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, volumetric_fog.base_uniform_set, VolumetricFogShader::FogSet::FOG_SET_BASE);
  592. if (material->uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(material->uniform_set)) { // Material may not have a uniform set.
  593. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, material->uniform_set, VolumetricFogShader::FogSet::FOG_SET_MATERIAL);
  594. material->set_as_used();
  595. }
  596. RD::get_singleton()->compute_list_dispatch_threads(compute_list, kernel_size.x, kernel_size.y, kernel_size.z);
  597. }
  598. if (any_uses_time || RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_temporal_reprojection(p_settings.env)) {
  599. RenderingServerDefault::redraw_request();
  600. }
  601. RD::get_singleton()->draw_command_end_label();
  602. RD::get_singleton()->compute_list_end();
  603. }
  604. bool gi_dependent_sets_valid = fog->sync_gi_dependent_sets_validity();
  605. if (!fog->copy_uniform_set.is_null() && !RD::get_singleton()->uniform_set_is_valid(fog->copy_uniform_set)) {
  606. fog->copy_uniform_set = RID();
  607. }
  608. if (!gi_dependent_sets_valid || fog->copy_uniform_set.is_null()) {
  609. //re create uniform set if needed
  610. Vector<RD::Uniform> uniforms;
  611. Vector<RD::Uniform> copy_uniforms;
  612. {
  613. RD::Uniform u;
  614. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  615. u.binding = 1;
  616. if (p_settings.shadow_atlas_depth.is_null()) {
  617. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK));
  618. } else {
  619. u.append_id(p_settings.shadow_atlas_depth);
  620. }
  621. uniforms.push_back(u);
  622. copy_uniforms.push_back(u);
  623. }
  624. {
  625. RD::Uniform u;
  626. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  627. u.binding = 2;
  628. if (p_settings.directional_shadow_depth.is_valid()) {
  629. u.append_id(p_settings.directional_shadow_depth);
  630. } else {
  631. u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK));
  632. }
  633. uniforms.push_back(u);
  634. copy_uniforms.push_back(u);
  635. }
  636. {
  637. RD::Uniform u;
  638. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  639. u.binding = 3;
  640. u.append_id(p_settings.omni_light_buffer);
  641. uniforms.push_back(u);
  642. copy_uniforms.push_back(u);
  643. }
  644. {
  645. RD::Uniform u;
  646. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  647. u.binding = 4;
  648. u.append_id(p_settings.spot_light_buffer);
  649. uniforms.push_back(u);
  650. copy_uniforms.push_back(u);
  651. }
  652. {
  653. RD::Uniform u;
  654. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  655. u.binding = 5;
  656. u.append_id(p_settings.directional_light_buffer);
  657. uniforms.push_back(u);
  658. copy_uniforms.push_back(u);
  659. }
  660. {
  661. RD::Uniform u;
  662. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  663. u.binding = 6;
  664. u.append_id(p_settings.cluster_builder->get_cluster_buffer());
  665. uniforms.push_back(u);
  666. copy_uniforms.push_back(u);
  667. }
  668. {
  669. RD::Uniform u;
  670. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  671. u.binding = 7;
  672. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  673. uniforms.push_back(u);
  674. copy_uniforms.push_back(u);
  675. }
  676. {
  677. RD::Uniform u;
  678. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  679. u.binding = 8;
  680. u.append_id(fog->light_density_map);
  681. uniforms.push_back(u);
  682. copy_uniforms.push_back(u);
  683. }
  684. {
  685. RD::Uniform u;
  686. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  687. u.binding = 9;
  688. u.append_id(fog->fog_map);
  689. uniforms.push_back(u);
  690. }
  691. {
  692. RD::Uniform u;
  693. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  694. u.binding = 9;
  695. u.append_id(fog->prev_light_density_map);
  696. copy_uniforms.push_back(u);
  697. }
  698. {
  699. RD::Uniform u;
  700. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  701. u.binding = 10;
  702. u.append_id(p_settings.shadow_sampler);
  703. uniforms.push_back(u);
  704. copy_uniforms.push_back(u);
  705. }
  706. {
  707. RD::Uniform u;
  708. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  709. u.binding = 11;
  710. u.append_id(p_settings.voxel_gi_buffer);
  711. uniforms.push_back(u);
  712. copy_uniforms.push_back(u);
  713. }
  714. {
  715. RD::Uniform u;
  716. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  717. u.binding = 12;
  718. for (int i = 0; i < RendererRD::GI::MAX_VOXEL_GI_INSTANCES; i++) {
  719. u.append_id(p_settings.rbgi->voxel_gi_textures[i]);
  720. }
  721. uniforms.push_back(u);
  722. copy_uniforms.push_back(u);
  723. }
  724. {
  725. RD::Uniform u;
  726. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  727. u.binding = 13;
  728. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  729. uniforms.push_back(u);
  730. copy_uniforms.push_back(u);
  731. }
  732. {
  733. RD::Uniform u;
  734. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  735. u.binding = 14;
  736. u.append_id(volumetric_fog.params_ubo);
  737. uniforms.push_back(u);
  738. copy_uniforms.push_back(u);
  739. }
  740. {
  741. RD::Uniform u;
  742. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  743. u.binding = 15;
  744. u.append_id(fog->prev_light_density_map);
  745. uniforms.push_back(u);
  746. }
  747. {
  748. RD::Uniform u;
  749. u.uniform_type = fog->atomic_type;
  750. u.binding = 16;
  751. u.append_id(fog->density_map);
  752. uniforms.push_back(u);
  753. }
  754. {
  755. RD::Uniform u;
  756. u.uniform_type = fog->atomic_type;
  757. u.binding = 17;
  758. u.append_id(fog->light_map);
  759. uniforms.push_back(u);
  760. }
  761. {
  762. RD::Uniform u;
  763. u.uniform_type = fog->atomic_type;
  764. u.binding = 18;
  765. u.append_id(fog->emissive_map);
  766. uniforms.push_back(u);
  767. }
  768. {
  769. RD::Uniform u;
  770. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  771. u.binding = 19;
  772. RID radiance_texture = texture_storage->texture_rd_get_default(p_settings.is_using_radiance_cubemap_array ? RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_CUBEMAP_ARRAY_BLACK : RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK);
  773. RID sky_texture = RendererSceneRenderRD::get_singleton()->environment_get_sky(p_settings.env).is_valid() ? p_settings.sky->sky_get_radiance_texture_rd(RendererSceneRenderRD::get_singleton()->environment_get_sky(p_settings.env)) : RID();
  774. u.append_id(sky_texture.is_valid() ? sky_texture : radiance_texture);
  775. uniforms.push_back(u);
  776. }
  777. if (fog->copy_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(fog->copy_uniform_set)) {
  778. RD::get_singleton()->free(fog->copy_uniform_set);
  779. }
  780. fog->copy_uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, volumetric_fog.process_shader.version_get_shader(volumetric_fog.process_shader_version, VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_COPY), 0);
  781. if (!gi_dependent_sets_valid) {
  782. fog->gi_dependent_sets.process_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.process_shader.version_get_shader(volumetric_fog.process_shader_version, VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_FOG), 0);
  783. RID aux7 = uniforms.write[7].get_id(0);
  784. RID aux8 = uniforms.write[8].get_id(0);
  785. uniforms.write[7].set_id(0, aux8);
  786. uniforms.write[8].set_id(0, aux7);
  787. fog->gi_dependent_sets.process_uniform_set2 = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.process_shader.version_get_shader(volumetric_fog.process_shader_version, VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_FOG), 0);
  788. uniforms.remove_at(8);
  789. uniforms.write[7].set_id(0, aux7);
  790. fog->gi_dependent_sets.process_uniform_set_density = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.process_shader.version_get_shader(volumetric_fog.process_shader_version, VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_DENSITY), 0);
  791. }
  792. }
  793. bool using_sdfgi = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_gi_inject(p_settings.env) > 0.0001 && RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_enabled(p_settings.env) && (p_settings.sdfgi.is_valid());
  794. if (using_sdfgi) {
  795. if (fog->sdfgi_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(fog->sdfgi_uniform_set)) {
  796. Vector<RD::Uniform> uniforms;
  797. {
  798. RD::Uniform u;
  799. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  800. u.binding = 0;
  801. u.append_id(p_settings.gi->sdfgi_ubo);
  802. uniforms.push_back(u);
  803. }
  804. {
  805. RD::Uniform u;
  806. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  807. u.binding = 1;
  808. u.append_id(p_settings.sdfgi->ambient_texture);
  809. uniforms.push_back(u);
  810. }
  811. {
  812. RD::Uniform u;
  813. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  814. u.binding = 2;
  815. u.append_id(p_settings.sdfgi->occlusion_texture);
  816. uniforms.push_back(u);
  817. }
  818. fog->sdfgi_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.process_shader.version_get_shader(volumetric_fog.process_shader_version, VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_DENSITY_WITH_SDFGI), 1);
  819. }
  820. }
  821. fog->length = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_length(p_settings.env);
  822. fog->spread = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_detail_spread(p_settings.env);
  823. VolumetricFogShader::ParamsUBO params;
  824. Vector2 frustum_near_size = p_cam_projection.get_viewport_half_extents();
  825. Vector2 frustum_far_size = p_cam_projection.get_far_plane_half_extents();
  826. float z_near = p_cam_projection.get_z_near();
  827. float z_far = p_cam_projection.get_z_far();
  828. float fog_end = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_length(p_settings.env);
  829. Vector2 fog_far_size = frustum_near_size.lerp(frustum_far_size, (fog_end - z_near) / (z_far - z_near));
  830. Vector2 fog_near_size;
  831. if (p_cam_projection.is_orthogonal()) {
  832. fog_near_size = fog_far_size;
  833. } else {
  834. fog_near_size = frustum_near_size.maxf(0.001);
  835. }
  836. params.fog_frustum_size_begin[0] = fog_near_size.x;
  837. params.fog_frustum_size_begin[1] = fog_near_size.y;
  838. params.fog_frustum_size_end[0] = fog_far_size.x;
  839. params.fog_frustum_size_end[1] = fog_far_size.y;
  840. params.ambient_inject = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_ambient_inject(p_settings.env) * RendererSceneRenderRD::get_singleton()->environment_get_ambient_light_energy(p_settings.env);
  841. params.z_far = z_far;
  842. params.fog_frustum_end = fog_end;
  843. Color ambient_color = RendererSceneRenderRD::get_singleton()->environment_get_ambient_light(p_settings.env).srgb_to_linear();
  844. params.ambient_color[0] = ambient_color.r;
  845. params.ambient_color[1] = ambient_color.g;
  846. params.ambient_color[2] = ambient_color.b;
  847. params.sky_contribution = RendererSceneRenderRD::get_singleton()->environment_get_ambient_sky_contribution(p_settings.env);
  848. params.fog_volume_size[0] = fog->width;
  849. params.fog_volume_size[1] = fog->height;
  850. params.fog_volume_size[2] = fog->depth;
  851. params.directional_light_count = p_directional_light_count;
  852. Color emission = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_emission(p_settings.env).srgb_to_linear();
  853. params.base_emission[0] = emission.r * RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_emission_energy(p_settings.env);
  854. params.base_emission[1] = emission.g * RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_emission_energy(p_settings.env);
  855. params.base_emission[2] = emission.b * RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_emission_energy(p_settings.env);
  856. params.base_density = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_density(p_settings.env);
  857. Color base_scattering = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_scattering(p_settings.env).srgb_to_linear();
  858. params.base_scattering[0] = base_scattering.r;
  859. params.base_scattering[1] = base_scattering.g;
  860. params.base_scattering[2] = base_scattering.b;
  861. params.phase_g = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_anisotropy(p_settings.env);
  862. params.detail_spread = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_detail_spread(p_settings.env);
  863. params.gi_inject = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_gi_inject(p_settings.env);
  864. params.cam_rotation[0] = p_cam_transform.basis[0][0];
  865. params.cam_rotation[1] = p_cam_transform.basis[1][0];
  866. params.cam_rotation[2] = p_cam_transform.basis[2][0];
  867. params.cam_rotation[3] = 0;
  868. params.cam_rotation[4] = p_cam_transform.basis[0][1];
  869. params.cam_rotation[5] = p_cam_transform.basis[1][1];
  870. params.cam_rotation[6] = p_cam_transform.basis[2][1];
  871. params.cam_rotation[7] = 0;
  872. params.cam_rotation[8] = p_cam_transform.basis[0][2];
  873. params.cam_rotation[9] = p_cam_transform.basis[1][2];
  874. params.cam_rotation[10] = p_cam_transform.basis[2][2];
  875. params.cam_rotation[11] = 0;
  876. params.filter_axis = 0;
  877. params.max_voxel_gi_instances = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_gi_inject(p_settings.env) > 0.001 ? p_voxel_gi_count : 0;
  878. params.temporal_frame = RSG::rasterizer->get_frame_number() % VolumetricFog::MAX_TEMPORAL_FRAMES;
  879. Transform3D to_prev_cam_view = p_prev_cam_inv_transform * p_cam_transform;
  880. RendererRD::MaterialStorage::store_transform(to_prev_cam_view, params.to_prev_view);
  881. params.use_temporal_reprojection = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_temporal_reprojection(p_settings.env);
  882. params.temporal_blend = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_temporal_reprojection_amount(p_settings.env);
  883. {
  884. uint32_t cluster_size = p_settings.cluster_builder->get_cluster_size();
  885. params.cluster_shift = get_shift_from_power_of_2(cluster_size);
  886. uint32_t cluster_screen_width = Math::division_round_up((uint32_t)p_settings.rb_size.x, cluster_size);
  887. uint32_t cluster_screen_height = Math::division_round_up((uint32_t)p_settings.rb_size.y, cluster_size);
  888. params.max_cluster_element_count_div_32 = p_settings.max_cluster_elements / 32;
  889. params.cluster_type_size = cluster_screen_width * cluster_screen_height * (params.max_cluster_element_count_div_32 + 32);
  890. params.cluster_width = cluster_screen_width;
  891. params.screen_size[0] = p_settings.rb_size.x;
  892. params.screen_size[1] = p_settings.rb_size.y;
  893. }
  894. Basis sky_transform = RendererSceneRenderRD::get_singleton()->environment_get_sky_orientation(p_settings.env);
  895. sky_transform = sky_transform.inverse() * p_cam_transform.basis;
  896. RendererRD::MaterialStorage::store_transform_3x3(sky_transform, params.radiance_inverse_xform);
  897. RD::get_singleton()->draw_command_begin_label("Render Volumetric Fog");
  898. RENDER_TIMESTAMP("Render Fog");
  899. RD::get_singleton()->buffer_update(volumetric_fog.params_ubo, 0, sizeof(VolumetricFogShader::ParamsUBO), &params);
  900. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  901. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.process_pipelines[using_sdfgi ? VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_DENSITY_WITH_SDFGI : VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_DENSITY]);
  902. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, fog->gi_dependent_sets.process_uniform_set_density, 0);
  903. if (using_sdfgi) {
  904. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, fog->sdfgi_uniform_set, 1);
  905. }
  906. RD::get_singleton()->compute_list_dispatch_threads(compute_list, fog->width, fog->height, fog->depth);
  907. RD::get_singleton()->compute_list_add_barrier(compute_list);
  908. // Copy fog to history buffer
  909. if (RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_temporal_reprojection(p_settings.env)) {
  910. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.process_pipelines[VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_COPY]);
  911. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, fog->copy_uniform_set, 0);
  912. RD::get_singleton()->compute_list_dispatch_threads(compute_list, fog->width, fog->height, fog->depth);
  913. RD::get_singleton()->compute_list_add_barrier(compute_list);
  914. }
  915. RD::get_singleton()->draw_command_end_label();
  916. if (p_settings.volumetric_fog_filter_active) {
  917. RD::get_singleton()->draw_command_begin_label("Filter Fog");
  918. RENDER_TIMESTAMP("Filter Fog");
  919. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.process_pipelines[VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_FILTER]);
  920. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, fog->gi_dependent_sets.process_uniform_set, 0);
  921. RD::get_singleton()->compute_list_dispatch_threads(compute_list, fog->width, fog->height, fog->depth);
  922. RD::get_singleton()->compute_list_end();
  923. //need restart for buffer update
  924. params.filter_axis = 1;
  925. RD::get_singleton()->buffer_update(volumetric_fog.params_ubo, 0, sizeof(VolumetricFogShader::ParamsUBO), &params);
  926. compute_list = RD::get_singleton()->compute_list_begin();
  927. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.process_pipelines[VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_FILTER]);
  928. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, fog->gi_dependent_sets.process_uniform_set2, 0);
  929. RD::get_singleton()->compute_list_dispatch_threads(compute_list, fog->width, fog->height, fog->depth);
  930. RD::get_singleton()->compute_list_add_barrier(compute_list);
  931. RD::get_singleton()->draw_command_end_label();
  932. }
  933. RENDER_TIMESTAMP("Integrate Fog");
  934. RD::get_singleton()->draw_command_begin_label("Integrate Fog");
  935. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.process_pipelines[VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_FOG]);
  936. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, fog->gi_dependent_sets.process_uniform_set, 0);
  937. RD::get_singleton()->compute_list_dispatch_threads(compute_list, fog->width, fog->height, 1);
  938. RD::get_singleton()->compute_list_end();
  939. RENDER_TIMESTAMP("< Volumetric Fog");
  940. RD::get_singleton()->draw_command_end_label();
  941. RD::get_singleton()->draw_command_end_label();
  942. }