gi.cpp 150 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938
  1. /*************************************************************************/
  2. /* gi.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "gi.h"
  31. #include "core/config/project_settings.h"
  32. #include "servers/rendering/renderer_rd/renderer_compositor_rd.h"
  33. #include "servers/rendering/renderer_rd/renderer_scene_render_rd.h"
  34. #include "servers/rendering/renderer_rd/storage_rd/material_storage.h"
  35. #include "servers/rendering/renderer_rd/storage_rd/texture_storage.h"
  36. #include "servers/rendering/rendering_server_default.h"
  37. using namespace RendererRD;
  38. const Vector3i GI::SDFGI::Cascade::DIRTY_ALL = Vector3i(0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF);
  39. GI *GI::singleton = nullptr;
  40. ////////////////////////////////////////////////////////////////////////////////
  41. // VOXEL GI STORAGE
  42. RID GI::voxel_gi_allocate() {
  43. return voxel_gi_owner.allocate_rid();
  44. }
  45. void GI::voxel_gi_free(RID p_voxel_gi) {
  46. voxel_gi_allocate_data(p_voxel_gi, Transform3D(), AABB(), Vector3i(), Vector<uint8_t>(), Vector<uint8_t>(), Vector<uint8_t>(), Vector<int>()); //deallocate
  47. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  48. voxel_gi->dependency.deleted_notify(p_voxel_gi);
  49. voxel_gi_owner.free(p_voxel_gi);
  50. }
  51. void GI::voxel_gi_initialize(RID p_voxel_gi) {
  52. voxel_gi_owner.initialize_rid(p_voxel_gi, VoxelGI());
  53. }
  54. void GI::voxel_gi_allocate_data(RID p_voxel_gi, const Transform3D &p_to_cell_xform, const AABB &p_aabb, const Vector3i &p_octree_size, const Vector<uint8_t> &p_octree_cells, const Vector<uint8_t> &p_data_cells, const Vector<uint8_t> &p_distance_field, const Vector<int> &p_level_counts) {
  55. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  56. ERR_FAIL_COND(!voxel_gi);
  57. if (voxel_gi->octree_buffer.is_valid()) {
  58. RD::get_singleton()->free(voxel_gi->octree_buffer);
  59. RD::get_singleton()->free(voxel_gi->data_buffer);
  60. if (voxel_gi->sdf_texture.is_valid()) {
  61. RD::get_singleton()->free(voxel_gi->sdf_texture);
  62. }
  63. voxel_gi->sdf_texture = RID();
  64. voxel_gi->octree_buffer = RID();
  65. voxel_gi->data_buffer = RID();
  66. voxel_gi->octree_buffer_size = 0;
  67. voxel_gi->data_buffer_size = 0;
  68. voxel_gi->cell_count = 0;
  69. }
  70. voxel_gi->to_cell_xform = p_to_cell_xform;
  71. voxel_gi->bounds = p_aabb;
  72. voxel_gi->octree_size = p_octree_size;
  73. voxel_gi->level_counts = p_level_counts;
  74. if (p_octree_cells.size()) {
  75. ERR_FAIL_COND(p_octree_cells.size() % 32 != 0); //cells size must be a multiple of 32
  76. uint32_t cell_count = p_octree_cells.size() / 32;
  77. ERR_FAIL_COND(p_data_cells.size() != (int)cell_count * 16); //see that data size matches
  78. voxel_gi->cell_count = cell_count;
  79. voxel_gi->octree_buffer = RD::get_singleton()->storage_buffer_create(p_octree_cells.size(), p_octree_cells);
  80. voxel_gi->octree_buffer_size = p_octree_cells.size();
  81. voxel_gi->data_buffer = RD::get_singleton()->storage_buffer_create(p_data_cells.size(), p_data_cells);
  82. voxel_gi->data_buffer_size = p_data_cells.size();
  83. if (p_distance_field.size()) {
  84. RD::TextureFormat tf;
  85. tf.format = RD::DATA_FORMAT_R8_UNORM;
  86. tf.width = voxel_gi->octree_size.x;
  87. tf.height = voxel_gi->octree_size.y;
  88. tf.depth = voxel_gi->octree_size.z;
  89. tf.texture_type = RD::TEXTURE_TYPE_3D;
  90. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  91. Vector<Vector<uint8_t>> s;
  92. s.push_back(p_distance_field);
  93. voxel_gi->sdf_texture = RD::get_singleton()->texture_create(tf, RD::TextureView(), s);
  94. }
  95. #if 0
  96. {
  97. RD::TextureFormat tf;
  98. tf.format = RD::DATA_FORMAT_R8_UNORM;
  99. tf.width = voxel_gi->octree_size.x;
  100. tf.height = voxel_gi->octree_size.y;
  101. tf.depth = voxel_gi->octree_size.z;
  102. tf.type = RD::TEXTURE_TYPE_3D;
  103. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  104. tf.shareable_formats.push_back(RD::DATA_FORMAT_R8_UNORM);
  105. tf.shareable_formats.push_back(RD::DATA_FORMAT_R8_UINT);
  106. voxel_gi->sdf_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  107. }
  108. RID shared_tex;
  109. {
  110. RD::TextureView tv;
  111. tv.format_override = RD::DATA_FORMAT_R8_UINT;
  112. shared_tex = RD::get_singleton()->texture_create_shared(tv, voxel_gi->sdf_texture);
  113. }
  114. //update SDF texture
  115. Vector<RD::Uniform> uniforms;
  116. {
  117. RD::Uniform u;
  118. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  119. u.binding = 1;
  120. u.append_id(voxel_gi->octree_buffer);
  121. uniforms.push_back(u);
  122. }
  123. {
  124. RD::Uniform u;
  125. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  126. u.binding = 2;
  127. u.append_id(voxel_gi->data_buffer);
  128. uniforms.push_back(u);
  129. }
  130. {
  131. RD::Uniform u;
  132. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  133. u.binding = 3;
  134. u.append_id(shared_tex);
  135. uniforms.push_back(u);
  136. }
  137. RID uniform_set = RD::get_singleton()->uniform_set_create(uniforms, voxel_gi_sdf_shader_version_shader, 0);
  138. {
  139. uint32_t push_constant[4] = { 0, 0, 0, 0 };
  140. for (int i = 0; i < voxel_gi->level_counts.size() - 1; i++) {
  141. push_constant[0] += voxel_gi->level_counts[i];
  142. }
  143. push_constant[1] = push_constant[0] + voxel_gi->level_counts[voxel_gi->level_counts.size() - 1];
  144. print_line("offset: " + itos(push_constant[0]));
  145. print_line("size: " + itos(push_constant[1]));
  146. //create SDF
  147. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  148. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, voxel_gi_sdf_shader_pipeline);
  149. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, uniform_set, 0);
  150. RD::get_singleton()->compute_list_set_push_constant(compute_list, push_constant, sizeof(uint32_t) * 4);
  151. RD::get_singleton()->compute_list_dispatch(compute_list, voxel_gi->octree_size.x / 4, voxel_gi->octree_size.y / 4, voxel_gi->octree_size.z / 4);
  152. RD::get_singleton()->compute_list_end();
  153. }
  154. RD::get_singleton()->free(uniform_set);
  155. RD::get_singleton()->free(shared_tex);
  156. }
  157. #endif
  158. }
  159. voxel_gi->version++;
  160. voxel_gi->data_version++;
  161. voxel_gi->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  162. }
  163. AABB GI::voxel_gi_get_bounds(RID p_voxel_gi) const {
  164. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  165. ERR_FAIL_COND_V(!voxel_gi, AABB());
  166. return voxel_gi->bounds;
  167. }
  168. Vector3i GI::voxel_gi_get_octree_size(RID p_voxel_gi) const {
  169. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  170. ERR_FAIL_COND_V(!voxel_gi, Vector3i());
  171. return voxel_gi->octree_size;
  172. }
  173. Vector<uint8_t> GI::voxel_gi_get_octree_cells(RID p_voxel_gi) const {
  174. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  175. ERR_FAIL_COND_V(!voxel_gi, Vector<uint8_t>());
  176. if (voxel_gi->octree_buffer.is_valid()) {
  177. return RD::get_singleton()->buffer_get_data(voxel_gi->octree_buffer);
  178. }
  179. return Vector<uint8_t>();
  180. }
  181. Vector<uint8_t> GI::voxel_gi_get_data_cells(RID p_voxel_gi) const {
  182. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  183. ERR_FAIL_COND_V(!voxel_gi, Vector<uint8_t>());
  184. if (voxel_gi->data_buffer.is_valid()) {
  185. return RD::get_singleton()->buffer_get_data(voxel_gi->data_buffer);
  186. }
  187. return Vector<uint8_t>();
  188. }
  189. Vector<uint8_t> GI::voxel_gi_get_distance_field(RID p_voxel_gi) const {
  190. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  191. ERR_FAIL_COND_V(!voxel_gi, Vector<uint8_t>());
  192. if (voxel_gi->data_buffer.is_valid()) {
  193. return RD::get_singleton()->texture_get_data(voxel_gi->sdf_texture, 0);
  194. }
  195. return Vector<uint8_t>();
  196. }
  197. Vector<int> GI::voxel_gi_get_level_counts(RID p_voxel_gi) const {
  198. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  199. ERR_FAIL_COND_V(!voxel_gi, Vector<int>());
  200. return voxel_gi->level_counts;
  201. }
  202. Transform3D GI::voxel_gi_get_to_cell_xform(RID p_voxel_gi) const {
  203. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  204. ERR_FAIL_COND_V(!voxel_gi, Transform3D());
  205. return voxel_gi->to_cell_xform;
  206. }
  207. void GI::voxel_gi_set_dynamic_range(RID p_voxel_gi, float p_range) {
  208. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  209. ERR_FAIL_COND(!voxel_gi);
  210. voxel_gi->dynamic_range = p_range;
  211. voxel_gi->version++;
  212. }
  213. float GI::voxel_gi_get_dynamic_range(RID p_voxel_gi) const {
  214. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  215. ERR_FAIL_COND_V(!voxel_gi, 0);
  216. return voxel_gi->dynamic_range;
  217. }
  218. void GI::voxel_gi_set_propagation(RID p_voxel_gi, float p_range) {
  219. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  220. ERR_FAIL_COND(!voxel_gi);
  221. voxel_gi->propagation = p_range;
  222. voxel_gi->version++;
  223. }
  224. float GI::voxel_gi_get_propagation(RID p_voxel_gi) const {
  225. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  226. ERR_FAIL_COND_V(!voxel_gi, 0);
  227. return voxel_gi->propagation;
  228. }
  229. void GI::voxel_gi_set_energy(RID p_voxel_gi, float p_energy) {
  230. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  231. ERR_FAIL_COND(!voxel_gi);
  232. voxel_gi->energy = p_energy;
  233. }
  234. float GI::voxel_gi_get_energy(RID p_voxel_gi) const {
  235. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  236. ERR_FAIL_COND_V(!voxel_gi, 0);
  237. return voxel_gi->energy;
  238. }
  239. void GI::voxel_gi_set_bias(RID p_voxel_gi, float p_bias) {
  240. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  241. ERR_FAIL_COND(!voxel_gi);
  242. voxel_gi->bias = p_bias;
  243. }
  244. float GI::voxel_gi_get_bias(RID p_voxel_gi) const {
  245. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  246. ERR_FAIL_COND_V(!voxel_gi, 0);
  247. return voxel_gi->bias;
  248. }
  249. void GI::voxel_gi_set_normal_bias(RID p_voxel_gi, float p_normal_bias) {
  250. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  251. ERR_FAIL_COND(!voxel_gi);
  252. voxel_gi->normal_bias = p_normal_bias;
  253. }
  254. float GI::voxel_gi_get_normal_bias(RID p_voxel_gi) const {
  255. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  256. ERR_FAIL_COND_V(!voxel_gi, 0);
  257. return voxel_gi->normal_bias;
  258. }
  259. void GI::voxel_gi_set_interior(RID p_voxel_gi, bool p_enable) {
  260. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  261. ERR_FAIL_COND(!voxel_gi);
  262. voxel_gi->interior = p_enable;
  263. }
  264. void GI::voxel_gi_set_use_two_bounces(RID p_voxel_gi, bool p_enable) {
  265. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  266. ERR_FAIL_COND(!voxel_gi);
  267. voxel_gi->use_two_bounces = p_enable;
  268. voxel_gi->version++;
  269. }
  270. bool GI::voxel_gi_is_using_two_bounces(RID p_voxel_gi) const {
  271. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  272. ERR_FAIL_COND_V(!voxel_gi, false);
  273. return voxel_gi->use_two_bounces;
  274. }
  275. bool GI::voxel_gi_is_interior(RID p_voxel_gi) const {
  276. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  277. ERR_FAIL_COND_V(!voxel_gi, 0);
  278. return voxel_gi->interior;
  279. }
  280. uint32_t GI::voxel_gi_get_version(RID p_voxel_gi) const {
  281. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  282. ERR_FAIL_COND_V(!voxel_gi, 0);
  283. return voxel_gi->version;
  284. }
  285. uint32_t GI::voxel_gi_get_data_version(RID p_voxel_gi) {
  286. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  287. ERR_FAIL_COND_V(!voxel_gi, 0);
  288. return voxel_gi->data_version;
  289. }
  290. RID GI::voxel_gi_get_octree_buffer(RID p_voxel_gi) const {
  291. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  292. ERR_FAIL_COND_V(!voxel_gi, RID());
  293. return voxel_gi->octree_buffer;
  294. }
  295. RID GI::voxel_gi_get_data_buffer(RID p_voxel_gi) const {
  296. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  297. ERR_FAIL_COND_V(!voxel_gi, RID());
  298. return voxel_gi->data_buffer;
  299. }
  300. RID GI::voxel_gi_get_sdf_texture(RID p_voxel_gi) {
  301. VoxelGI *voxel_gi = voxel_gi_owner.get_or_null(p_voxel_gi);
  302. ERR_FAIL_COND_V(!voxel_gi, RID());
  303. return voxel_gi->sdf_texture;
  304. }
  305. ////////////////////////////////////////////////////////////////////////////////
  306. // SDFGI
  307. void GI::SDFGI::create(RendererSceneEnvironmentRD *p_env, const Vector3 &p_world_position, uint32_t p_requested_history_size, GI *p_gi) {
  308. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  309. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  310. gi = p_gi;
  311. num_cascades = p_env->sdfgi_cascades;
  312. min_cell_size = p_env->sdfgi_min_cell_size;
  313. uses_occlusion = p_env->sdfgi_use_occlusion;
  314. y_scale_mode = p_env->sdfgi_y_scale;
  315. static const float y_scale[3] = { 2.0, 1.5, 1.0 };
  316. y_mult = y_scale[y_scale_mode];
  317. cascades.resize(num_cascades);
  318. probe_axis_count = SDFGI::PROBE_DIVISOR + 1;
  319. solid_cell_ratio = gi->sdfgi_solid_cell_ratio;
  320. solid_cell_count = uint32_t(float(cascade_size * cascade_size * cascade_size) * solid_cell_ratio);
  321. float base_cell_size = min_cell_size;
  322. RD::TextureFormat tf_sdf;
  323. tf_sdf.format = RD::DATA_FORMAT_R8_UNORM;
  324. tf_sdf.width = cascade_size; // Always 64x64
  325. tf_sdf.height = cascade_size;
  326. tf_sdf.depth = cascade_size;
  327. tf_sdf.texture_type = RD::TEXTURE_TYPE_3D;
  328. tf_sdf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  329. {
  330. RD::TextureFormat tf_render = tf_sdf;
  331. tf_render.format = RD::DATA_FORMAT_R16_UINT;
  332. render_albedo = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  333. tf_render.format = RD::DATA_FORMAT_R32_UINT;
  334. render_emission = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  335. render_emission_aniso = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  336. tf_render.format = RD::DATA_FORMAT_R8_UNORM; //at least its easy to visualize
  337. for (int i = 0; i < 8; i++) {
  338. render_occlusion[i] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  339. }
  340. tf_render.format = RD::DATA_FORMAT_R32_UINT;
  341. render_geom_facing = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  342. tf_render.format = RD::DATA_FORMAT_R8G8B8A8_UINT;
  343. render_sdf[0] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  344. render_sdf[1] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  345. tf_render.width /= 2;
  346. tf_render.height /= 2;
  347. tf_render.depth /= 2;
  348. render_sdf_half[0] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  349. render_sdf_half[1] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  350. }
  351. RD::TextureFormat tf_occlusion = tf_sdf;
  352. tf_occlusion.format = RD::DATA_FORMAT_R16_UINT;
  353. tf_occlusion.shareable_formats.push_back(RD::DATA_FORMAT_R16_UINT);
  354. tf_occlusion.shareable_formats.push_back(RD::DATA_FORMAT_R4G4B4A4_UNORM_PACK16);
  355. tf_occlusion.depth *= cascades.size(); //use depth for occlusion slices
  356. tf_occlusion.width *= 2; //use width for the other half
  357. RD::TextureFormat tf_light = tf_sdf;
  358. tf_light.format = RD::DATA_FORMAT_R32_UINT;
  359. tf_light.shareable_formats.push_back(RD::DATA_FORMAT_R32_UINT);
  360. tf_light.shareable_formats.push_back(RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32);
  361. RD::TextureFormat tf_aniso0 = tf_sdf;
  362. tf_aniso0.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  363. RD::TextureFormat tf_aniso1 = tf_sdf;
  364. tf_aniso1.format = RD::DATA_FORMAT_R8G8_UNORM;
  365. int passes = nearest_shift(cascade_size) - 1;
  366. //store lightprobe SH
  367. RD::TextureFormat tf_probes;
  368. tf_probes.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  369. tf_probes.width = probe_axis_count * probe_axis_count;
  370. tf_probes.height = probe_axis_count * SDFGI::SH_SIZE;
  371. tf_probes.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  372. tf_probes.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  373. history_size = p_requested_history_size;
  374. RD::TextureFormat tf_probe_history = tf_probes;
  375. tf_probe_history.format = RD::DATA_FORMAT_R16G16B16A16_SINT; //signed integer because SH are signed
  376. tf_probe_history.array_layers = history_size;
  377. RD::TextureFormat tf_probe_average = tf_probes;
  378. tf_probe_average.format = RD::DATA_FORMAT_R32G32B32A32_SINT; //signed integer because SH are signed
  379. tf_probe_average.texture_type = RD::TEXTURE_TYPE_2D;
  380. lightprobe_history_scroll = RD::get_singleton()->texture_create(tf_probe_history, RD::TextureView());
  381. lightprobe_average_scroll = RD::get_singleton()->texture_create(tf_probe_average, RD::TextureView());
  382. {
  383. //octahedral lightprobes
  384. RD::TextureFormat tf_octprobes = tf_probes;
  385. tf_octprobes.array_layers = cascades.size() * 2;
  386. tf_octprobes.format = RD::DATA_FORMAT_R32_UINT; //pack well with RGBE
  387. tf_octprobes.width = probe_axis_count * probe_axis_count * (SDFGI::LIGHTPROBE_OCT_SIZE + 2);
  388. tf_octprobes.height = probe_axis_count * (SDFGI::LIGHTPROBE_OCT_SIZE + 2);
  389. tf_octprobes.shareable_formats.push_back(RD::DATA_FORMAT_R32_UINT);
  390. tf_octprobes.shareable_formats.push_back(RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32);
  391. //lightprobe texture is an octahedral texture
  392. lightprobe_data = RD::get_singleton()->texture_create(tf_octprobes, RD::TextureView());
  393. RD::TextureView tv;
  394. tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32;
  395. lightprobe_texture = RD::get_singleton()->texture_create_shared(tv, lightprobe_data);
  396. //texture handling ambient data, to integrate with volumetric foc
  397. RD::TextureFormat tf_ambient = tf_probes;
  398. tf_ambient.array_layers = cascades.size();
  399. tf_ambient.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; //pack well with RGBE
  400. tf_ambient.width = probe_axis_count * probe_axis_count;
  401. tf_ambient.height = probe_axis_count;
  402. tf_ambient.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  403. //lightprobe texture is an octahedral texture
  404. ambient_texture = RD::get_singleton()->texture_create(tf_ambient, RD::TextureView());
  405. }
  406. cascades_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES);
  407. occlusion_data = RD::get_singleton()->texture_create(tf_occlusion, RD::TextureView());
  408. {
  409. RD::TextureView tv;
  410. tv.format_override = RD::DATA_FORMAT_R4G4B4A4_UNORM_PACK16;
  411. occlusion_texture = RD::get_singleton()->texture_create_shared(tv, occlusion_data);
  412. }
  413. for (uint32_t i = 0; i < cascades.size(); i++) {
  414. SDFGI::Cascade &cascade = cascades[i];
  415. /* 3D Textures */
  416. cascade.sdf_tex = RD::get_singleton()->texture_create(tf_sdf, RD::TextureView());
  417. cascade.light_data = RD::get_singleton()->texture_create(tf_light, RD::TextureView());
  418. cascade.light_aniso_0_tex = RD::get_singleton()->texture_create(tf_aniso0, RD::TextureView());
  419. cascade.light_aniso_1_tex = RD::get_singleton()->texture_create(tf_aniso1, RD::TextureView());
  420. {
  421. RD::TextureView tv;
  422. tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32;
  423. cascade.light_tex = RD::get_singleton()->texture_create_shared(tv, cascade.light_data);
  424. RD::get_singleton()->texture_clear(cascade.light_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  425. RD::get_singleton()->texture_clear(cascade.light_aniso_0_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  426. RD::get_singleton()->texture_clear(cascade.light_aniso_1_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  427. }
  428. cascade.cell_size = base_cell_size;
  429. Vector3 world_position = p_world_position;
  430. world_position.y *= y_mult;
  431. int32_t probe_cells = cascade_size / SDFGI::PROBE_DIVISOR;
  432. Vector3 probe_size = Vector3(1, 1, 1) * cascade.cell_size * probe_cells;
  433. Vector3i probe_pos = Vector3i((world_position / probe_size + Vector3(0.5, 0.5, 0.5)).floor());
  434. cascade.position = probe_pos * probe_cells;
  435. cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
  436. base_cell_size *= 2.0;
  437. /* Probe History */
  438. cascade.lightprobe_history_tex = RD::get_singleton()->texture_create(tf_probe_history, RD::TextureView());
  439. RD::get_singleton()->texture_clear(cascade.lightprobe_history_tex, Color(0, 0, 0, 0), 0, 1, 0, tf_probe_history.array_layers); //needs to be cleared for average to work
  440. cascade.lightprobe_average_tex = RD::get_singleton()->texture_create(tf_probe_average, RD::TextureView());
  441. RD::get_singleton()->texture_clear(cascade.lightprobe_average_tex, Color(0, 0, 0, 0), 0, 1, 0, 1); //needs to be cleared for average to work
  442. /* Buffers */
  443. cascade.solid_cell_buffer = RD::get_singleton()->storage_buffer_create(sizeof(SDFGI::Cascade::SolidCell) * solid_cell_count);
  444. cascade.solid_cell_dispatch_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4, Vector<uint8_t>(), RD::STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT);
  445. cascade.lights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(SDFGIShader::Light) * MAX(SDFGI::MAX_STATIC_LIGHTS, SDFGI::MAX_DYNAMIC_LIGHTS));
  446. {
  447. Vector<RD::Uniform> uniforms;
  448. {
  449. RD::Uniform u;
  450. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  451. u.binding = 1;
  452. u.append_id(render_sdf[(passes & 1) ? 1 : 0]); //if passes are even, we read from buffer 0, else we read from buffer 1
  453. uniforms.push_back(u);
  454. }
  455. {
  456. RD::Uniform u;
  457. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  458. u.binding = 2;
  459. u.append_id(render_albedo);
  460. uniforms.push_back(u);
  461. }
  462. {
  463. RD::Uniform u;
  464. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  465. u.binding = 3;
  466. for (int j = 0; j < 8; j++) {
  467. u.append_id(render_occlusion[j]);
  468. }
  469. uniforms.push_back(u);
  470. }
  471. {
  472. RD::Uniform u;
  473. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  474. u.binding = 4;
  475. u.append_id(render_emission);
  476. uniforms.push_back(u);
  477. }
  478. {
  479. RD::Uniform u;
  480. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  481. u.binding = 5;
  482. u.append_id(render_emission_aniso);
  483. uniforms.push_back(u);
  484. }
  485. {
  486. RD::Uniform u;
  487. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  488. u.binding = 6;
  489. u.append_id(render_geom_facing);
  490. uniforms.push_back(u);
  491. }
  492. {
  493. RD::Uniform u;
  494. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  495. u.binding = 7;
  496. u.append_id(cascade.sdf_tex);
  497. uniforms.push_back(u);
  498. }
  499. {
  500. RD::Uniform u;
  501. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  502. u.binding = 8;
  503. u.append_id(occlusion_data);
  504. uniforms.push_back(u);
  505. }
  506. {
  507. RD::Uniform u;
  508. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  509. u.binding = 10;
  510. u.append_id(cascade.solid_cell_dispatch_buffer);
  511. uniforms.push_back(u);
  512. }
  513. {
  514. RD::Uniform u;
  515. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  516. u.binding = 11;
  517. u.append_id(cascade.solid_cell_buffer);
  518. uniforms.push_back(u);
  519. }
  520. cascade.sdf_store_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_STORE), 0);
  521. }
  522. {
  523. Vector<RD::Uniform> uniforms;
  524. {
  525. RD::Uniform u;
  526. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  527. u.binding = 1;
  528. u.append_id(render_albedo);
  529. uniforms.push_back(u);
  530. }
  531. {
  532. RD::Uniform u;
  533. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  534. u.binding = 2;
  535. u.append_id(render_geom_facing);
  536. uniforms.push_back(u);
  537. }
  538. {
  539. RD::Uniform u;
  540. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  541. u.binding = 3;
  542. u.append_id(render_emission);
  543. uniforms.push_back(u);
  544. }
  545. {
  546. RD::Uniform u;
  547. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  548. u.binding = 4;
  549. u.append_id(render_emission_aniso);
  550. uniforms.push_back(u);
  551. }
  552. {
  553. RD::Uniform u;
  554. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  555. u.binding = 5;
  556. u.append_id(cascade.solid_cell_dispatch_buffer);
  557. uniforms.push_back(u);
  558. }
  559. {
  560. RD::Uniform u;
  561. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  562. u.binding = 6;
  563. u.append_id(cascade.solid_cell_buffer);
  564. uniforms.push_back(u);
  565. }
  566. cascade.scroll_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_SCROLL), 0);
  567. }
  568. {
  569. Vector<RD::Uniform> uniforms;
  570. {
  571. RD::Uniform u;
  572. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  573. u.binding = 1;
  574. for (int j = 0; j < 8; j++) {
  575. u.append_id(render_occlusion[j]);
  576. }
  577. uniforms.push_back(u);
  578. }
  579. {
  580. RD::Uniform u;
  581. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  582. u.binding = 2;
  583. u.append_id(occlusion_data);
  584. uniforms.push_back(u);
  585. }
  586. cascade.scroll_occlusion_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_SCROLL_OCCLUSION), 0);
  587. }
  588. }
  589. //direct light
  590. for (uint32_t i = 0; i < cascades.size(); i++) {
  591. SDFGI::Cascade &cascade = cascades[i];
  592. Vector<RD::Uniform> uniforms;
  593. {
  594. RD::Uniform u;
  595. u.binding = 1;
  596. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  597. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  598. if (j < cascades.size()) {
  599. u.append_id(cascades[j].sdf_tex);
  600. } else {
  601. u.append_id(texture_storage->texture_rd_get_default(RendererRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  602. }
  603. }
  604. uniforms.push_back(u);
  605. }
  606. {
  607. RD::Uniform u;
  608. u.binding = 2;
  609. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  610. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  611. uniforms.push_back(u);
  612. }
  613. {
  614. RD::Uniform u;
  615. u.binding = 3;
  616. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  617. u.append_id(cascade.solid_cell_dispatch_buffer);
  618. uniforms.push_back(u);
  619. }
  620. {
  621. RD::Uniform u;
  622. u.binding = 4;
  623. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  624. u.append_id(cascade.solid_cell_buffer);
  625. uniforms.push_back(u);
  626. }
  627. {
  628. RD::Uniform u;
  629. u.binding = 5;
  630. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  631. u.append_id(cascade.light_data);
  632. uniforms.push_back(u);
  633. }
  634. {
  635. RD::Uniform u;
  636. u.binding = 6;
  637. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  638. u.append_id(cascade.light_aniso_0_tex);
  639. uniforms.push_back(u);
  640. }
  641. {
  642. RD::Uniform u;
  643. u.binding = 7;
  644. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  645. u.append_id(cascade.light_aniso_1_tex);
  646. uniforms.push_back(u);
  647. }
  648. {
  649. RD::Uniform u;
  650. u.binding = 8;
  651. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  652. u.append_id(cascades_ubo);
  653. uniforms.push_back(u);
  654. }
  655. {
  656. RD::Uniform u;
  657. u.binding = 9;
  658. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  659. u.append_id(cascade.lights_buffer);
  660. uniforms.push_back(u);
  661. }
  662. {
  663. RD::Uniform u;
  664. u.binding = 10;
  665. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  666. u.append_id(lightprobe_texture);
  667. uniforms.push_back(u);
  668. }
  669. {
  670. RD::Uniform u;
  671. u.binding = 11;
  672. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  673. u.append_id(occlusion_texture);
  674. uniforms.push_back(u);
  675. }
  676. cascade.sdf_direct_light_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.direct_light.version_get_shader(gi->sdfgi_shader.direct_light_shader, 0), 0);
  677. }
  678. //preprocess initialize uniform set
  679. {
  680. Vector<RD::Uniform> uniforms;
  681. {
  682. RD::Uniform u;
  683. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  684. u.binding = 1;
  685. u.append_id(render_albedo);
  686. uniforms.push_back(u);
  687. }
  688. {
  689. RD::Uniform u;
  690. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  691. u.binding = 2;
  692. u.append_id(render_sdf[0]);
  693. uniforms.push_back(u);
  694. }
  695. sdf_initialize_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE), 0);
  696. }
  697. {
  698. Vector<RD::Uniform> uniforms;
  699. {
  700. RD::Uniform u;
  701. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  702. u.binding = 1;
  703. u.append_id(render_albedo);
  704. uniforms.push_back(u);
  705. }
  706. {
  707. RD::Uniform u;
  708. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  709. u.binding = 2;
  710. u.append_id(render_sdf_half[0]);
  711. uniforms.push_back(u);
  712. }
  713. sdf_initialize_half_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF), 0);
  714. }
  715. //jump flood uniform set
  716. {
  717. Vector<RD::Uniform> uniforms;
  718. {
  719. RD::Uniform u;
  720. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  721. u.binding = 1;
  722. u.append_id(render_sdf[0]);
  723. uniforms.push_back(u);
  724. }
  725. {
  726. RD::Uniform u;
  727. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  728. u.binding = 2;
  729. u.append_id(render_sdf[1]);
  730. uniforms.push_back(u);
  731. }
  732. jump_flood_uniform_set[0] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  733. RID aux0 = uniforms.write[0].get_id(0);
  734. RID aux1 = uniforms.write[1].get_id(0);
  735. uniforms.write[0].set_id(0, aux1);
  736. uniforms.write[1].set_id(0, aux0);
  737. jump_flood_uniform_set[1] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  738. }
  739. //jump flood half uniform set
  740. {
  741. Vector<RD::Uniform> uniforms;
  742. {
  743. RD::Uniform u;
  744. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  745. u.binding = 1;
  746. u.append_id(render_sdf_half[0]);
  747. uniforms.push_back(u);
  748. }
  749. {
  750. RD::Uniform u;
  751. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  752. u.binding = 2;
  753. u.append_id(render_sdf_half[1]);
  754. uniforms.push_back(u);
  755. }
  756. jump_flood_half_uniform_set[0] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  757. RID aux0 = uniforms.write[0].get_id(0);
  758. RID aux1 = uniforms.write[1].get_id(0);
  759. uniforms.write[0].set_id(0, aux1);
  760. uniforms.write[1].set_id(0, aux0);
  761. jump_flood_half_uniform_set[1] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  762. }
  763. //upscale half size sdf
  764. {
  765. Vector<RD::Uniform> uniforms;
  766. {
  767. RD::Uniform u;
  768. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  769. u.binding = 1;
  770. u.append_id(render_albedo);
  771. uniforms.push_back(u);
  772. }
  773. {
  774. RD::Uniform u;
  775. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  776. u.binding = 2;
  777. u.append_id(render_sdf_half[(passes & 1) ? 0 : 1]); //reverse pass order because half size
  778. uniforms.push_back(u);
  779. }
  780. {
  781. RD::Uniform u;
  782. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  783. u.binding = 3;
  784. u.append_id(render_sdf[(passes & 1) ? 0 : 1]); //reverse pass order because it needs an extra JFA pass
  785. uniforms.push_back(u);
  786. }
  787. upscale_jfa_uniform_set_index = (passes & 1) ? 0 : 1;
  788. sdf_upscale_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_JUMP_FLOOD_UPSCALE), 0);
  789. }
  790. //occlusion uniform set
  791. {
  792. Vector<RD::Uniform> uniforms;
  793. {
  794. RD::Uniform u;
  795. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  796. u.binding = 1;
  797. u.append_id(render_albedo);
  798. uniforms.push_back(u);
  799. }
  800. {
  801. RD::Uniform u;
  802. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  803. u.binding = 2;
  804. for (int i = 0; i < 8; i++) {
  805. u.append_id(render_occlusion[i]);
  806. }
  807. uniforms.push_back(u);
  808. }
  809. {
  810. RD::Uniform u;
  811. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  812. u.binding = 3;
  813. u.append_id(render_geom_facing);
  814. uniforms.push_back(u);
  815. }
  816. occlusion_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.preprocess.version_get_shader(gi->sdfgi_shader.preprocess_shader, SDFGIShader::PRE_PROCESS_OCCLUSION), 0);
  817. }
  818. for (uint32_t i = 0; i < cascades.size(); i++) {
  819. //integrate uniform
  820. Vector<RD::Uniform> uniforms;
  821. {
  822. RD::Uniform u;
  823. u.binding = 1;
  824. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  825. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  826. if (j < cascades.size()) {
  827. u.append_id(cascades[j].sdf_tex);
  828. } else {
  829. u.append_id(texture_storage->texture_rd_get_default(RendererRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  830. }
  831. }
  832. uniforms.push_back(u);
  833. }
  834. {
  835. RD::Uniform u;
  836. u.binding = 2;
  837. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  838. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  839. if (j < cascades.size()) {
  840. u.append_id(cascades[j].light_tex);
  841. } else {
  842. u.append_id(texture_storage->texture_rd_get_default(RendererRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  843. }
  844. }
  845. uniforms.push_back(u);
  846. }
  847. {
  848. RD::Uniform u;
  849. u.binding = 3;
  850. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  851. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  852. if (j < cascades.size()) {
  853. u.append_id(cascades[j].light_aniso_0_tex);
  854. } else {
  855. u.append_id(texture_storage->texture_rd_get_default(RendererRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  856. }
  857. }
  858. uniforms.push_back(u);
  859. }
  860. {
  861. RD::Uniform u;
  862. u.binding = 4;
  863. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  864. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  865. if (j < cascades.size()) {
  866. u.append_id(cascades[j].light_aniso_1_tex);
  867. } else {
  868. u.append_id(texture_storage->texture_rd_get_default(RendererRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  869. }
  870. }
  871. uniforms.push_back(u);
  872. }
  873. {
  874. RD::Uniform u;
  875. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  876. u.binding = 6;
  877. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  878. uniforms.push_back(u);
  879. }
  880. {
  881. RD::Uniform u;
  882. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  883. u.binding = 7;
  884. u.append_id(cascades_ubo);
  885. uniforms.push_back(u);
  886. }
  887. {
  888. RD::Uniform u;
  889. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  890. u.binding = 8;
  891. u.append_id(lightprobe_data);
  892. uniforms.push_back(u);
  893. }
  894. {
  895. RD::Uniform u;
  896. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  897. u.binding = 9;
  898. u.append_id(cascades[i].lightprobe_history_tex);
  899. uniforms.push_back(u);
  900. }
  901. {
  902. RD::Uniform u;
  903. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  904. u.binding = 10;
  905. u.append_id(cascades[i].lightprobe_average_tex);
  906. uniforms.push_back(u);
  907. }
  908. {
  909. RD::Uniform u;
  910. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  911. u.binding = 11;
  912. u.append_id(lightprobe_history_scroll);
  913. uniforms.push_back(u);
  914. }
  915. {
  916. RD::Uniform u;
  917. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  918. u.binding = 12;
  919. u.append_id(lightprobe_average_scroll);
  920. uniforms.push_back(u);
  921. }
  922. {
  923. RD::Uniform u;
  924. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  925. u.binding = 13;
  926. RID parent_average;
  927. if (cascades.size() == 1) {
  928. // If there is only one SDFGI cascade, we can't use the previous cascade for blending.
  929. parent_average = cascades[i].lightprobe_average_tex;
  930. } else if (i < cascades.size() - 1) {
  931. parent_average = cascades[i + 1].lightprobe_average_tex;
  932. } else {
  933. parent_average = cascades[i - 1].lightprobe_average_tex; //to use something, but it won't be used
  934. }
  935. u.append_id(parent_average);
  936. uniforms.push_back(u);
  937. }
  938. {
  939. RD::Uniform u;
  940. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  941. u.binding = 14;
  942. u.append_id(ambient_texture);
  943. uniforms.push_back(u);
  944. }
  945. cascades[i].integrate_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.integrate.version_get_shader(gi->sdfgi_shader.integrate_shader, 0), 0);
  946. }
  947. bounce_feedback = p_env->sdfgi_bounce_feedback;
  948. energy = p_env->sdfgi_energy;
  949. normal_bias = p_env->sdfgi_normal_bias;
  950. probe_bias = p_env->sdfgi_probe_bias;
  951. reads_sky = p_env->sdfgi_read_sky_light;
  952. }
  953. void GI::SDFGI::erase() {
  954. for (uint32_t i = 0; i < cascades.size(); i++) {
  955. const SDFGI::Cascade &c = cascades[i];
  956. RD::get_singleton()->free(c.light_data);
  957. RD::get_singleton()->free(c.light_aniso_0_tex);
  958. RD::get_singleton()->free(c.light_aniso_1_tex);
  959. RD::get_singleton()->free(c.sdf_tex);
  960. RD::get_singleton()->free(c.solid_cell_dispatch_buffer);
  961. RD::get_singleton()->free(c.solid_cell_buffer);
  962. RD::get_singleton()->free(c.lightprobe_history_tex);
  963. RD::get_singleton()->free(c.lightprobe_average_tex);
  964. RD::get_singleton()->free(c.lights_buffer);
  965. }
  966. RD::get_singleton()->free(render_albedo);
  967. RD::get_singleton()->free(render_emission);
  968. RD::get_singleton()->free(render_emission_aniso);
  969. RD::get_singleton()->free(render_sdf[0]);
  970. RD::get_singleton()->free(render_sdf[1]);
  971. RD::get_singleton()->free(render_sdf_half[0]);
  972. RD::get_singleton()->free(render_sdf_half[1]);
  973. for (int i = 0; i < 8; i++) {
  974. RD::get_singleton()->free(render_occlusion[i]);
  975. }
  976. RD::get_singleton()->free(render_geom_facing);
  977. RD::get_singleton()->free(lightprobe_data);
  978. RD::get_singleton()->free(lightprobe_history_scroll);
  979. RD::get_singleton()->free(occlusion_data);
  980. RD::get_singleton()->free(ambient_texture);
  981. RD::get_singleton()->free(cascades_ubo);
  982. for (uint32_t v = 0; v < RendererSceneRender::MAX_RENDER_VIEWS; v++) {
  983. if (RD::get_singleton()->uniform_set_is_valid(debug_uniform_set[v])) {
  984. RD::get_singleton()->free(debug_uniform_set[v]);
  985. }
  986. debug_uniform_set[v] = RID();
  987. }
  988. if (RD::get_singleton()->uniform_set_is_valid(debug_probes_uniform_set)) {
  989. RD::get_singleton()->free(debug_probes_uniform_set);
  990. }
  991. debug_probes_uniform_set = RID();
  992. if (debug_probes_scene_data_ubo.is_valid()) {
  993. RD::get_singleton()->free(debug_probes_scene_data_ubo);
  994. debug_probes_scene_data_ubo = RID();
  995. }
  996. }
  997. void GI::SDFGI::update(RendererSceneEnvironmentRD *p_env, const Vector3 &p_world_position) {
  998. bounce_feedback = p_env->sdfgi_bounce_feedback;
  999. energy = p_env->sdfgi_energy;
  1000. normal_bias = p_env->sdfgi_normal_bias;
  1001. probe_bias = p_env->sdfgi_probe_bias;
  1002. reads_sky = p_env->sdfgi_read_sky_light;
  1003. int32_t drag_margin = (cascade_size / SDFGI::PROBE_DIVISOR) / 2;
  1004. for (uint32_t i = 0; i < cascades.size(); i++) {
  1005. SDFGI::Cascade &cascade = cascades[i];
  1006. cascade.dirty_regions = Vector3i();
  1007. Vector3 probe_half_size = Vector3(1, 1, 1) * cascade.cell_size * float(cascade_size / SDFGI::PROBE_DIVISOR) * 0.5;
  1008. probe_half_size = Vector3(0, 0, 0);
  1009. Vector3 world_position = p_world_position;
  1010. world_position.y *= y_mult;
  1011. Vector3i pos_in_cascade = Vector3i((world_position + probe_half_size) / cascade.cell_size);
  1012. for (int j = 0; j < 3; j++) {
  1013. if (pos_in_cascade[j] < cascade.position[j]) {
  1014. while (pos_in_cascade[j] < (cascade.position[j] - drag_margin)) {
  1015. cascade.position[j] -= drag_margin * 2;
  1016. cascade.dirty_regions[j] += drag_margin * 2;
  1017. }
  1018. } else if (pos_in_cascade[j] > cascade.position[j]) {
  1019. while (pos_in_cascade[j] > (cascade.position[j] + drag_margin)) {
  1020. cascade.position[j] += drag_margin * 2;
  1021. cascade.dirty_regions[j] -= drag_margin * 2;
  1022. }
  1023. }
  1024. if (cascade.dirty_regions[j] == 0) {
  1025. continue; // not dirty
  1026. } else if (uint32_t(ABS(cascade.dirty_regions[j])) >= cascade_size) {
  1027. //moved too much, just redraw everything (make all dirty)
  1028. cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
  1029. break;
  1030. }
  1031. }
  1032. if (cascade.dirty_regions != Vector3i() && cascade.dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
  1033. //see how much the total dirty volume represents from the total volume
  1034. uint32_t total_volume = cascade_size * cascade_size * cascade_size;
  1035. uint32_t safe_volume = 1;
  1036. for (int j = 0; j < 3; j++) {
  1037. safe_volume *= cascade_size - ABS(cascade.dirty_regions[j]);
  1038. }
  1039. uint32_t dirty_volume = total_volume - safe_volume;
  1040. if (dirty_volume > (safe_volume / 2)) {
  1041. //more than half the volume is dirty, make all dirty so its only rendered once
  1042. cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
  1043. }
  1044. }
  1045. }
  1046. }
  1047. void GI::SDFGI::update_light() {
  1048. RD::get_singleton()->draw_command_begin_label("SDFGI Update dynamic Light");
  1049. /* Update dynamic light */
  1050. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1051. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.direct_light_pipeline[SDFGIShader::DIRECT_LIGHT_MODE_DYNAMIC]);
  1052. SDFGIShader::DirectLightPushConstant push_constant;
  1053. push_constant.grid_size[0] = cascade_size;
  1054. push_constant.grid_size[1] = cascade_size;
  1055. push_constant.grid_size[2] = cascade_size;
  1056. push_constant.max_cascades = cascades.size();
  1057. push_constant.probe_axis_size = probe_axis_count;
  1058. push_constant.bounce_feedback = bounce_feedback;
  1059. push_constant.y_mult = y_mult;
  1060. push_constant.use_occlusion = uses_occlusion;
  1061. for (uint32_t i = 0; i < cascades.size(); i++) {
  1062. SDFGI::Cascade &cascade = cascades[i];
  1063. push_constant.light_count = cascade_dynamic_light_count[i];
  1064. push_constant.cascade = i;
  1065. if (cascades[i].all_dynamic_lights_dirty || gi->sdfgi_frames_to_update_light == RS::ENV_SDFGI_UPDATE_LIGHT_IN_1_FRAME) {
  1066. push_constant.process_offset = 0;
  1067. push_constant.process_increment = 1;
  1068. } else {
  1069. static const uint32_t frames_to_update_table[RS::ENV_SDFGI_UPDATE_LIGHT_MAX] = {
  1070. 1, 2, 4, 8, 16
  1071. };
  1072. uint32_t frames_to_update = frames_to_update_table[gi->sdfgi_frames_to_update_light];
  1073. push_constant.process_offset = RSG::rasterizer->get_frame_number() % frames_to_update;
  1074. push_constant.process_increment = frames_to_update;
  1075. }
  1076. cascades[i].all_dynamic_lights_dirty = false;
  1077. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascade.sdf_direct_light_uniform_set, 0);
  1078. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::DirectLightPushConstant));
  1079. RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cascade.solid_cell_dispatch_buffer, 0);
  1080. }
  1081. RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_COMPUTE);
  1082. RD::get_singleton()->draw_command_end_label();
  1083. }
  1084. void GI::SDFGI::update_probes(RendererSceneEnvironmentRD *p_env, RendererSceneSkyRD::Sky *p_sky) {
  1085. RD::get_singleton()->draw_command_begin_label("SDFGI Update Probes");
  1086. SDFGIShader::IntegratePushConstant push_constant;
  1087. push_constant.grid_size[1] = cascade_size;
  1088. push_constant.grid_size[2] = cascade_size;
  1089. push_constant.grid_size[0] = cascade_size;
  1090. push_constant.max_cascades = cascades.size();
  1091. push_constant.probe_axis_size = probe_axis_count;
  1092. push_constant.history_index = render_pass % history_size;
  1093. push_constant.history_size = history_size;
  1094. static const uint32_t ray_count[RS::ENV_SDFGI_RAY_COUNT_MAX] = { 4, 8, 16, 32, 64, 96, 128 };
  1095. push_constant.ray_count = ray_count[gi->sdfgi_ray_count];
  1096. push_constant.ray_bias = probe_bias;
  1097. push_constant.image_size[0] = probe_axis_count * probe_axis_count;
  1098. push_constant.image_size[1] = probe_axis_count;
  1099. push_constant.store_ambient_texture = p_env->volumetric_fog_enabled;
  1100. RID sky_uniform_set = gi->sdfgi_shader.integrate_default_sky_uniform_set;
  1101. push_constant.sky_mode = SDFGIShader::IntegratePushConstant::SKY_MODE_DISABLED;
  1102. push_constant.y_mult = y_mult;
  1103. if (reads_sky && p_env) {
  1104. push_constant.sky_energy = p_env->bg_energy;
  1105. if (p_env->background == RS::ENV_BG_CLEAR_COLOR) {
  1106. push_constant.sky_mode = SDFGIShader::IntegratePushConstant::SKY_MODE_COLOR;
  1107. Color c = RSG::texture_storage->get_default_clear_color().srgb_to_linear();
  1108. push_constant.sky_color[0] = c.r;
  1109. push_constant.sky_color[1] = c.g;
  1110. push_constant.sky_color[2] = c.b;
  1111. } else if (p_env->background == RS::ENV_BG_COLOR) {
  1112. push_constant.sky_mode = SDFGIShader::IntegratePushConstant::SKY_MODE_COLOR;
  1113. Color c = p_env->bg_color;
  1114. push_constant.sky_color[0] = c.r;
  1115. push_constant.sky_color[1] = c.g;
  1116. push_constant.sky_color[2] = c.b;
  1117. } else if (p_env->background == RS::ENV_BG_SKY) {
  1118. if (p_sky && p_sky->radiance.is_valid()) {
  1119. if (integrate_sky_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(integrate_sky_uniform_set)) {
  1120. Vector<RD::Uniform> uniforms;
  1121. {
  1122. RD::Uniform u;
  1123. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1124. u.binding = 0;
  1125. u.append_id(p_sky->radiance);
  1126. uniforms.push_back(u);
  1127. }
  1128. {
  1129. RD::Uniform u;
  1130. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  1131. u.binding = 1;
  1132. u.append_id(RendererRD::MaterialStorage::get_singleton()->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1133. uniforms.push_back(u);
  1134. }
  1135. integrate_sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.integrate.version_get_shader(gi->sdfgi_shader.integrate_shader, 0), 1);
  1136. }
  1137. sky_uniform_set = integrate_sky_uniform_set;
  1138. push_constant.sky_mode = SDFGIShader::IntegratePushConstant::SKY_MODE_SKY;
  1139. }
  1140. }
  1141. }
  1142. render_pass++;
  1143. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(true);
  1144. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_PROCESS]);
  1145. int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR;
  1146. for (uint32_t i = 0; i < cascades.size(); i++) {
  1147. push_constant.cascade = i;
  1148. push_constant.world_offset[0] = cascades[i].position.x / probe_divisor;
  1149. push_constant.world_offset[1] = cascades[i].position.y / probe_divisor;
  1150. push_constant.world_offset[2] = cascades[i].position.z / probe_divisor;
  1151. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[i].integrate_uniform_set, 0);
  1152. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sky_uniform_set, 1);
  1153. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::IntegratePushConstant));
  1154. RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count, probe_axis_count, 1);
  1155. }
  1156. //end later after raster to avoid barriering on layout changes
  1157. //RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_NO_BARRIER);
  1158. RD::get_singleton()->draw_command_end_label();
  1159. }
  1160. void GI::SDFGI::store_probes() {
  1161. RD::get_singleton()->barrier(RD::BARRIER_MASK_COMPUTE, RD::BARRIER_MASK_COMPUTE);
  1162. RD::get_singleton()->draw_command_begin_label("SDFGI Store Probes");
  1163. SDFGIShader::IntegratePushConstant push_constant;
  1164. push_constant.grid_size[1] = cascade_size;
  1165. push_constant.grid_size[2] = cascade_size;
  1166. push_constant.grid_size[0] = cascade_size;
  1167. push_constant.max_cascades = cascades.size();
  1168. push_constant.probe_axis_size = probe_axis_count;
  1169. push_constant.history_index = render_pass % history_size;
  1170. push_constant.history_size = history_size;
  1171. static const uint32_t ray_count[RS::ENV_SDFGI_RAY_COUNT_MAX] = { 4, 8, 16, 32, 64, 96, 128 };
  1172. push_constant.ray_count = ray_count[gi->sdfgi_ray_count];
  1173. push_constant.ray_bias = probe_bias;
  1174. push_constant.image_size[0] = probe_axis_count * probe_axis_count;
  1175. push_constant.image_size[1] = probe_axis_count;
  1176. push_constant.store_ambient_texture = false;
  1177. push_constant.sky_mode = 0;
  1178. push_constant.y_mult = y_mult;
  1179. // Then store values into the lightprobe texture. Separating these steps has a small performance hit, but it allows for multiple bounces
  1180. RENDER_TIMESTAMP("Average SDFGI Probes");
  1181. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1182. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_STORE]);
  1183. //convert to octahedral to store
  1184. push_constant.image_size[0] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  1185. push_constant.image_size[1] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  1186. for (uint32_t i = 0; i < cascades.size(); i++) {
  1187. push_constant.cascade = i;
  1188. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[i].integrate_uniform_set, 0);
  1189. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1);
  1190. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::IntegratePushConstant));
  1191. RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, 1);
  1192. }
  1193. RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_COMPUTE);
  1194. RD::get_singleton()->draw_command_end_label();
  1195. }
  1196. int GI::SDFGI::get_pending_region_data(int p_region, Vector3i &r_local_offset, Vector3i &r_local_size, AABB &r_bounds) const {
  1197. int dirty_count = 0;
  1198. for (uint32_t i = 0; i < cascades.size(); i++) {
  1199. const SDFGI::Cascade &c = cascades[i];
  1200. if (c.dirty_regions == SDFGI::Cascade::DIRTY_ALL) {
  1201. if (dirty_count == p_region) {
  1202. r_local_offset = Vector3i();
  1203. r_local_size = Vector3i(1, 1, 1) * cascade_size;
  1204. r_bounds.position = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + c.position)) * c.cell_size * Vector3(1, 1.0 / y_mult, 1);
  1205. r_bounds.size = Vector3(r_local_size) * c.cell_size * Vector3(1, 1.0 / y_mult, 1);
  1206. return i;
  1207. }
  1208. dirty_count++;
  1209. } else {
  1210. for (int j = 0; j < 3; j++) {
  1211. if (c.dirty_regions[j] != 0) {
  1212. if (dirty_count == p_region) {
  1213. Vector3i from = Vector3i(0, 0, 0);
  1214. Vector3i to = Vector3i(1, 1, 1) * cascade_size;
  1215. if (c.dirty_regions[j] > 0) {
  1216. //fill from the beginning
  1217. to[j] = c.dirty_regions[j];
  1218. } else {
  1219. //fill from the end
  1220. from[j] = to[j] + c.dirty_regions[j];
  1221. }
  1222. for (int k = 0; k < j; k++) {
  1223. // "chip" away previous regions to avoid re-voxelizing the same thing
  1224. if (c.dirty_regions[k] > 0) {
  1225. from[k] += c.dirty_regions[k];
  1226. } else if (c.dirty_regions[k] < 0) {
  1227. to[k] += c.dirty_regions[k];
  1228. }
  1229. }
  1230. r_local_offset = from;
  1231. r_local_size = to - from;
  1232. r_bounds.position = Vector3(from + Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + c.position) * c.cell_size * Vector3(1, 1.0 / y_mult, 1);
  1233. r_bounds.size = Vector3(r_local_size) * c.cell_size * Vector3(1, 1.0 / y_mult, 1);
  1234. return i;
  1235. }
  1236. dirty_count++;
  1237. }
  1238. }
  1239. }
  1240. }
  1241. return -1;
  1242. }
  1243. void GI::SDFGI::update_cascades() {
  1244. //update cascades
  1245. SDFGI::Cascade::UBO cascade_data[SDFGI::MAX_CASCADES];
  1246. int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR;
  1247. for (uint32_t i = 0; i < cascades.size(); i++) {
  1248. Vector3 pos = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascades[i].position)) * cascades[i].cell_size;
  1249. cascade_data[i].offset[0] = pos.x;
  1250. cascade_data[i].offset[1] = pos.y;
  1251. cascade_data[i].offset[2] = pos.z;
  1252. cascade_data[i].to_cell = 1.0 / cascades[i].cell_size;
  1253. cascade_data[i].probe_offset[0] = cascades[i].position.x / probe_divisor;
  1254. cascade_data[i].probe_offset[1] = cascades[i].position.y / probe_divisor;
  1255. cascade_data[i].probe_offset[2] = cascades[i].position.z / probe_divisor;
  1256. cascade_data[i].pad = 0;
  1257. }
  1258. RD::get_singleton()->buffer_update(cascades_ubo, 0, sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES, cascade_data, RD::BARRIER_MASK_COMPUTE);
  1259. }
  1260. void GI::SDFGI::debug_draw(uint32_t p_view_count, const CameraMatrix *p_projections, const Transform3D &p_transform, int p_width, int p_height, RID p_render_target, RID p_texture, const Vector<RID> &p_texture_views) {
  1261. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  1262. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  1263. RendererRD::CopyEffects *copy_effects = RendererRD::CopyEffects::get_singleton();
  1264. for (uint32_t v = 0; v < p_view_count; v++) {
  1265. if (!debug_uniform_set[v].is_valid() || !RD::get_singleton()->uniform_set_is_valid(debug_uniform_set[v])) {
  1266. Vector<RD::Uniform> uniforms;
  1267. {
  1268. RD::Uniform u;
  1269. u.binding = 1;
  1270. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1271. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  1272. if (i < cascades.size()) {
  1273. u.append_id(cascades[i].sdf_tex);
  1274. } else {
  1275. u.append_id(texture_storage->texture_rd_get_default(RendererRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1276. }
  1277. }
  1278. uniforms.push_back(u);
  1279. }
  1280. {
  1281. RD::Uniform u;
  1282. u.binding = 2;
  1283. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1284. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  1285. if (i < cascades.size()) {
  1286. u.append_id(cascades[i].light_tex);
  1287. } else {
  1288. u.append_id(texture_storage->texture_rd_get_default(RendererRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1289. }
  1290. }
  1291. uniforms.push_back(u);
  1292. }
  1293. {
  1294. RD::Uniform u;
  1295. u.binding = 3;
  1296. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1297. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  1298. if (i < cascades.size()) {
  1299. u.append_id(cascades[i].light_aniso_0_tex);
  1300. } else {
  1301. u.append_id(texture_storage->texture_rd_get_default(RendererRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1302. }
  1303. }
  1304. uniforms.push_back(u);
  1305. }
  1306. {
  1307. RD::Uniform u;
  1308. u.binding = 4;
  1309. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1310. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  1311. if (i < cascades.size()) {
  1312. u.append_id(cascades[i].light_aniso_1_tex);
  1313. } else {
  1314. u.append_id(texture_storage->texture_rd_get_default(RendererRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1315. }
  1316. }
  1317. uniforms.push_back(u);
  1318. }
  1319. {
  1320. RD::Uniform u;
  1321. u.binding = 5;
  1322. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1323. u.append_id(occlusion_texture);
  1324. uniforms.push_back(u);
  1325. }
  1326. {
  1327. RD::Uniform u;
  1328. u.binding = 8;
  1329. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  1330. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1331. uniforms.push_back(u);
  1332. }
  1333. {
  1334. RD::Uniform u;
  1335. u.binding = 9;
  1336. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1337. u.append_id(cascades_ubo);
  1338. uniforms.push_back(u);
  1339. }
  1340. {
  1341. RD::Uniform u;
  1342. u.binding = 10;
  1343. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  1344. u.append_id(p_texture_views[v]);
  1345. uniforms.push_back(u);
  1346. }
  1347. {
  1348. RD::Uniform u;
  1349. u.binding = 11;
  1350. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1351. u.append_id(lightprobe_texture);
  1352. uniforms.push_back(u);
  1353. }
  1354. debug_uniform_set[v] = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.debug_shader_version, 0);
  1355. }
  1356. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1357. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.debug_pipeline);
  1358. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, debug_uniform_set[v], 0);
  1359. SDFGIShader::DebugPushConstant push_constant;
  1360. push_constant.grid_size[0] = cascade_size;
  1361. push_constant.grid_size[1] = cascade_size;
  1362. push_constant.grid_size[2] = cascade_size;
  1363. push_constant.max_cascades = cascades.size();
  1364. push_constant.screen_size[0] = p_width;
  1365. push_constant.screen_size[1] = p_height;
  1366. push_constant.probe_axis_size = probe_axis_count;
  1367. push_constant.use_occlusion = uses_occlusion;
  1368. push_constant.y_mult = y_mult;
  1369. push_constant.z_near = -p_projections[v].get_z_near();
  1370. push_constant.cam_transform[0] = p_transform.basis.rows[0][0];
  1371. push_constant.cam_transform[1] = p_transform.basis.rows[1][0];
  1372. push_constant.cam_transform[2] = p_transform.basis.rows[2][0];
  1373. push_constant.cam_transform[3] = 0;
  1374. push_constant.cam_transform[4] = p_transform.basis.rows[0][1];
  1375. push_constant.cam_transform[5] = p_transform.basis.rows[1][1];
  1376. push_constant.cam_transform[6] = p_transform.basis.rows[2][1];
  1377. push_constant.cam_transform[7] = 0;
  1378. push_constant.cam_transform[8] = p_transform.basis.rows[0][2];
  1379. push_constant.cam_transform[9] = p_transform.basis.rows[1][2];
  1380. push_constant.cam_transform[10] = p_transform.basis.rows[2][2];
  1381. push_constant.cam_transform[11] = 0;
  1382. push_constant.cam_transform[12] = p_transform.origin.x;
  1383. push_constant.cam_transform[13] = p_transform.origin.y;
  1384. push_constant.cam_transform[14] = p_transform.origin.z;
  1385. push_constant.cam_transform[15] = 1;
  1386. // need to properly unproject for asymmetric projection matrices in stereo..
  1387. CameraMatrix inv_projection = p_projections[v].inverse();
  1388. for (int i = 0; i < 4; i++) {
  1389. for (int j = 0; j < 4; j++) {
  1390. push_constant.inv_projection[i * 4 + j] = inv_projection.matrix[i][j];
  1391. }
  1392. }
  1393. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::DebugPushConstant));
  1394. RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_width, p_height, 1);
  1395. RD::get_singleton()->compute_list_end();
  1396. }
  1397. Size2 rtsize = texture_storage->render_target_get_size(p_render_target);
  1398. copy_effects->copy_to_fb_rect(p_texture, texture_storage->render_target_get_rd_framebuffer(p_render_target), Rect2(Vector2(), rtsize), true, false, false, false, RID(), p_view_count > 1);
  1399. }
  1400. void GI::SDFGI::debug_probes(RID p_framebuffer, const uint32_t p_view_count, const CameraMatrix *p_camera_with_transforms, bool p_will_continue_color, bool p_will_continue_depth) {
  1401. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  1402. // setup scene data
  1403. {
  1404. SDFGIShader::DebugProbesSceneData scene_data;
  1405. if (debug_probes_scene_data_ubo.is_null()) {
  1406. debug_probes_scene_data_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGIShader::DebugProbesSceneData));
  1407. }
  1408. for (uint32_t v = 0; v < p_view_count; v++) {
  1409. RendererRD::MaterialStorage::store_camera(p_camera_with_transforms[v], scene_data.projection[v]);
  1410. }
  1411. RD::get_singleton()->buffer_update(debug_probes_scene_data_ubo, 0, sizeof(SDFGIShader::DebugProbesSceneData), &scene_data, RD::BARRIER_MASK_RASTER);
  1412. }
  1413. // setup push constant
  1414. SDFGIShader::DebugProbesPushConstant push_constant;
  1415. //gen spheres from strips
  1416. uint32_t band_points = 16;
  1417. push_constant.band_power = 4;
  1418. push_constant.sections_in_band = ((band_points / 2) - 1);
  1419. push_constant.band_mask = band_points - 2;
  1420. push_constant.section_arc = Math_TAU / float(push_constant.sections_in_band);
  1421. push_constant.y_mult = y_mult;
  1422. uint32_t total_points = push_constant.sections_in_band * band_points;
  1423. uint32_t total_probes = probe_axis_count * probe_axis_count * probe_axis_count;
  1424. push_constant.grid_size[0] = cascade_size;
  1425. push_constant.grid_size[1] = cascade_size;
  1426. push_constant.grid_size[2] = cascade_size;
  1427. push_constant.cascade = 0;
  1428. push_constant.probe_axis_size = probe_axis_count;
  1429. if (!debug_probes_uniform_set.is_valid() || !RD::get_singleton()->uniform_set_is_valid(debug_probes_uniform_set)) {
  1430. Vector<RD::Uniform> uniforms;
  1431. {
  1432. RD::Uniform u;
  1433. u.binding = 1;
  1434. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1435. u.append_id(cascades_ubo);
  1436. uniforms.push_back(u);
  1437. }
  1438. {
  1439. RD::Uniform u;
  1440. u.binding = 2;
  1441. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1442. u.append_id(lightprobe_texture);
  1443. uniforms.push_back(u);
  1444. }
  1445. {
  1446. RD::Uniform u;
  1447. u.binding = 3;
  1448. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  1449. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1450. uniforms.push_back(u);
  1451. }
  1452. {
  1453. RD::Uniform u;
  1454. u.binding = 4;
  1455. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1456. u.append_id(occlusion_texture);
  1457. uniforms.push_back(u);
  1458. }
  1459. {
  1460. RD::Uniform u;
  1461. u.binding = 5;
  1462. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1463. u.append_id(debug_probes_scene_data_ubo);
  1464. uniforms.push_back(u);
  1465. }
  1466. debug_probes_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->sdfgi_shader.debug_probes.version_get_shader(gi->sdfgi_shader.debug_probes_shader, 0), 0);
  1467. }
  1468. SDFGIShader::ProbeDebugMode mode = p_view_count > 1 ? SDFGIShader::PROBE_DEBUG_PROBES_MULTIVIEW : SDFGIShader::PROBE_DEBUG_PROBES;
  1469. RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_framebuffer, RD::INITIAL_ACTION_CONTINUE, p_will_continue_color ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CONTINUE, p_will_continue_depth ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ);
  1470. RD::get_singleton()->draw_command_begin_label("Debug SDFGI");
  1471. RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, gi->sdfgi_shader.debug_probes_pipeline[mode].get_render_pipeline(RD::INVALID_FORMAT_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  1472. RD::get_singleton()->draw_list_bind_uniform_set(draw_list, debug_probes_uniform_set, 0);
  1473. RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(SDFGIShader::DebugProbesPushConstant));
  1474. RD::get_singleton()->draw_list_draw(draw_list, false, total_probes, total_points);
  1475. if (gi->sdfgi_debug_probe_dir != Vector3()) {
  1476. uint32_t cascade = 0;
  1477. Vector3 offset = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascades[cascade].position)) * cascades[cascade].cell_size * Vector3(1.0, 1.0 / y_mult, 1.0);
  1478. Vector3 probe_size = cascades[cascade].cell_size * (cascade_size / SDFGI::PROBE_DIVISOR) * Vector3(1.0, 1.0 / y_mult, 1.0);
  1479. Vector3 ray_from = gi->sdfgi_debug_probe_pos;
  1480. Vector3 ray_to = gi->sdfgi_debug_probe_pos + gi->sdfgi_debug_probe_dir * cascades[cascade].cell_size * Math::sqrt(3.0) * cascade_size;
  1481. float sphere_radius = 0.2;
  1482. float closest_dist = 1e20;
  1483. gi->sdfgi_debug_probe_enabled = false;
  1484. Vector3i probe_from = cascades[cascade].position / (cascade_size / SDFGI::PROBE_DIVISOR);
  1485. for (int i = 0; i < (SDFGI::PROBE_DIVISOR + 1); i++) {
  1486. for (int j = 0; j < (SDFGI::PROBE_DIVISOR + 1); j++) {
  1487. for (int k = 0; k < (SDFGI::PROBE_DIVISOR + 1); k++) {
  1488. Vector3 pos = offset + probe_size * Vector3(i, j, k);
  1489. Vector3 res;
  1490. if (Geometry3D::segment_intersects_sphere(ray_from, ray_to, pos, sphere_radius, &res)) {
  1491. float d = ray_from.distance_to(res);
  1492. if (d < closest_dist) {
  1493. closest_dist = d;
  1494. gi->sdfgi_debug_probe_enabled = true;
  1495. gi->sdfgi_debug_probe_index = probe_from + Vector3i(i, j, k);
  1496. }
  1497. }
  1498. }
  1499. }
  1500. }
  1501. gi->sdfgi_debug_probe_dir = Vector3();
  1502. }
  1503. if (gi->sdfgi_debug_probe_enabled) {
  1504. uint32_t cascade = 0;
  1505. uint32_t probe_cells = (cascade_size / SDFGI::PROBE_DIVISOR);
  1506. Vector3i probe_from = cascades[cascade].position / probe_cells;
  1507. Vector3i ofs = gi->sdfgi_debug_probe_index - probe_from;
  1508. if (ofs.x < 0 || ofs.y < 0 || ofs.z < 0) {
  1509. return;
  1510. }
  1511. if (ofs.x > SDFGI::PROBE_DIVISOR || ofs.y > SDFGI::PROBE_DIVISOR || ofs.z > SDFGI::PROBE_DIVISOR) {
  1512. return;
  1513. }
  1514. uint32_t mult = (SDFGI::PROBE_DIVISOR + 1);
  1515. uint32_t index = ofs.z * mult * mult + ofs.y * mult + ofs.x;
  1516. push_constant.probe_debug_index = index;
  1517. uint32_t cell_count = probe_cells * 2 * probe_cells * 2 * probe_cells * 2;
  1518. RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, gi->sdfgi_shader.debug_probes_pipeline[p_view_count > 1 ? SDFGIShader::PROBE_DEBUG_VISIBILITY_MULTIVIEW : SDFGIShader::PROBE_DEBUG_VISIBILITY].get_render_pipeline(RD::INVALID_FORMAT_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  1519. RD::get_singleton()->draw_list_bind_uniform_set(draw_list, debug_probes_uniform_set, 0);
  1520. RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(SDFGIShader::DebugProbesPushConstant));
  1521. RD::get_singleton()->draw_list_draw(draw_list, false, cell_count, total_points);
  1522. }
  1523. RD::get_singleton()->draw_command_end_label();
  1524. RD::get_singleton()->draw_list_end();
  1525. }
  1526. void GI::SDFGI::pre_process_gi(const Transform3D &p_transform, RenderDataRD *p_render_data, RendererSceneRenderRD *p_scene_render) {
  1527. /* Update general SDFGI Buffer */
  1528. SDFGIData sdfgi_data;
  1529. sdfgi_data.grid_size[0] = cascade_size;
  1530. sdfgi_data.grid_size[1] = cascade_size;
  1531. sdfgi_data.grid_size[2] = cascade_size;
  1532. sdfgi_data.max_cascades = cascades.size();
  1533. sdfgi_data.probe_axis_size = probe_axis_count;
  1534. sdfgi_data.cascade_probe_size[0] = sdfgi_data.probe_axis_size - 1; //float version for performance
  1535. sdfgi_data.cascade_probe_size[1] = sdfgi_data.probe_axis_size - 1;
  1536. sdfgi_data.cascade_probe_size[2] = sdfgi_data.probe_axis_size - 1;
  1537. float csize = cascade_size;
  1538. sdfgi_data.probe_to_uvw = 1.0 / float(sdfgi_data.cascade_probe_size[0]);
  1539. sdfgi_data.use_occlusion = uses_occlusion;
  1540. //sdfgi_data.energy = energy;
  1541. sdfgi_data.y_mult = y_mult;
  1542. float cascade_voxel_size = (csize / sdfgi_data.cascade_probe_size[0]);
  1543. float occlusion_clamp = (cascade_voxel_size - 0.5) / cascade_voxel_size;
  1544. sdfgi_data.occlusion_clamp[0] = occlusion_clamp;
  1545. sdfgi_data.occlusion_clamp[1] = occlusion_clamp;
  1546. sdfgi_data.occlusion_clamp[2] = occlusion_clamp;
  1547. sdfgi_data.normal_bias = (normal_bias / csize) * sdfgi_data.cascade_probe_size[0];
  1548. //vec2 tex_pixel_size = 1.0 / vec2(ivec2( (OCT_SIZE+2) * params.probe_axis_size * params.probe_axis_size, (OCT_SIZE+2) * params.probe_axis_size ) );
  1549. //vec3 probe_uv_offset = (ivec3(OCT_SIZE+2,OCT_SIZE+2,(OCT_SIZE+2) * params.probe_axis_size)) * tex_pixel_size.xyx;
  1550. uint32_t oct_size = SDFGI::LIGHTPROBE_OCT_SIZE;
  1551. sdfgi_data.lightprobe_tex_pixel_size[0] = 1.0 / ((oct_size + 2) * sdfgi_data.probe_axis_size * sdfgi_data.probe_axis_size);
  1552. sdfgi_data.lightprobe_tex_pixel_size[1] = 1.0 / ((oct_size + 2) * sdfgi_data.probe_axis_size);
  1553. sdfgi_data.lightprobe_tex_pixel_size[2] = 1.0;
  1554. sdfgi_data.energy = energy;
  1555. sdfgi_data.lightprobe_uv_offset[0] = float(oct_size + 2) * sdfgi_data.lightprobe_tex_pixel_size[0];
  1556. sdfgi_data.lightprobe_uv_offset[1] = float(oct_size + 2) * sdfgi_data.lightprobe_tex_pixel_size[1];
  1557. sdfgi_data.lightprobe_uv_offset[2] = float((oct_size + 2) * sdfgi_data.probe_axis_size) * sdfgi_data.lightprobe_tex_pixel_size[0];
  1558. sdfgi_data.occlusion_renormalize[0] = 0.5;
  1559. sdfgi_data.occlusion_renormalize[1] = 1.0;
  1560. sdfgi_data.occlusion_renormalize[2] = 1.0 / float(sdfgi_data.max_cascades);
  1561. int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR;
  1562. for (uint32_t i = 0; i < sdfgi_data.max_cascades; i++) {
  1563. SDFGIData::ProbeCascadeData &c = sdfgi_data.cascades[i];
  1564. Vector3 pos = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascades[i].position)) * cascades[i].cell_size;
  1565. Vector3 cam_origin = p_transform.origin;
  1566. cam_origin.y *= y_mult;
  1567. pos -= cam_origin; //make pos local to camera, to reduce numerical error
  1568. c.position[0] = pos.x;
  1569. c.position[1] = pos.y;
  1570. c.position[2] = pos.z;
  1571. c.to_probe = 1.0 / (float(cascade_size) * cascades[i].cell_size / float(probe_axis_count - 1));
  1572. Vector3i probe_ofs = cascades[i].position / probe_divisor;
  1573. c.probe_world_offset[0] = probe_ofs.x;
  1574. c.probe_world_offset[1] = probe_ofs.y;
  1575. c.probe_world_offset[2] = probe_ofs.z;
  1576. c.to_cell = 1.0 / cascades[i].cell_size;
  1577. }
  1578. RD::get_singleton()->buffer_update(gi->sdfgi_ubo, 0, sizeof(SDFGIData), &sdfgi_data, RD::BARRIER_MASK_COMPUTE);
  1579. /* Update dynamic lights in SDFGI cascades */
  1580. for (uint32_t i = 0; i < cascades.size(); i++) {
  1581. SDFGI::Cascade &cascade = cascades[i];
  1582. SDFGIShader::Light lights[SDFGI::MAX_DYNAMIC_LIGHTS];
  1583. uint32_t idx = 0;
  1584. for (uint32_t j = 0; j < (uint32_t)p_scene_render->render_state.sdfgi_update_data->directional_lights->size(); j++) {
  1585. if (idx == SDFGI::MAX_DYNAMIC_LIGHTS) {
  1586. break;
  1587. }
  1588. RendererSceneRenderRD::LightInstance *li = p_scene_render->light_instance_owner.get_or_null(p_scene_render->render_state.sdfgi_update_data->directional_lights->get(j));
  1589. ERR_CONTINUE(!li);
  1590. if (RSG::light_storage->light_directional_get_sky_mode(li->light) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) {
  1591. continue;
  1592. }
  1593. Vector3 dir = -li->transform.basis.get_column(Vector3::AXIS_Z);
  1594. dir.y *= y_mult;
  1595. dir.normalize();
  1596. lights[idx].direction[0] = dir.x;
  1597. lights[idx].direction[1] = dir.y;
  1598. lights[idx].direction[2] = dir.z;
  1599. Color color = RSG::light_storage->light_get_color(li->light);
  1600. color = color.srgb_to_linear();
  1601. lights[idx].color[0] = color.r;
  1602. lights[idx].color[1] = color.g;
  1603. lights[idx].color[2] = color.b;
  1604. lights[idx].type = RS::LIGHT_DIRECTIONAL;
  1605. lights[idx].energy = RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
  1606. lights[idx].has_shadow = RSG::light_storage->light_has_shadow(li->light);
  1607. idx++;
  1608. }
  1609. AABB cascade_aabb;
  1610. cascade_aabb.position = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cascade.position)) * cascade.cell_size;
  1611. cascade_aabb.size = Vector3(1, 1, 1) * cascade_size * cascade.cell_size;
  1612. for (uint32_t j = 0; j < p_scene_render->render_state.sdfgi_update_data->positional_light_count; j++) {
  1613. if (idx == SDFGI::MAX_DYNAMIC_LIGHTS) {
  1614. break;
  1615. }
  1616. RendererSceneRenderRD::LightInstance *li = p_scene_render->light_instance_owner.get_or_null(p_scene_render->render_state.sdfgi_update_data->positional_light_instances[j]);
  1617. ERR_CONTINUE(!li);
  1618. uint32_t max_sdfgi_cascade = RSG::light_storage->light_get_max_sdfgi_cascade(li->light);
  1619. if (i > max_sdfgi_cascade) {
  1620. continue;
  1621. }
  1622. if (!cascade_aabb.intersects(li->aabb)) {
  1623. continue;
  1624. }
  1625. Vector3 dir = -li->transform.basis.get_column(Vector3::AXIS_Z);
  1626. //faster to not do this here
  1627. //dir.y *= y_mult;
  1628. //dir.normalize();
  1629. lights[idx].direction[0] = dir.x;
  1630. lights[idx].direction[1] = dir.y;
  1631. lights[idx].direction[2] = dir.z;
  1632. Vector3 pos = li->transform.origin;
  1633. pos.y *= y_mult;
  1634. lights[idx].position[0] = pos.x;
  1635. lights[idx].position[1] = pos.y;
  1636. lights[idx].position[2] = pos.z;
  1637. Color color = RSG::light_storage->light_get_color(li->light);
  1638. color = color.srgb_to_linear();
  1639. lights[idx].color[0] = color.r;
  1640. lights[idx].color[1] = color.g;
  1641. lights[idx].color[2] = color.b;
  1642. lights[idx].type = RSG::light_storage->light_get_type(li->light);
  1643. lights[idx].energy = RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
  1644. lights[idx].has_shadow = RSG::light_storage->light_has_shadow(li->light);
  1645. lights[idx].attenuation = RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_ATTENUATION);
  1646. lights[idx].radius = RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_RANGE);
  1647. lights[idx].cos_spot_angle = Math::cos(Math::deg2rad(RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ANGLE)));
  1648. lights[idx].inv_spot_attenuation = 1.0f / RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  1649. idx++;
  1650. }
  1651. if (idx > 0) {
  1652. RD::get_singleton()->buffer_update(cascade.lights_buffer, 0, idx * sizeof(SDFGIShader::Light), lights, RD::BARRIER_MASK_COMPUTE);
  1653. }
  1654. cascade_dynamic_light_count[i] = idx;
  1655. }
  1656. }
  1657. void GI::SDFGI::render_region(RID p_render_buffers, int p_region, const PagedArray<RendererSceneRender::GeometryInstance *> &p_instances, RendererSceneRenderRD *p_scene_render) {
  1658. //print_line("rendering region " + itos(p_region));
  1659. RendererSceneRenderRD::RenderBuffers *rb = p_scene_render->render_buffers_owner.get_or_null(p_render_buffers);
  1660. ERR_FAIL_COND(!rb); // we wouldn't be here if this failed but...
  1661. AABB bounds;
  1662. Vector3i from;
  1663. Vector3i size;
  1664. int cascade_prev = get_pending_region_data(p_region - 1, from, size, bounds);
  1665. int cascade_next = get_pending_region_data(p_region + 1, from, size, bounds);
  1666. int cascade = get_pending_region_data(p_region, from, size, bounds);
  1667. ERR_FAIL_COND(cascade < 0);
  1668. if (cascade_prev != cascade) {
  1669. //initialize render
  1670. RD::get_singleton()->texture_clear(render_albedo, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1671. RD::get_singleton()->texture_clear(render_emission, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1672. RD::get_singleton()->texture_clear(render_emission_aniso, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1673. RD::get_singleton()->texture_clear(render_geom_facing, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1674. }
  1675. //print_line("rendering cascade " + itos(p_region) + " objects: " + itos(p_cull_count) + " bounds: " + bounds + " from: " + from + " size: " + size + " cell size: " + rtos(cascades[cascade].cell_size));
  1676. p_scene_render->_render_sdfgi(p_render_buffers, from, size, bounds, p_instances, render_albedo, render_emission, render_emission_aniso, render_geom_facing);
  1677. if (cascade_next != cascade) {
  1678. RD::get_singleton()->draw_command_begin_label("SDFGI Pre-Process Cascade");
  1679. RENDER_TIMESTAMP("> SDFGI Update SDF");
  1680. //done rendering! must update SDF
  1681. //clear dispatch indirect data
  1682. SDFGIShader::PreprocessPushConstant push_constant;
  1683. memset(&push_constant, 0, sizeof(SDFGIShader::PreprocessPushConstant));
  1684. RENDER_TIMESTAMP("SDFGI Scroll SDF");
  1685. //scroll
  1686. if (cascades[cascade].dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
  1687. //for scroll
  1688. Vector3i dirty = cascades[cascade].dirty_regions;
  1689. push_constant.scroll[0] = dirty.x;
  1690. push_constant.scroll[1] = dirty.y;
  1691. push_constant.scroll[2] = dirty.z;
  1692. } else {
  1693. //for no scroll
  1694. push_constant.scroll[0] = 0;
  1695. push_constant.scroll[1] = 0;
  1696. push_constant.scroll[2] = 0;
  1697. }
  1698. cascades[cascade].all_dynamic_lights_dirty = true;
  1699. push_constant.grid_size = cascade_size;
  1700. push_constant.cascade = cascade;
  1701. if (cascades[cascade].dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
  1702. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1703. //must pre scroll existing data because not all is dirty
  1704. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_SCROLL]);
  1705. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].scroll_uniform_set, 0);
  1706. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1707. RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cascades[cascade].solid_cell_dispatch_buffer, 0);
  1708. // no barrier do all together
  1709. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_SCROLL_OCCLUSION]);
  1710. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].scroll_occlusion_uniform_set, 0);
  1711. Vector3i dirty = cascades[cascade].dirty_regions;
  1712. Vector3i groups;
  1713. groups.x = cascade_size - ABS(dirty.x);
  1714. groups.y = cascade_size - ABS(dirty.y);
  1715. groups.z = cascade_size - ABS(dirty.z);
  1716. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1717. RD::get_singleton()->compute_list_dispatch_threads(compute_list, groups.x, groups.y, groups.z);
  1718. //no barrier, continue together
  1719. {
  1720. //scroll probes and their history also
  1721. SDFGIShader::IntegratePushConstant ipush_constant;
  1722. ipush_constant.grid_size[1] = cascade_size;
  1723. ipush_constant.grid_size[2] = cascade_size;
  1724. ipush_constant.grid_size[0] = cascade_size;
  1725. ipush_constant.max_cascades = cascades.size();
  1726. ipush_constant.probe_axis_size = probe_axis_count;
  1727. ipush_constant.history_index = 0;
  1728. ipush_constant.history_size = history_size;
  1729. ipush_constant.ray_count = 0;
  1730. ipush_constant.ray_bias = 0;
  1731. ipush_constant.sky_mode = 0;
  1732. ipush_constant.sky_energy = 0;
  1733. ipush_constant.sky_color[0] = 0;
  1734. ipush_constant.sky_color[1] = 0;
  1735. ipush_constant.sky_color[2] = 0;
  1736. ipush_constant.y_mult = y_mult;
  1737. ipush_constant.store_ambient_texture = false;
  1738. ipush_constant.image_size[0] = probe_axis_count * probe_axis_count;
  1739. ipush_constant.image_size[1] = probe_axis_count;
  1740. int32_t probe_divisor = cascade_size / SDFGI::PROBE_DIVISOR;
  1741. ipush_constant.cascade = cascade;
  1742. ipush_constant.world_offset[0] = cascades[cascade].position.x / probe_divisor;
  1743. ipush_constant.world_offset[1] = cascades[cascade].position.y / probe_divisor;
  1744. ipush_constant.world_offset[2] = cascades[cascade].position.z / probe_divisor;
  1745. ipush_constant.scroll[0] = dirty.x / probe_divisor;
  1746. ipush_constant.scroll[1] = dirty.y / probe_divisor;
  1747. ipush_constant.scroll[2] = dirty.z / probe_divisor;
  1748. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_SCROLL]);
  1749. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].integrate_uniform_set, 0);
  1750. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1);
  1751. RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDFGIShader::IntegratePushConstant));
  1752. RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count, probe_axis_count, 1);
  1753. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1754. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_SCROLL_STORE]);
  1755. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].integrate_uniform_set, 0);
  1756. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1);
  1757. RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDFGIShader::IntegratePushConstant));
  1758. RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count, probe_axis_count, 1);
  1759. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1760. if (bounce_feedback > 0.0) {
  1761. //multibounce requires this to be stored so direct light can read from it
  1762. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.integrate_pipeline[SDFGIShader::INTEGRATE_MODE_STORE]);
  1763. //convert to octahedral to store
  1764. ipush_constant.image_size[0] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  1765. ipush_constant.image_size[1] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  1766. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].integrate_uniform_set, 0);
  1767. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi->sdfgi_shader.integrate_default_sky_uniform_set, 1);
  1768. RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDFGIShader::IntegratePushConstant));
  1769. RD::get_singleton()->compute_list_dispatch_threads(compute_list, probe_axis_count * probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, 1);
  1770. }
  1771. }
  1772. //ok finally barrier
  1773. RD::get_singleton()->compute_list_end();
  1774. }
  1775. //clear dispatch indirect data
  1776. uint32_t dispatch_indirct_data[4] = { 0, 0, 0, 0 };
  1777. RD::get_singleton()->buffer_update(cascades[cascade].solid_cell_dispatch_buffer, 0, sizeof(uint32_t) * 4, dispatch_indirct_data);
  1778. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1779. bool half_size = true; //much faster, very little difference
  1780. static const int optimized_jf_group_size = 8;
  1781. if (half_size) {
  1782. push_constant.grid_size >>= 1;
  1783. uint32_t cascade_half_size = cascade_size >> 1;
  1784. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF]);
  1785. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdf_initialize_half_uniform_set, 0);
  1786. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1787. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size);
  1788. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1789. //must start with regular jumpflood
  1790. push_constant.half_size = true;
  1791. {
  1792. RENDER_TIMESTAMP("SDFGI Jump Flood (Half-Size)");
  1793. uint32_t s = cascade_half_size;
  1794. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD]);
  1795. int jf_us = 0;
  1796. //start with regular jump flood for very coarse reads, as this is impossible to optimize
  1797. while (s > 1) {
  1798. s /= 2;
  1799. push_constant.step_size = s;
  1800. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_half_uniform_set[jf_us], 0);
  1801. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1802. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size);
  1803. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1804. jf_us = jf_us == 0 ? 1 : 0;
  1805. if (cascade_half_size / (s / 2) >= optimized_jf_group_size) {
  1806. break;
  1807. }
  1808. }
  1809. RENDER_TIMESTAMP("SDFGI Jump Flood Optimized (Half-Size)");
  1810. //continue with optimized jump flood for smaller reads
  1811. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]);
  1812. while (s > 1) {
  1813. s /= 2;
  1814. push_constant.step_size = s;
  1815. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_half_uniform_set[jf_us], 0);
  1816. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1817. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size);
  1818. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1819. jf_us = jf_us == 0 ? 1 : 0;
  1820. }
  1821. }
  1822. // restore grid size for last passes
  1823. push_constant.grid_size = cascade_size;
  1824. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_UPSCALE]);
  1825. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdf_upscale_uniform_set, 0);
  1826. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1827. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
  1828. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1829. //run one pass of fullsize jumpflood to fix up half size arctifacts
  1830. push_constant.half_size = false;
  1831. push_constant.step_size = 1;
  1832. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]);
  1833. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_uniform_set[upscale_jfa_uniform_set_index], 0);
  1834. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1835. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
  1836. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1837. } else {
  1838. //full size jumpflood
  1839. RENDER_TIMESTAMP("SDFGI Jump Flood (Full-Size)");
  1840. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE]);
  1841. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdf_initialize_uniform_set, 0);
  1842. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1843. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
  1844. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1845. push_constant.half_size = false;
  1846. {
  1847. uint32_t s = cascade_size;
  1848. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD]);
  1849. int jf_us = 0;
  1850. //start with regular jump flood for very coarse reads, as this is impossible to optimize
  1851. while (s > 1) {
  1852. s /= 2;
  1853. push_constant.step_size = s;
  1854. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_uniform_set[jf_us], 0);
  1855. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1856. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
  1857. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1858. jf_us = jf_us == 0 ? 1 : 0;
  1859. if (cascade_size / (s / 2) >= optimized_jf_group_size) {
  1860. break;
  1861. }
  1862. }
  1863. RENDER_TIMESTAMP("SDFGI Jump Flood Optimized (Full-Size)");
  1864. //continue with optimized jump flood for smaller reads
  1865. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]);
  1866. while (s > 1) {
  1867. s /= 2;
  1868. push_constant.step_size = s;
  1869. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, jump_flood_uniform_set[jf_us], 0);
  1870. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1871. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
  1872. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1873. jf_us = jf_us == 0 ? 1 : 0;
  1874. }
  1875. }
  1876. }
  1877. RENDER_TIMESTAMP("SDFGI Occlusion");
  1878. // occlusion
  1879. {
  1880. uint32_t probe_size = cascade_size / SDFGI::PROBE_DIVISOR;
  1881. Vector3i probe_global_pos = cascades[cascade].position / probe_size;
  1882. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_OCCLUSION]);
  1883. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, occlusion_uniform_set, 0);
  1884. for (int i = 0; i < 8; i++) {
  1885. //dispatch all at once for performance
  1886. Vector3i offset(i & 1, (i >> 1) & 1, (i >> 2) & 1);
  1887. if ((probe_global_pos.x & 1) != 0) {
  1888. offset.x = (offset.x + 1) & 1;
  1889. }
  1890. if ((probe_global_pos.y & 1) != 0) {
  1891. offset.y = (offset.y + 1) & 1;
  1892. }
  1893. if ((probe_global_pos.z & 1) != 0) {
  1894. offset.z = (offset.z + 1) & 1;
  1895. }
  1896. push_constant.probe_offset[0] = offset.x;
  1897. push_constant.probe_offset[1] = offset.y;
  1898. push_constant.probe_offset[2] = offset.z;
  1899. push_constant.occlusion_index = i;
  1900. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1901. Vector3i groups = Vector3i(probe_size + 1, probe_size + 1, probe_size + 1) - offset; //if offset, it's one less probe per axis to compute
  1902. RD::get_singleton()->compute_list_dispatch(compute_list, groups.x, groups.y, groups.z);
  1903. }
  1904. RD::get_singleton()->compute_list_add_barrier(compute_list);
  1905. }
  1906. RENDER_TIMESTAMP("SDFGI Store");
  1907. // store
  1908. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.preprocess_pipeline[SDFGIShader::PRE_PROCESS_STORE]);
  1909. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascades[cascade].sdf_store_uniform_set, 0);
  1910. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDFGIShader::PreprocessPushConstant));
  1911. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_size, cascade_size, cascade_size);
  1912. RD::get_singleton()->compute_list_end();
  1913. //clear these textures, as they will have previous garbage on next draw
  1914. RD::get_singleton()->texture_clear(cascades[cascade].light_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1915. RD::get_singleton()->texture_clear(cascades[cascade].light_aniso_0_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1916. RD::get_singleton()->texture_clear(cascades[cascade].light_aniso_1_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  1917. #if 0
  1918. Vector<uint8_t> data = RD::get_singleton()->texture_get_data(cascades[cascade].sdf, 0);
  1919. Ref<Image> img;
  1920. img.instantiate();
  1921. for (uint32_t i = 0; i < cascade_size; i++) {
  1922. Vector<uint8_t> subarr = data.slice(128 * 128 * i, 128 * 128 * (i + 1));
  1923. img->create(cascade_size, cascade_size, false, Image::FORMAT_L8, subarr);
  1924. img->save_png("res://cascade_sdf_" + itos(cascade) + "_" + itos(i) + ".png");
  1925. }
  1926. //finalize render and update sdf
  1927. #endif
  1928. #if 0
  1929. Vector<uint8_t> data = RD::get_singleton()->texture_get_data(render_albedo, 0);
  1930. Ref<Image> img;
  1931. img.instantiate();
  1932. for (uint32_t i = 0; i < cascade_size; i++) {
  1933. Vector<uint8_t> subarr = data.slice(128 * 128 * i * 2, 128 * 128 * (i + 1) * 2);
  1934. img->createcascade_size, cascade_size, false, Image::FORMAT_RGB565, subarr);
  1935. img->convert(Image::FORMAT_RGBA8);
  1936. img->save_png("res://cascade_" + itos(cascade) + "_" + itos(i) + ".png");
  1937. }
  1938. //finalize render and update sdf
  1939. #endif
  1940. RENDER_TIMESTAMP("< SDFGI Update SDF");
  1941. RD::get_singleton()->draw_command_end_label();
  1942. }
  1943. }
  1944. void GI::SDFGI::render_static_lights(RID p_render_buffers, uint32_t p_cascade_count, const uint32_t *p_cascade_indices, const PagedArray<RID> *p_positional_light_cull_result, RendererSceneRenderRD *p_scene_render) {
  1945. RendererSceneRenderRD::RenderBuffers *rb = p_scene_render->render_buffers_owner.get_or_null(p_render_buffers);
  1946. ERR_FAIL_COND(!rb); // we wouldn't be here if this failed but...
  1947. RD::get_singleton()->draw_command_begin_label("SDFGI Render Static Lights");
  1948. update_cascades();
  1949. SDFGIShader::Light lights[SDFGI::MAX_STATIC_LIGHTS];
  1950. uint32_t light_count[SDFGI::MAX_STATIC_LIGHTS];
  1951. for (uint32_t i = 0; i < p_cascade_count; i++) {
  1952. ERR_CONTINUE(p_cascade_indices[i] >= cascades.size());
  1953. SDFGI::Cascade &cc = cascades[p_cascade_indices[i]];
  1954. { //fill light buffer
  1955. AABB cascade_aabb;
  1956. cascade_aabb.position = Vector3((Vector3i(1, 1, 1) * -int32_t(cascade_size >> 1) + cc.position)) * cc.cell_size;
  1957. cascade_aabb.size = Vector3(1, 1, 1) * cascade_size * cc.cell_size;
  1958. int idx = 0;
  1959. for (uint32_t j = 0; j < (uint32_t)p_positional_light_cull_result[i].size(); j++) {
  1960. if (idx == SDFGI::MAX_STATIC_LIGHTS) {
  1961. break;
  1962. }
  1963. RendererSceneRenderRD::LightInstance *li = p_scene_render->light_instance_owner.get_or_null(p_positional_light_cull_result[i][j]);
  1964. ERR_CONTINUE(!li);
  1965. uint32_t max_sdfgi_cascade = RSG::light_storage->light_get_max_sdfgi_cascade(li->light);
  1966. if (p_cascade_indices[i] > max_sdfgi_cascade) {
  1967. continue;
  1968. }
  1969. if (!cascade_aabb.intersects(li->aabb)) {
  1970. continue;
  1971. }
  1972. lights[idx].type = RSG::light_storage->light_get_type(li->light);
  1973. Vector3 dir = -li->transform.basis.get_column(Vector3::AXIS_Z);
  1974. if (lights[idx].type == RS::LIGHT_DIRECTIONAL) {
  1975. dir.y *= y_mult; //only makes sense for directional
  1976. dir.normalize();
  1977. }
  1978. lights[idx].direction[0] = dir.x;
  1979. lights[idx].direction[1] = dir.y;
  1980. lights[idx].direction[2] = dir.z;
  1981. Vector3 pos = li->transform.origin;
  1982. pos.y *= y_mult;
  1983. lights[idx].position[0] = pos.x;
  1984. lights[idx].position[1] = pos.y;
  1985. lights[idx].position[2] = pos.z;
  1986. Color color = RSG::light_storage->light_get_color(li->light);
  1987. color = color.srgb_to_linear();
  1988. lights[idx].color[0] = color.r;
  1989. lights[idx].color[1] = color.g;
  1990. lights[idx].color[2] = color.b;
  1991. lights[idx].energy = RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
  1992. lights[idx].has_shadow = RSG::light_storage->light_has_shadow(li->light);
  1993. lights[idx].attenuation = RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_ATTENUATION);
  1994. lights[idx].radius = RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_RANGE);
  1995. lights[idx].cos_spot_angle = Math::cos(Math::deg2rad(RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ANGLE)));
  1996. lights[idx].inv_spot_attenuation = 1.0f / RSG::light_storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  1997. idx++;
  1998. }
  1999. if (idx > 0) {
  2000. RD::get_singleton()->buffer_update(cc.lights_buffer, 0, idx * sizeof(SDFGIShader::Light), lights);
  2001. }
  2002. light_count[i] = idx;
  2003. }
  2004. }
  2005. /* Static Lights */
  2006. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  2007. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->sdfgi_shader.direct_light_pipeline[SDFGIShader::DIRECT_LIGHT_MODE_STATIC]);
  2008. SDFGIShader::DirectLightPushConstant dl_push_constant;
  2009. dl_push_constant.grid_size[0] = cascade_size;
  2010. dl_push_constant.grid_size[1] = cascade_size;
  2011. dl_push_constant.grid_size[2] = cascade_size;
  2012. dl_push_constant.max_cascades = cascades.size();
  2013. dl_push_constant.probe_axis_size = probe_axis_count;
  2014. dl_push_constant.bounce_feedback = 0.0; // this is static light, do not multibounce yet
  2015. dl_push_constant.y_mult = y_mult;
  2016. dl_push_constant.use_occlusion = uses_occlusion;
  2017. //all must be processed
  2018. dl_push_constant.process_offset = 0;
  2019. dl_push_constant.process_increment = 1;
  2020. for (uint32_t i = 0; i < p_cascade_count; i++) {
  2021. ERR_CONTINUE(p_cascade_indices[i] >= cascades.size());
  2022. SDFGI::Cascade &cc = cascades[p_cascade_indices[i]];
  2023. dl_push_constant.light_count = light_count[i];
  2024. dl_push_constant.cascade = p_cascade_indices[i];
  2025. if (dl_push_constant.light_count > 0) {
  2026. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cc.sdf_direct_light_uniform_set, 0);
  2027. RD::get_singleton()->compute_list_set_push_constant(compute_list, &dl_push_constant, sizeof(SDFGIShader::DirectLightPushConstant));
  2028. RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cc.solid_cell_dispatch_buffer, 0);
  2029. }
  2030. }
  2031. RD::get_singleton()->compute_list_end();
  2032. RD::get_singleton()->draw_command_end_label();
  2033. }
  2034. ////////////////////////////////////////////////////////////////////////////////
  2035. // VoxelGIInstance
  2036. void GI::VoxelGIInstance::update(bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<RendererSceneRender::GeometryInstance *> &p_dynamic_objects, RendererSceneRenderRD *p_scene_render) {
  2037. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  2038. uint32_t data_version = gi->voxel_gi_get_data_version(probe);
  2039. // (RE)CREATE IF NEEDED
  2040. if (last_probe_data_version != data_version) {
  2041. //need to re-create everything
  2042. if (texture.is_valid()) {
  2043. RD::get_singleton()->free(texture);
  2044. RD::get_singleton()->free(write_buffer);
  2045. mipmaps.clear();
  2046. }
  2047. for (int i = 0; i < dynamic_maps.size(); i++) {
  2048. RD::get_singleton()->free(dynamic_maps[i].texture);
  2049. RD::get_singleton()->free(dynamic_maps[i].depth);
  2050. }
  2051. dynamic_maps.clear();
  2052. Vector3i octree_size = gi->voxel_gi_get_octree_size(probe);
  2053. if (octree_size != Vector3i()) {
  2054. //can create a 3D texture
  2055. Vector<int> levels = gi->voxel_gi_get_level_counts(probe);
  2056. RD::TextureFormat tf;
  2057. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  2058. tf.width = octree_size.x;
  2059. tf.height = octree_size.y;
  2060. tf.depth = octree_size.z;
  2061. tf.texture_type = RD::TEXTURE_TYPE_3D;
  2062. tf.mipmaps = levels.size();
  2063. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  2064. texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2065. RD::get_singleton()->texture_clear(texture, Color(0, 0, 0, 0), 0, levels.size(), 0, 1);
  2066. {
  2067. int total_elements = 0;
  2068. for (int i = 0; i < levels.size(); i++) {
  2069. total_elements += levels[i];
  2070. }
  2071. write_buffer = RD::get_singleton()->storage_buffer_create(total_elements * 16);
  2072. }
  2073. for (int i = 0; i < levels.size(); i++) {
  2074. VoxelGIInstance::Mipmap mipmap;
  2075. mipmap.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), texture, 0, i, 1, RD::TEXTURE_SLICE_3D);
  2076. mipmap.level = levels.size() - i - 1;
  2077. mipmap.cell_offset = 0;
  2078. for (uint32_t j = 0; j < mipmap.level; j++) {
  2079. mipmap.cell_offset += levels[j];
  2080. }
  2081. mipmap.cell_count = levels[mipmap.level];
  2082. Vector<RD::Uniform> uniforms;
  2083. {
  2084. RD::Uniform u;
  2085. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2086. u.binding = 1;
  2087. u.append_id(gi->voxel_gi_get_octree_buffer(probe));
  2088. uniforms.push_back(u);
  2089. }
  2090. {
  2091. RD::Uniform u;
  2092. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2093. u.binding = 2;
  2094. u.append_id(gi->voxel_gi_get_data_buffer(probe));
  2095. uniforms.push_back(u);
  2096. }
  2097. {
  2098. RD::Uniform u;
  2099. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2100. u.binding = 4;
  2101. u.append_id(write_buffer);
  2102. uniforms.push_back(u);
  2103. }
  2104. {
  2105. RD::Uniform u;
  2106. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2107. u.binding = 9;
  2108. u.append_id(gi->voxel_gi_get_sdf_texture(probe));
  2109. uniforms.push_back(u);
  2110. }
  2111. {
  2112. RD::Uniform u;
  2113. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2114. u.binding = 10;
  2115. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2116. uniforms.push_back(u);
  2117. }
  2118. {
  2119. Vector<RD::Uniform> copy_uniforms = uniforms;
  2120. if (i == 0) {
  2121. {
  2122. RD::Uniform u;
  2123. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  2124. u.binding = 3;
  2125. u.append_id(gi->voxel_gi_lights_uniform);
  2126. copy_uniforms.push_back(u);
  2127. }
  2128. mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_COMPUTE_LIGHT], 0);
  2129. copy_uniforms = uniforms; //restore
  2130. {
  2131. RD::Uniform u;
  2132. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2133. u.binding = 5;
  2134. u.append_id(texture);
  2135. copy_uniforms.push_back(u);
  2136. }
  2137. mipmap.second_bounce_uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_COMPUTE_SECOND_BOUNCE], 0);
  2138. } else {
  2139. mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_COMPUTE_MIPMAP], 0);
  2140. }
  2141. }
  2142. {
  2143. RD::Uniform u;
  2144. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2145. u.binding = 5;
  2146. u.append_id(mipmap.texture);
  2147. uniforms.push_back(u);
  2148. }
  2149. mipmap.write_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_WRITE_TEXTURE], 0);
  2150. mipmaps.push_back(mipmap);
  2151. }
  2152. {
  2153. uint32_t dynamic_map_size = MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
  2154. uint32_t oversample = nearest_power_of_2_templated(4);
  2155. int mipmap_index = 0;
  2156. while (mipmap_index < mipmaps.size()) {
  2157. VoxelGIInstance::DynamicMap dmap;
  2158. if (oversample > 0) {
  2159. dmap.size = dynamic_map_size * (1 << oversample);
  2160. dmap.mipmap = -1;
  2161. oversample--;
  2162. } else {
  2163. dmap.size = dynamic_map_size >> mipmap_index;
  2164. dmap.mipmap = mipmap_index;
  2165. mipmap_index++;
  2166. }
  2167. RD::TextureFormat dtf;
  2168. dtf.width = dmap.size;
  2169. dtf.height = dmap.size;
  2170. dtf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  2171. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  2172. if (dynamic_maps.size() == 0) {
  2173. dtf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  2174. }
  2175. dmap.texture = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  2176. if (dynamic_maps.size() == 0) {
  2177. // Render depth for first one.
  2178. // Use 16-bit depth when supported to improve performance.
  2179. dtf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D16_UNORM, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  2180. dtf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  2181. dmap.fb_depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  2182. }
  2183. //just use depth as-is
  2184. dtf.format = RD::DATA_FORMAT_R32_SFLOAT;
  2185. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  2186. dmap.depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  2187. if (dynamic_maps.size() == 0) {
  2188. dtf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  2189. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  2190. dmap.albedo = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  2191. dmap.normal = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  2192. dmap.orm = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  2193. Vector<RID> fb;
  2194. fb.push_back(dmap.albedo);
  2195. fb.push_back(dmap.normal);
  2196. fb.push_back(dmap.orm);
  2197. fb.push_back(dmap.texture); //emission
  2198. fb.push_back(dmap.depth);
  2199. fb.push_back(dmap.fb_depth);
  2200. dmap.fb = RD::get_singleton()->framebuffer_create(fb);
  2201. {
  2202. Vector<RD::Uniform> uniforms;
  2203. {
  2204. RD::Uniform u;
  2205. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  2206. u.binding = 3;
  2207. u.append_id(gi->voxel_gi_lights_uniform);
  2208. uniforms.push_back(u);
  2209. }
  2210. {
  2211. RD::Uniform u;
  2212. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2213. u.binding = 5;
  2214. u.append_id(dmap.albedo);
  2215. uniforms.push_back(u);
  2216. }
  2217. {
  2218. RD::Uniform u;
  2219. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2220. u.binding = 6;
  2221. u.append_id(dmap.normal);
  2222. uniforms.push_back(u);
  2223. }
  2224. {
  2225. RD::Uniform u;
  2226. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2227. u.binding = 7;
  2228. u.append_id(dmap.orm);
  2229. uniforms.push_back(u);
  2230. }
  2231. {
  2232. RD::Uniform u;
  2233. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2234. u.binding = 8;
  2235. u.append_id(dmap.fb_depth);
  2236. uniforms.push_back(u);
  2237. }
  2238. {
  2239. RD::Uniform u;
  2240. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2241. u.binding = 9;
  2242. u.append_id(gi->voxel_gi_get_sdf_texture(probe));
  2243. uniforms.push_back(u);
  2244. }
  2245. {
  2246. RD::Uniform u;
  2247. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2248. u.binding = 10;
  2249. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2250. uniforms.push_back(u);
  2251. }
  2252. {
  2253. RD::Uniform u;
  2254. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2255. u.binding = 11;
  2256. u.append_id(dmap.texture);
  2257. uniforms.push_back(u);
  2258. }
  2259. {
  2260. RD::Uniform u;
  2261. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2262. u.binding = 12;
  2263. u.append_id(dmap.depth);
  2264. uniforms.push_back(u);
  2265. }
  2266. dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->voxel_gi_lighting_shader_version_shaders[VOXEL_GI_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING], 0);
  2267. }
  2268. } else {
  2269. bool plot = dmap.mipmap >= 0;
  2270. bool write = dmap.mipmap < (mipmaps.size() - 1);
  2271. Vector<RD::Uniform> uniforms;
  2272. {
  2273. RD::Uniform u;
  2274. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2275. u.binding = 5;
  2276. u.append_id(dynamic_maps[dynamic_maps.size() - 1].texture);
  2277. uniforms.push_back(u);
  2278. }
  2279. {
  2280. RD::Uniform u;
  2281. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2282. u.binding = 6;
  2283. u.append_id(dynamic_maps[dynamic_maps.size() - 1].depth);
  2284. uniforms.push_back(u);
  2285. }
  2286. if (write) {
  2287. {
  2288. RD::Uniform u;
  2289. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2290. u.binding = 7;
  2291. u.append_id(dmap.texture);
  2292. uniforms.push_back(u);
  2293. }
  2294. {
  2295. RD::Uniform u;
  2296. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2297. u.binding = 8;
  2298. u.append_id(dmap.depth);
  2299. uniforms.push_back(u);
  2300. }
  2301. }
  2302. {
  2303. RD::Uniform u;
  2304. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2305. u.binding = 9;
  2306. u.append_id(gi->voxel_gi_get_sdf_texture(probe));
  2307. uniforms.push_back(u);
  2308. }
  2309. {
  2310. RD::Uniform u;
  2311. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2312. u.binding = 10;
  2313. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2314. uniforms.push_back(u);
  2315. }
  2316. if (plot) {
  2317. {
  2318. RD::Uniform u;
  2319. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  2320. u.binding = 11;
  2321. u.append_id(mipmaps[dmap.mipmap].texture);
  2322. uniforms.push_back(u);
  2323. }
  2324. }
  2325. dmap.uniform_set = RD::get_singleton()->uniform_set_create(
  2326. uniforms,
  2327. gi->voxel_gi_lighting_shader_version_shaders[(write && plot) ? VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT : (write ? VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE : VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_PLOT)],
  2328. 0);
  2329. }
  2330. dynamic_maps.push_back(dmap);
  2331. }
  2332. }
  2333. }
  2334. last_probe_data_version = data_version;
  2335. p_update_light_instances = true; //just in case
  2336. p_scene_render->_base_uniforms_changed();
  2337. }
  2338. // UDPDATE TIME
  2339. if (has_dynamic_object_data) {
  2340. //if it has dynamic object data, it needs to be cleared
  2341. RD::get_singleton()->texture_clear(texture, Color(0, 0, 0, 0), 0, mipmaps.size(), 0, 1);
  2342. }
  2343. uint32_t light_count = 0;
  2344. if (p_update_light_instances || p_dynamic_objects.size() > 0) {
  2345. light_count = MIN(gi->voxel_gi_max_lights, (uint32_t)p_light_instances.size());
  2346. {
  2347. Transform3D to_cell = gi->voxel_gi_get_to_cell_xform(probe);
  2348. Transform3D to_probe_xform = (transform * to_cell.affine_inverse()).affine_inverse();
  2349. //update lights
  2350. for (uint32_t i = 0; i < light_count; i++) {
  2351. VoxelGILight &l = gi->voxel_gi_lights[i];
  2352. RID light_instance = p_light_instances[i];
  2353. RID light = p_scene_render->light_instance_get_base_light(light_instance);
  2354. l.type = RSG::light_storage->light_get_type(light);
  2355. if (l.type == RS::LIGHT_DIRECTIONAL && RSG::light_storage->light_directional_get_sky_mode(light) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) {
  2356. light_count--;
  2357. continue;
  2358. }
  2359. l.attenuation = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION);
  2360. l.energy = RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
  2361. l.radius = to_cell.basis.xform(Vector3(RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_RANGE), 0, 0)).length();
  2362. Color color = RSG::light_storage->light_get_color(light).srgb_to_linear();
  2363. l.color[0] = color.r;
  2364. l.color[1] = color.g;
  2365. l.color[2] = color.b;
  2366. l.cos_spot_angle = Math::cos(Math::deg2rad(RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE)));
  2367. l.inv_spot_attenuation = 1.0f / RSG::light_storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  2368. Transform3D xform = p_scene_render->light_instance_get_base_transform(light_instance);
  2369. Vector3 pos = to_probe_xform.xform(xform.origin);
  2370. Vector3 dir = to_probe_xform.basis.xform(-xform.basis.get_column(2)).normalized();
  2371. l.position[0] = pos.x;
  2372. l.position[1] = pos.y;
  2373. l.position[2] = pos.z;
  2374. l.direction[0] = dir.x;
  2375. l.direction[1] = dir.y;
  2376. l.direction[2] = dir.z;
  2377. l.has_shadow = RSG::light_storage->light_has_shadow(light);
  2378. }
  2379. RD::get_singleton()->buffer_update(gi->voxel_gi_lights_uniform, 0, sizeof(VoxelGILight) * light_count, gi->voxel_gi_lights);
  2380. }
  2381. }
  2382. if (has_dynamic_object_data || p_update_light_instances || p_dynamic_objects.size()) {
  2383. // PROCESS MIPMAPS
  2384. if (mipmaps.size()) {
  2385. //can update mipmaps
  2386. Vector3i probe_size = gi->voxel_gi_get_octree_size(probe);
  2387. VoxelGIPushConstant push_constant;
  2388. push_constant.limits[0] = probe_size.x;
  2389. push_constant.limits[1] = probe_size.y;
  2390. push_constant.limits[2] = probe_size.z;
  2391. push_constant.stack_size = mipmaps.size();
  2392. push_constant.emission_scale = 1.0;
  2393. push_constant.propagation = gi->voxel_gi_get_propagation(probe);
  2394. push_constant.dynamic_range = gi->voxel_gi_get_dynamic_range(probe);
  2395. push_constant.light_count = light_count;
  2396. push_constant.aniso_strength = 0;
  2397. /* print_line("probe update to version " + itos(last_probe_version));
  2398. print_line("propagation " + rtos(push_constant.propagation));
  2399. print_line("dynrange " + rtos(push_constant.dynamic_range));
  2400. */
  2401. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  2402. int passes;
  2403. if (p_update_light_instances) {
  2404. passes = gi->voxel_gi_is_using_two_bounces(probe) ? 2 : 1;
  2405. } else {
  2406. passes = 1; //only re-blitting is necessary
  2407. }
  2408. int wg_size = 64;
  2409. int64_t wg_limit_x = (int64_t)RD::get_singleton()->limit_get(RD::LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X);
  2410. for (int pass = 0; pass < passes; pass++) {
  2411. if (p_update_light_instances) {
  2412. for (int i = 0; i < mipmaps.size(); i++) {
  2413. if (i == 0) {
  2414. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[pass == 0 ? VOXEL_GI_SHADER_VERSION_COMPUTE_LIGHT : VOXEL_GI_SHADER_VERSION_COMPUTE_SECOND_BOUNCE]);
  2415. } else if (i == 1) {
  2416. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_COMPUTE_MIPMAP]);
  2417. }
  2418. if (pass == 1 || i > 0) {
  2419. RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
  2420. }
  2421. if (pass == 0 || i > 0) {
  2422. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mipmaps[i].uniform_set, 0);
  2423. } else {
  2424. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mipmaps[i].second_bounce_uniform_set, 0);
  2425. }
  2426. push_constant.cell_offset = mipmaps[i].cell_offset;
  2427. push_constant.cell_count = mipmaps[i].cell_count;
  2428. int64_t wg_todo = (mipmaps[i].cell_count - 1) / wg_size + 1;
  2429. while (wg_todo) {
  2430. int64_t wg_count = MIN(wg_todo, wg_limit_x);
  2431. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIPushConstant));
  2432. RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
  2433. wg_todo -= wg_count;
  2434. push_constant.cell_offset += wg_count * wg_size;
  2435. }
  2436. }
  2437. RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
  2438. }
  2439. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_WRITE_TEXTURE]);
  2440. for (int i = 0; i < mipmaps.size(); i++) {
  2441. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mipmaps[i].write_uniform_set, 0);
  2442. push_constant.cell_offset = mipmaps[i].cell_offset;
  2443. push_constant.cell_count = mipmaps[i].cell_count;
  2444. int64_t wg_todo = (mipmaps[i].cell_count - 1) / wg_size + 1;
  2445. while (wg_todo) {
  2446. int64_t wg_count = MIN(wg_todo, wg_limit_x);
  2447. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIPushConstant));
  2448. RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
  2449. wg_todo -= wg_count;
  2450. push_constant.cell_offset += wg_count * wg_size;
  2451. }
  2452. }
  2453. }
  2454. RD::get_singleton()->compute_list_end();
  2455. }
  2456. }
  2457. has_dynamic_object_data = false; //clear until dynamic object data is used again
  2458. if (p_dynamic_objects.size() && dynamic_maps.size()) {
  2459. Vector3i octree_size = gi->voxel_gi_get_octree_size(probe);
  2460. int multiplier = dynamic_maps[0].size / MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
  2461. Transform3D oversample_scale;
  2462. oversample_scale.basis.scale(Vector3(multiplier, multiplier, multiplier));
  2463. Transform3D to_cell = oversample_scale * gi->voxel_gi_get_to_cell_xform(probe);
  2464. Transform3D to_world_xform = transform * to_cell.affine_inverse();
  2465. Transform3D to_probe_xform = to_world_xform.affine_inverse();
  2466. AABB probe_aabb(Vector3(), octree_size);
  2467. //this could probably be better parallelized in compute..
  2468. for (int i = 0; i < (int)p_dynamic_objects.size(); i++) {
  2469. RendererSceneRender::GeometryInstance *instance = p_dynamic_objects[i];
  2470. //transform aabb to voxel_gi
  2471. AABB aabb = (to_probe_xform * p_scene_render->geometry_instance_get_transform(instance)).xform(p_scene_render->geometry_instance_get_aabb(instance));
  2472. //this needs to wrap to grid resolution to avoid jitter
  2473. //also extend margin a bit just in case
  2474. Vector3i begin = aabb.position - Vector3i(1, 1, 1);
  2475. Vector3i end = aabb.position + aabb.size + Vector3i(1, 1, 1);
  2476. for (int j = 0; j < 3; j++) {
  2477. if ((end[j] - begin[j]) & 1) {
  2478. end[j]++; //for half extents split, it needs to be even
  2479. }
  2480. begin[j] = MAX(begin[j], 0);
  2481. end[j] = MIN(end[j], octree_size[j] * multiplier);
  2482. }
  2483. //aabb = aabb.intersection(probe_aabb); //intersect
  2484. aabb.position = begin;
  2485. aabb.size = end - begin;
  2486. //print_line("aabb: " + aabb);
  2487. for (int j = 0; j < 6; j++) {
  2488. //if (j != 0 && j != 3) {
  2489. // continue;
  2490. //}
  2491. static const Vector3 render_z[6] = {
  2492. Vector3(1, 0, 0),
  2493. Vector3(0, 1, 0),
  2494. Vector3(0, 0, 1),
  2495. Vector3(-1, 0, 0),
  2496. Vector3(0, -1, 0),
  2497. Vector3(0, 0, -1),
  2498. };
  2499. static const Vector3 render_up[6] = {
  2500. Vector3(0, 1, 0),
  2501. Vector3(0, 0, 1),
  2502. Vector3(0, 1, 0),
  2503. Vector3(0, 1, 0),
  2504. Vector3(0, 0, 1),
  2505. Vector3(0, 1, 0),
  2506. };
  2507. Vector3 render_dir = render_z[j];
  2508. Vector3 up_dir = render_up[j];
  2509. Vector3 center = aabb.get_center();
  2510. Transform3D xform;
  2511. xform.set_look_at(center - aabb.size * 0.5 * render_dir, center, up_dir);
  2512. Vector3 x_dir = xform.basis.get_column(0).abs();
  2513. int x_axis = int(Vector3(0, 1, 2).dot(x_dir));
  2514. Vector3 y_dir = xform.basis.get_column(1).abs();
  2515. int y_axis = int(Vector3(0, 1, 2).dot(y_dir));
  2516. Vector3 z_dir = -xform.basis.get_column(2);
  2517. int z_axis = int(Vector3(0, 1, 2).dot(z_dir.abs()));
  2518. Rect2i rect(aabb.position[x_axis], aabb.position[y_axis], aabb.size[x_axis], aabb.size[y_axis]);
  2519. bool x_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_column(0)) < 0);
  2520. bool y_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_column(1)) < 0);
  2521. bool z_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_column(2)) > 0);
  2522. CameraMatrix cm;
  2523. cm.set_orthogonal(-rect.size.width / 2, rect.size.width / 2, -rect.size.height / 2, rect.size.height / 2, 0.0001, aabb.size[z_axis]);
  2524. if (p_scene_render->cull_argument.size() == 0) {
  2525. p_scene_render->cull_argument.push_back(nullptr);
  2526. }
  2527. p_scene_render->cull_argument[0] = instance;
  2528. p_scene_render->_render_material(to_world_xform * xform, cm, true, p_scene_render->cull_argument, dynamic_maps[0].fb, Rect2i(Vector2i(), rect.size));
  2529. VoxelGIDynamicPushConstant push_constant;
  2530. memset(&push_constant, 0, sizeof(VoxelGIDynamicPushConstant));
  2531. push_constant.limits[0] = octree_size.x;
  2532. push_constant.limits[1] = octree_size.y;
  2533. push_constant.limits[2] = octree_size.z;
  2534. push_constant.light_count = p_light_instances.size();
  2535. push_constant.x_dir[0] = x_dir[0];
  2536. push_constant.x_dir[1] = x_dir[1];
  2537. push_constant.x_dir[2] = x_dir[2];
  2538. push_constant.y_dir[0] = y_dir[0];
  2539. push_constant.y_dir[1] = y_dir[1];
  2540. push_constant.y_dir[2] = y_dir[2];
  2541. push_constant.z_dir[0] = z_dir[0];
  2542. push_constant.z_dir[1] = z_dir[1];
  2543. push_constant.z_dir[2] = z_dir[2];
  2544. push_constant.z_base = xform.origin[z_axis];
  2545. push_constant.z_sign = (z_flip ? -1.0 : 1.0);
  2546. push_constant.pos_multiplier = float(1.0) / multiplier;
  2547. push_constant.dynamic_range = gi->voxel_gi_get_dynamic_range(probe);
  2548. push_constant.flip_x = x_flip;
  2549. push_constant.flip_y = y_flip;
  2550. push_constant.rect_pos[0] = rect.position[0];
  2551. push_constant.rect_pos[1] = rect.position[1];
  2552. push_constant.rect_size[0] = rect.size[0];
  2553. push_constant.rect_size[1] = rect.size[1];
  2554. push_constant.prev_rect_ofs[0] = 0;
  2555. push_constant.prev_rect_ofs[1] = 0;
  2556. push_constant.prev_rect_size[0] = 0;
  2557. push_constant.prev_rect_size[1] = 0;
  2558. push_constant.on_mipmap = false;
  2559. push_constant.propagation = gi->voxel_gi_get_propagation(probe);
  2560. push_constant.pad[0] = 0;
  2561. push_constant.pad[1] = 0;
  2562. push_constant.pad[2] = 0;
  2563. //process lighting
  2564. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  2565. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING]);
  2566. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, dynamic_maps[0].uniform_set, 0);
  2567. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIDynamicPushConstant));
  2568. RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1);
  2569. //print_line("rect: " + itos(i) + ": " + rect);
  2570. for (int k = 1; k < dynamic_maps.size(); k++) {
  2571. // enlarge the rect if needed so all pixels fit when downscaled,
  2572. // this ensures downsampling is smooth and optimal because no pixels are left behind
  2573. //x
  2574. if (rect.position.x & 1) {
  2575. rect.size.x++;
  2576. push_constant.prev_rect_ofs[0] = 1; //this is used to ensure reading is also optimal
  2577. } else {
  2578. push_constant.prev_rect_ofs[0] = 0;
  2579. }
  2580. if (rect.size.x & 1) {
  2581. rect.size.x++;
  2582. }
  2583. rect.position.x >>= 1;
  2584. rect.size.x = MAX(1, rect.size.x >> 1);
  2585. //y
  2586. if (rect.position.y & 1) {
  2587. rect.size.y++;
  2588. push_constant.prev_rect_ofs[1] = 1;
  2589. } else {
  2590. push_constant.prev_rect_ofs[1] = 0;
  2591. }
  2592. if (rect.size.y & 1) {
  2593. rect.size.y++;
  2594. }
  2595. rect.position.y >>= 1;
  2596. rect.size.y = MAX(1, rect.size.y >> 1);
  2597. //shrink limits to ensure plot does not go outside map
  2598. if (dynamic_maps[k].mipmap > 0) {
  2599. for (int l = 0; l < 3; l++) {
  2600. push_constant.limits[l] = MAX(1, push_constant.limits[l] >> 1);
  2601. }
  2602. }
  2603. //print_line("rect: " + itos(i) + ": " + rect);
  2604. push_constant.rect_pos[0] = rect.position[0];
  2605. push_constant.rect_pos[1] = rect.position[1];
  2606. push_constant.prev_rect_size[0] = push_constant.rect_size[0];
  2607. push_constant.prev_rect_size[1] = push_constant.rect_size[1];
  2608. push_constant.rect_size[0] = rect.size[0];
  2609. push_constant.rect_size[1] = rect.size[1];
  2610. push_constant.on_mipmap = dynamic_maps[k].mipmap > 0;
  2611. RD::get_singleton()->compute_list_add_barrier(compute_list);
  2612. if (dynamic_maps[k].mipmap < 0) {
  2613. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE]);
  2614. } else if (k < dynamic_maps.size() - 1) {
  2615. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT]);
  2616. } else {
  2617. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi->voxel_gi_lighting_shader_version_pipelines[VOXEL_GI_SHADER_VERSION_DYNAMIC_SHRINK_PLOT]);
  2618. }
  2619. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, dynamic_maps[k].uniform_set, 0);
  2620. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VoxelGIDynamicPushConstant));
  2621. RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1);
  2622. }
  2623. RD::get_singleton()->compute_list_end();
  2624. }
  2625. }
  2626. has_dynamic_object_data = true; //clear until dynamic object data is used again
  2627. }
  2628. last_probe_version = gi->voxel_gi_get_version(probe);
  2629. }
  2630. void GI::VoxelGIInstance::debug(RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) {
  2631. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  2632. if (mipmaps.size() == 0) {
  2633. return;
  2634. }
  2635. CameraMatrix cam_transform = (p_camera_with_transform * CameraMatrix(transform)) * CameraMatrix(gi->voxel_gi_get_to_cell_xform(probe).affine_inverse());
  2636. int level = 0;
  2637. Vector3i octree_size = gi->voxel_gi_get_octree_size(probe);
  2638. VoxelGIDebugPushConstant push_constant;
  2639. push_constant.alpha = p_alpha;
  2640. push_constant.dynamic_range = gi->voxel_gi_get_dynamic_range(probe);
  2641. push_constant.cell_offset = mipmaps[level].cell_offset;
  2642. push_constant.level = level;
  2643. push_constant.bounds[0] = octree_size.x >> level;
  2644. push_constant.bounds[1] = octree_size.y >> level;
  2645. push_constant.bounds[2] = octree_size.z >> level;
  2646. push_constant.pad = 0;
  2647. for (int i = 0; i < 4; i++) {
  2648. for (int j = 0; j < 4; j++) {
  2649. push_constant.projection[i * 4 + j] = cam_transform.matrix[i][j];
  2650. }
  2651. }
  2652. if (gi->voxel_gi_debug_uniform_set.is_valid()) {
  2653. RD::get_singleton()->free(gi->voxel_gi_debug_uniform_set);
  2654. }
  2655. Vector<RD::Uniform> uniforms;
  2656. {
  2657. RD::Uniform u;
  2658. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  2659. u.binding = 1;
  2660. u.append_id(gi->voxel_gi_get_data_buffer(probe));
  2661. uniforms.push_back(u);
  2662. }
  2663. {
  2664. RD::Uniform u;
  2665. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2666. u.binding = 2;
  2667. u.append_id(texture);
  2668. uniforms.push_back(u);
  2669. }
  2670. {
  2671. RD::Uniform u;
  2672. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2673. u.binding = 3;
  2674. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2675. uniforms.push_back(u);
  2676. }
  2677. int cell_count;
  2678. if (!p_emission && p_lighting && has_dynamic_object_data) {
  2679. cell_count = push_constant.bounds[0] * push_constant.bounds[1] * push_constant.bounds[2];
  2680. } else {
  2681. cell_count = mipmaps[level].cell_count;
  2682. }
  2683. gi->voxel_gi_debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi->voxel_gi_debug_shader_version_shaders[0], 0);
  2684. int voxel_gi_debug_pipeline = VOXEL_GI_DEBUG_COLOR;
  2685. if (p_emission) {
  2686. voxel_gi_debug_pipeline = VOXEL_GI_DEBUG_EMISSION;
  2687. } else if (p_lighting) {
  2688. voxel_gi_debug_pipeline = has_dynamic_object_data ? VOXEL_GI_DEBUG_LIGHT_FULL : VOXEL_GI_DEBUG_LIGHT;
  2689. }
  2690. RD::get_singleton()->draw_list_bind_render_pipeline(
  2691. p_draw_list,
  2692. gi->voxel_gi_debug_shader_version_pipelines[voxel_gi_debug_pipeline].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  2693. RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, gi->voxel_gi_debug_uniform_set, 0);
  2694. RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(VoxelGIDebugPushConstant));
  2695. RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, 36);
  2696. }
  2697. ////////////////////////////////////////////////////////////////////////////////
  2698. // GI
  2699. GI::GI() {
  2700. singleton = this;
  2701. sdfgi_ray_count = RS::EnvironmentSDFGIRayCount(CLAMP(int32_t(GLOBAL_GET("rendering/global_illumination/sdfgi/probe_ray_count")), 0, int32_t(RS::ENV_SDFGI_RAY_COUNT_MAX - 1)));
  2702. sdfgi_frames_to_converge = RS::EnvironmentSDFGIFramesToConverge(CLAMP(int32_t(GLOBAL_GET("rendering/global_illumination/sdfgi/frames_to_converge")), 0, int32_t(RS::ENV_SDFGI_CONVERGE_MAX - 1)));
  2703. sdfgi_frames_to_update_light = RS::EnvironmentSDFGIFramesToUpdateLight(CLAMP(int32_t(GLOBAL_GET("rendering/global_illumination/sdfgi/frames_to_update_lights")), 0, int32_t(RS::ENV_SDFGI_UPDATE_LIGHT_MAX - 1)));
  2704. }
  2705. GI::~GI() {
  2706. singleton = nullptr;
  2707. }
  2708. void GI::init(RendererSceneSkyRD *p_sky) {
  2709. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  2710. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  2711. /* GI */
  2712. {
  2713. //kinda complicated to compute the amount of slots, we try to use as many as we can
  2714. voxel_gi_lights = memnew_arr(VoxelGILight, voxel_gi_max_lights);
  2715. voxel_gi_lights_uniform = RD::get_singleton()->uniform_buffer_create(voxel_gi_max_lights * sizeof(VoxelGILight));
  2716. voxel_gi_quality = RS::VoxelGIQuality(CLAMP(int(GLOBAL_GET("rendering/global_illumination/voxel_gi/quality")), 0, 1));
  2717. String defines = "\n#define MAX_LIGHTS " + itos(voxel_gi_max_lights) + "\n";
  2718. Vector<String> versions;
  2719. versions.push_back("\n#define MODE_COMPUTE_LIGHT\n");
  2720. versions.push_back("\n#define MODE_SECOND_BOUNCE\n");
  2721. versions.push_back("\n#define MODE_UPDATE_MIPMAPS\n");
  2722. versions.push_back("\n#define MODE_WRITE_TEXTURE\n");
  2723. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_LIGHTING\n");
  2724. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
  2725. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n");
  2726. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
  2727. voxel_gi_shader.initialize(versions, defines);
  2728. voxel_gi_lighting_shader_version = voxel_gi_shader.version_create();
  2729. for (int i = 0; i < VOXEL_GI_SHADER_VERSION_MAX; i++) {
  2730. voxel_gi_lighting_shader_version_shaders[i] = voxel_gi_shader.version_get_shader(voxel_gi_lighting_shader_version, i);
  2731. voxel_gi_lighting_shader_version_pipelines[i] = RD::get_singleton()->compute_pipeline_create(voxel_gi_lighting_shader_version_shaders[i]);
  2732. }
  2733. }
  2734. {
  2735. String defines;
  2736. Vector<String> versions;
  2737. versions.push_back("\n#define MODE_DEBUG_COLOR\n");
  2738. versions.push_back("\n#define MODE_DEBUG_LIGHT\n");
  2739. versions.push_back("\n#define MODE_DEBUG_EMISSION\n");
  2740. versions.push_back("\n#define MODE_DEBUG_LIGHT\n#define MODE_DEBUG_LIGHT_FULL\n");
  2741. voxel_gi_debug_shader.initialize(versions, defines);
  2742. voxel_gi_debug_shader_version = voxel_gi_debug_shader.version_create();
  2743. for (int i = 0; i < VOXEL_GI_DEBUG_MAX; i++) {
  2744. voxel_gi_debug_shader_version_shaders[i] = voxel_gi_debug_shader.version_get_shader(voxel_gi_debug_shader_version, i);
  2745. RD::PipelineRasterizationState rs;
  2746. rs.cull_mode = RD::POLYGON_CULL_FRONT;
  2747. RD::PipelineDepthStencilState ds;
  2748. ds.enable_depth_test = true;
  2749. ds.enable_depth_write = true;
  2750. ds.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL;
  2751. voxel_gi_debug_shader_version_pipelines[i].setup(voxel_gi_debug_shader_version_shaders[i], RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
  2752. }
  2753. }
  2754. /* SDGFI */
  2755. {
  2756. Vector<String> preprocess_modes;
  2757. preprocess_modes.push_back("\n#define MODE_SCROLL\n");
  2758. preprocess_modes.push_back("\n#define MODE_SCROLL_OCCLUSION\n");
  2759. preprocess_modes.push_back("\n#define MODE_INITIALIZE_JUMP_FLOOD\n");
  2760. preprocess_modes.push_back("\n#define MODE_INITIALIZE_JUMP_FLOOD_HALF\n");
  2761. preprocess_modes.push_back("\n#define MODE_JUMPFLOOD\n");
  2762. preprocess_modes.push_back("\n#define MODE_JUMPFLOOD_OPTIMIZED\n");
  2763. preprocess_modes.push_back("\n#define MODE_UPSCALE_JUMP_FLOOD\n");
  2764. preprocess_modes.push_back("\n#define MODE_OCCLUSION\n");
  2765. preprocess_modes.push_back("\n#define MODE_STORE\n");
  2766. String defines = "\n#define OCCLUSION_SIZE " + itos(SDFGI::CASCADE_SIZE / SDFGI::PROBE_DIVISOR) + "\n";
  2767. sdfgi_shader.preprocess.initialize(preprocess_modes, defines);
  2768. sdfgi_shader.preprocess_shader = sdfgi_shader.preprocess.version_create();
  2769. for (int i = 0; i < SDFGIShader::PRE_PROCESS_MAX; i++) {
  2770. sdfgi_shader.preprocess_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, i));
  2771. }
  2772. }
  2773. {
  2774. //calculate tables
  2775. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  2776. Vector<String> direct_light_modes;
  2777. direct_light_modes.push_back("\n#define MODE_PROCESS_STATIC\n");
  2778. direct_light_modes.push_back("\n#define MODE_PROCESS_DYNAMIC\n");
  2779. sdfgi_shader.direct_light.initialize(direct_light_modes, defines);
  2780. sdfgi_shader.direct_light_shader = sdfgi_shader.direct_light.version_create();
  2781. for (int i = 0; i < SDFGIShader::DIRECT_LIGHT_MODE_MAX; i++) {
  2782. sdfgi_shader.direct_light_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.direct_light.version_get_shader(sdfgi_shader.direct_light_shader, i));
  2783. }
  2784. }
  2785. {
  2786. //calculate tables
  2787. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  2788. defines += "\n#define SH_SIZE " + itos(SDFGI::SH_SIZE) + "\n";
  2789. if (p_sky->sky_use_cubemap_array) {
  2790. defines += "\n#define USE_CUBEMAP_ARRAY\n";
  2791. }
  2792. Vector<String> integrate_modes;
  2793. integrate_modes.push_back("\n#define MODE_PROCESS\n");
  2794. integrate_modes.push_back("\n#define MODE_STORE\n");
  2795. integrate_modes.push_back("\n#define MODE_SCROLL\n");
  2796. integrate_modes.push_back("\n#define MODE_SCROLL_STORE\n");
  2797. sdfgi_shader.integrate.initialize(integrate_modes, defines);
  2798. sdfgi_shader.integrate_shader = sdfgi_shader.integrate.version_create();
  2799. for (int i = 0; i < SDFGIShader::INTEGRATE_MODE_MAX; i++) {
  2800. sdfgi_shader.integrate_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, i));
  2801. }
  2802. {
  2803. Vector<RD::Uniform> uniforms;
  2804. {
  2805. RD::Uniform u;
  2806. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2807. u.binding = 0;
  2808. u.append_id(texture_storage->texture_rd_get_default(RendererRD::DEFAULT_RD_TEXTURE_CUBEMAP_WHITE));
  2809. uniforms.push_back(u);
  2810. }
  2811. {
  2812. RD::Uniform u;
  2813. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  2814. u.binding = 1;
  2815. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  2816. uniforms.push_back(u);
  2817. }
  2818. sdfgi_shader.integrate_default_sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, 0), 1);
  2819. }
  2820. }
  2821. //GK
  2822. {
  2823. //calculate tables
  2824. String defines = "\n#define SDFGI_OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  2825. Vector<String> gi_modes;
  2826. gi_modes.push_back("\n#define USE_VOXEL_GI_INSTANCES\n"); // MODE_VOXEL_GI
  2827. gi_modes.push_back("\n#define USE_SDFGI\n"); // MODE_SDFGI
  2828. gi_modes.push_back("\n#define USE_SDFGI\n\n#define USE_VOXEL_GI_INSTANCES\n"); // MODE_COMBINED
  2829. gi_modes.push_back("\n#define MODE_HALF_RES\n#define USE_VOXEL_GI_INSTANCES\n"); // MODE_HALF_RES_VOXEL_GI
  2830. gi_modes.push_back("\n#define MODE_HALF_RES\n#define USE_SDFGI\n"); // MODE_HALF_RES_SDFGI
  2831. gi_modes.push_back("\n#define MODE_HALF_RES\n#define USE_SDFGI\n\n#define USE_VOXEL_GI_INSTANCES\n"); // MODE_HALF_RES_COMBINED
  2832. gi_modes.push_back("\n#define USE_VOXEL_GI_INSTANCES\n#define USE_MULTIVIEW\n"); // MODE_VOXEL_GI_MULTIVIEW
  2833. gi_modes.push_back("\n#define USE_SDFGI\n#define USE_MULTIVIEW\n"); // MODE_SDFGI_MULTIVIEW
  2834. gi_modes.push_back("\n#define USE_SDFGI\n\n#define USE_VOXEL_GI_INSTANCES\n#define USE_MULTIVIEW\n"); // MODE_COMBINED_MULTIVIEW
  2835. gi_modes.push_back("\n#define MODE_HALF_RES\n#define USE_VOXEL_GI_INSTANCES\n#define USE_MULTIVIEW\n"); // MODE_HALF_RES_VOXEL_GI_MULTIVIEW
  2836. gi_modes.push_back("\n#define MODE_HALF_RES\n#define USE_SDFGI\n#define USE_MULTIVIEW\n"); // MODE_HALF_RES_SDFGI_MULTIVIEW
  2837. gi_modes.push_back("\n#define MODE_HALF_RES\n#define USE_SDFGI\n\n#define USE_VOXEL_GI_INSTANCES\n#define USE_MULTIVIEW\n"); // MODE_HALF_RES_COMBINED_MULTIVIEW
  2838. shader.initialize(gi_modes, defines);
  2839. if (!RendererCompositorRD::singleton->is_xr_enabled()) {
  2840. shader.set_variant_enabled(MODE_VOXEL_GI_MULTIVIEW, false);
  2841. shader.set_variant_enabled(MODE_SDFGI_MULTIVIEW, false);
  2842. shader.set_variant_enabled(MODE_COMBINED_MULTIVIEW, false);
  2843. shader.set_variant_enabled(MODE_HALF_RES_VOXEL_GI_MULTIVIEW, false);
  2844. shader.set_variant_enabled(MODE_HALF_RES_SDFGI_MULTIVIEW, false);
  2845. shader.set_variant_enabled(MODE_HALF_RES_COMBINED_MULTIVIEW, false);
  2846. }
  2847. shader_version = shader.version_create();
  2848. for (int i = 0; i < MODE_MAX; i++) {
  2849. if (shader.is_variant_enabled(i)) {
  2850. pipelines[i] = RD::get_singleton()->compute_pipeline_create(shader.version_get_shader(shader_version, i));
  2851. } else {
  2852. pipelines[i] = RID();
  2853. }
  2854. }
  2855. sdfgi_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGIData));
  2856. }
  2857. {
  2858. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  2859. Vector<String> debug_modes;
  2860. debug_modes.push_back("");
  2861. sdfgi_shader.debug.initialize(debug_modes, defines);
  2862. sdfgi_shader.debug_shader = sdfgi_shader.debug.version_create();
  2863. sdfgi_shader.debug_shader_version = sdfgi_shader.debug.version_get_shader(sdfgi_shader.debug_shader, 0);
  2864. sdfgi_shader.debug_pipeline = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.debug_shader_version);
  2865. }
  2866. {
  2867. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  2868. Vector<String> versions;
  2869. versions.push_back("\n#define MODE_PROBES\n");
  2870. versions.push_back("\n#define MODE_PROBES\n#define USE_MULTIVIEW\n");
  2871. versions.push_back("\n#define MODE_VISIBILITY\n");
  2872. versions.push_back("\n#define MODE_VISIBILITY\n#define USE_MULTIVIEW\n");
  2873. sdfgi_shader.debug_probes.initialize(versions, defines);
  2874. // TODO disable multiview versions if turned off
  2875. sdfgi_shader.debug_probes_shader = sdfgi_shader.debug_probes.version_create();
  2876. {
  2877. RD::PipelineRasterizationState rs;
  2878. rs.cull_mode = RD::POLYGON_CULL_DISABLED;
  2879. RD::PipelineDepthStencilState ds;
  2880. ds.enable_depth_test = true;
  2881. ds.enable_depth_write = true;
  2882. ds.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL;
  2883. for (int i = 0; i < SDFGIShader::PROBE_DEBUG_MAX; i++) {
  2884. // TODO check if version is enabled
  2885. RID debug_probes_shader_version = sdfgi_shader.debug_probes.version_get_shader(sdfgi_shader.debug_probes_shader, i);
  2886. sdfgi_shader.debug_probes_pipeline[i].setup(debug_probes_shader_version, RD::RENDER_PRIMITIVE_TRIANGLE_STRIPS, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
  2887. }
  2888. }
  2889. }
  2890. default_voxel_gi_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(VoxelGIData) * MAX_VOXEL_GI_INSTANCES);
  2891. half_resolution = GLOBAL_GET("rendering/global_illumination/gi/use_half_resolution");
  2892. }
  2893. void GI::free() {
  2894. RD::get_singleton()->free(default_voxel_gi_buffer);
  2895. RD::get_singleton()->free(voxel_gi_lights_uniform);
  2896. RD::get_singleton()->free(sdfgi_ubo);
  2897. voxel_gi_debug_shader.version_free(voxel_gi_debug_shader_version);
  2898. voxel_gi_shader.version_free(voxel_gi_lighting_shader_version);
  2899. shader.version_free(shader_version);
  2900. sdfgi_shader.debug_probes.version_free(sdfgi_shader.debug_probes_shader);
  2901. sdfgi_shader.debug.version_free(sdfgi_shader.debug_shader);
  2902. sdfgi_shader.direct_light.version_free(sdfgi_shader.direct_light_shader);
  2903. sdfgi_shader.integrate.version_free(sdfgi_shader.integrate_shader);
  2904. sdfgi_shader.preprocess.version_free(sdfgi_shader.preprocess_shader);
  2905. if (voxel_gi_lights) {
  2906. memdelete_arr(voxel_gi_lights);
  2907. }
  2908. }
  2909. GI::SDFGI *GI::create_sdfgi(RendererSceneEnvironmentRD *p_env, const Vector3 &p_world_position, uint32_t p_requested_history_size) {
  2910. SDFGI *sdfgi = memnew(SDFGI);
  2911. sdfgi->create(p_env, p_world_position, p_requested_history_size, this);
  2912. return sdfgi;
  2913. }
  2914. void GI::setup_voxel_gi_instances(RID p_render_buffers, const Transform3D &p_transform, const PagedArray<RID> &p_voxel_gi_instances, uint32_t &r_voxel_gi_instances_used, RendererSceneRenderRD *p_scene_render) {
  2915. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  2916. r_voxel_gi_instances_used = 0;
  2917. // feels a little dirty to use our container this way but....
  2918. RendererSceneRenderRD::RenderBuffers *rb = p_scene_render->render_buffers_owner.get_or_null(p_render_buffers);
  2919. ERR_FAIL_COND(rb == nullptr);
  2920. RID voxel_gi_buffer = p_scene_render->render_buffers_get_voxel_gi_buffer(p_render_buffers);
  2921. VoxelGIData voxel_gi_data[MAX_VOXEL_GI_INSTANCES];
  2922. bool voxel_gi_instances_changed = false;
  2923. Transform3D to_camera;
  2924. to_camera.origin = p_transform.origin; //only translation, make local
  2925. for (int i = 0; i < MAX_VOXEL_GI_INSTANCES; i++) {
  2926. RID texture;
  2927. if (i < (int)p_voxel_gi_instances.size()) {
  2928. VoxelGIInstance *gipi = get_probe_instance(p_voxel_gi_instances[i]);
  2929. if (gipi) {
  2930. texture = gipi->texture;
  2931. VoxelGIData &gipd = voxel_gi_data[i];
  2932. RID base_probe = gipi->probe;
  2933. Transform3D to_cell = voxel_gi_get_to_cell_xform(gipi->probe) * gipi->transform.affine_inverse() * to_camera;
  2934. gipd.xform[0] = to_cell.basis.rows[0][0];
  2935. gipd.xform[1] = to_cell.basis.rows[1][0];
  2936. gipd.xform[2] = to_cell.basis.rows[2][0];
  2937. gipd.xform[3] = 0;
  2938. gipd.xform[4] = to_cell.basis.rows[0][1];
  2939. gipd.xform[5] = to_cell.basis.rows[1][1];
  2940. gipd.xform[6] = to_cell.basis.rows[2][1];
  2941. gipd.xform[7] = 0;
  2942. gipd.xform[8] = to_cell.basis.rows[0][2];
  2943. gipd.xform[9] = to_cell.basis.rows[1][2];
  2944. gipd.xform[10] = to_cell.basis.rows[2][2];
  2945. gipd.xform[11] = 0;
  2946. gipd.xform[12] = to_cell.origin.x;
  2947. gipd.xform[13] = to_cell.origin.y;
  2948. gipd.xform[14] = to_cell.origin.z;
  2949. gipd.xform[15] = 1;
  2950. Vector3 bounds = voxel_gi_get_octree_size(base_probe);
  2951. gipd.bounds[0] = bounds.x;
  2952. gipd.bounds[1] = bounds.y;
  2953. gipd.bounds[2] = bounds.z;
  2954. gipd.dynamic_range = voxel_gi_get_dynamic_range(base_probe) * voxel_gi_get_energy(base_probe);
  2955. gipd.bias = voxel_gi_get_bias(base_probe);
  2956. gipd.normal_bias = voxel_gi_get_normal_bias(base_probe);
  2957. gipd.blend_ambient = !voxel_gi_is_interior(base_probe);
  2958. gipd.mipmaps = gipi->mipmaps.size();
  2959. }
  2960. r_voxel_gi_instances_used++;
  2961. }
  2962. if (texture == RID()) {
  2963. texture = texture_storage->texture_rd_get_default(RendererRD::DEFAULT_RD_TEXTURE_3D_WHITE);
  2964. }
  2965. if (texture != rb->rbgi.voxel_gi_textures[i]) {
  2966. voxel_gi_instances_changed = true;
  2967. rb->rbgi.voxel_gi_textures[i] = texture;
  2968. }
  2969. }
  2970. if (voxel_gi_instances_changed) {
  2971. for (uint32_t v = 0; v < RendererSceneRender::MAX_RENDER_VIEWS; v++) {
  2972. if (RD::get_singleton()->uniform_set_is_valid(rb->rbgi.uniform_set[v])) {
  2973. RD::get_singleton()->free(rb->rbgi.uniform_set[v]);
  2974. }
  2975. rb->rbgi.uniform_set[v] = RID();
  2976. }
  2977. if (rb->volumetric_fog) {
  2978. if (RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->fog_uniform_set)) {
  2979. RD::get_singleton()->free(rb->volumetric_fog->fog_uniform_set);
  2980. RD::get_singleton()->free(rb->volumetric_fog->process_uniform_set);
  2981. RD::get_singleton()->free(rb->volumetric_fog->process_uniform_set2);
  2982. }
  2983. rb->volumetric_fog->fog_uniform_set = RID();
  2984. rb->volumetric_fog->process_uniform_set = RID();
  2985. rb->volumetric_fog->process_uniform_set2 = RID();
  2986. }
  2987. }
  2988. if (p_voxel_gi_instances.size() > 0) {
  2989. RD::get_singleton()->draw_command_begin_label("VoxelGIs Setup");
  2990. RD::get_singleton()->buffer_update(voxel_gi_buffer, 0, sizeof(VoxelGIData) * MIN((uint64_t)MAX_VOXEL_GI_INSTANCES, p_voxel_gi_instances.size()), voxel_gi_data, RD::BARRIER_MASK_COMPUTE);
  2991. RD::get_singleton()->draw_command_end_label();
  2992. }
  2993. }
  2994. void GI::RenderBuffersGI::free() {
  2995. for (uint32_t v = 0; v < RendererSceneRender::MAX_RENDER_VIEWS; v++) {
  2996. if (RD::get_singleton()->uniform_set_is_valid(uniform_set[v])) {
  2997. RD::get_singleton()->free(uniform_set[v]);
  2998. }
  2999. uniform_set[v] = RID();
  3000. }
  3001. if (scene_data_ubo.is_valid()) {
  3002. RD::get_singleton()->free(scene_data_ubo);
  3003. scene_data_ubo = RID();
  3004. }
  3005. if (ambient_buffer.is_valid()) {
  3006. if (view_count == 1) {
  3007. // Only one view? then these are copies of our main buffers.
  3008. ambient_view[0] = RID();
  3009. reflection_view[0] = RID();
  3010. } else {
  3011. // Multiple views? free our slices.
  3012. for (uint32_t v = 0; v < view_count; v++) {
  3013. RD::get_singleton()->free(ambient_view[v]);
  3014. RD::get_singleton()->free(reflection_view[v]);
  3015. ambient_view[v] = RID();
  3016. reflection_view[v] = RID();
  3017. }
  3018. }
  3019. // Now we can free our buffers.
  3020. RD::get_singleton()->free(ambient_buffer);
  3021. RD::get_singleton()->free(reflection_buffer);
  3022. ambient_buffer = RID();
  3023. reflection_buffer = RID();
  3024. view_count = 0;
  3025. }
  3026. if (voxel_gi_buffer.is_valid()) {
  3027. RD::get_singleton()->free(voxel_gi_buffer);
  3028. voxel_gi_buffer = RID();
  3029. }
  3030. }
  3031. void GI::process_gi(RID p_render_buffers, RID *p_normal_roughness_views, RID p_voxel_gi_buffer, RID p_environment, uint32_t p_view_count, const CameraMatrix *p_projections, const Vector3 *p_eye_offsets, const Transform3D &p_cam_transform, const PagedArray<RID> &p_voxel_gi_instances, RendererSceneRenderRD *p_scene_render) {
  3032. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  3033. RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
  3034. ERR_FAIL_COND_MSG(p_view_count > 2, "Maximum of 2 views supported for Processing GI.");
  3035. RD::get_singleton()->draw_command_begin_label("GI Render");
  3036. RendererSceneRenderRD::RenderBuffers *rb = p_scene_render->render_buffers_owner.get_or_null(p_render_buffers);
  3037. ERR_FAIL_COND(rb == nullptr);
  3038. if (rb->rbgi.ambient_buffer.is_null() || rb->rbgi.using_half_size_gi != half_resolution || rb->rbgi.view_count != p_view_count) {
  3039. // Free our old buffer if applicable
  3040. if (rb->rbgi.ambient_buffer.is_valid()) {
  3041. if (rb->rbgi.view_count > 1) {
  3042. for (uint32_t v = 0; v < rb->rbgi.view_count; v++) {
  3043. RD::get_singleton()->free(rb->rbgi.ambient_view[v]);
  3044. RD::get_singleton()->free(rb->rbgi.reflection_view[v]);
  3045. }
  3046. }
  3047. RD::get_singleton()->free(rb->rbgi.ambient_buffer);
  3048. RD::get_singleton()->free(rb->rbgi.reflection_buffer);
  3049. }
  3050. // Remember the view count we're using
  3051. rb->rbgi.view_count = p_view_count;
  3052. // Create textures for our ambient and reflection data
  3053. RD::TextureFormat tf;
  3054. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  3055. tf.width = rb->internal_width;
  3056. tf.height = rb->internal_height;
  3057. if (half_resolution) {
  3058. tf.width >>= 1;
  3059. tf.height >>= 1;
  3060. }
  3061. if (p_view_count > 1) {
  3062. tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  3063. tf.array_layers = p_view_count;
  3064. } else {
  3065. tf.texture_type = RD::TEXTURE_TYPE_2D;
  3066. tf.array_layers = 1;
  3067. }
  3068. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  3069. rb->rbgi.ambient_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3070. rb->rbgi.reflection_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3071. rb->rbgi.using_half_size_gi = half_resolution;
  3072. if (p_view_count == 1) {
  3073. // Just one view? Copy our buffers
  3074. rb->rbgi.ambient_view[0] = rb->rbgi.ambient_buffer;
  3075. rb->rbgi.reflection_view[0] = rb->rbgi.reflection_buffer;
  3076. } else {
  3077. // More then one view? Create slices for each view
  3078. for (uint32_t v = 0; v < p_view_count; v++) {
  3079. rb->rbgi.ambient_view[v] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->rbgi.ambient_buffer, v, 0);
  3080. rb->rbgi.reflection_view[v] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->rbgi.reflection_buffer, v, 0);
  3081. }
  3082. }
  3083. }
  3084. // Setup our scene data
  3085. {
  3086. SceneData scene_data;
  3087. if (rb->rbgi.scene_data_ubo.is_null()) {
  3088. rb->rbgi.scene_data_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SceneData));
  3089. }
  3090. for (uint32_t v = 0; v < p_view_count; v++) {
  3091. RendererRD::MaterialStorage::store_camera(p_projections[v].inverse(), scene_data.inv_projection[v]);
  3092. scene_data.eye_offset[v][0] = p_eye_offsets[v].x;
  3093. scene_data.eye_offset[v][1] = p_eye_offsets[v].y;
  3094. scene_data.eye_offset[v][2] = p_eye_offsets[v].z;
  3095. scene_data.eye_offset[v][3] = 0.0;
  3096. }
  3097. // Note that we will be ignoring the origin of this transform.
  3098. RendererRD::MaterialStorage::store_transform(p_cam_transform, scene_data.cam_transform);
  3099. scene_data.screen_size[0] = rb->internal_width;
  3100. scene_data.screen_size[1] = rb->internal_height;
  3101. RD::get_singleton()->buffer_update(rb->rbgi.scene_data_ubo, 0, sizeof(SceneData), &scene_data, RD::BARRIER_MASK_COMPUTE);
  3102. }
  3103. // Now compute the contents of our buffers.
  3104. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(true);
  3105. for (uint32_t v = 0; v < p_view_count; v++) {
  3106. // Render each eye seperately.
  3107. // We need to look into whether we can make our compute shader use Multiview but not sure that works or makes a difference..
  3108. // setup our push constant
  3109. PushConstant push_constant;
  3110. push_constant.view_index = v;
  3111. push_constant.orthogonal = p_projections[v].is_orthogonal();
  3112. push_constant.max_voxel_gi_instances = MIN((uint64_t)MAX_VOXEL_GI_INSTANCES, p_voxel_gi_instances.size());
  3113. push_constant.high_quality_vct = voxel_gi_quality == RS::VOXEL_GI_QUALITY_HIGH;
  3114. push_constant.z_near = p_projections[v].get_z_near();
  3115. push_constant.z_far = p_projections[v].get_z_far();
  3116. push_constant.proj_info[0] = -2.0f / (rb->internal_width * p_projections[v].matrix[0][0]);
  3117. push_constant.proj_info[1] = -2.0f / (rb->internal_height * p_projections[v].matrix[1][1]);
  3118. push_constant.proj_info[2] = (1.0f - p_projections[v].matrix[0][2]) / p_projections[v].matrix[0][0];
  3119. push_constant.proj_info[3] = (1.0f + p_projections[v].matrix[1][2]) / p_projections[v].matrix[1][1];
  3120. bool use_sdfgi = rb->sdfgi != nullptr;
  3121. bool use_voxel_gi_instances = push_constant.max_voxel_gi_instances > 0;
  3122. // setup our uniform set
  3123. if (rb->rbgi.uniform_set[v].is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->rbgi.uniform_set[v])) {
  3124. Vector<RD::Uniform> uniforms;
  3125. {
  3126. RD::Uniform u;
  3127. u.binding = 1;
  3128. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3129. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  3130. if (rb->sdfgi && j < rb->sdfgi->cascades.size()) {
  3131. u.append_id(rb->sdfgi->cascades[j].sdf_tex);
  3132. } else {
  3133. u.append_id(texture_storage->texture_rd_get_default(RendererRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  3134. }
  3135. }
  3136. uniforms.push_back(u);
  3137. }
  3138. {
  3139. RD::Uniform u;
  3140. u.binding = 2;
  3141. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3142. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  3143. if (rb->sdfgi && j < rb->sdfgi->cascades.size()) {
  3144. u.append_id(rb->sdfgi->cascades[j].light_tex);
  3145. } else {
  3146. u.append_id(texture_storage->texture_rd_get_default(RendererRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  3147. }
  3148. }
  3149. uniforms.push_back(u);
  3150. }
  3151. {
  3152. RD::Uniform u;
  3153. u.binding = 3;
  3154. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3155. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  3156. if (rb->sdfgi && j < rb->sdfgi->cascades.size()) {
  3157. u.append_id(rb->sdfgi->cascades[j].light_aniso_0_tex);
  3158. } else {
  3159. u.append_id(texture_storage->texture_rd_get_default(RendererRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  3160. }
  3161. }
  3162. uniforms.push_back(u);
  3163. }
  3164. {
  3165. RD::Uniform u;
  3166. u.binding = 4;
  3167. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3168. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  3169. if (rb->sdfgi && j < rb->sdfgi->cascades.size()) {
  3170. u.append_id(rb->sdfgi->cascades[j].light_aniso_1_tex);
  3171. } else {
  3172. u.append_id(texture_storage->texture_rd_get_default(RendererRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  3173. }
  3174. }
  3175. uniforms.push_back(u);
  3176. }
  3177. {
  3178. RD::Uniform u;
  3179. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3180. u.binding = 5;
  3181. if (rb->sdfgi) {
  3182. u.append_id(rb->sdfgi->occlusion_texture);
  3183. } else {
  3184. u.append_id(texture_storage->texture_rd_get_default(RendererRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  3185. }
  3186. uniforms.push_back(u);
  3187. }
  3188. {
  3189. RD::Uniform u;
  3190. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  3191. u.binding = 6;
  3192. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  3193. uniforms.push_back(u);
  3194. }
  3195. {
  3196. RD::Uniform u;
  3197. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  3198. u.binding = 7;
  3199. u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  3200. uniforms.push_back(u);
  3201. }
  3202. {
  3203. RD::Uniform u;
  3204. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3205. u.binding = 9;
  3206. u.append_id(rb->rbgi.ambient_view[v]);
  3207. uniforms.push_back(u);
  3208. }
  3209. {
  3210. RD::Uniform u;
  3211. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3212. u.binding = 10;
  3213. u.append_id(rb->rbgi.reflection_view[v]);
  3214. uniforms.push_back(u);
  3215. }
  3216. {
  3217. RD::Uniform u;
  3218. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3219. u.binding = 11;
  3220. if (rb->sdfgi) {
  3221. u.append_id(rb->sdfgi->lightprobe_texture);
  3222. } else {
  3223. u.append_id(texture_storage->texture_rd_get_default(RendererRD::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE));
  3224. }
  3225. uniforms.push_back(u);
  3226. }
  3227. {
  3228. RD::Uniform u;
  3229. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3230. u.binding = 12;
  3231. u.append_id(rb->views[v].view_depth);
  3232. uniforms.push_back(u);
  3233. }
  3234. {
  3235. RD::Uniform u;
  3236. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3237. u.binding = 13;
  3238. u.append_id(p_normal_roughness_views[v]);
  3239. uniforms.push_back(u);
  3240. }
  3241. {
  3242. RD::Uniform u;
  3243. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3244. u.binding = 14;
  3245. RID buffer = p_voxel_gi_buffer.is_valid() ? p_voxel_gi_buffer : texture_storage->texture_rd_get_default(RendererRD::DEFAULT_RD_TEXTURE_BLACK);
  3246. u.append_id(buffer);
  3247. uniforms.push_back(u);
  3248. }
  3249. {
  3250. RD::Uniform u;
  3251. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  3252. u.binding = 15;
  3253. u.append_id(sdfgi_ubo);
  3254. uniforms.push_back(u);
  3255. }
  3256. {
  3257. RD::Uniform u;
  3258. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  3259. u.binding = 16;
  3260. u.append_id(rb->rbgi.voxel_gi_buffer);
  3261. uniforms.push_back(u);
  3262. }
  3263. {
  3264. RD::Uniform u;
  3265. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3266. u.binding = 17;
  3267. for (int i = 0; i < MAX_VOXEL_GI_INSTANCES; i++) {
  3268. u.append_id(rb->rbgi.voxel_gi_textures[i]);
  3269. }
  3270. uniforms.push_back(u);
  3271. }
  3272. {
  3273. RD::Uniform u;
  3274. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  3275. u.binding = 18;
  3276. u.append_id(rb->rbgi.scene_data_ubo);
  3277. uniforms.push_back(u);
  3278. }
  3279. rb->rbgi.uniform_set[v] = RD::get_singleton()->uniform_set_create(uniforms, shader.version_get_shader(shader_version, 0), 0);
  3280. }
  3281. Mode mode;
  3282. if (p_view_count > 1) {
  3283. if (rb->rbgi.using_half_size_gi) {
  3284. mode = (use_sdfgi && use_voxel_gi_instances) ? MODE_HALF_RES_COMBINED_MULTIVIEW : (use_sdfgi ? MODE_HALF_RES_SDFGI_MULTIVIEW : MODE_HALF_RES_VOXEL_GI_MULTIVIEW);
  3285. } else {
  3286. mode = (use_sdfgi && use_voxel_gi_instances) ? MODE_COMBINED_MULTIVIEW : (use_sdfgi ? MODE_SDFGI_MULTIVIEW : MODE_VOXEL_GI_MULTIVIEW);
  3287. }
  3288. } else {
  3289. if (rb->rbgi.using_half_size_gi) {
  3290. mode = (use_sdfgi && use_voxel_gi_instances) ? MODE_HALF_RES_COMBINED : (use_sdfgi ? MODE_HALF_RES_SDFGI : MODE_HALF_RES_VOXEL_GI);
  3291. } else {
  3292. mode = (use_sdfgi && use_voxel_gi_instances) ? MODE_COMBINED : (use_sdfgi ? MODE_SDFGI : MODE_VOXEL_GI);
  3293. }
  3294. }
  3295. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, pipelines[mode]);
  3296. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->rbgi.uniform_set[v], 0);
  3297. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
  3298. if (rb->rbgi.using_half_size_gi) {
  3299. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->internal_width >> 1, rb->internal_height >> 1, 1);
  3300. } else {
  3301. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->internal_width, rb->internal_height, 1);
  3302. }
  3303. }
  3304. //do barrier later to allow oeverlap
  3305. //RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_NO_BARRIER); //no barriers, let other compute, raster and transfer happen at the same time
  3306. RD::get_singleton()->draw_command_end_label();
  3307. }
  3308. RID GI::voxel_gi_instance_create(RID p_base) {
  3309. VoxelGIInstance voxel_gi;
  3310. voxel_gi.gi = this;
  3311. voxel_gi.probe = p_base;
  3312. RID rid = voxel_gi_instance_owner.make_rid(voxel_gi);
  3313. return rid;
  3314. }
  3315. void GI::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) {
  3316. VoxelGIInstance *voxel_gi = get_probe_instance(p_probe);
  3317. ERR_FAIL_COND(!voxel_gi);
  3318. voxel_gi->transform = p_xform;
  3319. }
  3320. bool GI::voxel_gi_needs_update(RID p_probe) const {
  3321. VoxelGIInstance *voxel_gi = get_probe_instance(p_probe);
  3322. ERR_FAIL_COND_V(!voxel_gi, false);
  3323. return voxel_gi->last_probe_version != voxel_gi_get_version(voxel_gi->probe);
  3324. }
  3325. void GI::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<RendererSceneRender::GeometryInstance *> &p_dynamic_objects, RendererSceneRenderRD *p_scene_render) {
  3326. VoxelGIInstance *voxel_gi = get_probe_instance(p_probe);
  3327. ERR_FAIL_COND(!voxel_gi);
  3328. voxel_gi->update(p_update_light_instances, p_light_instances, p_dynamic_objects, p_scene_render);
  3329. }
  3330. void GI::debug_voxel_gi(RID p_voxel_gi, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) {
  3331. VoxelGIInstance *voxel_gi = voxel_gi_instance_owner.get_or_null(p_voxel_gi);
  3332. ERR_FAIL_COND(!voxel_gi);
  3333. voxel_gi->debug(p_draw_list, p_framebuffer, p_camera_with_transform, p_lighting, p_emission, p_alpha);
  3334. }