csg.cpp 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469
  1. /*************************************************************************/
  2. /* csg.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "csg.h"
  31. #include "core/math/geometry_2d.h"
  32. #include "core/math/math_funcs.h"
  33. #include "core/sort_array.h"
  34. // Static helper functions.
  35. inline static bool is_snapable(const Vector3 &p_point1, const Vector3 &p_point2, real_t p_distance) {
  36. return (p_point1 - p_point2).length_squared() < p_distance * p_distance;
  37. }
  38. inline static Vector2 interpolate_segment_uv(const Vector2 p_segement_points[2], const Vector2 p_uvs[2], const Vector2 &p_interpolation_point) {
  39. float segment_length = (p_segement_points[1] - p_segement_points[0]).length();
  40. if (segment_length < CMP_EPSILON) {
  41. return p_uvs[0];
  42. }
  43. float distance = (p_interpolation_point - p_segement_points[0]).length();
  44. float fraction = distance / segment_length;
  45. return p_uvs[0].lerp(p_uvs[1], fraction);
  46. }
  47. inline static Vector2 interpolate_triangle_uv(const Vector2 p_vertices[3], const Vector2 p_uvs[3], const Vector2 &p_interpolation_point) {
  48. if (p_interpolation_point.distance_squared_to(p_vertices[0]) < CMP_EPSILON2) {
  49. return p_uvs[0];
  50. }
  51. if (p_interpolation_point.distance_squared_to(p_vertices[1]) < CMP_EPSILON2) {
  52. return p_uvs[1];
  53. }
  54. if (p_interpolation_point.distance_squared_to(p_vertices[2]) < CMP_EPSILON2) {
  55. return p_uvs[2];
  56. }
  57. Vector2 edge1 = p_vertices[1] - p_vertices[0];
  58. Vector2 edge2 = p_vertices[2] - p_vertices[0];
  59. Vector2 interpolation = p_interpolation_point - p_vertices[0];
  60. float edge1_on_edge1 = edge1.dot(edge1);
  61. float edge1_on_edge2 = edge1.dot(edge2);
  62. float edge2_on_edge2 = edge2.dot(edge2);
  63. float inter_on_edge1 = interpolation.dot(edge1);
  64. float inter_on_edge2 = interpolation.dot(edge2);
  65. float scale = (edge1_on_edge1 * edge2_on_edge2 - edge1_on_edge2 * edge1_on_edge2);
  66. if (scale == 0) {
  67. return p_uvs[0];
  68. }
  69. float v = (edge2_on_edge2 * inter_on_edge1 - edge1_on_edge2 * inter_on_edge2) / scale;
  70. float w = (edge1_on_edge1 * inter_on_edge2 - edge1_on_edge2 * inter_on_edge1) / scale;
  71. float u = 1.0f - v - w;
  72. return p_uvs[0] * u + p_uvs[1] * v + p_uvs[2] * w;
  73. }
  74. static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 p_vertices[3], float p_tolerance, Vector3 &r_intersection_point) {
  75. Vector3 edge1 = p_vertices[1] - p_vertices[0];
  76. Vector3 edge2 = p_vertices[2] - p_vertices[0];
  77. Vector3 h = p_dir.cross(edge2);
  78. real_t a = edge1.dot(h);
  79. // Check if ray is parallel to triangle.
  80. if (Math::is_zero_approx(a)) {
  81. return false;
  82. }
  83. real_t f = 1.0 / a;
  84. Vector3 s = p_from - p_vertices[0];
  85. real_t u = f * s.dot(h);
  86. if (u < 0.0 - p_tolerance || u > 1.0 + p_tolerance) {
  87. return false;
  88. }
  89. Vector3 q = s.cross(edge1);
  90. real_t v = f * p_dir.dot(q);
  91. if (v < 0.0 - p_tolerance || u + v > 1.0 + p_tolerance) {
  92. return false;
  93. }
  94. // Ray intersects triangle.
  95. // Calculate distance.
  96. real_t t = f * edge2.dot(q);
  97. // Confirm triangle is in front of ray.
  98. if (t >= p_tolerance) {
  99. r_intersection_point = p_from + p_dir * t;
  100. return true;
  101. } else {
  102. return false;
  103. }
  104. }
  105. inline bool is_point_in_triangle(const Vector3 &p_point, const Vector3 p_vertices[3], int p_shifted = 0) {
  106. real_t det = p_vertices[0].dot(p_vertices[1].cross(p_vertices[2]));
  107. // If determinant is, zero try shift the triangle and the point.
  108. if (Math::is_zero_approx(det)) {
  109. if (p_shifted > 2) {
  110. // Triangle appears degenerate, so ignore it.
  111. return false;
  112. }
  113. Vector3 shift_by;
  114. shift_by[p_shifted] = 1;
  115. Vector3 shifted_point = p_point + shift_by;
  116. Vector3 shifted_vertices[3] = { p_vertices[0] + shift_by, p_vertices[1] + shift_by, p_vertices[2] + shift_by };
  117. return is_point_in_triangle(shifted_point, shifted_vertices, p_shifted + 1);
  118. }
  119. // Find the barycentric coordinates of the point with respect to the vertices.
  120. real_t lambda[3];
  121. lambda[0] = p_vertices[1].cross(p_vertices[2]).dot(p_point) / det;
  122. lambda[1] = p_vertices[2].cross(p_vertices[0]).dot(p_point) / det;
  123. lambda[2] = p_vertices[0].cross(p_vertices[1]).dot(p_point) / det;
  124. // Point is in the plane if all lambdas sum to 1.
  125. if (!Math::is_equal_approx(lambda[0] + lambda[1] + lambda[2], 1)) {
  126. return false;
  127. }
  128. // Point is inside the triangle if all lambdas are positive.
  129. if (lambda[0] < 0 || lambda[1] < 0 || lambda[2] < 0) {
  130. return false;
  131. }
  132. return true;
  133. }
  134. inline static bool are_segements_parallel(const Vector2 p_segment1_points[2], const Vector2 p_segment2_points[2], float p_vertex_snap2) {
  135. Vector2 segment1 = p_segment1_points[1] - p_segment1_points[0];
  136. Vector2 segment2 = p_segment2_points[1] - p_segment2_points[0];
  137. real_t segment1_length2 = segment1.dot(segment1);
  138. real_t segment2_length2 = segment2.dot(segment2);
  139. real_t segment_onto_segment = segment2.dot(segment1);
  140. if (segment1_length2 < p_vertex_snap2 || segment2_length2 < p_vertex_snap2) {
  141. return true;
  142. }
  143. real_t max_separation2;
  144. if (segment1_length2 > segment2_length2) {
  145. max_separation2 = segment2_length2 - segment_onto_segment * segment_onto_segment / segment1_length2;
  146. } else {
  147. max_separation2 = segment1_length2 - segment_onto_segment * segment_onto_segment / segment2_length2;
  148. }
  149. return max_separation2 < p_vertex_snap2;
  150. }
  151. // CSGBrush
  152. void CSGBrush::_regen_face_aabbs() {
  153. for (int i = 0; i < faces.size(); i++) {
  154. faces.write[i].aabb = AABB();
  155. faces.write[i].aabb.position = faces[i].vertices[0];
  156. faces.write[i].aabb.expand_to(faces[i].vertices[1]);
  157. faces.write[i].aabb.expand_to(faces[i].vertices[2]);
  158. }
  159. }
  160. void CSGBrush::build_from_faces(const Vector<Vector3> &p_vertices, const Vector<Vector2> &p_uvs, const Vector<bool> &p_smooth, const Vector<Ref<Material>> &p_materials, const Vector<bool> &p_invert_faces) {
  161. faces.clear();
  162. int vc = p_vertices.size();
  163. ERR_FAIL_COND((vc % 3) != 0);
  164. const Vector3 *rv = p_vertices.ptr();
  165. int uvc = p_uvs.size();
  166. const Vector2 *ruv = p_uvs.ptr();
  167. int sc = p_smooth.size();
  168. const bool *rs = p_smooth.ptr();
  169. int mc = p_materials.size();
  170. const Ref<Material> *rm = p_materials.ptr();
  171. int ic = p_invert_faces.size();
  172. const bool *ri = p_invert_faces.ptr();
  173. Map<Ref<Material>, int> material_map;
  174. faces.resize(p_vertices.size() / 3);
  175. for (int i = 0; i < faces.size(); i++) {
  176. Face &f = faces.write[i];
  177. f.vertices[0] = rv[i * 3 + 0];
  178. f.vertices[1] = rv[i * 3 + 1];
  179. f.vertices[2] = rv[i * 3 + 2];
  180. if (uvc == vc) {
  181. f.uvs[0] = ruv[i * 3 + 0];
  182. f.uvs[1] = ruv[i * 3 + 1];
  183. f.uvs[2] = ruv[i * 3 + 2];
  184. }
  185. if (sc == vc / 3) {
  186. f.smooth = rs[i];
  187. } else {
  188. f.smooth = false;
  189. }
  190. if (ic == vc / 3) {
  191. f.invert = ri[i];
  192. } else {
  193. f.invert = false;
  194. }
  195. if (mc == vc / 3) {
  196. Ref<Material> mat = rm[i];
  197. if (mat.is_valid()) {
  198. const Map<Ref<Material>, int>::Element *E = material_map.find(mat);
  199. if (E) {
  200. f.material = E->get();
  201. } else {
  202. f.material = material_map.size();
  203. material_map[mat] = f.material;
  204. }
  205. } else {
  206. f.material = -1;
  207. }
  208. }
  209. }
  210. materials.resize(material_map.size());
  211. for (Map<Ref<Material>, int>::Element *E = material_map.front(); E; E = E->next()) {
  212. materials.write[E->get()] = E->key();
  213. }
  214. _regen_face_aabbs();
  215. }
  216. void CSGBrush::copy_from(const CSGBrush &p_brush, const Transform &p_xform) {
  217. faces = p_brush.faces;
  218. materials = p_brush.materials;
  219. for (int i = 0; i < faces.size(); i++) {
  220. for (int j = 0; j < 3; j++) {
  221. faces.write[i].vertices[j] = p_xform.xform(p_brush.faces[i].vertices[j]);
  222. }
  223. }
  224. _regen_face_aabbs();
  225. }
  226. // CSGBrushOperation
  227. void CSGBrushOperation::merge_brushes(Operation p_operation, const CSGBrush &p_brush_a, const CSGBrush &p_brush_b, CSGBrush &r_merged_brush, float p_vertex_snap) {
  228. // Check for face collisions and add necessary faces.
  229. Build2DFaceCollection build2DFaceCollection;
  230. for (int i = 0; i < p_brush_a.faces.size(); i++) {
  231. for (int j = 0; j < p_brush_b.faces.size(); j++) {
  232. if (p_brush_a.faces[i].aabb.intersects_inclusive(p_brush_b.faces[j].aabb)) {
  233. update_faces(p_brush_a, i, p_brush_b, j, build2DFaceCollection, p_vertex_snap);
  234. }
  235. }
  236. }
  237. // Add faces to MeshMerge.
  238. MeshMerge mesh_merge;
  239. mesh_merge.vertex_snap = p_vertex_snap;
  240. for (int i = 0; i < p_brush_a.faces.size(); i++) {
  241. Ref<Material> material;
  242. if (p_brush_a.faces[i].material != -1) {
  243. material = p_brush_a.materials[p_brush_a.faces[i].material];
  244. }
  245. if (build2DFaceCollection.build2DFacesA.has(i)) {
  246. build2DFaceCollection.build2DFacesA[i].addFacesToMesh(mesh_merge, p_brush_a.faces[i].smooth, p_brush_a.faces[i].invert, material, false);
  247. } else {
  248. Vector3 points[3];
  249. Vector2 uvs[3];
  250. for (int j = 0; j < 3; j++) {
  251. points[j] = p_brush_a.faces[i].vertices[j];
  252. uvs[j] = p_brush_a.faces[i].uvs[j];
  253. }
  254. mesh_merge.add_face(points, uvs, p_brush_a.faces[i].smooth, p_brush_a.faces[i].invert, material, false);
  255. }
  256. }
  257. for (int i = 0; i < p_brush_b.faces.size(); i++) {
  258. Ref<Material> material;
  259. if (p_brush_b.faces[i].material != -1) {
  260. material = p_brush_b.materials[p_brush_b.faces[i].material];
  261. }
  262. if (build2DFaceCollection.build2DFacesB.has(i)) {
  263. build2DFaceCollection.build2DFacesB[i].addFacesToMesh(mesh_merge, p_brush_b.faces[i].smooth, p_brush_b.faces[i].invert, material, true);
  264. } else {
  265. Vector3 points[3];
  266. Vector2 uvs[3];
  267. for (int j = 0; j < 3; j++) {
  268. points[j] = p_brush_b.faces[i].vertices[j];
  269. uvs[j] = p_brush_b.faces[i].uvs[j];
  270. }
  271. mesh_merge.add_face(points, uvs, p_brush_b.faces[i].smooth, p_brush_b.faces[i].invert, material, true);
  272. }
  273. }
  274. // Mark faces that ended up inside the intersection.
  275. mesh_merge.mark_inside_faces();
  276. // Create new brush and fill with new faces.
  277. r_merged_brush.faces.clear();
  278. switch (p_operation) {
  279. case OPERATION_UNION: {
  280. int outside_count = 0;
  281. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  282. if (mesh_merge.faces[i].inside) {
  283. continue;
  284. }
  285. outside_count++;
  286. }
  287. r_merged_brush.faces.resize(outside_count);
  288. outside_count = 0;
  289. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  290. if (mesh_merge.faces[i].inside) {
  291. continue;
  292. }
  293. for (int j = 0; j < 3; j++) {
  294. r_merged_brush.faces.write[outside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
  295. r_merged_brush.faces.write[outside_count].uvs[j] = mesh_merge.faces[i].uvs[j];
  296. }
  297. r_merged_brush.faces.write[outside_count].smooth = mesh_merge.faces[i].smooth;
  298. r_merged_brush.faces.write[outside_count].invert = mesh_merge.faces[i].invert;
  299. r_merged_brush.faces.write[outside_count].material = mesh_merge.faces[i].material_idx;
  300. outside_count++;
  301. }
  302. r_merged_brush._regen_face_aabbs();
  303. } break;
  304. case OPERATION_INTERSECTION: {
  305. int inside_count = 0;
  306. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  307. if (!mesh_merge.faces[i].inside) {
  308. continue;
  309. }
  310. inside_count++;
  311. }
  312. r_merged_brush.faces.resize(inside_count);
  313. inside_count = 0;
  314. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  315. if (!mesh_merge.faces[i].inside) {
  316. continue;
  317. }
  318. for (int j = 0; j < 3; j++) {
  319. r_merged_brush.faces.write[inside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
  320. r_merged_brush.faces.write[inside_count].uvs[j] = mesh_merge.faces[i].uvs[j];
  321. }
  322. r_merged_brush.faces.write[inside_count].smooth = mesh_merge.faces[i].smooth;
  323. r_merged_brush.faces.write[inside_count].invert = mesh_merge.faces[i].invert;
  324. r_merged_brush.faces.write[inside_count].material = mesh_merge.faces[i].material_idx;
  325. inside_count++;
  326. }
  327. r_merged_brush._regen_face_aabbs();
  328. } break;
  329. case OPERATION_SUBSTRACTION: {
  330. int face_count = 0;
  331. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  332. if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside) {
  333. continue;
  334. }
  335. if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside) {
  336. continue;
  337. }
  338. face_count++;
  339. }
  340. r_merged_brush.faces.resize(face_count);
  341. face_count = 0;
  342. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  343. if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside) {
  344. continue;
  345. }
  346. if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside) {
  347. continue;
  348. }
  349. for (int j = 0; j < 3; j++) {
  350. r_merged_brush.faces.write[face_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
  351. r_merged_brush.faces.write[face_count].uvs[j] = mesh_merge.faces[i].uvs[j];
  352. }
  353. if (mesh_merge.faces[i].from_b) {
  354. //invert facing of insides of B
  355. SWAP(r_merged_brush.faces.write[face_count].vertices[1], r_merged_brush.faces.write[face_count].vertices[2]);
  356. SWAP(r_merged_brush.faces.write[face_count].uvs[1], r_merged_brush.faces.write[face_count].uvs[2]);
  357. }
  358. r_merged_brush.faces.write[face_count].smooth = mesh_merge.faces[i].smooth;
  359. r_merged_brush.faces.write[face_count].invert = mesh_merge.faces[i].invert;
  360. r_merged_brush.faces.write[face_count].material = mesh_merge.faces[i].material_idx;
  361. face_count++;
  362. }
  363. r_merged_brush._regen_face_aabbs();
  364. } break;
  365. }
  366. // Update the list of materials.
  367. r_merged_brush.materials.resize(mesh_merge.materials.size());
  368. for (const Map<Ref<Material>, int>::Element *E = mesh_merge.materials.front(); E; E = E->next()) {
  369. r_merged_brush.materials.write[E->get()] = E->key();
  370. }
  371. }
  372. // CSGBrushOperation::MeshMerge
  373. // Use a limit to speed up bvh and limit the depth.
  374. #define BVH_LIMIT 8
  375. int CSGBrushOperation::MeshMerge::_create_bvh(FaceBVH *facebvhptr, FaceBVH **facebvhptrptr, int p_from, int p_size, int p_depth, int &r_max_depth, int &r_max_alloc) {
  376. if (p_depth > r_max_depth) {
  377. r_max_depth = p_depth;
  378. }
  379. if (p_size == 0) {
  380. return -1;
  381. }
  382. if (p_size <= BVH_LIMIT) {
  383. for (int i = 0; i < p_size - 1; i++) {
  384. facebvhptrptr[p_from + i]->next = facebvhptrptr[p_from + i + 1] - facebvhptr;
  385. }
  386. return facebvhptrptr[p_from] - facebvhptr;
  387. }
  388. AABB aabb;
  389. aabb = facebvhptrptr[p_from]->aabb;
  390. for (int i = 1; i < p_size; i++) {
  391. aabb.merge_with(facebvhptrptr[p_from + i]->aabb);
  392. }
  393. int li = aabb.get_longest_axis_index();
  394. switch (li) {
  395. case Vector3::AXIS_X: {
  396. SortArray<FaceBVH *, FaceBVHCmpX> sort_x;
  397. sort_x.nth_element(0, p_size, p_size / 2, &facebvhptrptr[p_from]);
  398. //sort_x.sort(&p_bb[p_from],p_size);
  399. } break;
  400. case Vector3::AXIS_Y: {
  401. SortArray<FaceBVH *, FaceBVHCmpY> sort_y;
  402. sort_y.nth_element(0, p_size, p_size / 2, &facebvhptrptr[p_from]);
  403. //sort_y.sort(&p_bb[p_from],p_size);
  404. } break;
  405. case Vector3::AXIS_Z: {
  406. SortArray<FaceBVH *, FaceBVHCmpZ> sort_z;
  407. sort_z.nth_element(0, p_size, p_size / 2, &facebvhptrptr[p_from]);
  408. //sort_z.sort(&p_bb[p_from],p_size);
  409. } break;
  410. }
  411. int left = _create_bvh(facebvhptr, facebvhptrptr, p_from, p_size / 2, p_depth + 1, r_max_depth, r_max_alloc);
  412. int right = _create_bvh(facebvhptr, facebvhptrptr, p_from + p_size / 2, p_size - p_size / 2, p_depth + 1, r_max_depth, r_max_alloc);
  413. int index = r_max_alloc++;
  414. FaceBVH *_new = &facebvhptr[index];
  415. _new->aabb = aabb;
  416. _new->center = aabb.position + aabb.size * 0.5;
  417. _new->face = -1;
  418. _new->left = left;
  419. _new->right = right;
  420. _new->next = -1;
  421. return index;
  422. }
  423. void CSGBrushOperation::MeshMerge::_add_distance(List<real_t> &r_intersectionsA, List<real_t> &r_intersectionsB, bool p_from_B, real_t p_distance) const {
  424. List<real_t> &intersections = p_from_B ? r_intersectionsB : r_intersectionsA;
  425. // Check if distance exists.
  426. for (const List<real_t>::Element *E = intersections.front(); E; E = E->next()) {
  427. if (Math::is_equal_approx(**E, p_distance)) {
  428. return;
  429. }
  430. }
  431. intersections.push_back(p_distance);
  432. }
  433. bool CSGBrushOperation::MeshMerge::_bvh_inside(FaceBVH *facebvhptr, int p_max_depth, int p_bvh_first, int p_face_idx) const {
  434. Face face = faces[p_face_idx];
  435. Vector3 face_points[3] = {
  436. points[face.points[0]],
  437. points[face.points[1]],
  438. points[face.points[2]]
  439. };
  440. Vector3 face_center = (face_points[0] + face_points[1] + face_points[2]) / 3.0;
  441. Vector3 face_normal = Plane(face_points[0], face_points[1], face_points[2]).normal;
  442. uint32_t *stack = (uint32_t *)alloca(sizeof(int) * p_max_depth);
  443. enum {
  444. TEST_AABB_BIT = 0,
  445. VISIT_LEFT_BIT = 1,
  446. VISIT_RIGHT_BIT = 2,
  447. VISIT_DONE_BIT = 3,
  448. VISITED_BIT_SHIFT = 29,
  449. NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1,
  450. VISITED_BIT_MASK = ~NODE_IDX_MASK
  451. };
  452. List<real_t> intersectionsA;
  453. List<real_t> intersectionsB;
  454. int level = 0;
  455. int pos = p_bvh_first;
  456. stack[0] = pos;
  457. while (true) {
  458. uint32_t node = stack[level] & NODE_IDX_MASK;
  459. const FaceBVH *current_facebvhptr = &(facebvhptr[node]);
  460. bool done = false;
  461. switch (stack[level] >> VISITED_BIT_SHIFT) {
  462. case TEST_AABB_BIT: {
  463. if (current_facebvhptr->face >= 0) {
  464. while (current_facebvhptr) {
  465. if (p_face_idx != current_facebvhptr->face &&
  466. current_facebvhptr->aabb.intersects_ray(face_center, face_normal)) {
  467. const Face &current_face = faces[current_facebvhptr->face];
  468. Vector3 current_points[3] = {
  469. points[current_face.points[0]],
  470. points[current_face.points[1]],
  471. points[current_face.points[2]]
  472. };
  473. Vector3 current_normal = Plane(current_points[0], current_points[1], current_points[2]).normal;
  474. Vector3 intersection_point;
  475. // Check if faces are co-planar.
  476. if ((current_normal - face_normal).length_squared() < CMP_EPSILON2 &&
  477. is_point_in_triangle(face_center, current_points)) {
  478. // Only add an intersection if not a B face.
  479. if (!face.from_b) {
  480. _add_distance(intersectionsA, intersectionsB, current_face.from_b, 0);
  481. }
  482. } else if (ray_intersects_triangle(face_center, face_normal, current_points, CMP_EPSILON, intersection_point)) {
  483. real_t distance = (intersection_point - face_center).length();
  484. _add_distance(intersectionsA, intersectionsB, current_face.from_b, distance);
  485. }
  486. }
  487. if (current_facebvhptr->next != -1) {
  488. current_facebvhptr = &facebvhptr[current_facebvhptr->next];
  489. } else {
  490. current_facebvhptr = nullptr;
  491. }
  492. }
  493. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  494. } else {
  495. bool valid = current_facebvhptr->aabb.intersects_ray(face_center, face_normal);
  496. if (!valid) {
  497. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  498. } else {
  499. stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node;
  500. }
  501. }
  502. continue;
  503. }
  504. case VISIT_LEFT_BIT: {
  505. stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
  506. stack[level + 1] = current_facebvhptr->left | TEST_AABB_BIT;
  507. level++;
  508. continue;
  509. }
  510. case VISIT_RIGHT_BIT: {
  511. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  512. stack[level + 1] = current_facebvhptr->right | TEST_AABB_BIT;
  513. level++;
  514. continue;
  515. }
  516. case VISIT_DONE_BIT: {
  517. if (level == 0) {
  518. done = true;
  519. break;
  520. } else {
  521. level--;
  522. }
  523. continue;
  524. }
  525. }
  526. if (done) {
  527. break;
  528. }
  529. }
  530. // Inside if face normal intersects other faces an odd number of times.
  531. return (intersectionsA.size() + intersectionsB.size()) & 1;
  532. }
  533. void CSGBrushOperation::MeshMerge::mark_inside_faces() {
  534. // Mark faces that are inside. This helps later do the boolean ops when merging.
  535. // This approach is very brute force with a bunch of optimizations,
  536. // such as BVH and pre AABB intersection test.
  537. Vector<FaceBVH> bvhvec;
  538. bvhvec.resize(faces.size() * 3); // Will never be larger than this (TODO: Make better)
  539. FaceBVH *facebvh = bvhvec.ptrw();
  540. AABB aabb_a;
  541. AABB aabb_b;
  542. bool first_a = true;
  543. bool first_b = true;
  544. for (int i = 0; i < faces.size(); i++) {
  545. facebvh[i].left = -1;
  546. facebvh[i].right = -1;
  547. facebvh[i].face = i;
  548. facebvh[i].aabb.position = points[faces[i].points[0]];
  549. facebvh[i].aabb.expand_to(points[faces[i].points[1]]);
  550. facebvh[i].aabb.expand_to(points[faces[i].points[2]]);
  551. facebvh[i].center = facebvh[i].aabb.position + facebvh[i].aabb.size * 0.5;
  552. facebvh[i].aabb.grow_by(vertex_snap);
  553. facebvh[i].next = -1;
  554. if (faces[i].from_b) {
  555. if (first_b) {
  556. aabb_b = facebvh[i].aabb;
  557. first_b = false;
  558. } else {
  559. aabb_b.merge_with(facebvh[i].aabb);
  560. }
  561. } else {
  562. if (first_a) {
  563. aabb_a = facebvh[i].aabb;
  564. first_a = false;
  565. } else {
  566. aabb_a.merge_with(facebvh[i].aabb);
  567. }
  568. }
  569. }
  570. AABB intersection_aabb = aabb_a.intersection(aabb_b);
  571. // Check if shape AABBs intersect.
  572. if (intersection_aabb.size == Vector3()) {
  573. return;
  574. }
  575. Vector<FaceBVH *> bvhtrvec;
  576. bvhtrvec.resize(faces.size());
  577. FaceBVH **bvhptr = bvhtrvec.ptrw();
  578. for (int i = 0; i < faces.size(); i++) {
  579. bvhptr[i] = &facebvh[i];
  580. }
  581. int max_depth = 0;
  582. int max_alloc = faces.size();
  583. _create_bvh(facebvh, bvhptr, 0, faces.size(), 1, max_depth, max_alloc);
  584. for (int i = 0; i < faces.size(); i++) {
  585. // Check if face AABB intersects the intersection AABB.
  586. if (!intersection_aabb.intersects_inclusive(facebvh[i].aabb)) {
  587. continue;
  588. }
  589. if (_bvh_inside(facebvh, max_depth, max_alloc - 1, i)) {
  590. faces.write[i].inside = true;
  591. }
  592. }
  593. }
  594. void CSGBrushOperation::MeshMerge::add_face(const Vector3 p_points[], const Vector2 p_uvs[], bool p_smooth, bool p_invert, const Ref<Material> &p_material, bool p_from_b) {
  595. int indices[3];
  596. for (int i = 0; i < 3; i++) {
  597. VertexKey vk;
  598. vk.x = int((double(p_points[i].x) + double(vertex_snap) * 0.31234) / double(vertex_snap));
  599. vk.y = int((double(p_points[i].y) + double(vertex_snap) * 0.31234) / double(vertex_snap));
  600. vk.z = int((double(p_points[i].z) + double(vertex_snap) * 0.31234) / double(vertex_snap));
  601. int res;
  602. if (snap_cache.lookup(vk, res)) {
  603. indices[i] = res;
  604. } else {
  605. indices[i] = points.size();
  606. points.push_back(p_points[i]);
  607. snap_cache.set(vk, indices[i]);
  608. }
  609. }
  610. // Don't add degenerate faces.
  611. if (indices[0] == indices[2] || indices[0] == indices[1] || indices[1] == indices[2]) {
  612. return;
  613. }
  614. MeshMerge::Face face;
  615. face.from_b = p_from_b;
  616. face.inside = false;
  617. face.smooth = p_smooth;
  618. face.invert = p_invert;
  619. if (p_material.is_valid()) {
  620. if (!materials.has(p_material)) {
  621. face.material_idx = materials.size();
  622. materials[p_material] = face.material_idx;
  623. } else {
  624. face.material_idx = materials[p_material];
  625. }
  626. } else {
  627. face.material_idx = -1;
  628. }
  629. for (int k = 0; k < 3; k++) {
  630. face.points[k] = indices[k];
  631. face.uvs[k] = p_uvs[k];
  632. }
  633. faces.push_back(face);
  634. }
  635. // CSGBrushOperation::Build2DFaces
  636. int CSGBrushOperation::Build2DFaces::_get_point_idx(const Vector2 &p_point) {
  637. for (int vertex_idx = 0; vertex_idx < vertices.size(); ++vertex_idx) {
  638. if ((p_point - vertices[vertex_idx].point).length_squared() < vertex_snap2) {
  639. return vertex_idx;
  640. }
  641. }
  642. return -1;
  643. }
  644. int CSGBrushOperation::Build2DFaces::_add_vertex(const Vertex2D &p_vertex) {
  645. // Check if vertex exists.
  646. int vertex_id = _get_point_idx(p_vertex.point);
  647. if (vertex_id != -1) {
  648. return vertex_id;
  649. }
  650. vertices.push_back(p_vertex);
  651. return vertices.size() - 1;
  652. }
  653. void CSGBrushOperation::Build2DFaces::_add_vertex_idx_sorted(Vector<int> &r_vertex_indices, int p_new_vertex_index) {
  654. if (p_new_vertex_index >= 0 && r_vertex_indices.find(p_new_vertex_index) == -1) {
  655. ERR_FAIL_COND_MSG(p_new_vertex_index >= vertices.size(), "Invalid vertex index.");
  656. // The first vertex.
  657. if (r_vertex_indices.size() == 0) {
  658. // Simply add it.
  659. r_vertex_indices.push_back(p_new_vertex_index);
  660. return;
  661. }
  662. // The second vertex.
  663. if (r_vertex_indices.size() == 1) {
  664. Vector2 first_point = vertices[r_vertex_indices[0]].point;
  665. Vector2 new_point = vertices[p_new_vertex_index].point;
  666. // Sort along the axis with the greatest difference.
  667. int axis = 0;
  668. if (Math::abs(new_point.x - first_point.x) < Math::abs(new_point.y - first_point.y)) {
  669. axis = 1;
  670. }
  671. // Add it to the beginning or the end appropriately.
  672. if (new_point[axis] < first_point[axis]) {
  673. r_vertex_indices.insert(0, p_new_vertex_index);
  674. } else {
  675. r_vertex_indices.push_back(p_new_vertex_index);
  676. }
  677. return;
  678. }
  679. // Third or later vertices.
  680. Vector2 first_point = vertices[r_vertex_indices[0]].point;
  681. Vector2 last_point = vertices[r_vertex_indices[r_vertex_indices.size() - 1]].point;
  682. Vector2 new_point = vertices[p_new_vertex_index].point;
  683. // Determine axis being sorted against i.e. the axis with the greatest difference.
  684. int axis = 0;
  685. if (Math::abs(last_point.x - first_point.x) < Math::abs(last_point.y - first_point.y)) {
  686. axis = 1;
  687. }
  688. // Insert the point at the appropriate index.
  689. for (int insert_idx = 0; insert_idx < r_vertex_indices.size(); ++insert_idx) {
  690. Vector2 insert_point = vertices[r_vertex_indices[insert_idx]].point;
  691. if (new_point[axis] < insert_point[axis]) {
  692. r_vertex_indices.insert(insert_idx, p_new_vertex_index);
  693. return;
  694. }
  695. }
  696. // New largest, add it to the end.
  697. r_vertex_indices.push_back(p_new_vertex_index);
  698. }
  699. }
  700. void CSGBrushOperation::Build2DFaces::_merge_faces(const Vector<int> &p_segment_indices) {
  701. int segments = p_segment_indices.size() - 1;
  702. if (segments < 2) {
  703. return;
  704. }
  705. // Faces around an inner vertex are merged by moving the inner vertex to the first vertex.
  706. for (int sorted_idx = 1; sorted_idx < segments; ++sorted_idx) {
  707. int closest_idx = 0;
  708. int inner_idx = p_segment_indices[sorted_idx];
  709. if (sorted_idx > segments / 2) {
  710. // Merge to other segment end.
  711. closest_idx = segments;
  712. // Reverse the merge order.
  713. inner_idx = p_segment_indices[segments + segments / 2 - sorted_idx];
  714. }
  715. // Find the mergeable faces.
  716. Vector<int> merge_faces_idx;
  717. Vector<Face2D> merge_faces;
  718. Vector<int> merge_faces_inner_vertex_idx;
  719. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  720. for (int face_vertex_idx = 0; face_vertex_idx < 3; ++face_vertex_idx) {
  721. if (faces[face_idx].vertex_idx[face_vertex_idx] == inner_idx) {
  722. merge_faces_idx.push_back(face_idx);
  723. merge_faces.push_back(faces[face_idx]);
  724. merge_faces_inner_vertex_idx.push_back(face_vertex_idx);
  725. }
  726. }
  727. }
  728. Vector<int> degenerate_points;
  729. // Create the new faces.
  730. for (int merge_idx = 0; merge_idx < merge_faces.size(); ++merge_idx) {
  731. int outer_edge_idx[2];
  732. outer_edge_idx[0] = merge_faces[merge_idx].vertex_idx[(merge_faces_inner_vertex_idx[merge_idx] + 1) % 3];
  733. outer_edge_idx[1] = merge_faces[merge_idx].vertex_idx[(merge_faces_inner_vertex_idx[merge_idx] + 2) % 3];
  734. // Skip flattened faces.
  735. if (outer_edge_idx[0] == p_segment_indices[closest_idx] ||
  736. outer_edge_idx[1] == p_segment_indices[closest_idx]) {
  737. continue;
  738. }
  739. //Don't create degenerate triangles.
  740. Vector2 edge1[2] = {
  741. vertices[outer_edge_idx[0]].point,
  742. vertices[p_segment_indices[closest_idx]].point
  743. };
  744. Vector2 edge2[2] = {
  745. vertices[outer_edge_idx[1]].point,
  746. vertices[p_segment_indices[closest_idx]].point
  747. };
  748. if (are_segements_parallel(edge1, edge2, vertex_snap2)) {
  749. if (!degenerate_points.find(outer_edge_idx[0])) {
  750. degenerate_points.push_back(outer_edge_idx[0]);
  751. }
  752. if (!degenerate_points.find(outer_edge_idx[1])) {
  753. degenerate_points.push_back(outer_edge_idx[1]);
  754. }
  755. continue;
  756. }
  757. // Create new faces.
  758. Face2D new_face;
  759. new_face.vertex_idx[0] = p_segment_indices[closest_idx];
  760. new_face.vertex_idx[1] = outer_edge_idx[0];
  761. new_face.vertex_idx[2] = outer_edge_idx[1];
  762. faces.push_back(new_face);
  763. }
  764. // Delete the old faces in reverse index order.
  765. merge_faces_idx.sort();
  766. merge_faces_idx.invert();
  767. for (int i = 0; i < merge_faces_idx.size(); ++i) {
  768. faces.remove(merge_faces_idx[i]);
  769. }
  770. if (degenerate_points.size() == 0) {
  771. continue;
  772. }
  773. // Split faces using degenerate points.
  774. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  775. Face2D face = faces[face_idx];
  776. Vertex2D face_vertices[3] = {
  777. vertices[face.vertex_idx[0]],
  778. vertices[face.vertex_idx[1]],
  779. vertices[face.vertex_idx[2]]
  780. };
  781. Vector2 face_points[3] = {
  782. face_vertices[0].point,
  783. face_vertices[1].point,
  784. face_vertices[2].point
  785. };
  786. for (int point_idx = 0; point_idx < degenerate_points.size(); ++point_idx) {
  787. int degenerate_idx = degenerate_points[point_idx];
  788. Vector2 point_2D = vertices[degenerate_idx].point;
  789. // Check if point is existing face vertex.
  790. bool existing = false;
  791. for (int i = 0; i < 3; ++i) {
  792. if ((point_2D - face_vertices[i].point).length_squared() < vertex_snap2) {
  793. existing = true;
  794. break;
  795. }
  796. }
  797. if (existing) {
  798. continue;
  799. }
  800. // Check if point is on an each edge.
  801. for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) {
  802. Vector2 edge_points[2] = {
  803. face_points[face_edge_idx],
  804. face_points[(face_edge_idx + 1) % 3]
  805. };
  806. Vector2 closest_point = Geometry2D::get_closest_point_to_segment(point_2D, edge_points);
  807. if ((closest_point - point_2D).length_squared() < vertex_snap2) {
  808. int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3];
  809. // If new vertex snaps to degenerate vertex, just delete this face.
  810. if (degenerate_idx == opposite_vertex_idx) {
  811. faces.remove(face_idx);
  812. // Update index.
  813. --face_idx;
  814. break;
  815. }
  816. // Create two new faces around the new edge and remove this face.
  817. // The new edge is the last edge.
  818. Face2D left_face;
  819. left_face.vertex_idx[0] = degenerate_idx;
  820. left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3];
  821. left_face.vertex_idx[2] = opposite_vertex_idx;
  822. Face2D right_face;
  823. right_face.vertex_idx[0] = opposite_vertex_idx;
  824. right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx];
  825. right_face.vertex_idx[2] = degenerate_idx;
  826. faces.remove(face_idx);
  827. faces.insert(face_idx, right_face);
  828. faces.insert(face_idx, left_face);
  829. // Don't check against the new faces.
  830. ++face_idx;
  831. // No need to check other edges.
  832. break;
  833. }
  834. }
  835. }
  836. }
  837. }
  838. }
  839. void CSGBrushOperation::Build2DFaces::_find_edge_intersections(const Vector2 p_segment_points[2], Vector<int> &r_segment_indices) {
  840. // For each face.
  841. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  842. Face2D face = faces[face_idx];
  843. Vertex2D face_vertices[3] = {
  844. vertices[face.vertex_idx[0]],
  845. vertices[face.vertex_idx[1]],
  846. vertices[face.vertex_idx[2]]
  847. };
  848. // Check each edge.
  849. for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) {
  850. Vector2 edge_points[2] = {
  851. face_vertices[face_edge_idx].point,
  852. face_vertices[(face_edge_idx + 1) % 3].point
  853. };
  854. Vector2 edge_uvs[2] = {
  855. face_vertices[face_edge_idx].uv,
  856. face_vertices[(face_edge_idx + 1) % 3].uv
  857. };
  858. Vector2 intersection_point;
  859. // First check if the ends of the segment are on the edge.
  860. bool on_edge = false;
  861. for (int edge_point_idx = 0; edge_point_idx < 2; ++edge_point_idx) {
  862. intersection_point = Geometry2D::get_closest_point_to_segment(p_segment_points[edge_point_idx], edge_points);
  863. if ((intersection_point - p_segment_points[edge_point_idx]).length_squared() < vertex_snap2) {
  864. on_edge = true;
  865. break;
  866. }
  867. }
  868. // Else check if the segment intersects the edge.
  869. if (on_edge || Geometry2D::segment_intersects_segment(p_segment_points[0], p_segment_points[1], edge_points[0], edge_points[1], &intersection_point)) {
  870. // Check if intersection point is an edge point.
  871. if ((intersection_point - edge_points[0]).length_squared() < vertex_snap2 ||
  872. (intersection_point - edge_points[1]).length_squared() < vertex_snap2) {
  873. continue;
  874. }
  875. // Check if edge exists, by checking if the intersecting segment is parallel to the edge.
  876. if (are_segements_parallel(p_segment_points, edge_points, vertex_snap2)) {
  877. continue;
  878. }
  879. // Add the intersection point as a new vertex.
  880. Vertex2D new_vertex;
  881. new_vertex.point = intersection_point;
  882. new_vertex.uv = interpolate_segment_uv(edge_points, edge_uvs, intersection_point);
  883. int new_vertex_idx = _add_vertex(new_vertex);
  884. int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3];
  885. _add_vertex_idx_sorted(r_segment_indices, new_vertex_idx);
  886. // If new vertex snaps to opposite vertex, just delete this face.
  887. if (new_vertex_idx == opposite_vertex_idx) {
  888. faces.remove(face_idx);
  889. // Update index.
  890. --face_idx;
  891. break;
  892. }
  893. // If opposite point is on the segemnt, add its index to segment indices too.
  894. Vector2 closest_point = Geometry2D::get_closest_point_to_segment(vertices[opposite_vertex_idx].point, p_segment_points);
  895. if ((closest_point - vertices[opposite_vertex_idx].point).length_squared() < vertex_snap2) {
  896. _add_vertex_idx_sorted(r_segment_indices, opposite_vertex_idx);
  897. }
  898. // Create two new faces around the new edge and remove this face.
  899. // The new edge is the last edge.
  900. Face2D left_face;
  901. left_face.vertex_idx[0] = new_vertex_idx;
  902. left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3];
  903. left_face.vertex_idx[2] = opposite_vertex_idx;
  904. Face2D right_face;
  905. right_face.vertex_idx[0] = opposite_vertex_idx;
  906. right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx];
  907. right_face.vertex_idx[2] = new_vertex_idx;
  908. faces.remove(face_idx);
  909. faces.insert(face_idx, right_face);
  910. faces.insert(face_idx, left_face);
  911. // Check against the new faces.
  912. --face_idx;
  913. break;
  914. }
  915. }
  916. }
  917. }
  918. int CSGBrushOperation::Build2DFaces::_insert_point(const Vector2 &p_point) {
  919. int new_vertex_idx = -1;
  920. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  921. Face2D face = faces[face_idx];
  922. Vertex2D face_vertices[3] = {
  923. vertices[face.vertex_idx[0]],
  924. vertices[face.vertex_idx[1]],
  925. vertices[face.vertex_idx[2]]
  926. };
  927. Vector2 points[3] = {
  928. face_vertices[0].point,
  929. face_vertices[1].point,
  930. face_vertices[2].point
  931. };
  932. Vector2 uvs[3] = {
  933. face_vertices[0].uv,
  934. face_vertices[1].uv,
  935. face_vertices[2].uv
  936. };
  937. // Check if point is existing face vertex.
  938. for (int i = 0; i < 3; ++i) {
  939. if ((p_point - face_vertices[i].point).length_squared() < vertex_snap2) {
  940. return face.vertex_idx[i];
  941. }
  942. }
  943. // Check if point is on an each edge.
  944. bool on_edge = false;
  945. for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) {
  946. Vector2 edge_points[2] = {
  947. points[face_edge_idx],
  948. points[(face_edge_idx + 1) % 3]
  949. };
  950. Vector2 edge_uvs[2] = {
  951. uvs[face_edge_idx],
  952. uvs[(face_edge_idx + 1) % 3]
  953. };
  954. Vector2 closest_point = Geometry2D::get_closest_point_to_segment(p_point, edge_points);
  955. if ((closest_point - p_point).length_squared() < vertex_snap2) {
  956. on_edge = true;
  957. // Add the point as a new vertex.
  958. Vertex2D new_vertex;
  959. new_vertex.point = p_point;
  960. new_vertex.uv = interpolate_segment_uv(edge_points, edge_uvs, p_point);
  961. new_vertex_idx = _add_vertex(new_vertex);
  962. int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3];
  963. // If new vertex snaps to opposite vertex, just delete this face.
  964. if (new_vertex_idx == opposite_vertex_idx) {
  965. faces.remove(face_idx);
  966. // Update index.
  967. --face_idx;
  968. break;
  969. }
  970. // Don't create degenerate triangles.
  971. Vector2 split_edge1[2] = { vertices[new_vertex_idx].point, edge_points[0] };
  972. Vector2 split_edge2[2] = { vertices[new_vertex_idx].point, edge_points[1] };
  973. Vector2 new_edge[2] = { vertices[new_vertex_idx].point, vertices[opposite_vertex_idx].point };
  974. if (are_segements_parallel(split_edge1, new_edge, vertex_snap2) &&
  975. are_segements_parallel(split_edge2, new_edge, vertex_snap2)) {
  976. break;
  977. }
  978. // Create two new faces around the new edge and remove this face.
  979. // The new edge is the last edge.
  980. Face2D left_face;
  981. left_face.vertex_idx[0] = new_vertex_idx;
  982. left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3];
  983. left_face.vertex_idx[2] = opposite_vertex_idx;
  984. Face2D right_face;
  985. right_face.vertex_idx[0] = opposite_vertex_idx;
  986. right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx];
  987. right_face.vertex_idx[2] = new_vertex_idx;
  988. faces.remove(face_idx);
  989. faces.insert(face_idx, right_face);
  990. faces.insert(face_idx, left_face);
  991. // Don't check against the new faces.
  992. ++face_idx;
  993. // No need to check other edges.
  994. break;
  995. }
  996. }
  997. // If not on an edge, check if the point is inside the face.
  998. if (!on_edge && Geometry2D::is_point_in_triangle(p_point, face_vertices[0].point, face_vertices[1].point, face_vertices[2].point)) {
  999. // Add the point as a new vertex.
  1000. Vertex2D new_vertex;
  1001. new_vertex.point = p_point;
  1002. new_vertex.uv = interpolate_triangle_uv(points, uvs, p_point);
  1003. new_vertex_idx = _add_vertex(new_vertex);
  1004. // Create three new faces around this point and remove this face.
  1005. // The new vertex is the last vertex.
  1006. for (int i = 0; i < 3; ++i) {
  1007. // Don't create degenerate triangles.
  1008. Vector2 edge[2] = { points[i], points[(i + 1) % 3] };
  1009. Vector2 new_edge1[2] = { vertices[new_vertex_idx].point, points[i] };
  1010. Vector2 new_edge2[2] = { vertices[new_vertex_idx].point, points[(i + 1) % 3] };
  1011. if (are_segements_parallel(edge, new_edge1, vertex_snap2) &&
  1012. are_segements_parallel(edge, new_edge2, vertex_snap2)) {
  1013. continue;
  1014. }
  1015. Face2D new_face;
  1016. new_face.vertex_idx[0] = face.vertex_idx[i];
  1017. new_face.vertex_idx[1] = face.vertex_idx[(i + 1) % 3];
  1018. new_face.vertex_idx[2] = new_vertex_idx;
  1019. faces.push_back(new_face);
  1020. }
  1021. faces.remove(face_idx);
  1022. // No need to check other faces.
  1023. break;
  1024. }
  1025. }
  1026. return new_vertex_idx;
  1027. }
  1028. void CSGBrushOperation::Build2DFaces::insert(const CSGBrush &p_brush, int p_face_idx) {
  1029. // Find edge points that cross the plane and face points that are in the plane.
  1030. // Map those points to 2D.
  1031. // Create new faces from those points.
  1032. Vector2 points_2D[3];
  1033. int points_count = 0;
  1034. for (int i = 0; i < 3; i++) {
  1035. Vector3 point_3D = p_brush.faces[p_face_idx].vertices[i];
  1036. if (plane.has_point(point_3D)) {
  1037. // Point is in the plane, add it.
  1038. Vector3 point_2D = plane.project(point_3D);
  1039. point_2D = to_2D.xform(point_2D);
  1040. points_2D[points_count++] = Vector2(point_2D.x, point_2D.y);
  1041. } else {
  1042. Vector3 next_point_3D = p_brush.faces[p_face_idx].vertices[(i + 1) % 3];
  1043. if (plane.has_point(next_point_3D)) {
  1044. continue; // Next point is in plane, it will be added separately.
  1045. }
  1046. if (plane.is_point_over(point_3D) == plane.is_point_over(next_point_3D)) {
  1047. continue; // Both points on the same side of the plane, ignore.
  1048. }
  1049. // Edge crosses the plane, find and add the intersection point.
  1050. Vector3 point_2D;
  1051. if (plane.intersects_segment(point_3D, next_point_3D, &point_2D)) {
  1052. point_2D = to_2D.xform(point_2D);
  1053. points_2D[points_count++] = Vector2(point_2D.x, point_2D.y);
  1054. }
  1055. }
  1056. }
  1057. Vector<int> segment_indices;
  1058. Vector2 segment[2];
  1059. int inserted_index[3] = { -1, -1, -1 };
  1060. // Insert points.
  1061. for (int i = 0; i < points_count; ++i) {
  1062. inserted_index[i] = _insert_point(points_2D[i]);
  1063. }
  1064. if (points_count == 2) {
  1065. // Insert a single segment.
  1066. segment[0] = points_2D[0];
  1067. segment[1] = points_2D[1];
  1068. _find_edge_intersections(segment, segment_indices);
  1069. for (int i = 0; i < 2; ++i) {
  1070. _add_vertex_idx_sorted(segment_indices, inserted_index[i]);
  1071. }
  1072. _merge_faces(segment_indices);
  1073. }
  1074. if (points_count == 3) {
  1075. // Insert three segments.
  1076. for (int edge_idx = 0; edge_idx < 3; ++edge_idx) {
  1077. segment[0] = points_2D[edge_idx];
  1078. segment[1] = points_2D[(edge_idx + 1) % 3];
  1079. _find_edge_intersections(segment, segment_indices);
  1080. for (int i = 0; i < 2; ++i) {
  1081. _add_vertex_idx_sorted(segment_indices, inserted_index[(edge_idx + i) % 3]);
  1082. }
  1083. _merge_faces(segment_indices);
  1084. segment_indices.clear();
  1085. }
  1086. }
  1087. }
  1088. void CSGBrushOperation::Build2DFaces::addFacesToMesh(MeshMerge &r_mesh_merge, bool p_smooth, bool p_invert, const Ref<Material> &p_material, bool p_from_b) {
  1089. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  1090. Face2D face = faces[face_idx];
  1091. Vertex2D fv[3] = {
  1092. vertices[face.vertex_idx[0]],
  1093. vertices[face.vertex_idx[1]],
  1094. vertices[face.vertex_idx[2]]
  1095. };
  1096. // Convert 2D vertex points to 3D.
  1097. Vector3 points_3D[3];
  1098. Vector2 uvs[3];
  1099. for (int i = 0; i < 3; ++i) {
  1100. Vector3 point_2D(fv[i].point.x, fv[i].point.y, 0);
  1101. points_3D[i] = to_3D.xform(point_2D);
  1102. uvs[i] = fv[i].uv;
  1103. }
  1104. r_mesh_merge.add_face(points_3D, uvs, p_smooth, p_invert, p_material, p_from_b);
  1105. }
  1106. }
  1107. CSGBrushOperation::Build2DFaces::Build2DFaces(const CSGBrush &p_brush, int p_face_idx, float p_vertex_snap2) :
  1108. vertex_snap2(p_vertex_snap2 * p_vertex_snap2) {
  1109. // Convert 3D vertex points to 2D.
  1110. Vector3 points_3D[3] = {
  1111. p_brush.faces[p_face_idx].vertices[0],
  1112. p_brush.faces[p_face_idx].vertices[1],
  1113. p_brush.faces[p_face_idx].vertices[2],
  1114. };
  1115. plane = Plane(points_3D[0], points_3D[1], points_3D[2]);
  1116. to_3D.origin = points_3D[0];
  1117. to_3D.basis.set_axis(2, plane.normal);
  1118. to_3D.basis.set_axis(0, (points_3D[1] - points_3D[2]).normalized());
  1119. to_3D.basis.set_axis(1, to_3D.basis.get_axis(0).cross(to_3D.basis.get_axis(2)).normalized());
  1120. to_2D = to_3D.affine_inverse();
  1121. Face2D face;
  1122. for (int i = 0; i < 3; i++) {
  1123. Vertex2D vertex;
  1124. Vector3 point_2D = to_2D.xform(points_3D[i]);
  1125. vertex.point.x = point_2D.x;
  1126. vertex.point.y = point_2D.y;
  1127. vertex.uv = p_brush.faces[p_face_idx].uvs[i];
  1128. vertices.push_back(vertex);
  1129. face.vertex_idx[i] = i;
  1130. }
  1131. faces.push_back(face);
  1132. }
  1133. void CSGBrushOperation::update_faces(const CSGBrush &p_brush_a, const int p_face_idx_a, const CSGBrush &p_brush_b, const int p_face_idx_b, Build2DFaceCollection &p_collection, float p_vertex_snap) {
  1134. Vector3 vertices_a[3] = {
  1135. p_brush_a.faces[p_face_idx_a].vertices[0],
  1136. p_brush_a.faces[p_face_idx_a].vertices[1],
  1137. p_brush_a.faces[p_face_idx_a].vertices[2],
  1138. };
  1139. Vector3 vertices_b[3] = {
  1140. p_brush_b.faces[p_face_idx_b].vertices[0],
  1141. p_brush_b.faces[p_face_idx_b].vertices[1],
  1142. p_brush_b.faces[p_face_idx_b].vertices[2],
  1143. };
  1144. // Don't use degenerate faces.
  1145. bool has_degenerate = false;
  1146. if (is_snapable(vertices_a[0], vertices_a[1], p_vertex_snap) ||
  1147. is_snapable(vertices_a[0], vertices_a[2], p_vertex_snap) ||
  1148. is_snapable(vertices_a[1], vertices_a[2], p_vertex_snap)) {
  1149. p_collection.build2DFacesA[p_face_idx_a] = Build2DFaces();
  1150. has_degenerate = true;
  1151. }
  1152. if (is_snapable(vertices_b[0], vertices_b[1], p_vertex_snap) ||
  1153. is_snapable(vertices_b[0], vertices_b[2], p_vertex_snap) ||
  1154. is_snapable(vertices_b[1], vertices_b[2], p_vertex_snap)) {
  1155. p_collection.build2DFacesB[p_face_idx_b] = Build2DFaces();
  1156. has_degenerate = true;
  1157. }
  1158. if (has_degenerate) {
  1159. return;
  1160. }
  1161. // Ensure B has points either side of or in the plane of A.
  1162. int in_plane_count = 0, over_count = 0, under_count = 0;
  1163. Plane plane_a(vertices_a[0], vertices_a[1], vertices_a[2]);
  1164. ERR_FAIL_COND_MSG(plane_a.normal == Vector3(), "Couldn't form plane from Brush A face.");
  1165. for (int i = 0; i < 3; i++) {
  1166. if (plane_a.has_point(vertices_b[i])) {
  1167. in_plane_count++;
  1168. } else if (plane_a.is_point_over(vertices_b[i])) {
  1169. over_count++;
  1170. } else {
  1171. under_count++;
  1172. }
  1173. }
  1174. // If all points under or over the plane, there is no intesection.
  1175. if (over_count == 3 || under_count == 3) {
  1176. return;
  1177. }
  1178. // Ensure A has points either side of or in the plane of B.
  1179. in_plane_count = 0;
  1180. over_count = 0;
  1181. under_count = 0;
  1182. Plane plane_b(vertices_b[0], vertices_b[1], vertices_b[2]);
  1183. ERR_FAIL_COND_MSG(plane_b.normal == Vector3(), "Couldn't form plane from Brush B face.");
  1184. for (int i = 0; i < 3; i++) {
  1185. if (plane_b.has_point(vertices_a[i])) {
  1186. in_plane_count++;
  1187. } else if (plane_b.is_point_over(vertices_a[i])) {
  1188. over_count++;
  1189. } else {
  1190. under_count++;
  1191. }
  1192. }
  1193. // If all points under or over the plane, there is no intesection.
  1194. if (over_count == 3 || under_count == 3) {
  1195. return;
  1196. }
  1197. // Check for intersection using the SAT theorem.
  1198. {
  1199. // Edge pair cross product combinations.
  1200. for (int i = 0; i < 3; i++) {
  1201. Vector3 axis_a = (vertices_a[i] - vertices_a[(i + 1) % 3]).normalized();
  1202. for (int j = 0; j < 3; j++) {
  1203. Vector3 axis_b = (vertices_b[j] - vertices_b[(j + 1) % 3]).normalized();
  1204. Vector3 sep_axis = axis_a.cross(axis_b);
  1205. if (sep_axis == Vector3()) {
  1206. continue; //colineal
  1207. }
  1208. sep_axis.normalize();
  1209. real_t min_a = 1e20, max_a = -1e20;
  1210. real_t min_b = 1e20, max_b = -1e20;
  1211. for (int k = 0; k < 3; k++) {
  1212. real_t d = sep_axis.dot(vertices_a[k]);
  1213. min_a = MIN(min_a, d);
  1214. max_a = MAX(max_a, d);
  1215. d = sep_axis.dot(vertices_b[k]);
  1216. min_b = MIN(min_b, d);
  1217. max_b = MAX(max_b, d);
  1218. }
  1219. min_b -= (max_a - min_a) * 0.5;
  1220. max_b += (max_a - min_a) * 0.5;
  1221. real_t dmin = min_b - (min_a + max_a) * 0.5;
  1222. real_t dmax = max_b - (min_a + max_a) * 0.5;
  1223. if (dmin > CMP_EPSILON || dmax < -CMP_EPSILON) {
  1224. return; // Does not contain zero, so they don't overlap.
  1225. }
  1226. }
  1227. }
  1228. }
  1229. // If we're still here, the faces probably intersect, so add new faces.
  1230. if (!p_collection.build2DFacesA.has(p_face_idx_a)) {
  1231. p_collection.build2DFacesA[p_face_idx_a] = Build2DFaces(p_brush_a, p_face_idx_a, p_vertex_snap);
  1232. }
  1233. p_collection.build2DFacesA[p_face_idx_a].insert(p_brush_b, p_face_idx_b);
  1234. if (!p_collection.build2DFacesB.has(p_face_idx_b)) {
  1235. p_collection.build2DFacesB[p_face_idx_b] = Build2DFaces(p_brush_b, p_face_idx_b, p_vertex_snap);
  1236. }
  1237. p_collection.build2DFacesB[p_face_idx_b].insert(p_brush_a, p_face_idx_a);
  1238. }