matrix3.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457
  1. /*************************************************************************/
  2. /* matrix3.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* http://www.godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "matrix3.h"
  31. #include "math_funcs.h"
  32. #include "os/copymem.h"
  33. #include "print_string.h"
  34. #define cofac(row1, col1, row2, col2) \
  35. (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])
  36. void Matrix3::from_z(const Vector3 &p_z) {
  37. if (Math::abs(p_z.z) > Math_SQRT12) {
  38. // choose p in y-z plane
  39. real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2];
  40. real_t k = 1.0 / Math::sqrt(a);
  41. elements[0] = Vector3(0, -p_z[2] * k, p_z[1] * k);
  42. elements[1] = Vector3(a * k, -p_z[0] * elements[0][2], p_z[0] * elements[0][1]);
  43. } else {
  44. // choose p in x-y plane
  45. real_t a = p_z.x * p_z.x + p_z.y * p_z.y;
  46. real_t k = 1.0 / Math::sqrt(a);
  47. elements[0] = Vector3(-p_z.y * k, p_z.x * k, 0);
  48. elements[1] = Vector3(-p_z.z * elements[0].y, p_z.z * elements[0].x, a * k);
  49. }
  50. elements[2] = p_z;
  51. }
  52. void Matrix3::invert() {
  53. real_t co[3] = {
  54. cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
  55. };
  56. real_t det = elements[0][0] * co[0] +
  57. elements[0][1] * co[1] +
  58. elements[0][2] * co[2];
  59. ERR_FAIL_COND(det == 0);
  60. real_t s = 1.0 / det;
  61. set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
  62. co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
  63. co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
  64. }
  65. void Matrix3::orthonormalize() {
  66. // Gram-Schmidt Process
  67. Vector3 x = get_axis(0);
  68. Vector3 y = get_axis(1);
  69. Vector3 z = get_axis(2);
  70. x.normalize();
  71. y = (y - x * (x.dot(y)));
  72. y.normalize();
  73. z = (z - x * (x.dot(z)) - y * (y.dot(z)));
  74. z.normalize();
  75. set_axis(0, x);
  76. set_axis(1, y);
  77. set_axis(2, z);
  78. }
  79. Matrix3 Matrix3::orthonormalized() const {
  80. Matrix3 c = *this;
  81. c.orthonormalize();
  82. return c;
  83. }
  84. Matrix3 Matrix3::inverse() const {
  85. Matrix3 inv = *this;
  86. inv.invert();
  87. return inv;
  88. }
  89. void Matrix3::transpose() {
  90. SWAP(elements[0][1], elements[1][0]);
  91. SWAP(elements[0][2], elements[2][0]);
  92. SWAP(elements[1][2], elements[2][1]);
  93. }
  94. Matrix3 Matrix3::transposed() const {
  95. Matrix3 tr = *this;
  96. tr.transpose();
  97. return tr;
  98. }
  99. void Matrix3::scale(const Vector3 &p_scale) {
  100. elements[0][0] *= p_scale.x;
  101. elements[1][0] *= p_scale.x;
  102. elements[2][0] *= p_scale.x;
  103. elements[0][1] *= p_scale.y;
  104. elements[1][1] *= p_scale.y;
  105. elements[2][1] *= p_scale.y;
  106. elements[0][2] *= p_scale.z;
  107. elements[1][2] *= p_scale.z;
  108. elements[2][2] *= p_scale.z;
  109. }
  110. Matrix3 Matrix3::scaled(const Vector3 &p_scale) const {
  111. Matrix3 m = *this;
  112. m.scale(p_scale);
  113. return m;
  114. }
  115. Vector3 Matrix3::get_scale() const {
  116. return Vector3(
  117. Vector3(elements[0][0], elements[1][0], elements[2][0]).length(),
  118. Vector3(elements[0][1], elements[1][1], elements[2][1]).length(),
  119. Vector3(elements[0][2], elements[1][2], elements[2][2]).length());
  120. }
  121. void Matrix3::rotate(const Vector3 &p_axis, real_t p_phi) {
  122. *this = *this * Matrix3(p_axis, p_phi);
  123. }
  124. Matrix3 Matrix3::rotated(const Vector3 &p_axis, real_t p_phi) const {
  125. return *this * Matrix3(p_axis, p_phi);
  126. }
  127. Vector3 Matrix3::get_euler() const {
  128. // rot = cy*cz -cy*sz sy
  129. // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
  130. // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
  131. Matrix3 m = *this;
  132. m.orthonormalize();
  133. Vector3 euler;
  134. euler.y = Math::asin(m[0][2]);
  135. if (euler.y < Math_PI * 0.5) {
  136. if (euler.y > -Math_PI * 0.5) {
  137. //if rotation is Y-only, return a proper -pi,pi range like in x or z for the same case.
  138. if (m[1][0] == 0.0 && m[0][1] == 0.0 && m[0][0] < 0.0) {
  139. if (euler.y > 0.0)
  140. euler.y = Math_PI - euler.y;
  141. else
  142. euler.y = -(Math_PI + euler.y);
  143. } else {
  144. euler.x = Math::atan2(-m[1][2], m[2][2]);
  145. euler.z = Math::atan2(-m[0][1], m[0][0]);
  146. }
  147. } else {
  148. real_t r = Math::atan2(m[1][0], m[1][1]);
  149. euler.z = 0.0;
  150. euler.x = euler.z - r;
  151. }
  152. } else {
  153. real_t r = Math::atan2(m[0][1], m[1][1]);
  154. euler.z = 0;
  155. euler.x = r - euler.z;
  156. }
  157. return euler;
  158. }
  159. void Matrix3::set_euler(const Vector3 &p_euler) {
  160. real_t c, s;
  161. c = Math::cos(p_euler.x);
  162. s = Math::sin(p_euler.x);
  163. Matrix3 xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
  164. c = Math::cos(p_euler.y);
  165. s = Math::sin(p_euler.y);
  166. Matrix3 ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
  167. c = Math::cos(p_euler.z);
  168. s = Math::sin(p_euler.z);
  169. Matrix3 zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
  170. //optimizer will optimize away all this anyway
  171. *this = xmat * (ymat * zmat);
  172. }
  173. bool Matrix3::operator==(const Matrix3 &p_matrix) const {
  174. for (int i = 0; i < 3; i++) {
  175. for (int j = 0; j < 3; j++) {
  176. if (elements[i][j] != p_matrix.elements[i][j])
  177. return false;
  178. }
  179. }
  180. return true;
  181. }
  182. bool Matrix3::operator!=(const Matrix3 &p_matrix) const {
  183. return (!(*this == p_matrix));
  184. }
  185. Matrix3::operator String() const {
  186. String mtx;
  187. for (int i = 0; i < 3; i++) {
  188. for (int j = 0; j < 3; j++) {
  189. if (i != 0 || j != 0)
  190. mtx += ", ";
  191. mtx += rtos(elements[i][j]);
  192. }
  193. }
  194. return mtx;
  195. }
  196. Matrix3::operator Quat() const {
  197. Matrix3 m = *this;
  198. m.orthonormalize();
  199. real_t trace = m.elements[0][0] + m.elements[1][1] + m.elements[2][2];
  200. real_t temp[4];
  201. if (trace > 0.0) {
  202. real_t s = Math::sqrt(trace + 1.0);
  203. temp[3] = (s * 0.5);
  204. s = 0.5 / s;
  205. temp[0] = ((m.elements[2][1] - m.elements[1][2]) * s);
  206. temp[1] = ((m.elements[0][2] - m.elements[2][0]) * s);
  207. temp[2] = ((m.elements[1][0] - m.elements[0][1]) * s);
  208. } else {
  209. int i = m.elements[0][0] < m.elements[1][1] ?
  210. (m.elements[1][1] < m.elements[2][2] ? 2 : 1) :
  211. (m.elements[0][0] < m.elements[2][2] ? 2 : 0);
  212. int j = (i + 1) % 3;
  213. int k = (i + 2) % 3;
  214. real_t s = Math::sqrt(m.elements[i][i] - m.elements[j][j] - m.elements[k][k] + 1.0);
  215. temp[i] = s * 0.5;
  216. s = 0.5 / s;
  217. temp[3] = (m.elements[k][j] - m.elements[j][k]) * s;
  218. temp[j] = (m.elements[j][i] + m.elements[i][j]) * s;
  219. temp[k] = (m.elements[k][i] + m.elements[i][k]) * s;
  220. }
  221. return Quat(temp[0], temp[1], temp[2], temp[3]);
  222. }
  223. static const Matrix3 _ortho_bases[24] = {
  224. Matrix3(1, 0, 0, 0, 1, 0, 0, 0, 1),
  225. Matrix3(0, -1, 0, 1, 0, 0, 0, 0, 1),
  226. Matrix3(-1, 0, 0, 0, -1, 0, 0, 0, 1),
  227. Matrix3(0, 1, 0, -1, 0, 0, 0, 0, 1),
  228. Matrix3(1, 0, 0, 0, 0, -1, 0, 1, 0),
  229. Matrix3(0, 0, 1, 1, 0, 0, 0, 1, 0),
  230. Matrix3(-1, 0, 0, 0, 0, 1, 0, 1, 0),
  231. Matrix3(0, 0, -1, -1, 0, 0, 0, 1, 0),
  232. Matrix3(1, 0, 0, 0, -1, 0, 0, 0, -1),
  233. Matrix3(0, 1, 0, 1, 0, 0, 0, 0, -1),
  234. Matrix3(-1, 0, 0, 0, 1, 0, 0, 0, -1),
  235. Matrix3(0, -1, 0, -1, 0, 0, 0, 0, -1),
  236. Matrix3(1, 0, 0, 0, 0, 1, 0, -1, 0),
  237. Matrix3(0, 0, -1, 1, 0, 0, 0, -1, 0),
  238. Matrix3(-1, 0, 0, 0, 0, -1, 0, -1, 0),
  239. Matrix3(0, 0, 1, -1, 0, 0, 0, -1, 0),
  240. Matrix3(0, 0, 1, 0, 1, 0, -1, 0, 0),
  241. Matrix3(0, -1, 0, 0, 0, 1, -1, 0, 0),
  242. Matrix3(0, 0, -1, 0, -1, 0, -1, 0, 0),
  243. Matrix3(0, 1, 0, 0, 0, -1, -1, 0, 0),
  244. Matrix3(0, 0, 1, 0, -1, 0, 1, 0, 0),
  245. Matrix3(0, 1, 0, 0, 0, 1, 1, 0, 0),
  246. Matrix3(0, 0, -1, 0, 1, 0, 1, 0, 0),
  247. Matrix3(0, -1, 0, 0, 0, -1, 1, 0, 0)
  248. };
  249. int Matrix3::get_orthogonal_index() const {
  250. //could be sped up if i come up with a way
  251. Matrix3 orth = *this;
  252. for (int i = 0; i < 3; i++) {
  253. for (int j = 0; j < 3; j++) {
  254. float v = orth[i][j];
  255. if (v > 0.5)
  256. v = 1.0;
  257. else if (v < -0.5)
  258. v = -1.0;
  259. else
  260. v = 0;
  261. orth[i][j] = v;
  262. }
  263. }
  264. for (int i = 0; i < 24; i++) {
  265. if (_ortho_bases[i] == orth)
  266. return i;
  267. }
  268. return 0;
  269. }
  270. void Matrix3::set_orthogonal_index(int p_index) {
  271. //there only exist 24 orthogonal bases in r3
  272. ERR_FAIL_INDEX(p_index, 24);
  273. *this = _ortho_bases[p_index];
  274. }
  275. void Matrix3::get_axis_and_angle(Vector3 &r_axis, real_t &r_angle) const {
  276. double angle, x, y, z; // variables for result
  277. double epsilon = 0.01; // margin to allow for rounding errors
  278. double epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees
  279. if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) {
  280. // singularity found
  281. // first check for identity matrix which must have +1 for all terms
  282. // in leading diagonaland zero in other terms
  283. if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) {
  284. // this singularity is identity matrix so angle = 0
  285. r_axis = Vector3(0, 1, 0);
  286. r_angle = 0;
  287. return;
  288. }
  289. // otherwise this singularity is angle = 180
  290. angle = Math_PI;
  291. double xx = (elements[0][0] + 1) / 2;
  292. double yy = (elements[1][1] + 1) / 2;
  293. double zz = (elements[2][2] + 1) / 2;
  294. double xy = (elements[1][0] + elements[0][1]) / 4;
  295. double xz = (elements[2][0] + elements[0][2]) / 4;
  296. double yz = (elements[2][1] + elements[1][2]) / 4;
  297. if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term
  298. if (xx < epsilon) {
  299. x = 0;
  300. y = 0.7071;
  301. z = 0.7071;
  302. } else {
  303. x = Math::sqrt(xx);
  304. y = xy / x;
  305. z = xz / x;
  306. }
  307. } else if (yy > zz) { // elements[1][1] is the largest diagonal term
  308. if (yy < epsilon) {
  309. x = 0.7071;
  310. y = 0;
  311. z = 0.7071;
  312. } else {
  313. y = Math::sqrt(yy);
  314. x = xy / y;
  315. z = yz / y;
  316. }
  317. } else { // elements[2][2] is the largest diagonal term so base result on this
  318. if (zz < epsilon) {
  319. x = 0.7071;
  320. y = 0.7071;
  321. z = 0;
  322. } else {
  323. z = Math::sqrt(zz);
  324. x = xz / z;
  325. y = yz / z;
  326. }
  327. }
  328. r_axis = Vector3(x, y, z);
  329. r_angle = angle;
  330. return;
  331. }
  332. // as we have reached here there are no singularities so we can handle normally
  333. double s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // used to normalise
  334. if (Math::abs(s) < 0.001) s = 1;
  335. // prevent divide by zero, should not happen if matrix is orthogonal and should be
  336. // caught by singularity test above, but I've left it in just in case
  337. angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2);
  338. x = (elements[1][2] - elements[2][1]) / s;
  339. y = (elements[2][0] - elements[0][2]) / s;
  340. z = (elements[0][1] - elements[1][0]) / s;
  341. r_axis = Vector3(x, y, z);
  342. r_angle = angle;
  343. }
  344. Matrix3::Matrix3(const Vector3 &p_euler) {
  345. set_euler(p_euler);
  346. }
  347. Matrix3::Matrix3(const Quat &p_quat) {
  348. real_t d = p_quat.length_squared();
  349. real_t s = 2.0 / d;
  350. real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s;
  351. real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs;
  352. real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs;
  353. real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs;
  354. set(1.0 - (yy + zz), xy - wz, xz + wy,
  355. xy + wz, 1.0 - (xx + zz), yz - wx,
  356. xz - wy, yz + wx, 1.0 - (xx + yy));
  357. }
  358. Matrix3::Matrix3(const Vector3 &p_axis, real_t p_phi) {
  359. Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z);
  360. real_t cosine = Math::cos(p_phi);
  361. real_t sine = Math::sin(p_phi);
  362. elements[0][0] = axis_sq.x + cosine * (1.0 - axis_sq.x);
  363. elements[0][1] = p_axis.x * p_axis.y * (1.0 - cosine) + p_axis.z * sine;
  364. elements[0][2] = p_axis.z * p_axis.x * (1.0 - cosine) - p_axis.y * sine;
  365. elements[1][0] = p_axis.x * p_axis.y * (1.0 - cosine) - p_axis.z * sine;
  366. elements[1][1] = axis_sq.y + cosine * (1.0 - axis_sq.y);
  367. elements[1][2] = p_axis.y * p_axis.z * (1.0 - cosine) + p_axis.x * sine;
  368. elements[2][0] = p_axis.z * p_axis.x * (1.0 - cosine) + p_axis.y * sine;
  369. elements[2][1] = p_axis.y * p_axis.z * (1.0 - cosine) - p_axis.x * sine;
  370. elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z);
  371. }