geometry.cpp 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189
  1. /*************************************************************************/
  2. /* geometry.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "geometry.h"
  31. #include "core/print_string.h"
  32. #include "thirdparty/misc/clipper.hpp"
  33. #include "thirdparty/misc/triangulator.h"
  34. #define SCALE_FACTOR 100000.0 // Based on CMP_EPSILON.
  35. // This implementation is very inefficient, commenting unless bugs happen. See the other one.
  36. /*
  37. bool Geometry::is_point_in_polygon(const Vector2 &p_point, const Vector<Vector2> &p_polygon) {
  38. Vector<int> indices = Geometry::triangulate_polygon(p_polygon);
  39. for (int j = 0; j + 3 <= indices.size(); j += 3) {
  40. int i1 = indices[j], i2 = indices[j + 1], i3 = indices[j + 2];
  41. if (Geometry::is_point_in_triangle(p_point, p_polygon[i1], p_polygon[i2], p_polygon[i3]))
  42. return true;
  43. }
  44. return false;
  45. }
  46. */
  47. void Geometry::MeshData::optimize_vertices() {
  48. Map<int, int> vtx_remap;
  49. for (int i = 0; i < faces.size(); i++) {
  50. for (int j = 0; j < faces[i].indices.size(); j++) {
  51. int idx = faces[i].indices[j];
  52. if (!vtx_remap.has(idx)) {
  53. int ni = vtx_remap.size();
  54. vtx_remap[idx] = ni;
  55. }
  56. faces.write[i].indices.write[j] = vtx_remap[idx];
  57. }
  58. }
  59. for (int i = 0; i < edges.size(); i++) {
  60. int a = edges[i].a;
  61. int b = edges[i].b;
  62. if (!vtx_remap.has(a)) {
  63. int ni = vtx_remap.size();
  64. vtx_remap[a] = ni;
  65. }
  66. if (!vtx_remap.has(b)) {
  67. int ni = vtx_remap.size();
  68. vtx_remap[b] = ni;
  69. }
  70. edges.write[i].a = vtx_remap[a];
  71. edges.write[i].b = vtx_remap[b];
  72. }
  73. Vector<Vector3> new_vertices;
  74. new_vertices.resize(vtx_remap.size());
  75. for (int i = 0; i < vertices.size(); i++) {
  76. if (vtx_remap.has(i))
  77. new_vertices.write[vtx_remap[i]] = vertices[i];
  78. }
  79. vertices = new_vertices;
  80. }
  81. Vector<Vector<Vector2> > (*Geometry::_decompose_func)(const Vector<Vector2> &p_polygon) = NULL;
  82. struct _FaceClassify {
  83. struct _Link {
  84. int face;
  85. int edge;
  86. void clear() {
  87. face = -1;
  88. edge = -1;
  89. }
  90. _Link() {
  91. face = -1;
  92. edge = -1;
  93. }
  94. };
  95. bool valid;
  96. int group;
  97. _Link links[3];
  98. Face3 face;
  99. _FaceClassify() {
  100. group = -1;
  101. valid = false;
  102. };
  103. };
  104. static bool _connect_faces(_FaceClassify *p_faces, int len, int p_group) {
  105. // Connect faces, error will occur if an edge is shared between more than 2 faces.
  106. // Clear connections.
  107. bool error = false;
  108. for (int i = 0; i < len; i++) {
  109. for (int j = 0; j < 3; j++) {
  110. p_faces[i].links[j].clear();
  111. }
  112. }
  113. for (int i = 0; i < len; i++) {
  114. if (p_faces[i].group != p_group)
  115. continue;
  116. for (int j = i + 1; j < len; j++) {
  117. if (p_faces[j].group != p_group)
  118. continue;
  119. for (int k = 0; k < 3; k++) {
  120. Vector3 vi1 = p_faces[i].face.vertex[k];
  121. Vector3 vi2 = p_faces[i].face.vertex[(k + 1) % 3];
  122. for (int l = 0; l < 3; l++) {
  123. Vector3 vj2 = p_faces[j].face.vertex[l];
  124. Vector3 vj1 = p_faces[j].face.vertex[(l + 1) % 3];
  125. if (vi1.distance_to(vj1) < 0.00001 &&
  126. vi2.distance_to(vj2) < 0.00001) {
  127. if (p_faces[i].links[k].face != -1) {
  128. ERR_PRINT("already linked\n");
  129. error = true;
  130. break;
  131. }
  132. if (p_faces[j].links[l].face != -1) {
  133. ERR_PRINT("already linked\n");
  134. error = true;
  135. break;
  136. }
  137. p_faces[i].links[k].face = j;
  138. p_faces[i].links[k].edge = l;
  139. p_faces[j].links[l].face = i;
  140. p_faces[j].links[l].edge = k;
  141. }
  142. }
  143. if (error)
  144. break;
  145. }
  146. if (error)
  147. break;
  148. }
  149. if (error)
  150. break;
  151. }
  152. for (int i = 0; i < len; i++) {
  153. p_faces[i].valid = true;
  154. for (int j = 0; j < 3; j++) {
  155. if (p_faces[i].links[j].face == -1)
  156. p_faces[i].valid = false;
  157. }
  158. }
  159. return error;
  160. }
  161. static bool _group_face(_FaceClassify *p_faces, int len, int p_index, int p_group) {
  162. if (p_faces[p_index].group >= 0)
  163. return false;
  164. p_faces[p_index].group = p_group;
  165. for (int i = 0; i < 3; i++) {
  166. ERR_FAIL_INDEX_V(p_faces[p_index].links[i].face, len, true);
  167. _group_face(p_faces, len, p_faces[p_index].links[i].face, p_group);
  168. }
  169. return true;
  170. }
  171. PoolVector<PoolVector<Face3> > Geometry::separate_objects(PoolVector<Face3> p_array) {
  172. PoolVector<PoolVector<Face3> > objects;
  173. int len = p_array.size();
  174. PoolVector<Face3>::Read r = p_array.read();
  175. const Face3 *arrayptr = r.ptr();
  176. PoolVector<_FaceClassify> fc;
  177. fc.resize(len);
  178. PoolVector<_FaceClassify>::Write fcw = fc.write();
  179. _FaceClassify *_fcptr = fcw.ptr();
  180. for (int i = 0; i < len; i++) {
  181. _fcptr[i].face = arrayptr[i];
  182. }
  183. bool error = _connect_faces(_fcptr, len, -1);
  184. ERR_FAIL_COND_V_MSG(error, PoolVector<PoolVector<Face3> >(), "Invalid geometry.");
  185. // Group connected faces in separate objects.
  186. int group = 0;
  187. for (int i = 0; i < len; i++) {
  188. if (!_fcptr[i].valid)
  189. continue;
  190. if (_group_face(_fcptr, len, i, group)) {
  191. group++;
  192. }
  193. }
  194. // Group connected faces in separate objects.
  195. for (int i = 0; i < len; i++) {
  196. _fcptr[i].face = arrayptr[i];
  197. }
  198. if (group >= 0) {
  199. objects.resize(group);
  200. PoolVector<PoolVector<Face3> >::Write obw = objects.write();
  201. PoolVector<Face3> *group_faces = obw.ptr();
  202. for (int i = 0; i < len; i++) {
  203. if (!_fcptr[i].valid)
  204. continue;
  205. if (_fcptr[i].group >= 0 && _fcptr[i].group < group) {
  206. group_faces[_fcptr[i].group].push_back(_fcptr[i].face);
  207. }
  208. }
  209. }
  210. return objects;
  211. }
  212. /*** GEOMETRY WRAPPER ***/
  213. enum _CellFlags {
  214. _CELL_SOLID = 1,
  215. _CELL_EXTERIOR = 2,
  216. _CELL_STEP_MASK = 0x1C,
  217. _CELL_STEP_NONE = 0 << 2,
  218. _CELL_STEP_Y_POS = 1 << 2,
  219. _CELL_STEP_Y_NEG = 2 << 2,
  220. _CELL_STEP_X_POS = 3 << 2,
  221. _CELL_STEP_X_NEG = 4 << 2,
  222. _CELL_STEP_Z_POS = 5 << 2,
  223. _CELL_STEP_Z_NEG = 6 << 2,
  224. _CELL_STEP_DONE = 7 << 2,
  225. _CELL_PREV_MASK = 0xE0,
  226. _CELL_PREV_NONE = 0 << 5,
  227. _CELL_PREV_Y_POS = 1 << 5,
  228. _CELL_PREV_Y_NEG = 2 << 5,
  229. _CELL_PREV_X_POS = 3 << 5,
  230. _CELL_PREV_X_NEG = 4 << 5,
  231. _CELL_PREV_Z_POS = 5 << 5,
  232. _CELL_PREV_Z_NEG = 6 << 5,
  233. _CELL_PREV_FIRST = 7 << 5,
  234. };
  235. static inline void _plot_face(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, const Vector3 &voxelsize, const Face3 &p_face) {
  236. AABB aabb(Vector3(x, y, z), Vector3(len_x, len_y, len_z));
  237. aabb.position = aabb.position * voxelsize;
  238. aabb.size = aabb.size * voxelsize;
  239. if (!p_face.intersects_aabb(aabb))
  240. return;
  241. if (len_x == 1 && len_y == 1 && len_z == 1) {
  242. p_cell_status[x][y][z] = _CELL_SOLID;
  243. return;
  244. }
  245. int div_x = len_x > 1 ? 2 : 1;
  246. int div_y = len_y > 1 ? 2 : 1;
  247. int div_z = len_z > 1 ? 2 : 1;
  248. #define _SPLIT(m_i, m_div, m_v, m_len_v, m_new_v, m_new_len_v) \
  249. if (m_div == 1) { \
  250. m_new_v = m_v; \
  251. m_new_len_v = 1; \
  252. } else if (m_i == 0) { \
  253. m_new_v = m_v; \
  254. m_new_len_v = m_len_v / 2; \
  255. } else { \
  256. m_new_v = m_v + m_len_v / 2; \
  257. m_new_len_v = m_len_v - m_len_v / 2; \
  258. }
  259. int new_x;
  260. int new_len_x;
  261. int new_y;
  262. int new_len_y;
  263. int new_z;
  264. int new_len_z;
  265. for (int i = 0; i < div_x; i++) {
  266. _SPLIT(i, div_x, x, len_x, new_x, new_len_x);
  267. for (int j = 0; j < div_y; j++) {
  268. _SPLIT(j, div_y, y, len_y, new_y, new_len_y);
  269. for (int k = 0; k < div_z; k++) {
  270. _SPLIT(k, div_z, z, len_z, new_z, new_len_z);
  271. _plot_face(p_cell_status, new_x, new_y, new_z, new_len_x, new_len_y, new_len_z, voxelsize, p_face);
  272. }
  273. }
  274. }
  275. }
  276. static inline void _mark_outside(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z) {
  277. if (p_cell_status[x][y][z] & 3)
  278. return; // Nothing to do, already used and/or visited.
  279. p_cell_status[x][y][z] = _CELL_PREV_FIRST;
  280. while (true) {
  281. uint8_t &c = p_cell_status[x][y][z];
  282. if ((c & _CELL_STEP_MASK) == _CELL_STEP_NONE) {
  283. // Haven't been in here, mark as outside.
  284. p_cell_status[x][y][z] |= _CELL_EXTERIOR;
  285. }
  286. if ((c & _CELL_STEP_MASK) != _CELL_STEP_DONE) {
  287. // If not done, increase step.
  288. c += 1 << 2;
  289. }
  290. if ((c & _CELL_STEP_MASK) == _CELL_STEP_DONE) {
  291. // Go back.
  292. switch (c & _CELL_PREV_MASK) {
  293. case _CELL_PREV_FIRST: {
  294. return;
  295. } break;
  296. case _CELL_PREV_Y_POS: {
  297. y++;
  298. ERR_FAIL_COND(y >= len_y);
  299. } break;
  300. case _CELL_PREV_Y_NEG: {
  301. y--;
  302. ERR_FAIL_COND(y < 0);
  303. } break;
  304. case _CELL_PREV_X_POS: {
  305. x++;
  306. ERR_FAIL_COND(x >= len_x);
  307. } break;
  308. case _CELL_PREV_X_NEG: {
  309. x--;
  310. ERR_FAIL_COND(x < 0);
  311. } break;
  312. case _CELL_PREV_Z_POS: {
  313. z++;
  314. ERR_FAIL_COND(z >= len_z);
  315. } break;
  316. case _CELL_PREV_Z_NEG: {
  317. z--;
  318. ERR_FAIL_COND(z < 0);
  319. } break;
  320. default: {
  321. ERR_FAIL();
  322. }
  323. }
  324. continue;
  325. }
  326. int next_x = x, next_y = y, next_z = z;
  327. uint8_t prev = 0;
  328. switch (c & _CELL_STEP_MASK) {
  329. case _CELL_STEP_Y_POS: {
  330. next_y++;
  331. prev = _CELL_PREV_Y_NEG;
  332. } break;
  333. case _CELL_STEP_Y_NEG: {
  334. next_y--;
  335. prev = _CELL_PREV_Y_POS;
  336. } break;
  337. case _CELL_STEP_X_POS: {
  338. next_x++;
  339. prev = _CELL_PREV_X_NEG;
  340. } break;
  341. case _CELL_STEP_X_NEG: {
  342. next_x--;
  343. prev = _CELL_PREV_X_POS;
  344. } break;
  345. case _CELL_STEP_Z_POS: {
  346. next_z++;
  347. prev = _CELL_PREV_Z_NEG;
  348. } break;
  349. case _CELL_STEP_Z_NEG: {
  350. next_z--;
  351. prev = _CELL_PREV_Z_POS;
  352. } break;
  353. default: ERR_FAIL();
  354. }
  355. if (next_x < 0 || next_x >= len_x)
  356. continue;
  357. if (next_y < 0 || next_y >= len_y)
  358. continue;
  359. if (next_z < 0 || next_z >= len_z)
  360. continue;
  361. if (p_cell_status[next_x][next_y][next_z] & 3)
  362. continue;
  363. x = next_x;
  364. y = next_y;
  365. z = next_z;
  366. p_cell_status[x][y][z] |= prev;
  367. }
  368. }
  369. static inline void _build_faces(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, PoolVector<Face3> &p_faces) {
  370. ERR_FAIL_INDEX(x, len_x);
  371. ERR_FAIL_INDEX(y, len_y);
  372. ERR_FAIL_INDEX(z, len_z);
  373. if (p_cell_status[x][y][z] & _CELL_EXTERIOR)
  374. return;
  375. #define vert(m_idx) Vector3(((m_idx)&4) >> 2, ((m_idx)&2) >> 1, (m_idx)&1)
  376. static const uint8_t indices[6][4] = {
  377. { 7, 6, 4, 5 },
  378. { 7, 3, 2, 6 },
  379. { 7, 5, 1, 3 },
  380. { 0, 2, 3, 1 },
  381. { 0, 1, 5, 4 },
  382. { 0, 4, 6, 2 },
  383. };
  384. for (int i = 0; i < 6; i++) {
  385. Vector3 face_points[4];
  386. int disp_x = x + ((i % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
  387. int disp_y = y + (((i - 1) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
  388. int disp_z = z + (((i - 2) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
  389. bool plot = false;
  390. if (disp_x < 0 || disp_x >= len_x)
  391. plot = true;
  392. if (disp_y < 0 || disp_y >= len_y)
  393. plot = true;
  394. if (disp_z < 0 || disp_z >= len_z)
  395. plot = true;
  396. if (!plot && (p_cell_status[disp_x][disp_y][disp_z] & _CELL_EXTERIOR))
  397. plot = true;
  398. if (!plot)
  399. continue;
  400. for (int j = 0; j < 4; j++)
  401. face_points[j] = vert(indices[i][j]) + Vector3(x, y, z);
  402. p_faces.push_back(
  403. Face3(
  404. face_points[0],
  405. face_points[1],
  406. face_points[2]));
  407. p_faces.push_back(
  408. Face3(
  409. face_points[2],
  410. face_points[3],
  411. face_points[0]));
  412. }
  413. }
  414. PoolVector<Face3> Geometry::wrap_geometry(PoolVector<Face3> p_array, real_t *p_error) {
  415. #define _MIN_SIZE 1.0
  416. #define _MAX_LENGTH 20
  417. int face_count = p_array.size();
  418. PoolVector<Face3>::Read facesr = p_array.read();
  419. const Face3 *faces = facesr.ptr();
  420. AABB global_aabb;
  421. for (int i = 0; i < face_count; i++) {
  422. if (i == 0) {
  423. global_aabb = faces[i].get_aabb();
  424. } else {
  425. global_aabb.merge_with(faces[i].get_aabb());
  426. }
  427. }
  428. global_aabb.grow_by(0.01); // Avoid numerical error.
  429. // Determine amount of cells in grid axis.
  430. int div_x, div_y, div_z;
  431. if (global_aabb.size.x / _MIN_SIZE < _MAX_LENGTH)
  432. div_x = (int)(global_aabb.size.x / _MIN_SIZE) + 1;
  433. else
  434. div_x = _MAX_LENGTH;
  435. if (global_aabb.size.y / _MIN_SIZE < _MAX_LENGTH)
  436. div_y = (int)(global_aabb.size.y / _MIN_SIZE) + 1;
  437. else
  438. div_y = _MAX_LENGTH;
  439. if (global_aabb.size.z / _MIN_SIZE < _MAX_LENGTH)
  440. div_z = (int)(global_aabb.size.z / _MIN_SIZE) + 1;
  441. else
  442. div_z = _MAX_LENGTH;
  443. Vector3 voxelsize = global_aabb.size;
  444. voxelsize.x /= div_x;
  445. voxelsize.y /= div_y;
  446. voxelsize.z /= div_z;
  447. // Create and initialize cells to zero.
  448. uint8_t ***cell_status = memnew_arr(uint8_t **, div_x);
  449. for (int i = 0; i < div_x; i++) {
  450. cell_status[i] = memnew_arr(uint8_t *, div_y);
  451. for (int j = 0; j < div_y; j++) {
  452. cell_status[i][j] = memnew_arr(uint8_t, div_z);
  453. for (int k = 0; k < div_z; k++) {
  454. cell_status[i][j][k] = 0;
  455. }
  456. }
  457. }
  458. // Plot faces into cells.
  459. for (int i = 0; i < face_count; i++) {
  460. Face3 f = faces[i];
  461. for (int j = 0; j < 3; j++) {
  462. f.vertex[j] -= global_aabb.position;
  463. }
  464. _plot_face(cell_status, 0, 0, 0, div_x, div_y, div_z, voxelsize, f);
  465. }
  466. // Determine which cells connect to the outside by traversing the outside and recursively flood-fill marking.
  467. for (int i = 0; i < div_x; i++) {
  468. for (int j = 0; j < div_y; j++) {
  469. _mark_outside(cell_status, i, j, 0, div_x, div_y, div_z);
  470. _mark_outside(cell_status, i, j, div_z - 1, div_x, div_y, div_z);
  471. }
  472. }
  473. for (int i = 0; i < div_z; i++) {
  474. for (int j = 0; j < div_y; j++) {
  475. _mark_outside(cell_status, 0, j, i, div_x, div_y, div_z);
  476. _mark_outside(cell_status, div_x - 1, j, i, div_x, div_y, div_z);
  477. }
  478. }
  479. for (int i = 0; i < div_x; i++) {
  480. for (int j = 0; j < div_z; j++) {
  481. _mark_outside(cell_status, i, 0, j, div_x, div_y, div_z);
  482. _mark_outside(cell_status, i, div_y - 1, j, div_x, div_y, div_z);
  483. }
  484. }
  485. // Build faces for the inside-outside cell divisors.
  486. PoolVector<Face3> wrapped_faces;
  487. for (int i = 0; i < div_x; i++) {
  488. for (int j = 0; j < div_y; j++) {
  489. for (int k = 0; k < div_z; k++) {
  490. _build_faces(cell_status, i, j, k, div_x, div_y, div_z, wrapped_faces);
  491. }
  492. }
  493. }
  494. // Transform face vertices to global coords.
  495. int wrapped_faces_count = wrapped_faces.size();
  496. PoolVector<Face3>::Write wrapped_facesw = wrapped_faces.write();
  497. Face3 *wrapped_faces_ptr = wrapped_facesw.ptr();
  498. for (int i = 0; i < wrapped_faces_count; i++) {
  499. for (int j = 0; j < 3; j++) {
  500. Vector3 &v = wrapped_faces_ptr[i].vertex[j];
  501. v = v * voxelsize;
  502. v += global_aabb.position;
  503. }
  504. }
  505. // clean up grid
  506. for (int i = 0; i < div_x; i++) {
  507. for (int j = 0; j < div_y; j++) {
  508. memdelete_arr(cell_status[i][j]);
  509. }
  510. memdelete_arr(cell_status[i]);
  511. }
  512. memdelete_arr(cell_status);
  513. if (p_error)
  514. *p_error = voxelsize.length();
  515. return wrapped_faces;
  516. }
  517. Vector<Vector<Vector2> > Geometry::decompose_polygon_in_convex(Vector<Point2> polygon) {
  518. Vector<Vector<Vector2> > decomp;
  519. List<TriangulatorPoly> in_poly, out_poly;
  520. TriangulatorPoly inp;
  521. inp.Init(polygon.size());
  522. for (int i = 0; i < polygon.size(); i++) {
  523. inp.GetPoint(i) = polygon[i];
  524. }
  525. inp.SetOrientation(TRIANGULATOR_CCW);
  526. in_poly.push_back(inp);
  527. TriangulatorPartition tpart;
  528. if (tpart.ConvexPartition_HM(&in_poly, &out_poly) == 0) { // Failed.
  529. ERR_PRINT("Convex decomposing failed!");
  530. return decomp;
  531. }
  532. decomp.resize(out_poly.size());
  533. int idx = 0;
  534. for (List<TriangulatorPoly>::Element *I = out_poly.front(); I; I = I->next()) {
  535. TriangulatorPoly &tp = I->get();
  536. decomp.write[idx].resize(tp.GetNumPoints());
  537. for (int64_t i = 0; i < tp.GetNumPoints(); i++) {
  538. decomp.write[idx].write[i] = tp.GetPoint(i);
  539. }
  540. idx++;
  541. }
  542. return decomp;
  543. }
  544. Geometry::MeshData Geometry::build_convex_mesh(const PoolVector<Plane> &p_planes) {
  545. MeshData mesh;
  546. #define SUBPLANE_SIZE 1024.0
  547. real_t subplane_size = 1024.0; // Should compute this from the actual plane.
  548. for (int i = 0; i < p_planes.size(); i++) {
  549. Plane p = p_planes[i];
  550. Vector3 ref = Vector3(0.0, 1.0, 0.0);
  551. if (ABS(p.normal.dot(ref)) > 0.95)
  552. ref = Vector3(0.0, 0.0, 1.0); // Change axis.
  553. Vector3 right = p.normal.cross(ref).normalized();
  554. Vector3 up = p.normal.cross(right).normalized();
  555. Vector<Vector3> vertices;
  556. Vector3 center = p.get_any_point();
  557. // make a quad clockwise
  558. vertices.push_back(center - up * subplane_size + right * subplane_size);
  559. vertices.push_back(center - up * subplane_size - right * subplane_size);
  560. vertices.push_back(center + up * subplane_size - right * subplane_size);
  561. vertices.push_back(center + up * subplane_size + right * subplane_size);
  562. for (int j = 0; j < p_planes.size(); j++) {
  563. if (j == i)
  564. continue;
  565. Vector<Vector3> new_vertices;
  566. Plane clip = p_planes[j];
  567. if (clip.normal.dot(p.normal) > 0.95)
  568. continue;
  569. if (vertices.size() < 3)
  570. break;
  571. for (int k = 0; k < vertices.size(); k++) {
  572. int k_n = (k + 1) % vertices.size();
  573. Vector3 edge0_A = vertices[k];
  574. Vector3 edge1_A = vertices[k_n];
  575. real_t dist0 = clip.distance_to(edge0_A);
  576. real_t dist1 = clip.distance_to(edge1_A);
  577. if (dist0 <= 0) { // Behind plane.
  578. new_vertices.push_back(vertices[k]);
  579. }
  580. // Check for different sides and non coplanar.
  581. if ((dist0 * dist1) < 0) {
  582. // Calculate intersection.
  583. Vector3 rel = edge1_A - edge0_A;
  584. real_t den = clip.normal.dot(rel);
  585. if (Math::is_zero_approx(den))
  586. continue; // Point too short.
  587. real_t dist = -(clip.normal.dot(edge0_A) - clip.d) / den;
  588. Vector3 inters = edge0_A + rel * dist;
  589. new_vertices.push_back(inters);
  590. }
  591. }
  592. vertices = new_vertices;
  593. }
  594. if (vertices.size() < 3)
  595. continue;
  596. // Result is a clockwise face.
  597. MeshData::Face face;
  598. // Add face indices.
  599. for (int j = 0; j < vertices.size(); j++) {
  600. int idx = -1;
  601. for (int k = 0; k < mesh.vertices.size(); k++) {
  602. if (mesh.vertices[k].distance_to(vertices[j]) < 0.001) {
  603. idx = k;
  604. break;
  605. }
  606. }
  607. if (idx == -1) {
  608. idx = mesh.vertices.size();
  609. mesh.vertices.push_back(vertices[j]);
  610. }
  611. face.indices.push_back(idx);
  612. }
  613. face.plane = p;
  614. mesh.faces.push_back(face);
  615. // Add edge.
  616. for (int j = 0; j < face.indices.size(); j++) {
  617. int a = face.indices[j];
  618. int b = face.indices[(j + 1) % face.indices.size()];
  619. bool found = false;
  620. for (int k = 0; k < mesh.edges.size(); k++) {
  621. if (mesh.edges[k].a == a && mesh.edges[k].b == b) {
  622. found = true;
  623. break;
  624. }
  625. if (mesh.edges[k].b == a && mesh.edges[k].a == b) {
  626. found = true;
  627. break;
  628. }
  629. }
  630. if (found)
  631. continue;
  632. MeshData::Edge edge;
  633. edge.a = a;
  634. edge.b = b;
  635. mesh.edges.push_back(edge);
  636. }
  637. }
  638. return mesh;
  639. }
  640. PoolVector<Plane> Geometry::build_box_planes(const Vector3 &p_extents) {
  641. PoolVector<Plane> planes;
  642. planes.push_back(Plane(Vector3(1, 0, 0), p_extents.x));
  643. planes.push_back(Plane(Vector3(-1, 0, 0), p_extents.x));
  644. planes.push_back(Plane(Vector3(0, 1, 0), p_extents.y));
  645. planes.push_back(Plane(Vector3(0, -1, 0), p_extents.y));
  646. planes.push_back(Plane(Vector3(0, 0, 1), p_extents.z));
  647. planes.push_back(Plane(Vector3(0, 0, -1), p_extents.z));
  648. return planes;
  649. }
  650. PoolVector<Plane> Geometry::build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis) {
  651. PoolVector<Plane> planes;
  652. for (int i = 0; i < p_sides; i++) {
  653. Vector3 normal;
  654. normal[(p_axis + 1) % 3] = Math::cos(i * (2.0 * Math_PI) / p_sides);
  655. normal[(p_axis + 2) % 3] = Math::sin(i * (2.0 * Math_PI) / p_sides);
  656. planes.push_back(Plane(normal, p_radius));
  657. }
  658. Vector3 axis;
  659. axis[p_axis] = 1.0;
  660. planes.push_back(Plane(axis, p_height * 0.5));
  661. planes.push_back(Plane(-axis, p_height * 0.5));
  662. return planes;
  663. }
  664. PoolVector<Plane> Geometry::build_sphere_planes(real_t p_radius, int p_lats, int p_lons, Vector3::Axis p_axis) {
  665. PoolVector<Plane> planes;
  666. Vector3 axis;
  667. axis[p_axis] = 1.0;
  668. Vector3 axis_neg;
  669. axis_neg[(p_axis + 1) % 3] = 1.0;
  670. axis_neg[(p_axis + 2) % 3] = 1.0;
  671. axis_neg[p_axis] = -1.0;
  672. for (int i = 0; i < p_lons; i++) {
  673. Vector3 normal;
  674. normal[(p_axis + 1) % 3] = Math::cos(i * (2.0 * Math_PI) / p_lons);
  675. normal[(p_axis + 2) % 3] = Math::sin(i * (2.0 * Math_PI) / p_lons);
  676. planes.push_back(Plane(normal, p_radius));
  677. for (int j = 1; j <= p_lats; j++) {
  678. // FIXME: This is stupid.
  679. Vector3 angle = normal.linear_interpolate(axis, j / (real_t)p_lats).normalized();
  680. Vector3 pos = angle * p_radius;
  681. planes.push_back(Plane(pos, angle));
  682. planes.push_back(Plane(pos * axis_neg, angle * axis_neg));
  683. }
  684. }
  685. return planes;
  686. }
  687. PoolVector<Plane> Geometry::build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis) {
  688. PoolVector<Plane> planes;
  689. Vector3 axis;
  690. axis[p_axis] = 1.0;
  691. Vector3 axis_neg;
  692. axis_neg[(p_axis + 1) % 3] = 1.0;
  693. axis_neg[(p_axis + 2) % 3] = 1.0;
  694. axis_neg[p_axis] = -1.0;
  695. for (int i = 0; i < p_sides; i++) {
  696. Vector3 normal;
  697. normal[(p_axis + 1) % 3] = Math::cos(i * (2.0 * Math_PI) / p_sides);
  698. normal[(p_axis + 2) % 3] = Math::sin(i * (2.0 * Math_PI) / p_sides);
  699. planes.push_back(Plane(normal, p_radius));
  700. for (int j = 1; j <= p_lats; j++) {
  701. Vector3 angle = normal.linear_interpolate(axis, j / (real_t)p_lats).normalized();
  702. Vector3 pos = axis * p_height * 0.5 + angle * p_radius;
  703. planes.push_back(Plane(pos, angle));
  704. planes.push_back(Plane(pos * axis_neg, angle * axis_neg));
  705. }
  706. }
  707. return planes;
  708. }
  709. struct _AtlasWorkRect {
  710. Size2i s;
  711. Point2i p;
  712. int idx;
  713. _FORCE_INLINE_ bool operator<(const _AtlasWorkRect &p_r) const { return s.width > p_r.s.width; };
  714. };
  715. struct _AtlasWorkRectResult {
  716. Vector<_AtlasWorkRect> result;
  717. int max_w;
  718. int max_h;
  719. };
  720. void Geometry::make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size) {
  721. // Super simple, almost brute force scanline stacking fitter.
  722. // It's pretty basic for now, but it tries to make sure that the aspect ratio of the
  723. // resulting atlas is somehow square. This is necessary because video cards have limits.
  724. // On texture size (usually 2048 or 4096), so the more square a texture, the more chances.
  725. // It will work in every hardware.
  726. // For example, it will prioritize a 1024x1024 atlas (works everywhere) instead of a
  727. // 256x8192 atlas (won't work anywhere).
  728. ERR_FAIL_COND(p_rects.size() == 0);
  729. Vector<_AtlasWorkRect> wrects;
  730. wrects.resize(p_rects.size());
  731. for (int i = 0; i < p_rects.size(); i++) {
  732. wrects.write[i].s = p_rects[i];
  733. wrects.write[i].idx = i;
  734. }
  735. wrects.sort();
  736. int widest = wrects[0].s.width;
  737. Vector<_AtlasWorkRectResult> results;
  738. for (int i = 0; i <= 12; i++) {
  739. int w = 1 << i;
  740. int max_h = 0;
  741. int max_w = 0;
  742. if (w < widest)
  743. continue;
  744. Vector<int> hmax;
  745. hmax.resize(w);
  746. for (int j = 0; j < w; j++)
  747. hmax.write[j] = 0;
  748. // Place them.
  749. int ofs = 0;
  750. int limit_h = 0;
  751. for (int j = 0; j < wrects.size(); j++) {
  752. if (ofs + wrects[j].s.width > w) {
  753. ofs = 0;
  754. }
  755. int from_y = 0;
  756. for (int k = 0; k < wrects[j].s.width; k++) {
  757. if (hmax[ofs + k] > from_y)
  758. from_y = hmax[ofs + k];
  759. }
  760. wrects.write[j].p.x = ofs;
  761. wrects.write[j].p.y = from_y;
  762. int end_h = from_y + wrects[j].s.height;
  763. int end_w = ofs + wrects[j].s.width;
  764. if (ofs == 0)
  765. limit_h = end_h;
  766. for (int k = 0; k < wrects[j].s.width; k++) {
  767. hmax.write[ofs + k] = end_h;
  768. }
  769. if (end_h > max_h)
  770. max_h = end_h;
  771. if (end_w > max_w)
  772. max_w = end_w;
  773. if (ofs == 0 || end_h > limit_h) // While h limit not reached, keep stacking.
  774. ofs += wrects[j].s.width;
  775. }
  776. _AtlasWorkRectResult result;
  777. result.result = wrects;
  778. result.max_h = max_h;
  779. result.max_w = max_w;
  780. results.push_back(result);
  781. }
  782. // Find the result with the best aspect ratio.
  783. int best = -1;
  784. real_t best_aspect = 1e20;
  785. for (int i = 0; i < results.size(); i++) {
  786. real_t h = next_power_of_2(results[i].max_h);
  787. real_t w = next_power_of_2(results[i].max_w);
  788. real_t aspect = h > w ? h / w : w / h;
  789. if (aspect < best_aspect) {
  790. best = i;
  791. best_aspect = aspect;
  792. }
  793. }
  794. r_result.resize(p_rects.size());
  795. for (int i = 0; i < p_rects.size(); i++) {
  796. r_result.write[results[best].result[i].idx] = results[best].result[i].p;
  797. }
  798. r_size = Size2(results[best].max_w, results[best].max_h);
  799. }
  800. Vector<Vector<Point2> > Geometry::_polypaths_do_operation(PolyBooleanOperation p_op, const Vector<Point2> &p_polypath_a, const Vector<Point2> &p_polypath_b, bool is_a_open) {
  801. using namespace ClipperLib;
  802. ClipType op = ctUnion;
  803. switch (p_op) {
  804. case OPERATION_UNION: op = ctUnion; break;
  805. case OPERATION_DIFFERENCE: op = ctDifference; break;
  806. case OPERATION_INTERSECTION: op = ctIntersection; break;
  807. case OPERATION_XOR: op = ctXor; break;
  808. }
  809. Path path_a, path_b;
  810. // Need to scale points (Clipper's requirement for robust computation).
  811. for (int i = 0; i != p_polypath_a.size(); ++i) {
  812. path_a << IntPoint(p_polypath_a[i].x * SCALE_FACTOR, p_polypath_a[i].y * SCALE_FACTOR);
  813. }
  814. for (int i = 0; i != p_polypath_b.size(); ++i) {
  815. path_b << IntPoint(p_polypath_b[i].x * SCALE_FACTOR, p_polypath_b[i].y * SCALE_FACTOR);
  816. }
  817. Clipper clp;
  818. clp.AddPath(path_a, ptSubject, !is_a_open); // Forward compatible with Clipper 10.0.0.
  819. clp.AddPath(path_b, ptClip, true); // Polylines cannot be set as clip.
  820. Paths paths;
  821. if (is_a_open) {
  822. PolyTree tree; // Needed to populate polylines.
  823. clp.Execute(op, tree);
  824. OpenPathsFromPolyTree(tree, paths);
  825. } else {
  826. clp.Execute(op, paths); // Works on closed polygons only.
  827. }
  828. // Have to scale points down now.
  829. Vector<Vector<Point2> > polypaths;
  830. for (Paths::size_type i = 0; i < paths.size(); ++i) {
  831. Vector<Vector2> polypath;
  832. const Path &scaled_path = paths[i];
  833. for (Paths::size_type j = 0; j < scaled_path.size(); ++j) {
  834. polypath.push_back(Point2(
  835. static_cast<real_t>(scaled_path[j].X) / SCALE_FACTOR,
  836. static_cast<real_t>(scaled_path[j].Y) / SCALE_FACTOR));
  837. }
  838. polypaths.push_back(polypath);
  839. }
  840. return polypaths;
  841. }
  842. Vector<Vector<Point2> > Geometry::_polypath_offset(const Vector<Point2> &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) {
  843. using namespace ClipperLib;
  844. JoinType jt = jtSquare;
  845. switch (p_join_type) {
  846. case JOIN_SQUARE: jt = jtSquare; break;
  847. case JOIN_ROUND: jt = jtRound; break;
  848. case JOIN_MITER: jt = jtMiter; break;
  849. }
  850. EndType et = etClosedPolygon;
  851. switch (p_end_type) {
  852. case END_POLYGON: et = etClosedPolygon; break;
  853. case END_JOINED: et = etClosedLine; break;
  854. case END_BUTT: et = etOpenButt; break;
  855. case END_SQUARE: et = etOpenSquare; break;
  856. case END_ROUND: et = etOpenRound; break;
  857. }
  858. ClipperOffset co(2.0, 0.25 * SCALE_FACTOR); // Defaults from ClipperOffset.
  859. Path path;
  860. // Need to scale points (Clipper's requirement for robust computation).
  861. for (int i = 0; i != p_polypath.size(); ++i) {
  862. path << IntPoint(p_polypath[i].x * SCALE_FACTOR, p_polypath[i].y * SCALE_FACTOR);
  863. }
  864. co.AddPath(path, jt, et);
  865. Paths paths;
  866. co.Execute(paths, p_delta * SCALE_FACTOR); // Inflate/deflate.
  867. // Have to scale points down now.
  868. Vector<Vector<Point2> > polypaths;
  869. for (Paths::size_type i = 0; i < paths.size(); ++i) {
  870. Vector<Vector2> polypath;
  871. const Path &scaled_path = paths[i];
  872. for (Paths::size_type j = 0; j < scaled_path.size(); ++j) {
  873. polypath.push_back(Point2(
  874. static_cast<real_t>(scaled_path[j].X) / SCALE_FACTOR,
  875. static_cast<real_t>(scaled_path[j].Y) / SCALE_FACTOR));
  876. }
  877. polypaths.push_back(polypath);
  878. }
  879. return polypaths;
  880. }