1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211 |
- /*
- * Multi-precision integer library
- *
- * Copyright The Mbed TLS Contributors
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the "License"); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /*
- * The following sources were referenced in the design of this Multi-precision
- * Integer library:
- *
- * [1] Handbook of Applied Cryptography - 1997
- * Menezes, van Oorschot and Vanstone
- *
- * [2] Multi-Precision Math
- * Tom St Denis
- * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
- *
- * [3] GNU Multi-Precision Arithmetic Library
- * https://gmplib.org/manual/index.html
- *
- */
- #include "common.h"
- #if defined(MBEDTLS_BIGNUM_C)
- #include "mbedtls/bignum.h"
- #include "mbedtls/bn_mul.h"
- #include "mbedtls/platform_util.h"
- #include "mbedtls/error.h"
- #include "constant_time_internal.h"
- #include <limits.h>
- #include <string.h>
- #include "mbedtls/platform.h"
- #define MPI_VALIDATE_RET(cond) \
- MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
- #define MPI_VALIDATE(cond) \
- MBEDTLS_INTERNAL_VALIDATE(cond)
- #define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
- #define biL (ciL << 3) /* bits in limb */
- #define biH (ciL << 2) /* half limb size */
- #define MPI_SIZE_T_MAX ((size_t) -1) /* SIZE_T_MAX is not standard */
- /*
- * Convert between bits/chars and number of limbs
- * Divide first in order to avoid potential overflows
- */
- #define BITS_TO_LIMBS(i) ((i) / biL + ((i) % biL != 0))
- #define CHARS_TO_LIMBS(i) ((i) / ciL + ((i) % ciL != 0))
- /* Implementation that should never be optimized out by the compiler */
- static void mbedtls_mpi_zeroize(mbedtls_mpi_uint *v, size_t n)
- {
- mbedtls_platform_zeroize(v, ciL * n);
- }
- /*
- * Initialize one MPI
- */
- void mbedtls_mpi_init(mbedtls_mpi *X)
- {
- MPI_VALIDATE(X != NULL);
- X->s = 1;
- X->n = 0;
- X->p = NULL;
- }
- /*
- * Unallocate one MPI
- */
- void mbedtls_mpi_free(mbedtls_mpi *X)
- {
- if (X == NULL) {
- return;
- }
- if (X->p != NULL) {
- mbedtls_mpi_zeroize(X->p, X->n);
- mbedtls_free(X->p);
- }
- X->s = 1;
- X->n = 0;
- X->p = NULL;
- }
- /*
- * Enlarge to the specified number of limbs
- */
- int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
- {
- mbedtls_mpi_uint *p;
- MPI_VALIDATE_RET(X != NULL);
- if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
- return MBEDTLS_ERR_MPI_ALLOC_FAILED;
- }
- if (X->n < nblimbs) {
- if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
- return MBEDTLS_ERR_MPI_ALLOC_FAILED;
- }
- if (X->p != NULL) {
- memcpy(p, X->p, X->n * ciL);
- mbedtls_mpi_zeroize(X->p, X->n);
- mbedtls_free(X->p);
- }
- X->n = nblimbs;
- X->p = p;
- }
- return 0;
- }
- /*
- * Resize down as much as possible,
- * while keeping at least the specified number of limbs
- */
- int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
- {
- mbedtls_mpi_uint *p;
- size_t i;
- MPI_VALIDATE_RET(X != NULL);
- if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
- return MBEDTLS_ERR_MPI_ALLOC_FAILED;
- }
- /* Actually resize up if there are currently fewer than nblimbs limbs. */
- if (X->n <= nblimbs) {
- return mbedtls_mpi_grow(X, nblimbs);
- }
- /* After this point, then X->n > nblimbs and in particular X->n > 0. */
- for (i = X->n - 1; i > 0; i--) {
- if (X->p[i] != 0) {
- break;
- }
- }
- i++;
- if (i < nblimbs) {
- i = nblimbs;
- }
- if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
- return MBEDTLS_ERR_MPI_ALLOC_FAILED;
- }
- if (X->p != NULL) {
- memcpy(p, X->p, i * ciL);
- mbedtls_mpi_zeroize(X->p, X->n);
- mbedtls_free(X->p);
- }
- X->n = i;
- X->p = p;
- return 0;
- }
- /* Resize X to have exactly n limbs and set it to 0. */
- static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
- {
- if (limbs == 0) {
- mbedtls_mpi_free(X);
- return 0;
- } else if (X->n == limbs) {
- memset(X->p, 0, limbs * ciL);
- X->s = 1;
- return 0;
- } else {
- mbedtls_mpi_free(X);
- return mbedtls_mpi_grow(X, limbs);
- }
- }
- /*
- * Copy the contents of Y into X.
- *
- * This function is not constant-time. Leading zeros in Y may be removed.
- *
- * Ensure that X does not shrink. This is not guaranteed by the public API,
- * but some code in the bignum module relies on this property, for example
- * in mbedtls_mpi_exp_mod().
- */
- int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
- {
- int ret = 0;
- size_t i;
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(Y != NULL);
- if (X == Y) {
- return 0;
- }
- if (Y->n == 0) {
- if (X->n != 0) {
- X->s = 1;
- memset(X->p, 0, X->n * ciL);
- }
- return 0;
- }
- for (i = Y->n - 1; i > 0; i--) {
- if (Y->p[i] != 0) {
- break;
- }
- }
- i++;
- X->s = Y->s;
- if (X->n < i) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
- } else {
- memset(X->p + i, 0, (X->n - i) * ciL);
- }
- memcpy(X->p, Y->p, i * ciL);
- cleanup:
- return ret;
- }
- /*
- * Swap the contents of X and Y
- */
- void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
- {
- mbedtls_mpi T;
- MPI_VALIDATE(X != NULL);
- MPI_VALIDATE(Y != NULL);
- memcpy(&T, X, sizeof(mbedtls_mpi));
- memcpy(X, Y, sizeof(mbedtls_mpi));
- memcpy(Y, &T, sizeof(mbedtls_mpi));
- }
- static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
- {
- if (z >= 0) {
- return z;
- }
- /* Take care to handle the most negative value (-2^(biL-1)) correctly.
- * A naive -z would have undefined behavior.
- * Write this in a way that makes popular compilers happy (GCC, Clang,
- * MSVC). */
- return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
- }
- /*
- * Set value from integer
- */
- int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- MPI_VALIDATE_RET(X != NULL);
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
- memset(X->p, 0, X->n * ciL);
- X->p[0] = mpi_sint_abs(z);
- X->s = (z < 0) ? -1 : 1;
- cleanup:
- return ret;
- }
- /*
- * Get a specific bit
- */
- int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
- {
- MPI_VALIDATE_RET(X != NULL);
- if (X->n * biL <= pos) {
- return 0;
- }
- return (X->p[pos / biL] >> (pos % biL)) & 0x01;
- }
- /* Get a specific byte, without range checks. */
- #define GET_BYTE(X, i) \
- (((X)->p[(i) / ciL] >> (((i) % ciL) * 8)) & 0xff)
- /*
- * Set a bit to a specific value of 0 or 1
- */
- int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
- {
- int ret = 0;
- size_t off = pos / biL;
- size_t idx = pos % biL;
- MPI_VALIDATE_RET(X != NULL);
- if (val != 0 && val != 1) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- if (X->n * biL <= pos) {
- if (val == 0) {
- return 0;
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
- }
- X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
- X->p[off] |= (mbedtls_mpi_uint) val << idx;
- cleanup:
- return ret;
- }
- /*
- * Return the number of less significant zero-bits
- */
- size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
- {
- size_t i, j, count = 0;
- MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0);
- for (i = 0; i < X->n; i++) {
- for (j = 0; j < biL; j++, count++) {
- if (((X->p[i] >> j) & 1) != 0) {
- return count;
- }
- }
- }
- return 0;
- }
- /*
- * Count leading zero bits in a given integer
- */
- static size_t mbedtls_clz(const mbedtls_mpi_uint x)
- {
- size_t j;
- mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
- for (j = 0; j < biL; j++) {
- if (x & mask) {
- break;
- }
- mask >>= 1;
- }
- return j;
- }
- /*
- * Return the number of bits
- */
- size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
- {
- size_t i, j;
- if (X->n == 0) {
- return 0;
- }
- for (i = X->n - 1; i > 0; i--) {
- if (X->p[i] != 0) {
- break;
- }
- }
- j = biL - mbedtls_clz(X->p[i]);
- return (i * biL) + j;
- }
- /*
- * Return the total size in bytes
- */
- size_t mbedtls_mpi_size(const mbedtls_mpi *X)
- {
- return (mbedtls_mpi_bitlen(X) + 7) >> 3;
- }
- /*
- * Convert an ASCII character to digit value
- */
- static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
- {
- *d = 255;
- if (c >= 0x30 && c <= 0x39) {
- *d = c - 0x30;
- }
- if (c >= 0x41 && c <= 0x46) {
- *d = c - 0x37;
- }
- if (c >= 0x61 && c <= 0x66) {
- *d = c - 0x57;
- }
- if (*d >= (mbedtls_mpi_uint) radix) {
- return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
- }
- return 0;
- }
- /*
- * Import from an ASCII string
- */
- int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t i, j, slen, n;
- int sign = 1;
- mbedtls_mpi_uint d;
- mbedtls_mpi T;
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(s != NULL);
- if (radix < 2 || radix > 16) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- mbedtls_mpi_init(&T);
- if (s[0] == 0) {
- mbedtls_mpi_free(X);
- return 0;
- }
- if (s[0] == '-') {
- ++s;
- sign = -1;
- }
- slen = strlen(s);
- if (radix == 16) {
- if (slen > MPI_SIZE_T_MAX >> 2) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- n = BITS_TO_LIMBS(slen << 2);
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
- for (i = slen, j = 0; i > 0; i--, j++) {
- MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
- X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
- }
- } else {
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
- for (i = 0; i < slen; i++) {
- MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
- MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
- }
- }
- if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
- X->s = -1;
- }
- cleanup:
- mbedtls_mpi_free(&T);
- return ret;
- }
- /*
- * Helper to write the digits high-order first.
- */
- static int mpi_write_hlp(mbedtls_mpi *X, int radix,
- char **p, const size_t buflen)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- mbedtls_mpi_uint r;
- size_t length = 0;
- char *p_end = *p + buflen;
- do {
- if (length >= buflen) {
- return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
- MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
- /*
- * Write the residue in the current position, as an ASCII character.
- */
- if (r < 0xA) {
- *(--p_end) = (char) ('0' + r);
- } else {
- *(--p_end) = (char) ('A' + (r - 0xA));
- }
- length++;
- } while (mbedtls_mpi_cmp_int(X, 0) != 0);
- memmove(*p, p_end, length);
- *p += length;
- cleanup:
- return ret;
- }
- /*
- * Export into an ASCII string
- */
- int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
- char *buf, size_t buflen, size_t *olen)
- {
- int ret = 0;
- size_t n;
- char *p;
- mbedtls_mpi T;
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(olen != NULL);
- MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
- if (radix < 2 || radix > 16) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- n = mbedtls_mpi_bitlen(X); /* Number of bits necessary to present `n`. */
- if (radix >= 4) {
- n >>= 1; /* Number of 4-adic digits necessary to present
- * `n`. If radix > 4, this might be a strict
- * overapproximation of the number of
- * radix-adic digits needed to present `n`. */
- }
- if (radix >= 16) {
- n >>= 1; /* Number of hexadecimal digits necessary to
- * present `n`. */
- }
- n += 1; /* Terminating null byte */
- n += 1; /* Compensate for the divisions above, which round down `n`
- * in case it's not even. */
- n += 1; /* Potential '-'-sign. */
- n += (n & 1); /* Make n even to have enough space for hexadecimal writing,
- * which always uses an even number of hex-digits. */
- if (buflen < n) {
- *olen = n;
- return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
- }
- p = buf;
- mbedtls_mpi_init(&T);
- if (X->s == -1) {
- *p++ = '-';
- buflen--;
- }
- if (radix == 16) {
- int c;
- size_t i, j, k;
- for (i = X->n, k = 0; i > 0; i--) {
- for (j = ciL; j > 0; j--) {
- c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
- if (c == 0 && k == 0 && (i + j) != 2) {
- continue;
- }
- *(p++) = "0123456789ABCDEF" [c / 16];
- *(p++) = "0123456789ABCDEF" [c % 16];
- k = 1;
- }
- }
- } else {
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
- if (T.s == -1) {
- T.s = 1;
- }
- MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
- }
- *p++ = '\0';
- *olen = p - buf;
- cleanup:
- mbedtls_mpi_free(&T);
- return ret;
- }
- #if defined(MBEDTLS_FS_IO)
- /*
- * Read X from an opened file
- */
- int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
- {
- mbedtls_mpi_uint d;
- size_t slen;
- char *p;
- /*
- * Buffer should have space for (short) label and decimal formatted MPI,
- * newline characters and '\0'
- */
- char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(fin != NULL);
- if (radix < 2 || radix > 16) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- memset(s, 0, sizeof(s));
- if (fgets(s, sizeof(s) - 1, fin) == NULL) {
- return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
- }
- slen = strlen(s);
- if (slen == sizeof(s) - 2) {
- return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
- }
- if (slen > 0 && s[slen - 1] == '\n') {
- slen--; s[slen] = '\0';
- }
- if (slen > 0 && s[slen - 1] == '\r') {
- slen--; s[slen] = '\0';
- }
- p = s + slen;
- while (p-- > s) {
- if (mpi_get_digit(&d, radix, *p) != 0) {
- break;
- }
- }
- return mbedtls_mpi_read_string(X, radix, p + 1);
- }
- /*
- * Write X into an opened file (or stdout if fout == NULL)
- */
- int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t n, slen, plen;
- /*
- * Buffer should have space for (short) label and decimal formatted MPI,
- * newline characters and '\0'
- */
- char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
- MPI_VALIDATE_RET(X != NULL);
- if (radix < 2 || radix > 16) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- memset(s, 0, sizeof(s));
- MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
- if (p == NULL) {
- p = "";
- }
- plen = strlen(p);
- slen = strlen(s);
- s[slen++] = '\r';
- s[slen++] = '\n';
- if (fout != NULL) {
- if (fwrite(p, 1, plen, fout) != plen ||
- fwrite(s, 1, slen, fout) != slen) {
- return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
- }
- } else {
- mbedtls_printf("%s%s", p, s);
- }
- cleanup:
- return ret;
- }
- #endif /* MBEDTLS_FS_IO */
- /* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
- * into the storage form used by mbedtls_mpi. */
- static mbedtls_mpi_uint mpi_uint_bigendian_to_host_c(mbedtls_mpi_uint x)
- {
- uint8_t i;
- unsigned char *x_ptr;
- mbedtls_mpi_uint tmp = 0;
- for (i = 0, x_ptr = (unsigned char *) &x; i < ciL; i++, x_ptr++) {
- tmp <<= CHAR_BIT;
- tmp |= (mbedtls_mpi_uint) *x_ptr;
- }
- return tmp;
- }
- static mbedtls_mpi_uint mpi_uint_bigendian_to_host(mbedtls_mpi_uint x)
- {
- #if defined(__BYTE_ORDER__)
- /* Nothing to do on bigendian systems. */
- #if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
- return x;
- #endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */
- #if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
- /* For GCC and Clang, have builtins for byte swapping. */
- #if defined(__GNUC__) && defined(__GNUC_PREREQ)
- #if __GNUC_PREREQ(4, 3)
- #define have_bswap
- #endif
- #endif
- #if defined(__clang__) && defined(__has_builtin)
- #if __has_builtin(__builtin_bswap32) && \
- __has_builtin(__builtin_bswap64)
- #define have_bswap
- #endif
- #endif
- #if defined(have_bswap)
- /* The compiler is hopefully able to statically evaluate this! */
- switch (sizeof(mbedtls_mpi_uint)) {
- case 4:
- return __builtin_bswap32(x);
- case 8:
- return __builtin_bswap64(x);
- }
- #endif
- #endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
- #endif /* __BYTE_ORDER__ */
- /* Fall back to C-based reordering if we don't know the byte order
- * or we couldn't use a compiler-specific builtin. */
- return mpi_uint_bigendian_to_host_c(x);
- }
- static void mpi_bigendian_to_host(mbedtls_mpi_uint * const p, size_t limbs)
- {
- mbedtls_mpi_uint *cur_limb_left;
- mbedtls_mpi_uint *cur_limb_right;
- if (limbs == 0) {
- return;
- }
- /*
- * Traverse limbs and
- * - adapt byte-order in each limb
- * - swap the limbs themselves.
- * For that, simultaneously traverse the limbs from left to right
- * and from right to left, as long as the left index is not bigger
- * than the right index (it's not a problem if limbs is odd and the
- * indices coincide in the last iteration).
- */
- for (cur_limb_left = p, cur_limb_right = p + (limbs - 1);
- cur_limb_left <= cur_limb_right;
- cur_limb_left++, cur_limb_right--) {
- mbedtls_mpi_uint tmp;
- /* Note that if cur_limb_left == cur_limb_right,
- * this code effectively swaps the bytes only once. */
- tmp = mpi_uint_bigendian_to_host(*cur_limb_left);
- *cur_limb_left = mpi_uint_bigendian_to_host(*cur_limb_right);
- *cur_limb_right = tmp;
- }
- }
- /*
- * Import X from unsigned binary data, little endian
- */
- int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
- const unsigned char *buf, size_t buflen)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t i;
- size_t const limbs = CHARS_TO_LIMBS(buflen);
- /* Ensure that target MPI has exactly the necessary number of limbs */
- MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
- for (i = 0; i < buflen; i++) {
- X->p[i / ciL] |= ((mbedtls_mpi_uint) buf[i]) << ((i % ciL) << 3);
- }
- cleanup:
- /*
- * This function is also used to import keys. However, wiping the buffers
- * upon failure is not necessary because failure only can happen before any
- * input is copied.
- */
- return ret;
- }
- /*
- * Import X from unsigned binary data, big endian
- */
- int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t const limbs = CHARS_TO_LIMBS(buflen);
- size_t const overhead = (limbs * ciL) - buflen;
- unsigned char *Xp;
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
- /* Ensure that target MPI has exactly the necessary number of limbs */
- MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
- /* Avoid calling `memcpy` with NULL source or destination argument,
- * even if buflen is 0. */
- if (buflen != 0) {
- Xp = (unsigned char *) X->p;
- memcpy(Xp + overhead, buf, buflen);
- mpi_bigendian_to_host(X->p, limbs);
- }
- cleanup:
- /*
- * This function is also used to import keys. However, wiping the buffers
- * upon failure is not necessary because failure only can happen before any
- * input is copied.
- */
- return ret;
- }
- /*
- * Export X into unsigned binary data, little endian
- */
- int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
- unsigned char *buf, size_t buflen)
- {
- size_t stored_bytes = X->n * ciL;
- size_t bytes_to_copy;
- size_t i;
- if (stored_bytes < buflen) {
- bytes_to_copy = stored_bytes;
- } else {
- bytes_to_copy = buflen;
- /* The output buffer is smaller than the allocated size of X.
- * However X may fit if its leading bytes are zero. */
- for (i = bytes_to_copy; i < stored_bytes; i++) {
- if (GET_BYTE(X, i) != 0) {
- return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
- }
- }
- }
- for (i = 0; i < bytes_to_copy; i++) {
- buf[i] = GET_BYTE(X, i);
- }
- if (stored_bytes < buflen) {
- /* Write trailing 0 bytes */
- memset(buf + stored_bytes, 0, buflen - stored_bytes);
- }
- return 0;
- }
- /*
- * Export X into unsigned binary data, big endian
- */
- int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
- unsigned char *buf, size_t buflen)
- {
- size_t stored_bytes;
- size_t bytes_to_copy;
- unsigned char *p;
- size_t i;
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
- stored_bytes = X->n * ciL;
- if (stored_bytes < buflen) {
- /* There is enough space in the output buffer. Write initial
- * null bytes and record the position at which to start
- * writing the significant bytes. In this case, the execution
- * trace of this function does not depend on the value of the
- * number. */
- bytes_to_copy = stored_bytes;
- p = buf + buflen - stored_bytes;
- memset(buf, 0, buflen - stored_bytes);
- } else {
- /* The output buffer is smaller than the allocated size of X.
- * However X may fit if its leading bytes are zero. */
- bytes_to_copy = buflen;
- p = buf;
- for (i = bytes_to_copy; i < stored_bytes; i++) {
- if (GET_BYTE(X, i) != 0) {
- return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
- }
- }
- }
- for (i = 0; i < bytes_to_copy; i++) {
- p[bytes_to_copy - i - 1] = GET_BYTE(X, i);
- }
- return 0;
- }
- /*
- * Left-shift: X <<= count
- */
- int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t i, v0, t1;
- mbedtls_mpi_uint r0 = 0, r1;
- MPI_VALIDATE_RET(X != NULL);
- v0 = count / (biL);
- t1 = count & (biL - 1);
- i = mbedtls_mpi_bitlen(X) + count;
- if (X->n * biL < i) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
- }
- ret = 0;
- /*
- * shift by count / limb_size
- */
- if (v0 > 0) {
- for (i = X->n; i > v0; i--) {
- X->p[i - 1] = X->p[i - v0 - 1];
- }
- for (; i > 0; i--) {
- X->p[i - 1] = 0;
- }
- }
- /*
- * shift by count % limb_size
- */
- if (t1 > 0) {
- for (i = v0; i < X->n; i++) {
- r1 = X->p[i] >> (biL - t1);
- X->p[i] <<= t1;
- X->p[i] |= r0;
- r0 = r1;
- }
- }
- cleanup:
- return ret;
- }
- /*
- * Right-shift: X >>= count
- */
- int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
- {
- size_t i, v0, v1;
- mbedtls_mpi_uint r0 = 0, r1;
- MPI_VALIDATE_RET(X != NULL);
- v0 = count / biL;
- v1 = count & (biL - 1);
- if (v0 > X->n || (v0 == X->n && v1 > 0)) {
- return mbedtls_mpi_lset(X, 0);
- }
- /*
- * shift by count / limb_size
- */
- if (v0 > 0) {
- for (i = 0; i < X->n - v0; i++) {
- X->p[i] = X->p[i + v0];
- }
- for (; i < X->n; i++) {
- X->p[i] = 0;
- }
- }
- /*
- * shift by count % limb_size
- */
- if (v1 > 0) {
- for (i = X->n; i > 0; i--) {
- r1 = X->p[i - 1] << (biL - v1);
- X->p[i - 1] >>= v1;
- X->p[i - 1] |= r0;
- r0 = r1;
- }
- }
- return 0;
- }
- /*
- * Compare unsigned values
- */
- int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
- {
- size_t i, j;
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(Y != NULL);
- for (i = X->n; i > 0; i--) {
- if (X->p[i - 1] != 0) {
- break;
- }
- }
- for (j = Y->n; j > 0; j--) {
- if (Y->p[j - 1] != 0) {
- break;
- }
- }
- if (i == 0 && j == 0) {
- return 0;
- }
- if (i > j) {
- return 1;
- }
- if (j > i) {
- return -1;
- }
- for (; i > 0; i--) {
- if (X->p[i - 1] > Y->p[i - 1]) {
- return 1;
- }
- if (X->p[i - 1] < Y->p[i - 1]) {
- return -1;
- }
- }
- return 0;
- }
- /*
- * Compare signed values
- */
- int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
- {
- size_t i, j;
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(Y != NULL);
- for (i = X->n; i > 0; i--) {
- if (X->p[i - 1] != 0) {
- break;
- }
- }
- for (j = Y->n; j > 0; j--) {
- if (Y->p[j - 1] != 0) {
- break;
- }
- }
- if (i == 0 && j == 0) {
- return 0;
- }
- if (i > j) {
- return X->s;
- }
- if (j > i) {
- return -Y->s;
- }
- if (X->s > 0 && Y->s < 0) {
- return 1;
- }
- if (Y->s > 0 && X->s < 0) {
- return -1;
- }
- for (; i > 0; i--) {
- if (X->p[i - 1] > Y->p[i - 1]) {
- return X->s;
- }
- if (X->p[i - 1] < Y->p[i - 1]) {
- return -X->s;
- }
- }
- return 0;
- }
- /*
- * Compare signed values
- */
- int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
- {
- mbedtls_mpi Y;
- mbedtls_mpi_uint p[1];
- MPI_VALIDATE_RET(X != NULL);
- *p = mpi_sint_abs(z);
- Y.s = (z < 0) ? -1 : 1;
- Y.n = 1;
- Y.p = p;
- return mbedtls_mpi_cmp_mpi(X, &Y);
- }
- /*
- * Unsigned addition: X = |A| + |B| (HAC 14.7)
- */
- int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t i, j;
- mbedtls_mpi_uint *o, *p, c, tmp;
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(A != NULL);
- MPI_VALIDATE_RET(B != NULL);
- if (X == B) {
- const mbedtls_mpi *T = A; A = X; B = T;
- }
- if (X != A) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
- }
- /*
- * X should always be positive as a result of unsigned additions.
- */
- X->s = 1;
- for (j = B->n; j > 0; j--) {
- if (B->p[j - 1] != 0) {
- break;
- }
- }
- /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
- * and B is 0 (of any size). */
- if (j == 0) {
- return 0;
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
- o = B->p; p = X->p; c = 0;
- /*
- * tmp is used because it might happen that p == o
- */
- for (i = 0; i < j; i++, o++, p++) {
- tmp = *o;
- *p += c; c = (*p < c);
- *p += tmp; c += (*p < tmp);
- }
- while (c != 0) {
- if (i >= X->n) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + 1));
- p = X->p + i;
- }
- *p += c; c = (*p < c); i++; p++;
- }
- cleanup:
- return ret;
- }
- /**
- * Helper for mbedtls_mpi subtraction.
- *
- * Calculate l - r where l and r have the same size.
- * This function operates modulo (2^ciL)^n and returns the carry
- * (1 if there was a wraparound, i.e. if `l < r`, and 0 otherwise).
- *
- * d may be aliased to l or r.
- *
- * \param n Number of limbs of \p d, \p l and \p r.
- * \param[out] d The result of the subtraction.
- * \param[in] l The left operand.
- * \param[in] r The right operand.
- *
- * \return 1 if `l < r`.
- * 0 if `l >= r`.
- */
- static mbedtls_mpi_uint mpi_sub_hlp(size_t n,
- mbedtls_mpi_uint *d,
- const mbedtls_mpi_uint *l,
- const mbedtls_mpi_uint *r)
- {
- size_t i;
- mbedtls_mpi_uint c = 0, t, z;
- for (i = 0; i < n; i++) {
- z = (l[i] < c); t = l[i] - c;
- c = (t < r[i]) + z; d[i] = t - r[i];
- }
- return c;
- }
- /*
- * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
- */
- int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t n;
- mbedtls_mpi_uint carry;
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(A != NULL);
- MPI_VALIDATE_RET(B != NULL);
- for (n = B->n; n > 0; n--) {
- if (B->p[n - 1] != 0) {
- break;
- }
- }
- if (n > A->n) {
- /* B >= (2^ciL)^n > A */
- ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
- goto cleanup;
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
- /* Set the high limbs of X to match A. Don't touch the lower limbs
- * because X might be aliased to B, and we must not overwrite the
- * significant digits of B. */
- if (A->n > n && A != X) {
- memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
- }
- if (X->n > A->n) {
- memset(X->p + A->n, 0, (X->n - A->n) * ciL);
- }
- carry = mpi_sub_hlp(n, X->p, A->p, B->p);
- if (carry != 0) {
- /* Propagate the carry to the first nonzero limb of X. */
- for (; n < X->n && X->p[n] == 0; n++) {
- --X->p[n];
- }
- /* If we ran out of space for the carry, it means that the result
- * is negative. */
- if (n == X->n) {
- ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
- goto cleanup;
- }
- --X->p[n];
- }
- /* X should always be positive as a result of unsigned subtractions. */
- X->s = 1;
- cleanup:
- return ret;
- }
- /* Common function for signed addition and subtraction.
- * Calculate A + B * flip_B where flip_B is 1 or -1.
- */
- static int add_sub_mpi(mbedtls_mpi *X,
- const mbedtls_mpi *A, const mbedtls_mpi *B,
- int flip_B)
- {
- int ret, s;
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(A != NULL);
- MPI_VALIDATE_RET(B != NULL);
- s = A->s;
- if (A->s * B->s * flip_B < 0) {
- int cmp = mbedtls_mpi_cmp_abs(A, B);
- if (cmp >= 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
- /* If |A| = |B|, the result is 0 and we must set the sign bit
- * to +1 regardless of which of A or B was negative. Otherwise,
- * since |A| > |B|, the sign is the sign of A. */
- X->s = cmp == 0 ? 1 : s;
- } else {
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
- /* Since |A| < |B|, the sign is the opposite of A. */
- X->s = -s;
- }
- } else {
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
- X->s = s;
- }
- cleanup:
- return ret;
- }
- /*
- * Signed addition: X = A + B
- */
- int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
- {
- return add_sub_mpi(X, A, B, 1);
- }
- /*
- * Signed subtraction: X = A - B
- */
- int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
- {
- return add_sub_mpi(X, A, B, -1);
- }
- /*
- * Signed addition: X = A + b
- */
- int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
- {
- mbedtls_mpi B;
- mbedtls_mpi_uint p[1];
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(A != NULL);
- p[0] = mpi_sint_abs(b);
- B.s = (b < 0) ? -1 : 1;
- B.n = 1;
- B.p = p;
- return mbedtls_mpi_add_mpi(X, A, &B);
- }
- /*
- * Signed subtraction: X = A - b
- */
- int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
- {
- mbedtls_mpi B;
- mbedtls_mpi_uint p[1];
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(A != NULL);
- p[0] = mpi_sint_abs(b);
- B.s = (b < 0) ? -1 : 1;
- B.n = 1;
- B.p = p;
- return mbedtls_mpi_sub_mpi(X, A, &B);
- }
- /** Helper for mbedtls_mpi multiplication.
- *
- * Add \p b * \p s to \p d.
- *
- * \param i The number of limbs of \p s.
- * \param[in] s A bignum to multiply, of size \p i.
- * It may overlap with \p d, but only if
- * \p d <= \p s.
- * Its leading limb must not be \c 0.
- * \param[in,out] d The bignum to add to.
- * It must be sufficiently large to store the
- * result of the multiplication. This means
- * \p i + 1 limbs if \p d[\p i - 1] started as 0 and \p b
- * is not known a priori.
- * \param b A scalar to multiply.
- */
- static
- #if defined(__APPLE__) && defined(__arm__)
- /*
- * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
- * appears to need this to prevent bad ARM code generation at -O3.
- */
- __attribute__((noinline))
- #endif
- void mpi_mul_hlp(size_t i,
- const mbedtls_mpi_uint *s,
- mbedtls_mpi_uint *d,
- mbedtls_mpi_uint b)
- {
- mbedtls_mpi_uint c = 0, t = 0;
- (void) t; /* Unused in some architectures */
- #if defined(MULADDC_HUIT)
- for (; i >= 8; i -= 8) {
- MULADDC_INIT
- MULADDC_HUIT
- MULADDC_STOP
- }
- for (; i > 0; i--) {
- MULADDC_INIT
- MULADDC_CORE
- MULADDC_STOP
- }
- #else /* MULADDC_HUIT */
- for (; i >= 16; i -= 16) {
- MULADDC_INIT
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_STOP
- }
- for (; i >= 8; i -= 8) {
- MULADDC_INIT
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_CORE MULADDC_CORE
- MULADDC_STOP
- }
- for (; i > 0; i--) {
- MULADDC_INIT
- MULADDC_CORE
- MULADDC_STOP
- }
- #endif /* MULADDC_HUIT */
- while (c != 0) {
- *d += c; c = (*d < c); d++;
- }
- }
- /*
- * Baseline multiplication: X = A * B (HAC 14.12)
- */
- int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t i, j;
- mbedtls_mpi TA, TB;
- int result_is_zero = 0;
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(A != NULL);
- MPI_VALIDATE_RET(B != NULL);
- mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
- if (X == A) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
- }
- if (X == B) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
- }
- for (i = A->n; i > 0; i--) {
- if (A->p[i - 1] != 0) {
- break;
- }
- }
- if (i == 0) {
- result_is_zero = 1;
- }
- for (j = B->n; j > 0; j--) {
- if (B->p[j - 1] != 0) {
- break;
- }
- }
- if (j == 0) {
- result_is_zero = 1;
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
- for (; j > 0; j--) {
- mpi_mul_hlp(i, A->p, X->p + j - 1, B->p[j - 1]);
- }
- /* If the result is 0, we don't shortcut the operation, which reduces
- * but does not eliminate side channels leaking the zero-ness. We do
- * need to take care to set the sign bit properly since the library does
- * not fully support an MPI object with a value of 0 and s == -1. */
- if (result_is_zero) {
- X->s = 1;
- } else {
- X->s = A->s * B->s;
- }
- cleanup:
- mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
- return ret;
- }
- /*
- * Baseline multiplication: X = A * b
- */
- int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
- {
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(A != NULL);
- /* mpi_mul_hlp can't deal with a leading 0. */
- size_t n = A->n;
- while (n > 0 && A->p[n - 1] == 0) {
- --n;
- }
- /* The general method below doesn't work if n==0 or b==0. By chance
- * calculating the result is trivial in those cases. */
- if (b == 0 || n == 0) {
- return mbedtls_mpi_lset(X, 0);
- }
- /* Calculate A*b as A + A*(b-1) to take advantage of mpi_mul_hlp */
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- /* In general, A * b requires 1 limb more than b. If
- * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
- * number of limbs as A and the call to grow() is not required since
- * copy() will take care of the growth if needed. However, experimentally,
- * making the call to grow() unconditional causes slightly fewer
- * calls to calloc() in ECP code, presumably because it reuses the
- * same mpi for a while and this way the mpi is more likely to directly
- * grow to its final size. */
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
- mpi_mul_hlp(n, A->p, X->p, b - 1);
- cleanup:
- return ret;
- }
- /*
- * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
- * mbedtls_mpi_uint divisor, d
- */
- static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
- mbedtls_mpi_uint u0,
- mbedtls_mpi_uint d,
- mbedtls_mpi_uint *r)
- {
- #if defined(MBEDTLS_HAVE_UDBL)
- mbedtls_t_udbl dividend, quotient;
- #else
- const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
- const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
- mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
- mbedtls_mpi_uint u0_msw, u0_lsw;
- size_t s;
- #endif
- /*
- * Check for overflow
- */
- if (0 == d || u1 >= d) {
- if (r != NULL) {
- *r = ~(mbedtls_mpi_uint) 0u;
- }
- return ~(mbedtls_mpi_uint) 0u;
- }
- #if defined(MBEDTLS_HAVE_UDBL)
- dividend = (mbedtls_t_udbl) u1 << biL;
- dividend |= (mbedtls_t_udbl) u0;
- quotient = dividend / d;
- if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
- quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
- }
- if (r != NULL) {
- *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
- }
- return (mbedtls_mpi_uint) quotient;
- #else
- /*
- * Algorithm D, Section 4.3.1 - The Art of Computer Programming
- * Vol. 2 - Seminumerical Algorithms, Knuth
- */
- /*
- * Normalize the divisor, d, and dividend, u0, u1
- */
- s = mbedtls_clz(d);
- d = d << s;
- u1 = u1 << s;
- u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
- u0 = u0 << s;
- d1 = d >> biH;
- d0 = d & uint_halfword_mask;
- u0_msw = u0 >> biH;
- u0_lsw = u0 & uint_halfword_mask;
- /*
- * Find the first quotient and remainder
- */
- q1 = u1 / d1;
- r0 = u1 - d1 * q1;
- while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
- q1 -= 1;
- r0 += d1;
- if (r0 >= radix) {
- break;
- }
- }
- rAX = (u1 * radix) + (u0_msw - q1 * d);
- q0 = rAX / d1;
- r0 = rAX - q0 * d1;
- while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
- q0 -= 1;
- r0 += d1;
- if (r0 >= radix) {
- break;
- }
- }
- if (r != NULL) {
- *r = (rAX * radix + u0_lsw - q0 * d) >> s;
- }
- quotient = q1 * radix + q0;
- return quotient;
- #endif
- }
- /*
- * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
- */
- int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
- const mbedtls_mpi *B)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t i, n, t, k;
- mbedtls_mpi X, Y, Z, T1, T2;
- mbedtls_mpi_uint TP2[3];
- MPI_VALIDATE_RET(A != NULL);
- MPI_VALIDATE_RET(B != NULL);
- if (mbedtls_mpi_cmp_int(B, 0) == 0) {
- return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
- }
- mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
- mbedtls_mpi_init(&T1);
- /*
- * Avoid dynamic memory allocations for constant-size T2.
- *
- * T2 is used for comparison only and the 3 limbs are assigned explicitly,
- * so nobody increase the size of the MPI and we're safe to use an on-stack
- * buffer.
- */
- T2.s = 1;
- T2.n = sizeof(TP2) / sizeof(*TP2);
- T2.p = TP2;
- if (mbedtls_mpi_cmp_abs(A, B) < 0) {
- if (Q != NULL) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
- }
- if (R != NULL) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
- }
- return 0;
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
- X.s = Y.s = 1;
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z, 0));
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
- k = mbedtls_mpi_bitlen(&Y) % biL;
- if (k < biL - 1) {
- k = biL - 1 - k;
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
- } else {
- k = 0;
- }
- n = X.n - 1;
- t = Y.n - 1;
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
- while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
- Z.p[n - t]++;
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
- for (i = n; i > t; i--) {
- if (X.p[i] >= Y.p[t]) {
- Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
- } else {
- Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
- Y.p[t], NULL);
- }
- T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
- T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
- T2.p[2] = X.p[i];
- Z.p[i - t - 1]++;
- do {
- Z.p[i - t - 1]--;
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
- T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
- T1.p[1] = Y.p[t];
- MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
- } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
- MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
- if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
- Z.p[i - t - 1]--;
- }
- }
- if (Q != NULL) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
- Q->s = A->s * B->s;
- }
- if (R != NULL) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
- X.s = A->s;
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
- if (mbedtls_mpi_cmp_int(R, 0) == 0) {
- R->s = 1;
- }
- }
- cleanup:
- mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
- mbedtls_mpi_free(&T1);
- mbedtls_platform_zeroize(TP2, sizeof(TP2));
- return ret;
- }
- /*
- * Division by int: A = Q * b + R
- */
- int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
- const mbedtls_mpi *A,
- mbedtls_mpi_sint b)
- {
- mbedtls_mpi B;
- mbedtls_mpi_uint p[1];
- MPI_VALIDATE_RET(A != NULL);
- p[0] = mpi_sint_abs(b);
- B.s = (b < 0) ? -1 : 1;
- B.n = 1;
- B.p = p;
- return mbedtls_mpi_div_mpi(Q, R, A, &B);
- }
- /*
- * Modulo: R = A mod B
- */
- int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- MPI_VALIDATE_RET(R != NULL);
- MPI_VALIDATE_RET(A != NULL);
- MPI_VALIDATE_RET(B != NULL);
- if (mbedtls_mpi_cmp_int(B, 0) < 0) {
- return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
- while (mbedtls_mpi_cmp_int(R, 0) < 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
- }
- while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
- }
- cleanup:
- return ret;
- }
- /*
- * Modulo: r = A mod b
- */
- int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
- {
- size_t i;
- mbedtls_mpi_uint x, y, z;
- MPI_VALIDATE_RET(r != NULL);
- MPI_VALIDATE_RET(A != NULL);
- if (b == 0) {
- return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
- }
- if (b < 0) {
- return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
- }
- /*
- * handle trivial cases
- */
- if (b == 1 || A->n == 0) {
- *r = 0;
- return 0;
- }
- if (b == 2) {
- *r = A->p[0] & 1;
- return 0;
- }
- /*
- * general case
- */
- for (i = A->n, y = 0; i > 0; i--) {
- x = A->p[i - 1];
- y = (y << biH) | (x >> biH);
- z = y / b;
- y -= z * b;
- x <<= biH;
- y = (y << biH) | (x >> biH);
- z = y / b;
- y -= z * b;
- }
- /*
- * If A is negative, then the current y represents a negative value.
- * Flipping it to the positive side.
- */
- if (A->s < 0 && y != 0) {
- y = b - y;
- }
- *r = y;
- return 0;
- }
- /*
- * Fast Montgomery initialization (thanks to Tom St Denis)
- */
- static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N)
- {
- mbedtls_mpi_uint x, m0 = N->p[0];
- unsigned int i;
- x = m0;
- x += ((m0 + 2) & 4) << 1;
- for (i = biL; i >= 8; i /= 2) {
- x *= (2 - (m0 * x));
- }
- *mm = ~x + 1;
- }
- /** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
- *
- * \param[in,out] A One of the numbers to multiply.
- * It must have at least as many limbs as N
- * (A->n >= N->n), and any limbs beyond n are ignored.
- * On successful completion, A contains the result of
- * the multiplication A * B * R^-1 mod N where
- * R = (2^ciL)^n.
- * \param[in] B One of the numbers to multiply.
- * It must be nonzero and must not have more limbs than N
- * (B->n <= N->n).
- * \param[in] N The modulo. N must be odd.
- * \param mm The value calculated by `mpi_montg_init(&mm, N)`.
- * This is -N^-1 mod 2^ciL.
- * \param[in,out] T A bignum for temporary storage.
- * It must be at least twice the limb size of N plus 2
- * (T->n >= 2 * (N->n + 1)).
- * Its initial content is unused and
- * its final content is indeterminate.
- * Note that unlike the usual convention in the library
- * for `const mbedtls_mpi*`, the content of T can change.
- */
- static void mpi_montmul(mbedtls_mpi *A,
- const mbedtls_mpi *B,
- const mbedtls_mpi *N,
- mbedtls_mpi_uint mm,
- const mbedtls_mpi *T)
- {
- size_t i, n, m;
- mbedtls_mpi_uint u0, u1, *d;
- memset(T->p, 0, T->n * ciL);
- d = T->p;
- n = N->n;
- m = (B->n < n) ? B->n : n;
- for (i = 0; i < n; i++) {
- /*
- * T = (T + u0*B + u1*N) / 2^biL
- */
- u0 = A->p[i];
- u1 = (d[0] + u0 * B->p[0]) * mm;
- mpi_mul_hlp(m, B->p, d, u0);
- mpi_mul_hlp(n, N->p, d, u1);
- *d++ = u0; d[n + 1] = 0;
- }
- /* At this point, d is either the desired result or the desired result
- * plus N. We now potentially subtract N, avoiding leaking whether the
- * subtraction is performed through side channels. */
- /* Copy the n least significant limbs of d to A, so that
- * A = d if d < N (recall that N has n limbs). */
- memcpy(A->p, d, n * ciL);
- /* If d >= N then we want to set A to d - N. To prevent timing attacks,
- * do the calculation without using conditional tests. */
- /* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */
- d[n] += 1;
- d[n] -= mpi_sub_hlp(n, d, d, N->p);
- /* If d0 < N then d < (2^biL)^n
- * so d[n] == 0 and we want to keep A as it is.
- * If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n
- * so d[n] == 1 and we want to set A to the result of the subtraction
- * which is d - (2^biL)^n, i.e. the n least significant limbs of d.
- * This exactly corresponds to a conditional assignment. */
- mbedtls_ct_mpi_uint_cond_assign(n, A->p, d, (unsigned char) d[n]);
- }
- /*
- * Montgomery reduction: A = A * R^-1 mod N
- *
- * See mpi_montmul() regarding constraints and guarantees on the parameters.
- */
- static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N,
- mbedtls_mpi_uint mm, const mbedtls_mpi *T)
- {
- mbedtls_mpi_uint z = 1;
- mbedtls_mpi U;
- U.n = U.s = (int) z;
- U.p = &z;
- mpi_montmul(A, &U, N, mm, T);
- }
- /**
- * Select an MPI from a table without leaking the index.
- *
- * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
- * reads the entire table in order to avoid leaking the value of idx to an
- * attacker able to observe memory access patterns.
- *
- * \param[out] R Where to write the selected MPI.
- * \param[in] T The table to read from.
- * \param[in] T_size The number of elements in the table.
- * \param[in] idx The index of the element to select;
- * this must satisfy 0 <= idx < T_size.
- *
- * \return \c 0 on success, or a negative error code.
- */
- static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- for (size_t i = 0; i < T_size; i++) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i],
- (unsigned char) mbedtls_ct_size_bool_eq(i,
- idx)));
- }
- cleanup:
- return ret;
- }
- /*
- * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
- */
- int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
- const mbedtls_mpi *E, const mbedtls_mpi *N,
- mbedtls_mpi *prec_RR)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t window_bitsize;
- size_t i, j, nblimbs;
- size_t bufsize, nbits;
- size_t exponent_bits_in_window = 0;
- mbedtls_mpi_uint ei, mm, state;
- mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos;
- int neg;
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(A != NULL);
- MPI_VALIDATE_RET(E != NULL);
- MPI_VALIDATE_RET(N != NULL);
- if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- if (mbedtls_mpi_cmp_int(E, 0) < 0) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
- mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- /*
- * Init temps and window size
- */
- mpi_montg_init(&mm, N);
- mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T);
- mbedtls_mpi_init(&Apos);
- mbedtls_mpi_init(&WW);
- memset(W, 0, sizeof(W));
- i = mbedtls_mpi_bitlen(E);
- window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 :
- (i > 79) ? 4 : (i > 23) ? 3 : 1;
- #if (MBEDTLS_MPI_WINDOW_SIZE < 6)
- if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) {
- window_bitsize = MBEDTLS_MPI_WINDOW_SIZE;
- }
- #endif
- const size_t w_table_used_size = (size_t) 1 << window_bitsize;
- /*
- * This function is not constant-trace: its memory accesses depend on the
- * exponent value. To defend against timing attacks, callers (such as RSA
- * and DHM) should use exponent blinding. However this is not enough if the
- * adversary can find the exponent in a single trace, so this function
- * takes extra precautions against adversaries who can observe memory
- * access patterns.
- *
- * This function performs a series of multiplications by table elements and
- * squarings, and we want the prevent the adversary from finding out which
- * table element was used, and from distinguishing between multiplications
- * and squarings. Firstly, when multiplying by an element of the window
- * W[i], we do a constant-trace table lookup to obfuscate i. This leaves
- * squarings as having a different memory access patterns from other
- * multiplications. So secondly, we put the accumulator X in the table as
- * well, and also do a constant-trace table lookup to multiply by X.
- *
- * This way, all multiplications take the form of a lookup-and-multiply.
- * The number of lookup-and-multiply operations inside each iteration of
- * the main loop still depends on the bits of the exponent, but since the
- * other operations in the loop don't have an easily recognizable memory
- * trace, an adversary is unlikely to be able to observe the exact
- * patterns.
- *
- * An adversary may still be able to recover the exponent if they can
- * observe both memory accesses and branches. However, branch prediction
- * exploitation typically requires many traces of execution over the same
- * data, which is defeated by randomized blinding.
- *
- * To achieve this, we make a copy of X and we use the table entry in each
- * calculation from this point on.
- */
- const size_t x_index = 0;
- mbedtls_mpi_init(&W[x_index]);
- mbedtls_mpi_copy(&W[x_index], X);
- j = N->n + 1;
- /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
- * and mpi_montred() calls later. Here we ensure that W[1] and X are
- * large enough, and later we'll grow other W[i] to the same length.
- * They must not be shrunk midway through this function!
- */
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j));
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], j));
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2));
- /*
- * Compensate for negative A (and correct at the end)
- */
- neg = (A->s == -1);
- if (neg) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A));
- Apos.s = 1;
- A = &Apos;
- }
- /*
- * If 1st call, pre-compute R^2 mod N
- */
- if (prec_RR == NULL || prec_RR->p == NULL) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&RR, 1));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&RR, N->n * 2 * biL));
- MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&RR, &RR, N));
- if (prec_RR != NULL) {
- memcpy(prec_RR, &RR, sizeof(mbedtls_mpi));
- }
- } else {
- memcpy(&RR, prec_RR, sizeof(mbedtls_mpi));
- }
- /*
- * W[1] = A * R^2 * R^-1 mod N = A * R mod N
- */
- if (mbedtls_mpi_cmp_mpi(A, N) >= 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N));
- /* This should be a no-op because W[1] is already that large before
- * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
- * in mpi_montmul() below, so let's make sure. */
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1));
- } else {
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A));
- }
- /* Note that this is safe because W[1] always has at least N->n limbs
- * (it grew above and was preserved by mbedtls_mpi_copy()). */
- mpi_montmul(&W[1], &RR, N, mm, &T);
- /*
- * W[x_index] = R^2 * R^-1 mod N = R mod N
- */
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR));
- mpi_montred(&W[x_index], N, mm, &T);
- if (window_bitsize > 1) {
- /*
- * W[i] = W[1] ^ i
- *
- * The first bit of the sliding window is always 1 and therefore we
- * only need to store the second half of the table.
- *
- * (There are two special elements in the table: W[0] for the
- * accumulator/result and W[1] for A in Montgomery form. Both of these
- * are already set at this point.)
- */
- j = w_table_used_size / 2;
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1));
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1]));
- for (i = 0; i < window_bitsize - 1; i++) {
- mpi_montmul(&W[j], &W[j], N, mm, &T);
- }
- /*
- * W[i] = W[i - 1] * W[1]
- */
- for (i = j + 1; i < w_table_used_size; i++) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1));
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1]));
- mpi_montmul(&W[i], &W[1], N, mm, &T);
- }
- }
- nblimbs = E->n;
- bufsize = 0;
- nbits = 0;
- state = 0;
- while (1) {
- if (bufsize == 0) {
- if (nblimbs == 0) {
- break;
- }
- nblimbs--;
- bufsize = sizeof(mbedtls_mpi_uint) << 3;
- }
- bufsize--;
- ei = (E->p[nblimbs] >> bufsize) & 1;
- /*
- * skip leading 0s
- */
- if (ei == 0 && state == 0) {
- continue;
- }
- if (ei == 0 && state == 1) {
- /*
- * out of window, square W[x_index]
- */
- MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
- mpi_montmul(&W[x_index], &WW, N, mm, &T);
- continue;
- }
- /*
- * add ei to current window
- */
- state = 2;
- nbits++;
- exponent_bits_in_window |= (ei << (window_bitsize - nbits));
- if (nbits == window_bitsize) {
- /*
- * W[x_index] = W[x_index]^window_bitsize R^-1 mod N
- */
- for (i = 0; i < window_bitsize; i++) {
- MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
- x_index));
- mpi_montmul(&W[x_index], &WW, N, mm, &T);
- }
- /*
- * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N
- */
- MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
- exponent_bits_in_window));
- mpi_montmul(&W[x_index], &WW, N, mm, &T);
- state--;
- nbits = 0;
- exponent_bits_in_window = 0;
- }
- }
- /*
- * process the remaining bits
- */
- for (i = 0; i < nbits; i++) {
- MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
- mpi_montmul(&W[x_index], &WW, N, mm, &T);
- exponent_bits_in_window <<= 1;
- if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) {
- MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1));
- mpi_montmul(&W[x_index], &WW, N, mm, &T);
- }
- }
- /*
- * W[x_index] = A^E * R * R^-1 mod N = A^E mod N
- */
- mpi_montred(&W[x_index], N, mm, &T);
- if (neg && E->n != 0 && (E->p[0] & 1) != 0) {
- W[x_index].s = -1;
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index]));
- }
- /*
- * Load the result in the output variable.
- */
- mbedtls_mpi_copy(X, &W[x_index]);
- cleanup:
- /* The first bit of the sliding window is always 1 and therefore the first
- * half of the table was unused. */
- for (i = w_table_used_size/2; i < w_table_used_size; i++) {
- mbedtls_mpi_free(&W[i]);
- }
- mbedtls_mpi_free(&W[x_index]);
- mbedtls_mpi_free(&W[1]);
- mbedtls_mpi_free(&T);
- mbedtls_mpi_free(&Apos);
- mbedtls_mpi_free(&WW);
- if (prec_RR == NULL || prec_RR->p == NULL) {
- mbedtls_mpi_free(&RR);
- }
- return ret;
- }
- /*
- * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
- */
- int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t lz, lzt;
- mbedtls_mpi TA, TB;
- MPI_VALIDATE_RET(G != NULL);
- MPI_VALIDATE_RET(A != NULL);
- MPI_VALIDATE_RET(B != NULL);
- mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
- lz = mbedtls_mpi_lsb(&TA);
- lzt = mbedtls_mpi_lsb(&TB);
- /* The loop below gives the correct result when A==0 but not when B==0.
- * So have a special case for B==0. Leverage the fact that we just
- * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
- * slightly more efficient than cmp_int(). */
- if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
- ret = mbedtls_mpi_copy(G, A);
- goto cleanup;
- }
- if (lzt < lz) {
- lz = lzt;
- }
- TA.s = TB.s = 1;
- /* We mostly follow the procedure described in HAC 14.54, but with some
- * minor differences:
- * - Sequences of multiplications or divisions by 2 are grouped into a
- * single shift operation.
- * - The procedure in HAC assumes that 0 < TB <= TA.
- * - The condition TB <= TA is not actually necessary for correctness.
- * TA and TB have symmetric roles except for the loop termination
- * condition, and the shifts at the beginning of the loop body
- * remove any significance from the ordering of TA vs TB before
- * the shifts.
- * - If TA = 0, the loop goes through 0 iterations and the result is
- * correctly TB.
- * - The case TB = 0 was short-circuited above.
- *
- * For the correctness proof below, decompose the original values of
- * A and B as
- * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
- * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
- * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
- * and gcd(A',B') is odd or 0.
- *
- * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
- * The code maintains the following invariant:
- * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
- */
- /* Proof that the loop terminates:
- * At each iteration, either the right-shift by 1 is made on a nonzero
- * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
- * by at least 1, or the right-shift by 1 is made on zero and then
- * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
- * since in that case TB is calculated from TB-TA with the condition TB>TA).
- */
- while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
- /* Divisions by 2 preserve the invariant (I). */
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
- /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
- * TA-TB is even so the division by 2 has an integer result.
- * Invariant (I) is preserved since any odd divisor of both TA and TB
- * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
- * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
- * divides TA.
- */
- if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
- } else {
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
- }
- /* Note that one of TA or TB is still odd. */
- }
- /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
- * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
- * - If there was at least one loop iteration, then one of TA or TB is odd,
- * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
- * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
- * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
- * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
- */
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
- cleanup:
- mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
- return ret;
- }
- /* Fill X with n_bytes random bytes.
- * X must already have room for those bytes.
- * The ordering of the bytes returned from the RNG is suitable for
- * deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()).
- * The size and sign of X are unchanged.
- * n_bytes must not be 0.
- */
- static int mpi_fill_random_internal(
- mbedtls_mpi *X, size_t n_bytes,
- int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- const size_t limbs = CHARS_TO_LIMBS(n_bytes);
- const size_t overhead = (limbs * ciL) - n_bytes;
- if (X->n < limbs) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- memset(X->p, 0, overhead);
- memset((unsigned char *) X->p + limbs * ciL, 0, (X->n - limbs) * ciL);
- MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X->p + overhead, n_bytes));
- mpi_bigendian_to_host(X->p, limbs);
- cleanup:
- return ret;
- }
- /*
- * Fill X with size bytes of random.
- *
- * Use a temporary bytes representation to make sure the result is the same
- * regardless of the platform endianness (useful when f_rng is actually
- * deterministic, eg for tests).
- */
- int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- size_t const limbs = CHARS_TO_LIMBS(size);
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(f_rng != NULL);
- /* Ensure that target MPI has exactly the necessary number of limbs */
- MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
- if (size == 0) {
- return 0;
- }
- ret = mpi_fill_random_internal(X, size, f_rng, p_rng);
- cleanup:
- return ret;
- }
- int mbedtls_mpi_random(mbedtls_mpi *X,
- mbedtls_mpi_sint min,
- const mbedtls_mpi *N,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng)
- {
- int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- int count;
- unsigned lt_lower = 1, lt_upper = 0;
- size_t n_bits = mbedtls_mpi_bitlen(N);
- size_t n_bytes = (n_bits + 7) / 8;
- mbedtls_mpi lower_bound;
- if (min < 0) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- if (mbedtls_mpi_cmp_int(N, min) <= 0) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- /*
- * When min == 0, each try has at worst a probability 1/2 of failing
- * (the msb has a probability 1/2 of being 0, and then the result will
- * be < N), so after 30 tries failure probability is a most 2**(-30).
- *
- * When N is just below a power of 2, as is the case when generating
- * a random scalar on most elliptic curves, 1 try is enough with
- * overwhelming probability. When N is just above a power of 2,
- * as when generating a random scalar on secp224k1, each try has
- * a probability of failing that is almost 1/2.
- *
- * The probabilities are almost the same if min is nonzero but negligible
- * compared to N. This is always the case when N is crypto-sized, but
- * it's convenient to support small N for testing purposes. When N
- * is small, use a higher repeat count, otherwise the probability of
- * failure is macroscopic.
- */
- count = (n_bytes > 4 ? 30 : 250);
- mbedtls_mpi_init(&lower_bound);
- /* Ensure that target MPI has exactly the same number of limbs
- * as the upper bound, even if the upper bound has leading zeros.
- * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */
- MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, N->n));
- MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&lower_bound, N->n));
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&lower_bound, min));
- /*
- * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
- * when f_rng is a suitably parametrized instance of HMAC_DRBG:
- * - use the same byte ordering;
- * - keep the leftmost n_bits bits of the generated octet string;
- * - try until result is in the desired range.
- * This also avoids any bias, which is especially important for ECDSA.
- */
- do {
- MBEDTLS_MPI_CHK(mpi_fill_random_internal(X, n_bytes, f_rng, p_rng));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, 8 * n_bytes - n_bits));
- if (--count == 0) {
- ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- goto cleanup;
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_lt_mpi_ct(X, &lower_bound, <_lower));
- MBEDTLS_MPI_CHK(mbedtls_mpi_lt_mpi_ct(X, N, <_upper));
- } while (lt_lower != 0 || lt_upper == 0);
- cleanup:
- mbedtls_mpi_free(&lower_bound);
- return ret;
- }
- /*
- * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
- */
- int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(A != NULL);
- MPI_VALIDATE_RET(N != NULL);
- if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
- mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
- mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
- MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
- if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
- ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- goto cleanup;
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
- do {
- while ((TU.p[0] & 1) == 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
- if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
- }
- while ((TV.p[0] & 1) == 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
- if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
- }
- if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
- } else {
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
- }
- } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
- while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
- }
- while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
- cleanup:
- mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
- mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
- mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
- return ret;
- }
- #if defined(MBEDTLS_GENPRIME)
- static const int small_prime[] =
- {
- 3, 5, 7, 11, 13, 17, 19, 23,
- 29, 31, 37, 41, 43, 47, 53, 59,
- 61, 67, 71, 73, 79, 83, 89, 97,
- 101, 103, 107, 109, 113, 127, 131, 137,
- 139, 149, 151, 157, 163, 167, 173, 179,
- 181, 191, 193, 197, 199, 211, 223, 227,
- 229, 233, 239, 241, 251, 257, 263, 269,
- 271, 277, 281, 283, 293, 307, 311, 313,
- 317, 331, 337, 347, 349, 353, 359, 367,
- 373, 379, 383, 389, 397, 401, 409, 419,
- 421, 431, 433, 439, 443, 449, 457, 461,
- 463, 467, 479, 487, 491, 499, 503, 509,
- 521, 523, 541, 547, 557, 563, 569, 571,
- 577, 587, 593, 599, 601, 607, 613, 617,
- 619, 631, 641, 643, 647, 653, 659, 661,
- 673, 677, 683, 691, 701, 709, 719, 727,
- 733, 739, 743, 751, 757, 761, 769, 773,
- 787, 797, 809, 811, 821, 823, 827, 829,
- 839, 853, 857, 859, 863, 877, 881, 883,
- 887, 907, 911, 919, 929, 937, 941, 947,
- 953, 967, 971, 977, 983, 991, 997, -103
- };
- /*
- * Small divisors test (X must be positive)
- *
- * Return values:
- * 0: no small factor (possible prime, more tests needed)
- * 1: certain prime
- * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
- * other negative: error
- */
- static int mpi_check_small_factors(const mbedtls_mpi *X)
- {
- int ret = 0;
- size_t i;
- mbedtls_mpi_uint r;
- if ((X->p[0] & 1) == 0) {
- return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- }
- for (i = 0; small_prime[i] > 0; i++) {
- if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0) {
- return 1;
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i]));
- if (r == 0) {
- return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- }
- }
- cleanup:
- return ret;
- }
- /*
- * Miller-Rabin pseudo-primality test (HAC 4.24)
- */
- static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng)
- {
- int ret, count;
- size_t i, j, k, s;
- mbedtls_mpi W, R, T, A, RR;
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(f_rng != NULL);
- mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
- mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
- mbedtls_mpi_init(&RR);
- /*
- * W = |X| - 1
- * R = W >> lsb( W )
- */
- MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
- s = mbedtls_mpi_lsb(&W);
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
- for (i = 0; i < rounds; i++) {
- /*
- * pick a random A, 1 < A < |X| - 1
- */
- count = 0;
- do {
- MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
- j = mbedtls_mpi_bitlen(&A);
- k = mbedtls_mpi_bitlen(&W);
- if (j > k) {
- A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
- }
- if (count++ > 30) {
- ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- goto cleanup;
- }
- } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
- mbedtls_mpi_cmp_int(&A, 1) <= 0);
- /*
- * A = A^R mod |X|
- */
- MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
- if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
- mbedtls_mpi_cmp_int(&A, 1) == 0) {
- continue;
- }
- j = 1;
- while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
- /*
- * A = A * A mod |X|
- */
- MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
- MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
- if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
- break;
- }
- j++;
- }
- /*
- * not prime if A != |X| - 1 or A == 1
- */
- if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
- mbedtls_mpi_cmp_int(&A, 1) == 0) {
- ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- break;
- }
- }
- cleanup:
- mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
- mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
- mbedtls_mpi_free(&RR);
- return ret;
- }
- /*
- * Pseudo-primality test: small factors, then Miller-Rabin
- */
- int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng)
- {
- int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
- mbedtls_mpi XX;
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(f_rng != NULL);
- XX.s = 1;
- XX.n = X->n;
- XX.p = X->p;
- if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
- mbedtls_mpi_cmp_int(&XX, 1) == 0) {
- return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- }
- if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
- return 0;
- }
- if ((ret = mpi_check_small_factors(&XX)) != 0) {
- if (ret == 1) {
- return 0;
- }
- return ret;
- }
- return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
- }
- #if !defined(MBEDTLS_DEPRECATED_REMOVED)
- /*
- * Pseudo-primality test, error probability 2^-80
- */
- int mbedtls_mpi_is_prime(const mbedtls_mpi *X,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng)
- {
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(f_rng != NULL);
- /*
- * In the past our key generation aimed for an error rate of at most
- * 2^-80. Since this function is deprecated, aim for the same certainty
- * here as well.
- */
- return mbedtls_mpi_is_prime_ext(X, 40, f_rng, p_rng);
- }
- #endif
- /*
- * Prime number generation
- *
- * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
- * be either 1024 bits or 1536 bits long, and flags must contain
- * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
- */
- int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng)
- {
- #ifdef MBEDTLS_HAVE_INT64
- // ceil(2^63.5)
- #define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
- #else
- // ceil(2^31.5)
- #define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
- #endif
- int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
- size_t k, n;
- int rounds;
- mbedtls_mpi_uint r;
- mbedtls_mpi Y;
- MPI_VALIDATE_RET(X != NULL);
- MPI_VALIDATE_RET(f_rng != NULL);
- if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
- return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
- }
- mbedtls_mpi_init(&Y);
- n = BITS_TO_LIMBS(nbits);
- if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
- /*
- * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
- */
- rounds = ((nbits >= 1300) ? 2 : (nbits >= 850) ? 3 :
- (nbits >= 650) ? 4 : (nbits >= 350) ? 8 :
- (nbits >= 250) ? 12 : (nbits >= 150) ? 18 : 27);
- } else {
- /*
- * 2^-100 error probability, number of rounds computed based on HAC,
- * fact 4.48
- */
- rounds = ((nbits >= 1450) ? 4 : (nbits >= 1150) ? 5 :
- (nbits >= 1000) ? 6 : (nbits >= 850) ? 7 :
- (nbits >= 750) ? 8 : (nbits >= 500) ? 13 :
- (nbits >= 250) ? 28 : (nbits >= 150) ? 40 : 51);
- }
- while (1) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
- /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
- if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
- continue;
- }
- k = n * biL;
- if (k > nbits) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
- }
- X->p[0] |= 1;
- if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
- ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
- if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
- goto cleanup;
- }
- } else {
- /*
- * A necessary condition for Y and X = 2Y + 1 to be prime
- * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
- * Make sure it is satisfied, while keeping X = 3 mod 4
- */
- X->p[0] |= 2;
- MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
- if (r == 0) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
- } else if (r == 1) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
- }
- /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
- MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
- MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
- while (1) {
- /*
- * First, check small factors for X and Y
- * before doing Miller-Rabin on any of them
- */
- if ((ret = mpi_check_small_factors(X)) == 0 &&
- (ret = mpi_check_small_factors(&Y)) == 0 &&
- (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
- == 0 &&
- (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
- == 0) {
- goto cleanup;
- }
- if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
- goto cleanup;
- }
- /*
- * Next candidates. We want to preserve Y = (X-1) / 2 and
- * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
- * so up Y by 6 and X by 12.
- */
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 12));
- MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
- }
- }
- }
- cleanup:
- mbedtls_mpi_free(&Y);
- return ret;
- }
- #endif /* MBEDTLS_GENPRIME */
- #if defined(MBEDTLS_SELF_TEST)
- #define GCD_PAIR_COUNT 3
- static const int gcd_pairs[GCD_PAIR_COUNT][3] =
- {
- { 693, 609, 21 },
- { 1764, 868, 28 },
- { 768454923, 542167814, 1 }
- };
- /*
- * Checkup routine
- */
- int mbedtls_mpi_self_test(int verbose)
- {
- int ret, i;
- mbedtls_mpi A, E, N, X, Y, U, V;
- mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
- mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
- MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
- "EFE021C2645FD1DC586E69184AF4A31E" \
- "D5F53E93B5F123FA41680867BA110131" \
- "944FE7952E2517337780CB0DB80E61AA" \
- "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
- MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
- "B2E7EFD37075B9F03FF989C7C5051C20" \
- "34D2A323810251127E7BF8625A4F49A5" \
- "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
- "5B5C25763222FEFCCFC38B832366C29E"));
- MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
- "0066A198186C18C10B2F5ED9B522752A" \
- "9830B69916E535C8F047518A889A43A5" \
- "94B6BED27A168D31D4A52F88925AA8F5"));
- MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
- MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
- "602AB7ECA597A3D6B56FF9829A5E8B85" \
- "9E857EA95A03512E2BAE7391688D264A" \
- "A5663B0341DB9CCFD2C4C5F421FEC814" \
- "8001B72E848A38CAE1C65F78E56ABDEF" \
- "E12D3C039B8A02D6BE593F0BBBDA56F1" \
- "ECF677152EF804370C1A305CAF3B5BF1" \
- "30879B56C61DE584A0F53A2447A51E"));
- if (verbose != 0) {
- mbedtls_printf(" MPI test #1 (mul_mpi): ");
- }
- if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
- if (verbose != 0) {
- mbedtls_printf("failed\n");
- }
- ret = 1;
- goto cleanup;
- }
- if (verbose != 0) {
- mbedtls_printf("passed\n");
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
- MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
- "256567336059E52CAE22925474705F39A94"));
- MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
- "6613F26162223DF488E9CD48CC132C7A" \
- "0AC93C701B001B092E4E5B9F73BCD27B" \
- "9EE50D0657C77F374E903CDFA4C642"));
- if (verbose != 0) {
- mbedtls_printf(" MPI test #2 (div_mpi): ");
- }
- if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
- mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
- if (verbose != 0) {
- mbedtls_printf("failed\n");
- }
- ret = 1;
- goto cleanup;
- }
- if (verbose != 0) {
- mbedtls_printf("passed\n");
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
- MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
- "36E139AEA55215609D2816998ED020BB" \
- "BD96C37890F65171D948E9BC7CBAA4D9" \
- "325D24D6A3C12710F10A09FA08AB87"));
- if (verbose != 0) {
- mbedtls_printf(" MPI test #3 (exp_mod): ");
- }
- if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
- if (verbose != 0) {
- mbedtls_printf("failed\n");
- }
- ret = 1;
- goto cleanup;
- }
- if (verbose != 0) {
- mbedtls_printf("passed\n");
- }
- MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
- MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
- "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
- "C3DBA76456363A10869622EAC2DD84EC" \
- "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
- if (verbose != 0) {
- mbedtls_printf(" MPI test #4 (inv_mod): ");
- }
- if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
- if (verbose != 0) {
- mbedtls_printf("failed\n");
- }
- ret = 1;
- goto cleanup;
- }
- if (verbose != 0) {
- mbedtls_printf("passed\n");
- }
- if (verbose != 0) {
- mbedtls_printf(" MPI test #5 (simple gcd): ");
- }
- for (i = 0; i < GCD_PAIR_COUNT; i++) {
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
- MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
- MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
- if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
- if (verbose != 0) {
- mbedtls_printf("failed at %d\n", i);
- }
- ret = 1;
- goto cleanup;
- }
- }
- if (verbose != 0) {
- mbedtls_printf("passed\n");
- }
- cleanup:
- if (ret != 0 && verbose != 0) {
- mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
- }
- mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
- mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
- if (verbose != 0) {
- mbedtls_printf("\n");
- }
- return ret;
- }
- #endif /* MBEDTLS_SELF_TEST */
- #endif /* MBEDTLS_BIGNUM_C */
|