ecp_curves.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498
  1. /*
  2. * Elliptic curves over GF(p): curve-specific data and functions
  3. *
  4. * Copyright The Mbed TLS Contributors
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Licensed under the Apache License, Version 2.0 (the "License"); you may
  8. * not use this file except in compliance with the License.
  9. * You may obtain a copy of the License at
  10. *
  11. * http://www.apache.org/licenses/LICENSE-2.0
  12. *
  13. * Unless required by applicable law or agreed to in writing, software
  14. * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
  15. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  16. * See the License for the specific language governing permissions and
  17. * limitations under the License.
  18. */
  19. #include "common.h"
  20. #if defined(MBEDTLS_ECP_C)
  21. #include "mbedtls/ecp.h"
  22. #include "mbedtls/platform_util.h"
  23. #include "mbedtls/error.h"
  24. #include "mbedtls/bn_mul.h"
  25. #include "ecp_invasive.h"
  26. #include <string.h>
  27. #if !defined(MBEDTLS_ECP_ALT)
  28. /* Parameter validation macros based on platform_util.h */
  29. #define ECP_VALIDATE_RET(cond) \
  30. MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA)
  31. #define ECP_VALIDATE(cond) \
  32. MBEDTLS_INTERNAL_VALIDATE(cond)
  33. #define ECP_MPI_INIT(s, n, p) { s, (n), (mbedtls_mpi_uint *) (p) }
  34. #define ECP_MPI_INIT_ARRAY(x) \
  35. ECP_MPI_INIT(1, sizeof(x) / sizeof(mbedtls_mpi_uint), x)
  36. /*
  37. * Note: the constants are in little-endian order
  38. * to be directly usable in MPIs
  39. */
  40. /*
  41. * Domain parameters for secp192r1
  42. */
  43. #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
  44. static const mbedtls_mpi_uint secp192r1_p[] = {
  45. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  46. MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  47. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  48. };
  49. static const mbedtls_mpi_uint secp192r1_b[] = {
  50. MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE),
  51. MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F),
  52. MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64),
  53. };
  54. static const mbedtls_mpi_uint secp192r1_gx[] = {
  55. MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4),
  56. MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C),
  57. MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18),
  58. };
  59. static const mbedtls_mpi_uint secp192r1_gy[] = {
  60. MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73),
  61. MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63),
  62. MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07),
  63. };
  64. static const mbedtls_mpi_uint secp192r1_n[] = {
  65. MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14),
  66. MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF),
  67. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  68. };
  69. #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
  70. /*
  71. * Domain parameters for secp224r1
  72. */
  73. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
  74. static const mbedtls_mpi_uint secp224r1_p[] = {
  75. MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
  76. MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
  77. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  78. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
  79. };
  80. static const mbedtls_mpi_uint secp224r1_b[] = {
  81. MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27),
  82. MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50),
  83. MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C),
  84. MBEDTLS_BYTES_TO_T_UINT_4(0x85, 0x0A, 0x05, 0xB4),
  85. };
  86. static const mbedtls_mpi_uint secp224r1_gx[] = {
  87. MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34),
  88. MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A),
  89. MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B),
  90. MBEDTLS_BYTES_TO_T_UINT_4(0xBD, 0x0C, 0x0E, 0xB7),
  91. };
  92. static const mbedtls_mpi_uint secp224r1_gy[] = {
  93. MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44),
  94. MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD),
  95. MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5),
  96. MBEDTLS_BYTES_TO_T_UINT_4(0x88, 0x63, 0x37, 0xBD),
  97. };
  98. static const mbedtls_mpi_uint secp224r1_n[] = {
  99. MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13),
  100. MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF),
  101. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  102. MBEDTLS_BYTES_TO_T_UINT_4(0xFF, 0xFF, 0xFF, 0xFF),
  103. };
  104. #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
  105. /*
  106. * Domain parameters for secp256r1
  107. */
  108. #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
  109. static const mbedtls_mpi_uint secp256r1_p[] = {
  110. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  111. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
  112. MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
  113. MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
  114. };
  115. static const mbedtls_mpi_uint secp256r1_b[] = {
  116. MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B),
  117. MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65),
  118. MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3),
  119. MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A),
  120. };
  121. static const mbedtls_mpi_uint secp256r1_gx[] = {
  122. MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4),
  123. MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77),
  124. MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8),
  125. MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B),
  126. };
  127. static const mbedtls_mpi_uint secp256r1_gy[] = {
  128. MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB),
  129. MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B),
  130. MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E),
  131. MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F),
  132. };
  133. static const mbedtls_mpi_uint secp256r1_n[] = {
  134. MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3),
  135. MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC),
  136. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  137. MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
  138. };
  139. #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
  140. /*
  141. * Domain parameters for secp384r1
  142. */
  143. #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  144. static const mbedtls_mpi_uint secp384r1_p[] = {
  145. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
  146. MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
  147. MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  148. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  149. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  150. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  151. };
  152. static const mbedtls_mpi_uint secp384r1_b[] = {
  153. MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A),
  154. MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6),
  155. MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03),
  156. MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18),
  157. MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98),
  158. MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3),
  159. };
  160. static const mbedtls_mpi_uint secp384r1_gx[] = {
  161. MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A),
  162. MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55),
  163. MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59),
  164. MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E),
  165. MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E),
  166. MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA),
  167. };
  168. static const mbedtls_mpi_uint secp384r1_gy[] = {
  169. MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A),
  170. MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A),
  171. MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9),
  172. MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8),
  173. MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D),
  174. MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36),
  175. };
  176. static const mbedtls_mpi_uint secp384r1_n[] = {
  177. MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC),
  178. MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58),
  179. MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7),
  180. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  181. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  182. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  183. };
  184. #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
  185. /*
  186. * Domain parameters for secp521r1
  187. */
  188. #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
  189. static const mbedtls_mpi_uint secp521r1_p[] = {
  190. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  191. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  192. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  193. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  194. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  195. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  196. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  197. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  198. MBEDTLS_BYTES_TO_T_UINT_2(0xFF, 0x01),
  199. };
  200. static const mbedtls_mpi_uint secp521r1_b[] = {
  201. MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF),
  202. MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35),
  203. MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16),
  204. MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56),
  205. MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8),
  206. MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2),
  207. MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92),
  208. MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95),
  209. MBEDTLS_BYTES_TO_T_UINT_2(0x51, 0x00),
  210. };
  211. static const mbedtls_mpi_uint secp521r1_gx[] = {
  212. MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9),
  213. MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33),
  214. MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE),
  215. MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1),
  216. MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8),
  217. MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C),
  218. MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E),
  219. MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85),
  220. MBEDTLS_BYTES_TO_T_UINT_2(0xC6, 0x00),
  221. };
  222. static const mbedtls_mpi_uint secp521r1_gy[] = {
  223. MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88),
  224. MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35),
  225. MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5),
  226. MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97),
  227. MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17),
  228. MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98),
  229. MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C),
  230. MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39),
  231. MBEDTLS_BYTES_TO_T_UINT_2(0x18, 0x01),
  232. };
  233. static const mbedtls_mpi_uint secp521r1_n[] = {
  234. MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB),
  235. MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B),
  236. MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F),
  237. MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51),
  238. MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  239. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  240. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  241. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  242. MBEDTLS_BYTES_TO_T_UINT_2(0xFF, 0x01),
  243. };
  244. #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
  245. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
  246. static const mbedtls_mpi_uint secp192k1_p[] = {
  247. MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
  248. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  249. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  250. };
  251. static const mbedtls_mpi_uint secp192k1_a[] = {
  252. MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
  253. };
  254. static const mbedtls_mpi_uint secp192k1_b[] = {
  255. MBEDTLS_BYTES_TO_T_UINT_2(0x03, 0x00),
  256. };
  257. static const mbedtls_mpi_uint secp192k1_gx[] = {
  258. MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D),
  259. MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26),
  260. MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB),
  261. };
  262. static const mbedtls_mpi_uint secp192k1_gy[] = {
  263. MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40),
  264. MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84),
  265. MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B),
  266. };
  267. static const mbedtls_mpi_uint secp192k1_n[] = {
  268. MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F),
  269. MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF),
  270. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  271. };
  272. #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
  273. #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
  274. static const mbedtls_mpi_uint secp224k1_p[] = {
  275. MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
  276. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  277. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  278. MBEDTLS_BYTES_TO_T_UINT_4(0xFF, 0xFF, 0xFF, 0xFF),
  279. };
  280. static const mbedtls_mpi_uint secp224k1_a[] = {
  281. MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
  282. };
  283. static const mbedtls_mpi_uint secp224k1_b[] = {
  284. MBEDTLS_BYTES_TO_T_UINT_2(0x05, 0x00),
  285. };
  286. static const mbedtls_mpi_uint secp224k1_gx[] = {
  287. MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F),
  288. MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69),
  289. MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D),
  290. MBEDTLS_BYTES_TO_T_UINT_4(0x33, 0x5B, 0x45, 0xA1),
  291. };
  292. static const mbedtls_mpi_uint secp224k1_gy[] = {
  293. MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2),
  294. MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7),
  295. MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F),
  296. MBEDTLS_BYTES_TO_T_UINT_4(0xED, 0x9F, 0x08, 0x7E),
  297. };
  298. static const mbedtls_mpi_uint secp224k1_n[] = {
  299. MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA),
  300. MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00),
  301. MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
  302. MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00),
  303. };
  304. #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
  305. #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  306. static const mbedtls_mpi_uint secp256k1_p[] = {
  307. MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
  308. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  309. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  310. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  311. };
  312. static const mbedtls_mpi_uint secp256k1_a[] = {
  313. MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
  314. };
  315. static const mbedtls_mpi_uint secp256k1_b[] = {
  316. MBEDTLS_BYTES_TO_T_UINT_2(0x07, 0x00),
  317. };
  318. static const mbedtls_mpi_uint secp256k1_gx[] = {
  319. MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59),
  320. MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02),
  321. MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55),
  322. MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79),
  323. };
  324. static const mbedtls_mpi_uint secp256k1_gy[] = {
  325. MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C),
  326. MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD),
  327. MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D),
  328. MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48),
  329. };
  330. static const mbedtls_mpi_uint secp256k1_n[] = {
  331. MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF),
  332. MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA),
  333. MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  334. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  335. };
  336. #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
  337. /*
  338. * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
  339. */
  340. #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
  341. static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
  342. MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20),
  343. MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E),
  344. MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E),
  345. MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9),
  346. };
  347. static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
  348. MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9),
  349. MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB),
  350. MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE),
  351. MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D),
  352. };
  353. static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
  354. MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B),
  355. MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95),
  356. MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3),
  357. MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26),
  358. };
  359. static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
  360. MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A),
  361. MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9),
  362. MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C),
  363. MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B),
  364. };
  365. static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
  366. MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C),
  367. MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2),
  368. MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97),
  369. MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54),
  370. };
  371. static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
  372. MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90),
  373. MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C),
  374. MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E),
  375. MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9),
  376. };
  377. #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
  378. /*
  379. * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
  380. */
  381. #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
  382. static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
  383. MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87),
  384. MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC),
  385. MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12),
  386. MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15),
  387. MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F),
  388. MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C),
  389. };
  390. static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
  391. MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04),
  392. MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A),
  393. MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13),
  394. MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2),
  395. MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C),
  396. MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B),
  397. };
  398. static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
  399. MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A),
  400. MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C),
  401. MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E),
  402. MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F),
  403. MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B),
  404. MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04),
  405. };
  406. static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
  407. MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF),
  408. MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8),
  409. MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB),
  410. MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88),
  411. MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2),
  412. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D),
  413. };
  414. static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
  415. MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42),
  416. MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E),
  417. MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1),
  418. MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62),
  419. MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C),
  420. MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A),
  421. };
  422. static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
  423. MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B),
  424. MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF),
  425. MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F),
  426. MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15),
  427. MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F),
  428. MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C),
  429. };
  430. #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
  431. /*
  432. * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
  433. */
  434. #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
  435. static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
  436. MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28),
  437. MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28),
  438. MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE),
  439. MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D),
  440. MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6),
  441. MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB),
  442. MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F),
  443. MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA),
  444. };
  445. static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
  446. MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7),
  447. MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F),
  448. MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A),
  449. MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D),
  450. MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8),
  451. MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94),
  452. MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2),
  453. MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78),
  454. };
  455. static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
  456. MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28),
  457. MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98),
  458. MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77),
  459. MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B),
  460. MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B),
  461. MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8),
  462. MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA),
  463. MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D),
  464. };
  465. static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
  466. MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B),
  467. MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C),
  468. MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50),
  469. MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF),
  470. MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4),
  471. MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85),
  472. MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A),
  473. MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81),
  474. };
  475. static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
  476. MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78),
  477. MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1),
  478. MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B),
  479. MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2),
  480. MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0),
  481. MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2),
  482. MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0),
  483. MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D),
  484. };
  485. static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
  486. MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5),
  487. MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D),
  488. MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41),
  489. MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55),
  490. MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6),
  491. MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB),
  492. MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F),
  493. MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA),
  494. };
  495. #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
  496. #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) || \
  497. defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
  498. defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
  499. defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) || \
  500. defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) || \
  501. defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) || \
  502. defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) || \
  503. defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) || \
  504. defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
  505. defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
  506. defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  507. /* For these curves, we build the group parameters dynamically. */
  508. #define ECP_LOAD_GROUP
  509. #endif
  510. #if defined(ECP_LOAD_GROUP)
  511. /*
  512. * Create an MPI from embedded constants
  513. * (assumes len is an exact multiple of sizeof(mbedtls_mpi_uint))
  514. */
  515. static inline void ecp_mpi_load(mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len)
  516. {
  517. X->s = 1;
  518. X->n = len / sizeof(mbedtls_mpi_uint);
  519. X->p = (mbedtls_mpi_uint *) p;
  520. }
  521. /*
  522. * Set an MPI to static value 1
  523. */
  524. static inline void ecp_mpi_set1(mbedtls_mpi *X)
  525. {
  526. static mbedtls_mpi_uint one[] = { 1 };
  527. X->s = 1;
  528. X->n = 1;
  529. X->p = one;
  530. }
  531. /*
  532. * Make group available from embedded constants
  533. */
  534. static int ecp_group_load(mbedtls_ecp_group *grp,
  535. const mbedtls_mpi_uint *p, size_t plen,
  536. const mbedtls_mpi_uint *a, size_t alen,
  537. const mbedtls_mpi_uint *b, size_t blen,
  538. const mbedtls_mpi_uint *gx, size_t gxlen,
  539. const mbedtls_mpi_uint *gy, size_t gylen,
  540. const mbedtls_mpi_uint *n, size_t nlen)
  541. {
  542. ecp_mpi_load(&grp->P, p, plen);
  543. if (a != NULL) {
  544. ecp_mpi_load(&grp->A, a, alen);
  545. }
  546. ecp_mpi_load(&grp->B, b, blen);
  547. ecp_mpi_load(&grp->N, n, nlen);
  548. ecp_mpi_load(&grp->G.X, gx, gxlen);
  549. ecp_mpi_load(&grp->G.Y, gy, gylen);
  550. ecp_mpi_set1(&grp->G.Z);
  551. grp->pbits = mbedtls_mpi_bitlen(&grp->P);
  552. grp->nbits = mbedtls_mpi_bitlen(&grp->N);
  553. grp->h = 1;
  554. return 0;
  555. }
  556. #endif /* ECP_LOAD_GROUP */
  557. #if defined(MBEDTLS_ECP_NIST_OPTIM)
  558. /* Forward declarations */
  559. #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
  560. static int ecp_mod_p192(mbedtls_mpi *);
  561. #endif
  562. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
  563. static int ecp_mod_p224(mbedtls_mpi *);
  564. #endif
  565. #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
  566. static int ecp_mod_p256(mbedtls_mpi *);
  567. #endif
  568. #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  569. static int ecp_mod_p384(mbedtls_mpi *);
  570. #endif
  571. #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
  572. static int ecp_mod_p521(mbedtls_mpi *);
  573. #endif
  574. #define NIST_MODP(P) grp->modp = ecp_mod_ ## P;
  575. #else
  576. #define NIST_MODP(P)
  577. #endif /* MBEDTLS_ECP_NIST_OPTIM */
  578. /* Additional forward declarations */
  579. #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
  580. static int ecp_mod_p255(mbedtls_mpi *);
  581. #endif
  582. #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
  583. static int ecp_mod_p448(mbedtls_mpi *);
  584. #endif
  585. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
  586. static int ecp_mod_p192k1(mbedtls_mpi *);
  587. #endif
  588. #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
  589. static int ecp_mod_p224k1(mbedtls_mpi *);
  590. #endif
  591. #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  592. static int ecp_mod_p256k1(mbedtls_mpi *);
  593. #endif
  594. #if defined(ECP_LOAD_GROUP)
  595. #define LOAD_GROUP_A(G) ecp_group_load(grp, \
  596. G ## _p, sizeof(G ## _p), \
  597. G ## _a, sizeof(G ## _a), \
  598. G ## _b, sizeof(G ## _b), \
  599. G ## _gx, sizeof(G ## _gx), \
  600. G ## _gy, sizeof(G ## _gy), \
  601. G ## _n, sizeof(G ## _n))
  602. #define LOAD_GROUP(G) ecp_group_load(grp, \
  603. G ## _p, sizeof(G ## _p), \
  604. NULL, 0, \
  605. G ## _b, sizeof(G ## _b), \
  606. G ## _gx, sizeof(G ## _gx), \
  607. G ## _gy, sizeof(G ## _gy), \
  608. G ## _n, sizeof(G ## _n))
  609. #endif /* ECP_LOAD_GROUP */
  610. #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
  611. /* Constants used by ecp_use_curve25519() */
  612. static const mbedtls_mpi_sint curve25519_a24 = 0x01DB42;
  613. static const unsigned char curve25519_part_of_n[] = {
  614. 0x14, 0xDE, 0xF9, 0xDE, 0xA2, 0xF7, 0x9C, 0xD6,
  615. 0x58, 0x12, 0x63, 0x1A, 0x5C, 0xF5, 0xD3, 0xED,
  616. };
  617. /*
  618. * Specialized function for creating the Curve25519 group
  619. */
  620. static int ecp_use_curve25519(mbedtls_ecp_group *grp)
  621. {
  622. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  623. /* Actually ( A + 2 ) / 4 */
  624. MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->A, curve25519_a24));
  625. /* P = 2^255 - 19 */
  626. MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->P, 1));
  627. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&grp->P, 255));
  628. MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&grp->P, &grp->P, 19));
  629. grp->pbits = mbedtls_mpi_bitlen(&grp->P);
  630. /* N = 2^252 + 27742317777372353535851937790883648493 */
  631. MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&grp->N,
  632. curve25519_part_of_n, sizeof(curve25519_part_of_n)));
  633. MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&grp->N, 252, 1));
  634. /* Y intentionally not set, since we use x/z coordinates.
  635. * This is used as a marker to identify Montgomery curves! */
  636. MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.X, 9));
  637. MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.Z, 1));
  638. mbedtls_mpi_free(&grp->G.Y);
  639. /* Actually, the required msb for private keys */
  640. grp->nbits = 254;
  641. cleanup:
  642. if (ret != 0) {
  643. mbedtls_ecp_group_free(grp);
  644. }
  645. return ret;
  646. }
  647. #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
  648. #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
  649. /* Constants used by ecp_use_curve448() */
  650. static const mbedtls_mpi_sint curve448_a24 = 0x98AA;
  651. static const unsigned char curve448_part_of_n[] = {
  652. 0x83, 0x35, 0xDC, 0x16, 0x3B, 0xB1, 0x24,
  653. 0xB6, 0x51, 0x29, 0xC9, 0x6F, 0xDE, 0x93,
  654. 0x3D, 0x8D, 0x72, 0x3A, 0x70, 0xAA, 0xDC,
  655. 0x87, 0x3D, 0x6D, 0x54, 0xA7, 0xBB, 0x0D,
  656. };
  657. /*
  658. * Specialized function for creating the Curve448 group
  659. */
  660. static int ecp_use_curve448(mbedtls_ecp_group *grp)
  661. {
  662. mbedtls_mpi Ns;
  663. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  664. mbedtls_mpi_init(&Ns);
  665. /* Actually ( A + 2 ) / 4 */
  666. MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->A, curve448_a24));
  667. /* P = 2^448 - 2^224 - 1 */
  668. MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->P, 1));
  669. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&grp->P, 224));
  670. MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&grp->P, &grp->P, 1));
  671. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&grp->P, 224));
  672. MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&grp->P, &grp->P, 1));
  673. grp->pbits = mbedtls_mpi_bitlen(&grp->P);
  674. /* Y intentionally not set, since we use x/z coordinates.
  675. * This is used as a marker to identify Montgomery curves! */
  676. MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.X, 5));
  677. MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.Z, 1));
  678. mbedtls_mpi_free(&grp->G.Y);
  679. /* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */
  680. MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&grp->N, 446, 1));
  681. MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&Ns,
  682. curve448_part_of_n, sizeof(curve448_part_of_n)));
  683. MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&grp->N, &grp->N, &Ns));
  684. /* Actually, the required msb for private keys */
  685. grp->nbits = 447;
  686. cleanup:
  687. mbedtls_mpi_free(&Ns);
  688. if (ret != 0) {
  689. mbedtls_ecp_group_free(grp);
  690. }
  691. return ret;
  692. }
  693. #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
  694. /*
  695. * Set a group using well-known domain parameters
  696. */
  697. int mbedtls_ecp_group_load(mbedtls_ecp_group *grp, mbedtls_ecp_group_id id)
  698. {
  699. ECP_VALIDATE_RET(grp != NULL);
  700. mbedtls_ecp_group_free(grp);
  701. mbedtls_ecp_group_init(grp);
  702. grp->id = id;
  703. switch (id) {
  704. #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
  705. case MBEDTLS_ECP_DP_SECP192R1:
  706. NIST_MODP(p192);
  707. return LOAD_GROUP(secp192r1);
  708. #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
  709. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
  710. case MBEDTLS_ECP_DP_SECP224R1:
  711. NIST_MODP(p224);
  712. return LOAD_GROUP(secp224r1);
  713. #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
  714. #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
  715. case MBEDTLS_ECP_DP_SECP256R1:
  716. NIST_MODP(p256);
  717. return LOAD_GROUP(secp256r1);
  718. #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
  719. #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  720. case MBEDTLS_ECP_DP_SECP384R1:
  721. NIST_MODP(p384);
  722. return LOAD_GROUP(secp384r1);
  723. #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
  724. #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
  725. case MBEDTLS_ECP_DP_SECP521R1:
  726. NIST_MODP(p521);
  727. return LOAD_GROUP(secp521r1);
  728. #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
  729. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
  730. case MBEDTLS_ECP_DP_SECP192K1:
  731. grp->modp = ecp_mod_p192k1;
  732. return LOAD_GROUP_A(secp192k1);
  733. #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
  734. #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
  735. case MBEDTLS_ECP_DP_SECP224K1:
  736. grp->modp = ecp_mod_p224k1;
  737. return LOAD_GROUP_A(secp224k1);
  738. #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
  739. #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  740. case MBEDTLS_ECP_DP_SECP256K1:
  741. grp->modp = ecp_mod_p256k1;
  742. return LOAD_GROUP_A(secp256k1);
  743. #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
  744. #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
  745. case MBEDTLS_ECP_DP_BP256R1:
  746. return LOAD_GROUP_A(brainpoolP256r1);
  747. #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
  748. #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
  749. case MBEDTLS_ECP_DP_BP384R1:
  750. return LOAD_GROUP_A(brainpoolP384r1);
  751. #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
  752. #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
  753. case MBEDTLS_ECP_DP_BP512R1:
  754. return LOAD_GROUP_A(brainpoolP512r1);
  755. #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
  756. #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
  757. case MBEDTLS_ECP_DP_CURVE25519:
  758. grp->modp = ecp_mod_p255;
  759. return ecp_use_curve25519(grp);
  760. #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
  761. #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
  762. case MBEDTLS_ECP_DP_CURVE448:
  763. grp->modp = ecp_mod_p448;
  764. return ecp_use_curve448(grp);
  765. #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
  766. default:
  767. grp->id = MBEDTLS_ECP_DP_NONE;
  768. return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
  769. }
  770. }
  771. #if defined(MBEDTLS_ECP_NIST_OPTIM)
  772. /*
  773. * Fast reduction modulo the primes used by the NIST curves.
  774. *
  775. * These functions are critical for speed, but not needed for correct
  776. * operations. So, we make the choice to heavily rely on the internals of our
  777. * bignum library, which creates a tight coupling between these functions and
  778. * our MPI implementation. However, the coupling between the ECP module and
  779. * MPI remains loose, since these functions can be deactivated at will.
  780. */
  781. #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
  782. /*
  783. * Compared to the way things are presented in FIPS 186-3 D.2,
  784. * we proceed in columns, from right (least significant chunk) to left,
  785. * adding chunks to N in place, and keeping a carry for the next chunk.
  786. * This avoids moving things around in memory, and uselessly adding zeros,
  787. * compared to the more straightforward, line-oriented approach.
  788. *
  789. * For this prime we need to handle data in chunks of 64 bits.
  790. * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
  791. * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
  792. */
  793. /* Add 64-bit chunks (dst += src) and update carry */
  794. static inline void add64(mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry)
  795. {
  796. unsigned char i;
  797. mbedtls_mpi_uint c = 0;
  798. for (i = 0; i < 8 / sizeof(mbedtls_mpi_uint); i++, dst++, src++) {
  799. *dst += c; c = (*dst < c);
  800. *dst += *src; c += (*dst < *src);
  801. }
  802. *carry += c;
  803. }
  804. /* Add carry to a 64-bit chunk and update carry */
  805. static inline void carry64(mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry)
  806. {
  807. unsigned char i;
  808. for (i = 0; i < 8 / sizeof(mbedtls_mpi_uint); i++, dst++) {
  809. *dst += *carry;
  810. *carry = (*dst < *carry);
  811. }
  812. }
  813. #define WIDTH 8 / sizeof(mbedtls_mpi_uint)
  814. #define A(i) N->p + (i) * WIDTH
  815. #define ADD(i) add64(p, A(i), &c)
  816. #define NEXT p += WIDTH; carry64(p, &c)
  817. #define LAST p += WIDTH; *p = c; while (++p < end) *p = 0
  818. /*
  819. * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
  820. */
  821. static int ecp_mod_p192(mbedtls_mpi *N)
  822. {
  823. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  824. mbedtls_mpi_uint c = 0;
  825. mbedtls_mpi_uint *p, *end;
  826. /* Make sure we have enough blocks so that A(5) is legal */
  827. MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, 6 * WIDTH));
  828. p = N->p;
  829. end = p + N->n;
  830. ADD(3); ADD(5); NEXT; // A0 += A3 + A5
  831. ADD(3); ADD(4); ADD(5); NEXT; // A1 += A3 + A4 + A5
  832. ADD(4); ADD(5); LAST; // A2 += A4 + A5
  833. cleanup:
  834. return ret;
  835. }
  836. #undef WIDTH
  837. #undef A
  838. #undef ADD
  839. #undef NEXT
  840. #undef LAST
  841. #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
  842. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
  843. defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
  844. defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  845. /*
  846. * The reader is advised to first understand ecp_mod_p192() since the same
  847. * general structure is used here, but with additional complications:
  848. * (1) chunks of 32 bits, and (2) subtractions.
  849. */
  850. /*
  851. * For these primes, we need to handle data in chunks of 32 bits.
  852. * This makes it more complicated if we use 64 bits limbs in MPI,
  853. * which prevents us from using a uniform access method as for p192.
  854. *
  855. * So, we define a mini abstraction layer to access 32 bit chunks,
  856. * load them in 'cur' for work, and store them back from 'cur' when done.
  857. *
  858. * While at it, also define the size of N in terms of 32-bit chunks.
  859. */
  860. #define LOAD32 cur = A(i);
  861. #if defined(MBEDTLS_HAVE_INT32) /* 32 bit */
  862. #define MAX32 N->n
  863. #define A(j) N->p[j]
  864. #define STORE32 N->p[i] = cur;
  865. #else /* 64-bit */
  866. #define MAX32 N->n * 2
  867. #define A(j) (j) % 2 ? (uint32_t) (N->p[(j)/2] >> 32) : \
  868. (uint32_t) (N->p[(j)/2])
  869. #define STORE32 \
  870. if (i % 2) { \
  871. N->p[i/2] &= 0x00000000FFFFFFFF; \
  872. N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32; \
  873. } else { \
  874. N->p[i/2] &= 0xFFFFFFFF00000000; \
  875. N->p[i/2] |= (mbedtls_mpi_uint) cur; \
  876. }
  877. #endif /* sizeof( mbedtls_mpi_uint ) */
  878. /*
  879. * Helpers for addition and subtraction of chunks, with signed carry.
  880. */
  881. static inline void add32(uint32_t *dst, uint32_t src, signed char *carry)
  882. {
  883. *dst += src;
  884. *carry += (*dst < src);
  885. }
  886. static inline void sub32(uint32_t *dst, uint32_t src, signed char *carry)
  887. {
  888. *carry -= (*dst < src);
  889. *dst -= src;
  890. }
  891. #define ADD(j) add32(&cur, A(j), &c);
  892. #define SUB(j) sub32(&cur, A(j), &c);
  893. #define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
  894. #define biL (ciL << 3) /* bits in limb */
  895. /*
  896. * Helpers for the main 'loop'
  897. */
  898. #define INIT(b) \
  899. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; \
  900. signed char c = 0, cc; \
  901. uint32_t cur; \
  902. size_t i = 0, bits = (b); \
  903. /* N is the size of the product of two b-bit numbers, plus one */ \
  904. /* limb for fix_negative */ \
  905. MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, (b) * 2 / biL + 1)); \
  906. LOAD32;
  907. #define NEXT \
  908. STORE32; i++; LOAD32; \
  909. cc = c; c = 0; \
  910. if (cc < 0) \
  911. sub32(&cur, -cc, &c); \
  912. else \
  913. add32(&cur, cc, &c); \
  914. #define LAST \
  915. STORE32; i++; \
  916. cur = c > 0 ? c : 0; STORE32; \
  917. cur = 0; while (++i < MAX32) { STORE32; } \
  918. if (c < 0) mbedtls_ecp_fix_negative(N, c, bits);
  919. /*
  920. * If the result is negative, we get it in the form
  921. * c * 2^bits + N, with c negative and N positive shorter than 'bits'
  922. */
  923. MBEDTLS_STATIC_TESTABLE
  924. void mbedtls_ecp_fix_negative(mbedtls_mpi *N, signed char c, size_t bits)
  925. {
  926. size_t i;
  927. /* Set N := 2^bits - 1 - N. We know that 0 <= N < 2^bits, so
  928. * set the absolute value to 0xfff...fff - N. There is no carry
  929. * since we're subtracting from all-bits-one. */
  930. for (i = 0; i <= bits / 8 / sizeof(mbedtls_mpi_uint); i++) {
  931. N->p[i] = ~(mbedtls_mpi_uint) 0 - N->p[i];
  932. }
  933. /* Add 1, taking care of the carry. */
  934. i = 0;
  935. do {
  936. ++N->p[i];
  937. } while (N->p[i++] == 0 && i <= bits / 8 / sizeof(mbedtls_mpi_uint));
  938. /* Invert the sign.
  939. * Now N = N0 - 2^bits where N0 is the initial value of N. */
  940. N->s = -1;
  941. /* Add |c| * 2^bits to the absolute value. Since c and N are
  942. * negative, this adds c * 2^bits. */
  943. mbedtls_mpi_uint msw = (mbedtls_mpi_uint) -c;
  944. #if defined(MBEDTLS_HAVE_INT64)
  945. if (bits == 224) {
  946. msw <<= 32;
  947. }
  948. #endif
  949. N->p[bits / 8 / sizeof(mbedtls_mpi_uint)] += msw;
  950. }
  951. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
  952. /*
  953. * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
  954. */
  955. static int ecp_mod_p224(mbedtls_mpi *N)
  956. {
  957. INIT(224);
  958. SUB(7); SUB(11); NEXT; // A0 += -A7 - A11
  959. SUB(8); SUB(12); NEXT; // A1 += -A8 - A12
  960. SUB(9); SUB(13); NEXT; // A2 += -A9 - A13
  961. SUB(10); ADD(7); ADD(11); NEXT; // A3 += -A10 + A7 + A11
  962. SUB(11); ADD(8); ADD(12); NEXT; // A4 += -A11 + A8 + A12
  963. SUB(12); ADD(9); ADD(13); NEXT; // A5 += -A12 + A9 + A13
  964. SUB(13); ADD(10); LAST; // A6 += -A13 + A10
  965. cleanup:
  966. return ret;
  967. }
  968. #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
  969. #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
  970. /*
  971. * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
  972. */
  973. static int ecp_mod_p256(mbedtls_mpi *N)
  974. {
  975. INIT(256);
  976. ADD(8); ADD(9);
  977. SUB(11); SUB(12); SUB(13); SUB(14); NEXT; // A0
  978. ADD(9); ADD(10);
  979. SUB(12); SUB(13); SUB(14); SUB(15); NEXT; // A1
  980. ADD(10); ADD(11);
  981. SUB(13); SUB(14); SUB(15); NEXT; // A2
  982. ADD(11); ADD(11); ADD(12); ADD(12); ADD(13);
  983. SUB(15); SUB(8); SUB(9); NEXT; // A3
  984. ADD(12); ADD(12); ADD(13); ADD(13); ADD(14);
  985. SUB(9); SUB(10); NEXT; // A4
  986. ADD(13); ADD(13); ADD(14); ADD(14); ADD(15);
  987. SUB(10); SUB(11); NEXT; // A5
  988. ADD(14); ADD(14); ADD(15); ADD(15); ADD(14); ADD(13);
  989. SUB(8); SUB(9); NEXT; // A6
  990. ADD(15); ADD(15); ADD(15); ADD(8);
  991. SUB(10); SUB(11); SUB(12); SUB(13); LAST; // A7
  992. cleanup:
  993. return ret;
  994. }
  995. #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
  996. #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  997. /*
  998. * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
  999. */
  1000. static int ecp_mod_p384(mbedtls_mpi *N)
  1001. {
  1002. INIT(384);
  1003. ADD(12); ADD(21); ADD(20);
  1004. SUB(23); NEXT; // A0
  1005. ADD(13); ADD(22); ADD(23);
  1006. SUB(12); SUB(20); NEXT; // A2
  1007. ADD(14); ADD(23);
  1008. SUB(13); SUB(21); NEXT; // A2
  1009. ADD(15); ADD(12); ADD(20); ADD(21);
  1010. SUB(14); SUB(22); SUB(23); NEXT; // A3
  1011. ADD(21); ADD(21); ADD(16); ADD(13); ADD(12); ADD(20); ADD(22);
  1012. SUB(15); SUB(23); SUB(23); NEXT; // A4
  1013. ADD(22); ADD(22); ADD(17); ADD(14); ADD(13); ADD(21); ADD(23);
  1014. SUB(16); NEXT; // A5
  1015. ADD(23); ADD(23); ADD(18); ADD(15); ADD(14); ADD(22);
  1016. SUB(17); NEXT; // A6
  1017. ADD(19); ADD(16); ADD(15); ADD(23);
  1018. SUB(18); NEXT; // A7
  1019. ADD(20); ADD(17); ADD(16);
  1020. SUB(19); NEXT; // A8
  1021. ADD(21); ADD(18); ADD(17);
  1022. SUB(20); NEXT; // A9
  1023. ADD(22); ADD(19); ADD(18);
  1024. SUB(21); NEXT; // A10
  1025. ADD(23); ADD(20); ADD(19);
  1026. SUB(22); LAST; // A11
  1027. cleanup:
  1028. return ret;
  1029. }
  1030. #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
  1031. #undef A
  1032. #undef LOAD32
  1033. #undef STORE32
  1034. #undef MAX32
  1035. #undef INIT
  1036. #undef NEXT
  1037. #undef LAST
  1038. #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
  1039. MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
  1040. MBEDTLS_ECP_DP_SECP384R1_ENABLED */
  1041. #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
  1042. /*
  1043. * Here we have an actual Mersenne prime, so things are more straightforward.
  1044. * However, chunks are aligned on a 'weird' boundary (521 bits).
  1045. */
  1046. /* Size of p521 in terms of mbedtls_mpi_uint */
  1047. #define P521_WIDTH (521 / 8 / sizeof(mbedtls_mpi_uint) + 1)
  1048. /* Bits to keep in the most significant mbedtls_mpi_uint */
  1049. #define P521_MASK 0x01FF
  1050. /*
  1051. * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
  1052. * Write N as A1 + 2^521 A0, return A0 + A1
  1053. */
  1054. static int ecp_mod_p521(mbedtls_mpi *N)
  1055. {
  1056. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  1057. size_t i;
  1058. mbedtls_mpi M;
  1059. mbedtls_mpi_uint Mp[P521_WIDTH + 1];
  1060. /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
  1061. * we need to hold bits 513 to 1056, which is 34 limbs, that is
  1062. * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
  1063. if (N->n < P521_WIDTH) {
  1064. return 0;
  1065. }
  1066. /* M = A1 */
  1067. M.s = 1;
  1068. M.n = N->n - (P521_WIDTH - 1);
  1069. if (M.n > P521_WIDTH + 1) {
  1070. M.n = P521_WIDTH + 1;
  1071. }
  1072. M.p = Mp;
  1073. memcpy(Mp, N->p + P521_WIDTH - 1, M.n * sizeof(mbedtls_mpi_uint));
  1074. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, 521 % (8 * sizeof(mbedtls_mpi_uint))));
  1075. /* N = A0 */
  1076. N->p[P521_WIDTH - 1] &= P521_MASK;
  1077. for (i = P521_WIDTH; i < N->n; i++) {
  1078. N->p[i] = 0;
  1079. }
  1080. /* N = A0 + A1 */
  1081. MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M));
  1082. cleanup:
  1083. return ret;
  1084. }
  1085. #undef P521_WIDTH
  1086. #undef P521_MASK
  1087. #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
  1088. #endif /* MBEDTLS_ECP_NIST_OPTIM */
  1089. #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
  1090. /* Size of p255 in terms of mbedtls_mpi_uint */
  1091. #define P255_WIDTH (255 / 8 / sizeof(mbedtls_mpi_uint) + 1)
  1092. /*
  1093. * Fast quasi-reduction modulo p255 = 2^255 - 19
  1094. * Write N as A0 + 2^255 A1, return A0 + 19 * A1
  1095. */
  1096. static int ecp_mod_p255(mbedtls_mpi *N)
  1097. {
  1098. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  1099. size_t i;
  1100. mbedtls_mpi M;
  1101. mbedtls_mpi_uint Mp[P255_WIDTH + 2];
  1102. if (N->n < P255_WIDTH) {
  1103. return 0;
  1104. }
  1105. /* M = A1 */
  1106. M.s = 1;
  1107. M.n = N->n - (P255_WIDTH - 1);
  1108. if (M.n > P255_WIDTH + 1) {
  1109. return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
  1110. }
  1111. M.p = Mp;
  1112. memset(Mp, 0, sizeof(Mp));
  1113. memcpy(Mp, N->p + P255_WIDTH - 1, M.n * sizeof(mbedtls_mpi_uint));
  1114. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, 255 % (8 * sizeof(mbedtls_mpi_uint))));
  1115. M.n++; /* Make room for multiplication by 19 */
  1116. /* N = A0 */
  1117. MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(N, 255, 0));
  1118. for (i = P255_WIDTH; i < N->n; i++) {
  1119. N->p[i] = 0;
  1120. }
  1121. /* N = A0 + 19 * A1 */
  1122. MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&M, &M, 19));
  1123. MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M));
  1124. cleanup:
  1125. return ret;
  1126. }
  1127. #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
  1128. #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
  1129. /* Size of p448 in terms of mbedtls_mpi_uint */
  1130. #define P448_WIDTH (448 / 8 / sizeof(mbedtls_mpi_uint))
  1131. /* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */
  1132. #define DIV_ROUND_UP(X, Y) (((X) + (Y) -1) / (Y))
  1133. #define P224_WIDTH_MIN (28 / sizeof(mbedtls_mpi_uint))
  1134. #define P224_WIDTH_MAX DIV_ROUND_UP(28, sizeof(mbedtls_mpi_uint))
  1135. #define P224_UNUSED_BITS ((P224_WIDTH_MAX * sizeof(mbedtls_mpi_uint) * 8) - 224)
  1136. /*
  1137. * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1
  1138. * Write N as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return
  1139. * A0 + A1 + B1 + (B0 + B1) * 2^224. This is different to the reference
  1140. * implementation of Curve448, which uses its own special 56-bit limbs rather
  1141. * than a generic bignum library. We could squeeze some extra speed out on
  1142. * 32-bit machines by splitting N up into 32-bit limbs and doing the
  1143. * arithmetic using the limbs directly as we do for the NIST primes above,
  1144. * but for 64-bit targets it should use half the number of operations if we do
  1145. * the reduction with 224-bit limbs, since mpi_add_mpi will then use 64-bit adds.
  1146. */
  1147. static int ecp_mod_p448(mbedtls_mpi *N)
  1148. {
  1149. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  1150. size_t i;
  1151. mbedtls_mpi M, Q;
  1152. mbedtls_mpi_uint Mp[P448_WIDTH + 1], Qp[P448_WIDTH];
  1153. if (N->n <= P448_WIDTH) {
  1154. return 0;
  1155. }
  1156. /* M = A1 */
  1157. M.s = 1;
  1158. M.n = N->n - (P448_WIDTH);
  1159. if (M.n > P448_WIDTH) {
  1160. /* Shouldn't be called with N larger than 2^896! */
  1161. return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
  1162. }
  1163. M.p = Mp;
  1164. memset(Mp, 0, sizeof(Mp));
  1165. memcpy(Mp, N->p + P448_WIDTH, M.n * sizeof(mbedtls_mpi_uint));
  1166. /* N = A0 */
  1167. for (i = P448_WIDTH; i < N->n; i++) {
  1168. N->p[i] = 0;
  1169. }
  1170. /* N += A1 */
  1171. MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &M));
  1172. /* Q = B1, N += B1 */
  1173. Q = M;
  1174. Q.p = Qp;
  1175. memcpy(Qp, Mp, sizeof(Qp));
  1176. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Q, 224));
  1177. MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &Q));
  1178. /* M = (B0 + B1) * 2^224, N += M */
  1179. if (sizeof(mbedtls_mpi_uint) > 4) {
  1180. Mp[P224_WIDTH_MIN] &= ((mbedtls_mpi_uint)-1) >> (P224_UNUSED_BITS);
  1181. }
  1182. for (i = P224_WIDTH_MAX; i < M.n; ++i) {
  1183. Mp[i] = 0;
  1184. }
  1185. MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&M, &M, &Q));
  1186. M.n = P448_WIDTH + 1; /* Make room for shifted carry bit from the addition */
  1187. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&M, 224));
  1188. MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &M));
  1189. cleanup:
  1190. return ret;
  1191. }
  1192. #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
  1193. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
  1194. defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
  1195. defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  1196. /*
  1197. * Fast quasi-reduction modulo P = 2^s - R,
  1198. * with R about 33 bits, used by the Koblitz curves.
  1199. *
  1200. * Write N as A0 + 2^224 A1, return A0 + R * A1.
  1201. * Actually do two passes, since R is big.
  1202. */
  1203. #define P_KOBLITZ_MAX (256 / 8 / sizeof(mbedtls_mpi_uint)) // Max limbs in P
  1204. #define P_KOBLITZ_R (8 / sizeof(mbedtls_mpi_uint)) // Limbs in R
  1205. static inline int ecp_mod_koblitz(mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs,
  1206. size_t adjust, size_t shift, mbedtls_mpi_uint mask)
  1207. {
  1208. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  1209. size_t i;
  1210. mbedtls_mpi M, R;
  1211. mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
  1212. if (N->n < p_limbs) {
  1213. return 0;
  1214. }
  1215. /* Init R */
  1216. R.s = 1;
  1217. R.p = Rp;
  1218. R.n = P_KOBLITZ_R;
  1219. /* Common setup for M */
  1220. M.s = 1;
  1221. M.p = Mp;
  1222. /* M = A1 */
  1223. M.n = N->n - (p_limbs - adjust);
  1224. if (M.n > p_limbs + adjust) {
  1225. M.n = p_limbs + adjust;
  1226. }
  1227. memset(Mp, 0, sizeof(Mp));
  1228. memcpy(Mp, N->p + p_limbs - adjust, M.n * sizeof(mbedtls_mpi_uint));
  1229. if (shift != 0) {
  1230. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, shift));
  1231. }
  1232. M.n += R.n; /* Make room for multiplication by R */
  1233. /* N = A0 */
  1234. if (mask != 0) {
  1235. N->p[p_limbs - 1] &= mask;
  1236. }
  1237. for (i = p_limbs; i < N->n; i++) {
  1238. N->p[i] = 0;
  1239. }
  1240. /* N = A0 + R * A1 */
  1241. MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&M, &M, &R));
  1242. MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M));
  1243. /* Second pass */
  1244. /* M = A1 */
  1245. M.n = N->n - (p_limbs - adjust);
  1246. if (M.n > p_limbs + adjust) {
  1247. M.n = p_limbs + adjust;
  1248. }
  1249. memset(Mp, 0, sizeof(Mp));
  1250. memcpy(Mp, N->p + p_limbs - adjust, M.n * sizeof(mbedtls_mpi_uint));
  1251. if (shift != 0) {
  1252. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, shift));
  1253. }
  1254. M.n += R.n; /* Make room for multiplication by R */
  1255. /* N = A0 */
  1256. if (mask != 0) {
  1257. N->p[p_limbs - 1] &= mask;
  1258. }
  1259. for (i = p_limbs; i < N->n; i++) {
  1260. N->p[i] = 0;
  1261. }
  1262. /* N = A0 + R * A1 */
  1263. MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&M, &M, &R));
  1264. MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M));
  1265. cleanup:
  1266. return ret;
  1267. }
  1268. #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
  1269. MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
  1270. MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
  1271. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
  1272. /*
  1273. * Fast quasi-reduction modulo p192k1 = 2^192 - R,
  1274. * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
  1275. */
  1276. static int ecp_mod_p192k1(mbedtls_mpi *N)
  1277. {
  1278. static mbedtls_mpi_uint Rp[] = {
  1279. MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00,
  1280. 0x00)
  1281. };
  1282. return ecp_mod_koblitz(N, Rp, 192 / 8 / sizeof(mbedtls_mpi_uint), 0, 0,
  1283. 0);
  1284. }
  1285. #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
  1286. #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
  1287. /*
  1288. * Fast quasi-reduction modulo p224k1 = 2^224 - R,
  1289. * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
  1290. */
  1291. static int ecp_mod_p224k1(mbedtls_mpi *N)
  1292. {
  1293. static mbedtls_mpi_uint Rp[] = {
  1294. MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00,
  1295. 0x00)
  1296. };
  1297. #if defined(MBEDTLS_HAVE_INT64)
  1298. return ecp_mod_koblitz(N, Rp, 4, 1, 32, 0xFFFFFFFF);
  1299. #else
  1300. return ecp_mod_koblitz(N, Rp, 224 / 8 / sizeof(mbedtls_mpi_uint), 0, 0,
  1301. 0);
  1302. #endif
  1303. }
  1304. #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
  1305. #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  1306. /*
  1307. * Fast quasi-reduction modulo p256k1 = 2^256 - R,
  1308. * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
  1309. */
  1310. static int ecp_mod_p256k1(mbedtls_mpi *N)
  1311. {
  1312. static mbedtls_mpi_uint Rp[] = {
  1313. MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00,
  1314. 0x00)
  1315. };
  1316. return ecp_mod_koblitz(N, Rp, 256 / 8 / sizeof(mbedtls_mpi_uint), 0, 0,
  1317. 0);
  1318. }
  1319. #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
  1320. #endif /* !MBEDTLS_ECP_ALT */
  1321. #endif /* MBEDTLS_ECP_C */