simplifier.cpp 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863
  1. // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
  2. #include "meshoptimizer.h"
  3. #include <assert.h>
  4. #include <float.h>
  5. #include <math.h>
  6. #include <string.h>
  7. #ifndef TRACE
  8. #define TRACE 0
  9. #endif
  10. #if TRACE
  11. #include <stdio.h>
  12. #endif
  13. #if TRACE
  14. #define TRACESTATS(i) stats[i]++;
  15. #else
  16. #define TRACESTATS(i) (void)0
  17. #endif
  18. #define ATTRIBUTES 3
  19. // This work is based on:
  20. // Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. 1997
  21. // Michael Garland. Quadric-based polygonal surface simplification. 1999
  22. // Peter Lindstrom. Out-of-Core Simplification of Large Polygonal Models. 2000
  23. // Matthias Teschner, Bruno Heidelberger, Matthias Mueller, Danat Pomeranets, Markus Gross. Optimized Spatial Hashing for Collision Detection of Deformable Objects. 2003
  24. // Peter Van Sandt, Yannis Chronis, Jignesh M. Patel. Efficiently Searching In-Memory Sorted Arrays: Revenge of the Interpolation Search? 2019
  25. namespace meshopt
  26. {
  27. struct EdgeAdjacency
  28. {
  29. struct Edge
  30. {
  31. unsigned int next;
  32. unsigned int prev;
  33. };
  34. unsigned int* counts;
  35. unsigned int* offsets;
  36. Edge* data;
  37. };
  38. static void prepareEdgeAdjacency(EdgeAdjacency& adjacency, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator)
  39. {
  40. adjacency.counts = allocator.allocate<unsigned int>(vertex_count);
  41. adjacency.offsets = allocator.allocate<unsigned int>(vertex_count);
  42. adjacency.data = allocator.allocate<EdgeAdjacency::Edge>(index_count);
  43. }
  44. static void updateEdgeAdjacency(EdgeAdjacency& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, const unsigned int* remap)
  45. {
  46. size_t face_count = index_count / 3;
  47. // fill edge counts
  48. memset(adjacency.counts, 0, vertex_count * sizeof(unsigned int));
  49. for (size_t i = 0; i < index_count; ++i)
  50. {
  51. unsigned int v = remap ? remap[indices[i]] : indices[i];
  52. assert(v < vertex_count);
  53. adjacency.counts[v]++;
  54. }
  55. // fill offset table
  56. unsigned int offset = 0;
  57. for (size_t i = 0; i < vertex_count; ++i)
  58. {
  59. adjacency.offsets[i] = offset;
  60. offset += adjacency.counts[i];
  61. }
  62. assert(offset == index_count);
  63. // fill edge data
  64. for (size_t i = 0; i < face_count; ++i)
  65. {
  66. unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
  67. if (remap)
  68. {
  69. a = remap[a];
  70. b = remap[b];
  71. c = remap[c];
  72. }
  73. adjacency.data[adjacency.offsets[a]].next = b;
  74. adjacency.data[adjacency.offsets[a]].prev = c;
  75. adjacency.offsets[a]++;
  76. adjacency.data[adjacency.offsets[b]].next = c;
  77. adjacency.data[adjacency.offsets[b]].prev = a;
  78. adjacency.offsets[b]++;
  79. adjacency.data[adjacency.offsets[c]].next = a;
  80. adjacency.data[adjacency.offsets[c]].prev = b;
  81. adjacency.offsets[c]++;
  82. }
  83. // fix offsets that have been disturbed by the previous pass
  84. for (size_t i = 0; i < vertex_count; ++i)
  85. {
  86. assert(adjacency.offsets[i] >= adjacency.counts[i]);
  87. adjacency.offsets[i] -= adjacency.counts[i];
  88. }
  89. }
  90. struct PositionHasher
  91. {
  92. const float* vertex_positions;
  93. size_t vertex_stride_float;
  94. size_t hash(unsigned int index) const
  95. {
  96. const unsigned int* key = reinterpret_cast<const unsigned int*>(vertex_positions + index * vertex_stride_float);
  97. // scramble bits to make sure that integer coordinates have entropy in lower bits
  98. unsigned int x = key[0] ^ (key[0] >> 17);
  99. unsigned int y = key[1] ^ (key[1] >> 17);
  100. unsigned int z = key[2] ^ (key[2] >> 17);
  101. // Optimized Spatial Hashing for Collision Detection of Deformable Objects
  102. return (x * 73856093) ^ (y * 19349663) ^ (z * 83492791);
  103. }
  104. bool equal(unsigned int lhs, unsigned int rhs) const
  105. {
  106. return memcmp(vertex_positions + lhs * vertex_stride_float, vertex_positions + rhs * vertex_stride_float, sizeof(float) * 3) == 0;
  107. }
  108. };
  109. static size_t hashBuckets2(size_t count)
  110. {
  111. size_t buckets = 1;
  112. while (buckets < count + count / 4)
  113. buckets *= 2;
  114. return buckets;
  115. }
  116. template <typename T, typename Hash>
  117. static T* hashLookup2(T* table, size_t buckets, const Hash& hash, const T& key, const T& empty)
  118. {
  119. assert(buckets > 0);
  120. assert((buckets & (buckets - 1)) == 0);
  121. size_t hashmod = buckets - 1;
  122. size_t bucket = hash.hash(key) & hashmod;
  123. for (size_t probe = 0; probe <= hashmod; ++probe)
  124. {
  125. T& item = table[bucket];
  126. if (item == empty)
  127. return &item;
  128. if (hash.equal(item, key))
  129. return &item;
  130. // hash collision, quadratic probing
  131. bucket = (bucket + probe + 1) & hashmod;
  132. }
  133. assert(false && "Hash table is full"); // unreachable
  134. return 0;
  135. }
  136. static void buildPositionRemap(unsigned int* remap, unsigned int* wedge, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, meshopt_Allocator& allocator)
  137. {
  138. PositionHasher hasher = {vertex_positions_data, vertex_positions_stride / sizeof(float)};
  139. size_t table_size = hashBuckets2(vertex_count);
  140. unsigned int* table = allocator.allocate<unsigned int>(table_size);
  141. memset(table, -1, table_size * sizeof(unsigned int));
  142. // build forward remap: for each vertex, which other (canonical) vertex does it map to?
  143. // we use position equivalence for this, and remap vertices to other existing vertices
  144. for (size_t i = 0; i < vertex_count; ++i)
  145. {
  146. unsigned int index = unsigned(i);
  147. unsigned int* entry = hashLookup2(table, table_size, hasher, index, ~0u);
  148. if (*entry == ~0u)
  149. *entry = index;
  150. remap[index] = *entry;
  151. }
  152. // build wedge table: for each vertex, which other vertex is the next wedge that also maps to the same vertex?
  153. // entries in table form a (cyclic) wedge loop per vertex; for manifold vertices, wedge[i] == remap[i] == i
  154. for (size_t i = 0; i < vertex_count; ++i)
  155. wedge[i] = unsigned(i);
  156. for (size_t i = 0; i < vertex_count; ++i)
  157. if (remap[i] != i)
  158. {
  159. unsigned int r = remap[i];
  160. wedge[i] = wedge[r];
  161. wedge[r] = unsigned(i);
  162. }
  163. }
  164. enum VertexKind
  165. {
  166. Kind_Manifold, // not on an attribute seam, not on any boundary
  167. Kind_Border, // not on an attribute seam, has exactly two open edges
  168. Kind_Seam, // on an attribute seam with exactly two attribute seam edges
  169. Kind_Complex, // none of the above; these vertices can move as long as all wedges move to the target vertex
  170. Kind_Locked, // none of the above; these vertices can't move
  171. Kind_Count
  172. };
  173. // manifold vertices can collapse onto anything
  174. // border/seam vertices can only be collapsed onto border/seam respectively
  175. // complex vertices can collapse onto complex/locked
  176. // a rule of thumb is that collapsing kind A into kind B preserves the kind B in the target vertex
  177. // for example, while we could collapse Complex into Manifold, this would mean the target vertex isn't Manifold anymore
  178. const unsigned char kCanCollapse[Kind_Count][Kind_Count] = {
  179. {1, 1, 1, 1, 1},
  180. {0, 1, 0, 0, 0},
  181. {0, 0, 1, 0, 0},
  182. {0, 0, 0, 1, 1},
  183. {0, 0, 0, 0, 0},
  184. };
  185. // if a vertex is manifold or seam, adjoining edges are guaranteed to have an opposite edge
  186. // note that for seam edges, the opposite edge isn't present in the attribute-based topology
  187. // but is present if you consider a position-only mesh variant
  188. const unsigned char kHasOpposite[Kind_Count][Kind_Count] = {
  189. {1, 1, 1, 0, 1},
  190. {1, 0, 1, 0, 0},
  191. {1, 1, 1, 0, 1},
  192. {0, 0, 0, 0, 0},
  193. {1, 0, 1, 0, 0},
  194. };
  195. static bool hasEdge(const EdgeAdjacency& adjacency, unsigned int a, unsigned int b)
  196. {
  197. unsigned int count = adjacency.counts[a];
  198. const EdgeAdjacency::Edge* edges = adjacency.data + adjacency.offsets[a];
  199. for (size_t i = 0; i < count; ++i)
  200. if (edges[i].next == b)
  201. return true;
  202. return false;
  203. }
  204. static void classifyVertices(unsigned char* result, unsigned int* loop, unsigned int* loopback, size_t vertex_count, const EdgeAdjacency& adjacency, const unsigned int* remap, const unsigned int* wedge, unsigned int options)
  205. {
  206. memset(loop, -1, vertex_count * sizeof(unsigned int));
  207. memset(loopback, -1, vertex_count * sizeof(unsigned int));
  208. // incoming & outgoing open edges: ~0u if no open edges, i if there are more than 1
  209. // note that this is the same data as required in loop[] arrays; loop[] data is only valid for border/seam
  210. // but here it's okay to fill the data out for other types of vertices as well
  211. unsigned int* openinc = loopback;
  212. unsigned int* openout = loop;
  213. for (size_t i = 0; i < vertex_count; ++i)
  214. {
  215. unsigned int vertex = unsigned(i);
  216. unsigned int count = adjacency.counts[vertex];
  217. const EdgeAdjacency::Edge* edges = adjacency.data + adjacency.offsets[vertex];
  218. for (size_t j = 0; j < count; ++j)
  219. {
  220. unsigned int target = edges[j].next;
  221. if (target == vertex)
  222. {
  223. // degenerate triangles have two distinct edges instead of three, and the self edge
  224. // is bi-directional by definition; this can break border/seam classification by "closing"
  225. // the open edge from another triangle and falsely marking the vertex as manifold
  226. // instead we mark the vertex as having >1 open edges which turns it into locked/complex
  227. openinc[vertex] = openout[vertex] = vertex;
  228. }
  229. else if (!hasEdge(adjacency, target, vertex))
  230. {
  231. openinc[target] = (openinc[target] == ~0u) ? vertex : target;
  232. openout[vertex] = (openout[vertex] == ~0u) ? target : vertex;
  233. }
  234. }
  235. }
  236. #if TRACE
  237. size_t stats[4] = {};
  238. #endif
  239. for (size_t i = 0; i < vertex_count; ++i)
  240. {
  241. if (remap[i] == i)
  242. {
  243. if (wedge[i] == i)
  244. {
  245. // no attribute seam, need to check if it's manifold
  246. unsigned int openi = openinc[i], openo = openout[i];
  247. // note: we classify any vertices with no open edges as manifold
  248. // this is technically incorrect - if 4 triangles share an edge, we'll classify vertices as manifold
  249. // it's unclear if this is a problem in practice
  250. if (openi == ~0u && openo == ~0u)
  251. {
  252. result[i] = Kind_Manifold;
  253. }
  254. else if (openi != i && openo != i)
  255. {
  256. result[i] = Kind_Border;
  257. }
  258. else
  259. {
  260. result[i] = Kind_Locked;
  261. TRACESTATS(0);
  262. }
  263. }
  264. else if (wedge[wedge[i]] == i)
  265. {
  266. // attribute seam; need to distinguish between Seam and Locked
  267. unsigned int w = wedge[i];
  268. unsigned int openiv = openinc[i], openov = openout[i];
  269. unsigned int openiw = openinc[w], openow = openout[w];
  270. // seam should have one open half-edge for each vertex, and the edges need to "connect" - point to the same vertex post-remap
  271. if (openiv != ~0u && openiv != i && openov != ~0u && openov != i &&
  272. openiw != ~0u && openiw != w && openow != ~0u && openow != w)
  273. {
  274. if (remap[openiv] == remap[openow] && remap[openov] == remap[openiw])
  275. {
  276. result[i] = Kind_Seam;
  277. }
  278. else
  279. {
  280. result[i] = Kind_Locked;
  281. TRACESTATS(1);
  282. }
  283. }
  284. else
  285. {
  286. result[i] = Kind_Locked;
  287. TRACESTATS(2);
  288. }
  289. }
  290. else
  291. {
  292. // more than one vertex maps to this one; we don't have classification available
  293. result[i] = Kind_Locked;
  294. TRACESTATS(3);
  295. }
  296. }
  297. else
  298. {
  299. assert(remap[i] < i);
  300. result[i] = result[remap[i]];
  301. }
  302. }
  303. if (options & meshopt_SimplifyLockBorder)
  304. for (size_t i = 0; i < vertex_count; ++i)
  305. if (result[i] == Kind_Border)
  306. result[i] = Kind_Locked;
  307. #if TRACE
  308. printf("locked: many open edges %d, disconnected seam %d, many seam edges %d, many wedges %d\n",
  309. int(stats[0]), int(stats[1]), int(stats[2]), int(stats[3]));
  310. #endif
  311. }
  312. struct Vector3
  313. {
  314. float x, y, z;
  315. #if ATTRIBUTES
  316. float a[ATTRIBUTES];
  317. #endif
  318. };
  319. static float rescalePositions(Vector3* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride)
  320. {
  321. size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
  322. float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX};
  323. float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};
  324. for (size_t i = 0; i < vertex_count; ++i)
  325. {
  326. const float* v = vertex_positions_data + i * vertex_stride_float;
  327. if (result)
  328. {
  329. result[i].x = v[0];
  330. result[i].y = v[1];
  331. result[i].z = v[2];
  332. }
  333. for (int j = 0; j < 3; ++j)
  334. {
  335. float vj = v[j];
  336. minv[j] = minv[j] > vj ? vj : minv[j];
  337. maxv[j] = maxv[j] < vj ? vj : maxv[j];
  338. }
  339. }
  340. float extent = 0.f;
  341. extent = (maxv[0] - minv[0]) < extent ? extent : (maxv[0] - minv[0]);
  342. extent = (maxv[1] - minv[1]) < extent ? extent : (maxv[1] - minv[1]);
  343. extent = (maxv[2] - minv[2]) < extent ? extent : (maxv[2] - minv[2]);
  344. if (result)
  345. {
  346. float scale = extent == 0 ? 0.f : 1.f / extent;
  347. for (size_t i = 0; i < vertex_count; ++i)
  348. {
  349. result[i].x = (result[i].x - minv[0]) * scale;
  350. result[i].y = (result[i].y - minv[1]) * scale;
  351. result[i].z = (result[i].z - minv[2]) * scale;
  352. }
  353. }
  354. return extent;
  355. }
  356. struct Quadric
  357. {
  358. float a00, a11, a22;
  359. float a10, a20, a21;
  360. float b0, b1, b2, c;
  361. float w;
  362. #if ATTRIBUTES
  363. float gx[ATTRIBUTES];
  364. float gy[ATTRIBUTES];
  365. float gz[ATTRIBUTES];
  366. float gw[ATTRIBUTES];
  367. #endif
  368. };
  369. struct Collapse
  370. {
  371. unsigned int v0;
  372. unsigned int v1;
  373. union
  374. {
  375. unsigned int bidi;
  376. float error;
  377. unsigned int errorui;
  378. };
  379. float distance_error;
  380. };
  381. static float normalize(Vector3& v)
  382. {
  383. float length = sqrtf(v.x * v.x + v.y * v.y + v.z * v.z);
  384. if (length > 0)
  385. {
  386. v.x /= length;
  387. v.y /= length;
  388. v.z /= length;
  389. }
  390. return length;
  391. }
  392. static void quadricAdd(Quadric& Q, const Quadric& R)
  393. {
  394. Q.a00 += R.a00;
  395. Q.a11 += R.a11;
  396. Q.a22 += R.a22;
  397. Q.a10 += R.a10;
  398. Q.a20 += R.a20;
  399. Q.a21 += R.a21;
  400. Q.b0 += R.b0;
  401. Q.b1 += R.b1;
  402. Q.b2 += R.b2;
  403. Q.c += R.c;
  404. Q.w += R.w;
  405. #if ATTRIBUTES
  406. for (int k = 0; k < ATTRIBUTES; ++k)
  407. {
  408. Q.gx[k] += R.gx[k];
  409. Q.gy[k] += R.gy[k];
  410. Q.gz[k] += R.gz[k];
  411. Q.gw[k] += R.gw[k];
  412. }
  413. #endif
  414. }
  415. static float quadricError(const Quadric& Q, const Vector3& v)
  416. {
  417. float rx = Q.b0;
  418. float ry = Q.b1;
  419. float rz = Q.b2;
  420. rx += Q.a10 * v.y;
  421. ry += Q.a21 * v.z;
  422. rz += Q.a20 * v.x;
  423. rx *= 2;
  424. ry *= 2;
  425. rz *= 2;
  426. rx += Q.a00 * v.x;
  427. ry += Q.a11 * v.y;
  428. rz += Q.a22 * v.z;
  429. float r = Q.c;
  430. r += rx * v.x;
  431. r += ry * v.y;
  432. r += rz * v.z;
  433. #if ATTRIBUTES
  434. // see quadricUpdateAttributes for general derivation; here we need to add the parts of (eval(pos) - attr)^2 that depend on attr
  435. for (int k = 0; k < ATTRIBUTES; ++k)
  436. {
  437. float a = v.a[k];
  438. r += a * a * Q.w;
  439. r -= 2 * a * (v.x * Q.gx[k] + v.y * Q.gy[k] + v.z * Q.gz[k] + Q.gw[k]);
  440. }
  441. #endif
  442. float s = Q.w == 0.f ? 0.f : 1.f / Q.w;
  443. return fabsf(r) * s;
  444. }
  445. static float quadricErrorNoAttributes(const Quadric& Q, const Vector3& v)
  446. {
  447. float rx = Q.b0;
  448. float ry = Q.b1;
  449. float rz = Q.b2;
  450. rx += Q.a10 * v.y;
  451. ry += Q.a21 * v.z;
  452. rz += Q.a20 * v.x;
  453. rx *= 2;
  454. ry *= 2;
  455. rz *= 2;
  456. rx += Q.a00 * v.x;
  457. ry += Q.a11 * v.y;
  458. rz += Q.a22 * v.z;
  459. float r = Q.c;
  460. r += rx * v.x;
  461. r += ry * v.y;
  462. r += rz * v.z;
  463. float s = Q.w == 0.f ? 0.f : 1.f / Q.w;
  464. return fabsf(r) * s;
  465. }
  466. static void quadricFromPlane(Quadric& Q, float a, float b, float c, float d, float w)
  467. {
  468. float aw = a * w;
  469. float bw = b * w;
  470. float cw = c * w;
  471. float dw = d * w;
  472. Q.a00 = a * aw;
  473. Q.a11 = b * bw;
  474. Q.a22 = c * cw;
  475. Q.a10 = a * bw;
  476. Q.a20 = a * cw;
  477. Q.a21 = b * cw;
  478. Q.b0 = a * dw;
  479. Q.b1 = b * dw;
  480. Q.b2 = c * dw;
  481. Q.c = d * dw;
  482. Q.w = w;
  483. #if ATTRIBUTES
  484. memset(Q.gx, 0, sizeof(Q.gx));
  485. memset(Q.gy, 0, sizeof(Q.gy));
  486. memset(Q.gz, 0, sizeof(Q.gz));
  487. memset(Q.gw, 0, sizeof(Q.gw));
  488. #endif
  489. }
  490. static void quadricFromPoint(Quadric& Q, float x, float y, float z, float w)
  491. {
  492. // we need to encode (x - X) ^ 2 + (y - Y)^2 + (z - Z)^2 into the quadric
  493. Q.a00 = w;
  494. Q.a11 = w;
  495. Q.a22 = w;
  496. Q.a10 = 0.f;
  497. Q.a20 = 0.f;
  498. Q.a21 = 0.f;
  499. Q.b0 = -2.f * x * w;
  500. Q.b1 = -2.f * y * w;
  501. Q.b2 = -2.f * z * w;
  502. Q.c = (x * x + y * y + z * z) * w;
  503. Q.w = w;
  504. }
  505. static void quadricFromTriangle(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float weight)
  506. {
  507. Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z};
  508. Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z};
  509. // normal = cross(p1 - p0, p2 - p0)
  510. Vector3 normal = {p10.y * p20.z - p10.z * p20.y, p10.z * p20.x - p10.x * p20.z, p10.x * p20.y - p10.y * p20.x};
  511. float area = normalize(normal);
  512. float distance = normal.x * p0.x + normal.y * p0.y + normal.z * p0.z;
  513. // we use sqrtf(area) so that the error is scaled linearly; this tends to improve silhouettes
  514. quadricFromPlane(Q, normal.x, normal.y, normal.z, -distance, sqrtf(area) * weight);
  515. }
  516. static void quadricFromTriangleEdge(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float weight)
  517. {
  518. Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z};
  519. float length = normalize(p10);
  520. // p20p = length of projection of p2-p0 onto normalize(p1 - p0)
  521. Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z};
  522. float p20p = p20.x * p10.x + p20.y * p10.y + p20.z * p10.z;
  523. // normal = altitude of triangle from point p2 onto edge p1-p0
  524. Vector3 normal = {p20.x - p10.x * p20p, p20.y - p10.y * p20p, p20.z - p10.z * p20p};
  525. normalize(normal);
  526. float distance = normal.x * p0.x + normal.y * p0.y + normal.z * p0.z;
  527. // note: the weight is scaled linearly with edge length; this has to match the triangle weight
  528. quadricFromPlane(Q, normal.x, normal.y, normal.z, -distance, length * weight);
  529. }
  530. #if ATTRIBUTES
  531. static void quadricUpdateAttributes(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float w)
  532. {
  533. // for each attribute we want to encode the following function into the quadric:
  534. // (eval(pos) - attr)^2
  535. // where eval(pos) interpolates attribute across the triangle like so:
  536. // eval(pos) = pos.x * gx + pos.y * gy + pos.z * gz + gw
  537. // where gx/gy/gz/gw are gradients
  538. Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z};
  539. Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z};
  540. // we compute gradients using barycentric coordinates; barycentric coordinates can be computed as follows:
  541. // v = (d11 * d20 - d01 * d21) / denom
  542. // w = (d00 * d21 - d01 * d20) / denom
  543. // u = 1 - v - w
  544. // here v0, v1 are triangle edge vectors, v2 is a vector from point to triangle corner, and dij = dot(vi, vj)
  545. const Vector3& v0 = p10;
  546. const Vector3& v1 = p20;
  547. float d00 = v0.x * v0.x + v0.y * v0.y + v0.z * v0.z;
  548. float d01 = v0.x * v1.x + v0.y * v1.y + v0.z * v1.z;
  549. float d11 = v1.x * v1.x + v1.y * v1.y + v1.z * v1.z;
  550. float denom = d00 * d11 - d01 * d01;
  551. float denomr = denom == 0 ? 0.f : 1.f / denom;
  552. // precompute gradient factors
  553. // these are derived by directly computing derivative of eval(pos) = a0 * u + a1 * v + a2 * w and factoring out common factors that are shared between attributes
  554. float gx1 = (d11 * v0.x - d01 * v1.x) * denomr;
  555. float gx2 = (d00 * v1.x - d01 * v0.x) * denomr;
  556. float gy1 = (d11 * v0.y - d01 * v1.y) * denomr;
  557. float gy2 = (d00 * v1.y - d01 * v0.y) * denomr;
  558. float gz1 = (d11 * v0.z - d01 * v1.z) * denomr;
  559. float gz2 = (d00 * v1.z - d01 * v0.z) * denomr;
  560. for (int k = 0; k < ATTRIBUTES; ++k)
  561. {
  562. float a0 = p0.a[k], a1 = p1.a[k], a2 = p2.a[k];
  563. // compute gradient of eval(pos) for x/y/z/w
  564. // the formulas below are obtained by directly computing derivative of eval(pos) = a0 * u + a1 * v + a2 * w
  565. float gx = gx1 * (a1 - a0) + gx2 * (a2 - a0);
  566. float gy = gy1 * (a1 - a0) + gy2 * (a2 - a0);
  567. float gz = gz1 * (a1 - a0) + gz2 * (a2 - a0);
  568. float gw = a0 - p0.x * gx - p0.y * gy - p0.z * gz;
  569. // quadric encodes (eval(pos)-attr)^2; this means that the resulting expansion needs to compute, for example, pos.x * pos.y * K
  570. // since quadrics already encode factors for pos.x * pos.y, we can accumulate almost everything in basic quadric fields
  571. Q.a00 += w * (gx * gx);
  572. Q.a11 += w * (gy * gy);
  573. Q.a22 += w * (gz * gz);
  574. Q.a10 += w * (gy * gx);
  575. Q.a20 += w * (gz * gx);
  576. Q.a21 += w * (gz * gy);
  577. Q.b0 += w * (gx * gw);
  578. Q.b1 += w * (gy * gw);
  579. Q.b2 += w * (gz * gw);
  580. Q.c += w * (gw * gw);
  581. // the only remaining sum components are ones that depend on attr; these will be addded during error evaluation, see quadricError
  582. Q.gx[k] = w * gx;
  583. Q.gy[k] = w * gy;
  584. Q.gz[k] = w * gz;
  585. Q.gw[k] = w * gw;
  586. #if TRACE > 2
  587. printf("attr%d: %e %e %e\n",
  588. k,
  589. (gx * p0.x + gy * p0.y + gz * p0.z + gw - a0),
  590. (gx * p1.x + gy * p1.y + gz * p1.z + gw - a1),
  591. (gx * p2.x + gy * p2.y + gz * p2.z + gw - a2)
  592. );
  593. #endif
  594. }
  595. }
  596. #endif
  597. static void fillFaceQuadrics(Quadric* vertex_quadrics, Quadric* vertex_no_attrib_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap)
  598. {
  599. for (size_t i = 0; i < index_count; i += 3)
  600. {
  601. unsigned int i0 = indices[i + 0];
  602. unsigned int i1 = indices[i + 1];
  603. unsigned int i2 = indices[i + 2];
  604. Quadric Q;
  605. quadricFromTriangle(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], 1.f);
  606. quadricAdd(vertex_no_attrib_quadrics[remap[i0]], Q);
  607. quadricAdd(vertex_no_attrib_quadrics[remap[i1]], Q);
  608. quadricAdd(vertex_no_attrib_quadrics[remap[i2]], Q);
  609. #if ATTRIBUTES
  610. quadricUpdateAttributes(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], Q.w);
  611. #endif
  612. quadricAdd(vertex_quadrics[remap[i0]], Q);
  613. quadricAdd(vertex_quadrics[remap[i1]], Q);
  614. quadricAdd(vertex_quadrics[remap[i2]], Q);
  615. }
  616. }
  617. static void fillEdgeQuadrics(Quadric* vertex_quadrics, Quadric* vertex_no_attrib_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop, const unsigned int* loopback)
  618. {
  619. for (size_t i = 0; i < index_count; i += 3)
  620. {
  621. static const int next[3] = {1, 2, 0};
  622. for (int e = 0; e < 3; ++e)
  623. {
  624. unsigned int i0 = indices[i + e];
  625. unsigned int i1 = indices[i + next[e]];
  626. unsigned char k0 = vertex_kind[i0];
  627. unsigned char k1 = vertex_kind[i1];
  628. // check that either i0 or i1 are border/seam and are on the same edge loop
  629. // note that we need to add the error even for edged that connect e.g. border & locked
  630. // if we don't do that, the adjacent border->border edge won't have correct errors for corners
  631. if (k0 != Kind_Border && k0 != Kind_Seam && k1 != Kind_Border && k1 != Kind_Seam)
  632. continue;
  633. if ((k0 == Kind_Border || k0 == Kind_Seam) && loop[i0] != i1)
  634. continue;
  635. if ((k1 == Kind_Border || k1 == Kind_Seam) && loopback[i1] != i0)
  636. continue;
  637. // seam edges should occur twice (i0->i1 and i1->i0) - skip redundant edges
  638. if (kHasOpposite[k0][k1] && remap[i1] > remap[i0])
  639. continue;
  640. unsigned int i2 = indices[i + next[next[e]]];
  641. // we try hard to maintain border edge geometry; seam edges can move more freely
  642. // due to topological restrictions on collapses, seam quadrics slightly improves collapse structure but aren't critical
  643. const float kEdgeWeightSeam = 1.f;
  644. const float kEdgeWeightBorder = 10.f;
  645. float edgeWeight = (k0 == Kind_Border || k1 == Kind_Border) ? kEdgeWeightBorder : kEdgeWeightSeam;
  646. Quadric Q;
  647. quadricFromTriangleEdge(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], edgeWeight);
  648. quadricAdd(vertex_quadrics[remap[i0]], Q);
  649. quadricAdd(vertex_quadrics[remap[i1]], Q);
  650. quadricAdd(vertex_no_attrib_quadrics[remap[i0]], Q);
  651. quadricAdd(vertex_no_attrib_quadrics[remap[i1]], Q);
  652. }
  653. }
  654. }
  655. // does triangle ABC flip when C is replaced with D?
  656. static bool hasTriangleFlip(const Vector3& a, const Vector3& b, const Vector3& c, const Vector3& d)
  657. {
  658. Vector3 eb = {b.x - a.x, b.y - a.y, b.z - a.z};
  659. Vector3 ec = {c.x - a.x, c.y - a.y, c.z - a.z};
  660. Vector3 ed = {d.x - a.x, d.y - a.y, d.z - a.z};
  661. Vector3 nbc = {eb.y * ec.z - eb.z * ec.y, eb.z * ec.x - eb.x * ec.z, eb.x * ec.y - eb.y * ec.x};
  662. Vector3 nbd = {eb.y * ed.z - eb.z * ed.y, eb.z * ed.x - eb.x * ed.z, eb.x * ed.y - eb.y * ed.x};
  663. return nbc.x * nbd.x + nbc.y * nbd.y + nbc.z * nbd.z < 0;
  664. }
  665. static bool hasTriangleFlips(const EdgeAdjacency& adjacency, const Vector3* vertex_positions, const unsigned int* collapse_remap, unsigned int i0, unsigned int i1)
  666. {
  667. assert(collapse_remap[i0] == i0);
  668. assert(collapse_remap[i1] == i1);
  669. const Vector3& v0 = vertex_positions[i0];
  670. const Vector3& v1 = vertex_positions[i1];
  671. const EdgeAdjacency::Edge* edges = &adjacency.data[adjacency.offsets[i0]];
  672. size_t count = adjacency.counts[i0];
  673. for (size_t i = 0; i < count; ++i)
  674. {
  675. unsigned int a = collapse_remap[edges[i].next];
  676. unsigned int b = collapse_remap[edges[i].prev];
  677. // skip triangles that get collapsed
  678. // note: this is mathematically redundant as if either of these is true, the dot product in hasTriangleFlip should be 0
  679. if (a == i1 || b == i1)
  680. continue;
  681. // early-out when at least one triangle flips due to a collapse
  682. if (hasTriangleFlip(vertex_positions[a], vertex_positions[b], v0, v1))
  683. return true;
  684. }
  685. return false;
  686. }
  687. static size_t pickEdgeCollapses(Collapse* collapses, const unsigned int* indices, size_t index_count, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop)
  688. {
  689. size_t collapse_count = 0;
  690. for (size_t i = 0; i < index_count; i += 3)
  691. {
  692. static const int next[3] = {1, 2, 0};
  693. for (int e = 0; e < 3; ++e)
  694. {
  695. unsigned int i0 = indices[i + e];
  696. unsigned int i1 = indices[i + next[e]];
  697. // this can happen either when input has a zero-length edge, or when we perform collapses for complex
  698. // topology w/seams and collapse a manifold vertex that connects to both wedges onto one of them
  699. // we leave edges like this alone since they may be important for preserving mesh integrity
  700. if (remap[i0] == remap[i1])
  701. continue;
  702. unsigned char k0 = vertex_kind[i0];
  703. unsigned char k1 = vertex_kind[i1];
  704. // the edge has to be collapsible in at least one direction
  705. if (!(kCanCollapse[k0][k1] | kCanCollapse[k1][k0]))
  706. continue;
  707. // manifold and seam edges should occur twice (i0->i1 and i1->i0) - skip redundant edges
  708. if (kHasOpposite[k0][k1] && remap[i1] > remap[i0])
  709. continue;
  710. // two vertices are on a border or a seam, but there's no direct edge between them
  711. // this indicates that they belong to two different edge loops and we should not collapse this edge
  712. // loop[] tracks half edges so we only need to check i0->i1
  713. if (k0 == k1 && (k0 == Kind_Border || k0 == Kind_Seam) && loop[i0] != i1)
  714. continue;
  715. // edge can be collapsed in either direction - we will pick the one with minimum error
  716. // note: we evaluate error later during collapse ranking, here we just tag the edge as bidirectional
  717. if (kCanCollapse[k0][k1] & kCanCollapse[k1][k0])
  718. {
  719. Collapse c = {i0, i1, {/* bidi= */ 1}};
  720. collapses[collapse_count++] = c;
  721. }
  722. else
  723. {
  724. // edge can only be collapsed in one direction
  725. unsigned int e0 = kCanCollapse[k0][k1] ? i0 : i1;
  726. unsigned int e1 = kCanCollapse[k0][k1] ? i1 : i0;
  727. Collapse c = {e0, e1, {/* bidi= */ 0}};
  728. collapses[collapse_count++] = c;
  729. }
  730. }
  731. }
  732. return collapse_count;
  733. }
  734. static void rankEdgeCollapses(Collapse* collapses, size_t collapse_count, const Vector3* vertex_positions, const Quadric* vertex_quadrics, const Quadric* vertex_no_attrib_quadrics, const unsigned int* remap)
  735. {
  736. for (size_t i = 0; i < collapse_count; ++i)
  737. {
  738. Collapse& c = collapses[i];
  739. unsigned int i0 = c.v0;
  740. unsigned int i1 = c.v1;
  741. // most edges are bidirectional which means we need to evaluate errors for two collapses
  742. // to keep this code branchless we just use the same edge for unidirectional edges
  743. unsigned int j0 = c.bidi ? i1 : i0;
  744. unsigned int j1 = c.bidi ? i0 : i1;
  745. const Quadric& qi = vertex_quadrics[remap[i0]];
  746. const Quadric& qj = vertex_quadrics[remap[j0]];
  747. float ei = quadricError(qi, vertex_positions[i1]);
  748. float ej = quadricError(qj, vertex_positions[j1]);
  749. const Quadric& naqi = vertex_no_attrib_quadrics[remap[i0]];
  750. const Quadric& naqj = vertex_no_attrib_quadrics[remap[j0]];
  751. // pick edge direction with minimal error
  752. c.v0 = ei <= ej ? i0 : j0;
  753. c.v1 = ei <= ej ? i1 : j1;
  754. c.error = ei <= ej ? ei : ej;
  755. c.distance_error = ei <= ej ? quadricErrorNoAttributes(naqi, vertex_positions[i1]) : quadricErrorNoAttributes(naqj, vertex_positions[j1]);
  756. }
  757. }
  758. #if TRACE > 1
  759. static void dumpEdgeCollapses(const Collapse* collapses, size_t collapse_count, const unsigned char* vertex_kind)
  760. {
  761. size_t ckinds[Kind_Count][Kind_Count] = {};
  762. float cerrors[Kind_Count][Kind_Count] = {};
  763. for (int k0 = 0; k0 < Kind_Count; ++k0)
  764. for (int k1 = 0; k1 < Kind_Count; ++k1)
  765. cerrors[k0][k1] = FLT_MAX;
  766. for (size_t i = 0; i < collapse_count; ++i)
  767. {
  768. unsigned int i0 = collapses[i].v0;
  769. unsigned int i1 = collapses[i].v1;
  770. unsigned char k0 = vertex_kind[i0];
  771. unsigned char k1 = vertex_kind[i1];
  772. ckinds[k0][k1]++;
  773. cerrors[k0][k1] = (collapses[i].error < cerrors[k0][k1]) ? collapses[i].error : cerrors[k0][k1];
  774. }
  775. for (int k0 = 0; k0 < Kind_Count; ++k0)
  776. for (int k1 = 0; k1 < Kind_Count; ++k1)
  777. if (ckinds[k0][k1])
  778. printf("collapses %d -> %d: %d, min error %e\n", k0, k1, int(ckinds[k0][k1]), ckinds[k0][k1] ? sqrtf(cerrors[k0][k1]) : 0.f);
  779. }
  780. static void dumpLockedCollapses(const unsigned int* indices, size_t index_count, const unsigned char* vertex_kind)
  781. {
  782. size_t locked_collapses[Kind_Count][Kind_Count] = {};
  783. for (size_t i = 0; i < index_count; i += 3)
  784. {
  785. static const int next[3] = {1, 2, 0};
  786. for (int e = 0; e < 3; ++e)
  787. {
  788. unsigned int i0 = indices[i + e];
  789. unsigned int i1 = indices[i + next[e]];
  790. unsigned char k0 = vertex_kind[i0];
  791. unsigned char k1 = vertex_kind[i1];
  792. locked_collapses[k0][k1] += !kCanCollapse[k0][k1] && !kCanCollapse[k1][k0];
  793. }
  794. }
  795. for (int k0 = 0; k0 < Kind_Count; ++k0)
  796. for (int k1 = 0; k1 < Kind_Count; ++k1)
  797. if (locked_collapses[k0][k1])
  798. printf("locked collapses %d -> %d: %d\n", k0, k1, int(locked_collapses[k0][k1]));
  799. }
  800. #endif
  801. static void sortEdgeCollapses(unsigned int* sort_order, const Collapse* collapses, size_t collapse_count)
  802. {
  803. const int sort_bits = 11;
  804. // fill histogram for counting sort
  805. unsigned int histogram[1 << sort_bits];
  806. memset(histogram, 0, sizeof(histogram));
  807. for (size_t i = 0; i < collapse_count; ++i)
  808. {
  809. // skip sign bit since error is non-negative
  810. unsigned int key = (collapses[i].errorui << 1) >> (32 - sort_bits);
  811. histogram[key]++;
  812. }
  813. // compute offsets based on histogram data
  814. size_t histogram_sum = 0;
  815. for (size_t i = 0; i < 1 << sort_bits; ++i)
  816. {
  817. size_t count = histogram[i];
  818. histogram[i] = unsigned(histogram_sum);
  819. histogram_sum += count;
  820. }
  821. assert(histogram_sum == collapse_count);
  822. // compute sort order based on offsets
  823. for (size_t i = 0; i < collapse_count; ++i)
  824. {
  825. // skip sign bit since error is non-negative
  826. unsigned int key = (collapses[i].errorui << 1) >> (32 - sort_bits);
  827. sort_order[histogram[key]++] = unsigned(i);
  828. }
  829. }
  830. static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char* collapse_locked, Quadric* vertex_quadrics, Quadric* vertex_no_attrib_quadrics, const Collapse* collapses, size_t collapse_count, const unsigned int* collapse_order, const unsigned int* remap, const unsigned int* wedge, const unsigned char* vertex_kind, const Vector3* vertex_positions, const EdgeAdjacency& adjacency, size_t triangle_collapse_goal, float error_limit, float& result_error)
  831. {
  832. size_t edge_collapses = 0;
  833. size_t triangle_collapses = 0;
  834. // most collapses remove 2 triangles; use this to establish a bound on the pass in terms of error limit
  835. // note that edge_collapse_goal is an estimate; triangle_collapse_goal will be used to actually limit collapses
  836. size_t edge_collapse_goal = triangle_collapse_goal / 2;
  837. #if TRACE
  838. size_t stats[4] = {};
  839. #endif
  840. for (size_t i = 0; i < collapse_count; ++i)
  841. {
  842. const Collapse& c = collapses[collapse_order[i]];
  843. TRACESTATS(0);
  844. if (c.error > error_limit)
  845. break;
  846. if (triangle_collapses >= triangle_collapse_goal)
  847. break;
  848. // we limit the error in each pass based on the error of optimal last collapse; since many collapses will be locked
  849. // as they will share vertices with other successfull collapses, we need to increase the acceptable error by some factor
  850. float error_goal = edge_collapse_goal < collapse_count ? 1.5f * collapses[collapse_order[edge_collapse_goal]].error : FLT_MAX;
  851. // on average, each collapse is expected to lock 6 other collapses; to avoid degenerate passes on meshes with odd
  852. // topology, we only abort if we got over 1/6 collapses accordingly.
  853. if (c.error > error_goal && triangle_collapses > triangle_collapse_goal / 6)
  854. break;
  855. unsigned int i0 = c.v0;
  856. unsigned int i1 = c.v1;
  857. unsigned int r0 = remap[i0];
  858. unsigned int r1 = remap[i1];
  859. // we don't collapse vertices that had source or target vertex involved in a collapse
  860. // it's important to not move the vertices twice since it complicates the tracking/remapping logic
  861. // it's important to not move other vertices towards a moved vertex to preserve error since we don't re-rank collapses mid-pass
  862. if (collapse_locked[r0] | collapse_locked[r1])
  863. {
  864. TRACESTATS(1);
  865. continue;
  866. }
  867. if (hasTriangleFlips(adjacency, vertex_positions, collapse_remap, r0, r1))
  868. {
  869. // adjust collapse goal since this collapse is invalid and shouldn't factor into error goal
  870. edge_collapse_goal++;
  871. TRACESTATS(2);
  872. continue;
  873. }
  874. assert(collapse_remap[r0] == r0);
  875. assert(collapse_remap[r1] == r1);
  876. quadricAdd(vertex_quadrics[r1], vertex_quadrics[r0]);
  877. quadricAdd(vertex_no_attrib_quadrics[r1], vertex_no_attrib_quadrics[r0]);
  878. if (vertex_kind[i0] == Kind_Complex)
  879. {
  880. unsigned int v = i0;
  881. do
  882. {
  883. collapse_remap[v] = r1;
  884. v = wedge[v];
  885. } while (v != i0);
  886. }
  887. else if (vertex_kind[i0] == Kind_Seam)
  888. {
  889. // remap v0 to v1 and seam pair of v0 to seam pair of v1
  890. unsigned int s0 = wedge[i0];
  891. unsigned int s1 = wedge[i1];
  892. assert(s0 != i0 && s1 != i1);
  893. assert(wedge[s0] == i0 && wedge[s1] == i1);
  894. collapse_remap[i0] = i1;
  895. collapse_remap[s0] = s1;
  896. }
  897. else
  898. {
  899. assert(wedge[i0] == i0);
  900. collapse_remap[i0] = i1;
  901. }
  902. collapse_locked[r0] = 1;
  903. collapse_locked[r1] = 1;
  904. // border edges collapse 1 triangle, other edges collapse 2 or more
  905. triangle_collapses += (vertex_kind[i0] == Kind_Border) ? 1 : 2;
  906. edge_collapses++;
  907. result_error = result_error < c.distance_error ? c.distance_error : result_error;
  908. }
  909. #if TRACE
  910. float error_goal_perfect = edge_collapse_goal < collapse_count ? collapses[collapse_order[edge_collapse_goal]].error : 0.f;
  911. printf("removed %d triangles, error %e (goal %e); evaluated %d/%d collapses (done %d, skipped %d, invalid %d)\n",
  912. int(triangle_collapses), sqrtf(result_error), sqrtf(error_goal_perfect),
  913. int(stats[0]), int(collapse_count), int(edge_collapses), int(stats[1]), int(stats[2]));
  914. #endif
  915. return edge_collapses;
  916. }
  917. static size_t remapIndexBuffer(unsigned int* indices, size_t index_count, const unsigned int* collapse_remap)
  918. {
  919. size_t write = 0;
  920. for (size_t i = 0; i < index_count; i += 3)
  921. {
  922. unsigned int v0 = collapse_remap[indices[i + 0]];
  923. unsigned int v1 = collapse_remap[indices[i + 1]];
  924. unsigned int v2 = collapse_remap[indices[i + 2]];
  925. // we never move the vertex twice during a single pass
  926. assert(collapse_remap[v0] == v0);
  927. assert(collapse_remap[v1] == v1);
  928. assert(collapse_remap[v2] == v2);
  929. if (v0 != v1 && v0 != v2 && v1 != v2)
  930. {
  931. indices[write + 0] = v0;
  932. indices[write + 1] = v1;
  933. indices[write + 2] = v2;
  934. write += 3;
  935. }
  936. }
  937. return write;
  938. }
  939. static void remapEdgeLoops(unsigned int* loop, size_t vertex_count, const unsigned int* collapse_remap)
  940. {
  941. for (size_t i = 0; i < vertex_count; ++i)
  942. {
  943. if (loop[i] != ~0u)
  944. {
  945. unsigned int l = loop[i];
  946. unsigned int r = collapse_remap[l];
  947. // i == r is a special case when the seam edge is collapsed in a direction opposite to where loop goes
  948. loop[i] = (i == r) ? loop[l] : r;
  949. }
  950. }
  951. }
  952. struct CellHasher
  953. {
  954. const unsigned int* vertex_ids;
  955. size_t hash(unsigned int i) const
  956. {
  957. unsigned int h = vertex_ids[i];
  958. // MurmurHash2 finalizer
  959. h ^= h >> 13;
  960. h *= 0x5bd1e995;
  961. h ^= h >> 15;
  962. return h;
  963. }
  964. bool equal(unsigned int lhs, unsigned int rhs) const
  965. {
  966. return vertex_ids[lhs] == vertex_ids[rhs];
  967. }
  968. };
  969. struct IdHasher
  970. {
  971. size_t hash(unsigned int id) const
  972. {
  973. unsigned int h = id;
  974. // MurmurHash2 finalizer
  975. h ^= h >> 13;
  976. h *= 0x5bd1e995;
  977. h ^= h >> 15;
  978. return h;
  979. }
  980. bool equal(unsigned int lhs, unsigned int rhs) const
  981. {
  982. return lhs == rhs;
  983. }
  984. };
  985. struct TriangleHasher
  986. {
  987. const unsigned int* indices;
  988. size_t hash(unsigned int i) const
  989. {
  990. const unsigned int* tri = indices + i * 3;
  991. // Optimized Spatial Hashing for Collision Detection of Deformable Objects
  992. return (tri[0] * 73856093) ^ (tri[1] * 19349663) ^ (tri[2] * 83492791);
  993. }
  994. bool equal(unsigned int lhs, unsigned int rhs) const
  995. {
  996. const unsigned int* lt = indices + lhs * 3;
  997. const unsigned int* rt = indices + rhs * 3;
  998. return lt[0] == rt[0] && lt[1] == rt[1] && lt[2] == rt[2];
  999. }
  1000. };
  1001. static void computeVertexIds(unsigned int* vertex_ids, const Vector3* vertex_positions, size_t vertex_count, int grid_size)
  1002. {
  1003. assert(grid_size >= 1 && grid_size <= 1024);
  1004. float cell_scale = float(grid_size - 1);
  1005. for (size_t i = 0; i < vertex_count; ++i)
  1006. {
  1007. const Vector3& v = vertex_positions[i];
  1008. int xi = int(v.x * cell_scale + 0.5f);
  1009. int yi = int(v.y * cell_scale + 0.5f);
  1010. int zi = int(v.z * cell_scale + 0.5f);
  1011. vertex_ids[i] = (xi << 20) | (yi << 10) | zi;
  1012. }
  1013. }
  1014. static size_t countTriangles(const unsigned int* vertex_ids, const unsigned int* indices, size_t index_count)
  1015. {
  1016. size_t result = 0;
  1017. for (size_t i = 0; i < index_count; i += 3)
  1018. {
  1019. unsigned int id0 = vertex_ids[indices[i + 0]];
  1020. unsigned int id1 = vertex_ids[indices[i + 1]];
  1021. unsigned int id2 = vertex_ids[indices[i + 2]];
  1022. result += (id0 != id1) & (id0 != id2) & (id1 != id2);
  1023. }
  1024. return result;
  1025. }
  1026. static size_t fillVertexCells(unsigned int* table, size_t table_size, unsigned int* vertex_cells, const unsigned int* vertex_ids, size_t vertex_count)
  1027. {
  1028. CellHasher hasher = {vertex_ids};
  1029. memset(table, -1, table_size * sizeof(unsigned int));
  1030. size_t result = 0;
  1031. for (size_t i = 0; i < vertex_count; ++i)
  1032. {
  1033. unsigned int* entry = hashLookup2(table, table_size, hasher, unsigned(i), ~0u);
  1034. if (*entry == ~0u)
  1035. {
  1036. *entry = unsigned(i);
  1037. vertex_cells[i] = unsigned(result++);
  1038. }
  1039. else
  1040. {
  1041. vertex_cells[i] = vertex_cells[*entry];
  1042. }
  1043. }
  1044. return result;
  1045. }
  1046. static size_t countVertexCells(unsigned int* table, size_t table_size, const unsigned int* vertex_ids, size_t vertex_count)
  1047. {
  1048. IdHasher hasher;
  1049. memset(table, -1, table_size * sizeof(unsigned int));
  1050. size_t result = 0;
  1051. for (size_t i = 0; i < vertex_count; ++i)
  1052. {
  1053. unsigned int id = vertex_ids[i];
  1054. unsigned int* entry = hashLookup2(table, table_size, hasher, id, ~0u);
  1055. result += (*entry == ~0u);
  1056. *entry = id;
  1057. }
  1058. return result;
  1059. }
  1060. static void fillCellQuadrics(Quadric* cell_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* vertex_cells)
  1061. {
  1062. for (size_t i = 0; i < index_count; i += 3)
  1063. {
  1064. unsigned int i0 = indices[i + 0];
  1065. unsigned int i1 = indices[i + 1];
  1066. unsigned int i2 = indices[i + 2];
  1067. unsigned int c0 = vertex_cells[i0];
  1068. unsigned int c1 = vertex_cells[i1];
  1069. unsigned int c2 = vertex_cells[i2];
  1070. bool single_cell = (c0 == c1) & (c0 == c2);
  1071. Quadric Q;
  1072. quadricFromTriangle(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], single_cell ? 3.f : 1.f);
  1073. if (single_cell)
  1074. {
  1075. quadricAdd(cell_quadrics[c0], Q);
  1076. }
  1077. else
  1078. {
  1079. quadricAdd(cell_quadrics[c0], Q);
  1080. quadricAdd(cell_quadrics[c1], Q);
  1081. quadricAdd(cell_quadrics[c2], Q);
  1082. }
  1083. }
  1084. }
  1085. static void fillCellQuadrics(Quadric* cell_quadrics, const Vector3* vertex_positions, size_t vertex_count, const unsigned int* vertex_cells)
  1086. {
  1087. for (size_t i = 0; i < vertex_count; ++i)
  1088. {
  1089. unsigned int c = vertex_cells[i];
  1090. const Vector3& v = vertex_positions[i];
  1091. Quadric Q;
  1092. quadricFromPoint(Q, v.x, v.y, v.z, 1.f);
  1093. quadricAdd(cell_quadrics[c], Q);
  1094. }
  1095. }
  1096. static void fillCellRemap(unsigned int* cell_remap, float* cell_errors, size_t cell_count, const unsigned int* vertex_cells, const Quadric* cell_quadrics, const Vector3* vertex_positions, size_t vertex_count)
  1097. {
  1098. memset(cell_remap, -1, cell_count * sizeof(unsigned int));
  1099. for (size_t i = 0; i < vertex_count; ++i)
  1100. {
  1101. unsigned int cell = vertex_cells[i];
  1102. float error = quadricError(cell_quadrics[cell], vertex_positions[i]);
  1103. if (cell_remap[cell] == ~0u || cell_errors[cell] > error)
  1104. {
  1105. cell_remap[cell] = unsigned(i);
  1106. cell_errors[cell] = error;
  1107. }
  1108. }
  1109. }
  1110. static size_t filterTriangles(unsigned int* destination, unsigned int* tritable, size_t tritable_size, const unsigned int* indices, size_t index_count, const unsigned int* vertex_cells, const unsigned int* cell_remap)
  1111. {
  1112. TriangleHasher hasher = {destination};
  1113. memset(tritable, -1, tritable_size * sizeof(unsigned int));
  1114. size_t result = 0;
  1115. for (size_t i = 0; i < index_count; i += 3)
  1116. {
  1117. unsigned int c0 = vertex_cells[indices[i + 0]];
  1118. unsigned int c1 = vertex_cells[indices[i + 1]];
  1119. unsigned int c2 = vertex_cells[indices[i + 2]];
  1120. if (c0 != c1 && c0 != c2 && c1 != c2)
  1121. {
  1122. unsigned int a = cell_remap[c0];
  1123. unsigned int b = cell_remap[c1];
  1124. unsigned int c = cell_remap[c2];
  1125. if (b < a && b < c)
  1126. {
  1127. unsigned int t = a;
  1128. a = b, b = c, c = t;
  1129. }
  1130. else if (c < a && c < b)
  1131. {
  1132. unsigned int t = c;
  1133. c = b, b = a, a = t;
  1134. }
  1135. destination[result * 3 + 0] = a;
  1136. destination[result * 3 + 1] = b;
  1137. destination[result * 3 + 2] = c;
  1138. unsigned int* entry = hashLookup2(tritable, tritable_size, hasher, unsigned(result), ~0u);
  1139. if (*entry == ~0u)
  1140. *entry = unsigned(result++);
  1141. }
  1142. }
  1143. return result * 3;
  1144. }
  1145. static float interpolate(float y, float x0, float y0, float x1, float y1, float x2, float y2)
  1146. {
  1147. // three point interpolation from "revenge of interpolation search" paper
  1148. float num = (y1 - y) * (x1 - x2) * (x1 - x0) * (y2 - y0);
  1149. float den = (y2 - y) * (x1 - x2) * (y0 - y1) + (y0 - y) * (x1 - x0) * (y1 - y2);
  1150. return x1 + num / den;
  1151. }
  1152. } // namespace meshopt
  1153. #ifndef NDEBUG
  1154. // Note: this is only exposed for debug visualization purposes; do *not* use these in debug builds
  1155. MESHOPTIMIZER_API unsigned char* meshopt_simplifyDebugKind = 0;
  1156. MESHOPTIMIZER_API unsigned int* meshopt_simplifyDebugLoop = 0;
  1157. MESHOPTIMIZER_API unsigned int* meshopt_simplifyDebugLoopBack = 0;
  1158. #endif
  1159. size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options, float* out_result_error)
  1160. {
  1161. return meshopt_simplifyWithAttributes(destination, indices, index_count, vertex_positions_data, vertex_count, vertex_positions_stride, target_index_count, target_error, options, out_result_error, 0, 0, 0);
  1162. }
  1163. size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_data, size_t vertex_count, size_t vertex_stride, size_t target_index_count, float target_error, unsigned int options, float* out_result_error, const float* attributes, const float* attribute_weights, size_t attribute_count)
  1164. {
  1165. using namespace meshopt;
  1166. assert(index_count % 3 == 0);
  1167. assert(vertex_stride >= 12 && vertex_stride <= 256);
  1168. assert(vertex_stride % sizeof(float) == 0);
  1169. assert(target_index_count <= index_count);
  1170. assert((options & ~(meshopt_SimplifyLockBorder)) == 0);
  1171. assert(attribute_count <= ATTRIBUTES);
  1172. meshopt_Allocator allocator;
  1173. unsigned int* result = destination;
  1174. // build adjacency information
  1175. EdgeAdjacency adjacency = {};
  1176. prepareEdgeAdjacency(adjacency, index_count, vertex_count, allocator);
  1177. updateEdgeAdjacency(adjacency, indices, index_count, vertex_count, NULL);
  1178. // build position remap that maps each vertex to the one with identical position
  1179. unsigned int* remap = allocator.allocate<unsigned int>(vertex_count);
  1180. unsigned int* wedge = allocator.allocate<unsigned int>(vertex_count);
  1181. buildPositionRemap(remap, wedge, vertex_data, vertex_count, vertex_stride, allocator);
  1182. // classify vertices; vertex kind determines collapse rules, see kCanCollapse
  1183. unsigned char* vertex_kind = allocator.allocate<unsigned char>(vertex_count);
  1184. unsigned int* loop = allocator.allocate<unsigned int>(vertex_count);
  1185. unsigned int* loopback = allocator.allocate<unsigned int>(vertex_count);
  1186. classifyVertices(vertex_kind, loop, loopback, vertex_count, adjacency, remap, wedge, options);
  1187. #if TRACE
  1188. size_t unique_positions = 0;
  1189. for (size_t i = 0; i < vertex_count; ++i)
  1190. unique_positions += remap[i] == i;
  1191. printf("position remap: %d vertices => %d positions\n", int(vertex_count), int(unique_positions));
  1192. size_t kinds[Kind_Count] = {};
  1193. for (size_t i = 0; i < vertex_count; ++i)
  1194. kinds[vertex_kind[i]] += remap[i] == i;
  1195. printf("kinds: manifold %d, border %d, seam %d, complex %d, locked %d\n",
  1196. int(kinds[Kind_Manifold]), int(kinds[Kind_Border]), int(kinds[Kind_Seam]), int(kinds[Kind_Complex]), int(kinds[Kind_Locked]));
  1197. #endif
  1198. Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count);
  1199. rescalePositions(vertex_positions, vertex_data, vertex_count, vertex_stride);
  1200. #if ATTRIBUTES
  1201. for (size_t i = 0; i < vertex_count; ++i)
  1202. {
  1203. memset(vertex_positions[i].a, 0, sizeof(vertex_positions[i].a));
  1204. for (size_t k = 0; k < attribute_count; ++k)
  1205. {
  1206. float a = attributes[i * attribute_count + k];
  1207. vertex_positions[i].a[k] = a * attribute_weights[k];
  1208. }
  1209. }
  1210. #endif
  1211. Quadric* vertex_quadrics = allocator.allocate<Quadric>(vertex_count);
  1212. memset(vertex_quadrics, 0, vertex_count * sizeof(Quadric));
  1213. Quadric* vertex_no_attrib_quadrics = allocator.allocate<Quadric>(vertex_count);
  1214. memset(vertex_no_attrib_quadrics, 0, vertex_count * sizeof(Quadric));
  1215. fillFaceQuadrics(vertex_quadrics, vertex_no_attrib_quadrics, indices, index_count, vertex_positions, remap);
  1216. fillEdgeQuadrics(vertex_quadrics, vertex_no_attrib_quadrics, indices, index_count, vertex_positions, remap, vertex_kind, loop, loopback);
  1217. if (result != indices)
  1218. memcpy(result, indices, index_count * sizeof(unsigned int));
  1219. #if TRACE
  1220. size_t pass_count = 0;
  1221. #endif
  1222. Collapse* edge_collapses = allocator.allocate<Collapse>(index_count);
  1223. unsigned int* collapse_order = allocator.allocate<unsigned int>(index_count);
  1224. unsigned int* collapse_remap = allocator.allocate<unsigned int>(vertex_count);
  1225. unsigned char* collapse_locked = allocator.allocate<unsigned char>(vertex_count);
  1226. size_t result_count = index_count;
  1227. float result_error = 0;
  1228. // target_error input is linear; we need to adjust it to match quadricError units
  1229. float error_limit = target_error * target_error;
  1230. while (result_count > target_index_count)
  1231. {
  1232. // note: throughout the simplification process adjacency structure reflects welded topology for result-in-progress
  1233. updateEdgeAdjacency(adjacency, result, result_count, vertex_count, remap);
  1234. size_t edge_collapse_count = pickEdgeCollapses(edge_collapses, result, result_count, remap, vertex_kind, loop);
  1235. // no edges can be collapsed any more due to topology restrictions
  1236. if (edge_collapse_count == 0)
  1237. break;
  1238. rankEdgeCollapses(edge_collapses, edge_collapse_count, vertex_positions, vertex_quadrics, vertex_no_attrib_quadrics, remap);
  1239. #if TRACE > 1
  1240. dumpEdgeCollapses(edge_collapses, edge_collapse_count, vertex_kind);
  1241. #endif
  1242. sortEdgeCollapses(collapse_order, edge_collapses, edge_collapse_count);
  1243. size_t triangle_collapse_goal = (result_count - target_index_count) / 3;
  1244. for (size_t i = 0; i < vertex_count; ++i)
  1245. collapse_remap[i] = unsigned(i);
  1246. memset(collapse_locked, 0, vertex_count);
  1247. #if TRACE
  1248. printf("pass %d: ", int(pass_count++));
  1249. #endif
  1250. size_t collapses = performEdgeCollapses(collapse_remap, collapse_locked, vertex_quadrics, vertex_no_attrib_quadrics, edge_collapses, edge_collapse_count, collapse_order, remap, wedge, vertex_kind, vertex_positions, adjacency, triangle_collapse_goal, error_limit, result_error);
  1251. // no edges can be collapsed any more due to hitting the error limit or triangle collapse limit
  1252. if (collapses == 0)
  1253. break;
  1254. remapEdgeLoops(loop, vertex_count, collapse_remap);
  1255. remapEdgeLoops(loopback, vertex_count, collapse_remap);
  1256. size_t new_count = remapIndexBuffer(result, result_count, collapse_remap);
  1257. assert(new_count < result_count);
  1258. result_count = new_count;
  1259. }
  1260. #if TRACE
  1261. printf("result: %d triangles, error: %e; total %d passes\n", int(result_count), sqrtf(result_error), int(pass_count));
  1262. #endif
  1263. #if TRACE > 1
  1264. dumpLockedCollapses(result, result_count, vertex_kind);
  1265. #endif
  1266. #ifndef NDEBUG
  1267. if (meshopt_simplifyDebugKind)
  1268. memcpy(meshopt_simplifyDebugKind, vertex_kind, vertex_count);
  1269. if (meshopt_simplifyDebugLoop)
  1270. memcpy(meshopt_simplifyDebugLoop, loop, vertex_count * sizeof(unsigned int));
  1271. if (meshopt_simplifyDebugLoopBack)
  1272. memcpy(meshopt_simplifyDebugLoopBack, loopback, vertex_count * sizeof(unsigned int));
  1273. #endif
  1274. // result_error is quadratic; we need to remap it back to linear
  1275. if (out_result_error)
  1276. {
  1277. *out_result_error = sqrtf(result_error);
  1278. }
  1279. return result_count;
  1280. }
  1281. size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* out_result_error)
  1282. {
  1283. using namespace meshopt;
  1284. assert(index_count % 3 == 0);
  1285. assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
  1286. assert(vertex_positions_stride % sizeof(float) == 0);
  1287. assert(target_index_count <= index_count);
  1288. // we expect to get ~2 triangles/vertex in the output
  1289. size_t target_cell_count = target_index_count / 6;
  1290. meshopt_Allocator allocator;
  1291. Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count);
  1292. rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride);
  1293. // find the optimal grid size using guided binary search
  1294. #if TRACE
  1295. printf("source: %d vertices, %d triangles\n", int(vertex_count), int(index_count / 3));
  1296. printf("target: %d cells, %d triangles\n", int(target_cell_count), int(target_index_count / 3));
  1297. #endif
  1298. unsigned int* vertex_ids = allocator.allocate<unsigned int>(vertex_count);
  1299. const int kInterpolationPasses = 5;
  1300. // invariant: # of triangles in min_grid <= target_count
  1301. int min_grid = int(1.f / (target_error < 1e-3f ? 1e-3f : target_error));
  1302. int max_grid = 1025;
  1303. size_t min_triangles = 0;
  1304. size_t max_triangles = index_count / 3;
  1305. // when we're error-limited, we compute the triangle count for the min. size; this accelerates convergence and provides the correct answer when we can't use a larger grid
  1306. if (min_grid > 1)
  1307. {
  1308. computeVertexIds(vertex_ids, vertex_positions, vertex_count, min_grid);
  1309. min_triangles = countTriangles(vertex_ids, indices, index_count);
  1310. }
  1311. // instead of starting in the middle, let's guess as to what the answer might be! triangle count usually grows as a square of grid size...
  1312. int next_grid_size = int(sqrtf(float(target_cell_count)) + 0.5f);
  1313. for (int pass = 0; pass < 10 + kInterpolationPasses; ++pass)
  1314. {
  1315. if (min_triangles >= target_index_count / 3 || max_grid - min_grid <= 1)
  1316. break;
  1317. // we clamp the prediction of the grid size to make sure that the search converges
  1318. int grid_size = next_grid_size;
  1319. grid_size = (grid_size <= min_grid) ? min_grid + 1 : (grid_size >= max_grid) ? max_grid - 1 : grid_size;
  1320. computeVertexIds(vertex_ids, vertex_positions, vertex_count, grid_size);
  1321. size_t triangles = countTriangles(vertex_ids, indices, index_count);
  1322. #if TRACE
  1323. printf("pass %d (%s): grid size %d, triangles %d, %s\n",
  1324. pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses) ? "lerp" : "binary",
  1325. grid_size, int(triangles),
  1326. (triangles <= target_index_count / 3) ? "under" : "over");
  1327. #endif
  1328. float tip = interpolate(float(target_index_count / 3), float(min_grid), float(min_triangles), float(grid_size), float(triangles), float(max_grid), float(max_triangles));
  1329. if (triangles <= target_index_count / 3)
  1330. {
  1331. min_grid = grid_size;
  1332. min_triangles = triangles;
  1333. }
  1334. else
  1335. {
  1336. max_grid = grid_size;
  1337. max_triangles = triangles;
  1338. }
  1339. // we start by using interpolation search - it usually converges faster
  1340. // however, interpolation search has a worst case of O(N) so we switch to binary search after a few iterations which converges in O(logN)
  1341. next_grid_size = (pass < kInterpolationPasses) ? int(tip + 0.5f) : (min_grid + max_grid) / 2;
  1342. }
  1343. if (min_triangles == 0)
  1344. {
  1345. if (out_result_error)
  1346. *out_result_error = 1.f;
  1347. return 0;
  1348. }
  1349. // build vertex->cell association by mapping all vertices with the same quantized position to the same cell
  1350. size_t table_size = hashBuckets2(vertex_count);
  1351. unsigned int* table = allocator.allocate<unsigned int>(table_size);
  1352. unsigned int* vertex_cells = allocator.allocate<unsigned int>(vertex_count);
  1353. computeVertexIds(vertex_ids, vertex_positions, vertex_count, min_grid);
  1354. size_t cell_count = fillVertexCells(table, table_size, vertex_cells, vertex_ids, vertex_count);
  1355. // build a quadric for each target cell
  1356. Quadric* cell_quadrics = allocator.allocate<Quadric>(cell_count);
  1357. memset(cell_quadrics, 0, cell_count * sizeof(Quadric));
  1358. fillCellQuadrics(cell_quadrics, indices, index_count, vertex_positions, vertex_cells);
  1359. // for each target cell, find the vertex with the minimal error
  1360. unsigned int* cell_remap = allocator.allocate<unsigned int>(cell_count);
  1361. float* cell_errors = allocator.allocate<float>(cell_count);
  1362. fillCellRemap(cell_remap, cell_errors, cell_count, vertex_cells, cell_quadrics, vertex_positions, vertex_count);
  1363. // compute error
  1364. float result_error = 0.f;
  1365. for (size_t i = 0; i < cell_count; ++i)
  1366. result_error = result_error < cell_errors[i] ? cell_errors[i] : result_error;
  1367. // collapse triangles!
  1368. // note that we need to filter out triangles that we've already output because we very frequently generate redundant triangles between cells :(
  1369. size_t tritable_size = hashBuckets2(min_triangles);
  1370. unsigned int* tritable = allocator.allocate<unsigned int>(tritable_size);
  1371. size_t write = filterTriangles(destination, tritable, tritable_size, indices, index_count, vertex_cells, cell_remap);
  1372. #if TRACE
  1373. printf("result: %d cells, %d triangles (%d unfiltered), error %e\n", int(cell_count), int(write / 3), int(min_triangles), sqrtf(result_error));
  1374. #endif
  1375. if (out_result_error)
  1376. *out_result_error = sqrtf(result_error);
  1377. return write;
  1378. }
  1379. size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_vertex_count)
  1380. {
  1381. using namespace meshopt;
  1382. assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
  1383. assert(vertex_positions_stride % sizeof(float) == 0);
  1384. assert(target_vertex_count <= vertex_count);
  1385. size_t target_cell_count = target_vertex_count;
  1386. if (target_cell_count == 0)
  1387. return 0;
  1388. meshopt_Allocator allocator;
  1389. Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count);
  1390. rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride);
  1391. // find the optimal grid size using guided binary search
  1392. #if TRACE
  1393. printf("source: %d vertices\n", int(vertex_count));
  1394. printf("target: %d cells\n", int(target_cell_count));
  1395. #endif
  1396. unsigned int* vertex_ids = allocator.allocate<unsigned int>(vertex_count);
  1397. size_t table_size = hashBuckets2(vertex_count);
  1398. unsigned int* table = allocator.allocate<unsigned int>(table_size);
  1399. const int kInterpolationPasses = 5;
  1400. // invariant: # of vertices in min_grid <= target_count
  1401. int min_grid = 0;
  1402. int max_grid = 1025;
  1403. size_t min_vertices = 0;
  1404. size_t max_vertices = vertex_count;
  1405. // instead of starting in the middle, let's guess as to what the answer might be! triangle count usually grows as a square of grid size...
  1406. int next_grid_size = int(sqrtf(float(target_cell_count)) + 0.5f);
  1407. for (int pass = 0; pass < 10 + kInterpolationPasses; ++pass)
  1408. {
  1409. assert(min_vertices < target_vertex_count);
  1410. assert(max_grid - min_grid > 1);
  1411. // we clamp the prediction of the grid size to make sure that the search converges
  1412. int grid_size = next_grid_size;
  1413. grid_size = (grid_size <= min_grid) ? min_grid + 1 : (grid_size >= max_grid) ? max_grid - 1 : grid_size;
  1414. computeVertexIds(vertex_ids, vertex_positions, vertex_count, grid_size);
  1415. size_t vertices = countVertexCells(table, table_size, vertex_ids, vertex_count);
  1416. #if TRACE
  1417. printf("pass %d (%s): grid size %d, vertices %d, %s\n",
  1418. pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses) ? "lerp" : "binary",
  1419. grid_size, int(vertices),
  1420. (vertices <= target_vertex_count) ? "under" : "over");
  1421. #endif
  1422. float tip = interpolate(float(target_vertex_count), float(min_grid), float(min_vertices), float(grid_size), float(vertices), float(max_grid), float(max_vertices));
  1423. if (vertices <= target_vertex_count)
  1424. {
  1425. min_grid = grid_size;
  1426. min_vertices = vertices;
  1427. }
  1428. else
  1429. {
  1430. max_grid = grid_size;
  1431. max_vertices = vertices;
  1432. }
  1433. if (vertices == target_vertex_count || max_grid - min_grid <= 1)
  1434. break;
  1435. // we start by using interpolation search - it usually converges faster
  1436. // however, interpolation search has a worst case of O(N) so we switch to binary search after a few iterations which converges in O(logN)
  1437. next_grid_size = (pass < kInterpolationPasses) ? int(tip + 0.5f) : (min_grid + max_grid) / 2;
  1438. }
  1439. if (min_vertices == 0)
  1440. return 0;
  1441. // build vertex->cell association by mapping all vertices with the same quantized position to the same cell
  1442. unsigned int* vertex_cells = allocator.allocate<unsigned int>(vertex_count);
  1443. computeVertexIds(vertex_ids, vertex_positions, vertex_count, min_grid);
  1444. size_t cell_count = fillVertexCells(table, table_size, vertex_cells, vertex_ids, vertex_count);
  1445. // build a quadric for each target cell
  1446. Quadric* cell_quadrics = allocator.allocate<Quadric>(cell_count);
  1447. memset(cell_quadrics, 0, cell_count * sizeof(Quadric));
  1448. fillCellQuadrics(cell_quadrics, vertex_positions, vertex_count, vertex_cells);
  1449. // for each target cell, find the vertex with the minimal error
  1450. unsigned int* cell_remap = allocator.allocate<unsigned int>(cell_count);
  1451. float* cell_errors = allocator.allocate<float>(cell_count);
  1452. fillCellRemap(cell_remap, cell_errors, cell_count, vertex_cells, cell_quadrics, vertex_positions, vertex_count);
  1453. // copy results to the output
  1454. assert(cell_count <= target_vertex_count);
  1455. memcpy(destination, cell_remap, sizeof(unsigned int) * cell_count);
  1456. #if TRACE
  1457. printf("result: %d cells\n", int(cell_count));
  1458. #endif
  1459. return cell_count;
  1460. }
  1461. float meshopt_simplifyScale(const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
  1462. {
  1463. using namespace meshopt;
  1464. assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
  1465. assert(vertex_positions_stride % sizeof(float) == 0);
  1466. float extent = rescalePositions(NULL, vertex_positions, vertex_count, vertex_positions_stride);
  1467. return extent;
  1468. }