123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295 |
- /*************************************************************************/
- /* math_funcs.h */
- /*************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* http://www.godotengine.org */
- /*************************************************************************/
- /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /*************************************************************************/
- #ifndef MATH_FUNCS_H
- #define MATH_FUNCS_H
- #include "typedefs.h"
- #include "math_defs.h"
- #ifndef NO_MATH_H
- #include "math.h"
- #endif
- class Math {
- static uint32_t default_seed;
- public:
- Math() {}; // useless to instance
- enum {
- RANDOM_MAX=2147483647L
- };
- static double sin(double p_x);
- static double cos(double p_x);
- static double tan(double p_x);
- static double sinh(double p_x);
- static double cosh(double p_x);
- static double tanh(double p_x);
- static double asin(double p_x);
- static double acos(double p_x);
- static double atan(double p_x);
- static double atan2(double p_y, double p_x);
- static double deg2rad(double p_y);
- static double rad2deg(double p_y);
- static double sqrt(double p_x);
- static double fmod(double p_x,double p_y);
- static double fposmod(double p_x,double p_y);
- static uint32_t rand_from_seed(uint32_t *seed);
- static double floor(double p_x);
- static double ceil(double p_x);
- static double ease(double p_x, double p_c);
- static int step_decimals(double p_step);
- static double stepify(double p_value,double p_step);
- static void seed(uint32_t x=0);
- static void randomize();
- static uint32_t larger_prime(uint32_t p_val);
- static double dectime(double p_value,double p_amount, double p_step);
- static inline double linear2db(double p_linear) {
- return Math::log( p_linear ) * 8.6858896380650365530225783783321;
- }
- static inline double db2linear(double p_db) {
- return Math::exp( p_db * 0.11512925464970228420089957273422 );
- }
- static bool is_nan(double p_val);
- static bool is_inf(double p_val);
- static uint32_t rand();
- static double randf();
- static double round(double p_val);
- static double random(double from, double to);
- static _FORCE_INLINE_ bool isequal_approx(real_t a, real_t b) {
- // TODO: Comparing floats for approximate-equality is non-trivial.
- // Using epsilon should cover the typical cases in Godot (where a == b is used to compare two reals), such as matrix and vector comparison operators.
- // A proper implementation in terms of ULPs should eventually replace the contents of this function.
- // See https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ for details.
- return abs(a-b) < CMP_EPSILON;
- }
- static _FORCE_INLINE_ real_t abs(real_t g) {
- #ifdef REAL_T_IS_DOUBLE
- return absd(g);
- #else
- return absf(g);
- #endif
- }
- static _FORCE_INLINE_ float absf(float g) {
- union {
- float f;
- uint32_t i;
- } u;
- u.f=g;
- u.i&=2147483647u;
- return u.f;
- }
- static _FORCE_INLINE_ double absd(double g) {
- union {
- double d;
- uint64_t i;
- } u;
- u.d=g;
- u.i&=(uint64_t)9223372036854775807ll;
- return u.d;
- }
- //this function should be as fast as possible and rounding mode should not matter
- static _FORCE_INLINE_ int fast_ftoi(float a) {
- static int b;
- #if (defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0603) || WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP // windows 8 phone?
- b = (int)((a>0.0f) ? (a + 0.5f):(a -0.5f));
- #elif defined(_MSC_VER) && _MSC_VER < 1800
- __asm fld a
- __asm fistp b
- /*#elif defined( __GNUC__ ) && ( defined( __i386__ ) || defined( __x86_64__ ) )
- // use AT&T inline assembly style, document that
- // we use memory as output (=m) and input (m)
- __asm__ __volatile__ (
- "flds %1 \n\t"
- "fistpl %0 \n\t"
- : "=m" (b)
- : "m" (a));*/
- #else
- b=lrintf(a); //assuming everything but msvc 2012 or earlier has lrint
- #endif
- return b;
- }
- #if defined(__GNUC__)
- static _FORCE_INLINE_ int64_t dtoll(double p_double) { return (int64_t)p_double; } ///@TODO OPTIMIZE
- #else
- static _FORCE_INLINE_ int64_t dtoll(double p_double) { return (int64_t)p_double; } ///@TODO OPTIMIZE
- #endif
- static _FORCE_INLINE_ float lerp(float a, float b, float c) {
- return a+(b-a)*c;
- }
- static double pow(double x, double y);
- static double log(double x);
- static double exp(double x);
- static _FORCE_INLINE_ uint32_t halfbits_to_floatbits(uint16_t h)
- {
- uint16_t h_exp, h_sig;
- uint32_t f_sgn, f_exp, f_sig;
- h_exp = (h&0x7c00u);
- f_sgn = ((uint32_t)h&0x8000u) << 16;
- switch (h_exp) {
- case 0x0000u: /* 0 or subnormal */
- h_sig = (h&0x03ffu);
- /* Signed zero */
- if (h_sig == 0) {
- return f_sgn;
- }
- /* Subnormal */
- h_sig <<= 1;
- while ((h_sig&0x0400u) == 0) {
- h_sig <<= 1;
- h_exp++;
- }
- f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23;
- f_sig = ((uint32_t)(h_sig&0x03ffu)) << 13;
- return f_sgn + f_exp + f_sig;
- case 0x7c00u: /* inf or NaN */
- /* All-ones exponent and a copy of the significand */
- return f_sgn + 0x7f800000u + (((uint32_t)(h&0x03ffu)) << 13);
- default: /* normalized */
- /* Just need to adjust the exponent and shift */
- return f_sgn + (((uint32_t)(h&0x7fffu) + 0x1c000u) << 13);
- }
- }
- static _FORCE_INLINE_ float halfptr_to_float(const uint16_t *h) {
- union {
- uint32_t u32;
- float f32;
- } u;
- u.u32=halfbits_to_floatbits(*h);
- return u.f32;
- }
- static _FORCE_INLINE_ uint16_t make_half_float(float f) {
- union {
- float fv;
- uint32_t ui;
- } ci;
- ci.fv=f;
- uint32_t x = ci.ui;
- uint32_t sign = (unsigned short)(x >> 31);
- uint32_t mantissa;
- uint32_t exp;
- uint16_t hf;
- // get mantissa
- mantissa = x & ((1 << 23) - 1);
- // get exponent bits
- exp = x & (0xFF << 23);
- if (exp >= 0x47800000)
- {
- // check if the original single precision float number is a NaN
- if (mantissa && (exp == (0xFF << 23)))
- {
- // we have a single precision NaN
- mantissa = (1 << 23) - 1;
- }
- else
- {
- // 16-bit half-float representation stores number as Inf
- mantissa = 0;
- }
- hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) |
- (uint16_t)(mantissa >> 13);
- }
- // check if exponent is <= -15
- else if (exp <= 0x38000000)
- {
- /*// store a denorm half-float value or zero
- exp = (0x38000000 - exp) >> 23;
- mantissa >>= (14 + exp);
- hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa);
- */
- hf=0; //denormals do not work for 3D, convert to zero
- }
- else
- {
- hf = (((uint16_t)sign) << 15) |
- (uint16_t)((exp - 0x38000000) >> 13) |
- (uint16_t)(mantissa >> 13);
- }
- return hf;
- }
- };
- #define Math_PI 3.14159265358979323846
- #define Math_SQRT12 0.7071067811865475244008443621048490
- #endif // MATH_FUNCS_H
|