123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525 |
- /*************************************************************************/
- /* matrix3.cpp */
- /*************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* http://www.godotengine.org */
- /*************************************************************************/
- /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /*************************************************************************/
- #include "matrix3.h"
- #include "math_funcs.h"
- #include "os/copymem.h"
- #define cofac(row1,col1, row2, col2)\
- (elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])
- void Matrix3::from_z(const Vector3& p_z) {
- if (Math::abs(p_z.z) > Math_SQRT12 ) {
- // choose p in y-z plane
- real_t a = p_z[1]*p_z[1] + p_z[2]*p_z[2];
- real_t k = 1.0/Math::sqrt(a);
- elements[0]=Vector3(0,-p_z[2]*k,p_z[1]*k);
- elements[1]=Vector3(a*k,-p_z[0]*elements[0][2],p_z[0]*elements[0][1]);
- } else {
- // choose p in x-y plane
- real_t a = p_z.x*p_z.x + p_z.y*p_z.y;
- real_t k = 1.0/Math::sqrt(a);
- elements[0]=Vector3(-p_z.y*k,p_z.x*k,0);
- elements[1]=Vector3(-p_z.z*elements[0].y,p_z.z*elements[0].x,a*k);
- }
- elements[2]=p_z;
- }
- void Matrix3::invert() {
- real_t co[3]={
- cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
- };
- real_t det = elements[0][0] * co[0]+
- elements[0][1] * co[1]+
- elements[0][2] * co[2];
- ERR_FAIL_COND( det == 0 );
- real_t s = 1.0/det;
- set( co[0]*s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
- co[1]*s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
- co[2]*s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s );
- }
- void Matrix3::orthonormalize() {
- ERR_FAIL_COND(determinant() == 0);
- // Gram-Schmidt Process
- Vector3 x=get_axis(0);
- Vector3 y=get_axis(1);
- Vector3 z=get_axis(2);
- x.normalize();
- y = (y-x*(x.dot(y)));
- y.normalize();
- z = (z-x*(x.dot(z))-y*(y.dot(z)));
- z.normalize();
- set_axis(0,x);
- set_axis(1,y);
- set_axis(2,z);
- }
- Matrix3 Matrix3::orthonormalized() const {
- Matrix3 c = *this;
- c.orthonormalize();
- return c;
- }
- bool Matrix3::is_orthogonal() const {
- Matrix3 id;
- Matrix3 m = (*this)*transposed();
- return isequal_approx(id,m);
- }
- bool Matrix3::is_rotation() const {
- return Math::isequal_approx(determinant(), 1) && is_orthogonal();
- }
- Matrix3 Matrix3::inverse() const {
- Matrix3 inv=*this;
- inv.invert();
- return inv;
- }
- void Matrix3::transpose() {
- SWAP(elements[0][1],elements[1][0]);
- SWAP(elements[0][2],elements[2][0]);
- SWAP(elements[1][2],elements[2][1]);
- }
- Matrix3 Matrix3::transposed() const {
- Matrix3 tr=*this;
- tr.transpose();
- return tr;
- }
- void Matrix3::scale(const Vector3& p_scale) {
- elements[0][0]*=p_scale.x;
- elements[1][0]*=p_scale.x;
- elements[2][0]*=p_scale.x;
- elements[0][1]*=p_scale.y;
- elements[1][1]*=p_scale.y;
- elements[2][1]*=p_scale.y;
- elements[0][2]*=p_scale.z;
- elements[1][2]*=p_scale.z;
- elements[2][2]*=p_scale.z;
- }
- Matrix3 Matrix3::scaled( const Vector3& p_scale ) const {
- Matrix3 m = *this;
- m.scale(p_scale);
- return m;
- }
- Vector3 Matrix3::get_scale() const {
- return Vector3(
- Vector3(elements[0][0],elements[1][0],elements[2][0]).length(),
- Vector3(elements[0][1],elements[1][1],elements[2][1]).length(),
- Vector3(elements[0][2],elements[1][2],elements[2][2]).length()
- );
- }
- // Matrix3::rotate and Matrix3::rotated return M * R(axis,phi), and is a convenience function. They do *not* perform proper matrix rotation.
- void Matrix3::rotate(const Vector3& p_axis, real_t p_phi) {
- // TODO: This function should also be renamed as the current name is misleading: rotate does *not* perform matrix rotation.
- // Same problem affects Matrix3::rotated.
- // A similar problem exists in 2D math, which will be handled separately.
- // After Matrix3 is renamed to Basis, this comments needs to be revised.
- *this = *this * Matrix3(p_axis, p_phi);
- }
- Matrix3 Matrix3::rotated(const Vector3& p_axis, real_t p_phi) const {
- return *this * Matrix3(p_axis, p_phi);
- }
- // get_euler returns a vector containing the Euler angles in the format
- // (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
- // (following the convention they are commonly defined in the literature).
- //
- // The current implementation uses XYZ convention (Z is the first rotation),
- // so euler.z is the angle of the (first) rotation around Z axis and so on,
- //
- // And thus, assuming the matrix is a rotation matrix, this function returns
- // the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates
- // around the z-axis by a and so on.
- Vector3 Matrix3::get_euler() const {
- // Euler angles in XYZ convention.
- // See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
- //
- // rot = cy*cz -cy*sz sy
- // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
- // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
- Vector3 euler;
- ERR_FAIL_COND_V(is_rotation() == false, euler);
- euler.y = Math::asin(elements[0][2]);
- if ( euler.y < Math_PI*0.5) {
- if ( euler.y > -Math_PI*0.5) {
- euler.x = Math::atan2(-elements[1][2],elements[2][2]);
- euler.z = Math::atan2(-elements[0][1],elements[0][0]);
- } else {
- real_t r = Math::atan2(elements[1][0],elements[1][1]);
- euler.z = 0.0;
- euler.x = euler.z - r;
- }
- } else {
- real_t r = Math::atan2(elements[0][1],elements[1][1]);
- euler.z = 0;
- euler.x = r - euler.z;
- }
- return euler;
- }
- // set_euler expects a vector containing the Euler angles in the format
- // (c,b,a), where a is the angle of the first rotation, and c is the last.
- // The current implementation uses XYZ convention (Z is the first rotation).
- void Matrix3::set_euler(const Vector3& p_euler) {
- real_t c, s;
- c = Math::cos(p_euler.x);
- s = Math::sin(p_euler.x);
- Matrix3 xmat(1.0,0.0,0.0,0.0,c,-s,0.0,s,c);
- c = Math::cos(p_euler.y);
- s = Math::sin(p_euler.y);
- Matrix3 ymat(c,0.0,s,0.0,1.0,0.0,-s,0.0,c);
- c = Math::cos(p_euler.z);
- s = Math::sin(p_euler.z);
- Matrix3 zmat(c,-s,0.0,s,c,0.0,0.0,0.0,1.0);
- //optimizer will optimize away all this anyway
- *this = xmat*(ymat*zmat);
- }
- bool Matrix3::isequal_approx(const Matrix3& a, const Matrix3& b) const {
- for (int i=0;i<3;i++) {
- for (int j=0;j<3;j++) {
- if (Math::isequal_approx(a.elements[i][j],b.elements[i][j]) == false)
- return false;
- }
- }
- return true;
- }
- bool Matrix3::operator==(const Matrix3& p_matrix) const {
- for (int i=0;i<3;i++) {
- for (int j=0;j<3;j++) {
- if (elements[i][j] != p_matrix.elements[i][j])
- return false;
- }
- }
- return true;
- }
- bool Matrix3::operator!=(const Matrix3& p_matrix) const {
- return (!(*this==p_matrix));
- }
- Matrix3::operator String() const {
- String mtx;
- for (int i=0;i<3;i++) {
- for (int j=0;j<3;j++) {
- if (i!=0 || j!=0)
- mtx+=", ";
- mtx+=rtos( elements[i][j] );
- }
- }
- return mtx;
- }
- Matrix3::operator Quat() const {
- ERR_FAIL_COND_V(is_rotation() == false, Quat());
- real_t trace = elements[0][0] + elements[1][1] + elements[2][2];
- real_t temp[4];
- if (trace > 0.0)
- {
- real_t s = Math::sqrt(trace + 1.0);
- temp[3]=(s * 0.5);
- s = 0.5 / s;
- temp[0]=((elements[2][1] - elements[1][2]) * s);
- temp[1]=((elements[0][2] - elements[2][0]) * s);
- temp[2]=((elements[1][0] - elements[0][1]) * s);
- }
- else
- {
- int i = elements[0][0] < elements[1][1] ?
- (elements[1][1] < elements[2][2] ? 2 : 1) :
- (elements[0][0] < elements[2][2] ? 2 : 0);
- int j = (i + 1) % 3;
- int k = (i + 2) % 3;
- real_t s = Math::sqrt(elements[i][i] - elements[j][j] - elements[k][k] + 1.0);
- temp[i] = s * 0.5;
- s = 0.5 / s;
- temp[3] = (elements[k][j] - elements[j][k]) * s;
- temp[j] = (elements[j][i] + elements[i][j]) * s;
- temp[k] = (elements[k][i] + elements[i][k]) * s;
- }
- return Quat(temp[0],temp[1],temp[2],temp[3]);
- }
- static const Matrix3 _ortho_bases[24]={
- Matrix3(1, 0, 0, 0, 1, 0, 0, 0, 1),
- Matrix3(0, -1, 0, 1, 0, 0, 0, 0, 1),
- Matrix3(-1, 0, 0, 0, -1, 0, 0, 0, 1),
- Matrix3(0, 1, 0, -1, 0, 0, 0, 0, 1),
- Matrix3(1, 0, 0, 0, 0, -1, 0, 1, 0),
- Matrix3(0, 0, 1, 1, 0, 0, 0, 1, 0),
- Matrix3(-1, 0, 0, 0, 0, 1, 0, 1, 0),
- Matrix3(0, 0, -1, -1, 0, 0, 0, 1, 0),
- Matrix3(1, 0, 0, 0, -1, 0, 0, 0, -1),
- Matrix3(0, 1, 0, 1, 0, 0, 0, 0, -1),
- Matrix3(-1, 0, 0, 0, 1, 0, 0, 0, -1),
- Matrix3(0, -1, 0, -1, 0, 0, 0, 0, -1),
- Matrix3(1, 0, 0, 0, 0, 1, 0, -1, 0),
- Matrix3(0, 0, -1, 1, 0, 0, 0, -1, 0),
- Matrix3(-1, 0, 0, 0, 0, -1, 0, -1, 0),
- Matrix3(0, 0, 1, -1, 0, 0, 0, -1, 0),
- Matrix3(0, 0, 1, 0, 1, 0, -1, 0, 0),
- Matrix3(0, -1, 0, 0, 0, 1, -1, 0, 0),
- Matrix3(0, 0, -1, 0, -1, 0, -1, 0, 0),
- Matrix3(0, 1, 0, 0, 0, -1, -1, 0, 0),
- Matrix3(0, 0, 1, 0, -1, 0, 1, 0, 0),
- Matrix3(0, 1, 0, 0, 0, 1, 1, 0, 0),
- Matrix3(0, 0, -1, 0, 1, 0, 1, 0, 0),
- Matrix3(0, -1, 0, 0, 0, -1, 1, 0, 0)
- };
- int Matrix3::get_orthogonal_index() const {
- //could be sped up if i come up with a way
- Matrix3 orth=*this;
- for(int i=0;i<3;i++) {
- for(int j=0;j<3;j++) {
- float v = orth[i][j];
- if (v>0.5)
- v=1.0;
- else if (v<-0.5)
- v=-1.0;
- else
- v=0;
- orth[i][j]=v;
- }
- }
- for(int i=0;i<24;i++) {
- if (_ortho_bases[i]==orth)
- return i;
- }
- return 0;
- }
- void Matrix3::set_orthogonal_index(int p_index){
- //there only exist 24 orthogonal bases in r3
- ERR_FAIL_INDEX(p_index,24);
- *this=_ortho_bases[p_index];
- }
- void Matrix3::get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const {
- // TODO: We can handle improper matrices here too, in which case axis will also correspond to the axis of reflection.
- // See Eq. (52) in http://scipp.ucsc.edu/~haber/ph251/rotreflect_13.pdf for example
- // After that change, we should fail on is_orthogonal() == false.
- ERR_FAIL_COND(is_rotation() == false);
- double angle,x,y,z; // variables for result
- double epsilon = 0.01; // margin to allow for rounding errors
- double epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees
- if ( (Math::abs(elements[1][0]-elements[0][1])< epsilon)
- && (Math::abs(elements[2][0]-elements[0][2])< epsilon)
- && (Math::abs(elements[2][1]-elements[1][2])< epsilon)) {
- // singularity found
- // first check for identity matrix which must have +1 for all terms
- // in leading diagonaland zero in other terms
- if ((Math::abs(elements[1][0]+elements[0][1]) < epsilon2)
- && (Math::abs(elements[2][0]+elements[0][2]) < epsilon2)
- && (Math::abs(elements[2][1]+elements[1][2]) < epsilon2)
- && (Math::abs(elements[0][0]+elements[1][1]+elements[2][2]-3) < epsilon2)) {
- // this singularity is identity matrix so angle = 0
- r_axis=Vector3(0,1,0);
- r_angle=0;
- return;
- }
- // otherwise this singularity is angle = 180
- angle = Math_PI;
- double xx = (elements[0][0]+1)/2;
- double yy = (elements[1][1]+1)/2;
- double zz = (elements[2][2]+1)/2;
- double xy = (elements[1][0]+elements[0][1])/4;
- double xz = (elements[2][0]+elements[0][2])/4;
- double yz = (elements[2][1]+elements[1][2])/4;
- if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term
- if (xx< epsilon) {
- x = 0;
- y = 0.7071;
- z = 0.7071;
- } else {
- x = Math::sqrt(xx);
- y = xy/x;
- z = xz/x;
- }
- } else if (yy > zz) { // elements[1][1] is the largest diagonal term
- if (yy< epsilon) {
- x = 0.7071;
- y = 0;
- z = 0.7071;
- } else {
- y = Math::sqrt(yy);
- x = xy/y;
- z = yz/y;
- }
- } else { // elements[2][2] is the largest diagonal term so base result on this
- if (zz< epsilon) {
- x = 0.7071;
- y = 0.7071;
- z = 0;
- } else {
- z = Math::sqrt(zz);
- x = xz/z;
- y = yz/z;
- }
- }
- r_axis=Vector3(x,y,z);
- r_angle=angle;
- return;
- }
- // as we have reached here there are no singularities so we can handle normally
- double s = Math::sqrt((elements[1][2] - elements[2][1])*(elements[1][2] - elements[2][1])
- +(elements[2][0] - elements[0][2])*(elements[2][0] - elements[0][2])
- +(elements[0][1] - elements[1][0])*(elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise
- angle = Math::acos(( elements[0][0] + elements[1][1] + elements[2][2] - 1)/2);
- if (angle < 0) s = -s;
- x = (elements[2][1] - elements[1][2])/s;
- y = (elements[0][2] - elements[2][0])/s;
- z = (elements[1][0] - elements[0][1])/s;
- r_axis=Vector3(x,y,z);
- r_angle=angle;
- }
- Matrix3::Matrix3(const Vector3& p_euler) {
- set_euler( p_euler );
- }
- Matrix3::Matrix3(const Quat& p_quat) {
- real_t d = p_quat.length_squared();
- real_t s = 2.0 / d;
- real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s;
- real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs;
- real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs;
- real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs;
- set( 1.0 - (yy + zz), xy - wz, xz + wy,
- xy + wz, 1.0 - (xx + zz), yz - wx,
- xz - wy, yz + wx, 1.0 - (xx + yy)) ;
- }
- Matrix3::Matrix3(const Vector3& p_axis, real_t p_phi) {
- // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
- Vector3 axis_sq(p_axis.x*p_axis.x,p_axis.y*p_axis.y,p_axis.z*p_axis.z);
- real_t cosine= Math::cos(p_phi);
- real_t sine= Math::sin(p_phi);
- elements[0][0] = axis_sq.x + cosine * ( 1.0 - axis_sq.x );
- elements[0][1] = p_axis.x * p_axis.y * ( 1.0 - cosine ) - p_axis.z * sine;
- elements[0][2] = p_axis.z * p_axis.x * ( 1.0 - cosine ) + p_axis.y * sine;
- elements[1][0] = p_axis.x * p_axis.y * ( 1.0 - cosine ) + p_axis.z * sine;
- elements[1][1] = axis_sq.y + cosine * ( 1.0 - axis_sq.y );
- elements[1][2] = p_axis.y * p_axis.z * ( 1.0 - cosine ) - p_axis.x * sine;
- elements[2][0] = p_axis.z * p_axis.x * ( 1.0 - cosine ) - p_axis.y * sine;
- elements[2][1] = p_axis.y * p_axis.z * ( 1.0 - cosine ) + p_axis.x * sine;
- elements[2][2] = axis_sq.z + cosine * ( 1.0 - axis_sq.z );
- }
|