xxhash.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882
  1. /*
  2. * xxHash - Fast Hash algorithm
  3. * Copyright (C) 2012-2016, Yann Collet
  4. *
  5. * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions are
  9. * met:
  10. *
  11. * * Redistributions of source code must retain the above copyright
  12. * notice, this list of conditions and the following disclaimer.
  13. * * Redistributions in binary form must reproduce the above
  14. * copyright notice, this list of conditions and the following disclaimer
  15. * in the documentation and/or other materials provided with the
  16. * distribution.
  17. *
  18. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  19. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  20. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  21. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  22. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  23. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  24. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  25. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  26. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  27. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  28. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  29. *
  30. * You can contact the author at :
  31. * - xxHash homepage: http://www.xxhash.com
  32. * - xxHash source repository : https://github.com/Cyan4973/xxHash
  33. */
  34. /* *************************************
  35. * Tuning parameters
  36. ***************************************/
  37. /*!XXH_FORCE_MEMORY_ACCESS :
  38. * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
  39. * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
  40. * The below switch allow to select different access method for improved performance.
  41. * Method 0 (default) : use `memcpy()`. Safe and portable.
  42. * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
  43. * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
  44. * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
  45. * It can generate buggy code on targets which do not support unaligned memory accesses.
  46. * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
  47. * See http://stackoverflow.com/a/32095106/646947 for details.
  48. * Prefer these methods in priority order (0 > 1 > 2)
  49. */
  50. #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
  51. # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
  52. # define XXH_FORCE_MEMORY_ACCESS 2
  53. # elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
  54. (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) || \
  55. defined(__ICCARM__)
  56. # define XXH_FORCE_MEMORY_ACCESS 1
  57. # endif
  58. #endif
  59. /*!XXH_ACCEPT_NULL_INPUT_POINTER :
  60. * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
  61. * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
  62. * By default, this option is disabled. To enable it, uncomment below define :
  63. */
  64. /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
  65. /*!XXH_FORCE_NATIVE_FORMAT :
  66. * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
  67. * Results are therefore identical for little-endian and big-endian CPU.
  68. * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
  69. * Should endian-independence be of no importance for your application, you may set the #define below to 1,
  70. * to improve speed for Big-endian CPU.
  71. * This option has no impact on Little_Endian CPU.
  72. */
  73. #ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */
  74. # define XXH_FORCE_NATIVE_FORMAT 0
  75. #endif
  76. /*!XXH_FORCE_ALIGN_CHECK :
  77. * This is a minor performance trick, only useful with lots of very small keys.
  78. * It means : check for aligned/unaligned input.
  79. * The check costs one initial branch per hash; set to 0 when the input data
  80. * is guaranteed to be aligned.
  81. */
  82. #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
  83. # if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
  84. # define XXH_FORCE_ALIGN_CHECK 0
  85. # else
  86. # define XXH_FORCE_ALIGN_CHECK 1
  87. # endif
  88. #endif
  89. /* *************************************
  90. * Includes & Memory related functions
  91. ***************************************/
  92. /* Modify the local functions below should you wish to use some other memory routines */
  93. /* for malloc(), free() */
  94. #include <stdlib.h>
  95. #include <stddef.h> /* size_t */
  96. static void* XXH_malloc(size_t s) { return malloc(s); }
  97. static void XXH_free (void* p) { free(p); }
  98. /* for memcpy() */
  99. #include <string.h>
  100. static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
  101. #ifndef XXH_STATIC_LINKING_ONLY
  102. # define XXH_STATIC_LINKING_ONLY
  103. #endif
  104. #include "xxhash.h"
  105. /* *************************************
  106. * Compiler Specific Options
  107. ***************************************/
  108. #if defined (__GNUC__) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
  109. # define INLINE_KEYWORD inline
  110. #else
  111. # define INLINE_KEYWORD
  112. #endif
  113. #if defined(__GNUC__) || defined(__ICCARM__)
  114. # define FORCE_INLINE_ATTR __attribute__((always_inline))
  115. #elif defined(_MSC_VER)
  116. # define FORCE_INLINE_ATTR __forceinline
  117. #else
  118. # define FORCE_INLINE_ATTR
  119. #endif
  120. #define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
  121. #ifdef _MSC_VER
  122. # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
  123. #endif
  124. /* *************************************
  125. * Basic Types
  126. ***************************************/
  127. #ifndef MEM_MODULE
  128. # define MEM_MODULE
  129. # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
  130. # include <stdint.h>
  131. typedef uint8_t BYTE;
  132. typedef uint16_t U16;
  133. typedef uint32_t U32;
  134. typedef int32_t S32;
  135. typedef uint64_t U64;
  136. # else
  137. typedef unsigned char BYTE;
  138. typedef unsigned short U16;
  139. typedef unsigned int U32;
  140. typedef signed int S32;
  141. typedef unsigned long long U64; /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
  142. # endif
  143. #endif
  144. #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
  145. /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
  146. static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
  147. static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
  148. #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
  149. /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
  150. /* currently only defined for gcc and icc */
  151. typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
  152. static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
  153. static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
  154. #else
  155. /* portable and safe solution. Generally efficient.
  156. * see : http://stackoverflow.com/a/32095106/646947
  157. */
  158. static U32 XXH_read32(const void* memPtr)
  159. {
  160. U32 val;
  161. memcpy(&val, memPtr, sizeof(val));
  162. return val;
  163. }
  164. static U64 XXH_read64(const void* memPtr)
  165. {
  166. U64 val;
  167. memcpy(&val, memPtr, sizeof(val));
  168. return val;
  169. }
  170. #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
  171. /* ****************************************
  172. * Compiler-specific Functions and Macros
  173. ******************************************/
  174. #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
  175. /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
  176. #if defined(_MSC_VER)
  177. # define XXH_rotl32(x,r) _rotl(x,r)
  178. # define XXH_rotl64(x,r) _rotl64(x,r)
  179. #else
  180. #if defined(__ICCARM__)
  181. # include <intrinsics.h>
  182. # define XXH_rotl32(x,r) __ROR(x,(32 - r))
  183. #else
  184. # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
  185. #endif
  186. # define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
  187. #endif
  188. #if defined(_MSC_VER) /* Visual Studio */
  189. # define XXH_swap32 _byteswap_ulong
  190. # define XXH_swap64 _byteswap_uint64
  191. #elif GCC_VERSION >= 403
  192. # define XXH_swap32 __builtin_bswap32
  193. # define XXH_swap64 __builtin_bswap64
  194. #else
  195. static U32 XXH_swap32 (U32 x)
  196. {
  197. return ((x << 24) & 0xff000000 ) |
  198. ((x << 8) & 0x00ff0000 ) |
  199. ((x >> 8) & 0x0000ff00 ) |
  200. ((x >> 24) & 0x000000ff );
  201. }
  202. static U64 XXH_swap64 (U64 x)
  203. {
  204. return ((x << 56) & 0xff00000000000000ULL) |
  205. ((x << 40) & 0x00ff000000000000ULL) |
  206. ((x << 24) & 0x0000ff0000000000ULL) |
  207. ((x << 8) & 0x000000ff00000000ULL) |
  208. ((x >> 8) & 0x00000000ff000000ULL) |
  209. ((x >> 24) & 0x0000000000ff0000ULL) |
  210. ((x >> 40) & 0x000000000000ff00ULL) |
  211. ((x >> 56) & 0x00000000000000ffULL);
  212. }
  213. #endif
  214. /* *************************************
  215. * Architecture Macros
  216. ***************************************/
  217. typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
  218. /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
  219. #ifndef XXH_CPU_LITTLE_ENDIAN
  220. static const int g_one = 1;
  221. # define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one))
  222. #endif
  223. /* ***************************
  224. * Memory reads
  225. *****************************/
  226. typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
  227. FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
  228. {
  229. if (align==XXH_unaligned)
  230. return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
  231. else
  232. return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
  233. }
  234. FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
  235. {
  236. return XXH_readLE32_align(ptr, endian, XXH_unaligned);
  237. }
  238. static U32 XXH_readBE32(const void* ptr)
  239. {
  240. return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
  241. }
  242. FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
  243. {
  244. if (align==XXH_unaligned)
  245. return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
  246. else
  247. return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
  248. }
  249. FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
  250. {
  251. return XXH_readLE64_align(ptr, endian, XXH_unaligned);
  252. }
  253. static U64 XXH_readBE64(const void* ptr)
  254. {
  255. return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
  256. }
  257. /* *************************************
  258. * Macros
  259. ***************************************/
  260. #define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
  261. /* *************************************
  262. * Constants
  263. ***************************************/
  264. static const U32 PRIME32_1 = 2654435761U;
  265. static const U32 PRIME32_2 = 2246822519U;
  266. static const U32 PRIME32_3 = 3266489917U;
  267. static const U32 PRIME32_4 = 668265263U;
  268. static const U32 PRIME32_5 = 374761393U;
  269. static const U64 PRIME64_1 = 11400714785074694791ULL;
  270. static const U64 PRIME64_2 = 14029467366897019727ULL;
  271. static const U64 PRIME64_3 = 1609587929392839161ULL;
  272. static const U64 PRIME64_4 = 9650029242287828579ULL;
  273. static const U64 PRIME64_5 = 2870177450012600261ULL;
  274. XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
  275. /* **************************
  276. * Utils
  277. ****************************/
  278. XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
  279. {
  280. memcpy(dstState, srcState, sizeof(*dstState));
  281. }
  282. XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
  283. {
  284. memcpy(dstState, srcState, sizeof(*dstState));
  285. }
  286. /* ***************************
  287. * Simple Hash Functions
  288. *****************************/
  289. static U32 XXH32_round(U32 seed, U32 input)
  290. {
  291. seed += input * PRIME32_2;
  292. seed = XXH_rotl32(seed, 13);
  293. seed *= PRIME32_1;
  294. return seed;
  295. }
  296. FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
  297. {
  298. const BYTE* p = (const BYTE*)input;
  299. const BYTE* bEnd = p + len;
  300. U32 h32;
  301. #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
  302. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  303. if (p==NULL) {
  304. len=0;
  305. bEnd=p=(const BYTE*)(size_t)16;
  306. }
  307. #endif
  308. if (len>=16) {
  309. const BYTE* const limit = bEnd - 16;
  310. U32 v1 = seed + PRIME32_1 + PRIME32_2;
  311. U32 v2 = seed + PRIME32_2;
  312. U32 v3 = seed + 0;
  313. U32 v4 = seed - PRIME32_1;
  314. do {
  315. v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
  316. v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
  317. v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
  318. v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
  319. } while (p<=limit);
  320. h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
  321. } else {
  322. h32 = seed + PRIME32_5;
  323. }
  324. h32 += (U32) len;
  325. while (p+4<=bEnd) {
  326. h32 += XXH_get32bits(p) * PRIME32_3;
  327. h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
  328. p+=4;
  329. }
  330. while (p<bEnd) {
  331. h32 += (*p) * PRIME32_5;
  332. h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
  333. p++;
  334. }
  335. h32 ^= h32 >> 15;
  336. h32 *= PRIME32_2;
  337. h32 ^= h32 >> 13;
  338. h32 *= PRIME32_3;
  339. h32 ^= h32 >> 16;
  340. return h32;
  341. }
  342. XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
  343. {
  344. #if 0
  345. /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
  346. XXH32_CREATESTATE_STATIC(state);
  347. XXH32_reset(state, seed);
  348. XXH32_update(state, input, len);
  349. return XXH32_digest(state);
  350. #else
  351. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  352. if (XXH_FORCE_ALIGN_CHECK) {
  353. if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
  354. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  355. return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
  356. else
  357. return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
  358. } }
  359. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  360. return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
  361. else
  362. return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
  363. #endif
  364. }
  365. static U64 XXH64_round(U64 acc, U64 input)
  366. {
  367. acc += input * PRIME64_2;
  368. acc = XXH_rotl64(acc, 31);
  369. acc *= PRIME64_1;
  370. return acc;
  371. }
  372. static U64 XXH64_mergeRound(U64 acc, U64 val)
  373. {
  374. val = XXH64_round(0, val);
  375. acc ^= val;
  376. acc = acc * PRIME64_1 + PRIME64_4;
  377. return acc;
  378. }
  379. FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
  380. {
  381. const BYTE* p = (const BYTE*)input;
  382. const BYTE* const bEnd = p + len;
  383. U64 h64;
  384. #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
  385. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  386. if (p==NULL) {
  387. len=0;
  388. bEnd=p=(const BYTE*)(size_t)32;
  389. }
  390. #endif
  391. if (len>=32) {
  392. const BYTE* const limit = bEnd - 32;
  393. U64 v1 = seed + PRIME64_1 + PRIME64_2;
  394. U64 v2 = seed + PRIME64_2;
  395. U64 v3 = seed + 0;
  396. U64 v4 = seed - PRIME64_1;
  397. do {
  398. v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
  399. v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
  400. v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
  401. v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
  402. } while (p<=limit);
  403. h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
  404. h64 = XXH64_mergeRound(h64, v1);
  405. h64 = XXH64_mergeRound(h64, v2);
  406. h64 = XXH64_mergeRound(h64, v3);
  407. h64 = XXH64_mergeRound(h64, v4);
  408. } else {
  409. h64 = seed + PRIME64_5;
  410. }
  411. h64 += (U64) len;
  412. while (p+8<=bEnd) {
  413. U64 const k1 = XXH64_round(0, XXH_get64bits(p));
  414. h64 ^= k1;
  415. h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
  416. p+=8;
  417. }
  418. if (p+4<=bEnd) {
  419. h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
  420. h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
  421. p+=4;
  422. }
  423. while (p<bEnd) {
  424. h64 ^= (*p) * PRIME64_5;
  425. h64 = XXH_rotl64(h64, 11) * PRIME64_1;
  426. p++;
  427. }
  428. h64 ^= h64 >> 33;
  429. h64 *= PRIME64_2;
  430. h64 ^= h64 >> 29;
  431. h64 *= PRIME64_3;
  432. h64 ^= h64 >> 32;
  433. return h64;
  434. }
  435. XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
  436. {
  437. #if 0
  438. /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
  439. XXH64_CREATESTATE_STATIC(state);
  440. XXH64_reset(state, seed);
  441. XXH64_update(state, input, len);
  442. return XXH64_digest(state);
  443. #else
  444. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  445. if (XXH_FORCE_ALIGN_CHECK) {
  446. if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
  447. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  448. return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
  449. else
  450. return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
  451. } }
  452. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  453. return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
  454. else
  455. return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
  456. #endif
  457. }
  458. /* **************************************************
  459. * Advanced Hash Functions
  460. ****************************************************/
  461. XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
  462. {
  463. return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
  464. }
  465. XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
  466. {
  467. XXH_free(statePtr);
  468. return XXH_OK;
  469. }
  470. XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
  471. {
  472. return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
  473. }
  474. XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
  475. {
  476. XXH_free(statePtr);
  477. return XXH_OK;
  478. }
  479. /*** Hash feed ***/
  480. XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
  481. {
  482. XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
  483. memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */
  484. state.v1 = seed + PRIME32_1 + PRIME32_2;
  485. state.v2 = seed + PRIME32_2;
  486. state.v3 = seed + 0;
  487. state.v4 = seed - PRIME32_1;
  488. memcpy(statePtr, &state, sizeof(state));
  489. return XXH_OK;
  490. }
  491. XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
  492. {
  493. XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
  494. memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */
  495. state.v1 = seed + PRIME64_1 + PRIME64_2;
  496. state.v2 = seed + PRIME64_2;
  497. state.v3 = seed + 0;
  498. state.v4 = seed - PRIME64_1;
  499. memcpy(statePtr, &state, sizeof(state));
  500. return XXH_OK;
  501. }
  502. FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
  503. {
  504. const BYTE* p = (const BYTE*)input;
  505. const BYTE* const bEnd = p + len;
  506. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  507. if (input==NULL) return XXH_ERROR;
  508. #endif
  509. state->total_len_32 += (unsigned)len;
  510. state->large_len |= (len>=16) | (state->total_len_32>=16);
  511. if (state->memsize + len < 16) { /* fill in tmp buffer */
  512. XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
  513. state->memsize += (unsigned)len;
  514. return XXH_OK;
  515. }
  516. if (state->memsize) { /* some data left from previous update */
  517. XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
  518. { const U32* p32 = state->mem32;
  519. state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
  520. state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
  521. state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
  522. state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
  523. }
  524. p += 16-state->memsize;
  525. state->memsize = 0;
  526. }
  527. if (p <= bEnd-16) {
  528. const BYTE* const limit = bEnd - 16;
  529. U32 v1 = state->v1;
  530. U32 v2 = state->v2;
  531. U32 v3 = state->v3;
  532. U32 v4 = state->v4;
  533. do {
  534. v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
  535. v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
  536. v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
  537. v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
  538. } while (p<=limit);
  539. state->v1 = v1;
  540. state->v2 = v2;
  541. state->v3 = v3;
  542. state->v4 = v4;
  543. }
  544. if (p < bEnd) {
  545. XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
  546. state->memsize = (unsigned)(bEnd-p);
  547. }
  548. return XXH_OK;
  549. }
  550. XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
  551. {
  552. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  553. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  554. return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
  555. else
  556. return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
  557. }
  558. FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
  559. {
  560. const BYTE * p = (const BYTE*)state->mem32;
  561. const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
  562. U32 h32;
  563. if (state->large_len) {
  564. h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
  565. } else {
  566. h32 = state->v3 /* == seed */ + PRIME32_5;
  567. }
  568. h32 += state->total_len_32;
  569. while (p+4<=bEnd) {
  570. h32 += XXH_readLE32(p, endian) * PRIME32_3;
  571. h32 = XXH_rotl32(h32, 17) * PRIME32_4;
  572. p+=4;
  573. }
  574. while (p<bEnd) {
  575. h32 += (*p) * PRIME32_5;
  576. h32 = XXH_rotl32(h32, 11) * PRIME32_1;
  577. p++;
  578. }
  579. h32 ^= h32 >> 15;
  580. h32 *= PRIME32_2;
  581. h32 ^= h32 >> 13;
  582. h32 *= PRIME32_3;
  583. h32 ^= h32 >> 16;
  584. return h32;
  585. }
  586. XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
  587. {
  588. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  589. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  590. return XXH32_digest_endian(state_in, XXH_littleEndian);
  591. else
  592. return XXH32_digest_endian(state_in, XXH_bigEndian);
  593. }
  594. /* **** XXH64 **** */
  595. FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
  596. {
  597. const BYTE* p = (const BYTE*)input;
  598. const BYTE* const bEnd = p + len;
  599. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  600. if (input==NULL) return XXH_ERROR;
  601. #endif
  602. state->total_len += len;
  603. if (state->memsize + len < 32) { /* fill in tmp buffer */
  604. XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
  605. state->memsize += (U32)len;
  606. return XXH_OK;
  607. }
  608. if (state->memsize) { /* tmp buffer is full */
  609. XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
  610. state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
  611. state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
  612. state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
  613. state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
  614. p += 32-state->memsize;
  615. state->memsize = 0;
  616. }
  617. if (p+32 <= bEnd) {
  618. const BYTE* const limit = bEnd - 32;
  619. U64 v1 = state->v1;
  620. U64 v2 = state->v2;
  621. U64 v3 = state->v3;
  622. U64 v4 = state->v4;
  623. do {
  624. v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
  625. v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
  626. v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
  627. v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
  628. } while (p<=limit);
  629. state->v1 = v1;
  630. state->v2 = v2;
  631. state->v3 = v3;
  632. state->v4 = v4;
  633. }
  634. if (p < bEnd) {
  635. XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
  636. state->memsize = (unsigned)(bEnd-p);
  637. }
  638. return XXH_OK;
  639. }
  640. XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
  641. {
  642. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  643. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  644. return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
  645. else
  646. return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
  647. }
  648. FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
  649. {
  650. const BYTE * p = (const BYTE*)state->mem64;
  651. const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
  652. U64 h64;
  653. if (state->total_len >= 32) {
  654. U64 const v1 = state->v1;
  655. U64 const v2 = state->v2;
  656. U64 const v3 = state->v3;
  657. U64 const v4 = state->v4;
  658. h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
  659. h64 = XXH64_mergeRound(h64, v1);
  660. h64 = XXH64_mergeRound(h64, v2);
  661. h64 = XXH64_mergeRound(h64, v3);
  662. h64 = XXH64_mergeRound(h64, v4);
  663. } else {
  664. h64 = state->v3 + PRIME64_5;
  665. }
  666. h64 += (U64) state->total_len;
  667. while (p+8<=bEnd) {
  668. U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
  669. h64 ^= k1;
  670. h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
  671. p+=8;
  672. }
  673. if (p+4<=bEnd) {
  674. h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
  675. h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
  676. p+=4;
  677. }
  678. while (p<bEnd) {
  679. h64 ^= (*p) * PRIME64_5;
  680. h64 = XXH_rotl64(h64, 11) * PRIME64_1;
  681. p++;
  682. }
  683. h64 ^= h64 >> 33;
  684. h64 *= PRIME64_2;
  685. h64 ^= h64 >> 29;
  686. h64 *= PRIME64_3;
  687. h64 ^= h64 >> 32;
  688. return h64;
  689. }
  690. XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
  691. {
  692. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  693. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  694. return XXH64_digest_endian(state_in, XXH_littleEndian);
  695. else
  696. return XXH64_digest_endian(state_in, XXH_bigEndian);
  697. }
  698. /* **************************
  699. * Canonical representation
  700. ****************************/
  701. /*! Default XXH result types are basic unsigned 32 and 64 bits.
  702. * The canonical representation follows human-readable write convention, aka big-endian (large digits first).
  703. * These functions allow transformation of hash result into and from its canonical format.
  704. * This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
  705. */
  706. XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
  707. {
  708. XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
  709. if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
  710. memcpy(dst, &hash, sizeof(*dst));
  711. }
  712. XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
  713. {
  714. XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
  715. if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
  716. memcpy(dst, &hash, sizeof(*dst));
  717. }
  718. XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
  719. {
  720. return XXH_readBE32(src);
  721. }
  722. XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
  723. {
  724. return XXH_readBE64(src);
  725. }