mesh_storage.cpp 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952
  1. /*************************************************************************/
  2. /* mesh_storage.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "mesh_storage.h"
  31. using namespace RendererRD;
  32. MeshStorage *MeshStorage::singleton = nullptr;
  33. MeshStorage *MeshStorage::get_singleton() {
  34. return singleton;
  35. }
  36. MeshStorage::MeshStorage() {
  37. singleton = this;
  38. default_rd_storage_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4);
  39. //default rd buffers
  40. {
  41. Vector<uint8_t> buffer;
  42. {
  43. buffer.resize(sizeof(float) * 3);
  44. {
  45. uint8_t *w = buffer.ptrw();
  46. float *fptr = reinterpret_cast<float *>(w);
  47. fptr[0] = 0.0;
  48. fptr[1] = 0.0;
  49. fptr[2] = 0.0;
  50. }
  51. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_VERTEX] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  52. }
  53. { //normal
  54. buffer.resize(sizeof(float) * 3);
  55. {
  56. uint8_t *w = buffer.ptrw();
  57. float *fptr = reinterpret_cast<float *>(w);
  58. fptr[0] = 1.0;
  59. fptr[1] = 0.0;
  60. fptr[2] = 0.0;
  61. }
  62. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_NORMAL] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  63. }
  64. { //tangent
  65. buffer.resize(sizeof(float) * 4);
  66. {
  67. uint8_t *w = buffer.ptrw();
  68. float *fptr = reinterpret_cast<float *>(w);
  69. fptr[0] = 1.0;
  70. fptr[1] = 0.0;
  71. fptr[2] = 0.0;
  72. fptr[3] = 0.0;
  73. }
  74. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TANGENT] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  75. }
  76. { //color
  77. buffer.resize(sizeof(float) * 4);
  78. {
  79. uint8_t *w = buffer.ptrw();
  80. float *fptr = reinterpret_cast<float *>(w);
  81. fptr[0] = 1.0;
  82. fptr[1] = 1.0;
  83. fptr[2] = 1.0;
  84. fptr[3] = 1.0;
  85. }
  86. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_COLOR] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  87. }
  88. { //tex uv 1
  89. buffer.resize(sizeof(float) * 2);
  90. {
  91. uint8_t *w = buffer.ptrw();
  92. float *fptr = reinterpret_cast<float *>(w);
  93. fptr[0] = 0.0;
  94. fptr[1] = 0.0;
  95. }
  96. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  97. }
  98. { //tex uv 2
  99. buffer.resize(sizeof(float) * 2);
  100. {
  101. uint8_t *w = buffer.ptrw();
  102. float *fptr = reinterpret_cast<float *>(w);
  103. fptr[0] = 0.0;
  104. fptr[1] = 0.0;
  105. }
  106. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV2] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  107. }
  108. for (int i = 0; i < RS::ARRAY_CUSTOM_COUNT; i++) {
  109. buffer.resize(sizeof(float) * 4);
  110. {
  111. uint8_t *w = buffer.ptrw();
  112. float *fptr = reinterpret_cast<float *>(w);
  113. fptr[0] = 0.0;
  114. fptr[1] = 0.0;
  115. fptr[2] = 0.0;
  116. fptr[3] = 0.0;
  117. }
  118. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_CUSTOM0 + i] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  119. }
  120. { //bones
  121. buffer.resize(sizeof(uint32_t) * 4);
  122. {
  123. uint8_t *w = buffer.ptrw();
  124. uint32_t *fptr = reinterpret_cast<uint32_t *>(w);
  125. fptr[0] = 0;
  126. fptr[1] = 0;
  127. fptr[2] = 0;
  128. fptr[3] = 0;
  129. }
  130. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_BONES] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  131. }
  132. { //weights
  133. buffer.resize(sizeof(float) * 4);
  134. {
  135. uint8_t *w = buffer.ptrw();
  136. float *fptr = reinterpret_cast<float *>(w);
  137. fptr[0] = 0.0;
  138. fptr[1] = 0.0;
  139. fptr[2] = 0.0;
  140. fptr[3] = 0.0;
  141. }
  142. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_WEIGHTS] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  143. }
  144. }
  145. {
  146. Vector<String> skeleton_modes;
  147. skeleton_modes.push_back("\n#define MODE_2D\n");
  148. skeleton_modes.push_back("");
  149. skeleton_shader.shader.initialize(skeleton_modes);
  150. skeleton_shader.version = skeleton_shader.shader.version_create();
  151. for (int i = 0; i < SkeletonShader::SHADER_MODE_MAX; i++) {
  152. skeleton_shader.version_shader[i] = skeleton_shader.shader.version_get_shader(skeleton_shader.version, i);
  153. skeleton_shader.pipeline[i] = RD::get_singleton()->compute_pipeline_create(skeleton_shader.version_shader[i]);
  154. }
  155. {
  156. Vector<RD::Uniform> uniforms;
  157. {
  158. RD::Uniform u;
  159. u.binding = 0;
  160. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  161. u.append_id(default_rd_storage_buffer);
  162. uniforms.push_back(u);
  163. }
  164. skeleton_shader.default_skeleton_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  165. }
  166. }
  167. }
  168. MeshStorage::~MeshStorage() {
  169. //def buffers
  170. for (int i = 0; i < DEFAULT_RD_BUFFER_MAX; i++) {
  171. RD::get_singleton()->free(mesh_default_rd_buffers[i]);
  172. }
  173. skeleton_shader.shader.version_free(skeleton_shader.version);
  174. RD::get_singleton()->free(default_rd_storage_buffer);
  175. singleton = nullptr;
  176. }
  177. /* MESH API */
  178. RID MeshStorage::mesh_allocate() {
  179. return mesh_owner.allocate_rid();
  180. }
  181. void MeshStorage::mesh_initialize(RID p_rid) {
  182. mesh_owner.initialize_rid(p_rid, Mesh());
  183. }
  184. void MeshStorage::mesh_free(RID p_rid) {
  185. mesh_clear(p_rid);
  186. mesh_set_shadow_mesh(p_rid, RID());
  187. Mesh *mesh = mesh_owner.get_or_null(p_rid);
  188. ERR_FAIL_COND(!mesh);
  189. mesh->dependency.deleted_notify(p_rid);
  190. if (mesh->instances.size()) {
  191. ERR_PRINT("deleting mesh with active instances");
  192. }
  193. if (mesh->shadow_owners.size()) {
  194. for (Mesh *E : mesh->shadow_owners) {
  195. Mesh *shadow_owner = E;
  196. shadow_owner->shadow_mesh = RID();
  197. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  198. }
  199. }
  200. mesh_owner.free(p_rid);
  201. }
  202. void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
  203. ERR_FAIL_COND(p_blend_shape_count < 0);
  204. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  205. ERR_FAIL_COND(!mesh);
  206. ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
  207. mesh->blend_shape_count = p_blend_shape_count;
  208. }
  209. /// Returns stride
  210. void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
  211. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  212. ERR_FAIL_COND(!mesh);
  213. ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
  214. #ifdef DEBUG_ENABLED
  215. //do a validation, to catch errors first
  216. {
  217. uint32_t stride = 0;
  218. uint32_t attrib_stride = 0;
  219. uint32_t skin_stride = 0;
  220. for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
  221. if ((p_surface.format & (1 << i))) {
  222. switch (i) {
  223. case RS::ARRAY_VERTEX: {
  224. if (p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  225. stride += sizeof(float) * 2;
  226. } else {
  227. stride += sizeof(float) * 3;
  228. }
  229. } break;
  230. case RS::ARRAY_NORMAL: {
  231. stride += sizeof(int32_t);
  232. } break;
  233. case RS::ARRAY_TANGENT: {
  234. stride += sizeof(int32_t);
  235. } break;
  236. case RS::ARRAY_COLOR: {
  237. attrib_stride += sizeof(uint32_t);
  238. } break;
  239. case RS::ARRAY_TEX_UV: {
  240. attrib_stride += sizeof(float) * 2;
  241. } break;
  242. case RS::ARRAY_TEX_UV2: {
  243. attrib_stride += sizeof(float) * 2;
  244. } break;
  245. case RS::ARRAY_CUSTOM0:
  246. case RS::ARRAY_CUSTOM1:
  247. case RS::ARRAY_CUSTOM2:
  248. case RS::ARRAY_CUSTOM3: {
  249. int idx = i - RS::ARRAY_CUSTOM0;
  250. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  251. uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  252. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  253. attrib_stride += fmtsize[fmt];
  254. } break;
  255. case RS::ARRAY_WEIGHTS:
  256. case RS::ARRAY_BONES: {
  257. //uses a separate array
  258. bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  259. skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
  260. } break;
  261. }
  262. }
  263. }
  264. int expected_size = stride * p_surface.vertex_count;
  265. ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  266. int bs_expected_size = expected_size * mesh->blend_shape_count;
  267. ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
  268. int expected_attrib_size = attrib_stride * p_surface.vertex_count;
  269. ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
  270. if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
  271. expected_size = skin_stride * p_surface.vertex_count;
  272. ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  273. }
  274. }
  275. #endif
  276. Mesh::Surface *s = memnew(Mesh::Surface);
  277. s->format = p_surface.format;
  278. s->primitive = p_surface.primitive;
  279. bool use_as_storage = (p_surface.skin_data.size() || mesh->blend_shape_count > 0);
  280. if (p_surface.vertex_data.size()) {
  281. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.vertex_data.size(), p_surface.vertex_data, use_as_storage);
  282. s->vertex_buffer_size = p_surface.vertex_data.size();
  283. }
  284. if (p_surface.attribute_data.size()) {
  285. s->attribute_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.attribute_data.size(), p_surface.attribute_data);
  286. }
  287. if (p_surface.skin_data.size()) {
  288. s->skin_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.skin_data.size(), p_surface.skin_data, use_as_storage);
  289. s->skin_buffer_size = p_surface.skin_data.size();
  290. }
  291. s->vertex_count = p_surface.vertex_count;
  292. if (p_surface.format & RS::ARRAY_FORMAT_BONES) {
  293. mesh->has_bone_weights = true;
  294. }
  295. if (p_surface.index_count) {
  296. bool is_index_16 = p_surface.vertex_count <= 65536 && p_surface.vertex_count > 0;
  297. s->index_buffer = RD::get_singleton()->index_buffer_create(p_surface.index_count, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, p_surface.index_data, false);
  298. s->index_count = p_surface.index_count;
  299. s->index_array = RD::get_singleton()->index_array_create(s->index_buffer, 0, s->index_count);
  300. if (p_surface.lods.size()) {
  301. s->lods = memnew_arr(Mesh::Surface::LOD, p_surface.lods.size());
  302. s->lod_count = p_surface.lods.size();
  303. for (int i = 0; i < p_surface.lods.size(); i++) {
  304. uint32_t indices = p_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
  305. s->lods[i].index_buffer = RD::get_singleton()->index_buffer_create(indices, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, p_surface.lods[i].index_data);
  306. s->lods[i].index_array = RD::get_singleton()->index_array_create(s->lods[i].index_buffer, 0, indices);
  307. s->lods[i].edge_length = p_surface.lods[i].edge_length;
  308. s->lods[i].index_count = indices;
  309. }
  310. }
  311. }
  312. ERR_FAIL_COND_MSG(!p_surface.index_count && !p_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
  313. s->aabb = p_surface.aabb;
  314. s->bone_aabbs = p_surface.bone_aabbs; //only really useful for returning them.
  315. if (mesh->blend_shape_count > 0) {
  316. s->blend_shape_buffer = RD::get_singleton()->storage_buffer_create(p_surface.blend_shape_data.size(), p_surface.blend_shape_data);
  317. }
  318. if (use_as_storage) {
  319. Vector<RD::Uniform> uniforms;
  320. {
  321. RD::Uniform u;
  322. u.binding = 0;
  323. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  324. if (s->vertex_buffer.is_valid()) {
  325. u.append_id(s->vertex_buffer);
  326. } else {
  327. u.append_id(default_rd_storage_buffer);
  328. }
  329. uniforms.push_back(u);
  330. }
  331. {
  332. RD::Uniform u;
  333. u.binding = 1;
  334. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  335. if (s->skin_buffer.is_valid()) {
  336. u.append_id(s->skin_buffer);
  337. } else {
  338. u.append_id(default_rd_storage_buffer);
  339. }
  340. uniforms.push_back(u);
  341. }
  342. {
  343. RD::Uniform u;
  344. u.binding = 2;
  345. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  346. if (s->blend_shape_buffer.is_valid()) {
  347. u.append_id(s->blend_shape_buffer);
  348. } else {
  349. u.append_id(default_rd_storage_buffer);
  350. }
  351. uniforms.push_back(u);
  352. }
  353. s->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SURFACE);
  354. }
  355. if (mesh->surface_count == 0) {
  356. mesh->bone_aabbs = p_surface.bone_aabbs;
  357. mesh->aabb = p_surface.aabb;
  358. } else {
  359. if (mesh->bone_aabbs.size() < p_surface.bone_aabbs.size()) {
  360. // ArrayMesh::_surface_set_data only allocates bone_aabbs up to max_bone
  361. // Each surface may affect different numbers of bones.
  362. mesh->bone_aabbs.resize(p_surface.bone_aabbs.size());
  363. }
  364. for (int i = 0; i < p_surface.bone_aabbs.size(); i++) {
  365. const AABB &bone = p_surface.bone_aabbs[i];
  366. if (!bone.has_no_volume()) {
  367. mesh->bone_aabbs.write[i].merge_with(bone);
  368. }
  369. }
  370. mesh->aabb.merge_with(p_surface.aabb);
  371. }
  372. s->material = p_surface.material;
  373. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
  374. mesh->surfaces[mesh->surface_count] = s;
  375. mesh->surface_count++;
  376. for (MeshInstance *mi : mesh->instances) {
  377. _mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
  378. }
  379. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  380. for (Mesh *E : mesh->shadow_owners) {
  381. Mesh *shadow_owner = E;
  382. shadow_owner->shadow_mesh = RID();
  383. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  384. }
  385. mesh->material_cache.clear();
  386. }
  387. int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
  388. const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  389. ERR_FAIL_COND_V(!mesh, -1);
  390. return mesh->blend_shape_count;
  391. }
  392. void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
  393. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  394. ERR_FAIL_COND(!mesh);
  395. ERR_FAIL_INDEX((int)p_mode, 2);
  396. mesh->blend_shape_mode = p_mode;
  397. }
  398. RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
  399. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  400. ERR_FAIL_COND_V(!mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
  401. return mesh->blend_shape_mode;
  402. }
  403. void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  404. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  405. ERR_FAIL_COND(!mesh);
  406. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  407. ERR_FAIL_COND(p_data.size() == 0);
  408. ERR_FAIL_COND(mesh->surfaces[p_surface]->vertex_buffer.is_null());
  409. uint64_t data_size = p_data.size();
  410. const uint8_t *r = p_data.ptr();
  411. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->vertex_buffer, p_offset, data_size, r);
  412. }
  413. void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  414. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  415. ERR_FAIL_COND(!mesh);
  416. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  417. ERR_FAIL_COND(p_data.size() == 0);
  418. ERR_FAIL_COND(mesh->surfaces[p_surface]->attribute_buffer.is_null());
  419. uint64_t data_size = p_data.size();
  420. const uint8_t *r = p_data.ptr();
  421. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->attribute_buffer, p_offset, data_size, r);
  422. }
  423. void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  424. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  425. ERR_FAIL_COND(!mesh);
  426. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  427. ERR_FAIL_COND(p_data.size() == 0);
  428. ERR_FAIL_COND(mesh->surfaces[p_surface]->skin_buffer.is_null());
  429. uint64_t data_size = p_data.size();
  430. const uint8_t *r = p_data.ptr();
  431. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->skin_buffer, p_offset, data_size, r);
  432. }
  433. void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
  434. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  435. ERR_FAIL_COND(!mesh);
  436. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  437. mesh->surfaces[p_surface]->material = p_material;
  438. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
  439. mesh->material_cache.clear();
  440. }
  441. RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
  442. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  443. ERR_FAIL_COND_V(!mesh, RID());
  444. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
  445. return mesh->surfaces[p_surface]->material;
  446. }
  447. RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
  448. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  449. ERR_FAIL_COND_V(!mesh, RS::SurfaceData());
  450. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
  451. Mesh::Surface &s = *mesh->surfaces[p_surface];
  452. RS::SurfaceData sd;
  453. sd.format = s.format;
  454. if (s.vertex_buffer.is_valid()) {
  455. sd.vertex_data = RD::get_singleton()->buffer_get_data(s.vertex_buffer);
  456. }
  457. if (s.attribute_buffer.is_valid()) {
  458. sd.attribute_data = RD::get_singleton()->buffer_get_data(s.attribute_buffer);
  459. }
  460. if (s.skin_buffer.is_valid()) {
  461. sd.skin_data = RD::get_singleton()->buffer_get_data(s.skin_buffer);
  462. }
  463. sd.vertex_count = s.vertex_count;
  464. sd.index_count = s.index_count;
  465. sd.primitive = s.primitive;
  466. if (sd.index_count) {
  467. sd.index_data = RD::get_singleton()->buffer_get_data(s.index_buffer);
  468. }
  469. sd.aabb = s.aabb;
  470. for (uint32_t i = 0; i < s.lod_count; i++) {
  471. RS::SurfaceData::LOD lod;
  472. lod.edge_length = s.lods[i].edge_length;
  473. lod.index_data = RD::get_singleton()->buffer_get_data(s.lods[i].index_buffer);
  474. sd.lods.push_back(lod);
  475. }
  476. sd.bone_aabbs = s.bone_aabbs;
  477. if (s.blend_shape_buffer.is_valid()) {
  478. sd.blend_shape_data = RD::get_singleton()->buffer_get_data(s.blend_shape_buffer);
  479. }
  480. return sd;
  481. }
  482. int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
  483. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  484. ERR_FAIL_COND_V(!mesh, 0);
  485. return mesh->surface_count;
  486. }
  487. void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
  488. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  489. ERR_FAIL_COND(!mesh);
  490. mesh->custom_aabb = p_aabb;
  491. }
  492. AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
  493. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  494. ERR_FAIL_COND_V(!mesh, AABB());
  495. return mesh->custom_aabb;
  496. }
  497. AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
  498. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  499. ERR_FAIL_COND_V(!mesh, AABB());
  500. if (mesh->custom_aabb != AABB()) {
  501. return mesh->custom_aabb;
  502. }
  503. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  504. if (!skeleton || skeleton->size == 0) {
  505. return mesh->aabb;
  506. }
  507. AABB aabb;
  508. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  509. AABB laabb;
  510. if ((mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->bone_aabbs.size()) {
  511. int bs = mesh->surfaces[i]->bone_aabbs.size();
  512. const AABB *skbones = mesh->surfaces[i]->bone_aabbs.ptr();
  513. int sbs = skeleton->size;
  514. ERR_CONTINUE(bs > sbs);
  515. const float *baseptr = skeleton->data.ptr();
  516. bool first = true;
  517. if (skeleton->use_2d) {
  518. for (int j = 0; j < bs; j++) {
  519. if (skbones[0].size == Vector3()) {
  520. continue; //bone is unused
  521. }
  522. const float *dataptr = baseptr + j * 8;
  523. Transform3D mtx;
  524. mtx.basis.rows[0].x = dataptr[0];
  525. mtx.basis.rows[1].x = dataptr[1];
  526. mtx.origin.x = dataptr[3];
  527. mtx.basis.rows[0].y = dataptr[4];
  528. mtx.basis.rows[1].y = dataptr[5];
  529. mtx.origin.y = dataptr[7];
  530. AABB baabb = mtx.xform(skbones[j]);
  531. if (first) {
  532. laabb = baabb;
  533. first = false;
  534. } else {
  535. laabb.merge_with(baabb);
  536. }
  537. }
  538. } else {
  539. for (int j = 0; j < bs; j++) {
  540. if (skbones[0].size == Vector3()) {
  541. continue; //bone is unused
  542. }
  543. const float *dataptr = baseptr + j * 12;
  544. Transform3D mtx;
  545. mtx.basis.rows[0][0] = dataptr[0];
  546. mtx.basis.rows[0][1] = dataptr[1];
  547. mtx.basis.rows[0][2] = dataptr[2];
  548. mtx.origin.x = dataptr[3];
  549. mtx.basis.rows[1][0] = dataptr[4];
  550. mtx.basis.rows[1][1] = dataptr[5];
  551. mtx.basis.rows[1][2] = dataptr[6];
  552. mtx.origin.y = dataptr[7];
  553. mtx.basis.rows[2][0] = dataptr[8];
  554. mtx.basis.rows[2][1] = dataptr[9];
  555. mtx.basis.rows[2][2] = dataptr[10];
  556. mtx.origin.z = dataptr[11];
  557. AABB baabb = mtx.xform(skbones[j]);
  558. if (first) {
  559. laabb = baabb;
  560. first = false;
  561. } else {
  562. laabb.merge_with(baabb);
  563. }
  564. }
  565. }
  566. if (laabb.size == Vector3()) {
  567. laabb = mesh->surfaces[i]->aabb;
  568. }
  569. } else {
  570. laabb = mesh->surfaces[i]->aabb;
  571. }
  572. if (i == 0) {
  573. aabb = laabb;
  574. } else {
  575. aabb.merge_with(laabb);
  576. }
  577. }
  578. return aabb;
  579. }
  580. void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
  581. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  582. ERR_FAIL_COND(!mesh);
  583. Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  584. if (shadow_mesh) {
  585. shadow_mesh->shadow_owners.erase(mesh);
  586. }
  587. mesh->shadow_mesh = p_shadow_mesh;
  588. shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  589. if (shadow_mesh) {
  590. shadow_mesh->shadow_owners.insert(mesh);
  591. }
  592. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  593. }
  594. void MeshStorage::mesh_clear(RID p_mesh) {
  595. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  596. ERR_FAIL_COND(!mesh);
  597. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  598. Mesh::Surface &s = *mesh->surfaces[i];
  599. if (s.vertex_buffer.is_valid()) {
  600. RD::get_singleton()->free(s.vertex_buffer); //clears arrays as dependency automatically, including all versions
  601. }
  602. if (s.attribute_buffer.is_valid()) {
  603. RD::get_singleton()->free(s.attribute_buffer);
  604. }
  605. if (s.skin_buffer.is_valid()) {
  606. RD::get_singleton()->free(s.skin_buffer);
  607. }
  608. if (s.versions) {
  609. memfree(s.versions); //reallocs, so free with memfree.
  610. }
  611. if (s.index_buffer.is_valid()) {
  612. RD::get_singleton()->free(s.index_buffer);
  613. }
  614. if (s.lod_count) {
  615. for (uint32_t j = 0; j < s.lod_count; j++) {
  616. RD::get_singleton()->free(s.lods[j].index_buffer);
  617. }
  618. memdelete_arr(s.lods);
  619. }
  620. if (s.blend_shape_buffer.is_valid()) {
  621. RD::get_singleton()->free(s.blend_shape_buffer);
  622. }
  623. memdelete(mesh->surfaces[i]);
  624. }
  625. if (mesh->surfaces) {
  626. memfree(mesh->surfaces);
  627. }
  628. mesh->surfaces = nullptr;
  629. mesh->surface_count = 0;
  630. mesh->material_cache.clear();
  631. //clear instance data
  632. for (MeshInstance *mi : mesh->instances) {
  633. _mesh_instance_clear(mi);
  634. }
  635. mesh->has_bone_weights = false;
  636. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  637. for (Mesh *E : mesh->shadow_owners) {
  638. Mesh *shadow_owner = E;
  639. shadow_owner->shadow_mesh = RID();
  640. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  641. }
  642. }
  643. bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
  644. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  645. ERR_FAIL_COND_V(!mesh, false);
  646. return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
  647. }
  648. Dependency *MeshStorage::mesh_get_dependency(RID p_mesh) const {
  649. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  650. ERR_FAIL_COND_V(!mesh, nullptr);
  651. return &mesh->dependency;
  652. }
  653. /* MESH INSTANCE */
  654. RID MeshStorage::mesh_instance_create(RID p_base) {
  655. Mesh *mesh = mesh_owner.get_or_null(p_base);
  656. ERR_FAIL_COND_V(!mesh, RID());
  657. RID rid = mesh_instance_owner.make_rid();
  658. MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
  659. mi->mesh = mesh;
  660. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  661. _mesh_instance_add_surface(mi, mesh, i);
  662. }
  663. mi->I = mesh->instances.push_back(mi);
  664. mi->dirty = true;
  665. return rid;
  666. }
  667. void MeshStorage::mesh_instance_free(RID p_rid) {
  668. MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
  669. _mesh_instance_clear(mi);
  670. mi->mesh->instances.erase(mi->I);
  671. mi->I = nullptr;
  672. mesh_instance_owner.free(p_rid);
  673. }
  674. void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
  675. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  676. if (mi->skeleton == p_skeleton) {
  677. return;
  678. }
  679. mi->skeleton = p_skeleton;
  680. mi->skeleton_version = 0;
  681. mi->dirty = true;
  682. }
  683. void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
  684. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  685. ERR_FAIL_COND(!mi);
  686. ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
  687. mi->blend_weights[p_shape] = p_weight;
  688. mi->weights_dirty = true;
  689. //will be eventually updated
  690. }
  691. void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
  692. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  693. if (mi->surfaces[i].versions) {
  694. for (uint32_t j = 0; j < mi->surfaces[i].version_count; j++) {
  695. RD::get_singleton()->free(mi->surfaces[i].versions[j].vertex_array);
  696. }
  697. memfree(mi->surfaces[i].versions);
  698. }
  699. if (mi->surfaces[i].vertex_buffer.is_valid()) {
  700. RD::get_singleton()->free(mi->surfaces[i].vertex_buffer);
  701. }
  702. }
  703. mi->surfaces.clear();
  704. if (mi->blend_weights_buffer.is_valid()) {
  705. RD::get_singleton()->free(mi->blend_weights_buffer);
  706. }
  707. mi->blend_weights.clear();
  708. mi->weights_dirty = false;
  709. mi->skeleton_version = 0;
  710. }
  711. void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
  712. if (mesh->blend_shape_count > 0 && mi->blend_weights_buffer.is_null()) {
  713. mi->blend_weights.resize(mesh->blend_shape_count);
  714. for (uint32_t i = 0; i < mi->blend_weights.size(); i++) {
  715. mi->blend_weights[i] = 0;
  716. }
  717. mi->blend_weights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(float) * mi->blend_weights.size(), mi->blend_weights.to_byte_array());
  718. mi->weights_dirty = true;
  719. }
  720. MeshInstance::Surface s;
  721. if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) {
  722. //surface warrants transform
  723. s.vertex_buffer = RD::get_singleton()->vertex_buffer_create(mesh->surfaces[p_surface]->vertex_buffer_size, Vector<uint8_t>(), true);
  724. Vector<RD::Uniform> uniforms;
  725. {
  726. RD::Uniform u;
  727. u.binding = 1;
  728. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  729. u.append_id(s.vertex_buffer);
  730. uniforms.push_back(u);
  731. }
  732. {
  733. RD::Uniform u;
  734. u.binding = 2;
  735. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  736. if (mi->blend_weights_buffer.is_valid()) {
  737. u.append_id(mi->blend_weights_buffer);
  738. } else {
  739. u.append_id(default_rd_storage_buffer);
  740. }
  741. uniforms.push_back(u);
  742. }
  743. s.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_INSTANCE);
  744. }
  745. mi->surfaces.push_back(s);
  746. mi->dirty = true;
  747. }
  748. void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
  749. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  750. bool needs_update = mi->dirty;
  751. if (mi->weights_dirty && !mi->weight_update_list.in_list()) {
  752. dirty_mesh_instance_weights.add(&mi->weight_update_list);
  753. needs_update = true;
  754. }
  755. if (mi->array_update_list.in_list()) {
  756. return;
  757. }
  758. if (!needs_update && mi->skeleton.is_valid()) {
  759. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  760. if (sk && sk->version != mi->skeleton_version) {
  761. needs_update = true;
  762. }
  763. }
  764. if (needs_update) {
  765. dirty_mesh_instance_arrays.add(&mi->array_update_list);
  766. }
  767. }
  768. void MeshStorage::update_mesh_instances() {
  769. while (dirty_mesh_instance_weights.first()) {
  770. MeshInstance *mi = dirty_mesh_instance_weights.first()->self();
  771. if (mi->blend_weights_buffer.is_valid()) {
  772. RD::get_singleton()->buffer_update(mi->blend_weights_buffer, 0, mi->blend_weights.size() * sizeof(float), mi->blend_weights.ptr());
  773. }
  774. dirty_mesh_instance_weights.remove(&mi->weight_update_list);
  775. mi->weights_dirty = false;
  776. }
  777. if (dirty_mesh_instance_arrays.first() == nullptr) {
  778. return; //nothing to do
  779. }
  780. //process skeletons and blend shapes
  781. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  782. while (dirty_mesh_instance_arrays.first()) {
  783. MeshInstance *mi = dirty_mesh_instance_arrays.first()->self();
  784. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  785. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  786. if (mi->surfaces[i].uniform_set == RID() || mi->mesh->surfaces[i]->uniform_set == RID()) {
  787. continue;
  788. }
  789. bool array_is_2d = mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_2D_VERTICES;
  790. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, skeleton_shader.pipeline[array_is_2d ? SkeletonShader::SHADER_MODE_2D : SkeletonShader::SHADER_MODE_3D]);
  791. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->surfaces[i].uniform_set, SkeletonShader::UNIFORM_SET_INSTANCE);
  792. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->mesh->surfaces[i]->uniform_set, SkeletonShader::UNIFORM_SET_SURFACE);
  793. if (sk && sk->uniform_set_mi.is_valid()) {
  794. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sk->uniform_set_mi, SkeletonShader::UNIFORM_SET_SKELETON);
  795. } else {
  796. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, skeleton_shader.default_skeleton_uniform_set, SkeletonShader::UNIFORM_SET_SKELETON);
  797. }
  798. SkeletonShader::PushConstant push_constant;
  799. push_constant.has_normal = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_NORMAL;
  800. push_constant.has_tangent = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_TANGENT;
  801. push_constant.has_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES);
  802. push_constant.has_blend_shape = mi->mesh->blend_shape_count > 0;
  803. push_constant.vertex_count = mi->mesh->surfaces[i]->vertex_count;
  804. push_constant.vertex_stride = (mi->mesh->surfaces[i]->vertex_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  805. push_constant.skin_stride = (mi->mesh->surfaces[i]->skin_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  806. push_constant.skin_weight_offset = (mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS) ? 4 : 2;
  807. push_constant.blend_shape_count = mi->mesh->blend_shape_count;
  808. push_constant.normalized_blend_shapes = mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED;
  809. push_constant.pad0 = 0;
  810. push_constant.pad1 = 0;
  811. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SkeletonShader::PushConstant));
  812. //dispatch without barrier, so all is done at the same time
  813. RD::get_singleton()->compute_list_dispatch_threads(compute_list, push_constant.vertex_count, 1, 1);
  814. }
  815. mi->dirty = false;
  816. if (sk) {
  817. mi->skeleton_version = sk->version;
  818. }
  819. dirty_mesh_instance_arrays.remove(&mi->array_update_list);
  820. }
  821. RD::get_singleton()->compute_list_end();
  822. }
  823. void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint32_t p_input_mask, MeshInstance::Surface *mis) {
  824. Vector<RD::VertexAttribute> attributes;
  825. Vector<RID> buffers;
  826. uint32_t stride = 0;
  827. uint32_t attribute_stride = 0;
  828. uint32_t skin_stride = 0;
  829. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  830. RD::VertexAttribute vd;
  831. RID buffer;
  832. vd.location = i;
  833. if (!(s->format & (1 << i))) {
  834. // Not supplied by surface, use default value
  835. buffer = mesh_default_rd_buffers[i];
  836. vd.stride = 0;
  837. switch (i) {
  838. case RS::ARRAY_VERTEX: {
  839. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  840. } break;
  841. case RS::ARRAY_NORMAL: {
  842. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  843. } break;
  844. case RS::ARRAY_TANGENT: {
  845. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  846. } break;
  847. case RS::ARRAY_COLOR: {
  848. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  849. } break;
  850. case RS::ARRAY_TEX_UV: {
  851. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  852. } break;
  853. case RS::ARRAY_TEX_UV2: {
  854. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  855. } break;
  856. case RS::ARRAY_CUSTOM0:
  857. case RS::ARRAY_CUSTOM1:
  858. case RS::ARRAY_CUSTOM2:
  859. case RS::ARRAY_CUSTOM3: {
  860. //assumed weights too
  861. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  862. } break;
  863. case RS::ARRAY_BONES: {
  864. //assumed weights too
  865. vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
  866. } break;
  867. case RS::ARRAY_WEIGHTS: {
  868. //assumed weights too
  869. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  870. } break;
  871. }
  872. } else {
  873. //Supplied, use it
  874. vd.stride = 1; //mark that it needs a stride set (default uses 0)
  875. switch (i) {
  876. case RS::ARRAY_VERTEX: {
  877. vd.offset = stride;
  878. if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  879. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  880. stride += sizeof(float) * 2;
  881. } else {
  882. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  883. stride += sizeof(float) * 3;
  884. }
  885. if (mis) {
  886. buffer = mis->vertex_buffer;
  887. } else {
  888. buffer = s->vertex_buffer;
  889. }
  890. } break;
  891. case RS::ARRAY_NORMAL: {
  892. vd.offset = stride;
  893. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  894. stride += sizeof(uint16_t) * 2;
  895. if (mis) {
  896. buffer = mis->vertex_buffer;
  897. } else {
  898. buffer = s->vertex_buffer;
  899. }
  900. } break;
  901. case RS::ARRAY_TANGENT: {
  902. vd.offset = stride;
  903. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  904. stride += sizeof(uint16_t) * 2;
  905. if (mis) {
  906. buffer = mis->vertex_buffer;
  907. } else {
  908. buffer = s->vertex_buffer;
  909. }
  910. } break;
  911. case RS::ARRAY_COLOR: {
  912. vd.offset = attribute_stride;
  913. vd.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  914. attribute_stride += sizeof(int8_t) * 4;
  915. buffer = s->attribute_buffer;
  916. } break;
  917. case RS::ARRAY_TEX_UV: {
  918. vd.offset = attribute_stride;
  919. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  920. attribute_stride += sizeof(float) * 2;
  921. buffer = s->attribute_buffer;
  922. } break;
  923. case RS::ARRAY_TEX_UV2: {
  924. vd.offset = attribute_stride;
  925. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  926. attribute_stride += sizeof(float) * 2;
  927. buffer = s->attribute_buffer;
  928. } break;
  929. case RS::ARRAY_CUSTOM0:
  930. case RS::ARRAY_CUSTOM1:
  931. case RS::ARRAY_CUSTOM2:
  932. case RS::ARRAY_CUSTOM3: {
  933. vd.offset = attribute_stride;
  934. int idx = i - RS::ARRAY_CUSTOM0;
  935. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  936. uint32_t fmt = (s->format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  937. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  938. const RD::DataFormat fmtrd[RS::ARRAY_CUSTOM_MAX] = { RD::DATA_FORMAT_R8G8B8A8_UNORM, RD::DATA_FORMAT_R8G8B8A8_SNORM, RD::DATA_FORMAT_R16G16_SFLOAT, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, RD::DATA_FORMAT_R32_SFLOAT, RD::DATA_FORMAT_R32G32_SFLOAT, RD::DATA_FORMAT_R32G32B32_SFLOAT, RD::DATA_FORMAT_R32G32B32A32_SFLOAT };
  939. vd.format = fmtrd[fmt];
  940. attribute_stride += fmtsize[fmt];
  941. buffer = s->attribute_buffer;
  942. } break;
  943. case RS::ARRAY_BONES: {
  944. vd.offset = skin_stride;
  945. vd.format = RD::DATA_FORMAT_R16G16B16A16_UINT;
  946. skin_stride += sizeof(int16_t) * 4;
  947. buffer = s->skin_buffer;
  948. } break;
  949. case RS::ARRAY_WEIGHTS: {
  950. vd.offset = skin_stride;
  951. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  952. skin_stride += sizeof(int16_t) * 4;
  953. buffer = s->skin_buffer;
  954. } break;
  955. }
  956. }
  957. if (!(p_input_mask & (1 << i))) {
  958. continue; // Shader does not need this, skip it (but computing stride was important anyway)
  959. }
  960. attributes.push_back(vd);
  961. buffers.push_back(buffer);
  962. }
  963. //update final stride
  964. for (int i = 0; i < attributes.size(); i++) {
  965. if (attributes[i].stride == 0) {
  966. continue; //default location
  967. }
  968. int loc = attributes[i].location;
  969. if (loc < RS::ARRAY_COLOR) {
  970. attributes.write[i].stride = stride;
  971. } else if (loc < RS::ARRAY_BONES) {
  972. attributes.write[i].stride = attribute_stride;
  973. } else {
  974. attributes.write[i].stride = skin_stride;
  975. }
  976. }
  977. v.input_mask = p_input_mask;
  978. v.vertex_format = RD::get_singleton()->vertex_format_create(attributes);
  979. v.vertex_array = RD::get_singleton()->vertex_array_create(s->vertex_count, v.vertex_format, buffers);
  980. }
  981. ////////////////// MULTIMESH
  982. RID MeshStorage::multimesh_allocate() {
  983. return multimesh_owner.allocate_rid();
  984. }
  985. void MeshStorage::multimesh_initialize(RID p_rid) {
  986. multimesh_owner.initialize_rid(p_rid, MultiMesh());
  987. }
  988. void MeshStorage::multimesh_free(RID p_rid) {
  989. _update_dirty_multimeshes();
  990. multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
  991. MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
  992. multimesh->dependency.deleted_notify(p_rid);
  993. multimesh_owner.free(p_rid);
  994. }
  995. void MeshStorage::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) {
  996. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  997. ERR_FAIL_COND(!multimesh);
  998. if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
  999. return;
  1000. }
  1001. if (multimesh->buffer.is_valid()) {
  1002. RD::get_singleton()->free(multimesh->buffer);
  1003. multimesh->buffer = RID();
  1004. multimesh->uniform_set_2d = RID(); //cleared by dependency
  1005. multimesh->uniform_set_3d = RID(); //cleared by dependency
  1006. }
  1007. if (multimesh->data_cache_dirty_regions) {
  1008. memdelete_arr(multimesh->data_cache_dirty_regions);
  1009. multimesh->data_cache_dirty_regions = nullptr;
  1010. multimesh->data_cache_used_dirty_regions = 0;
  1011. }
  1012. multimesh->instances = p_instances;
  1013. multimesh->xform_format = p_transform_format;
  1014. multimesh->uses_colors = p_use_colors;
  1015. multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1016. multimesh->uses_custom_data = p_use_custom_data;
  1017. multimesh->custom_data_offset_cache = multimesh->color_offset_cache + (p_use_colors ? 4 : 0);
  1018. multimesh->stride_cache = multimesh->custom_data_offset_cache + (p_use_custom_data ? 4 : 0);
  1019. multimesh->buffer_set = false;
  1020. //print_line("allocate, elements: " + itos(p_instances) + " 2D: " + itos(p_transform_format == RS::MULTIMESH_TRANSFORM_2D) + " colors " + itos(multimesh->uses_colors) + " data " + itos(multimesh->uses_custom_data) + " stride " + itos(multimesh->stride_cache) + " total size " + itos(multimesh->stride_cache * multimesh->instances));
  1021. multimesh->data_cache = Vector<float>();
  1022. multimesh->aabb = AABB();
  1023. multimesh->aabb_dirty = false;
  1024. multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
  1025. if (multimesh->instances) {
  1026. multimesh->buffer = RD::get_singleton()->storage_buffer_create(multimesh->instances * multimesh->stride_cache * 4);
  1027. }
  1028. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1029. }
  1030. int MeshStorage::multimesh_get_instance_count(RID p_multimesh) const {
  1031. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1032. ERR_FAIL_COND_V(!multimesh, 0);
  1033. return multimesh->instances;
  1034. }
  1035. void MeshStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
  1036. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1037. ERR_FAIL_COND(!multimesh);
  1038. if (multimesh->mesh == p_mesh) {
  1039. return;
  1040. }
  1041. multimesh->mesh = p_mesh;
  1042. if (multimesh->instances == 0) {
  1043. return;
  1044. }
  1045. if (multimesh->data_cache.size()) {
  1046. //we have a data cache, just mark it dirt
  1047. _multimesh_mark_all_dirty(multimesh, false, true);
  1048. } else if (multimesh->instances) {
  1049. //need to re-create AABB unfortunately, calling this has a penalty
  1050. if (multimesh->buffer_set) {
  1051. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1052. const uint8_t *r = buffer.ptr();
  1053. const float *data = reinterpret_cast<const float *>(r);
  1054. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1055. }
  1056. }
  1057. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  1058. }
  1059. #define MULTIMESH_DIRTY_REGION_SIZE 512
  1060. void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
  1061. if (multimesh->data_cache.size() > 0) {
  1062. return; //already local
  1063. }
  1064. ERR_FAIL_COND(multimesh->data_cache.size() > 0);
  1065. // this means that the user wants to load/save individual elements,
  1066. // for this, the data must reside on CPU, so just copy it there.
  1067. multimesh->data_cache.resize(multimesh->instances * multimesh->stride_cache);
  1068. {
  1069. float *w = multimesh->data_cache.ptrw();
  1070. if (multimesh->buffer_set) {
  1071. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1072. {
  1073. const uint8_t *r = buffer.ptr();
  1074. memcpy(w, r, buffer.size());
  1075. }
  1076. } else {
  1077. memset(w, 0, (size_t)multimesh->instances * multimesh->stride_cache * sizeof(float));
  1078. }
  1079. }
  1080. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1081. multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1082. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1083. multimesh->data_cache_dirty_regions[i] = false;
  1084. }
  1085. multimesh->data_cache_used_dirty_regions = 0;
  1086. }
  1087. void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
  1088. uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
  1089. #ifdef DEBUG_ENABLED
  1090. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1091. ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
  1092. #endif
  1093. if (!multimesh->data_cache_dirty_regions[region_index]) {
  1094. multimesh->data_cache_dirty_regions[region_index] = true;
  1095. multimesh->data_cache_used_dirty_regions++;
  1096. }
  1097. if (p_aabb) {
  1098. multimesh->aabb_dirty = true;
  1099. }
  1100. if (!multimesh->dirty) {
  1101. multimesh->dirty_list = multimesh_dirty_list;
  1102. multimesh_dirty_list = multimesh;
  1103. multimesh->dirty = true;
  1104. }
  1105. }
  1106. void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
  1107. if (p_data) {
  1108. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1109. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1110. if (!multimesh->data_cache_dirty_regions[i]) {
  1111. multimesh->data_cache_dirty_regions[i] = true;
  1112. multimesh->data_cache_used_dirty_regions++;
  1113. }
  1114. }
  1115. }
  1116. if (p_aabb) {
  1117. multimesh->aabb_dirty = true;
  1118. }
  1119. if (!multimesh->dirty) {
  1120. multimesh->dirty_list = multimesh_dirty_list;
  1121. multimesh_dirty_list = multimesh;
  1122. multimesh->dirty = true;
  1123. }
  1124. }
  1125. void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
  1126. ERR_FAIL_COND(multimesh->mesh.is_null());
  1127. AABB aabb;
  1128. AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
  1129. for (int i = 0; i < p_instances; i++) {
  1130. const float *data = p_data + multimesh->stride_cache * i;
  1131. Transform3D t;
  1132. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1133. t.basis.rows[0][0] = data[0];
  1134. t.basis.rows[0][1] = data[1];
  1135. t.basis.rows[0][2] = data[2];
  1136. t.origin.x = data[3];
  1137. t.basis.rows[1][0] = data[4];
  1138. t.basis.rows[1][1] = data[5];
  1139. t.basis.rows[1][2] = data[6];
  1140. t.origin.y = data[7];
  1141. t.basis.rows[2][0] = data[8];
  1142. t.basis.rows[2][1] = data[9];
  1143. t.basis.rows[2][2] = data[10];
  1144. t.origin.z = data[11];
  1145. } else {
  1146. t.basis.rows[0].x = data[0];
  1147. t.basis.rows[1].x = data[1];
  1148. t.origin.x = data[3];
  1149. t.basis.rows[0].y = data[4];
  1150. t.basis.rows[1].y = data[5];
  1151. t.origin.y = data[7];
  1152. }
  1153. if (i == 0) {
  1154. aabb = t.xform(mesh_aabb);
  1155. } else {
  1156. aabb.merge_with(t.xform(mesh_aabb));
  1157. }
  1158. }
  1159. multimesh->aabb = aabb;
  1160. }
  1161. void MeshStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
  1162. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1163. ERR_FAIL_COND(!multimesh);
  1164. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1165. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
  1166. _multimesh_make_local(multimesh);
  1167. {
  1168. float *w = multimesh->data_cache.ptrw();
  1169. float *dataptr = w + p_index * multimesh->stride_cache;
  1170. dataptr[0] = p_transform.basis.rows[0][0];
  1171. dataptr[1] = p_transform.basis.rows[0][1];
  1172. dataptr[2] = p_transform.basis.rows[0][2];
  1173. dataptr[3] = p_transform.origin.x;
  1174. dataptr[4] = p_transform.basis.rows[1][0];
  1175. dataptr[5] = p_transform.basis.rows[1][1];
  1176. dataptr[6] = p_transform.basis.rows[1][2];
  1177. dataptr[7] = p_transform.origin.y;
  1178. dataptr[8] = p_transform.basis.rows[2][0];
  1179. dataptr[9] = p_transform.basis.rows[2][1];
  1180. dataptr[10] = p_transform.basis.rows[2][2];
  1181. dataptr[11] = p_transform.origin.z;
  1182. }
  1183. _multimesh_mark_dirty(multimesh, p_index, true);
  1184. }
  1185. void MeshStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
  1186. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1187. ERR_FAIL_COND(!multimesh);
  1188. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1189. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
  1190. _multimesh_make_local(multimesh);
  1191. {
  1192. float *w = multimesh->data_cache.ptrw();
  1193. float *dataptr = w + p_index * multimesh->stride_cache;
  1194. dataptr[0] = p_transform.columns[0][0];
  1195. dataptr[1] = p_transform.columns[1][0];
  1196. dataptr[2] = 0;
  1197. dataptr[3] = p_transform.columns[2][0];
  1198. dataptr[4] = p_transform.columns[0][1];
  1199. dataptr[5] = p_transform.columns[1][1];
  1200. dataptr[6] = 0;
  1201. dataptr[7] = p_transform.columns[2][1];
  1202. }
  1203. _multimesh_mark_dirty(multimesh, p_index, true);
  1204. }
  1205. void MeshStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
  1206. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1207. ERR_FAIL_COND(!multimesh);
  1208. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1209. ERR_FAIL_COND(!multimesh->uses_colors);
  1210. _multimesh_make_local(multimesh);
  1211. {
  1212. float *w = multimesh->data_cache.ptrw();
  1213. float *dataptr = w + p_index * multimesh->stride_cache + multimesh->color_offset_cache;
  1214. dataptr[0] = p_color.r;
  1215. dataptr[1] = p_color.g;
  1216. dataptr[2] = p_color.b;
  1217. dataptr[3] = p_color.a;
  1218. }
  1219. _multimesh_mark_dirty(multimesh, p_index, false);
  1220. }
  1221. void MeshStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
  1222. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1223. ERR_FAIL_COND(!multimesh);
  1224. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1225. ERR_FAIL_COND(!multimesh->uses_custom_data);
  1226. _multimesh_make_local(multimesh);
  1227. {
  1228. float *w = multimesh->data_cache.ptrw();
  1229. float *dataptr = w + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1230. dataptr[0] = p_color.r;
  1231. dataptr[1] = p_color.g;
  1232. dataptr[2] = p_color.b;
  1233. dataptr[3] = p_color.a;
  1234. }
  1235. _multimesh_mark_dirty(multimesh, p_index, false);
  1236. }
  1237. RID MeshStorage::multimesh_get_mesh(RID p_multimesh) const {
  1238. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1239. ERR_FAIL_COND_V(!multimesh, RID());
  1240. return multimesh->mesh;
  1241. }
  1242. Dependency *MeshStorage::multimesh_get_dependency(RID p_multimesh) const {
  1243. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1244. ERR_FAIL_COND_V(!multimesh, nullptr);
  1245. return &multimesh->dependency;
  1246. }
  1247. Transform3D MeshStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
  1248. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1249. ERR_FAIL_COND_V(!multimesh, Transform3D());
  1250. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
  1251. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
  1252. _multimesh_make_local(multimesh);
  1253. Transform3D t;
  1254. {
  1255. const float *r = multimesh->data_cache.ptr();
  1256. const float *dataptr = r + p_index * multimesh->stride_cache;
  1257. t.basis.rows[0][0] = dataptr[0];
  1258. t.basis.rows[0][1] = dataptr[1];
  1259. t.basis.rows[0][2] = dataptr[2];
  1260. t.origin.x = dataptr[3];
  1261. t.basis.rows[1][0] = dataptr[4];
  1262. t.basis.rows[1][1] = dataptr[5];
  1263. t.basis.rows[1][2] = dataptr[6];
  1264. t.origin.y = dataptr[7];
  1265. t.basis.rows[2][0] = dataptr[8];
  1266. t.basis.rows[2][1] = dataptr[9];
  1267. t.basis.rows[2][2] = dataptr[10];
  1268. t.origin.z = dataptr[11];
  1269. }
  1270. return t;
  1271. }
  1272. Transform2D MeshStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
  1273. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1274. ERR_FAIL_COND_V(!multimesh, Transform2D());
  1275. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
  1276. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
  1277. _multimesh_make_local(multimesh);
  1278. Transform2D t;
  1279. {
  1280. const float *r = multimesh->data_cache.ptr();
  1281. const float *dataptr = r + p_index * multimesh->stride_cache;
  1282. t.columns[0][0] = dataptr[0];
  1283. t.columns[1][0] = dataptr[1];
  1284. t.columns[2][0] = dataptr[3];
  1285. t.columns[0][1] = dataptr[4];
  1286. t.columns[1][1] = dataptr[5];
  1287. t.columns[2][1] = dataptr[7];
  1288. }
  1289. return t;
  1290. }
  1291. Color MeshStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
  1292. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1293. ERR_FAIL_COND_V(!multimesh, Color());
  1294. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1295. ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
  1296. _multimesh_make_local(multimesh);
  1297. Color c;
  1298. {
  1299. const float *r = multimesh->data_cache.ptr();
  1300. const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->color_offset_cache;
  1301. c.r = dataptr[0];
  1302. c.g = dataptr[1];
  1303. c.b = dataptr[2];
  1304. c.a = dataptr[3];
  1305. }
  1306. return c;
  1307. }
  1308. Color MeshStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
  1309. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1310. ERR_FAIL_COND_V(!multimesh, Color());
  1311. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1312. ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
  1313. _multimesh_make_local(multimesh);
  1314. Color c;
  1315. {
  1316. const float *r = multimesh->data_cache.ptr();
  1317. const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1318. c.r = dataptr[0];
  1319. c.g = dataptr[1];
  1320. c.b = dataptr[2];
  1321. c.a = dataptr[3];
  1322. }
  1323. return c;
  1324. }
  1325. void MeshStorage::multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
  1326. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1327. ERR_FAIL_COND(!multimesh);
  1328. ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
  1329. {
  1330. const float *r = p_buffer.ptr();
  1331. RD::get_singleton()->buffer_update(multimesh->buffer, 0, p_buffer.size() * sizeof(float), r);
  1332. multimesh->buffer_set = true;
  1333. }
  1334. if (multimesh->data_cache.size()) {
  1335. //if we have a data cache, just update it
  1336. multimesh->data_cache = p_buffer;
  1337. {
  1338. //clear dirty since nothing will be dirty anymore
  1339. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1340. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1341. multimesh->data_cache_dirty_regions[i] = false;
  1342. }
  1343. multimesh->data_cache_used_dirty_regions = 0;
  1344. }
  1345. _multimesh_mark_all_dirty(multimesh, false, true); //update AABB
  1346. } else if (multimesh->mesh.is_valid()) {
  1347. //if we have a mesh set, we need to re-generate the AABB from the new data
  1348. const float *data = p_buffer.ptr();
  1349. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1350. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1351. }
  1352. }
  1353. Vector<float> MeshStorage::multimesh_get_buffer(RID p_multimesh) const {
  1354. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1355. ERR_FAIL_COND_V(!multimesh, Vector<float>());
  1356. if (multimesh->buffer.is_null()) {
  1357. return Vector<float>();
  1358. } else if (multimesh->data_cache.size()) {
  1359. return multimesh->data_cache;
  1360. } else {
  1361. //get from memory
  1362. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1363. Vector<float> ret;
  1364. ret.resize(multimesh->instances * multimesh->stride_cache);
  1365. {
  1366. float *w = ret.ptrw();
  1367. const uint8_t *r = buffer.ptr();
  1368. memcpy(w, r, buffer.size());
  1369. }
  1370. return ret;
  1371. }
  1372. }
  1373. void MeshStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
  1374. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1375. ERR_FAIL_COND(!multimesh);
  1376. ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
  1377. if (multimesh->visible_instances == p_visible) {
  1378. return;
  1379. }
  1380. if (multimesh->data_cache.size()) {
  1381. //there is a data cache..
  1382. _multimesh_mark_all_dirty(multimesh, false, true);
  1383. }
  1384. multimesh->visible_instances = p_visible;
  1385. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
  1386. }
  1387. int MeshStorage::multimesh_get_visible_instances(RID p_multimesh) const {
  1388. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1389. ERR_FAIL_COND_V(!multimesh, 0);
  1390. return multimesh->visible_instances;
  1391. }
  1392. AABB MeshStorage::multimesh_get_aabb(RID p_multimesh) const {
  1393. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1394. ERR_FAIL_COND_V(!multimesh, AABB());
  1395. if (multimesh->aabb_dirty) {
  1396. const_cast<MeshStorage *>(this)->_update_dirty_multimeshes();
  1397. }
  1398. return multimesh->aabb;
  1399. }
  1400. void MeshStorage::_update_dirty_multimeshes() {
  1401. while (multimesh_dirty_list) {
  1402. MultiMesh *multimesh = multimesh_dirty_list;
  1403. if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
  1404. const float *data = multimesh->data_cache.ptr();
  1405. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1406. if (multimesh->data_cache_used_dirty_regions) {
  1407. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1408. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1409. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1410. if (multimesh->data_cache_used_dirty_regions > 32 || multimesh->data_cache_used_dirty_regions > visible_region_count / 2) {
  1411. //if there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
  1412. RD::get_singleton()->buffer_update(multimesh->buffer, 0, MIN(visible_region_count * region_size, multimesh->instances * (uint32_t)multimesh->stride_cache * (uint32_t)sizeof(float)), data);
  1413. } else {
  1414. //not that many regions? update them all
  1415. for (uint32_t i = 0; i < visible_region_count; i++) {
  1416. if (multimesh->data_cache_dirty_regions[i]) {
  1417. uint32_t offset = i * region_size;
  1418. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1419. uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
  1420. RD::get_singleton()->buffer_update(multimesh->buffer, offset, MIN(region_size, size - offset), &data[region_start_index]);
  1421. }
  1422. }
  1423. }
  1424. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1425. multimesh->data_cache_dirty_regions[i] = false;
  1426. }
  1427. multimesh->data_cache_used_dirty_regions = 0;
  1428. }
  1429. if (multimesh->aabb_dirty) {
  1430. //aabb is dirty..
  1431. _multimesh_re_create_aabb(multimesh, data, visible_instances);
  1432. multimesh->aabb_dirty = false;
  1433. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1434. }
  1435. }
  1436. multimesh_dirty_list = multimesh->dirty_list;
  1437. multimesh->dirty_list = nullptr;
  1438. multimesh->dirty = false;
  1439. }
  1440. multimesh_dirty_list = nullptr;
  1441. }
  1442. /* SKELETON API */
  1443. RID MeshStorage::skeleton_allocate() {
  1444. return skeleton_owner.allocate_rid();
  1445. }
  1446. void MeshStorage::skeleton_initialize(RID p_rid) {
  1447. skeleton_owner.initialize_rid(p_rid, Skeleton());
  1448. }
  1449. void MeshStorage::skeleton_free(RID p_rid) {
  1450. _update_dirty_skeletons();
  1451. skeleton_allocate_data(p_rid, 0);
  1452. Skeleton *skeleton = skeleton_owner.get_or_null(p_rid);
  1453. skeleton->dependency.deleted_notify(p_rid);
  1454. skeleton_owner.free(p_rid);
  1455. }
  1456. void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) {
  1457. if (!skeleton->dirty) {
  1458. skeleton->dirty = true;
  1459. skeleton->dirty_list = skeleton_dirty_list;
  1460. skeleton_dirty_list = skeleton;
  1461. }
  1462. }
  1463. void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
  1464. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1465. ERR_FAIL_COND(!skeleton);
  1466. ERR_FAIL_COND(p_bones < 0);
  1467. if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
  1468. return;
  1469. }
  1470. skeleton->size = p_bones;
  1471. skeleton->use_2d = p_2d_skeleton;
  1472. skeleton->uniform_set_3d = RID();
  1473. if (skeleton->buffer.is_valid()) {
  1474. RD::get_singleton()->free(skeleton->buffer);
  1475. skeleton->buffer = RID();
  1476. skeleton->data.clear();
  1477. skeleton->uniform_set_mi = RID();
  1478. }
  1479. if (skeleton->size) {
  1480. skeleton->data.resize(skeleton->size * (skeleton->use_2d ? 8 : 12));
  1481. skeleton->buffer = RD::get_singleton()->storage_buffer_create(skeleton->data.size() * sizeof(float));
  1482. memset(skeleton->data.ptrw(), 0, skeleton->data.size() * sizeof(float));
  1483. _skeleton_make_dirty(skeleton);
  1484. {
  1485. Vector<RD::Uniform> uniforms;
  1486. {
  1487. RD::Uniform u;
  1488. u.binding = 0;
  1489. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1490. u.append_id(skeleton->buffer);
  1491. uniforms.push_back(u);
  1492. }
  1493. skeleton->uniform_set_mi = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  1494. }
  1495. }
  1496. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA);
  1497. }
  1498. int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
  1499. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1500. ERR_FAIL_COND_V(!skeleton, 0);
  1501. return skeleton->size;
  1502. }
  1503. void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
  1504. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1505. ERR_FAIL_COND(!skeleton);
  1506. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1507. ERR_FAIL_COND(skeleton->use_2d);
  1508. float *dataptr = skeleton->data.ptrw() + p_bone * 12;
  1509. dataptr[0] = p_transform.basis.rows[0][0];
  1510. dataptr[1] = p_transform.basis.rows[0][1];
  1511. dataptr[2] = p_transform.basis.rows[0][2];
  1512. dataptr[3] = p_transform.origin.x;
  1513. dataptr[4] = p_transform.basis.rows[1][0];
  1514. dataptr[5] = p_transform.basis.rows[1][1];
  1515. dataptr[6] = p_transform.basis.rows[1][2];
  1516. dataptr[7] = p_transform.origin.y;
  1517. dataptr[8] = p_transform.basis.rows[2][0];
  1518. dataptr[9] = p_transform.basis.rows[2][1];
  1519. dataptr[10] = p_transform.basis.rows[2][2];
  1520. dataptr[11] = p_transform.origin.z;
  1521. _skeleton_make_dirty(skeleton);
  1522. }
  1523. Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
  1524. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1525. ERR_FAIL_COND_V(!skeleton, Transform3D());
  1526. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D());
  1527. ERR_FAIL_COND_V(skeleton->use_2d, Transform3D());
  1528. const float *dataptr = skeleton->data.ptr() + p_bone * 12;
  1529. Transform3D t;
  1530. t.basis.rows[0][0] = dataptr[0];
  1531. t.basis.rows[0][1] = dataptr[1];
  1532. t.basis.rows[0][2] = dataptr[2];
  1533. t.origin.x = dataptr[3];
  1534. t.basis.rows[1][0] = dataptr[4];
  1535. t.basis.rows[1][1] = dataptr[5];
  1536. t.basis.rows[1][2] = dataptr[6];
  1537. t.origin.y = dataptr[7];
  1538. t.basis.rows[2][0] = dataptr[8];
  1539. t.basis.rows[2][1] = dataptr[9];
  1540. t.basis.rows[2][2] = dataptr[10];
  1541. t.origin.z = dataptr[11];
  1542. return t;
  1543. }
  1544. void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
  1545. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1546. ERR_FAIL_COND(!skeleton);
  1547. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1548. ERR_FAIL_COND(!skeleton->use_2d);
  1549. float *dataptr = skeleton->data.ptrw() + p_bone * 8;
  1550. dataptr[0] = p_transform.columns[0][0];
  1551. dataptr[1] = p_transform.columns[1][0];
  1552. dataptr[2] = 0;
  1553. dataptr[3] = p_transform.columns[2][0];
  1554. dataptr[4] = p_transform.columns[0][1];
  1555. dataptr[5] = p_transform.columns[1][1];
  1556. dataptr[6] = 0;
  1557. dataptr[7] = p_transform.columns[2][1];
  1558. _skeleton_make_dirty(skeleton);
  1559. }
  1560. Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
  1561. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1562. ERR_FAIL_COND_V(!skeleton, Transform2D());
  1563. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
  1564. ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
  1565. const float *dataptr = skeleton->data.ptr() + p_bone * 8;
  1566. Transform2D t;
  1567. t.columns[0][0] = dataptr[0];
  1568. t.columns[1][0] = dataptr[1];
  1569. t.columns[2][0] = dataptr[3];
  1570. t.columns[0][1] = dataptr[4];
  1571. t.columns[1][1] = dataptr[5];
  1572. t.columns[2][1] = dataptr[7];
  1573. return t;
  1574. }
  1575. void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
  1576. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1577. ERR_FAIL_COND(!skeleton->use_2d);
  1578. skeleton->base_transform_2d = p_base_transform;
  1579. }
  1580. void MeshStorage::_update_dirty_skeletons() {
  1581. while (skeleton_dirty_list) {
  1582. Skeleton *skeleton = skeleton_dirty_list;
  1583. if (skeleton->size) {
  1584. RD::get_singleton()->buffer_update(skeleton->buffer, 0, skeleton->data.size() * sizeof(float), skeleton->data.ptr());
  1585. }
  1586. skeleton_dirty_list = skeleton->dirty_list;
  1587. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES);
  1588. skeleton->version++;
  1589. skeleton->dirty = false;
  1590. skeleton->dirty_list = nullptr;
  1591. }
  1592. skeleton_dirty_list = nullptr;
  1593. }
  1594. void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) {
  1595. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1596. ERR_FAIL_COND(!skeleton);
  1597. p_instance->update_dependency(&skeleton->dependency);
  1598. }