csg.cpp 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475
  1. /*************************************************************************/
  2. /* csg.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "csg.h"
  31. #include "core/math/geometry.h"
  32. #include "core/math/math_funcs.h"
  33. #include "core/sort_array.h"
  34. // Static helper functions.
  35. inline static bool is_snapable(const Vector3 &p_point1, const Vector3 &p_point2, real_t p_distance) {
  36. return (p_point1 - p_point2).length_squared() < p_distance * p_distance;
  37. }
  38. inline static Vector2 interpolate_segment_uv(const Vector2 p_segement_points[2], const Vector2 p_uvs[2], const Vector2 &p_interpolation_point) {
  39. float segment_length = (p_segement_points[1] - p_segement_points[0]).length();
  40. if (segment_length < CMP_EPSILON)
  41. return p_uvs[0];
  42. float distance = (p_interpolation_point - p_segement_points[0]).length();
  43. float fraction = distance / segment_length;
  44. return p_uvs[0].linear_interpolate(p_uvs[1], fraction);
  45. }
  46. inline static Vector2 interpolate_triangle_uv(const Vector2 p_vertices[3], const Vector2 p_uvs[3], const Vector2 &p_interpolation_point) {
  47. if (p_interpolation_point.distance_squared_to(p_vertices[0]) < CMP_EPSILON2)
  48. return p_uvs[0];
  49. if (p_interpolation_point.distance_squared_to(p_vertices[1]) < CMP_EPSILON2)
  50. return p_uvs[1];
  51. if (p_interpolation_point.distance_squared_to(p_vertices[2]) < CMP_EPSILON2)
  52. return p_uvs[2];
  53. Vector2 edge1 = p_vertices[1] - p_vertices[0];
  54. Vector2 edge2 = p_vertices[2] - p_vertices[0];
  55. Vector2 interpolation = p_interpolation_point - p_vertices[0];
  56. float edge1_on_edge1 = edge1.dot(edge1);
  57. float edge1_on_edge2 = edge1.dot(edge2);
  58. float edge2_on_edge2 = edge2.dot(edge2);
  59. float inter_on_edge1 = interpolation.dot(edge1);
  60. float inter_on_edge2 = interpolation.dot(edge2);
  61. float scale = (edge1_on_edge1 * edge2_on_edge2 - edge1_on_edge2 * edge1_on_edge2);
  62. if (scale == 0)
  63. return p_uvs[0];
  64. float v = (edge2_on_edge2 * inter_on_edge1 - edge1_on_edge2 * inter_on_edge2) / scale;
  65. float w = (edge1_on_edge1 * inter_on_edge2 - edge1_on_edge2 * inter_on_edge1) / scale;
  66. float u = 1.0f - v - w;
  67. return p_uvs[0] * u + p_uvs[1] * v + p_uvs[2] * w;
  68. }
  69. static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 p_vertices[3], float p_tolerance, Vector3 &r_intersection_point) {
  70. Vector3 edge1 = p_vertices[1] - p_vertices[0];
  71. Vector3 edge2 = p_vertices[2] - p_vertices[0];
  72. Vector3 h = p_dir.cross(edge2);
  73. real_t a = edge1.dot(h);
  74. // Check if ray is parallel to triangle.
  75. if (Math::is_zero_approx(a))
  76. return false;
  77. real_t f = 1.0 / a;
  78. Vector3 s = p_from - p_vertices[0];
  79. real_t u = f * s.dot(h);
  80. if (u < 0.0 - p_tolerance || u > 1.0 + p_tolerance)
  81. return false;
  82. Vector3 q = s.cross(edge1);
  83. real_t v = f * p_dir.dot(q);
  84. if (v < 0.0 - p_tolerance || u + v > 1.0 + p_tolerance)
  85. return false;
  86. // Ray intersects triangle.
  87. // Calculate distance.
  88. real_t t = f * edge2.dot(q);
  89. // Confirm triangle is in front of ray.
  90. if (t >= p_tolerance) {
  91. r_intersection_point = p_from + p_dir * t;
  92. return true;
  93. } else
  94. return false;
  95. }
  96. inline bool is_point_in_triangle(const Vector3 &p_point, const Vector3 p_vertices[3], int p_shifted = 0) {
  97. real_t det = p_vertices[0].dot(p_vertices[1].cross(p_vertices[2]));
  98. // If determinant is, zero try shift the triangle and the point.
  99. if (Math::is_zero_approx(det)) {
  100. if (p_shifted > 2) {
  101. // Triangle appears degenerate, so ignore it.
  102. return false;
  103. }
  104. Vector3 shift_by;
  105. shift_by[p_shifted] = 1;
  106. Vector3 shifted_point = p_point + shift_by;
  107. Vector3 shifted_vertices[3] = { p_vertices[0] + shift_by, p_vertices[1] + shift_by, p_vertices[2] + shift_by };
  108. return is_point_in_triangle(shifted_point, shifted_vertices, p_shifted + 1);
  109. }
  110. // Find the barycentric coordinates of the point with respect to the vertices.
  111. real_t lambda[3];
  112. lambda[0] = p_vertices[1].cross(p_vertices[2]).dot(p_point) / det;
  113. lambda[1] = p_vertices[2].cross(p_vertices[0]).dot(p_point) / det;
  114. lambda[2] = p_vertices[0].cross(p_vertices[1]).dot(p_point) / det;
  115. // Point is in the plane if all lambdas sum to 1.
  116. if (!Math::is_equal_approx(lambda[0] + lambda[1] + lambda[2], 1)) return false;
  117. // Point is inside the triangle if all lambdas are positive.
  118. if (lambda[0] < 0 || lambda[1] < 0 || lambda[2] < 0) return false;
  119. return true;
  120. }
  121. inline static bool are_segements_parallel(const Vector2 p_segment1_points[2], const Vector2 p_segment2_points[2], float p_vertex_snap2) {
  122. Vector2 segment1 = p_segment1_points[1] - p_segment1_points[0];
  123. Vector2 segment2 = p_segment2_points[1] - p_segment2_points[0];
  124. real_t segment1_length2 = segment1.dot(segment1);
  125. real_t segment2_length2 = segment2.dot(segment2);
  126. real_t segment_onto_segment = segment2.dot(segment1);
  127. if (segment1_length2 < p_vertex_snap2 || segment2_length2 < p_vertex_snap2)
  128. return true;
  129. real_t max_separation2;
  130. if (segment1_length2 > segment2_length2) {
  131. max_separation2 = segment2_length2 - segment_onto_segment * segment_onto_segment / segment1_length2;
  132. } else {
  133. max_separation2 = segment1_length2 - segment_onto_segment * segment_onto_segment / segment2_length2;
  134. }
  135. return max_separation2 < p_vertex_snap2;
  136. }
  137. // CSGBrush
  138. void CSGBrush::_regen_face_aabbs() {
  139. for (int i = 0; i < faces.size(); i++) {
  140. faces.write[i].aabb = AABB();
  141. faces.write[i].aabb.position = faces[i].vertices[0];
  142. faces.write[i].aabb.expand_to(faces[i].vertices[1]);
  143. faces.write[i].aabb.expand_to(faces[i].vertices[2]);
  144. }
  145. }
  146. void CSGBrush::build_from_faces(const Vector<Vector3> &p_vertices, const Vector<Vector2> &p_uvs, const Vector<bool> &p_smooth, const Vector<Ref<Material> > &p_materials, const Vector<bool> &p_invert_faces) {
  147. faces.clear();
  148. int vc = p_vertices.size();
  149. ERR_FAIL_COND((vc % 3) != 0);
  150. const Vector3 *rv = p_vertices.ptr();
  151. int uvc = p_uvs.size();
  152. const Vector2 *ruv = p_uvs.ptr();
  153. int sc = p_smooth.size();
  154. const bool *rs = p_smooth.ptr();
  155. int mc = p_materials.size();
  156. const Ref<Material> *rm = p_materials.ptr();
  157. int ic = p_invert_faces.size();
  158. const bool *ri = p_invert_faces.ptr();
  159. Map<Ref<Material>, int> material_map;
  160. faces.resize(p_vertices.size() / 3);
  161. for (int i = 0; i < faces.size(); i++) {
  162. Face &f = faces.write[i];
  163. f.vertices[0] = rv[i * 3 + 0];
  164. f.vertices[1] = rv[i * 3 + 1];
  165. f.vertices[2] = rv[i * 3 + 2];
  166. if (uvc == vc) {
  167. f.uvs[0] = ruv[i * 3 + 0];
  168. f.uvs[1] = ruv[i * 3 + 1];
  169. f.uvs[2] = ruv[i * 3 + 2];
  170. }
  171. if (sc == vc / 3)
  172. f.smooth = rs[i];
  173. else
  174. f.smooth = false;
  175. if (ic == vc / 3)
  176. f.invert = ri[i];
  177. else
  178. f.invert = false;
  179. if (mc == vc / 3) {
  180. Ref<Material> mat = rm[i];
  181. if (mat.is_valid()) {
  182. const Map<Ref<Material>, int>::Element *E = material_map.find(mat);
  183. if (E) {
  184. f.material = E->get();
  185. } else {
  186. f.material = material_map.size();
  187. material_map[mat] = f.material;
  188. }
  189. } else {
  190. f.material = -1;
  191. }
  192. }
  193. }
  194. materials.resize(material_map.size());
  195. for (Map<Ref<Material>, int>::Element *E = material_map.front(); E; E = E->next()) {
  196. materials.write[E->get()] = E->key();
  197. }
  198. _regen_face_aabbs();
  199. }
  200. void CSGBrush::copy_from(const CSGBrush &p_brush, const Transform &p_xform) {
  201. faces = p_brush.faces;
  202. materials = p_brush.materials;
  203. for (int i = 0; i < faces.size(); i++) {
  204. for (int j = 0; j < 3; j++) {
  205. faces.write[i].vertices[j] = p_xform.xform(p_brush.faces[i].vertices[j]);
  206. }
  207. }
  208. _regen_face_aabbs();
  209. }
  210. // CSGBrushOperation
  211. void CSGBrushOperation::merge_brushes(Operation p_operation, const CSGBrush &p_brush_a, const CSGBrush &p_brush_b, CSGBrush &r_merged_brush, float p_vertex_snap) {
  212. // Check for face collisions and add necessary faces.
  213. Build2DFaceCollection build2DFaceCollection;
  214. for (int i = 0; i < p_brush_a.faces.size(); i++) {
  215. for (int j = 0; j < p_brush_b.faces.size(); j++) {
  216. if (p_brush_a.faces[i].aabb.intersects_inclusive(p_brush_b.faces[j].aabb)) {
  217. update_faces(p_brush_a, i, p_brush_b, j, build2DFaceCollection, p_vertex_snap);
  218. }
  219. }
  220. }
  221. // Add faces to MeshMerge.
  222. MeshMerge mesh_merge;
  223. mesh_merge.vertex_snap = p_vertex_snap;
  224. for (int i = 0; i < p_brush_a.faces.size(); i++) {
  225. Ref<Material> material;
  226. if (p_brush_a.faces[i].material != -1) {
  227. material = p_brush_a.materials[p_brush_a.faces[i].material];
  228. }
  229. if (build2DFaceCollection.build2DFacesA.has(i)) {
  230. build2DFaceCollection.build2DFacesA[i].addFacesToMesh(mesh_merge, p_brush_a.faces[i].smooth, p_brush_a.faces[i].invert, material, false);
  231. } else {
  232. Vector3 points[3];
  233. Vector2 uvs[3];
  234. for (int j = 0; j < 3; j++) {
  235. points[j] = p_brush_a.faces[i].vertices[j];
  236. uvs[j] = p_brush_a.faces[i].uvs[j];
  237. }
  238. mesh_merge.add_face(points, uvs, p_brush_a.faces[i].smooth, p_brush_a.faces[i].invert, material, false);
  239. }
  240. }
  241. for (int i = 0; i < p_brush_b.faces.size(); i++) {
  242. Ref<Material> material;
  243. if (p_brush_b.faces[i].material != -1) {
  244. material = p_brush_b.materials[p_brush_b.faces[i].material];
  245. }
  246. if (build2DFaceCollection.build2DFacesB.has(i)) {
  247. build2DFaceCollection.build2DFacesB[i].addFacesToMesh(mesh_merge, p_brush_b.faces[i].smooth, p_brush_b.faces[i].invert, material, true);
  248. } else {
  249. Vector3 points[3];
  250. Vector2 uvs[3];
  251. for (int j = 0; j < 3; j++) {
  252. points[j] = p_brush_b.faces[i].vertices[j];
  253. uvs[j] = p_brush_b.faces[i].uvs[j];
  254. }
  255. mesh_merge.add_face(points, uvs, p_brush_b.faces[i].smooth, p_brush_b.faces[i].invert, material, true);
  256. }
  257. }
  258. // Mark faces that ended up inside the intersection.
  259. mesh_merge.mark_inside_faces();
  260. // Create new brush and fill with new faces.
  261. r_merged_brush.faces.clear();
  262. switch (p_operation) {
  263. case OPERATION_UNION: {
  264. int outside_count = 0;
  265. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  266. if (mesh_merge.faces[i].inside)
  267. continue;
  268. outside_count++;
  269. }
  270. r_merged_brush.faces.resize(outside_count);
  271. outside_count = 0;
  272. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  273. if (mesh_merge.faces[i].inside)
  274. continue;
  275. for (int j = 0; j < 3; j++) {
  276. r_merged_brush.faces.write[outside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
  277. r_merged_brush.faces.write[outside_count].uvs[j] = mesh_merge.faces[i].uvs[j];
  278. }
  279. r_merged_brush.faces.write[outside_count].smooth = mesh_merge.faces[i].smooth;
  280. r_merged_brush.faces.write[outside_count].invert = mesh_merge.faces[i].invert;
  281. r_merged_brush.faces.write[outside_count].material = mesh_merge.faces[i].material_idx;
  282. outside_count++;
  283. }
  284. r_merged_brush._regen_face_aabbs();
  285. } break;
  286. case OPERATION_INTERSECTION: {
  287. int inside_count = 0;
  288. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  289. if (!mesh_merge.faces[i].inside)
  290. continue;
  291. inside_count++;
  292. }
  293. r_merged_brush.faces.resize(inside_count);
  294. inside_count = 0;
  295. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  296. if (!mesh_merge.faces[i].inside)
  297. continue;
  298. for (int j = 0; j < 3; j++) {
  299. r_merged_brush.faces.write[inside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
  300. r_merged_brush.faces.write[inside_count].uvs[j] = mesh_merge.faces[i].uvs[j];
  301. }
  302. r_merged_brush.faces.write[inside_count].smooth = mesh_merge.faces[i].smooth;
  303. r_merged_brush.faces.write[inside_count].invert = mesh_merge.faces[i].invert;
  304. r_merged_brush.faces.write[inside_count].material = mesh_merge.faces[i].material_idx;
  305. inside_count++;
  306. }
  307. r_merged_brush._regen_face_aabbs();
  308. } break;
  309. case OPERATION_SUBSTRACTION: {
  310. int face_count = 0;
  311. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  312. if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside)
  313. continue;
  314. if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside)
  315. continue;
  316. face_count++;
  317. }
  318. r_merged_brush.faces.resize(face_count);
  319. face_count = 0;
  320. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  321. if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside)
  322. continue;
  323. if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside)
  324. continue;
  325. for (int j = 0; j < 3; j++) {
  326. r_merged_brush.faces.write[face_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
  327. r_merged_brush.faces.write[face_count].uvs[j] = mesh_merge.faces[i].uvs[j];
  328. }
  329. if (mesh_merge.faces[i].from_b) {
  330. //invert facing of insides of B
  331. SWAP(r_merged_brush.faces.write[face_count].vertices[1], r_merged_brush.faces.write[face_count].vertices[2]);
  332. SWAP(r_merged_brush.faces.write[face_count].uvs[1], r_merged_brush.faces.write[face_count].uvs[2]);
  333. }
  334. r_merged_brush.faces.write[face_count].smooth = mesh_merge.faces[i].smooth;
  335. r_merged_brush.faces.write[face_count].invert = mesh_merge.faces[i].invert;
  336. r_merged_brush.faces.write[face_count].material = mesh_merge.faces[i].material_idx;
  337. face_count++;
  338. }
  339. r_merged_brush._regen_face_aabbs();
  340. } break;
  341. }
  342. // Update the list of materials.
  343. r_merged_brush.materials.resize(mesh_merge.materials.size());
  344. for (const Map<Ref<Material>, int>::Element *E = mesh_merge.materials.front(); E; E = E->next()) {
  345. r_merged_brush.materials.write[E->get()] = E->key();
  346. }
  347. }
  348. // CSGBrushOperation::MeshMerge
  349. // Use a limit to speed up bvh and limit the depth.
  350. #define BVH_LIMIT 8
  351. int CSGBrushOperation::MeshMerge::_create_bvh(FaceBVH *facebvhptr, FaceBVH **facebvhptrptr, int p_from, int p_size, int p_depth, int &r_max_depth, int &r_max_alloc) {
  352. if (p_depth > r_max_depth) {
  353. r_max_depth = p_depth;
  354. }
  355. if (p_size == 0) {
  356. return -1;
  357. }
  358. if (p_size <= BVH_LIMIT) {
  359. for (int i = 0; i < p_size - 1; i++) {
  360. facebvhptrptr[p_from + i]->next = facebvhptrptr[p_from + i + 1] - facebvhptr;
  361. }
  362. return facebvhptrptr[p_from] - facebvhptr;
  363. }
  364. AABB aabb;
  365. aabb = facebvhptrptr[p_from]->aabb;
  366. for (int i = 1; i < p_size; i++) {
  367. aabb.merge_with(facebvhptrptr[p_from + i]->aabb);
  368. }
  369. int li = aabb.get_longest_axis_index();
  370. switch (li) {
  371. case Vector3::AXIS_X: {
  372. SortArray<FaceBVH *, FaceBVHCmpX> sort_x;
  373. sort_x.nth_element(0, p_size, p_size / 2, &facebvhptrptr[p_from]);
  374. //sort_x.sort(&p_bb[p_from],p_size);
  375. } break;
  376. case Vector3::AXIS_Y: {
  377. SortArray<FaceBVH *, FaceBVHCmpY> sort_y;
  378. sort_y.nth_element(0, p_size, p_size / 2, &facebvhptrptr[p_from]);
  379. //sort_y.sort(&p_bb[p_from],p_size);
  380. } break;
  381. case Vector3::AXIS_Z: {
  382. SortArray<FaceBVH *, FaceBVHCmpZ> sort_z;
  383. sort_z.nth_element(0, p_size, p_size / 2, &facebvhptrptr[p_from]);
  384. //sort_z.sort(&p_bb[p_from],p_size);
  385. } break;
  386. }
  387. int left = _create_bvh(facebvhptr, facebvhptrptr, p_from, p_size / 2, p_depth + 1, r_max_depth, r_max_alloc);
  388. int right = _create_bvh(facebvhptr, facebvhptrptr, p_from + p_size / 2, p_size - p_size / 2, p_depth + 1, r_max_depth, r_max_alloc);
  389. int index = r_max_alloc++;
  390. FaceBVH *_new = &facebvhptr[index];
  391. _new->aabb = aabb;
  392. _new->center = aabb.position + aabb.size * 0.5;
  393. _new->face = -1;
  394. _new->left = left;
  395. _new->right = right;
  396. _new->next = -1;
  397. return index;
  398. }
  399. void CSGBrushOperation::MeshMerge::_add_distance(List<real_t> &r_intersectionsA, List<real_t> &r_intersectionsB, bool p_from_B, real_t p_distance) const {
  400. List<real_t> &intersections = p_from_B ? r_intersectionsB : r_intersectionsA;
  401. // Check if distance exists.
  402. for (const List<real_t>::Element *E = intersections.front(); E; E = E->next())
  403. if (Math::abs(**E - p_distance) < vertex_snap) return;
  404. intersections.push_back(p_distance);
  405. }
  406. bool CSGBrushOperation::MeshMerge::_bvh_inside(FaceBVH *facebvhptr, int p_max_depth, int p_bvh_first, int p_face_idx) const {
  407. Face face = faces[p_face_idx];
  408. Vector3 face_points[3] = {
  409. points[face.points[0]],
  410. points[face.points[1]],
  411. points[face.points[2]]
  412. };
  413. Vector3 face_center = (face_points[0] + face_points[1] + face_points[2]) / 3.0;
  414. Vector3 face_normal = Plane(face_points[0], face_points[1], face_points[2]).normal;
  415. uint32_t *stack = (uint32_t *)alloca(sizeof(int) * p_max_depth);
  416. enum {
  417. TEST_AABB_BIT = 0,
  418. VISIT_LEFT_BIT = 1,
  419. VISIT_RIGHT_BIT = 2,
  420. VISIT_DONE_BIT = 3,
  421. VISITED_BIT_SHIFT = 29,
  422. NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1,
  423. VISITED_BIT_MASK = ~NODE_IDX_MASK
  424. };
  425. List<real_t> intersectionsA;
  426. List<real_t> intersectionsB;
  427. int level = 0;
  428. int pos = p_bvh_first;
  429. stack[0] = pos;
  430. while (true) {
  431. uint32_t node = stack[level] & NODE_IDX_MASK;
  432. const FaceBVH *current_facebvhptr = &(facebvhptr[node]);
  433. bool done = false;
  434. switch (stack[level] >> VISITED_BIT_SHIFT) {
  435. case TEST_AABB_BIT: {
  436. if (current_facebvhptr->face >= 0) {
  437. while (current_facebvhptr) {
  438. if (p_face_idx != current_facebvhptr->face &&
  439. current_facebvhptr->aabb.intersects_ray(face_center, face_normal)) {
  440. const Face &current_face = faces[current_facebvhptr->face];
  441. Vector3 current_points[3] = {
  442. points[current_face.points[0]],
  443. points[current_face.points[1]],
  444. points[current_face.points[2]]
  445. };
  446. Vector3 current_normal = Plane(current_points[0], current_points[1], current_points[2]).normal;
  447. Vector3 intersection_point;
  448. // Check if faces are co-planar.
  449. if ((current_normal - face_normal).length_squared() < CMP_EPSILON2 &&
  450. is_point_in_triangle(face_center, current_points)) {
  451. // Only add an intersection if checking a B face.
  452. if (face.from_b)
  453. _add_distance(intersectionsA, intersectionsB, current_face.from_b, 0);
  454. } else if (ray_intersects_triangle(face_center, face_normal, current_points, CMP_EPSILON, intersection_point)) {
  455. real_t distance = (intersection_point - face_center).length();
  456. _add_distance(intersectionsA, intersectionsB, current_face.from_b, distance);
  457. }
  458. }
  459. if (current_facebvhptr->next != -1) {
  460. current_facebvhptr = &facebvhptr[current_facebvhptr->next];
  461. } else {
  462. current_facebvhptr = nullptr;
  463. }
  464. }
  465. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  466. } else {
  467. bool valid = current_facebvhptr->aabb.intersects_ray(face_center, face_normal);
  468. if (!valid) {
  469. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  470. } else {
  471. stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node;
  472. }
  473. }
  474. continue;
  475. }
  476. case VISIT_LEFT_BIT: {
  477. stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
  478. stack[level + 1] = current_facebvhptr->left | TEST_AABB_BIT;
  479. level++;
  480. continue;
  481. }
  482. case VISIT_RIGHT_BIT: {
  483. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  484. stack[level + 1] = current_facebvhptr->right | TEST_AABB_BIT;
  485. level++;
  486. continue;
  487. }
  488. case VISIT_DONE_BIT: {
  489. if (level == 0) {
  490. done = true;
  491. break;
  492. } else
  493. level--;
  494. continue;
  495. }
  496. }
  497. if (done)
  498. break;
  499. }
  500. // Inside if face normal intersects other faces an odd number of times.
  501. return (intersectionsA.size() + intersectionsB.size()) & 1;
  502. }
  503. void CSGBrushOperation::MeshMerge::mark_inside_faces() {
  504. // Mark faces that are inside. This helps later do the boolean ops when merging.
  505. // This approach is very brute force with a bunch of optimizations,
  506. // such as BVH and pre AABB intersection test.
  507. Vector<FaceBVH> bvhvec;
  508. bvhvec.resize(faces.size() * 3); // Will never be larger than this (TODO: Make better)
  509. FaceBVH *facebvh = bvhvec.ptrw();
  510. AABB aabb_a;
  511. AABB aabb_b;
  512. bool first_a = true;
  513. bool first_b = true;
  514. for (int i = 0; i < faces.size(); i++) {
  515. facebvh[i].left = -1;
  516. facebvh[i].right = -1;
  517. facebvh[i].face = i;
  518. facebvh[i].aabb.position = points[faces[i].points[0]];
  519. facebvh[i].aabb.expand_to(points[faces[i].points[1]]);
  520. facebvh[i].aabb.expand_to(points[faces[i].points[2]]);
  521. facebvh[i].center = facebvh[i].aabb.position + facebvh[i].aabb.size * 0.5;
  522. facebvh[i].aabb.grow_by(vertex_snap);
  523. facebvh[i].next = -1;
  524. if (faces[i].from_b) {
  525. if (first_b) {
  526. aabb_b = facebvh[i].aabb;
  527. first_b = false;
  528. } else {
  529. aabb_b.merge_with(facebvh[i].aabb);
  530. }
  531. } else {
  532. if (first_a) {
  533. aabb_a = facebvh[i].aabb;
  534. first_a = false;
  535. } else {
  536. aabb_a.merge_with(facebvh[i].aabb);
  537. }
  538. }
  539. }
  540. AABB intersection_aabb = aabb_a.intersection(aabb_b);
  541. // Check if shape AABBs intersect.
  542. if (intersection_aabb.size == Vector3())
  543. return;
  544. Vector<FaceBVH *> bvhtrvec;
  545. bvhtrvec.resize(faces.size());
  546. FaceBVH **bvhptr = bvhtrvec.ptrw();
  547. for (int i = 0; i < faces.size(); i++) {
  548. bvhptr[i] = &facebvh[i];
  549. }
  550. int max_depth = 0;
  551. int max_alloc = faces.size();
  552. _create_bvh(facebvh, bvhptr, 0, faces.size(), 1, max_depth, max_alloc);
  553. for (int i = 0; i < faces.size(); i++) {
  554. // Check if face AABB intersects the intersection AABB.
  555. if (!intersection_aabb.intersects_inclusive(facebvh[i].aabb))
  556. continue;
  557. if (_bvh_inside(facebvh, max_depth, max_alloc - 1, i))
  558. faces.write[i].inside = true;
  559. }
  560. }
  561. void CSGBrushOperation::MeshMerge::add_face(const Vector3 p_points[], const Vector2 p_uvs[], bool p_smooth, bool p_invert, const Ref<Material> &p_material, bool p_from_b) {
  562. int indices[3];
  563. for (int i = 0; i < 3; i++) {
  564. VertexKey vk;
  565. vk.x = int((double(p_points[i].x) + double(vertex_snap) * 0.31234) / double(vertex_snap));
  566. vk.y = int((double(p_points[i].y) + double(vertex_snap) * 0.31234) / double(vertex_snap));
  567. vk.z = int((double(p_points[i].z) + double(vertex_snap) * 0.31234) / double(vertex_snap));
  568. int res;
  569. if (snap_cache.lookup(vk, res)) {
  570. indices[i] = res;
  571. } else {
  572. indices[i] = points.size();
  573. points.push_back(p_points[i]);
  574. snap_cache.set(vk, indices[i]);
  575. }
  576. }
  577. // Don't add degenerate faces.
  578. if (indices[0] == indices[2] || indices[0] == indices[1] || indices[1] == indices[2])
  579. return;
  580. MeshMerge::Face face;
  581. face.from_b = p_from_b;
  582. face.inside = false;
  583. face.smooth = p_smooth;
  584. face.invert = p_invert;
  585. if (p_material.is_valid()) {
  586. if (!materials.has(p_material)) {
  587. face.material_idx = materials.size();
  588. materials[p_material] = face.material_idx;
  589. } else {
  590. face.material_idx = materials[p_material];
  591. }
  592. } else {
  593. face.material_idx = -1;
  594. }
  595. for (int k = 0; k < 3; k++) {
  596. face.points[k] = indices[k];
  597. face.uvs[k] = p_uvs[k];
  598. }
  599. faces.push_back(face);
  600. }
  601. // CSGBrushOperation::Build2DFaces
  602. int CSGBrushOperation::Build2DFaces::_get_point_idx(const Vector2 &p_point) {
  603. for (int vertex_idx = 0; vertex_idx < vertices.size(); ++vertex_idx) {
  604. if ((p_point - vertices[vertex_idx].point).length_squared() < vertex_snap2)
  605. return vertex_idx;
  606. }
  607. return -1;
  608. }
  609. int CSGBrushOperation::Build2DFaces::_add_vertex(const Vertex2D &p_vertex) {
  610. // Check if vertex exists.
  611. int vertex_id = _get_point_idx(p_vertex.point);
  612. if (vertex_id != -1) return vertex_id;
  613. vertices.push_back(p_vertex);
  614. return vertices.size() - 1;
  615. }
  616. void CSGBrushOperation::Build2DFaces::_add_vertex_idx_sorted(Vector<int> &r_vertex_indices, int p_new_vertex_index) {
  617. if (p_new_vertex_index >= 0 && r_vertex_indices.find(p_new_vertex_index) == -1) {
  618. ERR_FAIL_COND_MSG(p_new_vertex_index >= vertices.size(), "Invalid vertex index.");
  619. // The first vertex.
  620. if (r_vertex_indices.size() == 0) {
  621. // Simply add it.
  622. r_vertex_indices.push_back(p_new_vertex_index);
  623. return;
  624. }
  625. // The second vertex.
  626. if (r_vertex_indices.size() == 1) {
  627. Vector2 first_point = vertices[r_vertex_indices[0]].point;
  628. Vector2 new_point = vertices[p_new_vertex_index].point;
  629. // Sort along the axis with the greatest difference.
  630. int axis = 0;
  631. if (Math::abs(new_point.x - first_point.x) < Math::abs(new_point.y - first_point.y)) axis = 1;
  632. // Add it to the beginning or the end appropriately.
  633. if (new_point[axis] < first_point[axis])
  634. r_vertex_indices.insert(0, p_new_vertex_index);
  635. else
  636. r_vertex_indices.push_back(p_new_vertex_index);
  637. return;
  638. }
  639. // Third or later vertices.
  640. Vector2 first_point = vertices[r_vertex_indices[0]].point;
  641. Vector2 last_point = vertices[r_vertex_indices[r_vertex_indices.size() - 1]].point;
  642. Vector2 new_point = vertices[p_new_vertex_index].point;
  643. // Determine axis being sorted against i.e. the axis with the greatest difference.
  644. int axis = 0;
  645. if (Math::abs(last_point.x - first_point.x) < Math::abs(last_point.y - first_point.y)) axis = 1;
  646. // Insert the point at the appropriate index.
  647. for (int insert_idx = 0; insert_idx < r_vertex_indices.size(); ++insert_idx) {
  648. Vector2 insert_point = vertices[r_vertex_indices[insert_idx]].point;
  649. if (new_point[axis] < insert_point[axis]) {
  650. r_vertex_indices.insert(insert_idx, p_new_vertex_index);
  651. return;
  652. }
  653. }
  654. // New largest, add it to the end.
  655. r_vertex_indices.push_back(p_new_vertex_index);
  656. }
  657. }
  658. void CSGBrushOperation::Build2DFaces::_merge_faces(const Vector<int> &p_segment_indices) {
  659. int segments = p_segment_indices.size() - 1;
  660. if (segments < 2) return;
  661. // Faces around an inner vertex are merged by moving the inner vertex to the first vertex.
  662. for (int sorted_idx = 1; sorted_idx < segments; ++sorted_idx) {
  663. int closest_idx = 0;
  664. int inner_idx = p_segment_indices[sorted_idx];
  665. if (sorted_idx > segments / 2) {
  666. // Merge to other segment end.
  667. closest_idx = segments;
  668. // Reverse the merge order.
  669. inner_idx = p_segment_indices[segments + segments / 2 - sorted_idx];
  670. }
  671. // Find the mergeable faces.
  672. Vector<int> merge_faces_idx;
  673. Vector<Face2D> merge_faces;
  674. Vector<int> merge_faces_inner_vertex_idx;
  675. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  676. for (int face_vertex_idx = 0; face_vertex_idx < 3; ++face_vertex_idx) {
  677. if (faces[face_idx].vertex_idx[face_vertex_idx] == inner_idx) {
  678. merge_faces_idx.push_back(face_idx);
  679. merge_faces.push_back(faces[face_idx]);
  680. merge_faces_inner_vertex_idx.push_back(face_vertex_idx);
  681. }
  682. }
  683. }
  684. Vector<int> degenerate_points;
  685. // Create the new faces.
  686. for (int merge_idx = 0; merge_idx < merge_faces.size(); ++merge_idx) {
  687. int outer_edge_idx[2];
  688. outer_edge_idx[0] = merge_faces[merge_idx].vertex_idx[(merge_faces_inner_vertex_idx[merge_idx] + 1) % 3];
  689. outer_edge_idx[1] = merge_faces[merge_idx].vertex_idx[(merge_faces_inner_vertex_idx[merge_idx] + 2) % 3];
  690. // Skip flattened faces.
  691. if (outer_edge_idx[0] == p_segment_indices[closest_idx] ||
  692. outer_edge_idx[1] == p_segment_indices[closest_idx]) continue;
  693. //Don't create degenerate triangles.
  694. Vector2 edge1[2] = {
  695. vertices[outer_edge_idx[0]].point,
  696. vertices[p_segment_indices[closest_idx]].point
  697. };
  698. Vector2 edge2[2] = {
  699. vertices[outer_edge_idx[1]].point,
  700. vertices[p_segment_indices[closest_idx]].point
  701. };
  702. if (are_segements_parallel(edge1, edge2, vertex_snap2)) {
  703. degenerate_points.push_back(outer_edge_idx[0]);
  704. degenerate_points.push_back(outer_edge_idx[1]);
  705. continue;
  706. }
  707. // Create new faces.
  708. Face2D new_face;
  709. new_face.vertex_idx[0] = p_segment_indices[closest_idx];
  710. new_face.vertex_idx[1] = outer_edge_idx[0];
  711. new_face.vertex_idx[2] = outer_edge_idx[1];
  712. faces.push_back(new_face);
  713. }
  714. // Delete the old faces in reverse index order.
  715. merge_faces_idx.sort();
  716. merge_faces_idx.invert();
  717. for (int i = 0; i < merge_faces_idx.size(); ++i)
  718. faces.remove(merge_faces_idx[i]);
  719. if (degenerate_points.size() == 0) continue;
  720. // Split faces using degenerate points.
  721. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  722. Face2D face = faces[face_idx];
  723. Vertex2D face_vertices[3] = {
  724. vertices[face.vertex_idx[0]],
  725. vertices[face.vertex_idx[1]],
  726. vertices[face.vertex_idx[2]]
  727. };
  728. Vector2 face_points[3] = {
  729. face_vertices[0].point,
  730. face_vertices[1].point,
  731. face_vertices[2].point
  732. };
  733. for (int point_idx = 0; point_idx < degenerate_points.size(); ++point_idx) {
  734. int degenerate_idx = degenerate_points[point_idx];
  735. Vector2 point_2D = vertices[degenerate_idx].point;
  736. // Check if point is existing face vertex.
  737. bool existing = false;
  738. for (int i = 0; i < 3; ++i) {
  739. if ((point_2D - face_vertices[i].point).length_squared() < vertex_snap2) {
  740. existing = true;
  741. break;
  742. }
  743. }
  744. if (existing) continue;
  745. // Check if point is on an each edge.
  746. for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) {
  747. Vector2 edge_points[2] = {
  748. face_points[face_edge_idx],
  749. face_points[(face_edge_idx + 1) % 3]
  750. };
  751. Vector2 closest_point = Geometry::get_closest_point_to_segment_2d(point_2D, edge_points);
  752. if ((closest_point - point_2D).length_squared() < vertex_snap2) {
  753. int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3];
  754. // If new vertex snaps to degenerate vertex, just delete this face.
  755. if (degenerate_idx == opposite_vertex_idx) {
  756. faces.remove(face_idx);
  757. // Update index.
  758. --face_idx;
  759. break;
  760. }
  761. // Create two new faces around the new edge and remove this face.
  762. // The new edge is the last edge.
  763. Face2D left_face;
  764. left_face.vertex_idx[0] = degenerate_idx;
  765. left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3];
  766. left_face.vertex_idx[2] = opposite_vertex_idx;
  767. Face2D right_face;
  768. right_face.vertex_idx[0] = opposite_vertex_idx;
  769. right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx];
  770. right_face.vertex_idx[2] = degenerate_idx;
  771. faces.remove(face_idx);
  772. faces.insert(face_idx, right_face);
  773. faces.insert(face_idx, left_face);
  774. // Don't check against the new faces.
  775. ++face_idx;
  776. // No need to check other edges.
  777. break;
  778. }
  779. }
  780. }
  781. }
  782. }
  783. }
  784. void CSGBrushOperation::Build2DFaces::_find_edge_intersections(const Vector2 p_segment_points[2], Vector<int> &r_segment_indices) {
  785. // For each face.
  786. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  787. Face2D face = faces[face_idx];
  788. Vertex2D face_vertices[3] = {
  789. vertices[face.vertex_idx[0]],
  790. vertices[face.vertex_idx[1]],
  791. vertices[face.vertex_idx[2]]
  792. };
  793. // Check each edge.
  794. for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) {
  795. Vector2 edge_points[2] = {
  796. face_vertices[face_edge_idx].point,
  797. face_vertices[(face_edge_idx + 1) % 3].point
  798. };
  799. Vector2 edge_uvs[2] = {
  800. face_vertices[face_edge_idx].uv,
  801. face_vertices[(face_edge_idx + 1) % 3].uv
  802. };
  803. Vector2 intersection_point;
  804. // First check if the ends of the segment are on the edge.
  805. bool on_edge = false;
  806. for (int edge_point_idx = 0; edge_point_idx < 2; ++edge_point_idx) {
  807. intersection_point = Geometry::get_closest_point_to_segment_2d(p_segment_points[edge_point_idx], edge_points);
  808. if ((intersection_point - p_segment_points[edge_point_idx]).length_squared() < vertex_snap2) {
  809. on_edge = true;
  810. break;
  811. }
  812. }
  813. // Else check if the segment intersects the edge.
  814. if (on_edge || Geometry::segment_intersects_segment_2d(p_segment_points[0], p_segment_points[1], edge_points[0], edge_points[1], &intersection_point)) {
  815. // Check if intersection point is an edge point.
  816. if ((intersection_point - edge_points[0]).length_squared() < vertex_snap2 ||
  817. (intersection_point - edge_points[1]).length_squared() < vertex_snap2) continue;
  818. // Check if edge exists, by checking if the intersecting segment is parallel to the edge.
  819. if (are_segements_parallel(p_segment_points, edge_points, vertex_snap2)) continue;
  820. // Add the intersection point as a new vertex.
  821. Vertex2D new_vertex;
  822. new_vertex.point = intersection_point;
  823. new_vertex.uv = interpolate_segment_uv(edge_points, edge_uvs, intersection_point);
  824. int new_vertex_idx = _add_vertex(new_vertex);
  825. int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3];
  826. _add_vertex_idx_sorted(r_segment_indices, new_vertex_idx);
  827. // If new vertex snaps to opposite vertex, just delete this face.
  828. if (new_vertex_idx == opposite_vertex_idx) {
  829. faces.remove(face_idx);
  830. // Update index.
  831. --face_idx;
  832. break;
  833. }
  834. // Don't create degenerate triangles.
  835. Vector2 split_edge1[2] = { vertices[new_vertex_idx].point, edge_points[0] };
  836. Vector2 split_edge2[2] = { vertices[new_vertex_idx].point, edge_points[1] };
  837. Vector2 new_edge[2] = { vertices[new_vertex_idx].point, vertices[opposite_vertex_idx].point };
  838. if (are_segements_parallel(split_edge1, new_edge, vertex_snap2) &&
  839. are_segements_parallel(split_edge2, new_edge, vertex_snap2)) {
  840. break;
  841. }
  842. // If opposite point is on the segemnt, add its index to segment indices too.
  843. Vector2 closest_point = Geometry::get_closest_point_to_segment_2d(vertices[opposite_vertex_idx].point, p_segment_points);
  844. if ((closest_point - vertices[opposite_vertex_idx].point).length_squared() < vertex_snap2)
  845. _add_vertex_idx_sorted(r_segment_indices, opposite_vertex_idx);
  846. // Create two new faces around the new edge and remove this face.
  847. // The new edge is the last edge.
  848. Face2D left_face;
  849. left_face.vertex_idx[0] = new_vertex_idx;
  850. left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3];
  851. left_face.vertex_idx[2] = opposite_vertex_idx;
  852. Face2D right_face;
  853. right_face.vertex_idx[0] = opposite_vertex_idx;
  854. right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx];
  855. right_face.vertex_idx[2] = new_vertex_idx;
  856. faces.remove(face_idx);
  857. faces.insert(face_idx, right_face);
  858. faces.insert(face_idx, left_face);
  859. // Check against the new faces.
  860. --face_idx;
  861. break;
  862. }
  863. }
  864. }
  865. }
  866. int CSGBrushOperation::Build2DFaces::_insert_point(const Vector2 &p_point) {
  867. int new_vertex_idx = -1;
  868. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  869. Face2D face = faces[face_idx];
  870. Vertex2D face_vertices[3] = {
  871. vertices[face.vertex_idx[0]],
  872. vertices[face.vertex_idx[1]],
  873. vertices[face.vertex_idx[2]]
  874. };
  875. Vector2 points[3] = {
  876. face_vertices[0].point,
  877. face_vertices[1].point,
  878. face_vertices[2].point
  879. };
  880. Vector2 uvs[3] = {
  881. face_vertices[0].uv,
  882. face_vertices[1].uv,
  883. face_vertices[2].uv
  884. };
  885. // Check if point is existing face vertex.
  886. for (int i = 0; i < 3; ++i) {
  887. if ((p_point - face_vertices[i].point).length_squared() < vertex_snap2)
  888. return face.vertex_idx[i];
  889. }
  890. // Check if point is on an each edge.
  891. bool on_edge = false;
  892. for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) {
  893. Vector2 edge_points[2] = {
  894. points[face_edge_idx],
  895. points[(face_edge_idx + 1) % 3]
  896. };
  897. Vector2 edge_uvs[2] = {
  898. uvs[face_edge_idx],
  899. uvs[(face_edge_idx + 1) % 3]
  900. };
  901. Vector2 closest_point = Geometry::get_closest_point_to_segment_2d(p_point, edge_points);
  902. if ((closest_point - p_point).length_squared() < vertex_snap2) {
  903. on_edge = true;
  904. // Add the point as a new vertex.
  905. Vertex2D new_vertex;
  906. new_vertex.point = p_point;
  907. new_vertex.uv = interpolate_segment_uv(edge_points, edge_uvs, p_point);
  908. new_vertex_idx = _add_vertex(new_vertex);
  909. int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3];
  910. // If new vertex snaps to opposite vertex, just delete this face.
  911. if (new_vertex_idx == opposite_vertex_idx) {
  912. faces.remove(face_idx);
  913. // Update index.
  914. --face_idx;
  915. break;
  916. }
  917. // Don't create degenerate triangles.
  918. Vector2 split_edge1[2] = { vertices[new_vertex_idx].point, edge_points[0] };
  919. Vector2 split_edge2[2] = { vertices[new_vertex_idx].point, edge_points[1] };
  920. Vector2 new_edge[2] = { vertices[new_vertex_idx].point, vertices[opposite_vertex_idx].point };
  921. if (are_segements_parallel(split_edge1, new_edge, vertex_snap2) &&
  922. are_segements_parallel(split_edge2, new_edge, vertex_snap2)) {
  923. break;
  924. }
  925. // Create two new faces around the new edge and remove this face.
  926. // The new edge is the last edge.
  927. Face2D left_face;
  928. left_face.vertex_idx[0] = new_vertex_idx;
  929. left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3];
  930. left_face.vertex_idx[2] = opposite_vertex_idx;
  931. Face2D right_face;
  932. right_face.vertex_idx[0] = opposite_vertex_idx;
  933. right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx];
  934. right_face.vertex_idx[2] = new_vertex_idx;
  935. faces.remove(face_idx);
  936. faces.insert(face_idx, right_face);
  937. faces.insert(face_idx, left_face);
  938. // Don't check against the new faces.
  939. ++face_idx;
  940. // No need to check other edges.
  941. break;
  942. }
  943. }
  944. // If not on an edge, check if the point is inside the face.
  945. if (!on_edge && Geometry::is_point_in_triangle(p_point, face_vertices[0].point, face_vertices[1].point, face_vertices[2].point)) {
  946. // Add the point as a new vertex.
  947. Vertex2D new_vertex;
  948. new_vertex.point = p_point;
  949. new_vertex.uv = interpolate_triangle_uv(points, uvs, p_point);
  950. new_vertex_idx = _add_vertex(new_vertex);
  951. // Create three new faces around this point and remove this face.
  952. // The new vertex is the last vertex.
  953. for (int i = 0; i < 3; ++i) {
  954. // Don't create degenerate triangles.
  955. Vector2 edge[2] = { points[i], points[(i + 1) % 3] };
  956. Vector2 new_edge1[2] = { vertices[new_vertex_idx].point, points[i] };
  957. Vector2 new_edge2[2] = { vertices[new_vertex_idx].point, points[(i + 1) % 3] };
  958. if (are_segements_parallel(edge, new_edge1, vertex_snap2) &&
  959. are_segements_parallel(edge, new_edge2, vertex_snap2)) {
  960. continue;
  961. }
  962. Face2D new_face;
  963. new_face.vertex_idx[0] = face.vertex_idx[i];
  964. new_face.vertex_idx[1] = face.vertex_idx[(i + 1) % 3];
  965. new_face.vertex_idx[2] = new_vertex_idx;
  966. faces.push_back(new_face);
  967. }
  968. faces.remove(face_idx);
  969. // No need to check other faces.
  970. break;
  971. }
  972. }
  973. return new_vertex_idx;
  974. }
  975. void CSGBrushOperation::Build2DFaces::insert(const CSGBrush &p_brush, int p_face_idx) {
  976. // Find edge points that cross the plane and face points that are in the plane.
  977. // Map those points to 2D.
  978. // Create new faces from those points.
  979. Vector2 points_2D[3];
  980. int points_count = 0;
  981. for (int i = 0; i < 3; i++) {
  982. Vector3 point_3D = p_brush.faces[p_face_idx].vertices[i];
  983. if (plane.has_point(point_3D)) {
  984. // Point is in the plane, add it.
  985. Vector3 point_2D = plane.project(point_3D);
  986. point_2D = to_2D.xform(point_2D);
  987. points_2D[points_count++] = Vector2(point_2D.x, point_2D.y);
  988. } else {
  989. Vector3 next_point_3D = p_brush.faces[p_face_idx].vertices[(i + 1) % 3];
  990. if (plane.has_point(next_point_3D))
  991. continue; // Next point is in plane, it will be added separately.
  992. if (plane.is_point_over(point_3D) == plane.is_point_over(next_point_3D))
  993. continue; // Both points on the same side of the plane, ignore.
  994. // Edge crosses the plane, find and add the intersection point.
  995. Vector3 point_2D;
  996. if (plane.intersects_segment(point_3D, next_point_3D, &point_2D)) {
  997. point_2D = to_2D.xform(point_2D);
  998. points_2D[points_count++] = Vector2(point_2D.x, point_2D.y);
  999. }
  1000. }
  1001. }
  1002. Vector<int> segment_indices;
  1003. Vector2 segment[2];
  1004. int inserted_index[3] = { -1, -1, -1 };
  1005. // Insert points.
  1006. for (int i = 0; i < points_count; ++i) {
  1007. inserted_index[i] = _insert_point(points_2D[i]);
  1008. }
  1009. if (points_count == 2) {
  1010. // Insert a single segment.
  1011. segment[0] = points_2D[0];
  1012. segment[1] = points_2D[1];
  1013. _find_edge_intersections(segment, segment_indices);
  1014. for (int i = 0; i < 2; ++i) {
  1015. _add_vertex_idx_sorted(segment_indices, inserted_index[i]);
  1016. }
  1017. _merge_faces(segment_indices);
  1018. }
  1019. if (points_count == 3) {
  1020. // Insert three segments.
  1021. for (int edge_idx = 0; edge_idx < 3; ++edge_idx) {
  1022. segment[0] = points_2D[edge_idx];
  1023. segment[1] = points_2D[(edge_idx + 1) % 3];
  1024. _find_edge_intersections(segment, segment_indices);
  1025. for (int i = 0; i < 2; ++i) {
  1026. _add_vertex_idx_sorted(segment_indices, inserted_index[(edge_idx + i) % 3]);
  1027. }
  1028. _merge_faces(segment_indices);
  1029. segment_indices.clear();
  1030. }
  1031. }
  1032. }
  1033. void CSGBrushOperation::Build2DFaces::addFacesToMesh(MeshMerge &r_mesh_merge, bool p_smooth, bool p_invert, const Ref<Material> &p_material, bool p_from_b) {
  1034. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  1035. Face2D face = faces[face_idx];
  1036. Vertex2D fv[3] = {
  1037. vertices[face.vertex_idx[0]],
  1038. vertices[face.vertex_idx[1]],
  1039. vertices[face.vertex_idx[2]]
  1040. };
  1041. // Convert 2D vertex points to 3D.
  1042. Vector3 points_3D[3];
  1043. Vector2 uvs[3];
  1044. for (int i = 0; i < 3; ++i) {
  1045. Vector3 point_2D(fv[i].point.x, fv[i].point.y, 0);
  1046. points_3D[i] = to_3D.xform(point_2D);
  1047. uvs[i] = fv[i].uv;
  1048. }
  1049. r_mesh_merge.add_face(points_3D, uvs, p_smooth, p_invert, p_material, p_from_b);
  1050. }
  1051. }
  1052. CSGBrushOperation::Build2DFaces::Build2DFaces(const CSGBrush &p_brush, int p_face_idx, float p_vertex_snap2) :
  1053. vertex_snap2(p_vertex_snap2 * p_vertex_snap2) {
  1054. // Convert 3D vertex points to 2D.
  1055. Vector3 points_3D[3] = {
  1056. p_brush.faces[p_face_idx].vertices[0],
  1057. p_brush.faces[p_face_idx].vertices[1],
  1058. p_brush.faces[p_face_idx].vertices[2],
  1059. };
  1060. plane = Plane(points_3D[0], points_3D[1], points_3D[2]);
  1061. to_3D.origin = points_3D[0];
  1062. to_3D.basis.set_axis(2, plane.normal);
  1063. to_3D.basis.set_axis(0, (points_3D[1] - points_3D[2]).normalized());
  1064. to_3D.basis.set_axis(1, to_3D.basis.get_axis(0).cross(to_3D.basis.get_axis(2)).normalized());
  1065. to_2D = to_3D.affine_inverse();
  1066. Face2D face;
  1067. for (int i = 0; i < 3; i++) {
  1068. Vertex2D vertex;
  1069. Vector3 point_2D = to_2D.xform(points_3D[i]);
  1070. vertex.point.x = point_2D.x;
  1071. vertex.point.y = point_2D.y;
  1072. vertex.uv = p_brush.faces[p_face_idx].uvs[i];
  1073. vertices.push_back(vertex);
  1074. face.vertex_idx[i] = i;
  1075. }
  1076. faces.push_back(face);
  1077. }
  1078. void CSGBrushOperation::update_faces(const CSGBrush &p_brush_a, const int p_face_idx_a, const CSGBrush &p_brush_b, const int p_face_idx_b, Build2DFaceCollection &p_collection, float p_vertex_snap) {
  1079. Vector3 vertices_a[3] = {
  1080. p_brush_a.faces[p_face_idx_a].vertices[0],
  1081. p_brush_a.faces[p_face_idx_a].vertices[1],
  1082. p_brush_a.faces[p_face_idx_a].vertices[2],
  1083. };
  1084. Vector3 vertices_b[3] = {
  1085. p_brush_b.faces[p_face_idx_b].vertices[0],
  1086. p_brush_b.faces[p_face_idx_b].vertices[1],
  1087. p_brush_b.faces[p_face_idx_b].vertices[2],
  1088. };
  1089. // Don't use degenerate faces.
  1090. bool has_degenerate = false;
  1091. if (is_snapable(vertices_a[0], vertices_a[1], p_vertex_snap) ||
  1092. is_snapable(vertices_a[0], vertices_a[2], p_vertex_snap) ||
  1093. is_snapable(vertices_a[1], vertices_a[2], p_vertex_snap)) {
  1094. p_collection.build2DFacesA[p_face_idx_a] = Build2DFaces();
  1095. has_degenerate = true;
  1096. }
  1097. if (is_snapable(vertices_b[0], vertices_b[1], p_vertex_snap) ||
  1098. is_snapable(vertices_b[0], vertices_b[2], p_vertex_snap) ||
  1099. is_snapable(vertices_b[1], vertices_b[2], p_vertex_snap)) {
  1100. p_collection.build2DFacesB[p_face_idx_b] = Build2DFaces();
  1101. has_degenerate = true;
  1102. }
  1103. if (has_degenerate) return;
  1104. // Ensure B has points either side of or in the plane of A.
  1105. int in_plane_count = 0, over_count = 0, under_count = 0;
  1106. Plane plane_a(vertices_a[0], vertices_a[1], vertices_a[2]);
  1107. ERR_FAIL_COND_MSG(plane_a.normal == Vector3(), "Couldn't form plane from Brush A face.");
  1108. for (int i = 0; i < 3; i++) {
  1109. if (plane_a.has_point(vertices_b[i]))
  1110. in_plane_count++;
  1111. else if (plane_a.is_point_over(vertices_b[i]))
  1112. over_count++;
  1113. else
  1114. under_count++;
  1115. }
  1116. // If all points under or over the plane, there is no intesection.
  1117. if (over_count == 3 || under_count == 3) return;
  1118. // Ensure A has points either side of or in the plane of B.
  1119. in_plane_count = 0;
  1120. over_count = 0;
  1121. under_count = 0;
  1122. Plane plane_b(vertices_b[0], vertices_b[1], vertices_b[2]);
  1123. ERR_FAIL_COND_MSG(plane_b.normal == Vector3(), "Couldn't form plane from Brush B face.");
  1124. for (int i = 0; i < 3; i++) {
  1125. if (plane_b.has_point(vertices_a[i]))
  1126. in_plane_count++;
  1127. else if (plane_b.is_point_over(vertices_a[i]))
  1128. over_count++;
  1129. else
  1130. under_count++;
  1131. }
  1132. // If all points under or over the plane, there is no intesection.
  1133. if (over_count == 3 || under_count == 3) return;
  1134. // Check for intersection using the SAT theorem.
  1135. {
  1136. // Edge pair cross product combinations.
  1137. for (int i = 0; i < 3; i++) {
  1138. Vector3 axis_a = (vertices_a[i] - vertices_a[(i + 1) % 3]).normalized();
  1139. for (int j = 0; j < 3; j++) {
  1140. Vector3 axis_b = (vertices_b[j] - vertices_b[(j + 1) % 3]).normalized();
  1141. Vector3 sep_axis = axis_a.cross(axis_b);
  1142. if (sep_axis == Vector3())
  1143. continue; //colineal
  1144. sep_axis.normalize();
  1145. real_t min_a = 1e20, max_a = -1e20;
  1146. real_t min_b = 1e20, max_b = -1e20;
  1147. for (int k = 0; k < 3; k++) {
  1148. real_t d = sep_axis.dot(vertices_a[k]);
  1149. min_a = MIN(min_a, d);
  1150. max_a = MAX(max_a, d);
  1151. d = sep_axis.dot(vertices_b[k]);
  1152. min_b = MIN(min_b, d);
  1153. max_b = MAX(max_b, d);
  1154. }
  1155. min_b -= (max_a - min_a) * 0.5;
  1156. max_b += (max_a - min_a) * 0.5;
  1157. real_t dmin = min_b - (min_a + max_a) * 0.5;
  1158. real_t dmax = max_b - (min_a + max_a) * 0.5;
  1159. if (dmin > CMP_EPSILON || dmax < -CMP_EPSILON) {
  1160. return; // Does not contain zero, so they don't overlap.
  1161. }
  1162. }
  1163. }
  1164. }
  1165. // If we're still here, the faces probably intersect, so add new faces.
  1166. if (!p_collection.build2DFacesA.has(p_face_idx_a)) {
  1167. p_collection.build2DFacesA[p_face_idx_a] = Build2DFaces(p_brush_a, p_face_idx_a, p_vertex_snap);
  1168. }
  1169. p_collection.build2DFacesA[p_face_idx_a].insert(p_brush_b, p_face_idx_b);
  1170. if (!p_collection.build2DFacesB.has(p_face_idx_b)) {
  1171. p_collection.build2DFacesB[p_face_idx_b] = Build2DFaces(p_brush_b, p_face_idx_b, p_vertex_snap);
  1172. }
  1173. p_collection.build2DFacesB[p_face_idx_b].insert(p_brush_a, p_face_idx_a);
  1174. }