math_2d.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647
  1. /*************************************************************************/
  2. /* math_2d.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* http://www.godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
  9. /* */
  10. /* Permission is hereby granted, free of charge, to any person obtaining */
  11. /* a copy of this software and associated documentation files (the */
  12. /* "Software"), to deal in the Software without restriction, including */
  13. /* without limitation the rights to use, copy, modify, merge, publish, */
  14. /* distribute, sublicense, and/or sell copies of the Software, and to */
  15. /* permit persons to whom the Software is furnished to do so, subject to */
  16. /* the following conditions: */
  17. /* */
  18. /* The above copyright notice and this permission notice shall be */
  19. /* included in all copies or substantial portions of the Software. */
  20. /* */
  21. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  22. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  23. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  24. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  25. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  26. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  27. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  28. /*************************************************************************/
  29. #include "math_2d.h"
  30. real_t Vector2::angle() const {
  31. return Math::atan2(y, x);
  32. }
  33. real_t Vector2::length() const {
  34. return Math::sqrt(x * x + y * y);
  35. }
  36. real_t Vector2::length_squared() const {
  37. return x * x + y * y;
  38. }
  39. void Vector2::normalize() {
  40. real_t l = x * x + y * y;
  41. if (l != 0) {
  42. l = Math::sqrt(l);
  43. x /= l;
  44. y /= l;
  45. }
  46. }
  47. Vector2 Vector2::normalized() const {
  48. Vector2 v = *this;
  49. v.normalize();
  50. return v;
  51. }
  52. real_t Vector2::distance_to(const Vector2 &p_vector2) const {
  53. return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
  54. }
  55. real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const {
  56. return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
  57. }
  58. real_t Vector2::angle_to(const Vector2 &p_vector2) const {
  59. return Math::atan2(cross(p_vector2), dot(p_vector2));
  60. }
  61. real_t Vector2::angle_to_point(const Vector2 &p_vector2) const {
  62. return Math::atan2(y - p_vector2.y, x - p_vector2.x);
  63. }
  64. real_t Vector2::dot(const Vector2 &p_other) const {
  65. return x * p_other.x + y * p_other.y;
  66. }
  67. real_t Vector2::cross(const Vector2 &p_other) const {
  68. return x * p_other.y - y * p_other.x;
  69. }
  70. Vector2 Vector2::cross(real_t p_other) const {
  71. return Vector2(p_other * y, -p_other * x);
  72. }
  73. Vector2 Vector2::operator+(const Vector2 &p_v) const {
  74. return Vector2(x + p_v.x, y + p_v.y);
  75. }
  76. void Vector2::operator+=(const Vector2 &p_v) {
  77. x += p_v.x;
  78. y += p_v.y;
  79. }
  80. Vector2 Vector2::operator-(const Vector2 &p_v) const {
  81. return Vector2(x - p_v.x, y - p_v.y);
  82. }
  83. void Vector2::operator-=(const Vector2 &p_v) {
  84. x -= p_v.x;
  85. y -= p_v.y;
  86. }
  87. Vector2 Vector2::operator*(const Vector2 &p_v1) const {
  88. return Vector2(x * p_v1.x, y * p_v1.y);
  89. };
  90. Vector2 Vector2::operator*(const real_t &rvalue) const {
  91. return Vector2(x * rvalue, y * rvalue);
  92. };
  93. void Vector2::operator*=(const real_t &rvalue) {
  94. x *= rvalue;
  95. y *= rvalue;
  96. };
  97. Vector2 Vector2::operator/(const Vector2 &p_v1) const {
  98. return Vector2(x / p_v1.x, y / p_v1.y);
  99. };
  100. Vector2 Vector2::operator/(const real_t &rvalue) const {
  101. return Vector2(x / rvalue, y / rvalue);
  102. };
  103. void Vector2::operator/=(const real_t &rvalue) {
  104. x /= rvalue;
  105. y /= rvalue;
  106. };
  107. Vector2 Vector2::operator-() const {
  108. return Vector2(-x, -y);
  109. }
  110. bool Vector2::operator==(const Vector2 &p_vec2) const {
  111. return x == p_vec2.x && y == p_vec2.y;
  112. }
  113. bool Vector2::operator!=(const Vector2 &p_vec2) const {
  114. return x != p_vec2.x || y != p_vec2.y;
  115. }
  116. Vector2 Vector2::floor() const {
  117. return Vector2(Math::floor(x), Math::floor(y));
  118. }
  119. Vector2 Vector2::rotated(real_t p_by) const {
  120. Vector2 v;
  121. v.set_rotation(angle() + p_by);
  122. v *= length();
  123. return v;
  124. }
  125. Vector2 Vector2::project(const Vector2 &p_vec) const {
  126. Vector2 v1 = p_vec;
  127. Vector2 v2 = *this;
  128. return v2 * (v1.dot(v2) / v2.dot(v2));
  129. }
  130. Vector2 Vector2::snapped(const Vector2 &p_by) const {
  131. return Vector2(
  132. Math::stepify(x, p_by.x),
  133. Math::stepify(y, p_by.y));
  134. }
  135. Vector2 Vector2::clamped(real_t p_len) const {
  136. real_t l = length();
  137. Vector2 v = *this;
  138. if (l > 0 && p_len < l) {
  139. v /= l;
  140. v *= p_len;
  141. }
  142. return v;
  143. }
  144. Vector2 Vector2::cubic_interpolate_soft(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const {
  145. #if 0
  146. k[0] = ((*this) (vi[0] + 1, vi[1], vi[2])) - ((*this) (vi[0],
  147. vi[1],vi[2])); //fk = a0
  148. k[1] = (((*this) (vi[0] + 1, vi[1], vi[2])) - ((*this) ((int) (v(0) -
  149. 1), vi[1],vi[2])))*0.5; //dk = a1
  150. k[2] = (((*this) ((int) (v(0) + 2), vi[1], vi[2])) - ((*this) (vi[0],
  151. vi[1],vi[2])))*0.5; //dk+1
  152. k[3] = k[0]*3 - k[1]*2 - k[2];//a2
  153. k[4] = k[1] + k[2] - k[0]*2;//a3
  154. //ip = a3(t-tk)³ + a2(t-tk)² + a1(t-tk) + a0
  155. //
  156. //a3 = dk + dk+1 - Dk
  157. //a2 = 3Dk - 2dk - dk+1
  158. //a1 = dk
  159. //a0 = fk
  160. //
  161. //dk = (fk+1 - fk-1)*0.5
  162. //Dk = (fk+1 - fk)
  163. real_t dk =
  164. #endif
  165. return Vector2();
  166. }
  167. Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const {
  168. Vector2 p0 = p_pre_a;
  169. Vector2 p1 = *this;
  170. Vector2 p2 = p_b;
  171. Vector2 p3 = p_post_b;
  172. real_t t = p_t;
  173. real_t t2 = t * t;
  174. real_t t3 = t2 * t;
  175. Vector2 out;
  176. out = 0.5 * ((p1 * 2.0) +
  177. (-p0 + p2) * t +
  178. (2.0 * p0 - 5.0 * p1 + 4 * p2 - p3) * t2 +
  179. (-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3);
  180. return out;
  181. /*
  182. real_t mu = p_t;
  183. real_t mu2 = mu*mu;
  184. Vector2 a0 = p_post_b - p_b - p_pre_a + *this;
  185. Vector2 a1 = p_pre_a - *this - a0;
  186. Vector2 a2 = p_b - p_pre_a;
  187. Vector2 a3 = *this;
  188. return ( a0*mu*mu2 + a1*mu2 + a2*mu + a3 );
  189. */
  190. /*
  191. real_t t = p_t;
  192. real_t t2 = t*t;
  193. real_t t3 = t2*t;
  194. real_t a = 2.0*t3- 3.0*t2 + 1;
  195. real_t b = -2.0*t3+ 3.0*t2;
  196. real_t c = t3- 2.0*t2 + t;
  197. real_t d = t3- t2;
  198. Vector2 p_a=*this;
  199. return Vector2(
  200. (a * p_a.x) + (b *p_b.x) + (c * p_pre_a.x) + (d * p_post_b.x),
  201. (a * p_a.y) + (b *p_b.y) + (c * p_pre_a.y) + (d * p_post_b.y)
  202. );
  203. */
  204. }
  205. Vector2 Vector2::slide(const Vector2 &p_vec) const {
  206. return p_vec - *this * this->dot(p_vec);
  207. }
  208. Vector2 Vector2::reflect(const Vector2 &p_vec) const {
  209. return p_vec - *this * this->dot(p_vec) * 2.0;
  210. }
  211. bool Rect2::intersects_segment(const Point2 &p_from, const Point2 &p_to, Point2 *r_pos, Point2 *r_normal) const {
  212. real_t min = 0, max = 1;
  213. int axis = 0;
  214. real_t sign = 0;
  215. for (int i = 0; i < 2; i++) {
  216. real_t seg_from = p_from[i];
  217. real_t seg_to = p_to[i];
  218. real_t box_begin = pos[i];
  219. real_t box_end = box_begin + size[i];
  220. real_t cmin, cmax;
  221. real_t csign;
  222. if (seg_from < seg_to) {
  223. if (seg_from > box_end || seg_to < box_begin)
  224. return false;
  225. real_t length = seg_to - seg_from;
  226. cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0;
  227. cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1;
  228. csign = -1.0;
  229. } else {
  230. if (seg_to > box_end || seg_from < box_begin)
  231. return false;
  232. real_t length = seg_to - seg_from;
  233. cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0;
  234. cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1;
  235. csign = 1.0;
  236. }
  237. if (cmin > min) {
  238. min = cmin;
  239. axis = i;
  240. sign = csign;
  241. }
  242. if (cmax < max)
  243. max = cmax;
  244. if (max < min)
  245. return false;
  246. }
  247. Vector2 rel = p_to - p_from;
  248. if (r_normal) {
  249. Vector2 normal;
  250. normal[axis] = sign;
  251. *r_normal = normal;
  252. }
  253. if (r_pos)
  254. *r_pos = p_from + rel * min;
  255. return true;
  256. }
  257. /* Point2i */
  258. Point2i Point2i::operator+(const Point2i &p_v) const {
  259. return Point2i(x + p_v.x, y + p_v.y);
  260. }
  261. void Point2i::operator+=(const Point2i &p_v) {
  262. x += p_v.x;
  263. y += p_v.y;
  264. }
  265. Point2i Point2i::operator-(const Point2i &p_v) const {
  266. return Point2i(x - p_v.x, y - p_v.y);
  267. }
  268. void Point2i::operator-=(const Point2i &p_v) {
  269. x -= p_v.x;
  270. y -= p_v.y;
  271. }
  272. Point2i Point2i::operator*(const Point2i &p_v1) const {
  273. return Point2i(x * p_v1.x, y * p_v1.y);
  274. };
  275. Point2i Point2i::operator*(const int &rvalue) const {
  276. return Point2i(x * rvalue, y * rvalue);
  277. };
  278. void Point2i::operator*=(const int &rvalue) {
  279. x *= rvalue;
  280. y *= rvalue;
  281. };
  282. Point2i Point2i::operator/(const Point2i &p_v1) const {
  283. return Point2i(x / p_v1.x, y / p_v1.y);
  284. };
  285. Point2i Point2i::operator/(const int &rvalue) const {
  286. return Point2i(x / rvalue, y / rvalue);
  287. };
  288. void Point2i::operator/=(const int &rvalue) {
  289. x /= rvalue;
  290. y /= rvalue;
  291. };
  292. Point2i Point2i::operator-() const {
  293. return Point2i(-x, -y);
  294. }
  295. bool Point2i::operator==(const Point2i &p_vec2) const {
  296. return x == p_vec2.x && y == p_vec2.y;
  297. }
  298. bool Point2i::operator!=(const Point2i &p_vec2) const {
  299. return x != p_vec2.x || y != p_vec2.y;
  300. }
  301. void Transform2D::invert() {
  302. // FIXME: this function assumes the basis is a rotation matrix, with no scaling.
  303. // Transform2D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
  304. SWAP(elements[0][1], elements[1][0]);
  305. elements[2] = basis_xform(-elements[2]);
  306. }
  307. Transform2D Transform2D::inverse() const {
  308. Transform2D inv = *this;
  309. inv.invert();
  310. return inv;
  311. }
  312. void Transform2D::affine_invert() {
  313. real_t det = basis_determinant();
  314. ERR_FAIL_COND(det == 0);
  315. real_t idet = 1.0 / det;
  316. SWAP(elements[0][0], elements[1][1]);
  317. elements[0] *= Vector2(idet, -idet);
  318. elements[1] *= Vector2(-idet, idet);
  319. elements[2] = basis_xform(-elements[2]);
  320. }
  321. Transform2D Transform2D::affine_inverse() const {
  322. Transform2D inv = *this;
  323. inv.affine_invert();
  324. return inv;
  325. }
  326. void Transform2D::rotate(real_t p_phi) {
  327. *this = Transform2D(p_phi, Vector2()) * (*this);
  328. }
  329. real_t Transform2D::get_rotation() const {
  330. real_t det = basis_determinant();
  331. Transform2D m = orthonormalized();
  332. if (det < 0) {
  333. m.scale_basis(Size2(1, -1)); // convention to separate rotation and reflection for 2D is to absorb a flip along y into scaling.
  334. }
  335. return Math::atan2(m[0].y, m[0].x);
  336. }
  337. void Transform2D::set_rotation(real_t p_rot) {
  338. real_t cr = Math::cos(p_rot);
  339. real_t sr = Math::sin(p_rot);
  340. elements[0][0] = cr;
  341. elements[0][1] = sr;
  342. elements[1][0] = -sr;
  343. elements[1][1] = cr;
  344. }
  345. Transform2D::Transform2D(real_t p_rot, const Vector2 &p_pos) {
  346. real_t cr = Math::cos(p_rot);
  347. real_t sr = Math::sin(p_rot);
  348. elements[0][0] = cr;
  349. elements[0][1] = sr;
  350. elements[1][0] = -sr;
  351. elements[1][1] = cr;
  352. elements[2] = p_pos;
  353. }
  354. Size2 Transform2D::get_scale() const {
  355. real_t det_sign = basis_determinant() > 0 ? 1 : -1;
  356. return Size2(elements[0].length(), det_sign * elements[1].length());
  357. }
  358. void Transform2D::scale(const Size2 &p_scale) {
  359. scale_basis(p_scale);
  360. elements[2] *= p_scale;
  361. }
  362. void Transform2D::scale_basis(const Size2 &p_scale) {
  363. elements[0][0] *= p_scale.x;
  364. elements[0][1] *= p_scale.y;
  365. elements[1][0] *= p_scale.x;
  366. elements[1][1] *= p_scale.y;
  367. }
  368. void Transform2D::translate(real_t p_tx, real_t p_ty) {
  369. translate(Vector2(p_tx, p_ty));
  370. }
  371. void Transform2D::translate(const Vector2 &p_translation) {
  372. elements[2] += basis_xform(p_translation);
  373. }
  374. void Transform2D::orthonormalize() {
  375. // Gram-Schmidt Process
  376. Vector2 x = elements[0];
  377. Vector2 y = elements[1];
  378. x.normalize();
  379. y = (y - x * (x.dot(y)));
  380. y.normalize();
  381. elements[0] = x;
  382. elements[1] = y;
  383. }
  384. Transform2D Transform2D::orthonormalized() const {
  385. Transform2D on = *this;
  386. on.orthonormalize();
  387. return on;
  388. }
  389. bool Transform2D::operator==(const Transform2D &p_transform) const {
  390. for (int i = 0; i < 3; i++) {
  391. if (elements[i] != p_transform.elements[i])
  392. return false;
  393. }
  394. return true;
  395. }
  396. bool Transform2D::operator!=(const Transform2D &p_transform) const {
  397. for (int i = 0; i < 3; i++) {
  398. if (elements[i] != p_transform.elements[i])
  399. return true;
  400. }
  401. return false;
  402. }
  403. void Transform2D::operator*=(const Transform2D &p_transform) {
  404. elements[2] = xform(p_transform.elements[2]);
  405. real_t x0, x1, y0, y1;
  406. x0 = tdotx(p_transform.elements[0]);
  407. x1 = tdoty(p_transform.elements[0]);
  408. y0 = tdotx(p_transform.elements[1]);
  409. y1 = tdoty(p_transform.elements[1]);
  410. elements[0][0] = x0;
  411. elements[0][1] = x1;
  412. elements[1][0] = y0;
  413. elements[1][1] = y1;
  414. }
  415. Transform2D Transform2D::operator*(const Transform2D &p_transform) const {
  416. Transform2D t = *this;
  417. t *= p_transform;
  418. return t;
  419. }
  420. Transform2D Transform2D::scaled(const Size2 &p_scale) const {
  421. Transform2D copy = *this;
  422. copy.scale(p_scale);
  423. return copy;
  424. }
  425. Transform2D Transform2D::basis_scaled(const Size2 &p_scale) const {
  426. Transform2D copy = *this;
  427. copy.scale_basis(p_scale);
  428. return copy;
  429. }
  430. Transform2D Transform2D::untranslated() const {
  431. Transform2D copy = *this;
  432. copy.elements[2] = Vector2();
  433. return copy;
  434. }
  435. Transform2D Transform2D::translated(const Vector2 &p_offset) const {
  436. Transform2D copy = *this;
  437. copy.translate(p_offset);
  438. return copy;
  439. }
  440. Transform2D Transform2D::rotated(real_t p_phi) const {
  441. Transform2D copy = *this;
  442. copy.rotate(p_phi);
  443. return copy;
  444. }
  445. real_t Transform2D::basis_determinant() const {
  446. return elements[0].x * elements[1].y - elements[0].y * elements[1].x;
  447. }
  448. Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, real_t p_c) const {
  449. //extract parameters
  450. Vector2 p1 = get_origin();
  451. Vector2 p2 = p_transform.get_origin();
  452. real_t r1 = get_rotation();
  453. real_t r2 = p_transform.get_rotation();
  454. Size2 s1 = get_scale();
  455. Size2 s2 = p_transform.get_scale();
  456. //slerp rotation
  457. Vector2 v1(Math::cos(r1), Math::sin(r1));
  458. Vector2 v2(Math::cos(r2), Math::sin(r2));
  459. real_t dot = v1.dot(v2);
  460. dot = (dot < -1.0) ? -1.0 : ((dot > 1.0) ? 1.0 : dot); //clamp dot to [-1,1]
  461. Vector2 v;
  462. if (dot > 0.9995) {
  463. v = Vector2::linear_interpolate(v1, v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues
  464. } else {
  465. real_t angle = p_c * Math::acos(dot);
  466. Vector2 v3 = (v2 - v1 * dot).normalized();
  467. v = v1 * Math::cos(angle) + v3 * Math::sin(angle);
  468. }
  469. //construct matrix
  470. Transform2D res(Math::atan2(v.y, v.x), Vector2::linear_interpolate(p1, p2, p_c));
  471. res.scale_basis(Vector2::linear_interpolate(s1, s2, p_c));
  472. return res;
  473. }
  474. Transform2D::operator String() const {
  475. return String(String() + elements[0] + ", " + elements[1] + ", " + elements[2]);
  476. }