123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269 |
- <?xml version="1.0" encoding="UTF-8" ?>
- <class name="Basis" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
- <brief_description>
- A 3×3 matrix for representing 3D rotation and scale.
- </brief_description>
- <description>
- A 3×3 matrix used for representing 3D rotation and scale. Usually used as an orthogonal basis for a [Transform3D].
- Contains 3 vector fields X, Y and Z as its columns, which are typically interpreted as the local basis vectors of a transformation. For such use, it is composed of a scaling and a rotation matrix, in that order (M = R.S).
- Basis can also be accessed as an array of 3D vectors. These vectors are usually orthogonal to each other, but are not necessarily normalized (due to scaling).
- For more information, read the "Matrices and transforms" documentation article.
- </description>
- <tutorials>
- <link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link>
- <link title="Matrices and transforms">$DOCS_URL/tutorials/math/matrices_and_transforms.html</link>
- <link title="Using 3D transforms">$DOCS_URL/tutorials/3d/using_transforms.html</link>
- <link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
- <link title="3D Platformer Demo">https://godotengine.org/asset-library/asset/125</link>
- <link title="3D Voxel Demo">https://godotengine.org/asset-library/asset/676</link>
- <link title="2.5D Demo">https://godotengine.org/asset-library/asset/583</link>
- </tutorials>
- <constructors>
- <constructor name="Basis">
- <return type="Basis" />
- <description>
- Constructs a default-initialized [Basis] set to [constant IDENTITY].
- </description>
- </constructor>
- <constructor name="Basis">
- <return type="Basis" />
- <param index="0" name="from" type="Basis" />
- <description>
- Constructs a [Basis] as a copy of the given [Basis].
- </description>
- </constructor>
- <constructor name="Basis">
- <return type="Basis" />
- <param index="0" name="axis" type="Vector3" />
- <param index="1" name="angle" type="float" />
- <description>
- Constructs a pure rotation basis matrix, rotated around the given [param axis] by [param angle] (in radians). The axis must be a normalized vector.
- </description>
- </constructor>
- <constructor name="Basis">
- <return type="Basis" />
- <param index="0" name="from" type="Quaternion" />
- <description>
- Constructs a pure rotation basis matrix from the given quaternion.
- </description>
- </constructor>
- <constructor name="Basis">
- <return type="Basis" />
- <param index="0" name="x_axis" type="Vector3" />
- <param index="1" name="y_axis" type="Vector3" />
- <param index="2" name="z_axis" type="Vector3" />
- <description>
- Constructs a basis matrix from 3 axis vectors (matrix columns).
- </description>
- </constructor>
- </constructors>
- <methods>
- <method name="determinant" qualifiers="const">
- <return type="float" />
- <description>
- Returns the determinant of the basis matrix. If the basis is uniformly scaled, its determinant is the square of the scale.
- A negative determinant means the basis has a negative scale. A zero determinant means the basis isn't invertible, and is usually considered invalid.
- </description>
- </method>
- <method name="from_euler" qualifiers="static">
- <return type="Basis" />
- <param index="0" name="euler" type="Vector3" />
- <param index="1" name="order" type="int" default="2" />
- <description>
- Constructs a pure rotation Basis matrix from Euler angles in the specified Euler rotation order. By default, use YXZ order (most common). See the [enum EulerOrder] enum for possible values.
- </description>
- </method>
- <method name="from_scale" qualifiers="static">
- <return type="Basis" />
- <param index="0" name="scale" type="Vector3" />
- <description>
- Constructs a pure scale basis matrix with no rotation or shearing. The scale values are set as the diagonal of the matrix, and the other parts of the matrix are zero.
- </description>
- </method>
- <method name="get_euler" qualifiers="const">
- <return type="Vector3" />
- <param index="0" name="order" type="int" default="2" />
- <description>
- Returns the basis's rotation in the form of Euler angles. The Euler order depends on the [param order] parameter, by default it uses the YXZ convention: when decomposing, first Z, then X, and Y last. The returned vector contains the rotation angles in the format (X angle, Y angle, Z angle).
- Consider using the [method get_rotation_quaternion] method instead, which returns a [Quaternion] quaternion instead of Euler angles.
- </description>
- </method>
- <method name="get_rotation_quaternion" qualifiers="const">
- <return type="Quaternion" />
- <description>
- Returns the basis's rotation in the form of a quaternion. See [method get_euler] if you need Euler angles, but keep in mind quaternions should generally be preferred to Euler angles.
- </description>
- </method>
- <method name="get_scale" qualifiers="const">
- <return type="Vector3" />
- <description>
- Assuming that the matrix is the combination of a rotation and scaling, return the absolute value of scaling factors along each axis.
- </description>
- </method>
- <method name="inverse" qualifiers="const">
- <return type="Basis" />
- <description>
- Returns the inverse of the matrix.
- </description>
- </method>
- <method name="is_equal_approx" qualifiers="const">
- <return type="bool" />
- <param index="0" name="b" type="Basis" />
- <description>
- Returns [code]true[/code] if this basis and [param b] are approximately equal, by calling [method @GlobalScope.is_equal_approx] on all vector components.
- </description>
- </method>
- <method name="is_finite" qualifiers="const">
- <return type="bool" />
- <description>
- Returns [code]true[/code] if this basis is finite, by calling [method @GlobalScope.is_finite] on all vector components.
- </description>
- </method>
- <method name="looking_at" qualifiers="static">
- <return type="Basis" />
- <param index="0" name="target" type="Vector3" />
- <param index="1" name="up" type="Vector3" default="Vector3(0, 1, 0)" />
- <param index="2" name="use_model_front" type="bool" default="false" />
- <description>
- Creates a Basis with a rotation such that the forward axis (-Z) points towards the [param target] position.
- The up axis (+Y) points as close to the [param up] vector as possible while staying perpendicular to the forward axis. The resulting Basis is orthonormalized. The [param target] and [param up] vectors cannot be zero, and cannot be parallel to each other.
- If [param use_model_front] is [code]true[/code], the +Z axis (asset front) is treated as forward (implies +X is left) and points toward the [param target] position. By default, the -Z axis (camera forward) is treated as forward (implies +X is right).
- </description>
- </method>
- <method name="orthonormalized" qualifiers="const">
- <return type="Basis" />
- <description>
- Returns the orthonormalized version of the matrix (useful to call from time to time to avoid rounding error for orthogonal matrices). This performs a Gram-Schmidt orthonormalization on the basis of the matrix.
- </description>
- </method>
- <method name="rotated" qualifiers="const">
- <return type="Basis" />
- <param index="0" name="axis" type="Vector3" />
- <param index="1" name="angle" type="float" />
- <description>
- Introduce an additional rotation around the given axis by [param angle] (in radians). The axis must be a normalized vector.
- </description>
- </method>
- <method name="scaled" qualifiers="const">
- <return type="Basis" />
- <param index="0" name="scale" type="Vector3" />
- <description>
- Introduce an additional scaling specified by the given 3D scaling factor.
- </description>
- </method>
- <method name="slerp" qualifiers="const">
- <return type="Basis" />
- <param index="0" name="to" type="Basis" />
- <param index="1" name="weight" type="float" />
- <description>
- Assuming that the matrix is a proper rotation matrix, slerp performs a spherical-linear interpolation with another rotation matrix.
- </description>
- </method>
- <method name="tdotx" qualifiers="const">
- <return type="float" />
- <param index="0" name="with" type="Vector3" />
- <description>
- Transposed dot product with the X axis of the matrix.
- </description>
- </method>
- <method name="tdoty" qualifiers="const">
- <return type="float" />
- <param index="0" name="with" type="Vector3" />
- <description>
- Transposed dot product with the Y axis of the matrix.
- </description>
- </method>
- <method name="tdotz" qualifiers="const">
- <return type="float" />
- <param index="0" name="with" type="Vector3" />
- <description>
- Transposed dot product with the Z axis of the matrix.
- </description>
- </method>
- <method name="transposed" qualifiers="const">
- <return type="Basis" />
- <description>
- Returns the transposed version of the matrix.
- </description>
- </method>
- </methods>
- <members>
- <member name="x" type="Vector3" setter="" getter="" default="Vector3(1, 0, 0)">
- The basis matrix's X vector (column 0). Equivalent to array index [code]0[/code].
- </member>
- <member name="y" type="Vector3" setter="" getter="" default="Vector3(0, 1, 0)">
- The basis matrix's Y vector (column 1). Equivalent to array index [code]1[/code].
- </member>
- <member name="z" type="Vector3" setter="" getter="" default="Vector3(0, 0, 1)">
- The basis matrix's Z vector (column 2). Equivalent to array index [code]2[/code].
- </member>
- </members>
- <constants>
- <constant name="IDENTITY" value="Basis(1, 0, 0, 0, 1, 0, 0, 0, 1)">
- The identity basis, with no rotation or scaling applied.
- This is identical to calling [code]Basis()[/code] without any parameters. This constant can be used to make your code clearer, and for consistency with C#.
- </constant>
- <constant name="FLIP_X" value="Basis(-1, 0, 0, 0, 1, 0, 0, 0, 1)">
- The basis that will flip something along the X axis when used in a transformation.
- </constant>
- <constant name="FLIP_Y" value="Basis(1, 0, 0, 0, -1, 0, 0, 0, 1)">
- The basis that will flip something along the Y axis when used in a transformation.
- </constant>
- <constant name="FLIP_Z" value="Basis(1, 0, 0, 0, 1, 0, 0, 0, -1)">
- The basis that will flip something along the Z axis when used in a transformation.
- </constant>
- </constants>
- <operators>
- <operator name="operator !=">
- <return type="bool" />
- <param index="0" name="right" type="Basis" />
- <description>
- Returns [code]true[/code] if the [Basis] matrices are not equal.
- [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
- </description>
- </operator>
- <operator name="operator *">
- <return type="Basis" />
- <param index="0" name="right" type="Basis" />
- <description>
- Composes these two basis matrices by multiplying them together. This has the effect of transforming the second basis (the child) by the first basis (the parent).
- </description>
- </operator>
- <operator name="operator *">
- <return type="Vector3" />
- <param index="0" name="right" type="Vector3" />
- <description>
- Transforms (multiplies) the [Vector3] by the given [Basis] matrix.
- </description>
- </operator>
- <operator name="operator *">
- <return type="Basis" />
- <param index="0" name="right" type="float" />
- <description>
- This operator multiplies all components of the [Basis], which scales it uniformly.
- </description>
- </operator>
- <operator name="operator *">
- <return type="Basis" />
- <param index="0" name="right" type="int" />
- <description>
- This operator multiplies all components of the [Basis], which scales it uniformly.
- </description>
- </operator>
- <operator name="operator ==">
- <return type="bool" />
- <param index="0" name="right" type="Basis" />
- <description>
- Returns [code]true[/code] if the [Basis] matrices are exactly equal.
- [b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
- </description>
- </operator>
- <operator name="operator []">
- <return type="Vector3" />
- <param index="0" name="index" type="int" />
- <description>
- Access basis components using their index. [code]b[0][/code] is equivalent to [code]b.x[/code], [code]b[1][/code] is equivalent to [code]b.y[/code], and [code]b[2][/code] is equivalent to [code]b.z[/code].
- </description>
- </operator>
- </operators>
- </class>
|