quat.cpp 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255
  1. /*************************************************************************/
  2. /* quat.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "quat.h"
  31. #include "core/math/basis.h"
  32. #include "core/print_string.h"
  33. real_t Quat::angle_to(const Quat &p_to) const {
  34. real_t d = dot(p_to);
  35. return Math::acos(CLAMP(d * d * 2 - 1, -1, 1));
  36. }
  37. // set_euler_xyz expects a vector containing the Euler angles in the format
  38. // (ax,ay,az), where ax is the angle of rotation around x axis,
  39. // and similar for other axes.
  40. // This implementation uses XYZ convention (Z is the first rotation).
  41. void Quat::set_euler_xyz(const Vector3 &p_euler) {
  42. real_t half_a1 = p_euler.x * 0.5;
  43. real_t half_a2 = p_euler.y * 0.5;
  44. real_t half_a3 = p_euler.z * 0.5;
  45. // R = X(a1).Y(a2).Z(a3) convention for Euler angles.
  46. // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2)
  47. // a3 is the angle of the first rotation, following the notation in this reference.
  48. real_t cos_a1 = Math::cos(half_a1);
  49. real_t sin_a1 = Math::sin(half_a1);
  50. real_t cos_a2 = Math::cos(half_a2);
  51. real_t sin_a2 = Math::sin(half_a2);
  52. real_t cos_a3 = Math::cos(half_a3);
  53. real_t sin_a3 = Math::sin(half_a3);
  54. set(sin_a1 * cos_a2 * cos_a3 + sin_a2 * sin_a3 * cos_a1,
  55. -sin_a1 * sin_a3 * cos_a2 + sin_a2 * cos_a1 * cos_a3,
  56. sin_a1 * sin_a2 * cos_a3 + sin_a3 * cos_a1 * cos_a2,
  57. -sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
  58. }
  59. // get_euler_xyz returns a vector containing the Euler angles in the format
  60. // (ax,ay,az), where ax is the angle of rotation around x axis,
  61. // and similar for other axes.
  62. // This implementation uses XYZ convention (Z is the first rotation).
  63. Vector3 Quat::get_euler_xyz() const {
  64. Basis m(*this);
  65. return m.get_euler_xyz();
  66. }
  67. // set_euler_yxz expects a vector containing the Euler angles in the format
  68. // (ax,ay,az), where ax is the angle of rotation around x axis,
  69. // and similar for other axes.
  70. // This implementation uses YXZ convention (Z is the first rotation).
  71. void Quat::set_euler_yxz(const Vector3 &p_euler) {
  72. real_t half_a1 = p_euler.y * 0.5;
  73. real_t half_a2 = p_euler.x * 0.5;
  74. real_t half_a3 = p_euler.z * 0.5;
  75. // R = Y(a1).X(a2).Z(a3) convention for Euler angles.
  76. // Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
  77. // a3 is the angle of the first rotation, following the notation in this reference.
  78. real_t cos_a1 = Math::cos(half_a1);
  79. real_t sin_a1 = Math::sin(half_a1);
  80. real_t cos_a2 = Math::cos(half_a2);
  81. real_t sin_a2 = Math::sin(half_a2);
  82. real_t cos_a3 = Math::cos(half_a3);
  83. real_t sin_a3 = Math::sin(half_a3);
  84. set(sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3,
  85. sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3,
  86. -sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3,
  87. sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
  88. }
  89. // get_euler_yxz returns a vector containing the Euler angles in the format
  90. // (ax,ay,az), where ax is the angle of rotation around x axis,
  91. // and similar for other axes.
  92. // This implementation uses YXZ convention (Z is the first rotation).
  93. Vector3 Quat::get_euler_yxz() const {
  94. #ifdef MATH_CHECKS
  95. ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized.");
  96. #endif
  97. Basis m(*this);
  98. return m.get_euler_yxz();
  99. }
  100. void Quat::operator*=(const Quat &p_q) {
  101. set(w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y,
  102. w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z,
  103. w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x,
  104. w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z);
  105. }
  106. Quat Quat::operator*(const Quat &p_q) const {
  107. Quat r = *this;
  108. r *= p_q;
  109. return r;
  110. }
  111. bool Quat::is_equal_approx(const Quat &p_quat) const {
  112. return Math::is_equal_approx(x, p_quat.x) && Math::is_equal_approx(y, p_quat.y) && Math::is_equal_approx(z, p_quat.z) && Math::is_equal_approx(w, p_quat.w);
  113. }
  114. real_t Quat::length() const {
  115. return Math::sqrt(length_squared());
  116. }
  117. void Quat::normalize() {
  118. *this /= length();
  119. }
  120. Quat Quat::normalized() const {
  121. return *this / length();
  122. }
  123. bool Quat::is_normalized() const {
  124. return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON); //use less epsilon
  125. }
  126. Quat Quat::inverse() const {
  127. #ifdef MATH_CHECKS
  128. ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The quaternion must be normalized.");
  129. #endif
  130. return Quat(-x, -y, -z, w);
  131. }
  132. Quat Quat::slerp(const Quat &p_to, const real_t &p_weight) const {
  133. #ifdef MATH_CHECKS
  134. ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
  135. ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized.");
  136. #endif
  137. Quat to1;
  138. real_t omega, cosom, sinom, scale0, scale1;
  139. // calc cosine
  140. cosom = dot(p_to);
  141. // adjust signs (if necessary)
  142. if (cosom < 0.0) {
  143. cosom = -cosom;
  144. to1.x = -p_to.x;
  145. to1.y = -p_to.y;
  146. to1.z = -p_to.z;
  147. to1.w = -p_to.w;
  148. } else {
  149. to1.x = p_to.x;
  150. to1.y = p_to.y;
  151. to1.z = p_to.z;
  152. to1.w = p_to.w;
  153. }
  154. // calculate coefficients
  155. if ((1.0 - cosom) > CMP_EPSILON) {
  156. // standard case (slerp)
  157. omega = Math::acos(cosom);
  158. sinom = Math::sin(omega);
  159. scale0 = Math::sin((1.0 - p_weight) * omega) / sinom;
  160. scale1 = Math::sin(p_weight * omega) / sinom;
  161. } else {
  162. // "from" and "to" quaternions are very close
  163. // ... so we can do a linear interpolation
  164. scale0 = 1.0 - p_weight;
  165. scale1 = p_weight;
  166. }
  167. // calculate final values
  168. return Quat(
  169. scale0 * x + scale1 * to1.x,
  170. scale0 * y + scale1 * to1.y,
  171. scale0 * z + scale1 * to1.z,
  172. scale0 * w + scale1 * to1.w);
  173. }
  174. Quat Quat::slerpni(const Quat &p_to, const real_t &p_weight) const {
  175. #ifdef MATH_CHECKS
  176. ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
  177. ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized.");
  178. #endif
  179. const Quat &from = *this;
  180. real_t dot = from.dot(p_to);
  181. if (Math::absf(dot) > 0.9999) {
  182. return from;
  183. }
  184. real_t theta = Math::acos(dot),
  185. sinT = 1.0 / Math::sin(theta),
  186. newFactor = Math::sin(p_weight * theta) * sinT,
  187. invFactor = Math::sin((1.0 - p_weight) * theta) * sinT;
  188. return Quat(invFactor * from.x + newFactor * p_to.x,
  189. invFactor * from.y + newFactor * p_to.y,
  190. invFactor * from.z + newFactor * p_to.z,
  191. invFactor * from.w + newFactor * p_to.w);
  192. }
  193. Quat Quat::cubic_slerp(const Quat &p_b, const Quat &p_pre_a, const Quat &p_post_b, const real_t &p_weight) const {
  194. #ifdef MATH_CHECKS
  195. ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
  196. ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quat(), "The end quaternion must be normalized.");
  197. #endif
  198. //the only way to do slerp :|
  199. real_t t2 = (1.0 - p_weight) * p_weight * 2;
  200. Quat sp = this->slerp(p_b, p_weight);
  201. Quat sq = p_pre_a.slerpni(p_post_b, p_weight);
  202. return sp.slerpni(sq, t2);
  203. }
  204. Quat::operator String() const {
  205. return String::num(x) + ", " + String::num(y) + ", " + String::num(z) + ", " + String::num(w);
  206. }
  207. void Quat::set_axis_angle(const Vector3 &axis, const real_t &angle) {
  208. #ifdef MATH_CHECKS
  209. ERR_FAIL_COND_MSG(!axis.is_normalized(), "The axis Vector3 must be normalized.");
  210. #endif
  211. real_t d = axis.length();
  212. if (d == 0) {
  213. set(0, 0, 0, 0);
  214. } else {
  215. real_t sin_angle = Math::sin(angle * 0.5);
  216. real_t cos_angle = Math::cos(angle * 0.5);
  217. real_t s = sin_angle / d;
  218. set(axis.x * s, axis.y * s, axis.z * s,
  219. cos_angle);
  220. }
  221. }