math_funcs.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431
  1. /*************************************************************************/
  2. /* math_funcs.h */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #ifndef MATH_FUNCS_H
  31. #define MATH_FUNCS_H
  32. #include "core/math/math_defs.h"
  33. #include "core/typedefs.h"
  34. #include "thirdparty/misc/pcg.h"
  35. #include <float.h>
  36. #include <math.h>
  37. class Math {
  38. static pcg32_random_t default_pcg;
  39. public:
  40. Math() {} // useless to instance
  41. static const uint64_t RANDOM_MAX = 0xFFFFFFFF;
  42. static _ALWAYS_INLINE_ double sin(double p_x) { return ::sin(p_x); }
  43. static _ALWAYS_INLINE_ float sin(float p_x) { return ::sinf(p_x); }
  44. static _ALWAYS_INLINE_ double cos(double p_x) { return ::cos(p_x); }
  45. static _ALWAYS_INLINE_ float cos(float p_x) { return ::cosf(p_x); }
  46. static _ALWAYS_INLINE_ double tan(double p_x) { return ::tan(p_x); }
  47. static _ALWAYS_INLINE_ float tan(float p_x) { return ::tanf(p_x); }
  48. static _ALWAYS_INLINE_ double sinh(double p_x) { return ::sinh(p_x); }
  49. static _ALWAYS_INLINE_ float sinh(float p_x) { return ::sinhf(p_x); }
  50. static _ALWAYS_INLINE_ double cosh(double p_x) { return ::cosh(p_x); }
  51. static _ALWAYS_INLINE_ float cosh(float p_x) { return ::coshf(p_x); }
  52. static _ALWAYS_INLINE_ double tanh(double p_x) { return ::tanh(p_x); }
  53. static _ALWAYS_INLINE_ float tanh(float p_x) { return ::tanhf(p_x); }
  54. static _ALWAYS_INLINE_ double asin(double p_x) { return ::asin(p_x); }
  55. static _ALWAYS_INLINE_ float asin(float p_x) { return ::asinf(p_x); }
  56. static _ALWAYS_INLINE_ double acos(double p_x) { return ::acos(p_x); }
  57. static _ALWAYS_INLINE_ float acos(float p_x) { return ::acosf(p_x); }
  58. static _ALWAYS_INLINE_ double atan(double p_x) { return ::atan(p_x); }
  59. static _ALWAYS_INLINE_ float atan(float p_x) { return ::atanf(p_x); }
  60. static _ALWAYS_INLINE_ double atan2(double p_y, double p_x) { return ::atan2(p_y, p_x); }
  61. static _ALWAYS_INLINE_ float atan2(float p_y, float p_x) { return ::atan2f(p_y, p_x); }
  62. static _ALWAYS_INLINE_ double sqrt(double p_x) { return ::sqrt(p_x); }
  63. static _ALWAYS_INLINE_ float sqrt(float p_x) { return ::sqrtf(p_x); }
  64. static _ALWAYS_INLINE_ double fmod(double p_x, double p_y) { return ::fmod(p_x, p_y); }
  65. static _ALWAYS_INLINE_ float fmod(float p_x, float p_y) { return ::fmodf(p_x, p_y); }
  66. static _ALWAYS_INLINE_ double floor(double p_x) { return ::floor(p_x); }
  67. static _ALWAYS_INLINE_ float floor(float p_x) { return ::floorf(p_x); }
  68. static _ALWAYS_INLINE_ double ceil(double p_x) { return ::ceil(p_x); }
  69. static _ALWAYS_INLINE_ float ceil(float p_x) { return ::ceilf(p_x); }
  70. static _ALWAYS_INLINE_ double pow(double p_x, double p_y) { return ::pow(p_x, p_y); }
  71. static _ALWAYS_INLINE_ float pow(float p_x, float p_y) { return ::powf(p_x, p_y); }
  72. static _ALWAYS_INLINE_ double log(double p_x) { return ::log(p_x); }
  73. static _ALWAYS_INLINE_ float log(float p_x) { return ::logf(p_x); }
  74. static _ALWAYS_INLINE_ double exp(double p_x) { return ::exp(p_x); }
  75. static _ALWAYS_INLINE_ float exp(float p_x) { return ::expf(p_x); }
  76. static _ALWAYS_INLINE_ bool is_nan(double p_val) {
  77. #ifdef _MSC_VER
  78. return _isnan(p_val);
  79. #elif defined(__GNUC__) && __GNUC__ < 6
  80. union {
  81. uint64_t u;
  82. double f;
  83. } ieee754;
  84. ieee754.f = p_val;
  85. // (unsigned)(0x7ff0000000000001 >> 32) : 0x7ff00000
  86. return ((((unsigned)(ieee754.u >> 32) & 0x7fffffff) + ((unsigned)ieee754.u != 0)) > 0x7ff00000);
  87. #else
  88. return isnan(p_val);
  89. #endif
  90. }
  91. static _ALWAYS_INLINE_ bool is_nan(float p_val) {
  92. #ifdef _MSC_VER
  93. return _isnan(p_val);
  94. #elif defined(__GNUC__) && __GNUC__ < 6
  95. union {
  96. uint32_t u;
  97. float f;
  98. } ieee754;
  99. ieee754.f = p_val;
  100. // -----------------------------------
  101. // (single-precision floating-point)
  102. // NaN : s111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
  103. // : (> 0x7f800000)
  104. // where,
  105. // s : sign
  106. // x : non-zero number
  107. // -----------------------------------
  108. return ((ieee754.u & 0x7fffffff) > 0x7f800000);
  109. #else
  110. return isnan(p_val);
  111. #endif
  112. }
  113. static _ALWAYS_INLINE_ bool is_inf(double p_val) {
  114. #ifdef _MSC_VER
  115. return !_finite(p_val);
  116. // use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era
  117. #elif defined(__GNUC__) && __GNUC__ < 6
  118. union {
  119. uint64_t u;
  120. double f;
  121. } ieee754;
  122. ieee754.f = p_val;
  123. return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 &&
  124. ((unsigned)ieee754.u == 0);
  125. #else
  126. return isinf(p_val);
  127. #endif
  128. }
  129. static _ALWAYS_INLINE_ bool is_inf(float p_val) {
  130. #ifdef _MSC_VER
  131. return !_finite(p_val);
  132. // use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era
  133. #elif defined(__GNUC__) && __GNUC__ < 6
  134. union {
  135. uint32_t u;
  136. float f;
  137. } ieee754;
  138. ieee754.f = p_val;
  139. return (ieee754.u & 0x7fffffff) == 0x7f800000;
  140. #else
  141. return isinf(p_val);
  142. #endif
  143. }
  144. static _ALWAYS_INLINE_ double abs(double g) { return absd(g); }
  145. static _ALWAYS_INLINE_ float abs(float g) { return absf(g); }
  146. static _ALWAYS_INLINE_ int abs(int g) { return g > 0 ? g : -g; }
  147. static _ALWAYS_INLINE_ double fposmod(double p_x, double p_y) {
  148. double value = Math::fmod(p_x, p_y);
  149. if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
  150. value += p_y;
  151. }
  152. value += 0.0;
  153. return value;
  154. }
  155. static _ALWAYS_INLINE_ float fposmod(float p_x, float p_y) {
  156. float value = Math::fmod(p_x, p_y);
  157. if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
  158. value += p_y;
  159. }
  160. value += 0.0;
  161. return value;
  162. }
  163. static _ALWAYS_INLINE_ double deg2rad(double p_y) { return p_y * Math_PI / 180.0; }
  164. static _ALWAYS_INLINE_ float deg2rad(float p_y) { return p_y * Math_PI / 180.0; }
  165. static _ALWAYS_INLINE_ double rad2deg(double p_y) { return p_y * 180.0 / Math_PI; }
  166. static _ALWAYS_INLINE_ float rad2deg(float p_y) { return p_y * 180.0 / Math_PI; }
  167. static _ALWAYS_INLINE_ double lerp(double p_from, double p_to, double p_weight) { return p_from + (p_to - p_from) * p_weight; }
  168. static _ALWAYS_INLINE_ float lerp(float p_from, float p_to, float p_weight) { return p_from + (p_to - p_from) * p_weight; }
  169. static _ALWAYS_INLINE_ double inverse_lerp(double p_from, double p_to, double p_value) { return (p_value - p_from) / (p_to - p_from); }
  170. static _ALWAYS_INLINE_ float inverse_lerp(float p_from, float p_to, float p_value) { return (p_value - p_from) / (p_to - p_from); }
  171. static _ALWAYS_INLINE_ double range_lerp(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) { return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value)); }
  172. static _ALWAYS_INLINE_ float range_lerp(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) { return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value)); }
  173. static _ALWAYS_INLINE_ double linear2db(double p_linear) { return Math::log(p_linear) * 8.6858896380650365530225783783321; }
  174. static _ALWAYS_INLINE_ float linear2db(float p_linear) { return Math::log(p_linear) * 8.6858896380650365530225783783321; }
  175. static _ALWAYS_INLINE_ double db2linear(double p_db) { return Math::exp(p_db * 0.11512925464970228420089957273422); }
  176. static _ALWAYS_INLINE_ float db2linear(float p_db) { return Math::exp(p_db * 0.11512925464970228420089957273422); }
  177. static _ALWAYS_INLINE_ double round(double p_val) { return (p_val >= 0) ? Math::floor(p_val + 0.5) : -Math::floor(-p_val + 0.5); }
  178. static _ALWAYS_INLINE_ float round(float p_val) { return (p_val >= 0) ? Math::floor(p_val + 0.5) : -Math::floor(-p_val + 0.5); }
  179. static _ALWAYS_INLINE_ int wrapi(int value, int min, int max) {
  180. int rng = max - min;
  181. return min + ((((value - min) % rng) + rng) % rng);
  182. }
  183. static _ALWAYS_INLINE_ double wrapf(double value, double min, double max) {
  184. double rng = max - min;
  185. return value - (rng * Math::floor((value - min) / rng));
  186. }
  187. static _ALWAYS_INLINE_ float wrapf(float value, float min, float max) {
  188. float rng = max - min;
  189. return value - (rng * Math::floor((value - min) / rng));
  190. }
  191. // double only, as these functions are mainly used by the editor and not performance-critical,
  192. static double ease(double p_x, double p_c);
  193. static int step_decimals(double p_step);
  194. static double stepify(double p_value, double p_step);
  195. static double dectime(double p_value, double p_amount, double p_step);
  196. static uint32_t larger_prime(uint32_t p_val);
  197. static void seed(uint64_t x);
  198. static void randomize();
  199. static uint32_t rand_from_seed(uint64_t *seed);
  200. static uint32_t rand();
  201. static _ALWAYS_INLINE_ double randf() { return (double)rand() / (double)Math::RANDOM_MAX; }
  202. static _ALWAYS_INLINE_ float randd() { return (float)rand() / (float)Math::RANDOM_MAX; }
  203. static double random(double from, double to);
  204. static float random(float from, float to);
  205. static real_t random(int from, int to) { return (real_t)random((real_t)from, (real_t)to); }
  206. static _ALWAYS_INLINE_ bool is_equal_approx(real_t a, real_t b) {
  207. // TODO: Comparing floats for approximate-equality is non-trivial.
  208. // Using epsilon should cover the typical cases in Godot (where a == b is used to compare two reals), such as matrix and vector comparison operators.
  209. // A proper implementation in terms of ULPs should eventually replace the contents of this function.
  210. // See https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ for details.
  211. return abs(a - b) < CMP_EPSILON;
  212. }
  213. static _ALWAYS_INLINE_ float absf(float g) {
  214. union {
  215. float f;
  216. uint32_t i;
  217. } u;
  218. u.f = g;
  219. u.i &= 2147483647u;
  220. return u.f;
  221. }
  222. static _ALWAYS_INLINE_ double absd(double g) {
  223. union {
  224. double d;
  225. uint64_t i;
  226. } u;
  227. u.d = g;
  228. u.i &= (uint64_t)9223372036854775807ll;
  229. return u.d;
  230. }
  231. //this function should be as fast as possible and rounding mode should not matter
  232. static _ALWAYS_INLINE_ int fast_ftoi(float a) {
  233. static int b;
  234. #if (defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0603) || WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP // windows 8 phone?
  235. b = (int)((a > 0.0) ? (a + 0.5) : (a - 0.5));
  236. #elif defined(_MSC_VER) && _MSC_VER < 1800
  237. __asm fld a __asm fistp b
  238. /*#elif defined( __GNUC__ ) && ( defined( __i386__ ) || defined( __x86_64__ ) )
  239. // use AT&T inline assembly style, document that
  240. // we use memory as output (=m) and input (m)
  241. __asm__ __volatile__ (
  242. "flds %1 \n\t"
  243. "fistpl %0 \n\t"
  244. : "=m" (b)
  245. : "m" (a));*/
  246. #else
  247. b = lrintf(a); //assuming everything but msvc 2012 or earlier has lrint
  248. #endif
  249. return b;
  250. }
  251. #if defined(__GNUC__)
  252. static _ALWAYS_INLINE_ int64_t dtoll(double p_double) { return (int64_t)p_double; } ///@TODO OPTIMIZE
  253. static _ALWAYS_INLINE_ int64_t dtoll(float p_float) { return (int64_t)p_float; } ///@TODO OPTIMIZE and rename
  254. #else
  255. static _ALWAYS_INLINE_ int64_t dtoll(double p_double) { return (int64_t)p_double; } ///@TODO OPTIMIZE
  256. static _ALWAYS_INLINE_ int64_t dtoll(float p_float) { return (int64_t)p_float; } ///@TODO OPTIMIZE and rename
  257. #endif
  258. static _ALWAYS_INLINE_ uint32_t halfbits_to_floatbits(uint16_t h) {
  259. uint16_t h_exp, h_sig;
  260. uint32_t f_sgn, f_exp, f_sig;
  261. h_exp = (h & 0x7c00u);
  262. f_sgn = ((uint32_t)h & 0x8000u) << 16;
  263. switch (h_exp) {
  264. case 0x0000u: /* 0 or subnormal */
  265. h_sig = (h & 0x03ffu);
  266. /* Signed zero */
  267. if (h_sig == 0) {
  268. return f_sgn;
  269. }
  270. /* Subnormal */
  271. h_sig <<= 1;
  272. while ((h_sig & 0x0400u) == 0) {
  273. h_sig <<= 1;
  274. h_exp++;
  275. }
  276. f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23;
  277. f_sig = ((uint32_t)(h_sig & 0x03ffu)) << 13;
  278. return f_sgn + f_exp + f_sig;
  279. case 0x7c00u: /* inf or NaN */
  280. /* All-ones exponent and a copy of the significand */
  281. return f_sgn + 0x7f800000u + (((uint32_t)(h & 0x03ffu)) << 13);
  282. default: /* normalized */
  283. /* Just need to adjust the exponent and shift */
  284. return f_sgn + (((uint32_t)(h & 0x7fffu) + 0x1c000u) << 13);
  285. }
  286. }
  287. static _ALWAYS_INLINE_ float halfptr_to_float(const uint16_t *h) {
  288. union {
  289. uint32_t u32;
  290. float f32;
  291. } u;
  292. u.u32 = halfbits_to_floatbits(*h);
  293. return u.f32;
  294. }
  295. static _ALWAYS_INLINE_ float half_to_float(const uint16_t h) {
  296. return halfptr_to_float(&h);
  297. }
  298. static _ALWAYS_INLINE_ uint16_t make_half_float(float f) {
  299. union {
  300. float fv;
  301. uint32_t ui;
  302. } ci;
  303. ci.fv = f;
  304. uint32_t x = ci.ui;
  305. uint32_t sign = (unsigned short)(x >> 31);
  306. uint32_t mantissa;
  307. uint32_t exp;
  308. uint16_t hf;
  309. // get mantissa
  310. mantissa = x & ((1 << 23) - 1);
  311. // get exponent bits
  312. exp = x & (0xFF << 23);
  313. if (exp >= 0x47800000) {
  314. // check if the original single precision float number is a NaN
  315. if (mantissa && (exp == (0xFF << 23))) {
  316. // we have a single precision NaN
  317. mantissa = (1 << 23) - 1;
  318. } else {
  319. // 16-bit half-float representation stores number as Inf
  320. mantissa = 0;
  321. }
  322. hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) |
  323. (uint16_t)(mantissa >> 13);
  324. }
  325. // check if exponent is <= -15
  326. else if (exp <= 0x38000000) {
  327. /*// store a denorm half-float value or zero
  328. exp = (0x38000000 - exp) >> 23;
  329. mantissa >>= (14 + exp);
  330. hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa);
  331. */
  332. hf = 0; //denormals do not work for 3D, convert to zero
  333. } else {
  334. hf = (((uint16_t)sign) << 15) |
  335. (uint16_t)((exp - 0x38000000) >> 13) |
  336. (uint16_t)(mantissa >> 13);
  337. }
  338. return hf;
  339. }
  340. static _ALWAYS_INLINE_ float snap_scalar(float p_offset, float p_step, float p_target) {
  341. return p_step != 0 ? Math::stepify(p_target - p_offset, p_step) + p_offset : p_target;
  342. }
  343. static _ALWAYS_INLINE_ float snap_scalar_seperation(float p_offset, float p_step, float p_target, float p_separation) {
  344. if (p_step != 0) {
  345. float a = Math::stepify(p_target - p_offset, p_step + p_separation) + p_offset;
  346. float b = a;
  347. if (p_target >= 0)
  348. b -= p_separation;
  349. else
  350. b += p_step;
  351. return (Math::abs(p_target - a) < Math::abs(p_target - b)) ? a : b;
  352. }
  353. return p_target;
  354. }
  355. };
  356. #endif // MATH_FUNCS_H