123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656 |
- #[versions]
- primary = "#define MODE_DIRECT_LIGHT";
- secondary = "#define MODE_BOUNCE_LIGHT";
- dilate = "#define MODE_DILATE";
- unocclude = "#define MODE_UNOCCLUDE";
- light_probes = "#define MODE_LIGHT_PROBES";
- #[compute]
- #version 450
- VERSION_DEFINES
- // One 2D local group focusing in one layer at a time, though all
- // in parallel (no barriers) makes more sense than a 3D local group
- // as this can take more advantage of the cache for each group.
- #ifdef MODE_LIGHT_PROBES
- layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
- #else
- layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
- #endif
- #include "lm_common_inc.glsl"
- #ifdef MODE_LIGHT_PROBES
- layout(set = 1, binding = 0, std430) restrict buffer LightProbeData {
- vec4 data[];
- }
- light_probes;
- layout(set = 1, binding = 1) uniform texture2DArray source_light;
- layout(set = 1, binding = 2) uniform texture2DArray source_direct_light; //also need the direct light, which was omitted
- layout(set = 1, binding = 3) uniform texture2D environment;
- #endif
- #ifdef MODE_UNOCCLUDE
- layout(rgba32f, set = 1, binding = 0) uniform restrict image2DArray position;
- layout(rgba32f, set = 1, binding = 1) uniform restrict readonly image2DArray unocclude;
- #endif
- #if defined(MODE_DIRECT_LIGHT) || defined(MODE_BOUNCE_LIGHT)
- layout(rgba16f, set = 1, binding = 0) uniform restrict writeonly image2DArray dest_light;
- layout(set = 1, binding = 1) uniform texture2DArray source_light;
- layout(set = 1, binding = 2) uniform texture2DArray source_position;
- layout(set = 1, binding = 3) uniform texture2DArray source_normal;
- layout(rgba16f, set = 1, binding = 4) uniform restrict image2DArray accum_light;
- #endif
- #ifdef MODE_BOUNCE_LIGHT
- layout(rgba32f, set = 1, binding = 5) uniform restrict image2DArray bounce_accum;
- layout(set = 1, binding = 6) uniform texture2D environment;
- #endif
- #ifdef MODE_DIRECT_LIGHT
- layout(rgba32f, set = 1, binding = 5) uniform restrict writeonly image2DArray primary_dynamic;
- #endif
- #ifdef MODE_DILATE
- layout(rgba16f, set = 1, binding = 0) uniform restrict writeonly image2DArray dest_light;
- layout(set = 1, binding = 1) uniform texture2DArray source_light;
- #endif
- layout(push_constant, binding = 0, std430) uniform Params {
- ivec2 atlas_size; // x used for light probe mode total probes
- uint ray_count;
- uint ray_to;
- vec3 world_size;
- float bias;
- vec3 to_cell_offset;
- uint ray_from;
- vec3 to_cell_size;
- uint light_count;
- int grid_size;
- int atlas_slice;
- ivec2 region_ofs;
- mat3x4 env_transform;
- }
- params;
- //check it, but also return distance and barycentric coords (for uv lookup)
- bool ray_hits_triangle(vec3 from, vec3 dir, float max_dist, vec3 p0, vec3 p1, vec3 p2, out float r_distance, out vec3 r_barycentric) {
- const vec3 e0 = p1 - p0;
- const vec3 e1 = p0 - p2;
- vec3 triangleNormal = cross(e1, e0);
- const vec3 e2 = (1.0 / dot(triangleNormal, dir)) * (p0 - from);
- const vec3 i = cross(dir, e2);
- r_barycentric.y = dot(i, e1);
- r_barycentric.z = dot(i, e0);
- r_barycentric.x = 1.0 - (r_barycentric.z + r_barycentric.y);
- r_distance = dot(triangleNormal, e2);
- return (r_distance > params.bias) && (r_distance < max_dist) && all(greaterThanEqual(r_barycentric, vec3(0.0)));
- }
- bool trace_ray(vec3 p_from, vec3 p_to
- #if defined(MODE_BOUNCE_LIGHT) || defined(MODE_LIGHT_PROBES)
- ,
- out uint r_triangle, out vec3 r_barycentric
- #endif
- #if defined(MODE_UNOCCLUDE)
- ,
- out float r_distance, out vec3 r_normal
- #endif
- ) {
- /* world coords */
- vec3 rel = p_to - p_from;
- float rel_len = length(rel);
- vec3 dir = normalize(rel);
- vec3 inv_dir = 1.0 / dir;
- /* cell coords */
- vec3 from_cell = (p_from - params.to_cell_offset) * params.to_cell_size;
- vec3 to_cell = (p_to - params.to_cell_offset) * params.to_cell_size;
- //prepare DDA
- vec3 rel_cell = to_cell - from_cell;
- ivec3 icell = ivec3(from_cell);
- ivec3 iendcell = ivec3(to_cell);
- vec3 dir_cell = normalize(rel_cell);
- vec3 delta = abs(1.0 / dir_cell); //vec3(length(rel_cell)) / rel_cell);
- ivec3 step = ivec3(sign(rel_cell));
- vec3 side = (sign(rel_cell) * (vec3(icell) - from_cell) + (sign(rel_cell) * 0.5) + 0.5) * delta;
- uint iters = 0;
- while (all(greaterThanEqual(icell, ivec3(0))) && all(lessThan(icell, ivec3(params.grid_size))) && iters < 1000) {
- uvec2 cell_data = texelFetch(usampler3D(grid, linear_sampler), icell, 0).xy;
- if (cell_data.x > 0) { //triangles here
- bool hit = false;
- #if defined(MODE_UNOCCLUDE)
- bool hit_backface = false;
- #endif
- float best_distance = 1e20;
- for (uint i = 0; i < cell_data.x; i++) {
- uint tidx = grid_indices.data[cell_data.y + i];
- //Ray-Box test
- vec3 t0 = (boxes.data[tidx].min_bounds - p_from) * inv_dir;
- vec3 t1 = (boxes.data[tidx].max_bounds - p_from) * inv_dir;
- vec3 tmin = min(t0, t1), tmax = max(t0, t1);
- if (max(tmin.x, max(tmin.y, tmin.z)) <= min(tmax.x, min(tmax.y, tmax.z))) {
- continue; //ray box failed
- }
- //prepare triangle vertices
- vec3 vtx0 = vertices.data[triangles.data[tidx].indices.x].position;
- vec3 vtx1 = vertices.data[triangles.data[tidx].indices.y].position;
- vec3 vtx2 = vertices.data[triangles.data[tidx].indices.z].position;
- #if defined(MODE_UNOCCLUDE)
- vec3 normal = -normalize(cross((vtx0 - vtx1), (vtx0 - vtx2)));
- bool backface = dot(normal, dir) >= 0.0;
- #endif
- float distance;
- vec3 barycentric;
- if (ray_hits_triangle(p_from, dir, rel_len, vtx0, vtx1, vtx2, distance, barycentric)) {
- #ifdef MODE_DIRECT_LIGHT
- return true; //any hit good
- #endif
- #if defined(MODE_UNOCCLUDE)
- if (!backface) {
- // the case of meshes having both a front and back face in the same plane is more common than
- // expected, so if this is a front-face, bias it closer to the ray origin, so it always wins over the back-face
- distance = max(params.bias, distance - params.bias);
- }
- hit = true;
- if (distance < best_distance) {
- hit_backface = backface;
- best_distance = distance;
- r_distance = distance;
- r_normal = normal;
- }
- #endif
- #if defined(MODE_BOUNCE_LIGHT) || defined(MODE_LIGHT_PROBES)
- hit = true;
- if (distance < best_distance) {
- best_distance = distance;
- r_triangle = tidx;
- r_barycentric = barycentric;
- }
- #endif
- }
- }
- #if defined(MODE_UNOCCLUDE)
- if (hit) {
- return hit_backface;
- }
- #endif
- #if defined(MODE_BOUNCE_LIGHT) || defined(MODE_LIGHT_PROBES)
- if (hit) {
- return true;
- }
- #endif
- }
- if (icell == iendcell) {
- break;
- }
- bvec3 mask = lessThanEqual(side.xyz, min(side.yzx, side.zxy));
- side += vec3(mask) * delta;
- icell += ivec3(vec3(mask)) * step;
- iters++;
- }
- return false;
- }
- const float PI = 3.14159265f;
- const float GOLDEN_ANGLE = PI * (3.0 - sqrt(5.0));
- vec3 vogel_hemisphere(uint p_index, uint p_count, float p_offset) {
- float r = sqrt(float(p_index) + 0.5f) / sqrt(float(p_count));
- float theta = float(p_index) * GOLDEN_ANGLE + p_offset;
- float y = cos(r * PI * 0.5);
- float l = sin(r * PI * 0.5);
- return vec3(l * cos(theta), l * sin(theta), y);
- }
- float quick_hash(vec2 pos) {
- return fract(sin(dot(pos * 19.19, vec2(49.5791, 97.413))) * 49831.189237);
- }
- float get_omni_attenuation(float distance, float inv_range, float decay) {
- float nd = distance * inv_range;
- nd *= nd;
- nd *= nd; // nd^4
- nd = max(1.0 - nd, 0.0);
- nd *= nd; // nd^2
- return nd * pow(max(distance, 0.0001), -decay);
- }
- void main() {
- #ifdef MODE_LIGHT_PROBES
- int probe_index = int(gl_GlobalInvocationID.x);
- if (probe_index >= params.atlas_size.x) { //too large, do nothing
- return;
- }
- #else
- ivec2 atlas_pos = ivec2(gl_GlobalInvocationID.xy) + params.region_ofs;
- if (any(greaterThanEqual(atlas_pos, params.atlas_size))) { //too large, do nothing
- return;
- }
- #endif
- #ifdef MODE_DIRECT_LIGHT
- vec3 normal = texelFetch(sampler2DArray(source_normal, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
- if (length(normal) < 0.5) {
- return; //empty texel, no process
- }
- vec3 position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
- //go through all lights
- //start by own light (emissive)
- vec3 static_light = vec3(0.0);
- vec3 dynamic_light = vec3(0.0);
- #ifdef USE_SH_LIGHTMAPS
- vec4 sh_accum[4] = vec4[](
- vec4(0.0, 0.0, 0.0, 1.0),
- vec4(0.0, 0.0, 0.0, 1.0),
- vec4(0.0, 0.0, 0.0, 1.0),
- vec4(0.0, 0.0, 0.0, 1.0));
- #endif
- for (uint i = 0; i < params.light_count; i++) {
- vec3 light_pos;
- float attenuation;
- if (lights.data[i].type == LIGHT_TYPE_DIRECTIONAL) {
- vec3 light_vec = lights.data[i].direction;
- light_pos = position - light_vec * length(params.world_size);
- attenuation = 1.0;
- } else {
- light_pos = lights.data[i].position;
- float d = distance(position, light_pos);
- if (d > lights.data[i].range) {
- continue;
- }
- d /= lights.data[i].range;
- attenuation = get_omni_attenuation(d, 1.0 / lights.data[i].range, lights.data[i].attenuation);
- if (lights.data[i].type == LIGHT_TYPE_SPOT) {
- vec3 rel = normalize(position - light_pos);
- float cos_spot_angle = lights.data[i].cos_spot_angle;
- float cos_angle = dot(rel, lights.data[i].direction);
- if (cos_angle < cos_spot_angle) {
- continue; //invisible, dont try
- }
- float scos = max(cos_angle, cos_spot_angle);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - cos_spot_angle));
- attenuation *= 1.0 - pow(spot_rim, lights.data[i].inv_spot_attenuation);
- }
- }
- vec3 light_dir = normalize(light_pos - position);
- attenuation *= max(0.0, dot(normal, light_dir));
- if (attenuation <= 0.0001) {
- continue; //no need to do anything
- }
- if (!trace_ray(position + light_dir * params.bias, light_pos)) {
- vec3 light = lights.data[i].color * lights.data[i].energy * attenuation;
- if (lights.data[i].static_bake) {
- static_light += light;
- #ifdef USE_SH_LIGHTMAPS
- float c[4] = float[](
- 0.282095, //l0
- 0.488603 * light_dir.y, //l1n1
- 0.488603 * light_dir.z, //l1n0
- 0.488603 * light_dir.x //l1p1
- );
- for (uint j = 0; j < 4; j++) {
- sh_accum[j].rgb += light * c[j] * (1.0 / 3.0);
- }
- #endif
- } else {
- dynamic_light += light;
- }
- }
- }
- vec3 albedo = texelFetch(sampler2DArray(albedo_tex, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).rgb;
- vec3 emissive = texelFetch(sampler2DArray(emission_tex, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).rgb;
- dynamic_light *= albedo; //if it will bounce, must multiply by albedo
- dynamic_light += emissive;
- //keep for lightprobes
- imageStore(primary_dynamic, ivec3(atlas_pos, params.atlas_slice), vec4(dynamic_light, 1.0));
- dynamic_light += static_light * albedo; //send for bounces
- imageStore(dest_light, ivec3(atlas_pos, params.atlas_slice), vec4(dynamic_light, 1.0));
- #ifdef USE_SH_LIGHTMAPS
- //keep for adding at the end
- imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 0), sh_accum[0]);
- imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 1), sh_accum[1]);
- imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 2), sh_accum[2]);
- imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 3), sh_accum[3]);
- #else
- imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice), vec4(static_light, 1.0));
- #endif
- #endif
- #ifdef MODE_BOUNCE_LIGHT
- vec3 normal = texelFetch(sampler2DArray(source_normal, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
- if (length(normal) < 0.5) {
- return; //empty texel, no process
- }
- vec3 position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
- vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
- vec3 tangent = normalize(cross(v0, normal));
- vec3 bitangent = normalize(cross(tangent, normal));
- mat3 normal_mat = mat3(tangent, bitangent, normal);
- #ifdef USE_SH_LIGHTMAPS
- vec4 sh_accum[4] = vec4[](
- vec4(0.0, 0.0, 0.0, 1.0),
- vec4(0.0, 0.0, 0.0, 1.0),
- vec4(0.0, 0.0, 0.0, 1.0),
- vec4(0.0, 0.0, 0.0, 1.0));
- #endif
- vec3 light_average = vec3(0.0);
- for (uint i = params.ray_from; i < params.ray_to; i++) {
- vec3 ray_dir = normal_mat * vogel_hemisphere(i, params.ray_count, quick_hash(vec2(atlas_pos)));
- uint tidx;
- vec3 barycentric;
- vec3 light;
- if (trace_ray(position + ray_dir * params.bias, position + ray_dir * length(params.world_size), tidx, barycentric)) {
- //hit a triangle
- vec2 uv0 = vertices.data[triangles.data[tidx].indices.x].uv;
- vec2 uv1 = vertices.data[triangles.data[tidx].indices.y].uv;
- vec2 uv2 = vertices.data[triangles.data[tidx].indices.z].uv;
- vec3 uvw = vec3(barycentric.x * uv0 + barycentric.y * uv1 + barycentric.z * uv2, float(triangles.data[tidx].slice));
- light = textureLod(sampler2DArray(source_light, linear_sampler), uvw, 0.0).rgb;
- } else {
- //did not hit a triangle, reach out for the sky
- vec3 sky_dir = normalize(mat3(params.env_transform) * ray_dir);
- vec2 st = vec2(
- atan(sky_dir.x, sky_dir.z),
- acos(sky_dir.y));
- if (st.x < 0.0)
- st.x += PI * 2.0;
- st /= vec2(PI * 2.0, PI);
- light = textureLod(sampler2D(environment, linear_sampler), st, 0.0).rgb;
- }
- light_average += light;
- #ifdef USE_SH_LIGHTMAPS
- float c[4] = float[](
- 0.282095, //l0
- 0.488603 * ray_dir.y, //l1n1
- 0.488603 * ray_dir.z, //l1n0
- 0.488603 * ray_dir.x //l1p1
- );
- for (uint j = 0; j < 4; j++) {
- sh_accum[j].rgb += light * c[j] * (8.0 / float(params.ray_count));
- }
- #endif
- }
- vec3 light_total;
- if (params.ray_from == 0) {
- light_total = vec3(0.0);
- } else {
- light_total = imageLoad(bounce_accum, ivec3(atlas_pos, params.atlas_slice)).rgb;
- }
- light_total += light_average;
- #ifdef USE_SH_LIGHTMAPS
- for (int i = 0; i < 4; i++) {
- vec4 accum = imageLoad(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + i));
- accum.rgb += sh_accum[i].rgb;
- imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + i), accum);
- }
- #endif
- if (params.ray_to == params.ray_count) {
- light_total /= float(params.ray_count);
- imageStore(dest_light, ivec3(atlas_pos, params.atlas_slice), vec4(light_total, 1.0));
- #ifndef USE_SH_LIGHTMAPS
- vec4 accum = imageLoad(accum_light, ivec3(atlas_pos, params.atlas_slice));
- accum.rgb += light_total;
- imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice), accum);
- #endif
- } else {
- imageStore(bounce_accum, ivec3(atlas_pos, params.atlas_slice), vec4(light_total, 1.0));
- }
- #endif
- #ifdef MODE_UNOCCLUDE
- //texel_size = 0.5;
- //compute tangents
- vec4 position_alpha = imageLoad(position, ivec3(atlas_pos, params.atlas_slice));
- if (position_alpha.a < 0.5) {
- return;
- }
- vec3 vertex_pos = position_alpha.xyz;
- vec4 normal_tsize = imageLoad(unocclude, ivec3(atlas_pos, params.atlas_slice));
- vec3 face_normal = normal_tsize.xyz;
- float texel_size = normal_tsize.w;
- vec3 v0 = abs(face_normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
- vec3 tangent = normalize(cross(v0, face_normal));
- vec3 bitangent = normalize(cross(tangent, face_normal));
- vec3 base_pos = vertex_pos + face_normal * params.bias; //raise a bit
- vec3 rays[4] = vec3[](tangent, bitangent, -tangent, -bitangent);
- float min_d = 1e20;
- for (int i = 0; i < 4; i++) {
- vec3 ray_to = base_pos + rays[i] * texel_size;
- float d;
- vec3 norm;
- if (trace_ray(base_pos, ray_to, d, norm)) {
- if (d < min_d) {
- vertex_pos = base_pos + rays[i] * d + norm * params.bias * 10.0; //this bias needs to be greater than the regular bias, because otherwise later, rays will go the other side when pointing back.
- min_d = d;
- }
- }
- }
- position_alpha.xyz = vertex_pos;
- imageStore(position, ivec3(atlas_pos, params.atlas_slice), position_alpha);
- #endif
- #ifdef MODE_LIGHT_PROBES
- vec3 position = probe_positions.data[probe_index].xyz;
- vec4 probe_sh_accum[9] = vec4[](
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0),
- vec4(0.0));
- for (uint i = params.ray_from; i < params.ray_to; i++) {
- vec3 ray_dir = vogel_hemisphere(i, params.ray_count, quick_hash(vec2(float(probe_index), 0.0)));
- if (bool(i & 1)) {
- //throw to both sides, so alternate them
- ray_dir.z *= -1.0;
- }
- uint tidx;
- vec3 barycentric;
- vec3 light;
- if (trace_ray(position + ray_dir * params.bias, position + ray_dir * length(params.world_size), tidx, barycentric)) {
- vec2 uv0 = vertices.data[triangles.data[tidx].indices.x].uv;
- vec2 uv1 = vertices.data[triangles.data[tidx].indices.y].uv;
- vec2 uv2 = vertices.data[triangles.data[tidx].indices.z].uv;
- vec3 uvw = vec3(barycentric.x * uv0 + barycentric.y * uv1 + barycentric.z * uv2, float(triangles.data[tidx].slice));
- light = textureLod(sampler2DArray(source_light, linear_sampler), uvw, 0.0).rgb;
- light += textureLod(sampler2DArray(source_direct_light, linear_sampler), uvw, 0.0).rgb;
- } else {
- //did not hit a triangle, reach out for the sky
- vec3 sky_dir = normalize(mat3(params.env_transform) * ray_dir);
- vec2 st = vec2(
- atan(sky_dir.x, sky_dir.z),
- acos(sky_dir.y));
- if (st.x < 0.0)
- st.x += PI * 2.0;
- st /= vec2(PI * 2.0, PI);
- light = textureLod(sampler2D(environment, linear_sampler), st, 0.0).rgb;
- }
- {
- float c[9] = float[](
- 0.282095, //l0
- 0.488603 * ray_dir.y, //l1n1
- 0.488603 * ray_dir.z, //l1n0
- 0.488603 * ray_dir.x, //l1p1
- 1.092548 * ray_dir.x * ray_dir.y, //l2n2
- 1.092548 * ray_dir.y * ray_dir.z, //l2n1
- //0.315392 * (ray_dir.x * ray_dir.x + ray_dir.y * ray_dir.y + 2.0 * ray_dir.z * ray_dir.z), //l20
- 0.315392 * (3.0 * ray_dir.z * ray_dir.z - 1.0), //l20
- 1.092548 * ray_dir.x * ray_dir.z, //l2p1
- 0.546274 * (ray_dir.x * ray_dir.x - ray_dir.y * ray_dir.y) //l2p2
- );
- for (uint j = 0; j < 9; j++) {
- probe_sh_accum[j].rgb += light * c[j];
- }
- }
- }
- if (params.ray_from > 0) {
- for (uint j = 0; j < 9; j++) { //accum from existing
- probe_sh_accum[j] += light_probes.data[probe_index * 9 + j];
- }
- }
- if (params.ray_to == params.ray_count) {
- for (uint j = 0; j < 9; j++) { //accum from existing
- probe_sh_accum[j] *= 4.0 / float(params.ray_count);
- }
- }
- for (uint j = 0; j < 9; j++) { //accum from existing
- light_probes.data[probe_index * 9 + j] = probe_sh_accum[j];
- }
- #endif
- #ifdef MODE_DILATE
- vec4 c = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0);
- //sides first, as they are closer
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, 0), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, 1), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, 0), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, -1), params.atlas_slice), 0);
- //endpoints second
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, -1), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, 1), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, -1), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, 1), params.atlas_slice), 0);
- //far sides third
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, 0), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, 2), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, 0), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, -2), params.atlas_slice), 0);
- //far-mid endpoints
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, -1), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, 1), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, -1), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, 1), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, -2), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, 2), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, -2), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, 2), params.atlas_slice), 0);
- //far endpoints
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, -2), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, 2), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, -2), params.atlas_slice), 0);
- c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, 2), params.atlas_slice), 0);
- imageStore(dest_light, ivec3(atlas_pos, params.atlas_slice), c);
- #endif
- }
|