123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351 |
- // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
- #include "meshoptimizer.h"
- #include <assert.h>
- #include <math.h>
- #include <string.h>
- // This work is based on:
- // Graham Wihlidal. Optimizing the Graphics Pipeline with Compute. 2016
- // Matthaeus Chajdas. GeometryFX 1.2 - Cluster Culling. 2016
- // Jack Ritter. An Efficient Bounding Sphere. 1990
- namespace meshopt
- {
- static void computeBoundingSphere(float result[4], const float points[][3], size_t count)
- {
- assert(count > 0);
- // find extremum points along all 3 axes; for each axis we get a pair of points with min/max coordinates
- size_t pmin[3] = {0, 0, 0};
- size_t pmax[3] = {0, 0, 0};
- for (size_t i = 0; i < count; ++i)
- {
- const float* p = points[i];
- for (int axis = 0; axis < 3; ++axis)
- {
- pmin[axis] = (p[axis] < points[pmin[axis]][axis]) ? i : pmin[axis];
- pmax[axis] = (p[axis] > points[pmax[axis]][axis]) ? i : pmax[axis];
- }
- }
- // find the pair of points with largest distance
- float paxisd2 = 0;
- int paxis = 0;
- for (int axis = 0; axis < 3; ++axis)
- {
- const float* p1 = points[pmin[axis]];
- const float* p2 = points[pmax[axis]];
- float d2 = (p2[0] - p1[0]) * (p2[0] - p1[0]) + (p2[1] - p1[1]) * (p2[1] - p1[1]) + (p2[2] - p1[2]) * (p2[2] - p1[2]);
- if (d2 > paxisd2)
- {
- paxisd2 = d2;
- paxis = axis;
- }
- }
- // use the longest segment as the initial sphere diameter
- const float* p1 = points[pmin[paxis]];
- const float* p2 = points[pmax[paxis]];
- float center[3] = {(p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2, (p1[2] + p2[2]) / 2};
- float radius = sqrtf(paxisd2) / 2;
- // iteratively adjust the sphere up until all points fit
- for (size_t i = 0; i < count; ++i)
- {
- const float* p = points[i];
- float d2 = (p[0] - center[0]) * (p[0] - center[0]) + (p[1] - center[1]) * (p[1] - center[1]) + (p[2] - center[2]) * (p[2] - center[2]);
- if (d2 > radius * radius)
- {
- float d = sqrtf(d2);
- assert(d > 0);
- float k = 0.5f + (radius / d) / 2;
- center[0] = center[0] * k + p[0] * (1 - k);
- center[1] = center[1] * k + p[1] * (1 - k);
- center[2] = center[2] * k + p[2] * (1 - k);
- radius = (radius + d) / 2;
- }
- }
- result[0] = center[0];
- result[1] = center[1];
- result[2] = center[2];
- result[3] = radius;
- }
- } // namespace meshopt
- size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles)
- {
- assert(index_count % 3 == 0);
- assert(max_vertices >= 3);
- assert(max_triangles >= 1);
- // meshlet construction is limited by max vertices and max triangles per meshlet
- // the worst case is that the input is an unindexed stream since this equally stresses both limits
- // note that we assume that in the worst case, we leave 2 vertices unpacked in each meshlet - if we have space for 3 we can pack any triangle
- size_t max_vertices_conservative = max_vertices - 2;
- size_t meshlet_limit_vertices = (index_count + max_vertices_conservative - 1) / max_vertices_conservative;
- size_t meshlet_limit_triangles = (index_count / 3 + max_triangles - 1) / max_triangles;
- return meshlet_limit_vertices > meshlet_limit_triangles ? meshlet_limit_vertices : meshlet_limit_triangles;
- }
- size_t meshopt_buildMeshlets(meshopt_Meshlet* destination, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles)
- {
- assert(index_count % 3 == 0);
- assert(max_vertices >= 3);
- assert(max_triangles >= 1);
- meshopt_Allocator allocator;
- meshopt_Meshlet meshlet;
- memset(&meshlet, 0, sizeof(meshlet));
- assert(max_vertices <= sizeof(meshlet.vertices) / sizeof(meshlet.vertices[0]));
- assert(max_triangles <= sizeof(meshlet.indices) / 3);
- // index of the vertex in the meshlet, 0xff if the vertex isn't used
- unsigned char* used = allocator.allocate<unsigned char>(vertex_count);
- memset(used, -1, vertex_count);
- size_t offset = 0;
- for (size_t i = 0; i < index_count; i += 3)
- {
- unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
- assert(a < vertex_count && b < vertex_count && c < vertex_count);
- unsigned char& av = used[a];
- unsigned char& bv = used[b];
- unsigned char& cv = used[c];
- unsigned int used_extra = (av == 0xff) + (bv == 0xff) + (cv == 0xff);
- if (meshlet.vertex_count + used_extra > max_vertices || meshlet.triangle_count >= max_triangles)
- {
- destination[offset++] = meshlet;
- for (size_t j = 0; j < meshlet.vertex_count; ++j)
- used[meshlet.vertices[j]] = 0xff;
- memset(&meshlet, 0, sizeof(meshlet));
- }
- if (av == 0xff)
- {
- av = meshlet.vertex_count;
- meshlet.vertices[meshlet.vertex_count++] = a;
- }
- if (bv == 0xff)
- {
- bv = meshlet.vertex_count;
- meshlet.vertices[meshlet.vertex_count++] = b;
- }
- if (cv == 0xff)
- {
- cv = meshlet.vertex_count;
- meshlet.vertices[meshlet.vertex_count++] = c;
- }
- meshlet.indices[meshlet.triangle_count][0] = av;
- meshlet.indices[meshlet.triangle_count][1] = bv;
- meshlet.indices[meshlet.triangle_count][2] = cv;
- meshlet.triangle_count++;
- }
- if (meshlet.triangle_count)
- destination[offset++] = meshlet;
- assert(offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles));
- return offset;
- }
- meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
- {
- using namespace meshopt;
- assert(index_count % 3 == 0);
- assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
- assert(vertex_positions_stride % sizeof(float) == 0);
- assert(index_count / 3 <= 256);
- (void)vertex_count;
- size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
- // compute triangle normals and gather triangle corners
- float normals[256][3];
- float corners[256][3][3];
- size_t triangles = 0;
- for (size_t i = 0; i < index_count; i += 3)
- {
- unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2];
- assert(a < vertex_count && b < vertex_count && c < vertex_count);
- const float* p0 = vertex_positions + vertex_stride_float * a;
- const float* p1 = vertex_positions + vertex_stride_float * b;
- const float* p2 = vertex_positions + vertex_stride_float * c;
- float p10[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]};
- float p20[3] = {p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]};
- float normalx = p10[1] * p20[2] - p10[2] * p20[1];
- float normaly = p10[2] * p20[0] - p10[0] * p20[2];
- float normalz = p10[0] * p20[1] - p10[1] * p20[0];
- float area = sqrtf(normalx * normalx + normaly * normaly + normalz * normalz);
- // no need to include degenerate triangles - they will be invisible anyway
- if (area == 0.f)
- continue;
- // record triangle normals & corners for future use; normal and corner 0 define a plane equation
- normals[triangles][0] = normalx / area;
- normals[triangles][1] = normaly / area;
- normals[triangles][2] = normalz / area;
- memcpy(corners[triangles][0], p0, 3 * sizeof(float));
- memcpy(corners[triangles][1], p1, 3 * sizeof(float));
- memcpy(corners[triangles][2], p2, 3 * sizeof(float));
- triangles++;
- }
- meshopt_Bounds bounds = {};
- // degenerate cluster, no valid triangles => trivial reject (cone data is 0)
- if (triangles == 0)
- return bounds;
- // compute cluster bounding sphere; we'll use the center to determine normal cone apex as well
- float psphere[4] = {};
- computeBoundingSphere(psphere, corners[0], triangles * 3);
- float center[3] = {psphere[0], psphere[1], psphere[2]};
- // treating triangle normals as points, find the bounding sphere - the sphere center determines the optimal cone axis
- float nsphere[4] = {};
- computeBoundingSphere(nsphere, normals, triangles);
- float axis[3] = {nsphere[0], nsphere[1], nsphere[2]};
- float axislength = sqrtf(axis[0] * axis[0] + axis[1] * axis[1] + axis[2] * axis[2]);
- float invaxislength = axislength == 0.f ? 0.f : 1.f / axislength;
- axis[0] *= invaxislength;
- axis[1] *= invaxislength;
- axis[2] *= invaxislength;
- // compute a tight cone around all normals, mindp = cos(angle/2)
- float mindp = 1.f;
- for (size_t i = 0; i < triangles; ++i)
- {
- float dp = normals[i][0] * axis[0] + normals[i][1] * axis[1] + normals[i][2] * axis[2];
- mindp = (dp < mindp) ? dp : mindp;
- }
- // fill bounding sphere info; note that below we can return bounds without cone information for degenerate cones
- bounds.center[0] = center[0];
- bounds.center[1] = center[1];
- bounds.center[2] = center[2];
- bounds.radius = psphere[3];
- // degenerate cluster, normal cone is larger than a hemisphere => trivial accept
- // note that if mindp is positive but close to 0, the triangle intersection code below gets less stable
- // we arbitrarily decide that if a normal cone is ~168 degrees wide or more, the cone isn't useful
- if (mindp <= 0.1f)
- {
- bounds.cone_cutoff = 1;
- bounds.cone_cutoff_s8 = 127;
- return bounds;
- }
- float maxt = 0;
- // we need to find the point on center-t*axis ray that lies in negative half-space of all triangles
- for (size_t i = 0; i < triangles; ++i)
- {
- // dot(center-t*axis-corner, trinormal) = 0
- // dot(center-corner, trinormal) - t * dot(axis, trinormal) = 0
- float cx = center[0] - corners[i][0][0];
- float cy = center[1] - corners[i][0][1];
- float cz = center[2] - corners[i][0][2];
- float dc = cx * normals[i][0] + cy * normals[i][1] + cz * normals[i][2];
- float dn = axis[0] * normals[i][0] + axis[1] * normals[i][1] + axis[2] * normals[i][2];
- // dn should be larger than mindp cutoff above
- assert(dn > 0.f);
- float t = dc / dn;
- maxt = (t > maxt) ? t : maxt;
- }
- // cone apex should be in the negative half-space of all cluster triangles by construction
- bounds.cone_apex[0] = center[0] - axis[0] * maxt;
- bounds.cone_apex[1] = center[1] - axis[1] * maxt;
- bounds.cone_apex[2] = center[2] - axis[2] * maxt;
- // note: this axis is the axis of the normal cone, but our test for perspective camera effectively negates the axis
- bounds.cone_axis[0] = axis[0];
- bounds.cone_axis[1] = axis[1];
- bounds.cone_axis[2] = axis[2];
- // cos(a) for normal cone is mindp; we need to add 90 degrees on both sides and invert the cone
- // which gives us -cos(a+90) = -(-sin(a)) = sin(a) = sqrt(1 - cos^2(a))
- bounds.cone_cutoff = sqrtf(1 - mindp * mindp);
- // quantize axis & cutoff to 8-bit SNORM format
- bounds.cone_axis_s8[0] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[0], 8));
- bounds.cone_axis_s8[1] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[1], 8));
- bounds.cone_axis_s8[2] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[2], 8));
- // for the 8-bit test to be conservative, we need to adjust the cutoff by measuring the max. error
- float cone_axis_s8_e0 = fabsf(bounds.cone_axis_s8[0] / 127.f - bounds.cone_axis[0]);
- float cone_axis_s8_e1 = fabsf(bounds.cone_axis_s8[1] / 127.f - bounds.cone_axis[1]);
- float cone_axis_s8_e2 = fabsf(bounds.cone_axis_s8[2] / 127.f - bounds.cone_axis[2]);
- // note that we need to round this up instead of rounding to nearest, hence +1
- int cone_cutoff_s8 = int(127 * (bounds.cone_cutoff + cone_axis_s8_e0 + cone_axis_s8_e1 + cone_axis_s8_e2) + 1);
- bounds.cone_cutoff_s8 = (cone_cutoff_s8 > 127) ? 127 : (signed char)(cone_cutoff_s8);
- return bounds;
- }
- meshopt_Bounds meshopt_computeMeshletBounds(const meshopt_Meshlet* meshlet, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
- {
- assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
- assert(vertex_positions_stride % sizeof(float) == 0);
- unsigned int indices[sizeof(meshlet->indices) / sizeof(meshlet->indices[0][0])];
- for (size_t i = 0; i < meshlet->triangle_count; ++i)
- {
- unsigned int a = meshlet->vertices[meshlet->indices[i][0]];
- unsigned int b = meshlet->vertices[meshlet->indices[i][1]];
- unsigned int c = meshlet->vertices[meshlet->indices[i][2]];
- assert(a < vertex_count && b < vertex_count && c < vertex_count);
- indices[i * 3 + 0] = a;
- indices[i * 3 + 1] = b;
- indices[i * 3 + 2] = c;
- }
- return meshopt_computeClusterBounds(indices, meshlet->triangle_count * 3, vertex_positions, vertex_count, vertex_positions_stride);
- }
|