1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657 |
- // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
- #include "meshoptimizer.h"
- #include <assert.h>
- #include <float.h>
- #include <math.h>
- #include <string.h>
- #ifndef TRACE
- #define TRACE 0
- #endif
- #if TRACE
- #include <stdio.h>
- #endif
- #if TRACE
- #define TRACESTATS(i) stats[i]++;
- #else
- #define TRACESTATS(i) (void)0
- #endif
- // This work is based on:
- // Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. 1997
- // Michael Garland. Quadric-based polygonal surface simplification. 1999
- // Peter Lindstrom. Out-of-Core Simplification of Large Polygonal Models. 2000
- // Matthias Teschner, Bruno Heidelberger, Matthias Mueller, Danat Pomeranets, Markus Gross. Optimized Spatial Hashing for Collision Detection of Deformable Objects. 2003
- // Peter Van Sandt, Yannis Chronis, Jignesh M. Patel. Efficiently Searching In-Memory Sorted Arrays: Revenge of the Interpolation Search? 2019
- namespace meshopt
- {
- struct EdgeAdjacency
- {
- struct Edge
- {
- unsigned int next;
- unsigned int prev;
- };
- unsigned int* counts;
- unsigned int* offsets;
- Edge* data;
- };
- static void prepareEdgeAdjacency(EdgeAdjacency& adjacency, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator)
- {
- adjacency.counts = allocator.allocate<unsigned int>(vertex_count);
- adjacency.offsets = allocator.allocate<unsigned int>(vertex_count);
- adjacency.data = allocator.allocate<EdgeAdjacency::Edge>(index_count);
- }
- static void updateEdgeAdjacency(EdgeAdjacency& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, const unsigned int* remap)
- {
- size_t face_count = index_count / 3;
- // fill edge counts
- memset(adjacency.counts, 0, vertex_count * sizeof(unsigned int));
- for (size_t i = 0; i < index_count; ++i)
- {
- unsigned int v = remap ? remap[indices[i]] : indices[i];
- assert(v < vertex_count);
- adjacency.counts[v]++;
- }
- // fill offset table
- unsigned int offset = 0;
- for (size_t i = 0; i < vertex_count; ++i)
- {
- adjacency.offsets[i] = offset;
- offset += adjacency.counts[i];
- }
- assert(offset == index_count);
- // fill edge data
- for (size_t i = 0; i < face_count; ++i)
- {
- unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
- if (remap)
- {
- a = remap[a];
- b = remap[b];
- c = remap[c];
- }
- adjacency.data[adjacency.offsets[a]].next = b;
- adjacency.data[adjacency.offsets[a]].prev = c;
- adjacency.offsets[a]++;
- adjacency.data[adjacency.offsets[b]].next = c;
- adjacency.data[adjacency.offsets[b]].prev = a;
- adjacency.offsets[b]++;
- adjacency.data[adjacency.offsets[c]].next = a;
- adjacency.data[adjacency.offsets[c]].prev = b;
- adjacency.offsets[c]++;
- }
- // fix offsets that have been disturbed by the previous pass
- for (size_t i = 0; i < vertex_count; ++i)
- {
- assert(adjacency.offsets[i] >= adjacency.counts[i]);
- adjacency.offsets[i] -= adjacency.counts[i];
- }
- }
- struct PositionHasher
- {
- const float* vertex_positions;
- size_t vertex_stride_float;
- size_t hash(unsigned int index) const
- {
- const unsigned int* key = reinterpret_cast<const unsigned int*>(vertex_positions + index * vertex_stride_float);
- // Optimized Spatial Hashing for Collision Detection of Deformable Objects
- return (key[0] * 73856093) ^ (key[1] * 19349663) ^ (key[2] * 83492791);
- }
- bool equal(unsigned int lhs, unsigned int rhs) const
- {
- return memcmp(vertex_positions + lhs * vertex_stride_float, vertex_positions + rhs * vertex_stride_float, sizeof(float) * 3) == 0;
- }
- };
- static size_t hashBuckets2(size_t count)
- {
- size_t buckets = 1;
- while (buckets < count)
- buckets *= 2;
- return buckets;
- }
- template <typename T, typename Hash>
- static T* hashLookup2(T* table, size_t buckets, const Hash& hash, const T& key, const T& empty)
- {
- assert(buckets > 0);
- assert((buckets & (buckets - 1)) == 0);
- size_t hashmod = buckets - 1;
- size_t bucket = hash.hash(key) & hashmod;
- for (size_t probe = 0; probe <= hashmod; ++probe)
- {
- T& item = table[bucket];
- if (item == empty)
- return &item;
- if (hash.equal(item, key))
- return &item;
- // hash collision, quadratic probing
- bucket = (bucket + probe + 1) & hashmod;
- }
- assert(false && "Hash table is full"); // unreachable
- return 0;
- }
- static void buildPositionRemap(unsigned int* remap, unsigned int* wedge, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, meshopt_Allocator& allocator)
- {
- PositionHasher hasher = {vertex_positions_data, vertex_positions_stride / sizeof(float)};
- size_t table_size = hashBuckets2(vertex_count);
- unsigned int* table = allocator.allocate<unsigned int>(table_size);
- memset(table, -1, table_size * sizeof(unsigned int));
- // build forward remap: for each vertex, which other (canonical) vertex does it map to?
- // we use position equivalence for this, and remap vertices to other existing vertices
- for (size_t i = 0; i < vertex_count; ++i)
- {
- unsigned int index = unsigned(i);
- unsigned int* entry = hashLookup2(table, table_size, hasher, index, ~0u);
- if (*entry == ~0u)
- *entry = index;
- remap[index] = *entry;
- }
- // build wedge table: for each vertex, which other vertex is the next wedge that also maps to the same vertex?
- // entries in table form a (cyclic) wedge loop per vertex; for manifold vertices, wedge[i] == remap[i] == i
- for (size_t i = 0; i < vertex_count; ++i)
- wedge[i] = unsigned(i);
- for (size_t i = 0; i < vertex_count; ++i)
- if (remap[i] != i)
- {
- unsigned int r = remap[i];
- wedge[i] = wedge[r];
- wedge[r] = unsigned(i);
- }
- }
- enum VertexKind
- {
- Kind_Manifold, // not on an attribute seam, not on any boundary
- Kind_Border, // not on an attribute seam, has exactly two open edges
- Kind_Seam, // on an attribute seam with exactly two attribute seam edges
- Kind_Complex, // none of the above; these vertices can move as long as all wedges move to the target vertex
- Kind_Locked, // none of the above; these vertices can't move
- Kind_Count
- };
- // manifold vertices can collapse onto anything
- // border/seam vertices can only be collapsed onto border/seam respectively
- // complex vertices can collapse onto complex/locked
- // a rule of thumb is that collapsing kind A into kind B preserves the kind B in the target vertex
- // for example, while we could collapse Complex into Manifold, this would mean the target vertex isn't Manifold anymore
- const unsigned char kCanCollapse[Kind_Count][Kind_Count] = {
- {1, 1, 1, 1, 1},
- {0, 1, 0, 0, 0},
- {0, 0, 1, 0, 0},
- {0, 0, 0, 1, 1},
- {0, 0, 0, 0, 0},
- };
- // if a vertex is manifold or seam, adjoining edges are guaranteed to have an opposite edge
- // note that for seam edges, the opposite edge isn't present in the attribute-based topology
- // but is present if you consider a position-only mesh variant
- const unsigned char kHasOpposite[Kind_Count][Kind_Count] = {
- {1, 1, 1, 0, 1},
- {1, 0, 1, 0, 0},
- {1, 1, 1, 0, 1},
- {0, 0, 0, 0, 0},
- {1, 0, 1, 0, 0},
- };
- static bool hasEdge(const EdgeAdjacency& adjacency, unsigned int a, unsigned int b)
- {
- unsigned int count = adjacency.counts[a];
- const EdgeAdjacency::Edge* edges = adjacency.data + adjacency.offsets[a];
- for (size_t i = 0; i < count; ++i)
- if (edges[i].next == b)
- return true;
- return false;
- }
- static void classifyVertices(unsigned char* result, unsigned int* loop, unsigned int* loopback, size_t vertex_count, const EdgeAdjacency& adjacency, const unsigned int* remap, const unsigned int* wedge)
- {
- memset(loop, -1, vertex_count * sizeof(unsigned int));
- memset(loopback, -1, vertex_count * sizeof(unsigned int));
- // incoming & outgoing open edges: ~0u if no open edges, i if there are more than 1
- // note that this is the same data as required in loop[] arrays; loop[] data is only valid for border/seam
- // but here it's okay to fill the data out for other types of vertices as well
- unsigned int* openinc = loopback;
- unsigned int* openout = loop;
- for (size_t i = 0; i < vertex_count; ++i)
- {
- unsigned int vertex = unsigned(i);
- unsigned int count = adjacency.counts[vertex];
- const EdgeAdjacency::Edge* edges = adjacency.data + adjacency.offsets[vertex];
- for (size_t j = 0; j < count; ++j)
- {
- unsigned int target = edges[j].next;
- if (!hasEdge(adjacency, target, vertex))
- {
- openinc[target] = (openinc[target] == ~0u) ? vertex : target;
- openout[vertex] = (openout[vertex] == ~0u) ? target : vertex;
- }
- }
- }
- #if TRACE
- size_t stats[4] = {};
- #endif
- for (size_t i = 0; i < vertex_count; ++i)
- {
- if (remap[i] == i)
- {
- if (wedge[i] == i)
- {
- // no attribute seam, need to check if it's manifold
- unsigned int openi = openinc[i], openo = openout[i];
- // note: we classify any vertices with no open edges as manifold
- // this is technically incorrect - if 4 triangles share an edge, we'll classify vertices as manifold
- // it's unclear if this is a problem in practice
- if (openi == ~0u && openo == ~0u)
- {
- result[i] = Kind_Manifold;
- }
- else if (openi != i && openo != i)
- {
- result[i] = Kind_Border;
- }
- else
- {
- result[i] = Kind_Locked;
- TRACESTATS(0);
- }
- }
- else if (wedge[wedge[i]] == i)
- {
- // attribute seam; need to distinguish between Seam and Locked
- unsigned int w = wedge[i];
- unsigned int openiv = openinc[i], openov = openout[i];
- unsigned int openiw = openinc[w], openow = openout[w];
- // seam should have one open half-edge for each vertex, and the edges need to "connect" - point to the same vertex post-remap
- if (openiv != ~0u && openiv != i && openov != ~0u && openov != i &&
- openiw != ~0u && openiw != w && openow != ~0u && openow != w)
- {
- if (remap[openiv] == remap[openow] && remap[openov] == remap[openiw])
- {
- result[i] = Kind_Seam;
- }
- else
- {
- result[i] = Kind_Locked;
- TRACESTATS(1);
- }
- }
- else
- {
- result[i] = Kind_Locked;
- TRACESTATS(2);
- }
- }
- else
- {
- // more than one vertex maps to this one; we don't have classification available
- result[i] = Kind_Locked;
- TRACESTATS(3);
- }
- }
- else
- {
- assert(remap[i] < i);
- result[i] = result[remap[i]];
- }
- }
- #if TRACE
- printf("locked: many open edges %d, disconnected seam %d, many seam edges %d, many wedges %d\n",
- int(stats[0]), int(stats[1]), int(stats[2]), int(stats[3]));
- #endif
- }
- struct Vector3
- {
- float x, y, z;
- };
- static float rescalePositions(Vector3* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride)
- {
- size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
- float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX};
- float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};
- for (size_t i = 0; i < vertex_count; ++i)
- {
- const float* v = vertex_positions_data + i * vertex_stride_float;
- if (result)
- {
- result[i].x = v[0];
- result[i].y = v[1];
- result[i].z = v[2];
- }
- for (int j = 0; j < 3; ++j)
- {
- float vj = v[j];
- minv[j] = minv[j] > vj ? vj : minv[j];
- maxv[j] = maxv[j] < vj ? vj : maxv[j];
- }
- }
- float extent = 0.f;
- extent = (maxv[0] - minv[0]) < extent ? extent : (maxv[0] - minv[0]);
- extent = (maxv[1] - minv[1]) < extent ? extent : (maxv[1] - minv[1]);
- extent = (maxv[2] - minv[2]) < extent ? extent : (maxv[2] - minv[2]);
- if (result)
- {
- float scale = extent == 0 ? 0.f : 1.f / extent;
- for (size_t i = 0; i < vertex_count; ++i)
- {
- result[i].x = (result[i].x - minv[0]) * scale;
- result[i].y = (result[i].y - minv[1]) * scale;
- result[i].z = (result[i].z - minv[2]) * scale;
- }
- }
- return extent;
- }
- struct Quadric
- {
- float a00, a11, a22;
- float a10, a20, a21;
- float b0, b1, b2, c;
- float w;
- };
- struct Collapse
- {
- unsigned int v0;
- unsigned int v1;
- union
- {
- unsigned int bidi;
- float error;
- unsigned int errorui;
- };
- };
- static float normalize(Vector3& v)
- {
- float length = sqrtf(v.x * v.x + v.y * v.y + v.z * v.z);
- if (length > 0)
- {
- v.x /= length;
- v.y /= length;
- v.z /= length;
- }
- return length;
- }
- static void quadricAdd(Quadric& Q, const Quadric& R)
- {
- Q.a00 += R.a00;
- Q.a11 += R.a11;
- Q.a22 += R.a22;
- Q.a10 += R.a10;
- Q.a20 += R.a20;
- Q.a21 += R.a21;
- Q.b0 += R.b0;
- Q.b1 += R.b1;
- Q.b2 += R.b2;
- Q.c += R.c;
- Q.w += R.w;
- }
- static float quadricError(const Quadric& Q, const Vector3& v)
- {
- float rx = Q.b0;
- float ry = Q.b1;
- float rz = Q.b2;
- rx += Q.a10 * v.y;
- ry += Q.a21 * v.z;
- rz += Q.a20 * v.x;
- rx *= 2;
- ry *= 2;
- rz *= 2;
- rx += Q.a00 * v.x;
- ry += Q.a11 * v.y;
- rz += Q.a22 * v.z;
- float r = Q.c;
- r += rx * v.x;
- r += ry * v.y;
- r += rz * v.z;
- float s = Q.w == 0.f ? 0.f : 1.f / Q.w;
- return fabsf(r) * s;
- }
- static void quadricFromPlane(Quadric& Q, float a, float b, float c, float d, float w)
- {
- float aw = a * w;
- float bw = b * w;
- float cw = c * w;
- float dw = d * w;
- Q.a00 = a * aw;
- Q.a11 = b * bw;
- Q.a22 = c * cw;
- Q.a10 = a * bw;
- Q.a20 = a * cw;
- Q.a21 = b * cw;
- Q.b0 = a * dw;
- Q.b1 = b * dw;
- Q.b2 = c * dw;
- Q.c = d * dw;
- Q.w = w;
- }
- static void quadricFromPoint(Quadric& Q, float x, float y, float z, float w)
- {
- // we need to encode (x - X) ^ 2 + (y - Y)^2 + (z - Z)^2 into the quadric
- Q.a00 = w;
- Q.a11 = w;
- Q.a22 = w;
- Q.a10 = 0.f;
- Q.a20 = 0.f;
- Q.a21 = 0.f;
- Q.b0 = -2.f * x * w;
- Q.b1 = -2.f * y * w;
- Q.b2 = -2.f * z * w;
- Q.c = (x * x + y * y + z * z) * w;
- Q.w = w;
- }
- static void quadricFromTriangle(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float weight)
- {
- Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z};
- Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z};
- // normal = cross(p1 - p0, p2 - p0)
- Vector3 normal = {p10.y * p20.z - p10.z * p20.y, p10.z * p20.x - p10.x * p20.z, p10.x * p20.y - p10.y * p20.x};
- float area = normalize(normal);
- float distance = normal.x * p0.x + normal.y * p0.y + normal.z * p0.z;
- // we use sqrtf(area) so that the error is scaled linearly; this tends to improve silhouettes
- quadricFromPlane(Q, normal.x, normal.y, normal.z, -distance, sqrtf(area) * weight);
- }
- static void quadricFromTriangleEdge(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float weight)
- {
- Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z};
- float length = normalize(p10);
- // p20p = length of projection of p2-p0 onto normalize(p1 - p0)
- Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z};
- float p20p = p20.x * p10.x + p20.y * p10.y + p20.z * p10.z;
- // normal = altitude of triangle from point p2 onto edge p1-p0
- Vector3 normal = {p20.x - p10.x * p20p, p20.y - p10.y * p20p, p20.z - p10.z * p20p};
- normalize(normal);
- float distance = normal.x * p0.x + normal.y * p0.y + normal.z * p0.z;
- // note: the weight is scaled linearly with edge length; this has to match the triangle weight
- quadricFromPlane(Q, normal.x, normal.y, normal.z, -distance, length * weight);
- }
- static void fillFaceQuadrics(Quadric* vertex_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap)
- {
- for (size_t i = 0; i < index_count; i += 3)
- {
- unsigned int i0 = indices[i + 0];
- unsigned int i1 = indices[i + 1];
- unsigned int i2 = indices[i + 2];
- Quadric Q;
- quadricFromTriangle(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], 1.f);
- quadricAdd(vertex_quadrics[remap[i0]], Q);
- quadricAdd(vertex_quadrics[remap[i1]], Q);
- quadricAdd(vertex_quadrics[remap[i2]], Q);
- }
- }
- static void fillEdgeQuadrics(Quadric* vertex_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop, const unsigned int* loopback)
- {
- for (size_t i = 0; i < index_count; i += 3)
- {
- static const int next[3] = {1, 2, 0};
- for (int e = 0; e < 3; ++e)
- {
- unsigned int i0 = indices[i + e];
- unsigned int i1 = indices[i + next[e]];
- unsigned char k0 = vertex_kind[i0];
- unsigned char k1 = vertex_kind[i1];
- // check that either i0 or i1 are border/seam and are on the same edge loop
- // note that we need to add the error even for edged that connect e.g. border & locked
- // if we don't do that, the adjacent border->border edge won't have correct errors for corners
- if (k0 != Kind_Border && k0 != Kind_Seam && k1 != Kind_Border && k1 != Kind_Seam)
- continue;
- if ((k0 == Kind_Border || k0 == Kind_Seam) && loop[i0] != i1)
- continue;
- if ((k1 == Kind_Border || k1 == Kind_Seam) && loopback[i1] != i0)
- continue;
- // seam edges should occur twice (i0->i1 and i1->i0) - skip redundant edges
- if (kHasOpposite[k0][k1] && remap[i1] > remap[i0])
- continue;
- unsigned int i2 = indices[i + next[next[e]]];
- // we try hard to maintain border edge geometry; seam edges can move more freely
- // due to topological restrictions on collapses, seam quadrics slightly improves collapse structure but aren't critical
- const float kEdgeWeightSeam = 1.f;
- const float kEdgeWeightBorder = 10.f;
- float edgeWeight = (k0 == Kind_Border || k1 == Kind_Border) ? kEdgeWeightBorder : kEdgeWeightSeam;
- Quadric Q;
- quadricFromTriangleEdge(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], edgeWeight);
- quadricAdd(vertex_quadrics[remap[i0]], Q);
- quadricAdd(vertex_quadrics[remap[i1]], Q);
- }
- }
- }
- // does triangle ABC flip when C is replaced with D?
- static bool hasTriangleFlip(const Vector3& a, const Vector3& b, const Vector3& c, const Vector3& d)
- {
- Vector3 eb = {b.x - a.x, b.y - a.y, b.z - a.z};
- Vector3 ec = {c.x - a.x, c.y - a.y, c.z - a.z};
- Vector3 ed = {d.x - a.x, d.y - a.y, d.z - a.z};
- Vector3 nbc = {eb.y * ec.z - eb.z * ec.y, eb.z * ec.x - eb.x * ec.z, eb.x * ec.y - eb.y * ec.x};
- Vector3 nbd = {eb.y * ed.z - eb.z * ed.y, eb.z * ed.x - eb.x * ed.z, eb.x * ed.y - eb.y * ed.x};
- return nbc.x * nbd.x + nbc.y * nbd.y + nbc.z * nbd.z < 0;
- }
- static bool hasTriangleFlips(const EdgeAdjacency& adjacency, const Vector3* vertex_positions, const unsigned int* collapse_remap, unsigned int i0, unsigned int i1)
- {
- assert(collapse_remap[i0] == i0);
- assert(collapse_remap[i1] == i1);
- const Vector3& v0 = vertex_positions[i0];
- const Vector3& v1 = vertex_positions[i1];
- const EdgeAdjacency::Edge* edges = &adjacency.data[adjacency.offsets[i0]];
- size_t count = adjacency.counts[i0];
- for (size_t i = 0; i < count; ++i)
- {
- unsigned int a = collapse_remap[edges[i].next];
- unsigned int b = collapse_remap[edges[i].prev];
- // skip triangles that get collapsed
- // note: this is mathematically redundant as if either of these is true, the dot product in hasTriangleFlip should be 0
- if (a == i1 || b == i1)
- continue;
- // early-out when at least one triangle flips due to a collapse
- if (hasTriangleFlip(vertex_positions[a], vertex_positions[b], v0, v1))
- return true;
- }
- return false;
- }
- static size_t pickEdgeCollapses(Collapse* collapses, const unsigned int* indices, size_t index_count, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop)
- {
- size_t collapse_count = 0;
- for (size_t i = 0; i < index_count; i += 3)
- {
- static const int next[3] = {1, 2, 0};
- for (int e = 0; e < 3; ++e)
- {
- unsigned int i0 = indices[i + e];
- unsigned int i1 = indices[i + next[e]];
- // this can happen either when input has a zero-length edge, or when we perform collapses for complex
- // topology w/seams and collapse a manifold vertex that connects to both wedges onto one of them
- // we leave edges like this alone since they may be important for preserving mesh integrity
- if (remap[i0] == remap[i1])
- continue;
- unsigned char k0 = vertex_kind[i0];
- unsigned char k1 = vertex_kind[i1];
- // the edge has to be collapsible in at least one direction
- if (!(kCanCollapse[k0][k1] | kCanCollapse[k1][k0]))
- continue;
- // manifold and seam edges should occur twice (i0->i1 and i1->i0) - skip redundant edges
- if (kHasOpposite[k0][k1] && remap[i1] > remap[i0])
- continue;
- // two vertices are on a border or a seam, but there's no direct edge between them
- // this indicates that they belong to two different edge loops and we should not collapse this edge
- // loop[] tracks half edges so we only need to check i0->i1
- if (k0 == k1 && (k0 == Kind_Border || k0 == Kind_Seam) && loop[i0] != i1)
- continue;
- // edge can be collapsed in either direction - we will pick the one with minimum error
- // note: we evaluate error later during collapse ranking, here we just tag the edge as bidirectional
- if (kCanCollapse[k0][k1] & kCanCollapse[k1][k0])
- {
- Collapse c = {i0, i1, {/* bidi= */ 1}};
- collapses[collapse_count++] = c;
- }
- else
- {
- // edge can only be collapsed in one direction
- unsigned int e0 = kCanCollapse[k0][k1] ? i0 : i1;
- unsigned int e1 = kCanCollapse[k0][k1] ? i1 : i0;
- Collapse c = {e0, e1, {/* bidi= */ 0}};
- collapses[collapse_count++] = c;
- }
- }
- }
- return collapse_count;
- }
- static void rankEdgeCollapses(Collapse* collapses, size_t collapse_count, const Vector3* vertex_positions, const Quadric* vertex_quadrics, const unsigned int* remap)
- {
- for (size_t i = 0; i < collapse_count; ++i)
- {
- Collapse& c = collapses[i];
- unsigned int i0 = c.v0;
- unsigned int i1 = c.v1;
- // most edges are bidirectional which means we need to evaluate errors for two collapses
- // to keep this code branchless we just use the same edge for unidirectional edges
- unsigned int j0 = c.bidi ? i1 : i0;
- unsigned int j1 = c.bidi ? i0 : i1;
- const Quadric& qi = vertex_quadrics[remap[i0]];
- const Quadric& qj = vertex_quadrics[remap[j0]];
- float ei = quadricError(qi, vertex_positions[i1]);
- float ej = quadricError(qj, vertex_positions[j1]);
- // pick edge direction with minimal error
- c.v0 = ei <= ej ? i0 : j0;
- c.v1 = ei <= ej ? i1 : j1;
- c.error = ei <= ej ? ei : ej;
- }
- }
- #if TRACE > 1
- static void dumpEdgeCollapses(const Collapse* collapses, size_t collapse_count, const unsigned char* vertex_kind)
- {
- size_t ckinds[Kind_Count][Kind_Count] = {};
- float cerrors[Kind_Count][Kind_Count] = {};
- for (int k0 = 0; k0 < Kind_Count; ++k0)
- for (int k1 = 0; k1 < Kind_Count; ++k1)
- cerrors[k0][k1] = FLT_MAX;
- for (size_t i = 0; i < collapse_count; ++i)
- {
- unsigned int i0 = collapses[i].v0;
- unsigned int i1 = collapses[i].v1;
- unsigned char k0 = vertex_kind[i0];
- unsigned char k1 = vertex_kind[i1];
- ckinds[k0][k1]++;
- cerrors[k0][k1] = (collapses[i].error < cerrors[k0][k1]) ? collapses[i].error : cerrors[k0][k1];
- }
- for (int k0 = 0; k0 < Kind_Count; ++k0)
- for (int k1 = 0; k1 < Kind_Count; ++k1)
- if (ckinds[k0][k1])
- printf("collapses %d -> %d: %d, min error %e\n", k0, k1, int(ckinds[k0][k1]), ckinds[k0][k1] ? sqrtf(cerrors[k0][k1]) : 0.f);
- }
- static void dumpLockedCollapses(const unsigned int* indices, size_t index_count, const unsigned char* vertex_kind)
- {
- size_t locked_collapses[Kind_Count][Kind_Count] = {};
- for (size_t i = 0; i < index_count; i += 3)
- {
- static const int next[3] = {1, 2, 0};
- for (int e = 0; e < 3; ++e)
- {
- unsigned int i0 = indices[i + e];
- unsigned int i1 = indices[i + next[e]];
- unsigned char k0 = vertex_kind[i0];
- unsigned char k1 = vertex_kind[i1];
- locked_collapses[k0][k1] += !kCanCollapse[k0][k1] && !kCanCollapse[k1][k0];
- }
- }
- for (int k0 = 0; k0 < Kind_Count; ++k0)
- for (int k1 = 0; k1 < Kind_Count; ++k1)
- if (locked_collapses[k0][k1])
- printf("locked collapses %d -> %d: %d\n", k0, k1, int(locked_collapses[k0][k1]));
- }
- #endif
- static void sortEdgeCollapses(unsigned int* sort_order, const Collapse* collapses, size_t collapse_count)
- {
- const int sort_bits = 11;
- // fill histogram for counting sort
- unsigned int histogram[1 << sort_bits];
- memset(histogram, 0, sizeof(histogram));
- for (size_t i = 0; i < collapse_count; ++i)
- {
- // skip sign bit since error is non-negative
- unsigned int key = (collapses[i].errorui << 1) >> (32 - sort_bits);
- histogram[key]++;
- }
- // compute offsets based on histogram data
- size_t histogram_sum = 0;
- for (size_t i = 0; i < 1 << sort_bits; ++i)
- {
- size_t count = histogram[i];
- histogram[i] = unsigned(histogram_sum);
- histogram_sum += count;
- }
- assert(histogram_sum == collapse_count);
- // compute sort order based on offsets
- for (size_t i = 0; i < collapse_count; ++i)
- {
- // skip sign bit since error is non-negative
- unsigned int key = (collapses[i].errorui << 1) >> (32 - sort_bits);
- sort_order[histogram[key]++] = unsigned(i);
- }
- }
- static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char* collapse_locked, Quadric* vertex_quadrics, const Collapse* collapses, size_t collapse_count, const unsigned int* collapse_order, const unsigned int* remap, const unsigned int* wedge, const unsigned char* vertex_kind, const Vector3* vertex_positions, const EdgeAdjacency& adjacency, size_t triangle_collapse_goal, float error_limit, float& result_error)
- {
- size_t edge_collapses = 0;
- size_t triangle_collapses = 0;
- // most collapses remove 2 triangles; use this to establish a bound on the pass in terms of error limit
- // note that edge_collapse_goal is an estimate; triangle_collapse_goal will be used to actually limit collapses
- size_t edge_collapse_goal = triangle_collapse_goal / 2;
- #if TRACE
- size_t stats[4] = {};
- #endif
- for (size_t i = 0; i < collapse_count; ++i)
- {
- const Collapse& c = collapses[collapse_order[i]];
- TRACESTATS(0);
- if (c.error > error_limit)
- break;
- if (triangle_collapses >= triangle_collapse_goal)
- break;
- // we limit the error in each pass based on the error of optimal last collapse; since many collapses will be locked
- // as they will share vertices with other successfull collapses, we need to increase the acceptable error by some factor
- float error_goal = edge_collapse_goal < collapse_count ? 1.5f * collapses[collapse_order[edge_collapse_goal]].error : FLT_MAX;
- // on average, each collapse is expected to lock 6 other collapses; to avoid degenerate passes on meshes with odd
- // topology, we only abort if we got over 1/6 collapses accordingly.
- if (c.error > error_goal && triangle_collapses > triangle_collapse_goal / 6)
- break;
- unsigned int i0 = c.v0;
- unsigned int i1 = c.v1;
- unsigned int r0 = remap[i0];
- unsigned int r1 = remap[i1];
- // we don't collapse vertices that had source or target vertex involved in a collapse
- // it's important to not move the vertices twice since it complicates the tracking/remapping logic
- // it's important to not move other vertices towards a moved vertex to preserve error since we don't re-rank collapses mid-pass
- if (collapse_locked[r0] | collapse_locked[r1])
- {
- TRACESTATS(1);
- continue;
- }
- if (hasTriangleFlips(adjacency, vertex_positions, collapse_remap, r0, r1))
- {
- // adjust collapse goal since this collapse is invalid and shouldn't factor into error goal
- edge_collapse_goal++;
- TRACESTATS(2);
- continue;
- }
- assert(collapse_remap[r0] == r0);
- assert(collapse_remap[r1] == r1);
- quadricAdd(vertex_quadrics[r1], vertex_quadrics[r0]);
- if (vertex_kind[i0] == Kind_Complex)
- {
- unsigned int v = i0;
- do
- {
- collapse_remap[v] = r1;
- v = wedge[v];
- } while (v != i0);
- }
- else if (vertex_kind[i0] == Kind_Seam)
- {
- // remap v0 to v1 and seam pair of v0 to seam pair of v1
- unsigned int s0 = wedge[i0];
- unsigned int s1 = wedge[i1];
- assert(s0 != i0 && s1 != i1);
- assert(wedge[s0] == i0 && wedge[s1] == i1);
- collapse_remap[i0] = i1;
- collapse_remap[s0] = s1;
- }
- else
- {
- assert(wedge[i0] == i0);
- collapse_remap[i0] = i1;
- }
- collapse_locked[r0] = 1;
- collapse_locked[r1] = 1;
- // border edges collapse 1 triangle, other edges collapse 2 or more
- triangle_collapses += (vertex_kind[i0] == Kind_Border) ? 1 : 2;
- edge_collapses++;
- result_error = result_error < c.error ? c.error : result_error;
- }
- #if TRACE
- float error_goal_perfect = edge_collapse_goal < collapse_count ? collapses[collapse_order[edge_collapse_goal]].error : 0.f;
- printf("removed %d triangles, error %e (goal %e); evaluated %d/%d collapses (done %d, skipped %d, invalid %d)\n",
- int(triangle_collapses), sqrtf(result_error), sqrtf(error_goal_perfect),
- int(stats[0]), int(collapse_count), int(edge_collapses), int(stats[1]), int(stats[2]));
- #endif
- return edge_collapses;
- }
- static size_t remapIndexBuffer(unsigned int* indices, size_t index_count, const unsigned int* collapse_remap)
- {
- size_t write = 0;
- for (size_t i = 0; i < index_count; i += 3)
- {
- unsigned int v0 = collapse_remap[indices[i + 0]];
- unsigned int v1 = collapse_remap[indices[i + 1]];
- unsigned int v2 = collapse_remap[indices[i + 2]];
- // we never move the vertex twice during a single pass
- assert(collapse_remap[v0] == v0);
- assert(collapse_remap[v1] == v1);
- assert(collapse_remap[v2] == v2);
- if (v0 != v1 && v0 != v2 && v1 != v2)
- {
- indices[write + 0] = v0;
- indices[write + 1] = v1;
- indices[write + 2] = v2;
- write += 3;
- }
- }
- return write;
- }
- static void remapEdgeLoops(unsigned int* loop, size_t vertex_count, const unsigned int* collapse_remap)
- {
- for (size_t i = 0; i < vertex_count; ++i)
- {
- if (loop[i] != ~0u)
- {
- unsigned int l = loop[i];
- unsigned int r = collapse_remap[l];
- // i == r is a special case when the seam edge is collapsed in a direction opposite to where loop goes
- loop[i] = (i == r) ? loop[l] : r;
- }
- }
- }
- struct CellHasher
- {
- const unsigned int* vertex_ids;
- size_t hash(unsigned int i) const
- {
- unsigned int h = vertex_ids[i];
- // MurmurHash2 finalizer
- h ^= h >> 13;
- h *= 0x5bd1e995;
- h ^= h >> 15;
- return h;
- }
- bool equal(unsigned int lhs, unsigned int rhs) const
- {
- return vertex_ids[lhs] == vertex_ids[rhs];
- }
- };
- struct IdHasher
- {
- size_t hash(unsigned int id) const
- {
- unsigned int h = id;
- // MurmurHash2 finalizer
- h ^= h >> 13;
- h *= 0x5bd1e995;
- h ^= h >> 15;
- return h;
- }
- bool equal(unsigned int lhs, unsigned int rhs) const
- {
- return lhs == rhs;
- }
- };
- struct TriangleHasher
- {
- unsigned int* indices;
- size_t hash(unsigned int i) const
- {
- const unsigned int* tri = indices + i * 3;
- // Optimized Spatial Hashing for Collision Detection of Deformable Objects
- return (tri[0] * 73856093) ^ (tri[1] * 19349663) ^ (tri[2] * 83492791);
- }
- bool equal(unsigned int lhs, unsigned int rhs) const
- {
- const unsigned int* lt = indices + lhs * 3;
- const unsigned int* rt = indices + rhs * 3;
- return lt[0] == rt[0] && lt[1] == rt[1] && lt[2] == rt[2];
- }
- };
- static void computeVertexIds(unsigned int* vertex_ids, const Vector3* vertex_positions, size_t vertex_count, int grid_size)
- {
- assert(grid_size >= 1 && grid_size <= 1024);
- float cell_scale = float(grid_size - 1);
- for (size_t i = 0; i < vertex_count; ++i)
- {
- const Vector3& v = vertex_positions[i];
- int xi = int(v.x * cell_scale + 0.5f);
- int yi = int(v.y * cell_scale + 0.5f);
- int zi = int(v.z * cell_scale + 0.5f);
- vertex_ids[i] = (xi << 20) | (yi << 10) | zi;
- }
- }
- static size_t countTriangles(const unsigned int* vertex_ids, const unsigned int* indices, size_t index_count)
- {
- size_t result = 0;
- for (size_t i = 0; i < index_count; i += 3)
- {
- unsigned int id0 = vertex_ids[indices[i + 0]];
- unsigned int id1 = vertex_ids[indices[i + 1]];
- unsigned int id2 = vertex_ids[indices[i + 2]];
- result += (id0 != id1) & (id0 != id2) & (id1 != id2);
- }
- return result;
- }
- static size_t fillVertexCells(unsigned int* table, size_t table_size, unsigned int* vertex_cells, const unsigned int* vertex_ids, size_t vertex_count)
- {
- CellHasher hasher = {vertex_ids};
- memset(table, -1, table_size * sizeof(unsigned int));
- size_t result = 0;
- for (size_t i = 0; i < vertex_count; ++i)
- {
- unsigned int* entry = hashLookup2(table, table_size, hasher, unsigned(i), ~0u);
- if (*entry == ~0u)
- {
- *entry = unsigned(i);
- vertex_cells[i] = unsigned(result++);
- }
- else
- {
- vertex_cells[i] = vertex_cells[*entry];
- }
- }
- return result;
- }
- static size_t countVertexCells(unsigned int* table, size_t table_size, const unsigned int* vertex_ids, size_t vertex_count)
- {
- IdHasher hasher;
- memset(table, -1, table_size * sizeof(unsigned int));
- size_t result = 0;
- for (size_t i = 0; i < vertex_count; ++i)
- {
- unsigned int id = vertex_ids[i];
- unsigned int* entry = hashLookup2(table, table_size, hasher, id, ~0u);
- result += (*entry == ~0u);
- *entry = id;
- }
- return result;
- }
- static void fillCellQuadrics(Quadric* cell_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* vertex_cells)
- {
- for (size_t i = 0; i < index_count; i += 3)
- {
- unsigned int i0 = indices[i + 0];
- unsigned int i1 = indices[i + 1];
- unsigned int i2 = indices[i + 2];
- unsigned int c0 = vertex_cells[i0];
- unsigned int c1 = vertex_cells[i1];
- unsigned int c2 = vertex_cells[i2];
- bool single_cell = (c0 == c1) & (c0 == c2);
- Quadric Q;
- quadricFromTriangle(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], single_cell ? 3.f : 1.f);
- if (single_cell)
- {
- quadricAdd(cell_quadrics[c0], Q);
- }
- else
- {
- quadricAdd(cell_quadrics[c0], Q);
- quadricAdd(cell_quadrics[c1], Q);
- quadricAdd(cell_quadrics[c2], Q);
- }
- }
- }
- static void fillCellQuadrics(Quadric* cell_quadrics, const Vector3* vertex_positions, size_t vertex_count, const unsigned int* vertex_cells)
- {
- for (size_t i = 0; i < vertex_count; ++i)
- {
- unsigned int c = vertex_cells[i];
- const Vector3& v = vertex_positions[i];
- Quadric Q;
- quadricFromPoint(Q, v.x, v.y, v.z, 1.f);
- quadricAdd(cell_quadrics[c], Q);
- }
- }
- static void fillCellRemap(unsigned int* cell_remap, float* cell_errors, size_t cell_count, const unsigned int* vertex_cells, const Quadric* cell_quadrics, const Vector3* vertex_positions, size_t vertex_count)
- {
- memset(cell_remap, -1, cell_count * sizeof(unsigned int));
- for (size_t i = 0; i < vertex_count; ++i)
- {
- unsigned int cell = vertex_cells[i];
- float error = quadricError(cell_quadrics[cell], vertex_positions[i]);
- if (cell_remap[cell] == ~0u || cell_errors[cell] > error)
- {
- cell_remap[cell] = unsigned(i);
- cell_errors[cell] = error;
- }
- }
- }
- static size_t filterTriangles(unsigned int* destination, unsigned int* tritable, size_t tritable_size, const unsigned int* indices, size_t index_count, const unsigned int* vertex_cells, const unsigned int* cell_remap)
- {
- TriangleHasher hasher = {destination};
- memset(tritable, -1, tritable_size * sizeof(unsigned int));
- size_t result = 0;
- for (size_t i = 0; i < index_count; i += 3)
- {
- unsigned int c0 = vertex_cells[indices[i + 0]];
- unsigned int c1 = vertex_cells[indices[i + 1]];
- unsigned int c2 = vertex_cells[indices[i + 2]];
- if (c0 != c1 && c0 != c2 && c1 != c2)
- {
- unsigned int a = cell_remap[c0];
- unsigned int b = cell_remap[c1];
- unsigned int c = cell_remap[c2];
- if (b < a && b < c)
- {
- unsigned int t = a;
- a = b, b = c, c = t;
- }
- else if (c < a && c < b)
- {
- unsigned int t = c;
- c = b, b = a, a = t;
- }
- destination[result * 3 + 0] = a;
- destination[result * 3 + 1] = b;
- destination[result * 3 + 2] = c;
- unsigned int* entry = hashLookup2(tritable, tritable_size, hasher, unsigned(result), ~0u);
- if (*entry == ~0u)
- *entry = unsigned(result++);
- }
- }
- return result * 3;
- }
- static float interpolate(float y, float x0, float y0, float x1, float y1, float x2, float y2)
- {
- // three point interpolation from "revenge of interpolation search" paper
- float num = (y1 - y) * (x1 - x2) * (x1 - x0) * (y2 - y0);
- float den = (y2 - y) * (x1 - x2) * (y0 - y1) + (y0 - y) * (x1 - x0) * (y1 - y2);
- return x1 + num / den;
- }
- } // namespace meshopt
- #ifndef NDEBUG
- unsigned char* meshopt_simplifyDebugKind = 0;
- unsigned int* meshopt_simplifyDebugLoop = 0;
- unsigned int* meshopt_simplifyDebugLoopBack = 0;
- #endif
- size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* out_result_error)
- {
- using namespace meshopt;
- assert(index_count % 3 == 0);
- assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
- assert(vertex_positions_stride % sizeof(float) == 0);
- assert(target_index_count <= index_count);
- meshopt_Allocator allocator;
- unsigned int* result = destination;
- // build adjacency information
- EdgeAdjacency adjacency = {};
- prepareEdgeAdjacency(adjacency, index_count, vertex_count, allocator);
- updateEdgeAdjacency(adjacency, indices, index_count, vertex_count, NULL);
- // build position remap that maps each vertex to the one with identical position
- unsigned int* remap = allocator.allocate<unsigned int>(vertex_count);
- unsigned int* wedge = allocator.allocate<unsigned int>(vertex_count);
- buildPositionRemap(remap, wedge, vertex_positions_data, vertex_count, vertex_positions_stride, allocator);
- // classify vertices; vertex kind determines collapse rules, see kCanCollapse
- unsigned char* vertex_kind = allocator.allocate<unsigned char>(vertex_count);
- unsigned int* loop = allocator.allocate<unsigned int>(vertex_count);
- unsigned int* loopback = allocator.allocate<unsigned int>(vertex_count);
- classifyVertices(vertex_kind, loop, loopback, vertex_count, adjacency, remap, wedge);
- #if TRACE
- size_t unique_positions = 0;
- for (size_t i = 0; i < vertex_count; ++i)
- unique_positions += remap[i] == i;
- printf("position remap: %d vertices => %d positions\n", int(vertex_count), int(unique_positions));
- size_t kinds[Kind_Count] = {};
- for (size_t i = 0; i < vertex_count; ++i)
- kinds[vertex_kind[i]] += remap[i] == i;
- printf("kinds: manifold %d, border %d, seam %d, complex %d, locked %d\n",
- int(kinds[Kind_Manifold]), int(kinds[Kind_Border]), int(kinds[Kind_Seam]), int(kinds[Kind_Complex]), int(kinds[Kind_Locked]));
- #endif
- Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count);
- rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride);
- Quadric* vertex_quadrics = allocator.allocate<Quadric>(vertex_count);
- memset(vertex_quadrics, 0, vertex_count * sizeof(Quadric));
- fillFaceQuadrics(vertex_quadrics, indices, index_count, vertex_positions, remap);
- fillEdgeQuadrics(vertex_quadrics, indices, index_count, vertex_positions, remap, vertex_kind, loop, loopback);
- if (result != indices)
- memcpy(result, indices, index_count * sizeof(unsigned int));
- #if TRACE
- size_t pass_count = 0;
- #endif
- Collapse* edge_collapses = allocator.allocate<Collapse>(index_count);
- unsigned int* collapse_order = allocator.allocate<unsigned int>(index_count);
- unsigned int* collapse_remap = allocator.allocate<unsigned int>(vertex_count);
- unsigned char* collapse_locked = allocator.allocate<unsigned char>(vertex_count);
- size_t result_count = index_count;
- float result_error = 0;
- // target_error input is linear; we need to adjust it to match quadricError units
- float error_limit = target_error * target_error;
- while (result_count > target_index_count)
- {
- // note: throughout the simplification process adjacency structure reflects welded topology for result-in-progress
- updateEdgeAdjacency(adjacency, result, result_count, vertex_count, remap);
- size_t edge_collapse_count = pickEdgeCollapses(edge_collapses, result, result_count, remap, vertex_kind, loop);
- // no edges can be collapsed any more due to topology restrictions
- if (edge_collapse_count == 0)
- break;
- rankEdgeCollapses(edge_collapses, edge_collapse_count, vertex_positions, vertex_quadrics, remap);
- #if TRACE > 1
- dumpEdgeCollapses(edge_collapses, edge_collapse_count, vertex_kind);
- #endif
- sortEdgeCollapses(collapse_order, edge_collapses, edge_collapse_count);
- size_t triangle_collapse_goal = (result_count - target_index_count) / 3;
- for (size_t i = 0; i < vertex_count; ++i)
- collapse_remap[i] = unsigned(i);
- memset(collapse_locked, 0, vertex_count);
- #if TRACE
- printf("pass %d: ", int(pass_count++));
- #endif
- size_t collapses = performEdgeCollapses(collapse_remap, collapse_locked, vertex_quadrics, edge_collapses, edge_collapse_count, collapse_order, remap, wedge, vertex_kind, vertex_positions, adjacency, triangle_collapse_goal, error_limit, result_error);
- // no edges can be collapsed any more due to hitting the error limit or triangle collapse limit
- if (collapses == 0)
- break;
- remapEdgeLoops(loop, vertex_count, collapse_remap);
- remapEdgeLoops(loopback, vertex_count, collapse_remap);
- size_t new_count = remapIndexBuffer(result, result_count, collapse_remap);
- assert(new_count < result_count);
- result_count = new_count;
- }
- #if TRACE
- printf("result: %d triangles, error: %e; total %d passes\n", int(result_count), sqrtf(result_error), int(pass_count));
- #endif
- #if TRACE > 1
- dumpLockedCollapses(result, result_count, vertex_kind);
- #endif
- #ifndef NDEBUG
- if (meshopt_simplifyDebugKind)
- memcpy(meshopt_simplifyDebugKind, vertex_kind, vertex_count);
- if (meshopt_simplifyDebugLoop)
- memcpy(meshopt_simplifyDebugLoop, loop, vertex_count * sizeof(unsigned int));
- if (meshopt_simplifyDebugLoopBack)
- memcpy(meshopt_simplifyDebugLoopBack, loopback, vertex_count * sizeof(unsigned int));
- #endif
- // result_error is quadratic; we need to remap it back to linear
- if (out_result_error)
- *out_result_error = sqrtf(result_error);
- return result_count;
- }
- size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* out_result_error)
- {
- using namespace meshopt;
- assert(index_count % 3 == 0);
- assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
- assert(vertex_positions_stride % sizeof(float) == 0);
- assert(target_index_count <= index_count);
- // we expect to get ~2 triangles/vertex in the output
- size_t target_cell_count = target_index_count / 6;
- meshopt_Allocator allocator;
- Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count);
- rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride);
- // find the optimal grid size using guided binary search
- #if TRACE
- printf("source: %d vertices, %d triangles\n", int(vertex_count), int(index_count / 3));
- printf("target: %d cells, %d triangles\n", int(target_cell_count), int(target_index_count / 3));
- #endif
- unsigned int* vertex_ids = allocator.allocate<unsigned int>(vertex_count);
- const int kInterpolationPasses = 5;
- // invariant: # of triangles in min_grid <= target_count
- int min_grid = int(1.f / (target_error < 1e-3f ? 1e-3f : target_error));
- int max_grid = 1025;
- size_t min_triangles = 0;
- size_t max_triangles = index_count / 3;
- // when we're error-limited, we compute the triangle count for the min. size; this accelerates convergence and provides the correct answer when we can't use a larger grid
- if (min_grid > 1)
- {
- computeVertexIds(vertex_ids, vertex_positions, vertex_count, min_grid);
- min_triangles = countTriangles(vertex_ids, indices, index_count);
- }
- // instead of starting in the middle, let's guess as to what the answer might be! triangle count usually grows as a square of grid size...
- int next_grid_size = int(sqrtf(float(target_cell_count)) + 0.5f);
- for (int pass = 0; pass < 10 + kInterpolationPasses; ++pass)
- {
- if (min_triangles >= target_index_count / 3 || max_grid - min_grid <= 1)
- break;
- // we clamp the prediction of the grid size to make sure that the search converges
- int grid_size = next_grid_size;
- grid_size = (grid_size <= min_grid) ? min_grid + 1 : (grid_size >= max_grid) ? max_grid - 1 : grid_size;
- computeVertexIds(vertex_ids, vertex_positions, vertex_count, grid_size);
- size_t triangles = countTriangles(vertex_ids, indices, index_count);
- #if TRACE
- printf("pass %d (%s): grid size %d, triangles %d, %s\n",
- pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses) ? "lerp" : "binary",
- grid_size, int(triangles),
- (triangles <= target_index_count / 3) ? "under" : "over");
- #endif
- float tip = interpolate(float(target_index_count / 3), float(min_grid), float(min_triangles), float(grid_size), float(triangles), float(max_grid), float(max_triangles));
- if (triangles <= target_index_count / 3)
- {
- min_grid = grid_size;
- min_triangles = triangles;
- }
- else
- {
- max_grid = grid_size;
- max_triangles = triangles;
- }
- // we start by using interpolation search - it usually converges faster
- // however, interpolation search has a worst case of O(N) so we switch to binary search after a few iterations which converges in O(logN)
- next_grid_size = (pass < kInterpolationPasses) ? int(tip + 0.5f) : (min_grid + max_grid) / 2;
- }
- if (min_triangles == 0)
- {
- if (out_result_error)
- *out_result_error = 1.f;
- return 0;
- }
- // build vertex->cell association by mapping all vertices with the same quantized position to the same cell
- size_t table_size = hashBuckets2(vertex_count);
- unsigned int* table = allocator.allocate<unsigned int>(table_size);
- unsigned int* vertex_cells = allocator.allocate<unsigned int>(vertex_count);
- computeVertexIds(vertex_ids, vertex_positions, vertex_count, min_grid);
- size_t cell_count = fillVertexCells(table, table_size, vertex_cells, vertex_ids, vertex_count);
- // build a quadric for each target cell
- Quadric* cell_quadrics = allocator.allocate<Quadric>(cell_count);
- memset(cell_quadrics, 0, cell_count * sizeof(Quadric));
- fillCellQuadrics(cell_quadrics, indices, index_count, vertex_positions, vertex_cells);
- // for each target cell, find the vertex with the minimal error
- unsigned int* cell_remap = allocator.allocate<unsigned int>(cell_count);
- float* cell_errors = allocator.allocate<float>(cell_count);
- fillCellRemap(cell_remap, cell_errors, cell_count, vertex_cells, cell_quadrics, vertex_positions, vertex_count);
- // compute error
- float result_error = 0.f;
- for (size_t i = 0; i < cell_count; ++i)
- result_error = result_error < cell_errors[i] ? cell_errors[i] : result_error;
- // collapse triangles!
- // note that we need to filter out triangles that we've already output because we very frequently generate redundant triangles between cells :(
- size_t tritable_size = hashBuckets2(min_triangles);
- unsigned int* tritable = allocator.allocate<unsigned int>(tritable_size);
- size_t write = filterTriangles(destination, tritable, tritable_size, indices, index_count, vertex_cells, cell_remap);
- #if TRACE
- printf("result: %d cells, %d triangles (%d unfiltered), error %e\n", int(cell_count), int(write / 3), int(min_triangles), sqrtf(result_error));
- #endif
- if (out_result_error)
- *out_result_error = sqrtf(result_error);
- return write;
- }
- size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_vertex_count)
- {
- using namespace meshopt;
- assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
- assert(vertex_positions_stride % sizeof(float) == 0);
- assert(target_vertex_count <= vertex_count);
- size_t target_cell_count = target_vertex_count;
- if (target_cell_count == 0)
- return 0;
- meshopt_Allocator allocator;
- Vector3* vertex_positions = allocator.allocate<Vector3>(vertex_count);
- rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride);
- // find the optimal grid size using guided binary search
- #if TRACE
- printf("source: %d vertices\n", int(vertex_count));
- printf("target: %d cells\n", int(target_cell_count));
- #endif
- unsigned int* vertex_ids = allocator.allocate<unsigned int>(vertex_count);
- size_t table_size = hashBuckets2(vertex_count);
- unsigned int* table = allocator.allocate<unsigned int>(table_size);
- const int kInterpolationPasses = 5;
- // invariant: # of vertices in min_grid <= target_count
- int min_grid = 0;
- int max_grid = 1025;
- size_t min_vertices = 0;
- size_t max_vertices = vertex_count;
- // instead of starting in the middle, let's guess as to what the answer might be! triangle count usually grows as a square of grid size...
- int next_grid_size = int(sqrtf(float(target_cell_count)) + 0.5f);
- for (int pass = 0; pass < 10 + kInterpolationPasses; ++pass)
- {
- assert(min_vertices < target_vertex_count);
- assert(max_grid - min_grid > 1);
- // we clamp the prediction of the grid size to make sure that the search converges
- int grid_size = next_grid_size;
- grid_size = (grid_size <= min_grid) ? min_grid + 1 : (grid_size >= max_grid) ? max_grid - 1 : grid_size;
- computeVertexIds(vertex_ids, vertex_positions, vertex_count, grid_size);
- size_t vertices = countVertexCells(table, table_size, vertex_ids, vertex_count);
- #if TRACE
- printf("pass %d (%s): grid size %d, vertices %d, %s\n",
- pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses) ? "lerp" : "binary",
- grid_size, int(vertices),
- (vertices <= target_vertex_count) ? "under" : "over");
- #endif
- float tip = interpolate(float(target_vertex_count), float(min_grid), float(min_vertices), float(grid_size), float(vertices), float(max_grid), float(max_vertices));
- if (vertices <= target_vertex_count)
- {
- min_grid = grid_size;
- min_vertices = vertices;
- }
- else
- {
- max_grid = grid_size;
- max_vertices = vertices;
- }
- if (vertices == target_vertex_count || max_grid - min_grid <= 1)
- break;
- // we start by using interpolation search - it usually converges faster
- // however, interpolation search has a worst case of O(N) so we switch to binary search after a few iterations which converges in O(logN)
- next_grid_size = (pass < kInterpolationPasses) ? int(tip + 0.5f) : (min_grid + max_grid) / 2;
- }
- if (min_vertices == 0)
- return 0;
- // build vertex->cell association by mapping all vertices with the same quantized position to the same cell
- unsigned int* vertex_cells = allocator.allocate<unsigned int>(vertex_count);
- computeVertexIds(vertex_ids, vertex_positions, vertex_count, min_grid);
- size_t cell_count = fillVertexCells(table, table_size, vertex_cells, vertex_ids, vertex_count);
- // build a quadric for each target cell
- Quadric* cell_quadrics = allocator.allocate<Quadric>(cell_count);
- memset(cell_quadrics, 0, cell_count * sizeof(Quadric));
- fillCellQuadrics(cell_quadrics, vertex_positions, vertex_count, vertex_cells);
- // for each target cell, find the vertex with the minimal error
- unsigned int* cell_remap = allocator.allocate<unsigned int>(cell_count);
- float* cell_errors = allocator.allocate<float>(cell_count);
- fillCellRemap(cell_remap, cell_errors, cell_count, vertex_cells, cell_quadrics, vertex_positions, vertex_count);
- // copy results to the output
- assert(cell_count <= target_vertex_count);
- memcpy(destination, cell_remap, sizeof(unsigned int) * cell_count);
- #if TRACE
- printf("result: %d cells\n", int(cell_count));
- #endif
- return cell_count;
- }
- float meshopt_simplifyScale(const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
- {
- using namespace meshopt;
- assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
- assert(vertex_positions_stride % sizeof(float) == 0);
- float extent = rescalePositions(NULL, vertex_positions, vertex_count, vertex_positions_stride);
- return extent;
- }
|