xxhash.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826
  1. /*
  2. * xxHash - Fast Hash algorithm
  3. * Copyright (c) 2012-2020, Yann Collet, Facebook, Inc.
  4. *
  5. * You can contact the author at :
  6. * - xxHash homepage: http://www.xxhash.com
  7. * - xxHash source repository : https://github.com/Cyan4973/xxHash
  8. *
  9. * This source code is licensed under both the BSD-style license (found in the
  10. * LICENSE file in the root directory of this source tree) and the GPLv2 (found
  11. * in the COPYING file in the root directory of this source tree).
  12. * You may select, at your option, one of the above-listed licenses.
  13. */
  14. /* *************************************
  15. * Tuning parameters
  16. ***************************************/
  17. /*!XXH_FORCE_MEMORY_ACCESS :
  18. * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
  19. * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
  20. * The below switch allow to select different access method for improved performance.
  21. * Method 0 (default) : use `memcpy()`. Safe and portable.
  22. * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
  23. * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
  24. * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
  25. * It can generate buggy code on targets which do not support unaligned memory accesses.
  26. * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
  27. * See http://stackoverflow.com/a/32095106/646947 for details.
  28. * Prefer these methods in priority order (0 > 1 > 2)
  29. */
  30. #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
  31. # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
  32. # define XXH_FORCE_MEMORY_ACCESS 2
  33. # elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
  34. (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) || \
  35. defined(__ICCARM__)
  36. # define XXH_FORCE_MEMORY_ACCESS 1
  37. # endif
  38. #endif
  39. /*!XXH_ACCEPT_NULL_INPUT_POINTER :
  40. * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
  41. * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
  42. * By default, this option is disabled. To enable it, uncomment below define :
  43. */
  44. /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
  45. /*!XXH_FORCE_NATIVE_FORMAT :
  46. * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
  47. * Results are therefore identical for little-endian and big-endian CPU.
  48. * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
  49. * Should endian-independence be of no importance for your application, you may set the #define below to 1,
  50. * to improve speed for Big-endian CPU.
  51. * This option has no impact on Little_Endian CPU.
  52. */
  53. #ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */
  54. # define XXH_FORCE_NATIVE_FORMAT 0
  55. #endif
  56. /*!XXH_FORCE_ALIGN_CHECK :
  57. * This is a minor performance trick, only useful with lots of very small keys.
  58. * It means : check for aligned/unaligned input.
  59. * The check costs one initial branch per hash; set to 0 when the input data
  60. * is guaranteed to be aligned.
  61. */
  62. #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
  63. # if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
  64. # define XXH_FORCE_ALIGN_CHECK 0
  65. # else
  66. # define XXH_FORCE_ALIGN_CHECK 1
  67. # endif
  68. #endif
  69. /* *************************************
  70. * Includes & Memory related functions
  71. ***************************************/
  72. /* Modify the local functions below should you wish to use some other memory routines */
  73. /* for ZSTD_malloc(), ZSTD_free() */
  74. #define ZSTD_DEPS_NEED_MALLOC
  75. #include "zstd_deps.h" /* size_t, ZSTD_malloc, ZSTD_free, ZSTD_memcpy */
  76. static void* XXH_malloc(size_t s) { return ZSTD_malloc(s); }
  77. static void XXH_free (void* p) { ZSTD_free(p); }
  78. static void* XXH_memcpy(void* dest, const void* src, size_t size) { return ZSTD_memcpy(dest,src,size); }
  79. #ifndef XXH_STATIC_LINKING_ONLY
  80. # define XXH_STATIC_LINKING_ONLY
  81. #endif
  82. #include "xxhash.h"
  83. /* *************************************
  84. * Compiler Specific Options
  85. ***************************************/
  86. #include "compiler.h"
  87. /* *************************************
  88. * Basic Types
  89. ***************************************/
  90. #include "mem.h" /* BYTE, U32, U64, size_t */
  91. #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
  92. /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
  93. static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
  94. static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
  95. #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
  96. /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
  97. /* currently only defined for gcc and icc */
  98. typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
  99. static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
  100. static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
  101. #else
  102. /* portable and safe solution. Generally efficient.
  103. * see : http://stackoverflow.com/a/32095106/646947
  104. */
  105. static U32 XXH_read32(const void* memPtr)
  106. {
  107. U32 val;
  108. ZSTD_memcpy(&val, memPtr, sizeof(val));
  109. return val;
  110. }
  111. static U64 XXH_read64(const void* memPtr)
  112. {
  113. U64 val;
  114. ZSTD_memcpy(&val, memPtr, sizeof(val));
  115. return val;
  116. }
  117. #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
  118. /* ****************************************
  119. * Compiler-specific Functions and Macros
  120. ******************************************/
  121. #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
  122. /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
  123. #if defined(_MSC_VER)
  124. # define XXH_rotl32(x,r) _rotl(x,r)
  125. # define XXH_rotl64(x,r) _rotl64(x,r)
  126. #else
  127. #if defined(__ICCARM__)
  128. # include <intrinsics.h>
  129. # define XXH_rotl32(x,r) __ROR(x,(32 - r))
  130. #else
  131. # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
  132. #endif
  133. # define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
  134. #endif
  135. #if defined(_MSC_VER) /* Visual Studio */
  136. # define XXH_swap32 _byteswap_ulong
  137. # define XXH_swap64 _byteswap_uint64
  138. #elif GCC_VERSION >= 403
  139. # define XXH_swap32 __builtin_bswap32
  140. # define XXH_swap64 __builtin_bswap64
  141. #else
  142. static U32 XXH_swap32 (U32 x)
  143. {
  144. return ((x << 24) & 0xff000000 ) |
  145. ((x << 8) & 0x00ff0000 ) |
  146. ((x >> 8) & 0x0000ff00 ) |
  147. ((x >> 24) & 0x000000ff );
  148. }
  149. static U64 XXH_swap64 (U64 x)
  150. {
  151. return ((x << 56) & 0xff00000000000000ULL) |
  152. ((x << 40) & 0x00ff000000000000ULL) |
  153. ((x << 24) & 0x0000ff0000000000ULL) |
  154. ((x << 8) & 0x000000ff00000000ULL) |
  155. ((x >> 8) & 0x00000000ff000000ULL) |
  156. ((x >> 24) & 0x0000000000ff0000ULL) |
  157. ((x >> 40) & 0x000000000000ff00ULL) |
  158. ((x >> 56) & 0x00000000000000ffULL);
  159. }
  160. #endif
  161. /* *************************************
  162. * Architecture Macros
  163. ***************************************/
  164. typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
  165. /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
  166. #ifndef XXH_CPU_LITTLE_ENDIAN
  167. static const int g_one = 1;
  168. # define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one))
  169. #endif
  170. /* ***************************
  171. * Memory reads
  172. *****************************/
  173. typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
  174. FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
  175. {
  176. if (align==XXH_unaligned)
  177. return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
  178. else
  179. return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
  180. }
  181. FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
  182. {
  183. return XXH_readLE32_align(ptr, endian, XXH_unaligned);
  184. }
  185. static U32 XXH_readBE32(const void* ptr)
  186. {
  187. return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
  188. }
  189. FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
  190. {
  191. if (align==XXH_unaligned)
  192. return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
  193. else
  194. return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
  195. }
  196. FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
  197. {
  198. return XXH_readLE64_align(ptr, endian, XXH_unaligned);
  199. }
  200. static U64 XXH_readBE64(const void* ptr)
  201. {
  202. return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
  203. }
  204. /* *************************************
  205. * Macros
  206. ***************************************/
  207. #define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
  208. /* *************************************
  209. * Constants
  210. ***************************************/
  211. static const U32 PRIME32_1 = 2654435761U;
  212. static const U32 PRIME32_2 = 2246822519U;
  213. static const U32 PRIME32_3 = 3266489917U;
  214. static const U32 PRIME32_4 = 668265263U;
  215. static const U32 PRIME32_5 = 374761393U;
  216. static const U64 PRIME64_1 = 11400714785074694791ULL;
  217. static const U64 PRIME64_2 = 14029467366897019727ULL;
  218. static const U64 PRIME64_3 = 1609587929392839161ULL;
  219. static const U64 PRIME64_4 = 9650029242287828579ULL;
  220. static const U64 PRIME64_5 = 2870177450012600261ULL;
  221. XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
  222. /* **************************
  223. * Utils
  224. ****************************/
  225. XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
  226. {
  227. ZSTD_memcpy(dstState, srcState, sizeof(*dstState));
  228. }
  229. XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
  230. {
  231. ZSTD_memcpy(dstState, srcState, sizeof(*dstState));
  232. }
  233. /* ***************************
  234. * Simple Hash Functions
  235. *****************************/
  236. static U32 XXH32_round(U32 seed, U32 input)
  237. {
  238. seed += input * PRIME32_2;
  239. seed = XXH_rotl32(seed, 13);
  240. seed *= PRIME32_1;
  241. return seed;
  242. }
  243. FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
  244. {
  245. const BYTE* p = (const BYTE*)input;
  246. const BYTE* bEnd = p + len;
  247. U32 h32;
  248. #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
  249. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  250. if (p==NULL) {
  251. len=0;
  252. bEnd=p=(const BYTE*)(size_t)16;
  253. }
  254. #endif
  255. if (len>=16) {
  256. const BYTE* const limit = bEnd - 16;
  257. U32 v1 = seed + PRIME32_1 + PRIME32_2;
  258. U32 v2 = seed + PRIME32_2;
  259. U32 v3 = seed + 0;
  260. U32 v4 = seed - PRIME32_1;
  261. do {
  262. v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
  263. v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
  264. v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
  265. v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
  266. } while (p<=limit);
  267. h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
  268. } else {
  269. h32 = seed + PRIME32_5;
  270. }
  271. h32 += (U32) len;
  272. while (p+4<=bEnd) {
  273. h32 += XXH_get32bits(p) * PRIME32_3;
  274. h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
  275. p+=4;
  276. }
  277. while (p<bEnd) {
  278. h32 += (*p) * PRIME32_5;
  279. h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
  280. p++;
  281. }
  282. h32 ^= h32 >> 15;
  283. h32 *= PRIME32_2;
  284. h32 ^= h32 >> 13;
  285. h32 *= PRIME32_3;
  286. h32 ^= h32 >> 16;
  287. return h32;
  288. }
  289. XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
  290. {
  291. #if 0
  292. /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
  293. XXH32_CREATESTATE_STATIC(state);
  294. XXH32_reset(state, seed);
  295. XXH32_update(state, input, len);
  296. return XXH32_digest(state);
  297. #else
  298. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  299. if (XXH_FORCE_ALIGN_CHECK) {
  300. if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
  301. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  302. return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
  303. else
  304. return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
  305. } }
  306. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  307. return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
  308. else
  309. return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
  310. #endif
  311. }
  312. static U64 XXH64_round(U64 acc, U64 input)
  313. {
  314. acc += input * PRIME64_2;
  315. acc = XXH_rotl64(acc, 31);
  316. acc *= PRIME64_1;
  317. return acc;
  318. }
  319. static U64 XXH64_mergeRound(U64 acc, U64 val)
  320. {
  321. val = XXH64_round(0, val);
  322. acc ^= val;
  323. acc = acc * PRIME64_1 + PRIME64_4;
  324. return acc;
  325. }
  326. FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
  327. {
  328. const BYTE* p = (const BYTE*)input;
  329. const BYTE* const bEnd = p + len;
  330. U64 h64;
  331. #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
  332. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  333. if (p==NULL) {
  334. len=0;
  335. bEnd=p=(const BYTE*)(size_t)32;
  336. }
  337. #endif
  338. if (len>=32) {
  339. const BYTE* const limit = bEnd - 32;
  340. U64 v1 = seed + PRIME64_1 + PRIME64_2;
  341. U64 v2 = seed + PRIME64_2;
  342. U64 v3 = seed + 0;
  343. U64 v4 = seed - PRIME64_1;
  344. do {
  345. v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
  346. v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
  347. v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
  348. v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
  349. } while (p<=limit);
  350. h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
  351. h64 = XXH64_mergeRound(h64, v1);
  352. h64 = XXH64_mergeRound(h64, v2);
  353. h64 = XXH64_mergeRound(h64, v3);
  354. h64 = XXH64_mergeRound(h64, v4);
  355. } else {
  356. h64 = seed + PRIME64_5;
  357. }
  358. h64 += (U64) len;
  359. while (p+8<=bEnd) {
  360. U64 const k1 = XXH64_round(0, XXH_get64bits(p));
  361. h64 ^= k1;
  362. h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
  363. p+=8;
  364. }
  365. if (p+4<=bEnd) {
  366. h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
  367. h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
  368. p+=4;
  369. }
  370. while (p<bEnd) {
  371. h64 ^= (*p) * PRIME64_5;
  372. h64 = XXH_rotl64(h64, 11) * PRIME64_1;
  373. p++;
  374. }
  375. h64 ^= h64 >> 33;
  376. h64 *= PRIME64_2;
  377. h64 ^= h64 >> 29;
  378. h64 *= PRIME64_3;
  379. h64 ^= h64 >> 32;
  380. return h64;
  381. }
  382. XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
  383. {
  384. #if 0
  385. /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
  386. XXH64_CREATESTATE_STATIC(state);
  387. XXH64_reset(state, seed);
  388. XXH64_update(state, input, len);
  389. return XXH64_digest(state);
  390. #else
  391. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  392. if (XXH_FORCE_ALIGN_CHECK) {
  393. if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
  394. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  395. return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
  396. else
  397. return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
  398. } }
  399. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  400. return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
  401. else
  402. return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
  403. #endif
  404. }
  405. /* **************************************************
  406. * Advanced Hash Functions
  407. ****************************************************/
  408. XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
  409. {
  410. return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
  411. }
  412. XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
  413. {
  414. XXH_free(statePtr);
  415. return XXH_OK;
  416. }
  417. XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
  418. {
  419. return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
  420. }
  421. XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
  422. {
  423. XXH_free(statePtr);
  424. return XXH_OK;
  425. }
  426. /*** Hash feed ***/
  427. XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
  428. {
  429. XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
  430. ZSTD_memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */
  431. state.v1 = seed + PRIME32_1 + PRIME32_2;
  432. state.v2 = seed + PRIME32_2;
  433. state.v3 = seed + 0;
  434. state.v4 = seed - PRIME32_1;
  435. ZSTD_memcpy(statePtr, &state, sizeof(state));
  436. return XXH_OK;
  437. }
  438. XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
  439. {
  440. XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
  441. ZSTD_memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */
  442. state.v1 = seed + PRIME64_1 + PRIME64_2;
  443. state.v2 = seed + PRIME64_2;
  444. state.v3 = seed + 0;
  445. state.v4 = seed - PRIME64_1;
  446. ZSTD_memcpy(statePtr, &state, sizeof(state));
  447. return XXH_OK;
  448. }
  449. FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
  450. {
  451. const BYTE* p = (const BYTE*)input;
  452. const BYTE* const bEnd = p + len;
  453. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  454. if (input==NULL) return XXH_ERROR;
  455. #endif
  456. state->total_len_32 += (unsigned)len;
  457. state->large_len |= (len>=16) | (state->total_len_32>=16);
  458. if (state->memsize + len < 16) { /* fill in tmp buffer */
  459. XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
  460. state->memsize += (unsigned)len;
  461. return XXH_OK;
  462. }
  463. if (state->memsize) { /* some data left from previous update */
  464. XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
  465. { const U32* p32 = state->mem32;
  466. state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
  467. state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
  468. state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
  469. state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
  470. }
  471. p += 16-state->memsize;
  472. state->memsize = 0;
  473. }
  474. if (p <= bEnd-16) {
  475. const BYTE* const limit = bEnd - 16;
  476. U32 v1 = state->v1;
  477. U32 v2 = state->v2;
  478. U32 v3 = state->v3;
  479. U32 v4 = state->v4;
  480. do {
  481. v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
  482. v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
  483. v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
  484. v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
  485. } while (p<=limit);
  486. state->v1 = v1;
  487. state->v2 = v2;
  488. state->v3 = v3;
  489. state->v4 = v4;
  490. }
  491. if (p < bEnd) {
  492. XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
  493. state->memsize = (unsigned)(bEnd-p);
  494. }
  495. return XXH_OK;
  496. }
  497. XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
  498. {
  499. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  500. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  501. return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
  502. else
  503. return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
  504. }
  505. FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
  506. {
  507. const BYTE * p = (const BYTE*)state->mem32;
  508. const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
  509. U32 h32;
  510. if (state->large_len) {
  511. h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
  512. } else {
  513. h32 = state->v3 /* == seed */ + PRIME32_5;
  514. }
  515. h32 += state->total_len_32;
  516. while (p+4<=bEnd) {
  517. h32 += XXH_readLE32(p, endian) * PRIME32_3;
  518. h32 = XXH_rotl32(h32, 17) * PRIME32_4;
  519. p+=4;
  520. }
  521. while (p<bEnd) {
  522. h32 += (*p) * PRIME32_5;
  523. h32 = XXH_rotl32(h32, 11) * PRIME32_1;
  524. p++;
  525. }
  526. h32 ^= h32 >> 15;
  527. h32 *= PRIME32_2;
  528. h32 ^= h32 >> 13;
  529. h32 *= PRIME32_3;
  530. h32 ^= h32 >> 16;
  531. return h32;
  532. }
  533. XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
  534. {
  535. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  536. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  537. return XXH32_digest_endian(state_in, XXH_littleEndian);
  538. else
  539. return XXH32_digest_endian(state_in, XXH_bigEndian);
  540. }
  541. /* **** XXH64 **** */
  542. FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
  543. {
  544. const BYTE* p = (const BYTE*)input;
  545. const BYTE* const bEnd = p + len;
  546. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  547. if (input==NULL) return XXH_ERROR;
  548. #endif
  549. state->total_len += len;
  550. if (state->memsize + len < 32) { /* fill in tmp buffer */
  551. if (input != NULL) {
  552. XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
  553. }
  554. state->memsize += (U32)len;
  555. return XXH_OK;
  556. }
  557. if (state->memsize) { /* tmp buffer is full */
  558. XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
  559. state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
  560. state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
  561. state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
  562. state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
  563. p += 32-state->memsize;
  564. state->memsize = 0;
  565. }
  566. if (p+32 <= bEnd) {
  567. const BYTE* const limit = bEnd - 32;
  568. U64 v1 = state->v1;
  569. U64 v2 = state->v2;
  570. U64 v3 = state->v3;
  571. U64 v4 = state->v4;
  572. do {
  573. v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
  574. v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
  575. v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
  576. v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
  577. } while (p<=limit);
  578. state->v1 = v1;
  579. state->v2 = v2;
  580. state->v3 = v3;
  581. state->v4 = v4;
  582. }
  583. if (p < bEnd) {
  584. XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
  585. state->memsize = (unsigned)(bEnd-p);
  586. }
  587. return XXH_OK;
  588. }
  589. XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
  590. {
  591. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  592. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  593. return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
  594. else
  595. return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
  596. }
  597. FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
  598. {
  599. const BYTE * p = (const BYTE*)state->mem64;
  600. const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
  601. U64 h64;
  602. if (state->total_len >= 32) {
  603. U64 const v1 = state->v1;
  604. U64 const v2 = state->v2;
  605. U64 const v3 = state->v3;
  606. U64 const v4 = state->v4;
  607. h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
  608. h64 = XXH64_mergeRound(h64, v1);
  609. h64 = XXH64_mergeRound(h64, v2);
  610. h64 = XXH64_mergeRound(h64, v3);
  611. h64 = XXH64_mergeRound(h64, v4);
  612. } else {
  613. h64 = state->v3 + PRIME64_5;
  614. }
  615. h64 += (U64) state->total_len;
  616. while (p+8<=bEnd) {
  617. U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
  618. h64 ^= k1;
  619. h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
  620. p+=8;
  621. }
  622. if (p+4<=bEnd) {
  623. h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
  624. h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
  625. p+=4;
  626. }
  627. while (p<bEnd) {
  628. h64 ^= (*p) * PRIME64_5;
  629. h64 = XXH_rotl64(h64, 11) * PRIME64_1;
  630. p++;
  631. }
  632. h64 ^= h64 >> 33;
  633. h64 *= PRIME64_2;
  634. h64 ^= h64 >> 29;
  635. h64 *= PRIME64_3;
  636. h64 ^= h64 >> 32;
  637. return h64;
  638. }
  639. XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
  640. {
  641. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  642. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  643. return XXH64_digest_endian(state_in, XXH_littleEndian);
  644. else
  645. return XXH64_digest_endian(state_in, XXH_bigEndian);
  646. }
  647. /* **************************
  648. * Canonical representation
  649. ****************************/
  650. /*! Default XXH result types are basic unsigned 32 and 64 bits.
  651. * The canonical representation follows human-readable write convention, aka big-endian (large digits first).
  652. * These functions allow transformation of hash result into and from its canonical format.
  653. * This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
  654. */
  655. XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
  656. {
  657. XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
  658. if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
  659. ZSTD_memcpy(dst, &hash, sizeof(*dst));
  660. }
  661. XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
  662. {
  663. XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
  664. if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
  665. ZSTD_memcpy(dst, &hash, sizeof(*dst));
  666. }
  667. XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
  668. {
  669. return XXH_readBE32(src);
  670. }
  671. XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
  672. {
  673. return XXH_readBE64(src);
  674. }