renderer_scene_render_rd.cpp 345 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971
  1. /*************************************************************************/
  2. /* renderer_scene_render_rd.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "renderer_scene_render_rd.h"
  31. #include "core/config/project_settings.h"
  32. #include "core/os/os.h"
  33. #include "renderer_compositor_rd.h"
  34. #include "servers/rendering/rendering_server_default.h"
  35. uint64_t RendererSceneRenderRD::auto_exposure_counter = 2;
  36. void get_vogel_disk(float *r_kernel, int p_sample_count) {
  37. const float golden_angle = 2.4;
  38. for (int i = 0; i < p_sample_count; i++) {
  39. float r = Math::sqrt(float(i) + 0.5) / Math::sqrt(float(p_sample_count));
  40. float theta = float(i) * golden_angle;
  41. r_kernel[i * 4] = Math::cos(theta) * r;
  42. r_kernel[i * 4 + 1] = Math::sin(theta) * r;
  43. }
  44. }
  45. void RendererSceneRenderRD::_clear_reflection_data(ReflectionData &rd) {
  46. rd.layers.clear();
  47. rd.radiance_base_cubemap = RID();
  48. if (rd.downsampled_radiance_cubemap.is_valid()) {
  49. RD::get_singleton()->free(rd.downsampled_radiance_cubemap);
  50. }
  51. rd.downsampled_radiance_cubemap = RID();
  52. rd.downsampled_layer.mipmaps.clear();
  53. rd.coefficient_buffer = RID();
  54. }
  55. void RendererSceneRenderRD::_update_reflection_data(ReflectionData &rd, int p_size, int p_mipmaps, bool p_use_array, RID p_base_cube, int p_base_layer, bool p_low_quality) {
  56. //recreate radiance and all data
  57. int mipmaps = p_mipmaps;
  58. uint32_t w = p_size, h = p_size;
  59. if (p_use_array) {
  60. int layers = p_low_quality ? 8 : roughness_layers;
  61. for (int i = 0; i < layers; i++) {
  62. ReflectionData::Layer layer;
  63. uint32_t mmw = w;
  64. uint32_t mmh = h;
  65. layer.mipmaps.resize(mipmaps);
  66. layer.views.resize(mipmaps);
  67. for (int j = 0; j < mipmaps; j++) {
  68. ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j];
  69. mm.size.width = mmw;
  70. mm.size.height = mmh;
  71. for (int k = 0; k < 6; k++) {
  72. mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6 + k, j);
  73. Vector<RID> fbtex;
  74. fbtex.push_back(mm.views[k]);
  75. mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex);
  76. }
  77. layer.views.write[j] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6, j, RD::TEXTURE_SLICE_CUBEMAP);
  78. mmw = MAX(1, mmw >> 1);
  79. mmh = MAX(1, mmh >> 1);
  80. }
  81. rd.layers.push_back(layer);
  82. }
  83. } else {
  84. mipmaps = p_low_quality ? 8 : mipmaps;
  85. //regular cubemap, lower quality (aliasing, less memory)
  86. ReflectionData::Layer layer;
  87. uint32_t mmw = w;
  88. uint32_t mmh = h;
  89. layer.mipmaps.resize(mipmaps);
  90. layer.views.resize(mipmaps);
  91. for (int j = 0; j < mipmaps; j++) {
  92. ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j];
  93. mm.size.width = mmw;
  94. mm.size.height = mmh;
  95. for (int k = 0; k < 6; k++) {
  96. mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + k, j);
  97. Vector<RID> fbtex;
  98. fbtex.push_back(mm.views[k]);
  99. mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex);
  100. }
  101. layer.views.write[j] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, j, RD::TEXTURE_SLICE_CUBEMAP);
  102. mmw = MAX(1, mmw >> 1);
  103. mmh = MAX(1, mmh >> 1);
  104. }
  105. rd.layers.push_back(layer);
  106. }
  107. rd.radiance_base_cubemap = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, 0, RD::TEXTURE_SLICE_CUBEMAP);
  108. RD::TextureFormat tf;
  109. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  110. tf.width = 64; // Always 64x64
  111. tf.height = 64;
  112. tf.texture_type = RD::TEXTURE_TYPE_CUBE;
  113. tf.array_layers = 6;
  114. tf.mipmaps = 7;
  115. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  116. rd.downsampled_radiance_cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView());
  117. {
  118. uint32_t mmw = 64;
  119. uint32_t mmh = 64;
  120. rd.downsampled_layer.mipmaps.resize(7);
  121. for (int j = 0; j < rd.downsampled_layer.mipmaps.size(); j++) {
  122. ReflectionData::DownsampleLayer::Mipmap &mm = rd.downsampled_layer.mipmaps.write[j];
  123. mm.size.width = mmw;
  124. mm.size.height = mmh;
  125. mm.view = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rd.downsampled_radiance_cubemap, 0, j, RD::TEXTURE_SLICE_CUBEMAP);
  126. mmw = MAX(1, mmw >> 1);
  127. mmh = MAX(1, mmh >> 1);
  128. }
  129. }
  130. }
  131. void RendererSceneRenderRD::_create_reflection_fast_filter(ReflectionData &rd, bool p_use_arrays) {
  132. storage->get_effects()->cubemap_downsample(rd.radiance_base_cubemap, rd.downsampled_layer.mipmaps[0].view, rd.downsampled_layer.mipmaps[0].size);
  133. for (int i = 1; i < rd.downsampled_layer.mipmaps.size(); i++) {
  134. storage->get_effects()->cubemap_downsample(rd.downsampled_layer.mipmaps[i - 1].view, rd.downsampled_layer.mipmaps[i].view, rd.downsampled_layer.mipmaps[i].size);
  135. }
  136. Vector<RID> views;
  137. if (p_use_arrays) {
  138. for (int i = 1; i < rd.layers.size(); i++) {
  139. views.push_back(rd.layers[i].views[0]);
  140. }
  141. } else {
  142. for (int i = 1; i < rd.layers[0].views.size(); i++) {
  143. views.push_back(rd.layers[0].views[i]);
  144. }
  145. }
  146. storage->get_effects()->cubemap_filter(rd.downsampled_radiance_cubemap, views, p_use_arrays);
  147. }
  148. void RendererSceneRenderRD::_create_reflection_importance_sample(ReflectionData &rd, bool p_use_arrays, int p_cube_side, int p_base_layer) {
  149. if (p_use_arrays) {
  150. //render directly to the layers
  151. storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, rd.layers[p_base_layer].views[0], p_cube_side, sky_ggx_samples_quality, float(p_base_layer) / (rd.layers.size() - 1.0), rd.layers[p_base_layer].mipmaps[0].size.x);
  152. } else {
  153. storage->get_effects()->cubemap_roughness(rd.layers[0].views[p_base_layer - 1], rd.layers[0].views[p_base_layer], p_cube_side, sky_ggx_samples_quality, float(p_base_layer) / (rd.layers[0].mipmaps.size() - 1.0), rd.layers[0].mipmaps[p_base_layer].size.x);
  154. }
  155. }
  156. void RendererSceneRenderRD::_update_reflection_mipmaps(ReflectionData &rd, int p_start, int p_end) {
  157. for (int i = p_start; i < p_end; i++) {
  158. for (int j = 0; j < rd.layers[i].views.size() - 1; j++) {
  159. RID view = rd.layers[i].views[j];
  160. RID texture = rd.layers[i].views[j + 1];
  161. Size2i size = rd.layers[i].mipmaps[j + 1].size;
  162. storage->get_effects()->cubemap_downsample(view, texture, size);
  163. }
  164. }
  165. }
  166. void RendererSceneRenderRD::_sdfgi_erase(RenderBuffers *rb) {
  167. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  168. const SDFGI::Cascade &c = rb->sdfgi->cascades[i];
  169. RD::get_singleton()->free(c.light_data);
  170. RD::get_singleton()->free(c.light_aniso_0_tex);
  171. RD::get_singleton()->free(c.light_aniso_1_tex);
  172. RD::get_singleton()->free(c.sdf_tex);
  173. RD::get_singleton()->free(c.solid_cell_dispatch_buffer);
  174. RD::get_singleton()->free(c.solid_cell_buffer);
  175. RD::get_singleton()->free(c.lightprobe_history_tex);
  176. RD::get_singleton()->free(c.lightprobe_average_tex);
  177. RD::get_singleton()->free(c.lights_buffer);
  178. }
  179. RD::get_singleton()->free(rb->sdfgi->render_albedo);
  180. RD::get_singleton()->free(rb->sdfgi->render_emission);
  181. RD::get_singleton()->free(rb->sdfgi->render_emission_aniso);
  182. RD::get_singleton()->free(rb->sdfgi->render_sdf[0]);
  183. RD::get_singleton()->free(rb->sdfgi->render_sdf[1]);
  184. RD::get_singleton()->free(rb->sdfgi->render_sdf_half[0]);
  185. RD::get_singleton()->free(rb->sdfgi->render_sdf_half[1]);
  186. for (int i = 0; i < 8; i++) {
  187. RD::get_singleton()->free(rb->sdfgi->render_occlusion[i]);
  188. }
  189. RD::get_singleton()->free(rb->sdfgi->render_geom_facing);
  190. RD::get_singleton()->free(rb->sdfgi->lightprobe_data);
  191. RD::get_singleton()->free(rb->sdfgi->lightprobe_history_scroll);
  192. RD::get_singleton()->free(rb->sdfgi->occlusion_data);
  193. RD::get_singleton()->free(rb->sdfgi->ambient_texture);
  194. RD::get_singleton()->free(rb->sdfgi->cascades_ubo);
  195. memdelete(rb->sdfgi);
  196. rb->sdfgi = nullptr;
  197. }
  198. const Vector3i RendererSceneRenderRD::SDFGI::Cascade::DIRTY_ALL = Vector3i(0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF);
  199. void RendererSceneRenderRD::sdfgi_update(RID p_render_buffers, RID p_environment, const Vector3 &p_world_position) {
  200. Environment *env = environment_owner.getornull(p_environment);
  201. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  202. bool needs_sdfgi = env && env->sdfgi_enabled;
  203. if (!needs_sdfgi) {
  204. if (rb->sdfgi != nullptr) {
  205. //erase it
  206. _sdfgi_erase(rb);
  207. _render_buffers_uniform_set_changed(p_render_buffers);
  208. }
  209. return;
  210. }
  211. static const uint32_t history_frames_to_converge[RS::ENV_SDFGI_CONVERGE_MAX] = { 5, 10, 15, 20, 25, 30 };
  212. uint32_t requested_history_size = history_frames_to_converge[sdfgi_frames_to_converge];
  213. if (rb->sdfgi && (rb->sdfgi->cascade_mode != env->sdfgi_cascades || rb->sdfgi->min_cell_size != env->sdfgi_min_cell_size || requested_history_size != rb->sdfgi->history_size || rb->sdfgi->uses_occlusion != env->sdfgi_use_occlusion || rb->sdfgi->y_scale_mode != env->sdfgi_y_scale)) {
  214. //configuration changed, erase
  215. _sdfgi_erase(rb);
  216. }
  217. SDFGI *sdfgi = rb->sdfgi;
  218. if (sdfgi == nullptr) {
  219. //re-create
  220. rb->sdfgi = memnew(SDFGI);
  221. sdfgi = rb->sdfgi;
  222. sdfgi->cascade_mode = env->sdfgi_cascades;
  223. sdfgi->min_cell_size = env->sdfgi_min_cell_size;
  224. sdfgi->uses_occlusion = env->sdfgi_use_occlusion;
  225. sdfgi->y_scale_mode = env->sdfgi_y_scale;
  226. static const float y_scale[3] = { 1.0, 1.5, 2.0 };
  227. sdfgi->y_mult = y_scale[sdfgi->y_scale_mode];
  228. static const int cascasde_size[3] = { 4, 6, 8 };
  229. sdfgi->cascades.resize(cascasde_size[sdfgi->cascade_mode]);
  230. sdfgi->probe_axis_count = SDFGI::PROBE_DIVISOR + 1;
  231. sdfgi->solid_cell_ratio = sdfgi_solid_cell_ratio;
  232. sdfgi->solid_cell_count = uint32_t(float(sdfgi->cascade_size * sdfgi->cascade_size * sdfgi->cascade_size) * sdfgi->solid_cell_ratio);
  233. float base_cell_size = sdfgi->min_cell_size;
  234. RD::TextureFormat tf_sdf;
  235. tf_sdf.format = RD::DATA_FORMAT_R8_UNORM;
  236. tf_sdf.width = sdfgi->cascade_size; // Always 64x64
  237. tf_sdf.height = sdfgi->cascade_size;
  238. tf_sdf.depth = sdfgi->cascade_size;
  239. tf_sdf.texture_type = RD::TEXTURE_TYPE_3D;
  240. tf_sdf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  241. {
  242. RD::TextureFormat tf_render = tf_sdf;
  243. tf_render.format = RD::DATA_FORMAT_R16_UINT;
  244. sdfgi->render_albedo = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  245. tf_render.format = RD::DATA_FORMAT_R32_UINT;
  246. sdfgi->render_emission = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  247. sdfgi->render_emission_aniso = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  248. tf_render.format = RD::DATA_FORMAT_R8_UNORM; //at least its easy to visualize
  249. for (int i = 0; i < 8; i++) {
  250. sdfgi->render_occlusion[i] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  251. }
  252. tf_render.format = RD::DATA_FORMAT_R32_UINT;
  253. sdfgi->render_geom_facing = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  254. tf_render.format = RD::DATA_FORMAT_R8G8B8A8_UINT;
  255. sdfgi->render_sdf[0] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  256. sdfgi->render_sdf[1] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  257. tf_render.width /= 2;
  258. tf_render.height /= 2;
  259. tf_render.depth /= 2;
  260. sdfgi->render_sdf_half[0] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  261. sdfgi->render_sdf_half[1] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  262. }
  263. RD::TextureFormat tf_occlusion = tf_sdf;
  264. tf_occlusion.format = RD::DATA_FORMAT_R16_UINT;
  265. tf_occlusion.shareable_formats.push_back(RD::DATA_FORMAT_R16_UINT);
  266. tf_occlusion.shareable_formats.push_back(RD::DATA_FORMAT_R4G4B4A4_UNORM_PACK16);
  267. tf_occlusion.depth *= sdfgi->cascades.size(); //use depth for occlusion slices
  268. tf_occlusion.width *= 2; //use width for the other half
  269. RD::TextureFormat tf_light = tf_sdf;
  270. tf_light.format = RD::DATA_FORMAT_R32_UINT;
  271. tf_light.shareable_formats.push_back(RD::DATA_FORMAT_R32_UINT);
  272. tf_light.shareable_formats.push_back(RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32);
  273. RD::TextureFormat tf_aniso0 = tf_sdf;
  274. tf_aniso0.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  275. RD::TextureFormat tf_aniso1 = tf_sdf;
  276. tf_aniso1.format = RD::DATA_FORMAT_R8G8_UNORM;
  277. int passes = nearest_shift(sdfgi->cascade_size) - 1;
  278. //store lightprobe SH
  279. RD::TextureFormat tf_probes;
  280. tf_probes.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  281. tf_probes.width = sdfgi->probe_axis_count * sdfgi->probe_axis_count;
  282. tf_probes.height = sdfgi->probe_axis_count * SDFGI::SH_SIZE;
  283. tf_probes.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  284. tf_probes.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  285. sdfgi->history_size = requested_history_size;
  286. RD::TextureFormat tf_probe_history = tf_probes;
  287. tf_probe_history.format = RD::DATA_FORMAT_R16G16B16A16_SINT; //signed integer because SH are signed
  288. tf_probe_history.array_layers = sdfgi->history_size;
  289. RD::TextureFormat tf_probe_average = tf_probes;
  290. tf_probe_average.format = RD::DATA_FORMAT_R32G32B32A32_SINT; //signed integer because SH are signed
  291. tf_probe_average.texture_type = RD::TEXTURE_TYPE_2D;
  292. sdfgi->lightprobe_history_scroll = RD::get_singleton()->texture_create(tf_probe_history, RD::TextureView());
  293. sdfgi->lightprobe_average_scroll = RD::get_singleton()->texture_create(tf_probe_average, RD::TextureView());
  294. {
  295. //octahedral lightprobes
  296. RD::TextureFormat tf_octprobes = tf_probes;
  297. tf_octprobes.array_layers = sdfgi->cascades.size() * 2;
  298. tf_octprobes.format = RD::DATA_FORMAT_R32_UINT; //pack well with RGBE
  299. tf_octprobes.width = sdfgi->probe_axis_count * sdfgi->probe_axis_count * (SDFGI::LIGHTPROBE_OCT_SIZE + 2);
  300. tf_octprobes.height = sdfgi->probe_axis_count * (SDFGI::LIGHTPROBE_OCT_SIZE + 2);
  301. tf_octprobes.shareable_formats.push_back(RD::DATA_FORMAT_R32_UINT);
  302. tf_octprobes.shareable_formats.push_back(RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32);
  303. //lightprobe texture is an octahedral texture
  304. sdfgi->lightprobe_data = RD::get_singleton()->texture_create(tf_octprobes, RD::TextureView());
  305. RD::TextureView tv;
  306. tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32;
  307. sdfgi->lightprobe_texture = RD::get_singleton()->texture_create_shared(tv, sdfgi->lightprobe_data);
  308. //texture handling ambient data, to integrate with volumetric foc
  309. RD::TextureFormat tf_ambient = tf_probes;
  310. tf_ambient.array_layers = sdfgi->cascades.size();
  311. tf_ambient.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; //pack well with RGBE
  312. tf_ambient.width = sdfgi->probe_axis_count * sdfgi->probe_axis_count;
  313. tf_ambient.height = sdfgi->probe_axis_count;
  314. tf_ambient.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  315. //lightprobe texture is an octahedral texture
  316. sdfgi->ambient_texture = RD::get_singleton()->texture_create(tf_ambient, RD::TextureView());
  317. }
  318. sdfgi->cascades_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES);
  319. sdfgi->occlusion_data = RD::get_singleton()->texture_create(tf_occlusion, RD::TextureView());
  320. {
  321. RD::TextureView tv;
  322. tv.format_override = RD::DATA_FORMAT_R4G4B4A4_UNORM_PACK16;
  323. sdfgi->occlusion_texture = RD::get_singleton()->texture_create_shared(tv, sdfgi->occlusion_data);
  324. }
  325. for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) {
  326. SDFGI::Cascade &cascade = sdfgi->cascades[i];
  327. /* 3D Textures */
  328. cascade.sdf_tex = RD::get_singleton()->texture_create(tf_sdf, RD::TextureView());
  329. cascade.light_data = RD::get_singleton()->texture_create(tf_light, RD::TextureView());
  330. cascade.light_aniso_0_tex = RD::get_singleton()->texture_create(tf_aniso0, RD::TextureView());
  331. cascade.light_aniso_1_tex = RD::get_singleton()->texture_create(tf_aniso1, RD::TextureView());
  332. {
  333. RD::TextureView tv;
  334. tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32;
  335. cascade.light_tex = RD::get_singleton()->texture_create_shared(tv, cascade.light_data);
  336. RD::get_singleton()->texture_clear(cascade.light_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  337. RD::get_singleton()->texture_clear(cascade.light_aniso_0_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  338. RD::get_singleton()->texture_clear(cascade.light_aniso_1_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  339. }
  340. cascade.cell_size = base_cell_size;
  341. Vector3 world_position = p_world_position;
  342. world_position.y *= sdfgi->y_mult;
  343. int32_t probe_cells = sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  344. Vector3 probe_size = Vector3(1, 1, 1) * cascade.cell_size * probe_cells;
  345. Vector3i probe_pos = Vector3i((world_position / probe_size + Vector3(0.5, 0.5, 0.5)).floor());
  346. cascade.position = probe_pos * probe_cells;
  347. cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
  348. base_cell_size *= 2.0;
  349. /* Probe History */
  350. cascade.lightprobe_history_tex = RD::get_singleton()->texture_create(tf_probe_history, RD::TextureView());
  351. RD::get_singleton()->texture_clear(cascade.lightprobe_history_tex, Color(0, 0, 0, 0), 0, 1, 0, tf_probe_history.array_layers); //needs to be cleared for average to work
  352. cascade.lightprobe_average_tex = RD::get_singleton()->texture_create(tf_probe_average, RD::TextureView());
  353. RD::get_singleton()->texture_clear(cascade.lightprobe_average_tex, Color(0, 0, 0, 0), 0, 1, 0, 1); //needs to be cleared for average to work
  354. /* Buffers */
  355. cascade.solid_cell_buffer = RD::get_singleton()->storage_buffer_create(sizeof(SDFGI::Cascade::SolidCell) * sdfgi->solid_cell_count);
  356. cascade.solid_cell_dispatch_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4, Vector<uint8_t>(), RD::STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT);
  357. cascade.lights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(SDGIShader::Light) * MAX(SDFGI::MAX_STATIC_LIGHTS, SDFGI::MAX_DYNAMIC_LIGHTS));
  358. {
  359. Vector<RD::Uniform> uniforms;
  360. {
  361. RD::Uniform u;
  362. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  363. u.binding = 1;
  364. u.ids.push_back(sdfgi->render_sdf[(passes & 1) ? 1 : 0]); //if passes are even, we read from buffer 0, else we read from buffer 1
  365. uniforms.push_back(u);
  366. }
  367. {
  368. RD::Uniform u;
  369. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  370. u.binding = 2;
  371. u.ids.push_back(sdfgi->render_albedo);
  372. uniforms.push_back(u);
  373. }
  374. {
  375. RD::Uniform u;
  376. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  377. u.binding = 3;
  378. for (int j = 0; j < 8; j++) {
  379. u.ids.push_back(sdfgi->render_occlusion[j]);
  380. }
  381. uniforms.push_back(u);
  382. }
  383. {
  384. RD::Uniform u;
  385. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  386. u.binding = 4;
  387. u.ids.push_back(sdfgi->render_emission);
  388. uniforms.push_back(u);
  389. }
  390. {
  391. RD::Uniform u;
  392. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  393. u.binding = 5;
  394. u.ids.push_back(sdfgi->render_emission_aniso);
  395. uniforms.push_back(u);
  396. }
  397. {
  398. RD::Uniform u;
  399. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  400. u.binding = 6;
  401. u.ids.push_back(sdfgi->render_geom_facing);
  402. uniforms.push_back(u);
  403. }
  404. {
  405. RD::Uniform u;
  406. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  407. u.binding = 7;
  408. u.ids.push_back(cascade.sdf_tex);
  409. uniforms.push_back(u);
  410. }
  411. {
  412. RD::Uniform u;
  413. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  414. u.binding = 8;
  415. u.ids.push_back(sdfgi->occlusion_data);
  416. uniforms.push_back(u);
  417. }
  418. {
  419. RD::Uniform u;
  420. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  421. u.binding = 10;
  422. u.ids.push_back(cascade.solid_cell_dispatch_buffer);
  423. uniforms.push_back(u);
  424. }
  425. {
  426. RD::Uniform u;
  427. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  428. u.binding = 11;
  429. u.ids.push_back(cascade.solid_cell_buffer);
  430. uniforms.push_back(u);
  431. }
  432. cascade.sdf_store_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_STORE), 0);
  433. }
  434. {
  435. Vector<RD::Uniform> uniforms;
  436. {
  437. RD::Uniform u;
  438. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  439. u.binding = 1;
  440. u.ids.push_back(sdfgi->render_albedo);
  441. uniforms.push_back(u);
  442. }
  443. {
  444. RD::Uniform u;
  445. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  446. u.binding = 2;
  447. u.ids.push_back(sdfgi->render_geom_facing);
  448. uniforms.push_back(u);
  449. }
  450. {
  451. RD::Uniform u;
  452. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  453. u.binding = 3;
  454. u.ids.push_back(sdfgi->render_emission);
  455. uniforms.push_back(u);
  456. }
  457. {
  458. RD::Uniform u;
  459. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  460. u.binding = 4;
  461. u.ids.push_back(sdfgi->render_emission_aniso);
  462. uniforms.push_back(u);
  463. }
  464. {
  465. RD::Uniform u;
  466. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  467. u.binding = 5;
  468. u.ids.push_back(cascade.solid_cell_dispatch_buffer);
  469. uniforms.push_back(u);
  470. }
  471. {
  472. RD::Uniform u;
  473. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  474. u.binding = 6;
  475. u.ids.push_back(cascade.solid_cell_buffer);
  476. uniforms.push_back(u);
  477. }
  478. cascade.scroll_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_SCROLL), 0);
  479. }
  480. {
  481. Vector<RD::Uniform> uniforms;
  482. {
  483. RD::Uniform u;
  484. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  485. u.binding = 1;
  486. for (int j = 0; j < 8; j++) {
  487. u.ids.push_back(sdfgi->render_occlusion[j]);
  488. }
  489. uniforms.push_back(u);
  490. }
  491. {
  492. RD::Uniform u;
  493. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  494. u.binding = 2;
  495. u.ids.push_back(sdfgi->occlusion_data);
  496. uniforms.push_back(u);
  497. }
  498. cascade.scroll_occlusion_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_SCROLL_OCCLUSION), 0);
  499. }
  500. }
  501. //direct light
  502. for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) {
  503. SDFGI::Cascade &cascade = sdfgi->cascades[i];
  504. Vector<RD::Uniform> uniforms;
  505. {
  506. RD::Uniform u;
  507. u.binding = 1;
  508. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  509. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  510. if (j < rb->sdfgi->cascades.size()) {
  511. u.ids.push_back(rb->sdfgi->cascades[j].sdf_tex);
  512. } else {
  513. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  514. }
  515. }
  516. uniforms.push_back(u);
  517. }
  518. {
  519. RD::Uniform u;
  520. u.binding = 2;
  521. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  522. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  523. uniforms.push_back(u);
  524. }
  525. {
  526. RD::Uniform u;
  527. u.binding = 3;
  528. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  529. u.ids.push_back(cascade.solid_cell_dispatch_buffer);
  530. uniforms.push_back(u);
  531. }
  532. {
  533. RD::Uniform u;
  534. u.binding = 4;
  535. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  536. u.ids.push_back(cascade.solid_cell_buffer);
  537. uniforms.push_back(u);
  538. }
  539. {
  540. RD::Uniform u;
  541. u.binding = 5;
  542. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  543. u.ids.push_back(cascade.light_data);
  544. uniforms.push_back(u);
  545. }
  546. {
  547. RD::Uniform u;
  548. u.binding = 6;
  549. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  550. u.ids.push_back(cascade.light_aniso_0_tex);
  551. uniforms.push_back(u);
  552. }
  553. {
  554. RD::Uniform u;
  555. u.binding = 7;
  556. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  557. u.ids.push_back(cascade.light_aniso_1_tex);
  558. uniforms.push_back(u);
  559. }
  560. {
  561. RD::Uniform u;
  562. u.binding = 8;
  563. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  564. u.ids.push_back(rb->sdfgi->cascades_ubo);
  565. uniforms.push_back(u);
  566. }
  567. {
  568. RD::Uniform u;
  569. u.binding = 9;
  570. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  571. u.ids.push_back(cascade.lights_buffer);
  572. uniforms.push_back(u);
  573. }
  574. {
  575. RD::Uniform u;
  576. u.binding = 10;
  577. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  578. u.ids.push_back(rb->sdfgi->lightprobe_texture);
  579. uniforms.push_back(u);
  580. }
  581. cascade.sdf_direct_light_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.direct_light.version_get_shader(sdfgi_shader.direct_light_shader, 0), 0);
  582. }
  583. //preprocess initialize uniform set
  584. {
  585. Vector<RD::Uniform> uniforms;
  586. {
  587. RD::Uniform u;
  588. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  589. u.binding = 1;
  590. u.ids.push_back(sdfgi->render_albedo);
  591. uniforms.push_back(u);
  592. }
  593. {
  594. RD::Uniform u;
  595. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  596. u.binding = 2;
  597. u.ids.push_back(sdfgi->render_sdf[0]);
  598. uniforms.push_back(u);
  599. }
  600. sdfgi->sdf_initialize_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE), 0);
  601. }
  602. {
  603. Vector<RD::Uniform> uniforms;
  604. {
  605. RD::Uniform u;
  606. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  607. u.binding = 1;
  608. u.ids.push_back(sdfgi->render_albedo);
  609. uniforms.push_back(u);
  610. }
  611. {
  612. RD::Uniform u;
  613. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  614. u.binding = 2;
  615. u.ids.push_back(sdfgi->render_sdf_half[0]);
  616. uniforms.push_back(u);
  617. }
  618. sdfgi->sdf_initialize_half_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF), 0);
  619. }
  620. //jump flood uniform set
  621. {
  622. Vector<RD::Uniform> uniforms;
  623. {
  624. RD::Uniform u;
  625. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  626. u.binding = 1;
  627. u.ids.push_back(sdfgi->render_sdf[0]);
  628. uniforms.push_back(u);
  629. }
  630. {
  631. RD::Uniform u;
  632. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  633. u.binding = 2;
  634. u.ids.push_back(sdfgi->render_sdf[1]);
  635. uniforms.push_back(u);
  636. }
  637. sdfgi->jump_flood_uniform_set[0] = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  638. SWAP(uniforms.write[0].ids.write[0], uniforms.write[1].ids.write[0]);
  639. sdfgi->jump_flood_uniform_set[1] = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  640. }
  641. //jump flood half uniform set
  642. {
  643. Vector<RD::Uniform> uniforms;
  644. {
  645. RD::Uniform u;
  646. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  647. u.binding = 1;
  648. u.ids.push_back(sdfgi->render_sdf_half[0]);
  649. uniforms.push_back(u);
  650. }
  651. {
  652. RD::Uniform u;
  653. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  654. u.binding = 2;
  655. u.ids.push_back(sdfgi->render_sdf_half[1]);
  656. uniforms.push_back(u);
  657. }
  658. sdfgi->jump_flood_half_uniform_set[0] = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  659. SWAP(uniforms.write[0].ids.write[0], uniforms.write[1].ids.write[0]);
  660. sdfgi->jump_flood_half_uniform_set[1] = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  661. }
  662. //upscale half size sdf
  663. {
  664. Vector<RD::Uniform> uniforms;
  665. {
  666. RD::Uniform u;
  667. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  668. u.binding = 1;
  669. u.ids.push_back(sdfgi->render_albedo);
  670. uniforms.push_back(u);
  671. }
  672. {
  673. RD::Uniform u;
  674. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  675. u.binding = 2;
  676. u.ids.push_back(sdfgi->render_sdf_half[(passes & 1) ? 0 : 1]); //reverse pass order because half size
  677. uniforms.push_back(u);
  678. }
  679. {
  680. RD::Uniform u;
  681. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  682. u.binding = 3;
  683. u.ids.push_back(sdfgi->render_sdf[(passes & 1) ? 0 : 1]); //reverse pass order because it needs an extra JFA pass
  684. uniforms.push_back(u);
  685. }
  686. sdfgi->upscale_jfa_uniform_set_index = (passes & 1) ? 0 : 1;
  687. sdfgi->sdf_upscale_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD_UPSCALE), 0);
  688. }
  689. //occlusion uniform set
  690. {
  691. Vector<RD::Uniform> uniforms;
  692. {
  693. RD::Uniform u;
  694. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  695. u.binding = 1;
  696. u.ids.push_back(sdfgi->render_albedo);
  697. uniforms.push_back(u);
  698. }
  699. {
  700. RD::Uniform u;
  701. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  702. u.binding = 2;
  703. for (int i = 0; i < 8; i++) {
  704. u.ids.push_back(sdfgi->render_occlusion[i]);
  705. }
  706. uniforms.push_back(u);
  707. }
  708. {
  709. RD::Uniform u;
  710. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  711. u.binding = 3;
  712. u.ids.push_back(sdfgi->render_geom_facing);
  713. uniforms.push_back(u);
  714. }
  715. sdfgi->occlusion_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_OCCLUSION), 0);
  716. }
  717. for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) {
  718. //integrate uniform
  719. Vector<RD::Uniform> uniforms;
  720. {
  721. RD::Uniform u;
  722. u.binding = 1;
  723. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  724. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  725. if (j < sdfgi->cascades.size()) {
  726. u.ids.push_back(sdfgi->cascades[j].sdf_tex);
  727. } else {
  728. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  729. }
  730. }
  731. uniforms.push_back(u);
  732. }
  733. {
  734. RD::Uniform u;
  735. u.binding = 2;
  736. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  737. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  738. if (j < sdfgi->cascades.size()) {
  739. u.ids.push_back(sdfgi->cascades[j].light_tex);
  740. } else {
  741. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  742. }
  743. }
  744. uniforms.push_back(u);
  745. }
  746. {
  747. RD::Uniform u;
  748. u.binding = 3;
  749. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  750. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  751. if (j < sdfgi->cascades.size()) {
  752. u.ids.push_back(sdfgi->cascades[j].light_aniso_0_tex);
  753. } else {
  754. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  755. }
  756. }
  757. uniforms.push_back(u);
  758. }
  759. {
  760. RD::Uniform u;
  761. u.binding = 4;
  762. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  763. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  764. if (j < sdfgi->cascades.size()) {
  765. u.ids.push_back(sdfgi->cascades[j].light_aniso_1_tex);
  766. } else {
  767. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  768. }
  769. }
  770. uniforms.push_back(u);
  771. }
  772. {
  773. RD::Uniform u;
  774. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  775. u.binding = 6;
  776. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  777. uniforms.push_back(u);
  778. }
  779. {
  780. RD::Uniform u;
  781. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  782. u.binding = 7;
  783. u.ids.push_back(sdfgi->cascades_ubo);
  784. uniforms.push_back(u);
  785. }
  786. {
  787. RD::Uniform u;
  788. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  789. u.binding = 8;
  790. u.ids.push_back(sdfgi->lightprobe_data);
  791. uniforms.push_back(u);
  792. }
  793. {
  794. RD::Uniform u;
  795. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  796. u.binding = 9;
  797. u.ids.push_back(sdfgi->cascades[i].lightprobe_history_tex);
  798. uniforms.push_back(u);
  799. }
  800. {
  801. RD::Uniform u;
  802. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  803. u.binding = 10;
  804. u.ids.push_back(sdfgi->cascades[i].lightprobe_average_tex);
  805. uniforms.push_back(u);
  806. }
  807. {
  808. RD::Uniform u;
  809. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  810. u.binding = 11;
  811. u.ids.push_back(sdfgi->lightprobe_history_scroll);
  812. uniforms.push_back(u);
  813. }
  814. {
  815. RD::Uniform u;
  816. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  817. u.binding = 12;
  818. u.ids.push_back(sdfgi->lightprobe_average_scroll);
  819. uniforms.push_back(u);
  820. }
  821. {
  822. RD::Uniform u;
  823. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  824. u.binding = 13;
  825. RID parent_average;
  826. if (i < sdfgi->cascades.size() - 1) {
  827. parent_average = sdfgi->cascades[i + 1].lightprobe_average_tex;
  828. } else {
  829. parent_average = sdfgi->cascades[i - 1].lightprobe_average_tex; //to use something, but it won't be used
  830. }
  831. u.ids.push_back(parent_average);
  832. uniforms.push_back(u);
  833. }
  834. {
  835. RD::Uniform u;
  836. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  837. u.binding = 14;
  838. u.ids.push_back(sdfgi->ambient_texture);
  839. uniforms.push_back(u);
  840. }
  841. sdfgi->cascades[i].integrate_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, 0), 0);
  842. }
  843. sdfgi->uses_multibounce = env->sdfgi_use_multibounce;
  844. sdfgi->energy = env->sdfgi_energy;
  845. sdfgi->normal_bias = env->sdfgi_normal_bias;
  846. sdfgi->probe_bias = env->sdfgi_probe_bias;
  847. sdfgi->reads_sky = env->sdfgi_read_sky_light;
  848. _render_buffers_uniform_set_changed(p_render_buffers);
  849. return; //done. all levels will need to be rendered which its going to take a bit
  850. }
  851. //check for updates
  852. sdfgi->uses_multibounce = env->sdfgi_use_multibounce;
  853. sdfgi->energy = env->sdfgi_energy;
  854. sdfgi->normal_bias = env->sdfgi_normal_bias;
  855. sdfgi->probe_bias = env->sdfgi_probe_bias;
  856. sdfgi->reads_sky = env->sdfgi_read_sky_light;
  857. int32_t drag_margin = (sdfgi->cascade_size / SDFGI::PROBE_DIVISOR) / 2;
  858. for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) {
  859. SDFGI::Cascade &cascade = sdfgi->cascades[i];
  860. cascade.dirty_regions = Vector3i();
  861. Vector3 probe_half_size = Vector3(1, 1, 1) * cascade.cell_size * float(sdfgi->cascade_size / SDFGI::PROBE_DIVISOR) * 0.5;
  862. probe_half_size = Vector3(0, 0, 0);
  863. Vector3 world_position = p_world_position;
  864. world_position.y *= sdfgi->y_mult;
  865. Vector3i pos_in_cascade = Vector3i((world_position + probe_half_size) / cascade.cell_size);
  866. for (int j = 0; j < 3; j++) {
  867. if (pos_in_cascade[j] < cascade.position[j]) {
  868. while (pos_in_cascade[j] < (cascade.position[j] - drag_margin)) {
  869. cascade.position[j] -= drag_margin * 2;
  870. cascade.dirty_regions[j] += drag_margin * 2;
  871. }
  872. } else if (pos_in_cascade[j] > cascade.position[j]) {
  873. while (pos_in_cascade[j] > (cascade.position[j] + drag_margin)) {
  874. cascade.position[j] += drag_margin * 2;
  875. cascade.dirty_regions[j] -= drag_margin * 2;
  876. }
  877. }
  878. if (cascade.dirty_regions[j] == 0) {
  879. continue; // not dirty
  880. } else if (uint32_t(ABS(cascade.dirty_regions[j])) >= sdfgi->cascade_size) {
  881. //moved too much, just redraw everything (make all dirty)
  882. cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
  883. break;
  884. }
  885. }
  886. if (cascade.dirty_regions != Vector3i() && cascade.dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
  887. //see how much the total dirty volume represents from the total volume
  888. uint32_t total_volume = sdfgi->cascade_size * sdfgi->cascade_size * sdfgi->cascade_size;
  889. uint32_t safe_volume = 1;
  890. for (int j = 0; j < 3; j++) {
  891. safe_volume *= sdfgi->cascade_size - ABS(cascade.dirty_regions[j]);
  892. }
  893. uint32_t dirty_volume = total_volume - safe_volume;
  894. if (dirty_volume > (safe_volume / 2)) {
  895. //more than half the volume is dirty, make all dirty so its only rendered once
  896. cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
  897. }
  898. }
  899. }
  900. }
  901. int RendererSceneRenderRD::sdfgi_get_pending_region_count(RID p_render_buffers) const {
  902. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  903. ERR_FAIL_COND_V(rb == nullptr, 0);
  904. if (rb->sdfgi == nullptr) {
  905. return 0;
  906. }
  907. int dirty_count = 0;
  908. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  909. const SDFGI::Cascade &c = rb->sdfgi->cascades[i];
  910. if (c.dirty_regions == SDFGI::Cascade::DIRTY_ALL) {
  911. dirty_count++;
  912. } else {
  913. for (int j = 0; j < 3; j++) {
  914. if (c.dirty_regions[j] != 0) {
  915. dirty_count++;
  916. }
  917. }
  918. }
  919. }
  920. return dirty_count;
  921. }
  922. int RendererSceneRenderRD::_sdfgi_get_pending_region_data(RID p_render_buffers, int p_region, Vector3i &r_local_offset, Vector3i &r_local_size, AABB &r_bounds) const {
  923. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  924. ERR_FAIL_COND_V(rb == nullptr, -1);
  925. ERR_FAIL_COND_V(rb->sdfgi == nullptr, -1);
  926. int dirty_count = 0;
  927. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  928. const SDFGI::Cascade &c = rb->sdfgi->cascades[i];
  929. if (c.dirty_regions == SDFGI::Cascade::DIRTY_ALL) {
  930. if (dirty_count == p_region) {
  931. r_local_offset = Vector3i();
  932. r_local_size = Vector3i(1, 1, 1) * rb->sdfgi->cascade_size;
  933. r_bounds.position = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + c.position)) * c.cell_size * Vector3(1, 1.0 / rb->sdfgi->y_mult, 1);
  934. r_bounds.size = Vector3(r_local_size) * c.cell_size * Vector3(1, 1.0 / rb->sdfgi->y_mult, 1);
  935. return i;
  936. }
  937. dirty_count++;
  938. } else {
  939. for (int j = 0; j < 3; j++) {
  940. if (c.dirty_regions[j] != 0) {
  941. if (dirty_count == p_region) {
  942. Vector3i from = Vector3i(0, 0, 0);
  943. Vector3i to = Vector3i(1, 1, 1) * rb->sdfgi->cascade_size;
  944. if (c.dirty_regions[j] > 0) {
  945. //fill from the beginning
  946. to[j] = c.dirty_regions[j];
  947. } else {
  948. //fill from the end
  949. from[j] = to[j] + c.dirty_regions[j];
  950. }
  951. for (int k = 0; k < j; k++) {
  952. // "chip" away previous regions to avoid re-voxelizing the same thing
  953. if (c.dirty_regions[k] > 0) {
  954. from[k] += c.dirty_regions[k];
  955. } else if (c.dirty_regions[k] < 0) {
  956. to[k] += c.dirty_regions[k];
  957. }
  958. }
  959. r_local_offset = from;
  960. r_local_size = to - from;
  961. r_bounds.position = Vector3(from + Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + c.position) * c.cell_size * Vector3(1, 1.0 / rb->sdfgi->y_mult, 1);
  962. r_bounds.size = Vector3(r_local_size) * c.cell_size * Vector3(1, 1.0 / rb->sdfgi->y_mult, 1);
  963. return i;
  964. }
  965. dirty_count++;
  966. }
  967. }
  968. }
  969. }
  970. return -1;
  971. }
  972. AABB RendererSceneRenderRD::sdfgi_get_pending_region_bounds(RID p_render_buffers, int p_region) const {
  973. AABB bounds;
  974. Vector3i from;
  975. Vector3i size;
  976. int c = _sdfgi_get_pending_region_data(p_render_buffers, p_region, from, size, bounds);
  977. ERR_FAIL_COND_V(c == -1, AABB());
  978. return bounds;
  979. }
  980. uint32_t RendererSceneRenderRD::sdfgi_get_pending_region_cascade(RID p_render_buffers, int p_region) const {
  981. AABB bounds;
  982. Vector3i from;
  983. Vector3i size;
  984. return _sdfgi_get_pending_region_data(p_render_buffers, p_region, from, size, bounds);
  985. }
  986. void RendererSceneRenderRD::_sdfgi_update_cascades(RID p_render_buffers) {
  987. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  988. ERR_FAIL_COND(rb == nullptr);
  989. if (rb->sdfgi == nullptr) {
  990. return;
  991. }
  992. //update cascades
  993. SDFGI::Cascade::UBO cascade_data[SDFGI::MAX_CASCADES];
  994. int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  995. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  996. Vector3 pos = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[i].position)) * rb->sdfgi->cascades[i].cell_size;
  997. cascade_data[i].offset[0] = pos.x;
  998. cascade_data[i].offset[1] = pos.y;
  999. cascade_data[i].offset[2] = pos.z;
  1000. cascade_data[i].to_cell = 1.0 / rb->sdfgi->cascades[i].cell_size;
  1001. cascade_data[i].probe_offset[0] = rb->sdfgi->cascades[i].position.x / probe_divisor;
  1002. cascade_data[i].probe_offset[1] = rb->sdfgi->cascades[i].position.y / probe_divisor;
  1003. cascade_data[i].probe_offset[2] = rb->sdfgi->cascades[i].position.z / probe_divisor;
  1004. cascade_data[i].pad = 0;
  1005. }
  1006. RD::get_singleton()->buffer_update(rb->sdfgi->cascades_ubo, 0, sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES, cascade_data, RD::BARRIER_MASK_COMPUTE);
  1007. }
  1008. void RendererSceneRenderRD::_sdfgi_update_light(RID p_render_buffers, RID p_environment) {
  1009. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1010. ERR_FAIL_COND(rb == nullptr);
  1011. if (rb->sdfgi == nullptr) {
  1012. return;
  1013. }
  1014. RD::get_singleton()->draw_command_begin_label("SDFGI Update dynamic Light");
  1015. /* Update dynamic light */
  1016. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1017. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.direct_light_pipeline[SDGIShader::DIRECT_LIGHT_MODE_DYNAMIC]);
  1018. SDGIShader::DirectLightPushConstant push_constant;
  1019. push_constant.grid_size[0] = rb->sdfgi->cascade_size;
  1020. push_constant.grid_size[1] = rb->sdfgi->cascade_size;
  1021. push_constant.grid_size[2] = rb->sdfgi->cascade_size;
  1022. push_constant.max_cascades = rb->sdfgi->cascades.size();
  1023. push_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  1024. push_constant.multibounce = rb->sdfgi->uses_multibounce;
  1025. push_constant.y_mult = rb->sdfgi->y_mult;
  1026. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  1027. SDFGI::Cascade &cascade = rb->sdfgi->cascades[i];
  1028. push_constant.light_count = rb->sdfgi->cascade_dynamic_light_count[i];
  1029. push_constant.cascade = i;
  1030. if (rb->sdfgi->cascades[i].all_dynamic_lights_dirty || sdfgi_frames_to_update_light == RS::ENV_SDFGI_UPDATE_LIGHT_IN_1_FRAME) {
  1031. push_constant.process_offset = 0;
  1032. push_constant.process_increment = 1;
  1033. } else {
  1034. static uint32_t frames_to_update_table[RS::ENV_SDFGI_UPDATE_LIGHT_MAX] = {
  1035. 1, 2, 4, 8, 16
  1036. };
  1037. uint32_t frames_to_update = frames_to_update_table[sdfgi_frames_to_update_light];
  1038. push_constant.process_offset = RSG::rasterizer->get_frame_number() % frames_to_update;
  1039. push_constant.process_increment = frames_to_update;
  1040. }
  1041. rb->sdfgi->cascades[i].all_dynamic_lights_dirty = false;
  1042. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascade.sdf_direct_light_uniform_set, 0);
  1043. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::DirectLightPushConstant));
  1044. RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cascade.solid_cell_dispatch_buffer, 0);
  1045. }
  1046. RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_COMPUTE);
  1047. RD::get_singleton()->draw_command_end_label();
  1048. }
  1049. void RendererSceneRenderRD::_sdfgi_update_probes(RID p_render_buffers, RID p_environment) {
  1050. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1051. ERR_FAIL_COND(rb == nullptr);
  1052. if (rb->sdfgi == nullptr) {
  1053. return;
  1054. }
  1055. RD::get_singleton()->draw_command_begin_label("SDFGI Update Probes");
  1056. Environment *env = environment_owner.getornull(p_environment);
  1057. SDGIShader::IntegratePushConstant push_constant;
  1058. push_constant.grid_size[1] = rb->sdfgi->cascade_size;
  1059. push_constant.grid_size[2] = rb->sdfgi->cascade_size;
  1060. push_constant.grid_size[0] = rb->sdfgi->cascade_size;
  1061. push_constant.max_cascades = rb->sdfgi->cascades.size();
  1062. push_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  1063. push_constant.history_index = rb->sdfgi->render_pass % rb->sdfgi->history_size;
  1064. push_constant.history_size = rb->sdfgi->history_size;
  1065. static const uint32_t ray_count[RS::ENV_SDFGI_RAY_COUNT_MAX] = { 4, 8, 16, 32, 64, 96, 128 };
  1066. push_constant.ray_count = ray_count[sdfgi_ray_count];
  1067. push_constant.ray_bias = rb->sdfgi->probe_bias;
  1068. push_constant.image_size[0] = rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count;
  1069. push_constant.image_size[1] = rb->sdfgi->probe_axis_count;
  1070. push_constant.store_ambient_texture = env->volumetric_fog_enabled;
  1071. RID sky_uniform_set = sdfgi_shader.integrate_default_sky_uniform_set;
  1072. push_constant.sky_mode = SDGIShader::IntegratePushConstant::SKY_MODE_DISABLED;
  1073. push_constant.y_mult = rb->sdfgi->y_mult;
  1074. if (rb->sdfgi->reads_sky && env) {
  1075. push_constant.sky_energy = env->bg_energy;
  1076. if (env->background == RS::ENV_BG_CLEAR_COLOR) {
  1077. push_constant.sky_mode = SDGIShader::IntegratePushConstant::SKY_MODE_COLOR;
  1078. Color c = storage->get_default_clear_color().to_linear();
  1079. push_constant.sky_color[0] = c.r;
  1080. push_constant.sky_color[1] = c.g;
  1081. push_constant.sky_color[2] = c.b;
  1082. } else if (env->background == RS::ENV_BG_COLOR) {
  1083. push_constant.sky_mode = SDGIShader::IntegratePushConstant::SKY_MODE_COLOR;
  1084. Color c = env->bg_color;
  1085. push_constant.sky_color[0] = c.r;
  1086. push_constant.sky_color[1] = c.g;
  1087. push_constant.sky_color[2] = c.b;
  1088. } else if (env->background == RS::ENV_BG_SKY) {
  1089. Sky *sky = sky_owner.getornull(env->sky);
  1090. if (sky && sky->radiance.is_valid()) {
  1091. if (sky->sdfgi_integrate_sky_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(sky->sdfgi_integrate_sky_uniform_set)) {
  1092. Vector<RD::Uniform> uniforms;
  1093. {
  1094. RD::Uniform u;
  1095. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1096. u.binding = 0;
  1097. u.ids.push_back(sky->radiance);
  1098. uniforms.push_back(u);
  1099. }
  1100. {
  1101. RD::Uniform u;
  1102. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  1103. u.binding = 1;
  1104. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1105. uniforms.push_back(u);
  1106. }
  1107. sky->sdfgi_integrate_sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, 0), 1);
  1108. }
  1109. sky_uniform_set = sky->sdfgi_integrate_sky_uniform_set;
  1110. push_constant.sky_mode = SDGIShader::IntegratePushConstant::SKY_MODE_SKY;
  1111. }
  1112. }
  1113. }
  1114. rb->sdfgi->render_pass++;
  1115. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(true);
  1116. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.integrate_pipeline[SDGIShader::INTEGRATE_MODE_PROCESS]);
  1117. int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  1118. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  1119. push_constant.cascade = i;
  1120. push_constant.world_offset[0] = rb->sdfgi->cascades[i].position.x / probe_divisor;
  1121. push_constant.world_offset[1] = rb->sdfgi->cascades[i].position.y / probe_divisor;
  1122. push_constant.world_offset[2] = rb->sdfgi->cascades[i].position.z / probe_divisor;
  1123. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[i].integrate_uniform_set, 0);
  1124. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sky_uniform_set, 1);
  1125. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::IntegratePushConstant));
  1126. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count, rb->sdfgi->probe_axis_count, 1);
  1127. }
  1128. //end later after raster to avoid barriering on layout changes
  1129. //RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_NO_BARRIER);
  1130. RD::get_singleton()->draw_command_end_label();
  1131. }
  1132. void RendererSceneRenderRD::_sdfgi_store_probes(RID p_render_buffers) {
  1133. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1134. ERR_FAIL_COND(rb == nullptr);
  1135. if (rb->sdfgi == nullptr) {
  1136. return;
  1137. }
  1138. RD::get_singleton()->barrier(RD::BARRIER_MASK_COMPUTE, RD::BARRIER_MASK_COMPUTE);
  1139. RD::get_singleton()->draw_command_begin_label("SDFGI Store Probes");
  1140. SDGIShader::IntegratePushConstant push_constant;
  1141. push_constant.grid_size[1] = rb->sdfgi->cascade_size;
  1142. push_constant.grid_size[2] = rb->sdfgi->cascade_size;
  1143. push_constant.grid_size[0] = rb->sdfgi->cascade_size;
  1144. push_constant.max_cascades = rb->sdfgi->cascades.size();
  1145. push_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  1146. push_constant.history_index = rb->sdfgi->render_pass % rb->sdfgi->history_size;
  1147. push_constant.history_size = rb->sdfgi->history_size;
  1148. static const uint32_t ray_count[RS::ENV_SDFGI_RAY_COUNT_MAX] = { 4, 8, 16, 32, 64, 96, 128 };
  1149. push_constant.ray_count = ray_count[sdfgi_ray_count];
  1150. push_constant.ray_bias = rb->sdfgi->probe_bias;
  1151. push_constant.image_size[0] = rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count;
  1152. push_constant.image_size[1] = rb->sdfgi->probe_axis_count;
  1153. push_constant.store_ambient_texture = false;
  1154. push_constant.sky_mode = 0;
  1155. push_constant.y_mult = rb->sdfgi->y_mult;
  1156. // Then store values into the lightprobe texture. Separating these steps has a small performance hit, but it allows for multiple bounces
  1157. RENDER_TIMESTAMP("Average Probes");
  1158. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1159. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.integrate_pipeline[SDGIShader::INTEGRATE_MODE_STORE]);
  1160. //convert to octahedral to store
  1161. push_constant.image_size[0] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  1162. push_constant.image_size[1] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  1163. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  1164. push_constant.cascade = i;
  1165. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[i].integrate_uniform_set, 0);
  1166. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdfgi_shader.integrate_default_sky_uniform_set, 1);
  1167. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::IntegratePushConstant));
  1168. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, rb->sdfgi->probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, 1);
  1169. }
  1170. RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_COMPUTE);
  1171. RD::get_singleton()->draw_command_end_label();
  1172. }
  1173. void RendererSceneRenderRD::_setup_giprobes(RID p_render_buffers, const Transform &p_transform, const PagedArray<RID> &p_gi_probes, uint32_t &r_gi_probes_used) {
  1174. r_gi_probes_used = 0;
  1175. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1176. ERR_FAIL_COND(rb == nullptr);
  1177. RD::get_singleton()->draw_command_begin_label("GIProbes Setup");
  1178. RID gi_probe_buffer = render_buffers_get_gi_probe_buffer(p_render_buffers);
  1179. GI::GIProbeData gi_probe_data[RenderBuffers::MAX_GIPROBES];
  1180. bool giprobes_changed = false;
  1181. Transform to_camera;
  1182. to_camera.origin = p_transform.origin; //only translation, make local
  1183. for (int i = 0; i < RenderBuffers::MAX_GIPROBES; i++) {
  1184. RID texture;
  1185. if (i < (int)p_gi_probes.size()) {
  1186. GIProbeInstance *gipi = gi_probe_instance_owner.getornull(p_gi_probes[i]);
  1187. if (gipi) {
  1188. texture = gipi->texture;
  1189. GI::GIProbeData &gipd = gi_probe_data[i];
  1190. RID base_probe = gipi->probe;
  1191. Transform to_cell = storage->gi_probe_get_to_cell_xform(gipi->probe) * gipi->transform.affine_inverse() * to_camera;
  1192. gipd.xform[0] = to_cell.basis.elements[0][0];
  1193. gipd.xform[1] = to_cell.basis.elements[1][0];
  1194. gipd.xform[2] = to_cell.basis.elements[2][0];
  1195. gipd.xform[3] = 0;
  1196. gipd.xform[4] = to_cell.basis.elements[0][1];
  1197. gipd.xform[5] = to_cell.basis.elements[1][1];
  1198. gipd.xform[6] = to_cell.basis.elements[2][1];
  1199. gipd.xform[7] = 0;
  1200. gipd.xform[8] = to_cell.basis.elements[0][2];
  1201. gipd.xform[9] = to_cell.basis.elements[1][2];
  1202. gipd.xform[10] = to_cell.basis.elements[2][2];
  1203. gipd.xform[11] = 0;
  1204. gipd.xform[12] = to_cell.origin.x;
  1205. gipd.xform[13] = to_cell.origin.y;
  1206. gipd.xform[14] = to_cell.origin.z;
  1207. gipd.xform[15] = 1;
  1208. Vector3 bounds = storage->gi_probe_get_octree_size(base_probe);
  1209. gipd.bounds[0] = bounds.x;
  1210. gipd.bounds[1] = bounds.y;
  1211. gipd.bounds[2] = bounds.z;
  1212. gipd.dynamic_range = storage->gi_probe_get_dynamic_range(base_probe) * storage->gi_probe_get_energy(base_probe);
  1213. gipd.bias = storage->gi_probe_get_bias(base_probe);
  1214. gipd.normal_bias = storage->gi_probe_get_normal_bias(base_probe);
  1215. gipd.blend_ambient = !storage->gi_probe_is_interior(base_probe);
  1216. gipd.anisotropy_strength = 0;
  1217. gipd.ao = storage->gi_probe_get_ao(base_probe);
  1218. gipd.ao_size = Math::pow(storage->gi_probe_get_ao_size(base_probe), 4.0f);
  1219. gipd.mipmaps = gipi->mipmaps.size();
  1220. }
  1221. r_gi_probes_used++;
  1222. }
  1223. if (texture == RID()) {
  1224. texture = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE);
  1225. }
  1226. if (texture != rb->giprobe_textures[i]) {
  1227. giprobes_changed = true;
  1228. rb->giprobe_textures[i] = texture;
  1229. }
  1230. }
  1231. if (giprobes_changed) {
  1232. if (RD::get_singleton()->uniform_set_is_valid(rb->gi_uniform_set)) {
  1233. RD::get_singleton()->free(rb->gi_uniform_set);
  1234. }
  1235. rb->gi_uniform_set = RID();
  1236. if (rb->volumetric_fog) {
  1237. if (RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
  1238. RD::get_singleton()->free(rb->volumetric_fog->uniform_set);
  1239. RD::get_singleton()->free(rb->volumetric_fog->uniform_set2);
  1240. }
  1241. rb->volumetric_fog->uniform_set = RID();
  1242. rb->volumetric_fog->uniform_set2 = RID();
  1243. }
  1244. }
  1245. if (p_gi_probes.size() > 0) {
  1246. RD::get_singleton()->buffer_update(gi_probe_buffer, 0, sizeof(GI::GIProbeData) * MIN((uint64_t)RenderBuffers::MAX_GIPROBES, p_gi_probes.size()), gi_probe_data, RD::BARRIER_MASK_COMPUTE);
  1247. }
  1248. RD::get_singleton()->draw_command_end_label();
  1249. }
  1250. void RendererSceneRenderRD::_pre_process_gi(RID p_render_buffers, const Transform &p_transform) {
  1251. // Do the required buffer transfers and setup before the depth-pre pass, this way GI can
  1252. // run in parallel during depth-pre pass and shadow rendering.
  1253. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1254. ERR_FAIL_COND(rb == nullptr);
  1255. /* Update Cascades UBO */
  1256. if (rb->sdfgi) {
  1257. /* Update general SDFGI Buffer */
  1258. _sdfgi_update_cascades(p_render_buffers);
  1259. GI::SDFGIData sdfgi_data;
  1260. sdfgi_data.grid_size[0] = rb->sdfgi->cascade_size;
  1261. sdfgi_data.grid_size[1] = rb->sdfgi->cascade_size;
  1262. sdfgi_data.grid_size[2] = rb->sdfgi->cascade_size;
  1263. sdfgi_data.max_cascades = rb->sdfgi->cascades.size();
  1264. sdfgi_data.probe_axis_size = rb->sdfgi->probe_axis_count;
  1265. sdfgi_data.cascade_probe_size[0] = sdfgi_data.probe_axis_size - 1; //float version for performance
  1266. sdfgi_data.cascade_probe_size[1] = sdfgi_data.probe_axis_size - 1;
  1267. sdfgi_data.cascade_probe_size[2] = sdfgi_data.probe_axis_size - 1;
  1268. float csize = rb->sdfgi->cascade_size;
  1269. sdfgi_data.probe_to_uvw = 1.0 / float(sdfgi_data.cascade_probe_size[0]);
  1270. sdfgi_data.use_occlusion = rb->sdfgi->uses_occlusion;
  1271. //sdfgi_data.energy = rb->sdfgi->energy;
  1272. sdfgi_data.y_mult = rb->sdfgi->y_mult;
  1273. float cascade_voxel_size = (csize / sdfgi_data.cascade_probe_size[0]);
  1274. float occlusion_clamp = (cascade_voxel_size - 0.5) / cascade_voxel_size;
  1275. sdfgi_data.occlusion_clamp[0] = occlusion_clamp;
  1276. sdfgi_data.occlusion_clamp[1] = occlusion_clamp;
  1277. sdfgi_data.occlusion_clamp[2] = occlusion_clamp;
  1278. sdfgi_data.normal_bias = (rb->sdfgi->normal_bias / csize) * sdfgi_data.cascade_probe_size[0];
  1279. //vec2 tex_pixel_size = 1.0 / vec2(ivec2( (OCT_SIZE+2) * params.probe_axis_size * params.probe_axis_size, (OCT_SIZE+2) * params.probe_axis_size ) );
  1280. //vec3 probe_uv_offset = (ivec3(OCT_SIZE+2,OCT_SIZE+2,(OCT_SIZE+2) * params.probe_axis_size)) * tex_pixel_size.xyx;
  1281. uint32_t oct_size = SDFGI::LIGHTPROBE_OCT_SIZE;
  1282. sdfgi_data.lightprobe_tex_pixel_size[0] = 1.0 / ((oct_size + 2) * sdfgi_data.probe_axis_size * sdfgi_data.probe_axis_size);
  1283. sdfgi_data.lightprobe_tex_pixel_size[1] = 1.0 / ((oct_size + 2) * sdfgi_data.probe_axis_size);
  1284. sdfgi_data.lightprobe_tex_pixel_size[2] = 1.0;
  1285. sdfgi_data.energy = rb->sdfgi->energy;
  1286. sdfgi_data.lightprobe_uv_offset[0] = float(oct_size + 2) * sdfgi_data.lightprobe_tex_pixel_size[0];
  1287. sdfgi_data.lightprobe_uv_offset[1] = float(oct_size + 2) * sdfgi_data.lightprobe_tex_pixel_size[1];
  1288. sdfgi_data.lightprobe_uv_offset[2] = float((oct_size + 2) * sdfgi_data.probe_axis_size) * sdfgi_data.lightprobe_tex_pixel_size[0];
  1289. sdfgi_data.occlusion_renormalize[0] = 0.5;
  1290. sdfgi_data.occlusion_renormalize[1] = 1.0;
  1291. sdfgi_data.occlusion_renormalize[2] = 1.0 / float(sdfgi_data.max_cascades);
  1292. int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  1293. for (uint32_t i = 0; i < sdfgi_data.max_cascades; i++) {
  1294. GI::SDFGIData::ProbeCascadeData &c = sdfgi_data.cascades[i];
  1295. Vector3 pos = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[i].position)) * rb->sdfgi->cascades[i].cell_size;
  1296. Vector3 cam_origin = p_transform.origin;
  1297. cam_origin.y *= rb->sdfgi->y_mult;
  1298. pos -= cam_origin; //make pos local to camera, to reduce numerical error
  1299. c.position[0] = pos.x;
  1300. c.position[1] = pos.y;
  1301. c.position[2] = pos.z;
  1302. c.to_probe = 1.0 / (float(rb->sdfgi->cascade_size) * rb->sdfgi->cascades[i].cell_size / float(rb->sdfgi->probe_axis_count - 1));
  1303. Vector3i probe_ofs = rb->sdfgi->cascades[i].position / probe_divisor;
  1304. c.probe_world_offset[0] = probe_ofs.x;
  1305. c.probe_world_offset[1] = probe_ofs.y;
  1306. c.probe_world_offset[2] = probe_ofs.z;
  1307. c.to_cell = 1.0 / rb->sdfgi->cascades[i].cell_size;
  1308. }
  1309. RD::get_singleton()->buffer_update(gi.sdfgi_ubo, 0, sizeof(GI::SDFGIData), &sdfgi_data, RD::BARRIER_MASK_COMPUTE);
  1310. /* Update dynamic lights in SDFGI cascades */
  1311. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  1312. SDFGI::Cascade &cascade = rb->sdfgi->cascades[i];
  1313. SDGIShader::Light lights[SDFGI::MAX_DYNAMIC_LIGHTS];
  1314. uint32_t idx = 0;
  1315. for (uint32_t j = 0; j < (uint32_t)render_state.sdfgi_update_data->directional_lights->size(); j++) {
  1316. if (idx == SDFGI::MAX_DYNAMIC_LIGHTS) {
  1317. break;
  1318. }
  1319. LightInstance *li = light_instance_owner.getornull(render_state.sdfgi_update_data->directional_lights->get(j));
  1320. ERR_CONTINUE(!li);
  1321. if (storage->light_directional_is_sky_only(li->light)) {
  1322. continue;
  1323. }
  1324. Vector3 dir = -li->transform.basis.get_axis(Vector3::AXIS_Z);
  1325. dir.y *= rb->sdfgi->y_mult;
  1326. dir.normalize();
  1327. lights[idx].direction[0] = dir.x;
  1328. lights[idx].direction[1] = dir.y;
  1329. lights[idx].direction[2] = dir.z;
  1330. Color color = storage->light_get_color(li->light);
  1331. color = color.to_linear();
  1332. lights[idx].color[0] = color.r;
  1333. lights[idx].color[1] = color.g;
  1334. lights[idx].color[2] = color.b;
  1335. lights[idx].type = RS::LIGHT_DIRECTIONAL;
  1336. lights[idx].energy = storage->light_get_param(li->light, RS::LIGHT_PARAM_ENERGY);
  1337. lights[idx].has_shadow = storage->light_has_shadow(li->light);
  1338. idx++;
  1339. }
  1340. AABB cascade_aabb;
  1341. cascade_aabb.position = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + cascade.position)) * cascade.cell_size;
  1342. cascade_aabb.size = Vector3(1, 1, 1) * rb->sdfgi->cascade_size * cascade.cell_size;
  1343. for (uint32_t j = 0; j < render_state.sdfgi_update_data->positional_light_count; j++) {
  1344. if (idx == SDFGI::MAX_DYNAMIC_LIGHTS) {
  1345. break;
  1346. }
  1347. LightInstance *li = light_instance_owner.getornull(render_state.sdfgi_update_data->positional_light_instances[j]);
  1348. ERR_CONTINUE(!li);
  1349. uint32_t max_sdfgi_cascade = storage->light_get_max_sdfgi_cascade(li->light);
  1350. if (i > max_sdfgi_cascade) {
  1351. continue;
  1352. }
  1353. if (!cascade_aabb.intersects(li->aabb)) {
  1354. continue;
  1355. }
  1356. Vector3 dir = -li->transform.basis.get_axis(Vector3::AXIS_Z);
  1357. //faster to not do this here
  1358. //dir.y *= rb->sdfgi->y_mult;
  1359. //dir.normalize();
  1360. lights[idx].direction[0] = dir.x;
  1361. lights[idx].direction[1] = dir.y;
  1362. lights[idx].direction[2] = dir.z;
  1363. Vector3 pos = li->transform.origin;
  1364. pos.y *= rb->sdfgi->y_mult;
  1365. lights[idx].position[0] = pos.x;
  1366. lights[idx].position[1] = pos.y;
  1367. lights[idx].position[2] = pos.z;
  1368. Color color = storage->light_get_color(li->light);
  1369. color = color.to_linear();
  1370. lights[idx].color[0] = color.r;
  1371. lights[idx].color[1] = color.g;
  1372. lights[idx].color[2] = color.b;
  1373. lights[idx].type = storage->light_get_type(li->light);
  1374. lights[idx].energy = storage->light_get_param(li->light, RS::LIGHT_PARAM_ENERGY);
  1375. lights[idx].has_shadow = storage->light_has_shadow(li->light);
  1376. lights[idx].attenuation = storage->light_get_param(li->light, RS::LIGHT_PARAM_ATTENUATION);
  1377. lights[idx].radius = storage->light_get_param(li->light, RS::LIGHT_PARAM_RANGE);
  1378. lights[idx].spot_angle = Math::deg2rad(storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ANGLE));
  1379. lights[idx].spot_attenuation = storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  1380. idx++;
  1381. }
  1382. if (idx > 0) {
  1383. RD::get_singleton()->buffer_update(cascade.lights_buffer, 0, idx * sizeof(SDGIShader::Light), lights, RD::BARRIER_MASK_COMPUTE);
  1384. }
  1385. rb->sdfgi->cascade_dynamic_light_count[i] = idx;
  1386. }
  1387. }
  1388. }
  1389. void RendererSceneRenderRD::_process_gi(RID p_render_buffers, RID p_normal_roughness_buffer, RID p_gi_probe_buffer, RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform, const PagedArray<RID> &p_gi_probes) {
  1390. RD::get_singleton()->draw_command_begin_label("GI Render");
  1391. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1392. ERR_FAIL_COND(rb == nullptr);
  1393. Environment *env = environment_owner.getornull(p_environment);
  1394. if (rb->ambient_buffer.is_null() || rb->using_half_size_gi != gi.half_resolution) {
  1395. if (rb->ambient_buffer.is_valid()) {
  1396. RD::get_singleton()->free(rb->ambient_buffer);
  1397. RD::get_singleton()->free(rb->reflection_buffer);
  1398. }
  1399. RD::TextureFormat tf;
  1400. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1401. tf.width = rb->width;
  1402. tf.height = rb->height;
  1403. if (gi.half_resolution) {
  1404. tf.width >>= 1;
  1405. tf.height >>= 1;
  1406. }
  1407. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1408. rb->reflection_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1409. rb->ambient_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1410. rb->using_half_size_gi = gi.half_resolution;
  1411. _render_buffers_uniform_set_changed(p_render_buffers);
  1412. }
  1413. GI::PushConstant push_constant;
  1414. push_constant.screen_size[0] = rb->width;
  1415. push_constant.screen_size[1] = rb->height;
  1416. push_constant.z_near = p_projection.get_z_near();
  1417. push_constant.z_far = p_projection.get_z_far();
  1418. push_constant.orthogonal = p_projection.is_orthogonal();
  1419. push_constant.proj_info[0] = -2.0f / (rb->width * p_projection.matrix[0][0]);
  1420. push_constant.proj_info[1] = -2.0f / (rb->height * p_projection.matrix[1][1]);
  1421. push_constant.proj_info[2] = (1.0f - p_projection.matrix[0][2]) / p_projection.matrix[0][0];
  1422. push_constant.proj_info[3] = (1.0f + p_projection.matrix[1][2]) / p_projection.matrix[1][1];
  1423. push_constant.max_giprobes = MIN((uint64_t)RenderBuffers::MAX_GIPROBES, p_gi_probes.size());
  1424. push_constant.high_quality_vct = gi_probe_quality == RS::GI_PROBE_QUALITY_HIGH;
  1425. bool use_sdfgi = rb->sdfgi != nullptr;
  1426. bool use_giprobes = push_constant.max_giprobes > 0;
  1427. if (env) {
  1428. push_constant.ao_color[0] = env->ao_color.r;
  1429. push_constant.ao_color[1] = env->ao_color.g;
  1430. push_constant.ao_color[2] = env->ao_color.b;
  1431. } else {
  1432. push_constant.ao_color[0] = 0;
  1433. push_constant.ao_color[1] = 0;
  1434. push_constant.ao_color[2] = 0;
  1435. }
  1436. push_constant.cam_rotation[0] = p_transform.basis[0][0];
  1437. push_constant.cam_rotation[1] = p_transform.basis[1][0];
  1438. push_constant.cam_rotation[2] = p_transform.basis[2][0];
  1439. push_constant.cam_rotation[3] = 0;
  1440. push_constant.cam_rotation[4] = p_transform.basis[0][1];
  1441. push_constant.cam_rotation[5] = p_transform.basis[1][1];
  1442. push_constant.cam_rotation[6] = p_transform.basis[2][1];
  1443. push_constant.cam_rotation[7] = 0;
  1444. push_constant.cam_rotation[8] = p_transform.basis[0][2];
  1445. push_constant.cam_rotation[9] = p_transform.basis[1][2];
  1446. push_constant.cam_rotation[10] = p_transform.basis[2][2];
  1447. push_constant.cam_rotation[11] = 0;
  1448. if (rb->gi_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->gi_uniform_set)) {
  1449. Vector<RD::Uniform> uniforms;
  1450. {
  1451. RD::Uniform u;
  1452. u.binding = 1;
  1453. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1454. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  1455. if (rb->sdfgi && j < rb->sdfgi->cascades.size()) {
  1456. u.ids.push_back(rb->sdfgi->cascades[j].sdf_tex);
  1457. } else {
  1458. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1459. }
  1460. }
  1461. uniforms.push_back(u);
  1462. }
  1463. {
  1464. RD::Uniform u;
  1465. u.binding = 2;
  1466. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1467. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  1468. if (rb->sdfgi && j < rb->sdfgi->cascades.size()) {
  1469. u.ids.push_back(rb->sdfgi->cascades[j].light_tex);
  1470. } else {
  1471. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1472. }
  1473. }
  1474. uniforms.push_back(u);
  1475. }
  1476. {
  1477. RD::Uniform u;
  1478. u.binding = 3;
  1479. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1480. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  1481. if (rb->sdfgi && j < rb->sdfgi->cascades.size()) {
  1482. u.ids.push_back(rb->sdfgi->cascades[j].light_aniso_0_tex);
  1483. } else {
  1484. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1485. }
  1486. }
  1487. uniforms.push_back(u);
  1488. }
  1489. {
  1490. RD::Uniform u;
  1491. u.binding = 4;
  1492. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1493. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  1494. if (rb->sdfgi && j < rb->sdfgi->cascades.size()) {
  1495. u.ids.push_back(rb->sdfgi->cascades[j].light_aniso_1_tex);
  1496. } else {
  1497. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1498. }
  1499. }
  1500. uniforms.push_back(u);
  1501. }
  1502. {
  1503. RD::Uniform u;
  1504. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1505. u.binding = 5;
  1506. if (rb->sdfgi) {
  1507. u.ids.push_back(rb->sdfgi->occlusion_texture);
  1508. } else {
  1509. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1510. }
  1511. uniforms.push_back(u);
  1512. }
  1513. {
  1514. RD::Uniform u;
  1515. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  1516. u.binding = 6;
  1517. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1518. uniforms.push_back(u);
  1519. }
  1520. {
  1521. RD::Uniform u;
  1522. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  1523. u.binding = 7;
  1524. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1525. uniforms.push_back(u);
  1526. }
  1527. {
  1528. RD::Uniform u;
  1529. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  1530. u.binding = 9;
  1531. u.ids.push_back(rb->ambient_buffer);
  1532. uniforms.push_back(u);
  1533. }
  1534. {
  1535. RD::Uniform u;
  1536. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  1537. u.binding = 10;
  1538. u.ids.push_back(rb->reflection_buffer);
  1539. uniforms.push_back(u);
  1540. }
  1541. {
  1542. RD::Uniform u;
  1543. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1544. u.binding = 11;
  1545. if (rb->sdfgi) {
  1546. u.ids.push_back(rb->sdfgi->lightprobe_texture);
  1547. } else {
  1548. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE));
  1549. }
  1550. uniforms.push_back(u);
  1551. }
  1552. {
  1553. RD::Uniform u;
  1554. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1555. u.binding = 12;
  1556. u.ids.push_back(rb->depth_texture);
  1557. uniforms.push_back(u);
  1558. }
  1559. {
  1560. RD::Uniform u;
  1561. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1562. u.binding = 13;
  1563. u.ids.push_back(p_normal_roughness_buffer);
  1564. uniforms.push_back(u);
  1565. }
  1566. {
  1567. RD::Uniform u;
  1568. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1569. u.binding = 14;
  1570. RID buffer = p_gi_probe_buffer.is_valid() ? p_gi_probe_buffer : storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_BLACK);
  1571. u.ids.push_back(buffer);
  1572. uniforms.push_back(u);
  1573. }
  1574. {
  1575. RD::Uniform u;
  1576. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1577. u.binding = 15;
  1578. u.ids.push_back(gi.sdfgi_ubo);
  1579. uniforms.push_back(u);
  1580. }
  1581. {
  1582. RD::Uniform u;
  1583. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1584. u.binding = 16;
  1585. u.ids.push_back(rb->giprobe_buffer);
  1586. uniforms.push_back(u);
  1587. }
  1588. {
  1589. RD::Uniform u;
  1590. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1591. u.binding = 17;
  1592. for (int i = 0; i < RenderBuffers::MAX_GIPROBES; i++) {
  1593. u.ids.push_back(rb->giprobe_textures[i]);
  1594. }
  1595. uniforms.push_back(u);
  1596. }
  1597. rb->gi_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi.shader.version_get_shader(gi.shader_version, 0), 0);
  1598. }
  1599. GI::Mode mode;
  1600. if (rb->using_half_size_gi) {
  1601. mode = (use_sdfgi && use_giprobes) ? GI::MODE_HALF_RES_COMBINED : (use_sdfgi ? GI::MODE_HALF_RES_SDFGI : GI::MODE_HALF_RES_GIPROBE);
  1602. } else {
  1603. mode = (use_sdfgi && use_giprobes) ? GI::MODE_COMBINED : (use_sdfgi ? GI::MODE_SDFGI : GI::MODE_GIPROBE);
  1604. }
  1605. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin(true);
  1606. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi.pipelines[mode]);
  1607. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->gi_uniform_set, 0);
  1608. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GI::PushConstant));
  1609. if (rb->using_half_size_gi) {
  1610. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->width >> 1, rb->height >> 1, 1);
  1611. } else {
  1612. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->width, rb->height, 1);
  1613. }
  1614. //do barrier later to allow oeverlap
  1615. //RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_NO_BARRIER); //no barriers, let other compute, raster and transfer happen at the same time
  1616. RD::get_singleton()->draw_command_end_label();
  1617. }
  1618. RID RendererSceneRenderRD::sky_create() {
  1619. return sky_owner.make_rid(Sky());
  1620. }
  1621. void RendererSceneRenderRD::_sky_invalidate(Sky *p_sky) {
  1622. if (!p_sky->dirty) {
  1623. p_sky->dirty = true;
  1624. p_sky->dirty_list = dirty_sky_list;
  1625. dirty_sky_list = p_sky;
  1626. }
  1627. }
  1628. void RendererSceneRenderRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) {
  1629. Sky *sky = sky_owner.getornull(p_sky);
  1630. ERR_FAIL_COND(!sky);
  1631. ERR_FAIL_COND(p_radiance_size < 32 || p_radiance_size > 2048);
  1632. if (sky->radiance_size == p_radiance_size) {
  1633. return;
  1634. }
  1635. sky->radiance_size = p_radiance_size;
  1636. if (sky->mode == RS::SKY_MODE_REALTIME && sky->radiance_size != 256) {
  1637. WARN_PRINT("Realtime Skies can only use a radiance size of 256. Radiance size will be set to 256 internally.");
  1638. sky->radiance_size = 256;
  1639. }
  1640. _sky_invalidate(sky);
  1641. if (sky->radiance.is_valid()) {
  1642. RD::get_singleton()->free(sky->radiance);
  1643. sky->radiance = RID();
  1644. }
  1645. _clear_reflection_data(sky->reflection);
  1646. }
  1647. void RendererSceneRenderRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) {
  1648. Sky *sky = sky_owner.getornull(p_sky);
  1649. ERR_FAIL_COND(!sky);
  1650. if (sky->mode == p_mode) {
  1651. return;
  1652. }
  1653. sky->mode = p_mode;
  1654. if (sky->mode == RS::SKY_MODE_REALTIME && sky->radiance_size != 256) {
  1655. WARN_PRINT("Realtime Skies can only use a radiance size of 256. Radiance size will be set to 256 internally.");
  1656. sky_set_radiance_size(p_sky, 256);
  1657. }
  1658. _sky_invalidate(sky);
  1659. if (sky->radiance.is_valid()) {
  1660. RD::get_singleton()->free(sky->radiance);
  1661. sky->radiance = RID();
  1662. }
  1663. _clear_reflection_data(sky->reflection);
  1664. }
  1665. void RendererSceneRenderRD::sky_set_material(RID p_sky, RID p_material) {
  1666. Sky *sky = sky_owner.getornull(p_sky);
  1667. ERR_FAIL_COND(!sky);
  1668. sky->material = p_material;
  1669. _sky_invalidate(sky);
  1670. }
  1671. Ref<Image> RendererSceneRenderRD::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) {
  1672. Sky *sky = sky_owner.getornull(p_sky);
  1673. ERR_FAIL_COND_V(!sky, Ref<Image>());
  1674. _update_dirty_skys();
  1675. if (sky->radiance.is_valid()) {
  1676. RD::TextureFormat tf;
  1677. tf.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  1678. tf.width = p_size.width;
  1679. tf.height = p_size.height;
  1680. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  1681. RID rad_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1682. storage->get_effects()->copy_cubemap_to_panorama(sky->radiance, rad_tex, p_size, p_bake_irradiance ? roughness_layers : 0, sky->reflection.layers.size() > 1);
  1683. Vector<uint8_t> data = RD::get_singleton()->texture_get_data(rad_tex, 0);
  1684. RD::get_singleton()->free(rad_tex);
  1685. Ref<Image> img;
  1686. img.instance();
  1687. img->create(p_size.width, p_size.height, false, Image::FORMAT_RGBAF, data);
  1688. for (int i = 0; i < p_size.width; i++) {
  1689. for (int j = 0; j < p_size.height; j++) {
  1690. Color c = img->get_pixel(i, j);
  1691. c.r *= p_energy;
  1692. c.g *= p_energy;
  1693. c.b *= p_energy;
  1694. img->set_pixel(i, j, c);
  1695. }
  1696. }
  1697. return img;
  1698. }
  1699. return Ref<Image>();
  1700. }
  1701. void RendererSceneRenderRD::_update_dirty_skys() {
  1702. Sky *sky = dirty_sky_list;
  1703. while (sky) {
  1704. bool texture_set_dirty = false;
  1705. //update sky configuration if texture is missing
  1706. if (sky->radiance.is_null()) {
  1707. int mipmaps = Image::get_image_required_mipmaps(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBAH) + 1;
  1708. uint32_t w = sky->radiance_size, h = sky->radiance_size;
  1709. int layers = roughness_layers;
  1710. if (sky->mode == RS::SKY_MODE_REALTIME) {
  1711. layers = 8;
  1712. if (roughness_layers != 8) {
  1713. WARN_PRINT("When using REALTIME skies, roughness_layers should be set to 8 in the project settings for best quality reflections");
  1714. }
  1715. }
  1716. if (sky_use_cubemap_array) {
  1717. //array (higher quality, 6 times more memory)
  1718. RD::TextureFormat tf;
  1719. tf.array_layers = layers * 6;
  1720. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1721. tf.texture_type = RD::TEXTURE_TYPE_CUBE_ARRAY;
  1722. tf.mipmaps = mipmaps;
  1723. tf.width = w;
  1724. tf.height = h;
  1725. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1726. sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1727. _update_reflection_data(sky->reflection, sky->radiance_size, mipmaps, true, sky->radiance, 0, sky->mode == RS::SKY_MODE_REALTIME);
  1728. } else {
  1729. //regular cubemap, lower quality (aliasing, less memory)
  1730. RD::TextureFormat tf;
  1731. tf.array_layers = 6;
  1732. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1733. tf.texture_type = RD::TEXTURE_TYPE_CUBE;
  1734. tf.mipmaps = MIN(mipmaps, layers);
  1735. tf.width = w;
  1736. tf.height = h;
  1737. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1738. sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1739. _update_reflection_data(sky->reflection, sky->radiance_size, MIN(mipmaps, layers), false, sky->radiance, 0, sky->mode == RS::SKY_MODE_REALTIME);
  1740. }
  1741. texture_set_dirty = true;
  1742. }
  1743. // Create subpass buffers if they haven't been created already
  1744. if (sky->half_res_pass.is_null() && !RD::get_singleton()->texture_is_valid(sky->half_res_pass) && sky->screen_size.x >= 4 && sky->screen_size.y >= 4) {
  1745. RD::TextureFormat tformat;
  1746. tformat.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1747. tformat.width = sky->screen_size.x / 2;
  1748. tformat.height = sky->screen_size.y / 2;
  1749. tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  1750. tformat.texture_type = RD::TEXTURE_TYPE_2D;
  1751. sky->half_res_pass = RD::get_singleton()->texture_create(tformat, RD::TextureView());
  1752. Vector<RID> texs;
  1753. texs.push_back(sky->half_res_pass);
  1754. sky->half_res_framebuffer = RD::get_singleton()->framebuffer_create(texs);
  1755. texture_set_dirty = true;
  1756. }
  1757. if (sky->quarter_res_pass.is_null() && !RD::get_singleton()->texture_is_valid(sky->quarter_res_pass) && sky->screen_size.x >= 4 && sky->screen_size.y >= 4) {
  1758. RD::TextureFormat tformat;
  1759. tformat.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1760. tformat.width = sky->screen_size.x / 4;
  1761. tformat.height = sky->screen_size.y / 4;
  1762. tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  1763. tformat.texture_type = RD::TEXTURE_TYPE_2D;
  1764. sky->quarter_res_pass = RD::get_singleton()->texture_create(tformat, RD::TextureView());
  1765. Vector<RID> texs;
  1766. texs.push_back(sky->quarter_res_pass);
  1767. sky->quarter_res_framebuffer = RD::get_singleton()->framebuffer_create(texs);
  1768. texture_set_dirty = true;
  1769. }
  1770. if (texture_set_dirty) {
  1771. for (int i = 0; i < SKY_TEXTURE_SET_MAX; i++) {
  1772. if (sky->texture_uniform_sets[i].is_valid() && RD::get_singleton()->uniform_set_is_valid(sky->texture_uniform_sets[i])) {
  1773. RD::get_singleton()->free(sky->texture_uniform_sets[i]);
  1774. sky->texture_uniform_sets[i] = RID();
  1775. }
  1776. }
  1777. }
  1778. sky->reflection.dirty = true;
  1779. sky->processing_layer = 0;
  1780. Sky *next = sky->dirty_list;
  1781. sky->dirty_list = nullptr;
  1782. sky->dirty = false;
  1783. sky = next;
  1784. }
  1785. dirty_sky_list = nullptr;
  1786. }
  1787. RID RendererSceneRenderRD::sky_get_radiance_texture_rd(RID p_sky) const {
  1788. Sky *sky = sky_owner.getornull(p_sky);
  1789. ERR_FAIL_COND_V(!sky, RID());
  1790. return sky->radiance;
  1791. }
  1792. RID RendererSceneRenderRD::sky_get_radiance_uniform_set_rd(RID p_sky, RID p_shader, int p_set) const {
  1793. Sky *sky = sky_owner.getornull(p_sky);
  1794. ERR_FAIL_COND_V(!sky, RID());
  1795. if (sky->uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(sky->uniform_set)) {
  1796. sky->uniform_set = RID();
  1797. if (sky->radiance.is_valid()) {
  1798. Vector<RD::Uniform> uniforms;
  1799. {
  1800. RD::Uniform u;
  1801. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1802. u.binding = 0;
  1803. u.ids.push_back(sky->radiance);
  1804. uniforms.push_back(u);
  1805. }
  1806. sky->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_set);
  1807. }
  1808. }
  1809. return sky->uniform_set;
  1810. }
  1811. RID RendererSceneRenderRD::_get_sky_textures(Sky *p_sky, SkyTextureSetVersion p_version) {
  1812. if (p_sky->texture_uniform_sets[p_version].is_valid() && RD::get_singleton()->uniform_set_is_valid(p_sky->texture_uniform_sets[p_version])) {
  1813. return p_sky->texture_uniform_sets[p_version];
  1814. }
  1815. Vector<RD::Uniform> uniforms;
  1816. {
  1817. RD::Uniform u;
  1818. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1819. u.binding = 0;
  1820. if (p_sky->radiance.is_valid() && p_version <= SKY_TEXTURE_SET_QUARTER_RES) {
  1821. u.ids.push_back(p_sky->radiance);
  1822. } else {
  1823. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
  1824. }
  1825. uniforms.push_back(u);
  1826. }
  1827. {
  1828. RD::Uniform u;
  1829. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1830. u.binding = 1; // half res
  1831. if (p_sky->half_res_pass.is_valid() && p_version != SKY_TEXTURE_SET_HALF_RES && p_version != SKY_TEXTURE_SET_CUBEMAP_HALF_RES) {
  1832. if (p_version >= SKY_TEXTURE_SET_CUBEMAP) {
  1833. u.ids.push_back(p_sky->reflection.layers[0].views[1]);
  1834. } else {
  1835. u.ids.push_back(p_sky->half_res_pass);
  1836. }
  1837. } else {
  1838. if (p_version < SKY_TEXTURE_SET_CUBEMAP) {
  1839. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_WHITE));
  1840. } else {
  1841. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
  1842. }
  1843. }
  1844. uniforms.push_back(u);
  1845. }
  1846. {
  1847. RD::Uniform u;
  1848. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1849. u.binding = 2; // quarter res
  1850. if (p_sky->quarter_res_pass.is_valid() && p_version != SKY_TEXTURE_SET_QUARTER_RES && p_version != SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES) {
  1851. if (p_version >= SKY_TEXTURE_SET_CUBEMAP) {
  1852. u.ids.push_back(p_sky->reflection.layers[0].views[2]);
  1853. } else {
  1854. u.ids.push_back(p_sky->quarter_res_pass);
  1855. }
  1856. } else {
  1857. if (p_version < SKY_TEXTURE_SET_CUBEMAP) {
  1858. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_WHITE));
  1859. } else {
  1860. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
  1861. }
  1862. }
  1863. uniforms.push_back(u);
  1864. }
  1865. p_sky->texture_uniform_sets[p_version] = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_TEXTURES);
  1866. return p_sky->texture_uniform_sets[p_version];
  1867. }
  1868. RID RendererSceneRenderRD::sky_get_material(RID p_sky) const {
  1869. Sky *sky = sky_owner.getornull(p_sky);
  1870. ERR_FAIL_COND_V(!sky, RID());
  1871. return sky->material;
  1872. }
  1873. void RendererSceneRenderRD::_draw_sky(bool p_can_continue_color, bool p_can_continue_depth, RID p_fb, RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform) {
  1874. ERR_FAIL_COND(!is_environment(p_environment));
  1875. SkyMaterialData *material = nullptr;
  1876. Sky *sky = sky_owner.getornull(environment_get_sky(p_environment));
  1877. RID sky_material;
  1878. RS::EnvironmentBG background = environment_get_background(p_environment);
  1879. if (!(background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) || sky) {
  1880. ERR_FAIL_COND(!sky);
  1881. sky_material = sky_get_material(environment_get_sky(p_environment));
  1882. if (sky_material.is_valid()) {
  1883. material = (SkyMaterialData *)storage->material_get_data(sky_material, RendererStorageRD::SHADER_TYPE_SKY);
  1884. if (!material || !material->shader_data->valid) {
  1885. material = nullptr;
  1886. }
  1887. }
  1888. if (!material) {
  1889. sky_material = sky_shader.default_material;
  1890. material = (SkyMaterialData *)storage->material_get_data(sky_material, RendererStorageRD::SHADER_TYPE_SKY);
  1891. }
  1892. }
  1893. if (background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) {
  1894. sky_material = sky_scene_state.fog_material;
  1895. material = (SkyMaterialData *)storage->material_get_data(sky_material, RendererStorageRD::SHADER_TYPE_SKY);
  1896. }
  1897. ERR_FAIL_COND(!material);
  1898. SkyShaderData *shader_data = material->shader_data;
  1899. ERR_FAIL_COND(!shader_data);
  1900. Basis sky_transform = environment_get_sky_orientation(p_environment);
  1901. sky_transform.invert();
  1902. float multiplier = environment_get_bg_energy(p_environment);
  1903. float custom_fov = environment_get_sky_custom_fov(p_environment);
  1904. // Camera
  1905. CameraMatrix camera;
  1906. if (custom_fov) {
  1907. float near_plane = p_projection.get_z_near();
  1908. float far_plane = p_projection.get_z_far();
  1909. float aspect = p_projection.get_aspect();
  1910. camera.set_perspective(custom_fov, aspect, near_plane, far_plane);
  1911. } else {
  1912. camera = p_projection;
  1913. }
  1914. sky_transform = p_transform.basis * sky_transform;
  1915. if (shader_data->uses_quarter_res) {
  1916. PipelineCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_QUARTER_RES];
  1917. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_QUARTER_RES);
  1918. Vector<Color> clear_colors;
  1919. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  1920. RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(sky->quarter_res_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors);
  1921. storage->get_effects()->render_sky(draw_list, time, sky->quarter_res_framebuffer, sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin);
  1922. RD::get_singleton()->draw_list_end();
  1923. }
  1924. if (shader_data->uses_half_res) {
  1925. PipelineCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_HALF_RES];
  1926. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_HALF_RES);
  1927. Vector<Color> clear_colors;
  1928. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  1929. RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(sky->half_res_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors);
  1930. storage->get_effects()->render_sky(draw_list, time, sky->half_res_framebuffer, sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin);
  1931. RD::get_singleton()->draw_list_end();
  1932. }
  1933. PipelineCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_BACKGROUND];
  1934. RID texture_uniform_set;
  1935. if (sky) {
  1936. texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_BACKGROUND);
  1937. } else {
  1938. texture_uniform_set = sky_scene_state.fog_only_texture_uniform_set;
  1939. }
  1940. RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_fb, RD::INITIAL_ACTION_CONTINUE, p_can_continue_color ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CONTINUE, p_can_continue_depth ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ);
  1941. storage->get_effects()->render_sky(draw_list, time, p_fb, sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin);
  1942. RD::get_singleton()->draw_list_end();
  1943. }
  1944. void RendererSceneRenderRD::_setup_sky(RID p_environment, RID p_render_buffers, const CameraMatrix &p_projection, const Transform &p_transform, const Size2i p_screen_size) {
  1945. ERR_FAIL_COND(!is_environment(p_environment));
  1946. SkyMaterialData *material = nullptr;
  1947. Sky *sky = sky_owner.getornull(environment_get_sky(p_environment));
  1948. RID sky_material;
  1949. SkyShaderData *shader_data = nullptr;
  1950. RS::EnvironmentBG background = environment_get_background(p_environment);
  1951. if (!(background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) || sky) {
  1952. ERR_FAIL_COND(!sky);
  1953. sky_material = sky_get_material(environment_get_sky(p_environment));
  1954. if (sky_material.is_valid()) {
  1955. material = (SkyMaterialData *)storage->material_get_data(sky_material, RendererStorageRD::SHADER_TYPE_SKY);
  1956. if (!material || !material->shader_data->valid) {
  1957. material = nullptr;
  1958. }
  1959. }
  1960. if (!material) {
  1961. sky_material = sky_shader.default_material;
  1962. material = (SkyMaterialData *)storage->material_get_data(sky_material, RendererStorageRD::SHADER_TYPE_SKY);
  1963. }
  1964. ERR_FAIL_COND(!material);
  1965. shader_data = material->shader_data;
  1966. ERR_FAIL_COND(!shader_data);
  1967. }
  1968. if (sky) {
  1969. // Invalidate supbass buffers if screen size changes
  1970. if (sky->screen_size != p_screen_size) {
  1971. sky->screen_size = p_screen_size;
  1972. sky->screen_size.x = sky->screen_size.x < 4 ? 4 : sky->screen_size.x;
  1973. sky->screen_size.y = sky->screen_size.y < 4 ? 4 : sky->screen_size.y;
  1974. if (shader_data->uses_half_res) {
  1975. if (sky->half_res_pass.is_valid()) {
  1976. RD::get_singleton()->free(sky->half_res_pass);
  1977. sky->half_res_pass = RID();
  1978. }
  1979. _sky_invalidate(sky);
  1980. }
  1981. if (shader_data->uses_quarter_res) {
  1982. if (sky->quarter_res_pass.is_valid()) {
  1983. RD::get_singleton()->free(sky->quarter_res_pass);
  1984. sky->quarter_res_pass = RID();
  1985. }
  1986. _sky_invalidate(sky);
  1987. }
  1988. }
  1989. // Create new subpass buffers if necessary
  1990. if ((shader_data->uses_half_res && sky->half_res_pass.is_null()) ||
  1991. (shader_data->uses_quarter_res && sky->quarter_res_pass.is_null()) ||
  1992. sky->radiance.is_null()) {
  1993. _sky_invalidate(sky);
  1994. _update_dirty_skys();
  1995. }
  1996. if (shader_data->uses_time && time - sky->prev_time > 0.00001) {
  1997. sky->prev_time = time;
  1998. sky->reflection.dirty = true;
  1999. RenderingServerDefault::redraw_request();
  2000. }
  2001. if (material != sky->prev_material) {
  2002. sky->prev_material = material;
  2003. sky->reflection.dirty = true;
  2004. }
  2005. if (material->uniform_set_updated) {
  2006. material->uniform_set_updated = false;
  2007. sky->reflection.dirty = true;
  2008. }
  2009. if (!p_transform.origin.is_equal_approx(sky->prev_position) && shader_data->uses_position) {
  2010. sky->prev_position = p_transform.origin;
  2011. sky->reflection.dirty = true;
  2012. }
  2013. if (shader_data->uses_light) {
  2014. // Check whether the directional_light_buffer changes
  2015. bool light_data_dirty = false;
  2016. if (sky_scene_state.ubo.directional_light_count != sky_scene_state.last_frame_directional_light_count) {
  2017. light_data_dirty = true;
  2018. for (uint32_t i = sky_scene_state.ubo.directional_light_count; i < sky_scene_state.max_directional_lights; i++) {
  2019. sky_scene_state.directional_lights[i].enabled = false;
  2020. }
  2021. }
  2022. if (!light_data_dirty) {
  2023. for (uint32_t i = 0; i < sky_scene_state.ubo.directional_light_count; i++) {
  2024. if (sky_scene_state.directional_lights[i].direction[0] != sky_scene_state.last_frame_directional_lights[i].direction[0] ||
  2025. sky_scene_state.directional_lights[i].direction[1] != sky_scene_state.last_frame_directional_lights[i].direction[1] ||
  2026. sky_scene_state.directional_lights[i].direction[2] != sky_scene_state.last_frame_directional_lights[i].direction[2] ||
  2027. sky_scene_state.directional_lights[i].energy != sky_scene_state.last_frame_directional_lights[i].energy ||
  2028. sky_scene_state.directional_lights[i].color[0] != sky_scene_state.last_frame_directional_lights[i].color[0] ||
  2029. sky_scene_state.directional_lights[i].color[1] != sky_scene_state.last_frame_directional_lights[i].color[1] ||
  2030. sky_scene_state.directional_lights[i].color[2] != sky_scene_state.last_frame_directional_lights[i].color[2] ||
  2031. sky_scene_state.directional_lights[i].enabled != sky_scene_state.last_frame_directional_lights[i].enabled ||
  2032. sky_scene_state.directional_lights[i].size != sky_scene_state.last_frame_directional_lights[i].size) {
  2033. light_data_dirty = true;
  2034. break;
  2035. }
  2036. }
  2037. }
  2038. if (light_data_dirty) {
  2039. RD::get_singleton()->buffer_update(sky_scene_state.directional_light_buffer, 0, sizeof(SkyDirectionalLightData) * sky_scene_state.max_directional_lights, sky_scene_state.directional_lights);
  2040. RendererSceneRenderRD::SkyDirectionalLightData *temp = sky_scene_state.last_frame_directional_lights;
  2041. sky_scene_state.last_frame_directional_lights = sky_scene_state.directional_lights;
  2042. sky_scene_state.directional_lights = temp;
  2043. sky_scene_state.last_frame_directional_light_count = sky_scene_state.ubo.directional_light_count;
  2044. sky->reflection.dirty = true;
  2045. }
  2046. }
  2047. }
  2048. //setup fog variables
  2049. sky_scene_state.ubo.volumetric_fog_enabled = false;
  2050. if (p_render_buffers.is_valid()) {
  2051. if (render_buffers_has_volumetric_fog(p_render_buffers)) {
  2052. sky_scene_state.ubo.volumetric_fog_enabled = true;
  2053. float fog_end = render_buffers_get_volumetric_fog_end(p_render_buffers);
  2054. if (fog_end > 0.0) {
  2055. sky_scene_state.ubo.volumetric_fog_inv_length = 1.0 / fog_end;
  2056. } else {
  2057. sky_scene_state.ubo.volumetric_fog_inv_length = 1.0;
  2058. }
  2059. float fog_detail_spread = render_buffers_get_volumetric_fog_detail_spread(p_render_buffers); //reverse lookup
  2060. if (fog_detail_spread > 0.0) {
  2061. sky_scene_state.ubo.volumetric_fog_detail_spread = 1.0 / fog_detail_spread;
  2062. } else {
  2063. sky_scene_state.ubo.volumetric_fog_detail_spread = 1.0;
  2064. }
  2065. }
  2066. RID fog_uniform_set = render_buffers_get_volumetric_fog_sky_uniform_set(p_render_buffers);
  2067. if (fog_uniform_set != RID()) {
  2068. sky_scene_state.fog_uniform_set = fog_uniform_set;
  2069. } else {
  2070. sky_scene_state.fog_uniform_set = sky_scene_state.default_fog_uniform_set;
  2071. }
  2072. }
  2073. sky_scene_state.ubo.z_far = p_projection.get_z_far();
  2074. sky_scene_state.ubo.fog_enabled = environment_is_fog_enabled(p_environment);
  2075. sky_scene_state.ubo.fog_density = environment_get_fog_density(p_environment);
  2076. sky_scene_state.ubo.fog_aerial_perspective = environment_get_fog_aerial_perspective(p_environment);
  2077. Color fog_color = environment_get_fog_light_color(p_environment).to_linear();
  2078. float fog_energy = environment_get_fog_light_energy(p_environment);
  2079. sky_scene_state.ubo.fog_light_color[0] = fog_color.r * fog_energy;
  2080. sky_scene_state.ubo.fog_light_color[1] = fog_color.g * fog_energy;
  2081. sky_scene_state.ubo.fog_light_color[2] = fog_color.b * fog_energy;
  2082. sky_scene_state.ubo.fog_sun_scatter = environment_get_fog_sun_scatter(p_environment);
  2083. RD::get_singleton()->buffer_update(sky_scene_state.uniform_buffer, 0, sizeof(SkySceneState::UBO), &sky_scene_state.ubo);
  2084. }
  2085. void RendererSceneRenderRD::_update_sky(RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform) {
  2086. ERR_FAIL_COND(!is_environment(p_environment));
  2087. Sky *sky = sky_owner.getornull(environment_get_sky(p_environment));
  2088. ERR_FAIL_COND(!sky);
  2089. RID sky_material = sky_get_material(environment_get_sky(p_environment));
  2090. SkyMaterialData *material = nullptr;
  2091. if (sky_material.is_valid()) {
  2092. material = (SkyMaterialData *)storage->material_get_data(sky_material, RendererStorageRD::SHADER_TYPE_SKY);
  2093. if (!material || !material->shader_data->valid) {
  2094. material = nullptr;
  2095. }
  2096. }
  2097. if (!material) {
  2098. sky_material = sky_shader.default_material;
  2099. material = (SkyMaterialData *)storage->material_get_data(sky_material, RendererStorageRD::SHADER_TYPE_SKY);
  2100. }
  2101. ERR_FAIL_COND(!material);
  2102. SkyShaderData *shader_data = material->shader_data;
  2103. ERR_FAIL_COND(!shader_data);
  2104. float multiplier = environment_get_bg_energy(p_environment);
  2105. bool update_single_frame = sky->mode == RS::SKY_MODE_REALTIME || sky->mode == RS::SKY_MODE_QUALITY;
  2106. RS::SkyMode sky_mode = sky->mode;
  2107. if (sky_mode == RS::SKY_MODE_AUTOMATIC) {
  2108. if (shader_data->uses_time || shader_data->uses_position) {
  2109. update_single_frame = true;
  2110. sky_mode = RS::SKY_MODE_REALTIME;
  2111. } else if (shader_data->uses_light || shader_data->ubo_size > 0) {
  2112. update_single_frame = false;
  2113. sky_mode = RS::SKY_MODE_INCREMENTAL;
  2114. } else {
  2115. update_single_frame = true;
  2116. sky_mode = RS::SKY_MODE_QUALITY;
  2117. }
  2118. }
  2119. if (sky->processing_layer == 0 && sky_mode == RS::SKY_MODE_INCREMENTAL) {
  2120. // On the first frame after creating sky, rebuild in single frame
  2121. update_single_frame = true;
  2122. sky_mode = RS::SKY_MODE_QUALITY;
  2123. }
  2124. int max_processing_layer = sky_use_cubemap_array ? sky->reflection.layers.size() : sky->reflection.layers[0].mipmaps.size();
  2125. // Update radiance cubemap
  2126. if (sky->reflection.dirty && (sky->processing_layer >= max_processing_layer || update_single_frame)) {
  2127. static const Vector3 view_normals[6] = {
  2128. Vector3(+1, 0, 0),
  2129. Vector3(-1, 0, 0),
  2130. Vector3(0, +1, 0),
  2131. Vector3(0, -1, 0),
  2132. Vector3(0, 0, +1),
  2133. Vector3(0, 0, -1)
  2134. };
  2135. static const Vector3 view_up[6] = {
  2136. Vector3(0, -1, 0),
  2137. Vector3(0, -1, 0),
  2138. Vector3(0, 0, +1),
  2139. Vector3(0, 0, -1),
  2140. Vector3(0, -1, 0),
  2141. Vector3(0, -1, 0)
  2142. };
  2143. CameraMatrix cm;
  2144. cm.set_perspective(90, 1, 0.01, 10.0);
  2145. CameraMatrix correction;
  2146. correction.set_depth_correction(true);
  2147. cm = correction * cm;
  2148. if (shader_data->uses_quarter_res) {
  2149. PipelineCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP_QUARTER_RES];
  2150. Vector<Color> clear_colors;
  2151. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  2152. RD::DrawListID cubemap_draw_list;
  2153. for (int i = 0; i < 6; i++) {
  2154. Transform local_view;
  2155. local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]);
  2156. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES);
  2157. cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[2].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD);
  2158. storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[2].framebuffers[i], sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin);
  2159. RD::get_singleton()->draw_list_end();
  2160. }
  2161. }
  2162. if (shader_data->uses_half_res) {
  2163. PipelineCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP_HALF_RES];
  2164. Vector<Color> clear_colors;
  2165. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  2166. RD::DrawListID cubemap_draw_list;
  2167. for (int i = 0; i < 6; i++) {
  2168. Transform local_view;
  2169. local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]);
  2170. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP_HALF_RES);
  2171. cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[1].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD);
  2172. storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[1].framebuffers[i], sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin);
  2173. RD::get_singleton()->draw_list_end();
  2174. }
  2175. }
  2176. RD::DrawListID cubemap_draw_list;
  2177. PipelineCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP];
  2178. for (int i = 0; i < 6; i++) {
  2179. Transform local_view;
  2180. local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]);
  2181. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP);
  2182. cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[0].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD);
  2183. storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[0].framebuffers[i], sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin);
  2184. RD::get_singleton()->draw_list_end();
  2185. }
  2186. if (sky_mode == RS::SKY_MODE_REALTIME) {
  2187. _create_reflection_fast_filter(sky->reflection, sky_use_cubemap_array);
  2188. if (sky_use_cubemap_array) {
  2189. _update_reflection_mipmaps(sky->reflection, 0, sky->reflection.layers.size());
  2190. }
  2191. } else {
  2192. if (update_single_frame) {
  2193. for (int i = 1; i < max_processing_layer; i++) {
  2194. _create_reflection_importance_sample(sky->reflection, sky_use_cubemap_array, 10, i);
  2195. }
  2196. if (sky_use_cubemap_array) {
  2197. _update_reflection_mipmaps(sky->reflection, 0, sky->reflection.layers.size());
  2198. }
  2199. } else {
  2200. if (sky_use_cubemap_array) {
  2201. // Multi-Frame so just update the first array level
  2202. _update_reflection_mipmaps(sky->reflection, 0, 1);
  2203. }
  2204. }
  2205. sky->processing_layer = 1;
  2206. }
  2207. sky->reflection.dirty = false;
  2208. } else {
  2209. if (sky_mode == RS::SKY_MODE_INCREMENTAL && sky->processing_layer < max_processing_layer) {
  2210. _create_reflection_importance_sample(sky->reflection, sky_use_cubemap_array, 10, sky->processing_layer);
  2211. if (sky_use_cubemap_array) {
  2212. _update_reflection_mipmaps(sky->reflection, sky->processing_layer, sky->processing_layer + 1);
  2213. }
  2214. sky->processing_layer++;
  2215. }
  2216. }
  2217. }
  2218. /* SKY SHADER */
  2219. void RendererSceneRenderRD::SkyShaderData::set_code(const String &p_code) {
  2220. //compile
  2221. code = p_code;
  2222. valid = false;
  2223. ubo_size = 0;
  2224. uniforms.clear();
  2225. if (code == String()) {
  2226. return; //just invalid, but no error
  2227. }
  2228. ShaderCompilerRD::GeneratedCode gen_code;
  2229. ShaderCompilerRD::IdentifierActions actions;
  2230. uses_time = false;
  2231. uses_half_res = false;
  2232. uses_quarter_res = false;
  2233. uses_position = false;
  2234. uses_light = false;
  2235. actions.render_mode_flags["use_half_res_pass"] = &uses_half_res;
  2236. actions.render_mode_flags["use_quarter_res_pass"] = &uses_quarter_res;
  2237. actions.usage_flag_pointers["TIME"] = &uses_time;
  2238. actions.usage_flag_pointers["POSITION"] = &uses_position;
  2239. actions.usage_flag_pointers["LIGHT0_ENABLED"] = &uses_light;
  2240. actions.usage_flag_pointers["LIGHT0_ENERGY"] = &uses_light;
  2241. actions.usage_flag_pointers["LIGHT0_DIRECTION"] = &uses_light;
  2242. actions.usage_flag_pointers["LIGHT0_COLOR"] = &uses_light;
  2243. actions.usage_flag_pointers["LIGHT0_SIZE"] = &uses_light;
  2244. actions.usage_flag_pointers["LIGHT1_ENABLED"] = &uses_light;
  2245. actions.usage_flag_pointers["LIGHT1_ENERGY"] = &uses_light;
  2246. actions.usage_flag_pointers["LIGHT1_DIRECTION"] = &uses_light;
  2247. actions.usage_flag_pointers["LIGHT1_COLOR"] = &uses_light;
  2248. actions.usage_flag_pointers["LIGHT1_SIZE"] = &uses_light;
  2249. actions.usage_flag_pointers["LIGHT2_ENABLED"] = &uses_light;
  2250. actions.usage_flag_pointers["LIGHT2_ENERGY"] = &uses_light;
  2251. actions.usage_flag_pointers["LIGHT2_DIRECTION"] = &uses_light;
  2252. actions.usage_flag_pointers["LIGHT2_COLOR"] = &uses_light;
  2253. actions.usage_flag_pointers["LIGHT2_SIZE"] = &uses_light;
  2254. actions.usage_flag_pointers["LIGHT3_ENABLED"] = &uses_light;
  2255. actions.usage_flag_pointers["LIGHT3_ENERGY"] = &uses_light;
  2256. actions.usage_flag_pointers["LIGHT3_DIRECTION"] = &uses_light;
  2257. actions.usage_flag_pointers["LIGHT3_COLOR"] = &uses_light;
  2258. actions.usage_flag_pointers["LIGHT3_SIZE"] = &uses_light;
  2259. actions.uniforms = &uniforms;
  2260. RendererSceneRenderRD *scene_singleton = (RendererSceneRenderRD *)RendererSceneRenderRD::singleton;
  2261. Error err = scene_singleton->sky_shader.compiler.compile(RS::SHADER_SKY, code, &actions, path, gen_code);
  2262. ERR_FAIL_COND(err != OK);
  2263. if (version.is_null()) {
  2264. version = scene_singleton->sky_shader.shader.version_create();
  2265. }
  2266. #if 0
  2267. print_line("**compiling shader:");
  2268. print_line("**defines:\n");
  2269. for (int i = 0; i < gen_code.defines.size(); i++) {
  2270. print_line(gen_code.defines[i]);
  2271. }
  2272. print_line("\n**uniforms:\n" + gen_code.uniforms);
  2273. // print_line("\n**vertex_globals:\n" + gen_code.vertex_global);
  2274. // print_line("\n**vertex_code:\n" + gen_code.vertex);
  2275. print_line("\n**fragment_globals:\n" + gen_code.fragment_global);
  2276. print_line("\n**fragment_code:\n" + gen_code.fragment);
  2277. print_line("\n**light_code:\n" + gen_code.light);
  2278. #endif
  2279. scene_singleton->sky_shader.shader.version_set_code(version, gen_code.uniforms, gen_code.vertex_global, gen_code.vertex, gen_code.fragment_global, gen_code.light, gen_code.fragment, gen_code.defines);
  2280. ERR_FAIL_COND(!scene_singleton->sky_shader.shader.version_is_valid(version));
  2281. ubo_size = gen_code.uniform_total_size;
  2282. ubo_offsets = gen_code.uniform_offsets;
  2283. texture_uniforms = gen_code.texture_uniforms;
  2284. //update pipelines
  2285. for (int i = 0; i < SKY_VERSION_MAX; i++) {
  2286. RD::PipelineDepthStencilState depth_stencil_state;
  2287. depth_stencil_state.enable_depth_test = true;
  2288. depth_stencil_state.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL;
  2289. RID shader_variant = scene_singleton->sky_shader.shader.version_get_shader(version, i);
  2290. pipelines[i].setup(shader_variant, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), depth_stencil_state, RD::PipelineColorBlendState::create_disabled(), 0);
  2291. }
  2292. valid = true;
  2293. }
  2294. void RendererSceneRenderRD::SkyShaderData::set_default_texture_param(const StringName &p_name, RID p_texture) {
  2295. if (!p_texture.is_valid()) {
  2296. default_texture_params.erase(p_name);
  2297. } else {
  2298. default_texture_params[p_name] = p_texture;
  2299. }
  2300. }
  2301. void RendererSceneRenderRD::SkyShaderData::get_param_list(List<PropertyInfo> *p_param_list) const {
  2302. Map<int, StringName> order;
  2303. for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = uniforms.front(); E; E = E->next()) {
  2304. if (E->get().scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_GLOBAL || E->get().scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
  2305. continue;
  2306. }
  2307. if (E->get().texture_order >= 0) {
  2308. order[E->get().texture_order + 100000] = E->key();
  2309. } else {
  2310. order[E->get().order] = E->key();
  2311. }
  2312. }
  2313. for (Map<int, StringName>::Element *E = order.front(); E; E = E->next()) {
  2314. PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniforms[E->get()]);
  2315. pi.name = E->get();
  2316. p_param_list->push_back(pi);
  2317. }
  2318. }
  2319. void RendererSceneRenderRD::SkyShaderData::get_instance_param_list(List<RendererStorage::InstanceShaderParam> *p_param_list) const {
  2320. for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = uniforms.front(); E; E = E->next()) {
  2321. if (E->get().scope != ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
  2322. continue;
  2323. }
  2324. RendererStorage::InstanceShaderParam p;
  2325. p.info = ShaderLanguage::uniform_to_property_info(E->get());
  2326. p.info.name = E->key(); //supply name
  2327. p.index = E->get().instance_index;
  2328. p.default_value = ShaderLanguage::constant_value_to_variant(E->get().default_value, E->get().type, E->get().hint);
  2329. p_param_list->push_back(p);
  2330. }
  2331. }
  2332. bool RendererSceneRenderRD::SkyShaderData::is_param_texture(const StringName &p_param) const {
  2333. if (!uniforms.has(p_param)) {
  2334. return false;
  2335. }
  2336. return uniforms[p_param].texture_order >= 0;
  2337. }
  2338. bool RendererSceneRenderRD::SkyShaderData::is_animated() const {
  2339. return false;
  2340. }
  2341. bool RendererSceneRenderRD::SkyShaderData::casts_shadows() const {
  2342. return false;
  2343. }
  2344. Variant RendererSceneRenderRD::SkyShaderData::get_default_parameter(const StringName &p_parameter) const {
  2345. if (uniforms.has(p_parameter)) {
  2346. ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter];
  2347. Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value;
  2348. return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint);
  2349. }
  2350. return Variant();
  2351. }
  2352. RS::ShaderNativeSourceCode RendererSceneRenderRD::SkyShaderData::get_native_source_code() const {
  2353. RendererSceneRenderRD *scene_singleton = (RendererSceneRenderRD *)RendererSceneRenderRD::singleton;
  2354. return scene_singleton->sky_shader.shader.version_get_native_source_code(version);
  2355. }
  2356. RendererSceneRenderRD::SkyShaderData::SkyShaderData() {
  2357. valid = false;
  2358. }
  2359. RendererSceneRenderRD::SkyShaderData::~SkyShaderData() {
  2360. RendererSceneRenderRD *scene_singleton = (RendererSceneRenderRD *)RendererSceneRenderRD::singleton;
  2361. ERR_FAIL_COND(!scene_singleton);
  2362. //pipeline variants will clear themselves if shader is gone
  2363. if (version.is_valid()) {
  2364. scene_singleton->sky_shader.shader.version_free(version);
  2365. }
  2366. }
  2367. RendererStorageRD::ShaderData *RendererSceneRenderRD::_create_sky_shader_func() {
  2368. SkyShaderData *shader_data = memnew(SkyShaderData);
  2369. return shader_data;
  2370. }
  2371. void RendererSceneRenderRD::SkyMaterialData::update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
  2372. RendererSceneRenderRD *scene_singleton = (RendererSceneRenderRD *)RendererSceneRenderRD::singleton;
  2373. uniform_set_updated = true;
  2374. if ((uint32_t)ubo_data.size() != shader_data->ubo_size) {
  2375. p_uniform_dirty = true;
  2376. if (uniform_buffer.is_valid()) {
  2377. RD::get_singleton()->free(uniform_buffer);
  2378. uniform_buffer = RID();
  2379. }
  2380. ubo_data.resize(shader_data->ubo_size);
  2381. if (ubo_data.size()) {
  2382. uniform_buffer = RD::get_singleton()->uniform_buffer_create(ubo_data.size());
  2383. memset(ubo_data.ptrw(), 0, ubo_data.size()); //clear
  2384. }
  2385. //clear previous uniform set
  2386. if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  2387. RD::get_singleton()->free(uniform_set);
  2388. uniform_set = RID();
  2389. }
  2390. }
  2391. //check whether buffer changed
  2392. if (p_uniform_dirty && ubo_data.size()) {
  2393. update_uniform_buffer(shader_data->uniforms, shader_data->ubo_offsets.ptr(), p_parameters, ubo_data.ptrw(), ubo_data.size(), false);
  2394. RD::get_singleton()->buffer_update(uniform_buffer, 0, ubo_data.size(), ubo_data.ptrw());
  2395. }
  2396. uint32_t tex_uniform_count = shader_data->texture_uniforms.size();
  2397. if ((uint32_t)texture_cache.size() != tex_uniform_count) {
  2398. texture_cache.resize(tex_uniform_count);
  2399. p_textures_dirty = true;
  2400. //clear previous uniform set
  2401. if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  2402. RD::get_singleton()->free(uniform_set);
  2403. uniform_set = RID();
  2404. }
  2405. }
  2406. if (p_textures_dirty && tex_uniform_count) {
  2407. update_textures(p_parameters, shader_data->default_texture_params, shader_data->texture_uniforms, texture_cache.ptrw(), true);
  2408. }
  2409. if (shader_data->ubo_size == 0 && shader_data->texture_uniforms.size() == 0) {
  2410. // This material does not require an uniform set, so don't create it.
  2411. return;
  2412. }
  2413. if (!p_textures_dirty && uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  2414. //no reason to update uniform set, only UBO (or nothing) was needed to update
  2415. return;
  2416. }
  2417. Vector<RD::Uniform> uniforms;
  2418. {
  2419. if (shader_data->ubo_size) {
  2420. RD::Uniform u;
  2421. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  2422. u.binding = 0;
  2423. u.ids.push_back(uniform_buffer);
  2424. uniforms.push_back(u);
  2425. }
  2426. const RID *textures = texture_cache.ptrw();
  2427. for (uint32_t i = 0; i < tex_uniform_count; i++) {
  2428. RD::Uniform u;
  2429. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2430. u.binding = 1 + i;
  2431. u.ids.push_back(textures[i]);
  2432. uniforms.push_back(u);
  2433. }
  2434. }
  2435. uniform_set = RD::get_singleton()->uniform_set_create(uniforms, scene_singleton->sky_shader.shader.version_get_shader(shader_data->version, 0), SKY_SET_MATERIAL);
  2436. }
  2437. RendererSceneRenderRD::SkyMaterialData::~SkyMaterialData() {
  2438. if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  2439. RD::get_singleton()->free(uniform_set);
  2440. }
  2441. if (uniform_buffer.is_valid()) {
  2442. RD::get_singleton()->free(uniform_buffer);
  2443. }
  2444. }
  2445. RendererStorageRD::MaterialData *RendererSceneRenderRD::_create_sky_material_func(SkyShaderData *p_shader) {
  2446. SkyMaterialData *material_data = memnew(SkyMaterialData);
  2447. material_data->shader_data = p_shader;
  2448. material_data->last_frame = false;
  2449. //update will happen later anyway so do nothing.
  2450. return material_data;
  2451. }
  2452. RID RendererSceneRenderRD::environment_create() {
  2453. return environment_owner.make_rid(Environment());
  2454. }
  2455. void RendererSceneRenderRD::environment_set_background(RID p_env, RS::EnvironmentBG p_bg) {
  2456. Environment *env = environment_owner.getornull(p_env);
  2457. ERR_FAIL_COND(!env);
  2458. env->background = p_bg;
  2459. }
  2460. void RendererSceneRenderRD::environment_set_sky(RID p_env, RID p_sky) {
  2461. Environment *env = environment_owner.getornull(p_env);
  2462. ERR_FAIL_COND(!env);
  2463. env->sky = p_sky;
  2464. }
  2465. void RendererSceneRenderRD::environment_set_sky_custom_fov(RID p_env, float p_scale) {
  2466. Environment *env = environment_owner.getornull(p_env);
  2467. ERR_FAIL_COND(!env);
  2468. env->sky_custom_fov = p_scale;
  2469. }
  2470. void RendererSceneRenderRD::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) {
  2471. Environment *env = environment_owner.getornull(p_env);
  2472. ERR_FAIL_COND(!env);
  2473. env->sky_orientation = p_orientation;
  2474. }
  2475. void RendererSceneRenderRD::environment_set_bg_color(RID p_env, const Color &p_color) {
  2476. Environment *env = environment_owner.getornull(p_env);
  2477. ERR_FAIL_COND(!env);
  2478. env->bg_color = p_color;
  2479. }
  2480. void RendererSceneRenderRD::environment_set_bg_energy(RID p_env, float p_energy) {
  2481. Environment *env = environment_owner.getornull(p_env);
  2482. ERR_FAIL_COND(!env);
  2483. env->bg_energy = p_energy;
  2484. }
  2485. void RendererSceneRenderRD::environment_set_canvas_max_layer(RID p_env, int p_max_layer) {
  2486. Environment *env = environment_owner.getornull(p_env);
  2487. ERR_FAIL_COND(!env);
  2488. env->canvas_max_layer = p_max_layer;
  2489. }
  2490. void RendererSceneRenderRD::environment_set_ambient_light(RID p_env, const Color &p_color, RS::EnvironmentAmbientSource p_ambient, float p_energy, float p_sky_contribution, RS::EnvironmentReflectionSource p_reflection_source, const Color &p_ao_color) {
  2491. Environment *env = environment_owner.getornull(p_env);
  2492. ERR_FAIL_COND(!env);
  2493. env->ambient_light = p_color;
  2494. env->ambient_source = p_ambient;
  2495. env->ambient_light_energy = p_energy;
  2496. env->ambient_sky_contribution = p_sky_contribution;
  2497. env->reflection_source = p_reflection_source;
  2498. env->ao_color = p_ao_color;
  2499. }
  2500. RS::EnvironmentBG RendererSceneRenderRD::environment_get_background(RID p_env) const {
  2501. Environment *env = environment_owner.getornull(p_env);
  2502. ERR_FAIL_COND_V(!env, RS::ENV_BG_MAX);
  2503. return env->background;
  2504. }
  2505. RID RendererSceneRenderRD::environment_get_sky(RID p_env) const {
  2506. Environment *env = environment_owner.getornull(p_env);
  2507. ERR_FAIL_COND_V(!env, RID());
  2508. return env->sky;
  2509. }
  2510. float RendererSceneRenderRD::environment_get_sky_custom_fov(RID p_env) const {
  2511. Environment *env = environment_owner.getornull(p_env);
  2512. ERR_FAIL_COND_V(!env, 0);
  2513. return env->sky_custom_fov;
  2514. }
  2515. Basis RendererSceneRenderRD::environment_get_sky_orientation(RID p_env) const {
  2516. Environment *env = environment_owner.getornull(p_env);
  2517. ERR_FAIL_COND_V(!env, Basis());
  2518. return env->sky_orientation;
  2519. }
  2520. Color RendererSceneRenderRD::environment_get_bg_color(RID p_env) const {
  2521. Environment *env = environment_owner.getornull(p_env);
  2522. ERR_FAIL_COND_V(!env, Color());
  2523. return env->bg_color;
  2524. }
  2525. float RendererSceneRenderRD::environment_get_bg_energy(RID p_env) const {
  2526. Environment *env = environment_owner.getornull(p_env);
  2527. ERR_FAIL_COND_V(!env, 0);
  2528. return env->bg_energy;
  2529. }
  2530. int RendererSceneRenderRD::environment_get_canvas_max_layer(RID p_env) const {
  2531. Environment *env = environment_owner.getornull(p_env);
  2532. ERR_FAIL_COND_V(!env, 0);
  2533. return env->canvas_max_layer;
  2534. }
  2535. Color RendererSceneRenderRD::environment_get_ambient_light_color(RID p_env) const {
  2536. Environment *env = environment_owner.getornull(p_env);
  2537. ERR_FAIL_COND_V(!env, Color());
  2538. return env->ambient_light;
  2539. }
  2540. RS::EnvironmentAmbientSource RendererSceneRenderRD::environment_get_ambient_source(RID p_env) const {
  2541. Environment *env = environment_owner.getornull(p_env);
  2542. ERR_FAIL_COND_V(!env, RS::ENV_AMBIENT_SOURCE_BG);
  2543. return env->ambient_source;
  2544. }
  2545. float RendererSceneRenderRD::environment_get_ambient_light_energy(RID p_env) const {
  2546. Environment *env = environment_owner.getornull(p_env);
  2547. ERR_FAIL_COND_V(!env, 0);
  2548. return env->ambient_light_energy;
  2549. }
  2550. float RendererSceneRenderRD::environment_get_ambient_sky_contribution(RID p_env) const {
  2551. Environment *env = environment_owner.getornull(p_env);
  2552. ERR_FAIL_COND_V(!env, 0);
  2553. return env->ambient_sky_contribution;
  2554. }
  2555. RS::EnvironmentReflectionSource RendererSceneRenderRD::environment_get_reflection_source(RID p_env) const {
  2556. Environment *env = environment_owner.getornull(p_env);
  2557. ERR_FAIL_COND_V(!env, RS::ENV_REFLECTION_SOURCE_DISABLED);
  2558. return env->reflection_source;
  2559. }
  2560. Color RendererSceneRenderRD::environment_get_ao_color(RID p_env) const {
  2561. Environment *env = environment_owner.getornull(p_env);
  2562. ERR_FAIL_COND_V(!env, Color());
  2563. return env->ao_color;
  2564. }
  2565. void RendererSceneRenderRD::environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) {
  2566. Environment *env = environment_owner.getornull(p_env);
  2567. ERR_FAIL_COND(!env);
  2568. env->exposure = p_exposure;
  2569. env->tone_mapper = p_tone_mapper;
  2570. if (!env->auto_exposure && p_auto_exposure) {
  2571. env->auto_exposure_version = ++auto_exposure_counter;
  2572. }
  2573. env->auto_exposure = p_auto_exposure;
  2574. env->white = p_white;
  2575. env->min_luminance = p_min_luminance;
  2576. env->max_luminance = p_max_luminance;
  2577. env->auto_exp_speed = p_auto_exp_speed;
  2578. env->auto_exp_scale = p_auto_exp_scale;
  2579. }
  2580. void RendererSceneRenderRD::environment_set_glow(RID p_env, bool p_enable, Vector<float> p_levels, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap) {
  2581. Environment *env = environment_owner.getornull(p_env);
  2582. ERR_FAIL_COND(!env);
  2583. ERR_FAIL_COND_MSG(p_levels.size() != 7, "Size of array of glow levels must be 7");
  2584. env->glow_enabled = p_enable;
  2585. env->glow_levels = p_levels;
  2586. env->glow_intensity = p_intensity;
  2587. env->glow_strength = p_strength;
  2588. env->glow_mix = p_mix;
  2589. env->glow_bloom = p_bloom_threshold;
  2590. env->glow_blend_mode = p_blend_mode;
  2591. env->glow_hdr_bleed_threshold = p_hdr_bleed_threshold;
  2592. env->glow_hdr_bleed_scale = p_hdr_bleed_scale;
  2593. env->glow_hdr_luminance_cap = p_hdr_luminance_cap;
  2594. }
  2595. void RendererSceneRenderRD::environment_glow_set_use_bicubic_upscale(bool p_enable) {
  2596. glow_bicubic_upscale = p_enable;
  2597. }
  2598. void RendererSceneRenderRD::environment_glow_set_use_high_quality(bool p_enable) {
  2599. glow_high_quality = p_enable;
  2600. }
  2601. void RendererSceneRenderRD::environment_set_sdfgi(RID p_env, bool p_enable, RS::EnvironmentSDFGICascades p_cascades, float p_min_cell_size, RS::EnvironmentSDFGIYScale p_y_scale, bool p_use_occlusion, bool p_use_multibounce, bool p_read_sky, float p_energy, float p_normal_bias, float p_probe_bias) {
  2602. Environment *env = environment_owner.getornull(p_env);
  2603. ERR_FAIL_COND(!env);
  2604. if (low_end) {
  2605. return;
  2606. }
  2607. env->sdfgi_enabled = p_enable;
  2608. env->sdfgi_cascades = p_cascades;
  2609. env->sdfgi_min_cell_size = p_min_cell_size;
  2610. env->sdfgi_use_occlusion = p_use_occlusion;
  2611. env->sdfgi_use_multibounce = p_use_multibounce;
  2612. env->sdfgi_read_sky_light = p_read_sky;
  2613. env->sdfgi_energy = p_energy;
  2614. env->sdfgi_normal_bias = p_normal_bias;
  2615. env->sdfgi_probe_bias = p_probe_bias;
  2616. env->sdfgi_y_scale = p_y_scale;
  2617. }
  2618. void RendererSceneRenderRD::environment_set_fog(RID p_env, bool p_enable, const Color &p_light_color, float p_light_energy, float p_sun_scatter, float p_density, float p_height, float p_height_density, float p_fog_aerial_perspective) {
  2619. Environment *env = environment_owner.getornull(p_env);
  2620. ERR_FAIL_COND(!env);
  2621. env->fog_enabled = p_enable;
  2622. env->fog_light_color = p_light_color;
  2623. env->fog_light_energy = p_light_energy;
  2624. env->fog_sun_scatter = p_sun_scatter;
  2625. env->fog_density = p_density;
  2626. env->fog_height = p_height;
  2627. env->fog_height_density = p_height_density;
  2628. env->fog_aerial_perspective = p_fog_aerial_perspective;
  2629. }
  2630. bool RendererSceneRenderRD::environment_is_fog_enabled(RID p_env) const {
  2631. const Environment *env = environment_owner.getornull(p_env);
  2632. ERR_FAIL_COND_V(!env, false);
  2633. return env->fog_enabled;
  2634. }
  2635. Color RendererSceneRenderRD::environment_get_fog_light_color(RID p_env) const {
  2636. const Environment *env = environment_owner.getornull(p_env);
  2637. ERR_FAIL_COND_V(!env, Color());
  2638. return env->fog_light_color;
  2639. }
  2640. float RendererSceneRenderRD::environment_get_fog_light_energy(RID p_env) const {
  2641. const Environment *env = environment_owner.getornull(p_env);
  2642. ERR_FAIL_COND_V(!env, 0);
  2643. return env->fog_light_energy;
  2644. }
  2645. float RendererSceneRenderRD::environment_get_fog_sun_scatter(RID p_env) const {
  2646. const Environment *env = environment_owner.getornull(p_env);
  2647. ERR_FAIL_COND_V(!env, 0);
  2648. return env->fog_sun_scatter;
  2649. }
  2650. float RendererSceneRenderRD::environment_get_fog_density(RID p_env) const {
  2651. const Environment *env = environment_owner.getornull(p_env);
  2652. ERR_FAIL_COND_V(!env, 0);
  2653. return env->fog_density;
  2654. }
  2655. float RendererSceneRenderRD::environment_get_fog_height(RID p_env) const {
  2656. const Environment *env = environment_owner.getornull(p_env);
  2657. ERR_FAIL_COND_V(!env, 0);
  2658. return env->fog_height;
  2659. }
  2660. float RendererSceneRenderRD::environment_get_fog_height_density(RID p_env) const {
  2661. const Environment *env = environment_owner.getornull(p_env);
  2662. ERR_FAIL_COND_V(!env, 0);
  2663. return env->fog_height_density;
  2664. }
  2665. float RendererSceneRenderRD::environment_get_fog_aerial_perspective(RID p_env) const {
  2666. const Environment *env = environment_owner.getornull(p_env);
  2667. ERR_FAIL_COND_V(!env, 0);
  2668. return env->fog_aerial_perspective;
  2669. }
  2670. void RendererSceneRenderRD::environment_set_volumetric_fog(RID p_env, bool p_enable, float p_density, const Color &p_light, float p_light_energy, float p_length, float p_detail_spread, float p_gi_inject, bool p_temporal_reprojection, float p_temporal_reprojection_amount) {
  2671. Environment *env = environment_owner.getornull(p_env);
  2672. ERR_FAIL_COND(!env);
  2673. if (low_end) {
  2674. return;
  2675. }
  2676. env->volumetric_fog_enabled = p_enable;
  2677. env->volumetric_fog_density = p_density;
  2678. env->volumetric_fog_light = p_light;
  2679. env->volumetric_fog_light_energy = p_light_energy;
  2680. env->volumetric_fog_length = p_length;
  2681. env->volumetric_fog_detail_spread = p_detail_spread;
  2682. env->volumetric_fog_gi_inject = p_gi_inject;
  2683. env->volumetric_fog_temporal_reprojection = p_temporal_reprojection;
  2684. env->volumetric_fog_temporal_reprojection_amount = p_temporal_reprojection_amount;
  2685. }
  2686. void RendererSceneRenderRD::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) {
  2687. volumetric_fog_size = p_size;
  2688. volumetric_fog_depth = p_depth;
  2689. }
  2690. void RendererSceneRenderRD::environment_set_volumetric_fog_filter_active(bool p_enable) {
  2691. volumetric_fog_filter_active = p_enable;
  2692. }
  2693. void RendererSceneRenderRD::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) {
  2694. sdfgi_ray_count = p_ray_count;
  2695. }
  2696. void RendererSceneRenderRD::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) {
  2697. sdfgi_frames_to_converge = p_frames;
  2698. }
  2699. void RendererSceneRenderRD::environment_set_sdfgi_frames_to_update_light(RS::EnvironmentSDFGIFramesToUpdateLight p_update) {
  2700. sdfgi_frames_to_update_light = p_update;
  2701. }
  2702. void RendererSceneRenderRD::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance) {
  2703. Environment *env = environment_owner.getornull(p_env);
  2704. ERR_FAIL_COND(!env);
  2705. if (low_end) {
  2706. return;
  2707. }
  2708. env->ssr_enabled = p_enable;
  2709. env->ssr_max_steps = p_max_steps;
  2710. env->ssr_fade_in = p_fade_int;
  2711. env->ssr_fade_out = p_fade_out;
  2712. env->ssr_depth_tolerance = p_depth_tolerance;
  2713. }
  2714. void RendererSceneRenderRD::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) {
  2715. ssr_roughness_quality = p_quality;
  2716. }
  2717. RS::EnvironmentSSRRoughnessQuality RendererSceneRenderRD::environment_get_ssr_roughness_quality() const {
  2718. return ssr_roughness_quality;
  2719. }
  2720. void RendererSceneRenderRD::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_power, float p_detail, float p_horizon, float p_sharpness, float p_light_affect, float p_ao_channel_affect) {
  2721. Environment *env = environment_owner.getornull(p_env);
  2722. ERR_FAIL_COND(!env);
  2723. if (low_end) {
  2724. return;
  2725. }
  2726. env->ssao_enabled = p_enable;
  2727. env->ssao_radius = p_radius;
  2728. env->ssao_intensity = p_intensity;
  2729. env->ssao_power = p_power;
  2730. env->ssao_detail = p_detail;
  2731. env->ssao_horizon = p_horizon;
  2732. env->ssao_sharpness = p_sharpness;
  2733. env->ssao_direct_light_affect = p_light_affect;
  2734. env->ssao_ao_channel_affect = p_ao_channel_affect;
  2735. }
  2736. void RendererSceneRenderRD::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) {
  2737. ssao_quality = p_quality;
  2738. ssao_half_size = p_half_size;
  2739. ssao_adaptive_target = p_adaptive_target;
  2740. ssao_blur_passes = p_blur_passes;
  2741. ssao_fadeout_from = p_fadeout_from;
  2742. ssao_fadeout_to = p_fadeout_to;
  2743. }
  2744. bool RendererSceneRenderRD::environment_is_ssao_enabled(RID p_env) const {
  2745. Environment *env = environment_owner.getornull(p_env);
  2746. ERR_FAIL_COND_V(!env, false);
  2747. return env->ssao_enabled;
  2748. }
  2749. float RendererSceneRenderRD::environment_get_ssao_ao_affect(RID p_env) const {
  2750. Environment *env = environment_owner.getornull(p_env);
  2751. ERR_FAIL_COND_V(!env, 0.0);
  2752. return env->ssao_ao_channel_affect;
  2753. }
  2754. float RendererSceneRenderRD::environment_get_ssao_light_affect(RID p_env) const {
  2755. Environment *env = environment_owner.getornull(p_env);
  2756. ERR_FAIL_COND_V(!env, 0.0);
  2757. return env->ssao_direct_light_affect;
  2758. }
  2759. bool RendererSceneRenderRD::environment_is_ssr_enabled(RID p_env) const {
  2760. Environment *env = environment_owner.getornull(p_env);
  2761. ERR_FAIL_COND_V(!env, false);
  2762. return env->ssr_enabled;
  2763. }
  2764. bool RendererSceneRenderRD::environment_is_sdfgi_enabled(RID p_env) const {
  2765. Environment *env = environment_owner.getornull(p_env);
  2766. ERR_FAIL_COND_V(!env, false);
  2767. return env->sdfgi_enabled;
  2768. }
  2769. bool RendererSceneRenderRD::is_environment(RID p_env) const {
  2770. return environment_owner.owns(p_env);
  2771. }
  2772. Ref<Image> RendererSceneRenderRD::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) {
  2773. Environment *env = environment_owner.getornull(p_env);
  2774. ERR_FAIL_COND_V(!env, Ref<Image>());
  2775. if (env->background == RS::ENV_BG_CAMERA_FEED || env->background == RS::ENV_BG_CANVAS || env->background == RS::ENV_BG_KEEP) {
  2776. return Ref<Image>(); //nothing to bake
  2777. }
  2778. if (env->background == RS::ENV_BG_CLEAR_COLOR || env->background == RS::ENV_BG_COLOR) {
  2779. Color color;
  2780. if (env->background == RS::ENV_BG_CLEAR_COLOR) {
  2781. color = storage->get_default_clear_color();
  2782. } else {
  2783. color = env->bg_color;
  2784. }
  2785. color.r *= env->bg_energy;
  2786. color.g *= env->bg_energy;
  2787. color.b *= env->bg_energy;
  2788. Ref<Image> ret;
  2789. ret.instance();
  2790. ret->create(p_size.width, p_size.height, false, Image::FORMAT_RGBAF);
  2791. for (int i = 0; i < p_size.width; i++) {
  2792. for (int j = 0; j < p_size.height; j++) {
  2793. ret->set_pixel(i, j, color);
  2794. }
  2795. }
  2796. return ret;
  2797. }
  2798. if (env->background == RS::ENV_BG_SKY && env->sky.is_valid()) {
  2799. return sky_bake_panorama(env->sky, env->bg_energy, p_bake_irradiance, p_size);
  2800. }
  2801. return Ref<Image>();
  2802. }
  2803. ////////////////////////////////////////////////////////////
  2804. RID RendererSceneRenderRD::reflection_atlas_create() {
  2805. ReflectionAtlas ra;
  2806. ra.count = GLOBAL_GET("rendering/quality/reflection_atlas/reflection_count");
  2807. ra.size = GLOBAL_GET("rendering/quality/reflection_atlas/reflection_size");
  2808. ra.cluster_builder = memnew(ClusterBuilderRD);
  2809. ra.cluster_builder->set_shared(&cluster_builder_shared);
  2810. ra.cluster_builder->setup(Size2i(ra.size, ra.size), max_cluster_elements, RID(), RID(), RID());
  2811. return reflection_atlas_owner.make_rid(ra);
  2812. }
  2813. void RendererSceneRenderRD::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) {
  2814. ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_ref_atlas);
  2815. ERR_FAIL_COND(!ra);
  2816. if (ra->size == p_reflection_size && ra->count == p_reflection_count) {
  2817. return; //no changes
  2818. }
  2819. ra->cluster_builder->setup(Size2i(ra->size, ra->size), max_cluster_elements, RID(), RID(), RID());
  2820. ra->size = p_reflection_size;
  2821. ra->count = p_reflection_count;
  2822. if (ra->reflection.is_valid()) {
  2823. //clear and invalidate everything
  2824. RD::get_singleton()->free(ra->reflection);
  2825. ra->reflection = RID();
  2826. RD::get_singleton()->free(ra->depth_buffer);
  2827. ra->depth_buffer = RID();
  2828. for (int i = 0; i < ra->reflections.size(); i++) {
  2829. _clear_reflection_data(ra->reflections.write[i].data);
  2830. if (ra->reflections[i].owner.is_null()) {
  2831. continue;
  2832. }
  2833. reflection_probe_release_atlas_index(ra->reflections[i].owner);
  2834. //rp->atlasindex clear
  2835. }
  2836. ra->reflections.clear();
  2837. }
  2838. }
  2839. int RendererSceneRenderRD::reflection_atlas_get_size(RID p_ref_atlas) const {
  2840. ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_ref_atlas);
  2841. ERR_FAIL_COND_V(!ra, 0);
  2842. return ra->size;
  2843. }
  2844. ////////////////////////
  2845. RID RendererSceneRenderRD::reflection_probe_instance_create(RID p_probe) {
  2846. ReflectionProbeInstance rpi;
  2847. rpi.probe = p_probe;
  2848. return reflection_probe_instance_owner.make_rid(rpi);
  2849. }
  2850. void RendererSceneRenderRD::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) {
  2851. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2852. ERR_FAIL_COND(!rpi);
  2853. rpi->transform = p_transform;
  2854. rpi->dirty = true;
  2855. }
  2856. void RendererSceneRenderRD::reflection_probe_release_atlas_index(RID p_instance) {
  2857. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2858. ERR_FAIL_COND(!rpi);
  2859. if (rpi->atlas.is_null()) {
  2860. return; //nothing to release
  2861. }
  2862. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  2863. ERR_FAIL_COND(!atlas);
  2864. ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size());
  2865. atlas->reflections.write[rpi->atlas_index].owner = RID();
  2866. rpi->atlas_index = -1;
  2867. rpi->atlas = RID();
  2868. }
  2869. bool RendererSceneRenderRD::reflection_probe_instance_needs_redraw(RID p_instance) {
  2870. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2871. ERR_FAIL_COND_V(!rpi, false);
  2872. if (rpi->rendering) {
  2873. return false;
  2874. }
  2875. if (rpi->dirty) {
  2876. return true;
  2877. }
  2878. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
  2879. return true;
  2880. }
  2881. return rpi->atlas_index == -1;
  2882. }
  2883. bool RendererSceneRenderRD::reflection_probe_instance_has_reflection(RID p_instance) {
  2884. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2885. ERR_FAIL_COND_V(!rpi, false);
  2886. return rpi->atlas.is_valid();
  2887. }
  2888. bool RendererSceneRenderRD::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
  2889. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(p_reflection_atlas);
  2890. ERR_FAIL_COND_V(!atlas, false);
  2891. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2892. ERR_FAIL_COND_V(!rpi, false);
  2893. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->size != 256) {
  2894. WARN_PRINT("ReflectionProbes set to UPDATE_ALWAYS must have an atlas size of 256. Please update the atlas size in the ProjectSettings.");
  2895. reflection_atlas_set_size(p_reflection_atlas, 256, atlas->count);
  2896. }
  2897. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->reflections[0].data.layers[0].mipmaps.size() != 8) {
  2898. // Invalidate reflection atlas, need to regenerate
  2899. RD::get_singleton()->free(atlas->reflection);
  2900. atlas->reflection = RID();
  2901. for (int i = 0; i < atlas->reflections.size(); i++) {
  2902. if (atlas->reflections[i].owner.is_null()) {
  2903. continue;
  2904. }
  2905. reflection_probe_release_atlas_index(atlas->reflections[i].owner);
  2906. }
  2907. atlas->reflections.clear();
  2908. }
  2909. if (atlas->reflection.is_null()) {
  2910. int mipmaps = MIN(roughness_layers, Image::get_image_required_mipmaps(atlas->size, atlas->size, Image::FORMAT_RGBAH) + 1);
  2911. mipmaps = storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS ? 8 : mipmaps; // always use 8 mipmaps with real time filtering
  2912. {
  2913. //reflection atlas was unused, create:
  2914. RD::TextureFormat tf;
  2915. tf.array_layers = 6 * atlas->count;
  2916. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  2917. tf.texture_type = RD::TEXTURE_TYPE_CUBE_ARRAY;
  2918. tf.mipmaps = mipmaps;
  2919. tf.width = atlas->size;
  2920. tf.height = atlas->size;
  2921. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  2922. atlas->reflection = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2923. }
  2924. {
  2925. RD::TextureFormat tf;
  2926. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  2927. tf.width = atlas->size;
  2928. tf.height = atlas->size;
  2929. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  2930. atlas->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2931. }
  2932. atlas->reflections.resize(atlas->count);
  2933. for (int i = 0; i < atlas->count; i++) {
  2934. _update_reflection_data(atlas->reflections.write[i].data, atlas->size, mipmaps, false, atlas->reflection, i * 6, storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS);
  2935. for (int j = 0; j < 6; j++) {
  2936. Vector<RID> fb;
  2937. fb.push_back(atlas->reflections.write[i].data.layers[0].mipmaps[0].views[j]);
  2938. fb.push_back(atlas->depth_buffer);
  2939. atlas->reflections.write[i].fbs[j] = RD::get_singleton()->framebuffer_create(fb);
  2940. }
  2941. }
  2942. Vector<RID> fb;
  2943. fb.push_back(atlas->depth_buffer);
  2944. atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb);
  2945. }
  2946. if (rpi->atlas_index == -1) {
  2947. for (int i = 0; i < atlas->reflections.size(); i++) {
  2948. if (atlas->reflections[i].owner.is_null()) {
  2949. rpi->atlas_index = i;
  2950. break;
  2951. }
  2952. }
  2953. //find the one used last
  2954. if (rpi->atlas_index == -1) {
  2955. //everything is in use, find the one least used via LRU
  2956. uint64_t pass_min = 0;
  2957. for (int i = 0; i < atlas->reflections.size(); i++) {
  2958. ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.getornull(atlas->reflections[i].owner);
  2959. if (rpi2->last_pass < pass_min) {
  2960. pass_min = rpi2->last_pass;
  2961. rpi->atlas_index = i;
  2962. }
  2963. }
  2964. }
  2965. }
  2966. rpi->atlas = p_reflection_atlas;
  2967. rpi->rendering = true;
  2968. rpi->dirty = false;
  2969. rpi->processing_layer = 1;
  2970. rpi->processing_side = 0;
  2971. return true;
  2972. }
  2973. bool RendererSceneRenderRD::reflection_probe_instance_postprocess_step(RID p_instance) {
  2974. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2975. ERR_FAIL_COND_V(!rpi, false);
  2976. ERR_FAIL_COND_V(!rpi->rendering, false);
  2977. ERR_FAIL_COND_V(rpi->atlas.is_null(), false);
  2978. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  2979. if (!atlas || rpi->atlas_index == -1) {
  2980. //does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering)
  2981. rpi->rendering = false;
  2982. return false;
  2983. }
  2984. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
  2985. // Using real time reflections, all roughness is done in one step
  2986. _create_reflection_fast_filter(atlas->reflections.write[rpi->atlas_index].data, false);
  2987. rpi->rendering = false;
  2988. rpi->processing_side = 0;
  2989. rpi->processing_layer = 1;
  2990. return true;
  2991. }
  2992. if (rpi->processing_layer > 1) {
  2993. _create_reflection_importance_sample(atlas->reflections.write[rpi->atlas_index].data, false, 10, rpi->processing_layer);
  2994. rpi->processing_layer++;
  2995. if (rpi->processing_layer == atlas->reflections[rpi->atlas_index].data.layers[0].mipmaps.size()) {
  2996. rpi->rendering = false;
  2997. rpi->processing_side = 0;
  2998. rpi->processing_layer = 1;
  2999. return true;
  3000. }
  3001. return false;
  3002. } else {
  3003. _create_reflection_importance_sample(atlas->reflections.write[rpi->atlas_index].data, false, rpi->processing_side, rpi->processing_layer);
  3004. }
  3005. rpi->processing_side++;
  3006. if (rpi->processing_side == 6) {
  3007. rpi->processing_side = 0;
  3008. rpi->processing_layer++;
  3009. }
  3010. return false;
  3011. }
  3012. uint32_t RendererSceneRenderRD::reflection_probe_instance_get_resolution(RID p_instance) {
  3013. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  3014. ERR_FAIL_COND_V(!rpi, 0);
  3015. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  3016. ERR_FAIL_COND_V(!atlas, 0);
  3017. return atlas->size;
  3018. }
  3019. RID RendererSceneRenderRD::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) {
  3020. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  3021. ERR_FAIL_COND_V(!rpi, RID());
  3022. ERR_FAIL_INDEX_V(p_index, 6, RID());
  3023. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  3024. ERR_FAIL_COND_V(!atlas, RID());
  3025. return atlas->reflections[rpi->atlas_index].fbs[p_index];
  3026. }
  3027. RID RendererSceneRenderRD::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) {
  3028. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  3029. ERR_FAIL_COND_V(!rpi, RID());
  3030. ERR_FAIL_INDEX_V(p_index, 6, RID());
  3031. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  3032. ERR_FAIL_COND_V(!atlas, RID());
  3033. return atlas->depth_fb;
  3034. }
  3035. ///////////////////////////////////////////////////////////
  3036. RID RendererSceneRenderRD::shadow_atlas_create() {
  3037. return shadow_atlas_owner.make_rid(ShadowAtlas());
  3038. }
  3039. void RendererSceneRenderRD::_update_shadow_atlas(ShadowAtlas *shadow_atlas) {
  3040. if (shadow_atlas->size > 0 && shadow_atlas->depth.is_null()) {
  3041. RD::TextureFormat tf;
  3042. tf.format = shadow_atlas->use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT;
  3043. tf.width = shadow_atlas->size;
  3044. tf.height = shadow_atlas->size;
  3045. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  3046. shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3047. Vector<RID> fb_tex;
  3048. fb_tex.push_back(shadow_atlas->depth);
  3049. shadow_atlas->fb = RD::get_singleton()->framebuffer_create(fb_tex);
  3050. }
  3051. }
  3052. void RendererSceneRenderRD::shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits) {
  3053. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  3054. ERR_FAIL_COND(!shadow_atlas);
  3055. ERR_FAIL_COND(p_size < 0);
  3056. p_size = next_power_of_2(p_size);
  3057. if (p_size == shadow_atlas->size && p_16_bits == shadow_atlas->use_16_bits) {
  3058. return;
  3059. }
  3060. // erasing atlas
  3061. if (shadow_atlas->depth.is_valid()) {
  3062. RD::get_singleton()->free(shadow_atlas->depth);
  3063. shadow_atlas->depth = RID();
  3064. }
  3065. for (int i = 0; i < 4; i++) {
  3066. //clear subdivisions
  3067. shadow_atlas->quadrants[i].shadows.resize(0);
  3068. shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision);
  3069. }
  3070. //erase shadow atlas reference from lights
  3071. for (Map<RID, uint32_t>::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) {
  3072. LightInstance *li = light_instance_owner.getornull(E->key());
  3073. ERR_CONTINUE(!li);
  3074. li->shadow_atlases.erase(p_atlas);
  3075. }
  3076. //clear owners
  3077. shadow_atlas->shadow_owners.clear();
  3078. shadow_atlas->size = p_size;
  3079. shadow_atlas->use_16_bits = p_size;
  3080. }
  3081. void RendererSceneRenderRD::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
  3082. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  3083. ERR_FAIL_COND(!shadow_atlas);
  3084. ERR_FAIL_INDEX(p_quadrant, 4);
  3085. ERR_FAIL_INDEX(p_subdivision, 16384);
  3086. uint32_t subdiv = next_power_of_2(p_subdivision);
  3087. if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer
  3088. subdiv <<= 1;
  3089. }
  3090. subdiv = int(Math::sqrt((float)subdiv));
  3091. //obtain the number that will be x*x
  3092. if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) {
  3093. return;
  3094. }
  3095. //erase all data from quadrant
  3096. for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
  3097. if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
  3098. shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  3099. LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  3100. ERR_CONTINUE(!li);
  3101. li->shadow_atlases.erase(p_atlas);
  3102. }
  3103. }
  3104. shadow_atlas->quadrants[p_quadrant].shadows.resize(0);
  3105. shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv);
  3106. shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;
  3107. //cache the smallest subdiv (for faster allocation in light update)
  3108. shadow_atlas->smallest_subdiv = 1 << 30;
  3109. for (int i = 0; i < 4; i++) {
  3110. if (shadow_atlas->quadrants[i].subdivision) {
  3111. shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
  3112. }
  3113. }
  3114. if (shadow_atlas->smallest_subdiv == 1 << 30) {
  3115. shadow_atlas->smallest_subdiv = 0;
  3116. }
  3117. //resort the size orders, simple bublesort for 4 elements..
  3118. int swaps = 0;
  3119. do {
  3120. swaps = 0;
  3121. for (int i = 0; i < 3; i++) {
  3122. if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
  3123. SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
  3124. swaps++;
  3125. }
  3126. }
  3127. } while (swaps > 0);
  3128. }
  3129. bool RendererSceneRenderRD::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
  3130. for (int i = p_quadrant_count - 1; i >= 0; i--) {
  3131. int qidx = p_in_quadrants[i];
  3132. if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
  3133. return false;
  3134. }
  3135. //look for an empty space
  3136. int sc = shadow_atlas->quadrants[qidx].shadows.size();
  3137. ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw();
  3138. int found_free_idx = -1; //found a free one
  3139. int found_used_idx = -1; //found existing one, must steal it
  3140. uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion)
  3141. for (int j = 0; j < sc; j++) {
  3142. if (!sarr[j].owner.is_valid()) {
  3143. found_free_idx = j;
  3144. break;
  3145. }
  3146. LightInstance *sli = light_instance_owner.getornull(sarr[j].owner);
  3147. ERR_CONTINUE(!sli);
  3148. if (sli->last_scene_pass != scene_pass) {
  3149. //was just allocated, don't kill it so soon, wait a bit..
  3150. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
  3151. continue;
  3152. }
  3153. if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
  3154. found_used_idx = j;
  3155. min_pass = sli->last_scene_pass;
  3156. }
  3157. }
  3158. }
  3159. if (found_free_idx == -1 && found_used_idx == -1) {
  3160. continue; //nothing found
  3161. }
  3162. if (found_free_idx == -1 && found_used_idx != -1) {
  3163. found_free_idx = found_used_idx;
  3164. }
  3165. r_quadrant = qidx;
  3166. r_shadow = found_free_idx;
  3167. return true;
  3168. }
  3169. return false;
  3170. }
  3171. bool RendererSceneRenderRD::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) {
  3172. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  3173. ERR_FAIL_COND_V(!shadow_atlas, false);
  3174. LightInstance *li = light_instance_owner.getornull(p_light_intance);
  3175. ERR_FAIL_COND_V(!li, false);
  3176. if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
  3177. return false;
  3178. }
  3179. uint32_t quad_size = shadow_atlas->size >> 1;
  3180. int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));
  3181. int valid_quadrants[4];
  3182. int valid_quadrant_count = 0;
  3183. int best_size = -1; //best size found
  3184. int best_subdiv = -1; //subdiv for the best size
  3185. //find the quadrants this fits into, and the best possible size it can fit into
  3186. for (int i = 0; i < 4; i++) {
  3187. int q = shadow_atlas->size_order[i];
  3188. int sd = shadow_atlas->quadrants[q].subdivision;
  3189. if (sd == 0) {
  3190. continue; //unused
  3191. }
  3192. int max_fit = quad_size / sd;
  3193. if (best_size != -1 && max_fit > best_size) {
  3194. break; //too large
  3195. }
  3196. valid_quadrants[valid_quadrant_count++] = q;
  3197. best_subdiv = sd;
  3198. if (max_fit >= desired_fit) {
  3199. best_size = max_fit;
  3200. }
  3201. }
  3202. ERR_FAIL_COND_V(valid_quadrant_count == 0, false);
  3203. uint64_t tick = OS::get_singleton()->get_ticks_msec();
  3204. //see if it already exists
  3205. if (shadow_atlas->shadow_owners.has(p_light_intance)) {
  3206. //it does!
  3207. uint32_t key = shadow_atlas->shadow_owners[p_light_intance];
  3208. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  3209. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  3210. bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
  3211. bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version;
  3212. if (!should_realloc) {
  3213. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  3214. //already existing, see if it should redraw or it's just OK
  3215. return should_redraw;
  3216. }
  3217. int new_quadrant, new_shadow;
  3218. //find a better place
  3219. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) {
  3220. //found a better place!
  3221. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  3222. if (sh->owner.is_valid()) {
  3223. //is taken, but is invalid, erasing it
  3224. shadow_atlas->shadow_owners.erase(sh->owner);
  3225. LightInstance *sli = light_instance_owner.getornull(sh->owner);
  3226. sli->shadow_atlases.erase(p_atlas);
  3227. }
  3228. //erase previous
  3229. shadow_atlas->quadrants[q].shadows.write[s].version = 0;
  3230. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  3231. sh->owner = p_light_intance;
  3232. sh->alloc_tick = tick;
  3233. sh->version = p_light_version;
  3234. li->shadow_atlases.insert(p_atlas);
  3235. //make new key
  3236. key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  3237. key |= new_shadow;
  3238. //update it in map
  3239. shadow_atlas->shadow_owners[p_light_intance] = key;
  3240. //make it dirty, as it should redraw anyway
  3241. return true;
  3242. }
  3243. //no better place for this shadow found, keep current
  3244. //already existing, see if it should redraw or it's just OK
  3245. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  3246. return should_redraw;
  3247. }
  3248. int new_quadrant, new_shadow;
  3249. //find a better place
  3250. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) {
  3251. //found a better place!
  3252. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  3253. if (sh->owner.is_valid()) {
  3254. //is taken, but is invalid, erasing it
  3255. shadow_atlas->shadow_owners.erase(sh->owner);
  3256. LightInstance *sli = light_instance_owner.getornull(sh->owner);
  3257. sli->shadow_atlases.erase(p_atlas);
  3258. }
  3259. sh->owner = p_light_intance;
  3260. sh->alloc_tick = tick;
  3261. sh->version = p_light_version;
  3262. li->shadow_atlases.insert(p_atlas);
  3263. //make new key
  3264. uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  3265. key |= new_shadow;
  3266. //update it in map
  3267. shadow_atlas->shadow_owners[p_light_intance] = key;
  3268. //make it dirty, as it should redraw anyway
  3269. return true;
  3270. }
  3271. //no place to allocate this light, apologies
  3272. return false;
  3273. }
  3274. void RendererSceneRenderRD::_update_directional_shadow_atlas() {
  3275. if (directional_shadow.depth.is_null() && directional_shadow.size > 0) {
  3276. RD::TextureFormat tf;
  3277. tf.format = directional_shadow.use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT;
  3278. tf.width = directional_shadow.size;
  3279. tf.height = directional_shadow.size;
  3280. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  3281. directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3282. Vector<RID> fb_tex;
  3283. fb_tex.push_back(directional_shadow.depth);
  3284. directional_shadow.fb = RD::get_singleton()->framebuffer_create(fb_tex);
  3285. }
  3286. }
  3287. void RendererSceneRenderRD::directional_shadow_atlas_set_size(int p_size, bool p_16_bits) {
  3288. p_size = nearest_power_of_2_templated(p_size);
  3289. if (directional_shadow.size == p_size && directional_shadow.use_16_bits == p_16_bits) {
  3290. return;
  3291. }
  3292. directional_shadow.size = p_size;
  3293. if (directional_shadow.depth.is_valid()) {
  3294. RD::get_singleton()->free(directional_shadow.depth);
  3295. directional_shadow.depth = RID();
  3296. _base_uniforms_changed();
  3297. }
  3298. }
  3299. void RendererSceneRenderRD::set_directional_shadow_count(int p_count) {
  3300. directional_shadow.light_count = p_count;
  3301. directional_shadow.current_light = 0;
  3302. }
  3303. static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) {
  3304. int split_h = 1;
  3305. int split_v = 1;
  3306. while (split_h * split_v < p_shadow_count) {
  3307. if (split_h == split_v) {
  3308. split_h <<= 1;
  3309. } else {
  3310. split_v <<= 1;
  3311. }
  3312. }
  3313. Rect2i rect(0, 0, p_size, p_size);
  3314. rect.size.width /= split_h;
  3315. rect.size.height /= split_v;
  3316. rect.position.x = rect.size.width * (p_shadow_index % split_h);
  3317. rect.position.y = rect.size.height * (p_shadow_index / split_h);
  3318. return rect;
  3319. }
  3320. int RendererSceneRenderRD::get_directional_light_shadow_size(RID p_light_intance) {
  3321. ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);
  3322. Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0);
  3323. LightInstance *light_instance = light_instance_owner.getornull(p_light_intance);
  3324. ERR_FAIL_COND_V(!light_instance, 0);
  3325. switch (storage->light_directional_get_shadow_mode(light_instance->light)) {
  3326. case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
  3327. break; //none
  3328. case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
  3329. r.size.height /= 2;
  3330. break;
  3331. case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
  3332. r.size /= 2;
  3333. break;
  3334. }
  3335. return MAX(r.size.width, r.size.height);
  3336. }
  3337. //////////////////////////////////////////////////
  3338. RID RendererSceneRenderRD::camera_effects_create() {
  3339. return camera_effects_owner.make_rid(CameraEffects());
  3340. }
  3341. void RendererSceneRenderRD::camera_effects_set_dof_blur_quality(RS::DOFBlurQuality p_quality, bool p_use_jitter) {
  3342. dof_blur_quality = p_quality;
  3343. dof_blur_use_jitter = p_use_jitter;
  3344. }
  3345. void RendererSceneRenderRD::camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape p_shape) {
  3346. dof_blur_bokeh_shape = p_shape;
  3347. }
  3348. void RendererSceneRenderRD::camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount) {
  3349. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  3350. ERR_FAIL_COND(!camfx);
  3351. camfx->dof_blur_far_enabled = p_far_enable;
  3352. camfx->dof_blur_far_distance = p_far_distance;
  3353. camfx->dof_blur_far_transition = p_far_transition;
  3354. camfx->dof_blur_near_enabled = p_near_enable;
  3355. camfx->dof_blur_near_distance = p_near_distance;
  3356. camfx->dof_blur_near_transition = p_near_transition;
  3357. camfx->dof_blur_amount = p_amount;
  3358. }
  3359. void RendererSceneRenderRD::camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure) {
  3360. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  3361. ERR_FAIL_COND(!camfx);
  3362. camfx->override_exposure_enabled = p_enable;
  3363. camfx->override_exposure = p_exposure;
  3364. }
  3365. RID RendererSceneRenderRD::light_instance_create(RID p_light) {
  3366. RID li = light_instance_owner.make_rid(LightInstance());
  3367. LightInstance *light_instance = light_instance_owner.getornull(li);
  3368. light_instance->self = li;
  3369. light_instance->light = p_light;
  3370. light_instance->light_type = storage->light_get_type(p_light);
  3371. return li;
  3372. }
  3373. void RendererSceneRenderRD::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) {
  3374. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  3375. ERR_FAIL_COND(!light_instance);
  3376. light_instance->transform = p_transform;
  3377. }
  3378. void RendererSceneRenderRD::light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) {
  3379. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  3380. ERR_FAIL_COND(!light_instance);
  3381. light_instance->aabb = p_aabb;
  3382. }
  3383. void RendererSceneRenderRD::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) {
  3384. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  3385. ERR_FAIL_COND(!light_instance);
  3386. ERR_FAIL_INDEX(p_pass, 6);
  3387. light_instance->shadow_transform[p_pass].camera = p_projection;
  3388. light_instance->shadow_transform[p_pass].transform = p_transform;
  3389. light_instance->shadow_transform[p_pass].farplane = p_far;
  3390. light_instance->shadow_transform[p_pass].split = p_split;
  3391. light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
  3392. light_instance->shadow_transform[p_pass].range_begin = p_range_begin;
  3393. light_instance->shadow_transform[p_pass].shadow_texel_size = p_shadow_texel_size;
  3394. light_instance->shadow_transform[p_pass].uv_scale = p_uv_scale;
  3395. }
  3396. void RendererSceneRenderRD::light_instance_mark_visible(RID p_light_instance) {
  3397. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  3398. ERR_FAIL_COND(!light_instance);
  3399. light_instance->last_scene_pass = scene_pass;
  3400. }
  3401. RendererSceneRenderRD::ShadowCubemap *RendererSceneRenderRD::_get_shadow_cubemap(int p_size) {
  3402. if (!shadow_cubemaps.has(p_size)) {
  3403. ShadowCubemap sc;
  3404. {
  3405. RD::TextureFormat tf;
  3406. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  3407. tf.width = p_size;
  3408. tf.height = p_size;
  3409. tf.texture_type = RD::TEXTURE_TYPE_CUBE;
  3410. tf.array_layers = 6;
  3411. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  3412. sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3413. }
  3414. for (int i = 0; i < 6; i++) {
  3415. RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0);
  3416. Vector<RID> fbtex;
  3417. fbtex.push_back(side_texture);
  3418. sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex);
  3419. }
  3420. shadow_cubemaps[p_size] = sc;
  3421. }
  3422. return &shadow_cubemaps[p_size];
  3423. }
  3424. //////////////////////////
  3425. RID RendererSceneRenderRD::decal_instance_create(RID p_decal) {
  3426. DecalInstance di;
  3427. di.decal = p_decal;
  3428. return decal_instance_owner.make_rid(di);
  3429. }
  3430. void RendererSceneRenderRD::decal_instance_set_transform(RID p_decal, const Transform &p_transform) {
  3431. DecalInstance *di = decal_instance_owner.getornull(p_decal);
  3432. ERR_FAIL_COND(!di);
  3433. di->transform = p_transform;
  3434. }
  3435. /////////////////////////////////
  3436. RID RendererSceneRenderRD::lightmap_instance_create(RID p_lightmap) {
  3437. LightmapInstance li;
  3438. li.lightmap = p_lightmap;
  3439. return lightmap_instance_owner.make_rid(li);
  3440. }
  3441. void RendererSceneRenderRD::lightmap_instance_set_transform(RID p_lightmap, const Transform &p_transform) {
  3442. LightmapInstance *li = lightmap_instance_owner.getornull(p_lightmap);
  3443. ERR_FAIL_COND(!li);
  3444. li->transform = p_transform;
  3445. }
  3446. /////////////////////////////////
  3447. RID RendererSceneRenderRD::gi_probe_instance_create(RID p_base) {
  3448. GIProbeInstance gi_probe;
  3449. gi_probe.probe = p_base;
  3450. RID rid = gi_probe_instance_owner.make_rid(gi_probe);
  3451. return rid;
  3452. }
  3453. void RendererSceneRenderRD::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) {
  3454. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
  3455. ERR_FAIL_COND(!gi_probe);
  3456. gi_probe->transform = p_xform;
  3457. }
  3458. bool RendererSceneRenderRD::gi_probe_needs_update(RID p_probe) const {
  3459. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
  3460. ERR_FAIL_COND_V(!gi_probe, false);
  3461. if (low_end) {
  3462. return false;
  3463. }
  3464. //return true;
  3465. return gi_probe->last_probe_version != storage->gi_probe_get_version(gi_probe->probe);
  3466. }
  3467. void RendererSceneRenderRD::gi_probe_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<GeometryInstance *> &p_dynamic_objects) {
  3468. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
  3469. ERR_FAIL_COND(!gi_probe);
  3470. if (low_end) {
  3471. return;
  3472. }
  3473. uint32_t data_version = storage->gi_probe_get_data_version(gi_probe->probe);
  3474. // (RE)CREATE IF NEEDED
  3475. if (gi_probe->last_probe_data_version != data_version) {
  3476. //need to re-create everything
  3477. if (gi_probe->texture.is_valid()) {
  3478. RD::get_singleton()->free(gi_probe->texture);
  3479. RD::get_singleton()->free(gi_probe->write_buffer);
  3480. gi_probe->mipmaps.clear();
  3481. }
  3482. for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) {
  3483. RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture);
  3484. RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth);
  3485. }
  3486. gi_probe->dynamic_maps.clear();
  3487. Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  3488. if (octree_size != Vector3i()) {
  3489. //can create a 3D texture
  3490. Vector<int> levels = storage->gi_probe_get_level_counts(gi_probe->probe);
  3491. RD::TextureFormat tf;
  3492. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  3493. tf.width = octree_size.x;
  3494. tf.height = octree_size.y;
  3495. tf.depth = octree_size.z;
  3496. tf.texture_type = RD::TEXTURE_TYPE_3D;
  3497. tf.mipmaps = levels.size();
  3498. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  3499. gi_probe->texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3500. RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, levels.size(), 0, 1);
  3501. {
  3502. int total_elements = 0;
  3503. for (int i = 0; i < levels.size(); i++) {
  3504. total_elements += levels[i];
  3505. }
  3506. gi_probe->write_buffer = RD::get_singleton()->storage_buffer_create(total_elements * 16);
  3507. }
  3508. for (int i = 0; i < levels.size(); i++) {
  3509. GIProbeInstance::Mipmap mipmap;
  3510. mipmap.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), gi_probe->texture, 0, i, RD::TEXTURE_SLICE_3D);
  3511. mipmap.level = levels.size() - i - 1;
  3512. mipmap.cell_offset = 0;
  3513. for (uint32_t j = 0; j < mipmap.level; j++) {
  3514. mipmap.cell_offset += levels[j];
  3515. }
  3516. mipmap.cell_count = levels[mipmap.level];
  3517. Vector<RD::Uniform> uniforms;
  3518. {
  3519. RD::Uniform u;
  3520. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  3521. u.binding = 1;
  3522. u.ids.push_back(storage->gi_probe_get_octree_buffer(gi_probe->probe));
  3523. uniforms.push_back(u);
  3524. }
  3525. {
  3526. RD::Uniform u;
  3527. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  3528. u.binding = 2;
  3529. u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe));
  3530. uniforms.push_back(u);
  3531. }
  3532. {
  3533. RD::Uniform u;
  3534. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  3535. u.binding = 4;
  3536. u.ids.push_back(gi_probe->write_buffer);
  3537. uniforms.push_back(u);
  3538. }
  3539. {
  3540. RD::Uniform u;
  3541. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3542. u.binding = 9;
  3543. u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe));
  3544. uniforms.push_back(u);
  3545. }
  3546. {
  3547. RD::Uniform u;
  3548. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  3549. u.binding = 10;
  3550. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  3551. uniforms.push_back(u);
  3552. }
  3553. {
  3554. Vector<RD::Uniform> copy_uniforms = uniforms;
  3555. if (i == 0) {
  3556. {
  3557. RD::Uniform u;
  3558. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  3559. u.binding = 3;
  3560. u.ids.push_back(gi_probe_lights_uniform);
  3561. copy_uniforms.push_back(u);
  3562. }
  3563. mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT], 0);
  3564. copy_uniforms = uniforms; //restore
  3565. {
  3566. RD::Uniform u;
  3567. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3568. u.binding = 5;
  3569. u.ids.push_back(gi_probe->texture);
  3570. copy_uniforms.push_back(u);
  3571. }
  3572. mipmap.second_bounce_uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE], 0);
  3573. } else {
  3574. mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP], 0);
  3575. }
  3576. }
  3577. {
  3578. RD::Uniform u;
  3579. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3580. u.binding = 5;
  3581. u.ids.push_back(mipmap.texture);
  3582. uniforms.push_back(u);
  3583. }
  3584. mipmap.write_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE], 0);
  3585. gi_probe->mipmaps.push_back(mipmap);
  3586. }
  3587. {
  3588. uint32_t dynamic_map_size = MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
  3589. uint32_t oversample = nearest_power_of_2_templated(4);
  3590. int mipmap_index = 0;
  3591. while (mipmap_index < gi_probe->mipmaps.size()) {
  3592. GIProbeInstance::DynamicMap dmap;
  3593. if (oversample > 0) {
  3594. dmap.size = dynamic_map_size * (1 << oversample);
  3595. dmap.mipmap = -1;
  3596. oversample--;
  3597. } else {
  3598. dmap.size = dynamic_map_size >> mipmap_index;
  3599. dmap.mipmap = mipmap_index;
  3600. mipmap_index++;
  3601. }
  3602. RD::TextureFormat dtf;
  3603. dtf.width = dmap.size;
  3604. dtf.height = dmap.size;
  3605. dtf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  3606. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  3607. if (gi_probe->dynamic_maps.size() == 0) {
  3608. dtf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  3609. }
  3610. dmap.texture = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  3611. if (gi_probe->dynamic_maps.size() == 0) {
  3612. //render depth for first one
  3613. dtf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  3614. dtf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  3615. dmap.fb_depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  3616. }
  3617. //just use depth as-is
  3618. dtf.format = RD::DATA_FORMAT_R32_SFLOAT;
  3619. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  3620. dmap.depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  3621. if (gi_probe->dynamic_maps.size() == 0) {
  3622. dtf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  3623. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  3624. dmap.albedo = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  3625. dmap.normal = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  3626. dmap.orm = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  3627. Vector<RID> fb;
  3628. fb.push_back(dmap.albedo);
  3629. fb.push_back(dmap.normal);
  3630. fb.push_back(dmap.orm);
  3631. fb.push_back(dmap.texture); //emission
  3632. fb.push_back(dmap.depth);
  3633. fb.push_back(dmap.fb_depth);
  3634. dmap.fb = RD::get_singleton()->framebuffer_create(fb);
  3635. {
  3636. Vector<RD::Uniform> uniforms;
  3637. {
  3638. RD::Uniform u;
  3639. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  3640. u.binding = 3;
  3641. u.ids.push_back(gi_probe_lights_uniform);
  3642. uniforms.push_back(u);
  3643. }
  3644. {
  3645. RD::Uniform u;
  3646. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3647. u.binding = 5;
  3648. u.ids.push_back(dmap.albedo);
  3649. uniforms.push_back(u);
  3650. }
  3651. {
  3652. RD::Uniform u;
  3653. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3654. u.binding = 6;
  3655. u.ids.push_back(dmap.normal);
  3656. uniforms.push_back(u);
  3657. }
  3658. {
  3659. RD::Uniform u;
  3660. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3661. u.binding = 7;
  3662. u.ids.push_back(dmap.orm);
  3663. uniforms.push_back(u);
  3664. }
  3665. {
  3666. RD::Uniform u;
  3667. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3668. u.binding = 8;
  3669. u.ids.push_back(dmap.fb_depth);
  3670. uniforms.push_back(u);
  3671. }
  3672. {
  3673. RD::Uniform u;
  3674. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3675. u.binding = 9;
  3676. u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe));
  3677. uniforms.push_back(u);
  3678. }
  3679. {
  3680. RD::Uniform u;
  3681. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  3682. u.binding = 10;
  3683. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  3684. uniforms.push_back(u);
  3685. }
  3686. {
  3687. RD::Uniform u;
  3688. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3689. u.binding = 11;
  3690. u.ids.push_back(dmap.texture);
  3691. uniforms.push_back(u);
  3692. }
  3693. {
  3694. RD::Uniform u;
  3695. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3696. u.binding = 12;
  3697. u.ids.push_back(dmap.depth);
  3698. uniforms.push_back(u);
  3699. }
  3700. dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING], 0);
  3701. }
  3702. } else {
  3703. bool plot = dmap.mipmap >= 0;
  3704. bool write = dmap.mipmap < (gi_probe->mipmaps.size() - 1);
  3705. Vector<RD::Uniform> uniforms;
  3706. {
  3707. RD::Uniform u;
  3708. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3709. u.binding = 5;
  3710. u.ids.push_back(gi_probe->dynamic_maps[gi_probe->dynamic_maps.size() - 1].texture);
  3711. uniforms.push_back(u);
  3712. }
  3713. {
  3714. RD::Uniform u;
  3715. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3716. u.binding = 6;
  3717. u.ids.push_back(gi_probe->dynamic_maps[gi_probe->dynamic_maps.size() - 1].depth);
  3718. uniforms.push_back(u);
  3719. }
  3720. if (write) {
  3721. {
  3722. RD::Uniform u;
  3723. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3724. u.binding = 7;
  3725. u.ids.push_back(dmap.texture);
  3726. uniforms.push_back(u);
  3727. }
  3728. {
  3729. RD::Uniform u;
  3730. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3731. u.binding = 8;
  3732. u.ids.push_back(dmap.depth);
  3733. uniforms.push_back(u);
  3734. }
  3735. }
  3736. {
  3737. RD::Uniform u;
  3738. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3739. u.binding = 9;
  3740. u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe));
  3741. uniforms.push_back(u);
  3742. }
  3743. {
  3744. RD::Uniform u;
  3745. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  3746. u.binding = 10;
  3747. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  3748. uniforms.push_back(u);
  3749. }
  3750. if (plot) {
  3751. {
  3752. RD::Uniform u;
  3753. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3754. u.binding = 11;
  3755. u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].texture);
  3756. uniforms.push_back(u);
  3757. }
  3758. }
  3759. dmap.uniform_set = RD::get_singleton()->uniform_set_create(
  3760. uniforms,
  3761. giprobe_lighting_shader_version_shaders[(write && plot) ? GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT : (write ? GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE : GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT)],
  3762. 0);
  3763. }
  3764. gi_probe->dynamic_maps.push_back(dmap);
  3765. }
  3766. }
  3767. }
  3768. gi_probe->last_probe_data_version = data_version;
  3769. p_update_light_instances = true; //just in case
  3770. _base_uniforms_changed();
  3771. }
  3772. // UDPDATE TIME
  3773. if (gi_probe->has_dynamic_object_data) {
  3774. //if it has dynamic object data, it needs to be cleared
  3775. RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, gi_probe->mipmaps.size(), 0, 1);
  3776. }
  3777. uint32_t light_count = 0;
  3778. if (p_update_light_instances || p_dynamic_objects.size() > 0) {
  3779. light_count = MIN(gi_probe_max_lights, (uint32_t)p_light_instances.size());
  3780. {
  3781. Transform to_cell = storage->gi_probe_get_to_cell_xform(gi_probe->probe);
  3782. Transform to_probe_xform = (gi_probe->transform * to_cell.affine_inverse()).affine_inverse();
  3783. //update lights
  3784. for (uint32_t i = 0; i < light_count; i++) {
  3785. GIProbeLight &l = gi_probe_lights[i];
  3786. RID light_instance = p_light_instances[i];
  3787. RID light = light_instance_get_base_light(light_instance);
  3788. l.type = storage->light_get_type(light);
  3789. if (l.type == RS::LIGHT_DIRECTIONAL && storage->light_directional_is_sky_only(light)) {
  3790. light_count--;
  3791. continue;
  3792. }
  3793. l.attenuation = storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION);
  3794. l.energy = storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
  3795. l.radius = to_cell.basis.xform(Vector3(storage->light_get_param(light, RS::LIGHT_PARAM_RANGE), 0, 0)).length();
  3796. Color color = storage->light_get_color(light).to_linear();
  3797. l.color[0] = color.r;
  3798. l.color[1] = color.g;
  3799. l.color[2] = color.b;
  3800. l.spot_angle_radians = Math::deg2rad(storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE));
  3801. l.spot_attenuation = storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  3802. Transform xform = light_instance_get_base_transform(light_instance);
  3803. Vector3 pos = to_probe_xform.xform(xform.origin);
  3804. Vector3 dir = to_probe_xform.basis.xform(-xform.basis.get_axis(2)).normalized();
  3805. l.position[0] = pos.x;
  3806. l.position[1] = pos.y;
  3807. l.position[2] = pos.z;
  3808. l.direction[0] = dir.x;
  3809. l.direction[1] = dir.y;
  3810. l.direction[2] = dir.z;
  3811. l.has_shadow = storage->light_has_shadow(light);
  3812. }
  3813. RD::get_singleton()->buffer_update(gi_probe_lights_uniform, 0, sizeof(GIProbeLight) * light_count, gi_probe_lights);
  3814. }
  3815. }
  3816. if (gi_probe->has_dynamic_object_data || p_update_light_instances || p_dynamic_objects.size()) {
  3817. // PROCESS MIPMAPS
  3818. if (gi_probe->mipmaps.size()) {
  3819. //can update mipmaps
  3820. Vector3i probe_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  3821. GIProbePushConstant push_constant;
  3822. push_constant.limits[0] = probe_size.x;
  3823. push_constant.limits[1] = probe_size.y;
  3824. push_constant.limits[2] = probe_size.z;
  3825. push_constant.stack_size = gi_probe->mipmaps.size();
  3826. push_constant.emission_scale = 1.0;
  3827. push_constant.propagation = storage->gi_probe_get_propagation(gi_probe->probe);
  3828. push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe);
  3829. push_constant.light_count = light_count;
  3830. push_constant.aniso_strength = 0;
  3831. /* print_line("probe update to version " + itos(gi_probe->last_probe_version));
  3832. print_line("propagation " + rtos(push_constant.propagation));
  3833. print_line("dynrange " + rtos(push_constant.dynamic_range));
  3834. */
  3835. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  3836. int passes;
  3837. if (p_update_light_instances) {
  3838. passes = storage->gi_probe_is_using_two_bounces(gi_probe->probe) ? 2 : 1;
  3839. } else {
  3840. passes = 1; //only re-blitting is necessary
  3841. }
  3842. int wg_size = 64;
  3843. int wg_limit_x = RD::get_singleton()->limit_get(RD::LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X);
  3844. for (int pass = 0; pass < passes; pass++) {
  3845. if (p_update_light_instances) {
  3846. for (int i = 0; i < gi_probe->mipmaps.size(); i++) {
  3847. if (i == 0) {
  3848. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[pass == 0 ? GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT : GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE]);
  3849. } else if (i == 1) {
  3850. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP]);
  3851. }
  3852. if (pass == 1 || i > 0) {
  3853. RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
  3854. }
  3855. if (pass == 0 || i > 0) {
  3856. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].uniform_set, 0);
  3857. } else {
  3858. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].second_bounce_uniform_set, 0);
  3859. }
  3860. push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset;
  3861. push_constant.cell_count = gi_probe->mipmaps[i].cell_count;
  3862. int wg_todo = (gi_probe->mipmaps[i].cell_count - 1) / wg_size + 1;
  3863. while (wg_todo) {
  3864. int wg_count = MIN(wg_todo, wg_limit_x);
  3865. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant));
  3866. RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
  3867. wg_todo -= wg_count;
  3868. push_constant.cell_offset += wg_count * wg_size;
  3869. }
  3870. }
  3871. RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
  3872. }
  3873. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE]);
  3874. for (int i = 0; i < gi_probe->mipmaps.size(); i++) {
  3875. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].write_uniform_set, 0);
  3876. push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset;
  3877. push_constant.cell_count = gi_probe->mipmaps[i].cell_count;
  3878. int wg_todo = (gi_probe->mipmaps[i].cell_count - 1) / wg_size + 1;
  3879. while (wg_todo) {
  3880. int wg_count = MIN(wg_todo, wg_limit_x);
  3881. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant));
  3882. RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
  3883. wg_todo -= wg_count;
  3884. push_constant.cell_offset += wg_count * wg_size;
  3885. }
  3886. }
  3887. }
  3888. RD::get_singleton()->compute_list_end();
  3889. }
  3890. }
  3891. gi_probe->has_dynamic_object_data = false; //clear until dynamic object data is used again
  3892. if (p_dynamic_objects.size() && gi_probe->dynamic_maps.size()) {
  3893. Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  3894. int multiplier = gi_probe->dynamic_maps[0].size / MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
  3895. Transform oversample_scale;
  3896. oversample_scale.basis.scale(Vector3(multiplier, multiplier, multiplier));
  3897. Transform to_cell = oversample_scale * storage->gi_probe_get_to_cell_xform(gi_probe->probe);
  3898. Transform to_world_xform = gi_probe->transform * to_cell.affine_inverse();
  3899. Transform to_probe_xform = to_world_xform.affine_inverse();
  3900. AABB probe_aabb(Vector3(), octree_size);
  3901. //this could probably be better parallelized in compute..
  3902. for (int i = 0; i < (int)p_dynamic_objects.size(); i++) {
  3903. GeometryInstance *instance = p_dynamic_objects[i];
  3904. //transform aabb to giprobe
  3905. AABB aabb = (to_probe_xform * geometry_instance_get_transform(instance)).xform(geometry_instance_get_aabb(instance));
  3906. //this needs to wrap to grid resolution to avoid jitter
  3907. //also extend margin a bit just in case
  3908. Vector3i begin = aabb.position - Vector3i(1, 1, 1);
  3909. Vector3i end = aabb.position + aabb.size + Vector3i(1, 1, 1);
  3910. for (int j = 0; j < 3; j++) {
  3911. if ((end[j] - begin[j]) & 1) {
  3912. end[j]++; //for half extents split, it needs to be even
  3913. }
  3914. begin[j] = MAX(begin[j], 0);
  3915. end[j] = MIN(end[j], octree_size[j] * multiplier);
  3916. }
  3917. //aabb = aabb.intersection(probe_aabb); //intersect
  3918. aabb.position = begin;
  3919. aabb.size = end - begin;
  3920. //print_line("aabb: " + aabb);
  3921. for (int j = 0; j < 6; j++) {
  3922. //if (j != 0 && j != 3) {
  3923. // continue;
  3924. //}
  3925. static const Vector3 render_z[6] = {
  3926. Vector3(1, 0, 0),
  3927. Vector3(0, 1, 0),
  3928. Vector3(0, 0, 1),
  3929. Vector3(-1, 0, 0),
  3930. Vector3(0, -1, 0),
  3931. Vector3(0, 0, -1),
  3932. };
  3933. static const Vector3 render_up[6] = {
  3934. Vector3(0, 1, 0),
  3935. Vector3(0, 0, 1),
  3936. Vector3(0, 1, 0),
  3937. Vector3(0, 1, 0),
  3938. Vector3(0, 0, 1),
  3939. Vector3(0, 1, 0),
  3940. };
  3941. Vector3 render_dir = render_z[j];
  3942. Vector3 up_dir = render_up[j];
  3943. Vector3 center = aabb.position + aabb.size * 0.5;
  3944. Transform xform;
  3945. xform.set_look_at(center - aabb.size * 0.5 * render_dir, center, up_dir);
  3946. Vector3 x_dir = xform.basis.get_axis(0).abs();
  3947. int x_axis = int(Vector3(0, 1, 2).dot(x_dir));
  3948. Vector3 y_dir = xform.basis.get_axis(1).abs();
  3949. int y_axis = int(Vector3(0, 1, 2).dot(y_dir));
  3950. Vector3 z_dir = -xform.basis.get_axis(2);
  3951. int z_axis = int(Vector3(0, 1, 2).dot(z_dir.abs()));
  3952. Rect2i rect(aabb.position[x_axis], aabb.position[y_axis], aabb.size[x_axis], aabb.size[y_axis]);
  3953. bool x_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(0)) < 0);
  3954. bool y_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(1)) < 0);
  3955. bool z_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(2)) > 0);
  3956. CameraMatrix cm;
  3957. cm.set_orthogonal(-rect.size.width / 2, rect.size.width / 2, -rect.size.height / 2, rect.size.height / 2, 0.0001, aabb.size[z_axis]);
  3958. if (cull_argument.size() == 0) {
  3959. cull_argument.push_back(nullptr);
  3960. }
  3961. cull_argument[0] = instance;
  3962. _render_material(to_world_xform * xform, cm, true, cull_argument, gi_probe->dynamic_maps[0].fb, Rect2i(Vector2i(), rect.size));
  3963. GIProbeDynamicPushConstant push_constant;
  3964. zeromem(&push_constant, sizeof(GIProbeDynamicPushConstant));
  3965. push_constant.limits[0] = octree_size.x;
  3966. push_constant.limits[1] = octree_size.y;
  3967. push_constant.limits[2] = octree_size.z;
  3968. push_constant.light_count = p_light_instances.size();
  3969. push_constant.x_dir[0] = x_dir[0];
  3970. push_constant.x_dir[1] = x_dir[1];
  3971. push_constant.x_dir[2] = x_dir[2];
  3972. push_constant.y_dir[0] = y_dir[0];
  3973. push_constant.y_dir[1] = y_dir[1];
  3974. push_constant.y_dir[2] = y_dir[2];
  3975. push_constant.z_dir[0] = z_dir[0];
  3976. push_constant.z_dir[1] = z_dir[1];
  3977. push_constant.z_dir[2] = z_dir[2];
  3978. push_constant.z_base = xform.origin[z_axis];
  3979. push_constant.z_sign = (z_flip ? -1.0 : 1.0);
  3980. push_constant.pos_multiplier = float(1.0) / multiplier;
  3981. push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe);
  3982. push_constant.flip_x = x_flip;
  3983. push_constant.flip_y = y_flip;
  3984. push_constant.rect_pos[0] = rect.position[0];
  3985. push_constant.rect_pos[1] = rect.position[1];
  3986. push_constant.rect_size[0] = rect.size[0];
  3987. push_constant.rect_size[1] = rect.size[1];
  3988. push_constant.prev_rect_ofs[0] = 0;
  3989. push_constant.prev_rect_ofs[1] = 0;
  3990. push_constant.prev_rect_size[0] = 0;
  3991. push_constant.prev_rect_size[1] = 0;
  3992. push_constant.on_mipmap = false;
  3993. push_constant.propagation = storage->gi_probe_get_propagation(gi_probe->probe);
  3994. push_constant.pad[0] = 0;
  3995. push_constant.pad[1] = 0;
  3996. push_constant.pad[2] = 0;
  3997. //process lighting
  3998. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  3999. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING]);
  4000. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->dynamic_maps[0].uniform_set, 0);
  4001. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbeDynamicPushConstant));
  4002. RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1);
  4003. //print_line("rect: " + itos(i) + ": " + rect);
  4004. for (int k = 1; k < gi_probe->dynamic_maps.size(); k++) {
  4005. // enlarge the rect if needed so all pixels fit when downscaled,
  4006. // this ensures downsampling is smooth and optimal because no pixels are left behind
  4007. //x
  4008. if (rect.position.x & 1) {
  4009. rect.size.x++;
  4010. push_constant.prev_rect_ofs[0] = 1; //this is used to ensure reading is also optimal
  4011. } else {
  4012. push_constant.prev_rect_ofs[0] = 0;
  4013. }
  4014. if (rect.size.x & 1) {
  4015. rect.size.x++;
  4016. }
  4017. rect.position.x >>= 1;
  4018. rect.size.x = MAX(1, rect.size.x >> 1);
  4019. //y
  4020. if (rect.position.y & 1) {
  4021. rect.size.y++;
  4022. push_constant.prev_rect_ofs[1] = 1;
  4023. } else {
  4024. push_constant.prev_rect_ofs[1] = 0;
  4025. }
  4026. if (rect.size.y & 1) {
  4027. rect.size.y++;
  4028. }
  4029. rect.position.y >>= 1;
  4030. rect.size.y = MAX(1, rect.size.y >> 1);
  4031. //shrink limits to ensure plot does not go outside map
  4032. if (gi_probe->dynamic_maps[k].mipmap > 0) {
  4033. for (int l = 0; l < 3; l++) {
  4034. push_constant.limits[l] = MAX(1, push_constant.limits[l] >> 1);
  4035. }
  4036. }
  4037. //print_line("rect: " + itos(i) + ": " + rect);
  4038. push_constant.rect_pos[0] = rect.position[0];
  4039. push_constant.rect_pos[1] = rect.position[1];
  4040. push_constant.prev_rect_size[0] = push_constant.rect_size[0];
  4041. push_constant.prev_rect_size[1] = push_constant.rect_size[1];
  4042. push_constant.rect_size[0] = rect.size[0];
  4043. push_constant.rect_size[1] = rect.size[1];
  4044. push_constant.on_mipmap = gi_probe->dynamic_maps[k].mipmap > 0;
  4045. RD::get_singleton()->compute_list_add_barrier(compute_list);
  4046. if (gi_probe->dynamic_maps[k].mipmap < 0) {
  4047. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE]);
  4048. } else if (k < gi_probe->dynamic_maps.size() - 1) {
  4049. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT]);
  4050. } else {
  4051. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT]);
  4052. }
  4053. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->dynamic_maps[k].uniform_set, 0);
  4054. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbeDynamicPushConstant));
  4055. RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1);
  4056. }
  4057. RD::get_singleton()->compute_list_end();
  4058. }
  4059. }
  4060. gi_probe->has_dynamic_object_data = true; //clear until dynamic object data is used again
  4061. }
  4062. gi_probe->last_probe_version = storage->gi_probe_get_version(gi_probe->probe);
  4063. }
  4064. void RendererSceneRenderRD::_debug_giprobe(RID p_gi_probe, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) {
  4065. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_gi_probe);
  4066. ERR_FAIL_COND(!gi_probe);
  4067. if (gi_probe->mipmaps.size() == 0) {
  4068. return;
  4069. }
  4070. CameraMatrix transform = (p_camera_with_transform * CameraMatrix(gi_probe->transform)) * CameraMatrix(storage->gi_probe_get_to_cell_xform(gi_probe->probe).affine_inverse());
  4071. int level = 0;
  4072. Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  4073. GIProbeDebugPushConstant push_constant;
  4074. push_constant.alpha = p_alpha;
  4075. push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe);
  4076. push_constant.cell_offset = gi_probe->mipmaps[level].cell_offset;
  4077. push_constant.level = level;
  4078. push_constant.bounds[0] = octree_size.x >> level;
  4079. push_constant.bounds[1] = octree_size.y >> level;
  4080. push_constant.bounds[2] = octree_size.z >> level;
  4081. push_constant.pad = 0;
  4082. for (int i = 0; i < 4; i++) {
  4083. for (int j = 0; j < 4; j++) {
  4084. push_constant.projection[i * 4 + j] = transform.matrix[i][j];
  4085. }
  4086. }
  4087. if (giprobe_debug_uniform_set.is_valid()) {
  4088. RD::get_singleton()->free(giprobe_debug_uniform_set);
  4089. }
  4090. Vector<RD::Uniform> uniforms;
  4091. {
  4092. RD::Uniform u;
  4093. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  4094. u.binding = 1;
  4095. u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe));
  4096. uniforms.push_back(u);
  4097. }
  4098. {
  4099. RD::Uniform u;
  4100. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  4101. u.binding = 2;
  4102. u.ids.push_back(gi_probe->texture);
  4103. uniforms.push_back(u);
  4104. }
  4105. {
  4106. RD::Uniform u;
  4107. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  4108. u.binding = 3;
  4109. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  4110. uniforms.push_back(u);
  4111. }
  4112. int cell_count;
  4113. if (!p_emission && p_lighting && gi_probe->has_dynamic_object_data) {
  4114. cell_count = push_constant.bounds[0] * push_constant.bounds[1] * push_constant.bounds[2];
  4115. } else {
  4116. cell_count = gi_probe->mipmaps[level].cell_count;
  4117. }
  4118. giprobe_debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_debug_shader_version_shaders[0], 0);
  4119. int giprobe_debug_pipeline = GI_PROBE_DEBUG_COLOR;
  4120. if (p_emission) {
  4121. giprobe_debug_pipeline = GI_PROBE_DEBUG_EMISSION;
  4122. } else if (p_lighting) {
  4123. giprobe_debug_pipeline = gi_probe->has_dynamic_object_data ? GI_PROBE_DEBUG_LIGHT_FULL : GI_PROBE_DEBUG_LIGHT;
  4124. }
  4125. RD::get_singleton()->draw_list_bind_render_pipeline(
  4126. p_draw_list,
  4127. giprobe_debug_shader_version_pipelines[giprobe_debug_pipeline].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  4128. RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, giprobe_debug_uniform_set, 0);
  4129. RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(GIProbeDebugPushConstant));
  4130. RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, 36);
  4131. }
  4132. void RendererSceneRenderRD::_debug_sdfgi_probes(RID p_render_buffers, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform) {
  4133. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4134. ERR_FAIL_COND(!rb);
  4135. if (!rb->sdfgi) {
  4136. return; //nothing to debug
  4137. }
  4138. SDGIShader::DebugProbesPushConstant push_constant;
  4139. for (int i = 0; i < 4; i++) {
  4140. for (int j = 0; j < 4; j++) {
  4141. push_constant.projection[i * 4 + j] = p_camera_with_transform.matrix[i][j];
  4142. }
  4143. }
  4144. //gen spheres from strips
  4145. uint32_t band_points = 16;
  4146. push_constant.band_power = 4;
  4147. push_constant.sections_in_band = ((band_points / 2) - 1);
  4148. push_constant.band_mask = band_points - 2;
  4149. push_constant.section_arc = Math_TAU / float(push_constant.sections_in_band);
  4150. push_constant.y_mult = rb->sdfgi->y_mult;
  4151. uint32_t total_points = push_constant.sections_in_band * band_points;
  4152. uint32_t total_probes = rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count;
  4153. push_constant.grid_size[0] = rb->sdfgi->cascade_size;
  4154. push_constant.grid_size[1] = rb->sdfgi->cascade_size;
  4155. push_constant.grid_size[2] = rb->sdfgi->cascade_size;
  4156. push_constant.cascade = 0;
  4157. push_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  4158. if (!rb->sdfgi->debug_probes_uniform_set.is_valid() || !RD::get_singleton()->uniform_set_is_valid(rb->sdfgi->debug_probes_uniform_set)) {
  4159. Vector<RD::Uniform> uniforms;
  4160. {
  4161. RD::Uniform u;
  4162. u.binding = 1;
  4163. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  4164. u.ids.push_back(rb->sdfgi->cascades_ubo);
  4165. uniforms.push_back(u);
  4166. }
  4167. {
  4168. RD::Uniform u;
  4169. u.binding = 2;
  4170. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  4171. u.ids.push_back(rb->sdfgi->lightprobe_texture);
  4172. uniforms.push_back(u);
  4173. }
  4174. {
  4175. RD::Uniform u;
  4176. u.binding = 3;
  4177. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  4178. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  4179. uniforms.push_back(u);
  4180. }
  4181. {
  4182. RD::Uniform u;
  4183. u.binding = 4;
  4184. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  4185. u.ids.push_back(rb->sdfgi->occlusion_texture);
  4186. uniforms.push_back(u);
  4187. }
  4188. rb->sdfgi->debug_probes_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.debug_probes.version_get_shader(sdfgi_shader.debug_probes_shader, 0), 0);
  4189. }
  4190. RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, sdfgi_shader.debug_probes_pipeline[SDGIShader::PROBE_DEBUG_PROBES].get_render_pipeline(RD::INVALID_FORMAT_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  4191. RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, rb->sdfgi->debug_probes_uniform_set, 0);
  4192. RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(SDGIShader::DebugProbesPushConstant));
  4193. RD::get_singleton()->draw_list_draw(p_draw_list, false, total_probes, total_points);
  4194. if (sdfgi_debug_probe_dir != Vector3()) {
  4195. print_line("CLICK DEBUG ME?");
  4196. uint32_t cascade = 0;
  4197. Vector3 offset = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[cascade].position)) * rb->sdfgi->cascades[cascade].cell_size * Vector3(1.0, 1.0 / rb->sdfgi->y_mult, 1.0);
  4198. Vector3 probe_size = rb->sdfgi->cascades[cascade].cell_size * (rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR) * Vector3(1.0, 1.0 / rb->sdfgi->y_mult, 1.0);
  4199. Vector3 ray_from = sdfgi_debug_probe_pos;
  4200. Vector3 ray_to = sdfgi_debug_probe_pos + sdfgi_debug_probe_dir * rb->sdfgi->cascades[cascade].cell_size * Math::sqrt(3.0) * rb->sdfgi->cascade_size;
  4201. float sphere_radius = 0.2;
  4202. float closest_dist = 1e20;
  4203. sdfgi_debug_probe_enabled = false;
  4204. Vector3i probe_from = rb->sdfgi->cascades[cascade].position / (rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR);
  4205. for (int i = 0; i < (SDFGI::PROBE_DIVISOR + 1); i++) {
  4206. for (int j = 0; j < (SDFGI::PROBE_DIVISOR + 1); j++) {
  4207. for (int k = 0; k < (SDFGI::PROBE_DIVISOR + 1); k++) {
  4208. Vector3 pos = offset + probe_size * Vector3(i, j, k);
  4209. Vector3 res;
  4210. if (Geometry3D::segment_intersects_sphere(ray_from, ray_to, pos, sphere_radius, &res)) {
  4211. float d = ray_from.distance_to(res);
  4212. if (d < closest_dist) {
  4213. closest_dist = d;
  4214. sdfgi_debug_probe_enabled = true;
  4215. sdfgi_debug_probe_index = probe_from + Vector3i(i, j, k);
  4216. }
  4217. }
  4218. }
  4219. }
  4220. }
  4221. if (sdfgi_debug_probe_enabled) {
  4222. print_line("found: " + sdfgi_debug_probe_index);
  4223. } else {
  4224. print_line("no found");
  4225. }
  4226. sdfgi_debug_probe_dir = Vector3();
  4227. }
  4228. if (sdfgi_debug_probe_enabled) {
  4229. uint32_t cascade = 0;
  4230. uint32_t probe_cells = (rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR);
  4231. Vector3i probe_from = rb->sdfgi->cascades[cascade].position / probe_cells;
  4232. Vector3i ofs = sdfgi_debug_probe_index - probe_from;
  4233. if (ofs.x < 0 || ofs.y < 0 || ofs.z < 0) {
  4234. return;
  4235. }
  4236. if (ofs.x > SDFGI::PROBE_DIVISOR || ofs.y > SDFGI::PROBE_DIVISOR || ofs.z > SDFGI::PROBE_DIVISOR) {
  4237. return;
  4238. }
  4239. uint32_t mult = (SDFGI::PROBE_DIVISOR + 1);
  4240. uint32_t index = ofs.z * mult * mult + ofs.y * mult + ofs.x;
  4241. push_constant.probe_debug_index = index;
  4242. uint32_t cell_count = probe_cells * 2 * probe_cells * 2 * probe_cells * 2;
  4243. RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, sdfgi_shader.debug_probes_pipeline[SDGIShader::PROBE_DEBUG_VISIBILITY].get_render_pipeline(RD::INVALID_FORMAT_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  4244. RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, rb->sdfgi->debug_probes_uniform_set, 0);
  4245. RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(SDGIShader::DebugProbesPushConstant));
  4246. RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, total_points);
  4247. }
  4248. }
  4249. ////////////////////////////////
  4250. RID RendererSceneRenderRD::render_buffers_create() {
  4251. RenderBuffers rb;
  4252. rb.data = _create_render_buffer_data();
  4253. return render_buffers_owner.make_rid(rb);
  4254. }
  4255. void RendererSceneRenderRD::_allocate_blur_textures(RenderBuffers *rb) {
  4256. ERR_FAIL_COND(!rb->blur[0].texture.is_null());
  4257. uint32_t mipmaps_required = Image::get_image_required_mipmaps(rb->width, rb->height, Image::FORMAT_RGBAH);
  4258. RD::TextureFormat tf;
  4259. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  4260. tf.width = rb->width;
  4261. tf.height = rb->height;
  4262. tf.texture_type = RD::TEXTURE_TYPE_2D;
  4263. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  4264. tf.mipmaps = mipmaps_required;
  4265. rb->blur[0].texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4266. //the second one is smaller (only used for separatable part of blur)
  4267. tf.width >>= 1;
  4268. tf.height >>= 1;
  4269. tf.mipmaps--;
  4270. rb->blur[1].texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4271. int base_width = rb->width;
  4272. int base_height = rb->height;
  4273. for (uint32_t i = 0; i < mipmaps_required; i++) {
  4274. RenderBuffers::Blur::Mipmap mm;
  4275. mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[0].texture, 0, i);
  4276. mm.width = base_width;
  4277. mm.height = base_height;
  4278. rb->blur[0].mipmaps.push_back(mm);
  4279. if (i > 0) {
  4280. mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[1].texture, 0, i - 1);
  4281. rb->blur[1].mipmaps.push_back(mm);
  4282. }
  4283. base_width = MAX(1, base_width >> 1);
  4284. base_height = MAX(1, base_height >> 1);
  4285. }
  4286. }
  4287. void RendererSceneRenderRD::_allocate_luminance_textures(RenderBuffers *rb) {
  4288. ERR_FAIL_COND(!rb->luminance.current.is_null());
  4289. int w = rb->width;
  4290. int h = rb->height;
  4291. while (true) {
  4292. w = MAX(w / 8, 1);
  4293. h = MAX(h / 8, 1);
  4294. RD::TextureFormat tf;
  4295. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  4296. tf.width = w;
  4297. tf.height = h;
  4298. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  4299. bool final = w == 1 && h == 1;
  4300. if (final) {
  4301. tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT;
  4302. }
  4303. RID texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4304. rb->luminance.reduce.push_back(texture);
  4305. if (final) {
  4306. rb->luminance.current = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4307. break;
  4308. }
  4309. }
  4310. }
  4311. void RendererSceneRenderRD::_free_render_buffer_data(RenderBuffers *rb) {
  4312. if (rb->texture.is_valid()) {
  4313. RD::get_singleton()->free(rb->texture);
  4314. rb->texture = RID();
  4315. }
  4316. if (rb->depth_texture.is_valid()) {
  4317. RD::get_singleton()->free(rb->depth_texture);
  4318. rb->depth_texture = RID();
  4319. }
  4320. for (int i = 0; i < 2; i++) {
  4321. if (rb->blur[i].texture.is_valid()) {
  4322. RD::get_singleton()->free(rb->blur[i].texture);
  4323. rb->blur[i].texture = RID();
  4324. rb->blur[i].mipmaps.clear();
  4325. }
  4326. }
  4327. for (int i = 0; i < rb->luminance.reduce.size(); i++) {
  4328. RD::get_singleton()->free(rb->luminance.reduce[i]);
  4329. }
  4330. rb->luminance.reduce.clear();
  4331. if (rb->luminance.current.is_valid()) {
  4332. RD::get_singleton()->free(rb->luminance.current);
  4333. rb->luminance.current = RID();
  4334. }
  4335. if (rb->ssao.depth.is_valid()) {
  4336. RD::get_singleton()->free(rb->ssao.depth);
  4337. RD::get_singleton()->free(rb->ssao.ao_deinterleaved);
  4338. RD::get_singleton()->free(rb->ssao.ao_pong);
  4339. RD::get_singleton()->free(rb->ssao.ao_final);
  4340. RD::get_singleton()->free(rb->ssao.importance_map[0]);
  4341. RD::get_singleton()->free(rb->ssao.importance_map[1]);
  4342. rb->ssao.depth = RID();
  4343. rb->ssao.ao_deinterleaved = RID();
  4344. rb->ssao.ao_pong = RID();
  4345. rb->ssao.ao_final = RID();
  4346. rb->ssao.importance_map[0] = RID();
  4347. rb->ssao.importance_map[1] = RID();
  4348. rb->ssao.depth_slices.clear();
  4349. rb->ssao.ao_deinterleaved_slices.clear();
  4350. rb->ssao.ao_pong_slices.clear();
  4351. }
  4352. if (rb->ssr.blur_radius[0].is_valid()) {
  4353. RD::get_singleton()->free(rb->ssr.blur_radius[0]);
  4354. RD::get_singleton()->free(rb->ssr.blur_radius[1]);
  4355. rb->ssr.blur_radius[0] = RID();
  4356. rb->ssr.blur_radius[1] = RID();
  4357. }
  4358. if (rb->ssr.depth_scaled.is_valid()) {
  4359. RD::get_singleton()->free(rb->ssr.depth_scaled);
  4360. rb->ssr.depth_scaled = RID();
  4361. RD::get_singleton()->free(rb->ssr.normal_scaled);
  4362. rb->ssr.normal_scaled = RID();
  4363. }
  4364. if (rb->ambient_buffer.is_valid()) {
  4365. RD::get_singleton()->free(rb->ambient_buffer);
  4366. RD::get_singleton()->free(rb->reflection_buffer);
  4367. rb->ambient_buffer = RID();
  4368. rb->reflection_buffer = RID();
  4369. }
  4370. }
  4371. void RendererSceneRenderRD::_process_sss(RID p_render_buffers, const CameraMatrix &p_camera) {
  4372. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4373. ERR_FAIL_COND(!rb);
  4374. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  4375. if (!can_use_effects) {
  4376. //just copy
  4377. return;
  4378. }
  4379. if (rb->blur[0].texture.is_null()) {
  4380. _allocate_blur_textures(rb);
  4381. _render_buffers_uniform_set_changed(p_render_buffers);
  4382. }
  4383. storage->get_effects()->sub_surface_scattering(rb->texture, rb->blur[0].mipmaps[0].texture, rb->depth_texture, p_camera, Size2i(rb->width, rb->height), sss_scale, sss_depth_scale, sss_quality);
  4384. }
  4385. void RendererSceneRenderRD::_process_ssr(RID p_render_buffers, RID p_dest_framebuffer, RID p_normal_buffer, RID p_specular_buffer, RID p_metallic, const Color &p_metallic_mask, RID p_environment, const CameraMatrix &p_projection, bool p_use_additive) {
  4386. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4387. ERR_FAIL_COND(!rb);
  4388. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  4389. if (!can_use_effects) {
  4390. //just copy
  4391. storage->get_effects()->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : rb->texture, RID());
  4392. return;
  4393. }
  4394. Environment *env = environment_owner.getornull(p_environment);
  4395. ERR_FAIL_COND(!env);
  4396. ERR_FAIL_COND(!env->ssr_enabled);
  4397. if (rb->ssr.depth_scaled.is_null()) {
  4398. RD::TextureFormat tf;
  4399. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  4400. tf.width = rb->width / 2;
  4401. tf.height = rb->height / 2;
  4402. tf.texture_type = RD::TEXTURE_TYPE_2D;
  4403. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  4404. rb->ssr.depth_scaled = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4405. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  4406. rb->ssr.normal_scaled = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4407. }
  4408. if (ssr_roughness_quality != RS::ENV_SSR_ROUGNESS_QUALITY_DISABLED && !rb->ssr.blur_radius[0].is_valid()) {
  4409. RD::TextureFormat tf;
  4410. tf.format = RD::DATA_FORMAT_R8_UNORM;
  4411. tf.width = rb->width / 2;
  4412. tf.height = rb->height / 2;
  4413. tf.texture_type = RD::TEXTURE_TYPE_2D;
  4414. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  4415. rb->ssr.blur_radius[0] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4416. rb->ssr.blur_radius[1] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4417. }
  4418. if (rb->blur[0].texture.is_null()) {
  4419. _allocate_blur_textures(rb);
  4420. _render_buffers_uniform_set_changed(p_render_buffers);
  4421. }
  4422. storage->get_effects()->screen_space_reflection(rb->texture, p_normal_buffer, ssr_roughness_quality, rb->ssr.blur_radius[0], rb->ssr.blur_radius[1], p_metallic, p_metallic_mask, rb->depth_texture, rb->ssr.depth_scaled, rb->ssr.normal_scaled, rb->blur[0].mipmaps[1].texture, rb->blur[1].mipmaps[0].texture, Size2i(rb->width / 2, rb->height / 2), env->ssr_max_steps, env->ssr_fade_in, env->ssr_fade_out, env->ssr_depth_tolerance, p_projection);
  4423. storage->get_effects()->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : rb->texture, rb->blur[0].mipmaps[1].texture);
  4424. }
  4425. void RendererSceneRenderRD::_process_ssao(RID p_render_buffers, RID p_environment, RID p_normal_buffer, const CameraMatrix &p_projection) {
  4426. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4427. ERR_FAIL_COND(!rb);
  4428. Environment *env = environment_owner.getornull(p_environment);
  4429. ERR_FAIL_COND(!env);
  4430. RENDER_TIMESTAMP("Process SSAO");
  4431. if (rb->ssao.ao_final.is_valid() && ssao_using_half_size != ssao_half_size) {
  4432. RD::get_singleton()->free(rb->ssao.depth);
  4433. RD::get_singleton()->free(rb->ssao.ao_deinterleaved);
  4434. RD::get_singleton()->free(rb->ssao.ao_pong);
  4435. RD::get_singleton()->free(rb->ssao.ao_final);
  4436. RD::get_singleton()->free(rb->ssao.importance_map[0]);
  4437. RD::get_singleton()->free(rb->ssao.importance_map[1]);
  4438. rb->ssao.depth = RID();
  4439. rb->ssao.ao_deinterleaved = RID();
  4440. rb->ssao.ao_pong = RID();
  4441. rb->ssao.ao_final = RID();
  4442. rb->ssao.importance_map[0] = RID();
  4443. rb->ssao.importance_map[1] = RID();
  4444. rb->ssao.depth_slices.clear();
  4445. rb->ssao.ao_deinterleaved_slices.clear();
  4446. rb->ssao.ao_pong_slices.clear();
  4447. }
  4448. int buffer_width;
  4449. int buffer_height;
  4450. int half_width;
  4451. int half_height;
  4452. if (ssao_half_size) {
  4453. buffer_width = (rb->width + 3) / 4;
  4454. buffer_height = (rb->height + 3) / 4;
  4455. half_width = (rb->width + 7) / 8;
  4456. half_height = (rb->height + 7) / 8;
  4457. } else {
  4458. buffer_width = (rb->width + 1) / 2;
  4459. buffer_height = (rb->height + 1) / 2;
  4460. half_width = (rb->width + 3) / 4;
  4461. half_height = (rb->height + 3) / 4;
  4462. }
  4463. bool uniform_sets_are_invalid = false;
  4464. if (rb->ssao.depth.is_null()) {
  4465. //allocate depth slices
  4466. {
  4467. RD::TextureFormat tf;
  4468. tf.format = RD::DATA_FORMAT_R16_SFLOAT;
  4469. tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  4470. tf.width = buffer_width;
  4471. tf.height = buffer_height;
  4472. tf.mipmaps = 4;
  4473. tf.array_layers = 4;
  4474. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4475. rb->ssao.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4476. RD::get_singleton()->set_resource_name(rb->ssao.depth, "SSAO Depth");
  4477. for (uint32_t i = 0; i < tf.mipmaps; i++) {
  4478. RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.depth, 0, i, RD::TEXTURE_SLICE_2D_ARRAY);
  4479. rb->ssao.depth_slices.push_back(slice);
  4480. RD::get_singleton()->set_resource_name(rb->ssao.depth_slices[i], "SSAO Depth Mip " + itos(i) + " ");
  4481. }
  4482. }
  4483. {
  4484. RD::TextureFormat tf;
  4485. tf.format = RD::DATA_FORMAT_R8G8_UNORM;
  4486. tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  4487. tf.width = buffer_width;
  4488. tf.height = buffer_height;
  4489. tf.array_layers = 4;
  4490. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4491. rb->ssao.ao_deinterleaved = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4492. RD::get_singleton()->set_resource_name(rb->ssao.ao_deinterleaved, "SSAO De-interleaved Array");
  4493. for (uint32_t i = 0; i < 4; i++) {
  4494. RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.ao_deinterleaved, i, 0);
  4495. rb->ssao.ao_deinterleaved_slices.push_back(slice);
  4496. RD::get_singleton()->set_resource_name(rb->ssao.ao_deinterleaved_slices[i], "SSAO De-interleaved Array Layer " + itos(i) + " ");
  4497. }
  4498. }
  4499. {
  4500. RD::TextureFormat tf;
  4501. tf.format = RD::DATA_FORMAT_R8G8_UNORM;
  4502. tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  4503. tf.width = buffer_width;
  4504. tf.height = buffer_height;
  4505. tf.array_layers = 4;
  4506. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4507. rb->ssao.ao_pong = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4508. RD::get_singleton()->set_resource_name(rb->ssao.ao_pong, "SSAO De-interleaved Array Pong");
  4509. for (uint32_t i = 0; i < 4; i++) {
  4510. RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.ao_pong, i, 0);
  4511. rb->ssao.ao_pong_slices.push_back(slice);
  4512. RD::get_singleton()->set_resource_name(rb->ssao.ao_deinterleaved_slices[i], "SSAO De-interleaved Array Layer " + itos(i) + " Pong");
  4513. }
  4514. }
  4515. {
  4516. RD::TextureFormat tf;
  4517. tf.format = RD::DATA_FORMAT_R8_UNORM;
  4518. tf.width = half_width;
  4519. tf.height = half_height;
  4520. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4521. rb->ssao.importance_map[0] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4522. RD::get_singleton()->set_resource_name(rb->ssao.importance_map[0], "SSAO Importance Map");
  4523. rb->ssao.importance_map[1] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4524. RD::get_singleton()->set_resource_name(rb->ssao.importance_map[1], "SSAO Importance Map Pong");
  4525. }
  4526. {
  4527. RD::TextureFormat tf;
  4528. tf.format = RD::DATA_FORMAT_R8_UNORM;
  4529. tf.width = rb->width;
  4530. tf.height = rb->height;
  4531. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4532. rb->ssao.ao_final = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4533. RD::get_singleton()->set_resource_name(rb->ssao.ao_final, "SSAO Final");
  4534. _render_buffers_uniform_set_changed(p_render_buffers);
  4535. }
  4536. ssao_using_half_size = ssao_half_size;
  4537. uniform_sets_are_invalid = true;
  4538. }
  4539. EffectsRD::SSAOSettings settings;
  4540. settings.radius = env->ssao_radius;
  4541. settings.intensity = env->ssao_intensity;
  4542. settings.power = env->ssao_power;
  4543. settings.detail = env->ssao_detail;
  4544. settings.horizon = env->ssao_horizon;
  4545. settings.sharpness = env->ssao_sharpness;
  4546. settings.quality = ssao_quality;
  4547. settings.half_size = ssao_half_size;
  4548. settings.adaptive_target = ssao_adaptive_target;
  4549. settings.blur_passes = ssao_blur_passes;
  4550. settings.fadeout_from = ssao_fadeout_from;
  4551. settings.fadeout_to = ssao_fadeout_to;
  4552. settings.full_screen_size = Size2i(rb->width, rb->height);
  4553. settings.half_screen_size = Size2i(buffer_width, buffer_height);
  4554. settings.quarter_screen_size = Size2i(half_width, half_height);
  4555. storage->get_effects()->generate_ssao(rb->depth_texture, p_normal_buffer, rb->ssao.depth, rb->ssao.depth_slices, rb->ssao.ao_deinterleaved, rb->ssao.ao_deinterleaved_slices, rb->ssao.ao_pong, rb->ssao.ao_pong_slices, rb->ssao.ao_final, rb->ssao.importance_map[0], rb->ssao.importance_map[1], p_projection, settings, uniform_sets_are_invalid);
  4556. }
  4557. void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(RID p_render_buffers, RID p_environment, RID p_camera_effects, const CameraMatrix &p_projection) {
  4558. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4559. ERR_FAIL_COND(!rb);
  4560. Environment *env = environment_owner.getornull(p_environment);
  4561. //glow (if enabled)
  4562. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  4563. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  4564. if (can_use_effects && camfx && (camfx->dof_blur_near_enabled || camfx->dof_blur_far_enabled) && camfx->dof_blur_amount > 0.0) {
  4565. if (rb->blur[0].texture.is_null()) {
  4566. _allocate_blur_textures(rb);
  4567. _render_buffers_uniform_set_changed(p_render_buffers);
  4568. }
  4569. float bokeh_size = camfx->dof_blur_amount * 64.0;
  4570. storage->get_effects()->bokeh_dof(rb->texture, rb->depth_texture, Size2i(rb->width, rb->height), rb->blur[0].mipmaps[0].texture, rb->blur[1].mipmaps[0].texture, rb->blur[0].mipmaps[1].texture, camfx->dof_blur_far_enabled, camfx->dof_blur_far_distance, camfx->dof_blur_far_transition, camfx->dof_blur_near_enabled, camfx->dof_blur_near_distance, camfx->dof_blur_near_transition, bokeh_size, dof_blur_bokeh_shape, dof_blur_quality, dof_blur_use_jitter, p_projection.get_z_near(), p_projection.get_z_far(), p_projection.is_orthogonal());
  4571. }
  4572. if (can_use_effects && env && env->auto_exposure) {
  4573. if (rb->luminance.current.is_null()) {
  4574. _allocate_luminance_textures(rb);
  4575. _render_buffers_uniform_set_changed(p_render_buffers);
  4576. }
  4577. bool set_immediate = env->auto_exposure_version != rb->auto_exposure_version;
  4578. rb->auto_exposure_version = env->auto_exposure_version;
  4579. double step = env->auto_exp_speed * time_step;
  4580. storage->get_effects()->luminance_reduction(rb->texture, Size2i(rb->width, rb->height), rb->luminance.reduce, rb->luminance.current, env->min_luminance, env->max_luminance, step, set_immediate);
  4581. //swap final reduce with prev luminance
  4582. SWAP(rb->luminance.current, rb->luminance.reduce.write[rb->luminance.reduce.size() - 1]);
  4583. RenderingServerDefault::redraw_request(); //redraw all the time if auto exposure rendering is on
  4584. }
  4585. int max_glow_level = -1;
  4586. if (can_use_effects && env && env->glow_enabled) {
  4587. /* see that blur textures are allocated */
  4588. if (rb->blur[1].texture.is_null()) {
  4589. _allocate_blur_textures(rb);
  4590. _render_buffers_uniform_set_changed(p_render_buffers);
  4591. }
  4592. for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
  4593. if (env->glow_levels[i] > 0.0) {
  4594. if (i >= rb->blur[1].mipmaps.size()) {
  4595. max_glow_level = rb->blur[1].mipmaps.size() - 1;
  4596. } else {
  4597. max_glow_level = i;
  4598. }
  4599. }
  4600. }
  4601. for (int i = 0; i < (max_glow_level + 1); i++) {
  4602. int vp_w = rb->blur[1].mipmaps[i].width;
  4603. int vp_h = rb->blur[1].mipmaps[i].height;
  4604. if (i == 0) {
  4605. RID luminance_texture;
  4606. if (env->auto_exposure && rb->luminance.current.is_valid()) {
  4607. luminance_texture = rb->luminance.current;
  4608. }
  4609. storage->get_effects()->gaussian_glow(rb->texture, rb->blur[1].mipmaps[i].texture, Size2i(vp_w, vp_h), env->glow_strength, glow_high_quality, true, env->glow_hdr_luminance_cap, env->exposure, env->glow_bloom, env->glow_hdr_bleed_threshold, env->glow_hdr_bleed_scale, luminance_texture, env->auto_exp_scale);
  4610. } else {
  4611. storage->get_effects()->gaussian_glow(rb->blur[1].mipmaps[i - 1].texture, rb->blur[1].mipmaps[i].texture, Size2i(vp_w, vp_h), env->glow_strength, glow_high_quality);
  4612. }
  4613. }
  4614. }
  4615. {
  4616. //tonemap
  4617. EffectsRD::TonemapSettings tonemap;
  4618. if (can_use_effects && env && env->auto_exposure && rb->luminance.current.is_valid()) {
  4619. tonemap.use_auto_exposure = true;
  4620. tonemap.exposure_texture = rb->luminance.current;
  4621. tonemap.auto_exposure_grey = env->auto_exp_scale;
  4622. } else {
  4623. tonemap.exposure_texture = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_WHITE);
  4624. }
  4625. if (can_use_effects && env && env->glow_enabled) {
  4626. tonemap.use_glow = true;
  4627. tonemap.glow_mode = EffectsRD::TonemapSettings::GlowMode(env->glow_blend_mode);
  4628. tonemap.glow_intensity = env->glow_blend_mode == RS::ENV_GLOW_BLEND_MODE_MIX ? env->glow_mix : env->glow_intensity;
  4629. for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
  4630. tonemap.glow_levels[i] = env->glow_levels[i];
  4631. }
  4632. tonemap.glow_texture_size.x = rb->blur[1].mipmaps[0].width;
  4633. tonemap.glow_texture_size.y = rb->blur[1].mipmaps[0].height;
  4634. tonemap.glow_use_bicubic_upscale = glow_bicubic_upscale;
  4635. tonemap.glow_texture = rb->blur[1].texture;
  4636. } else {
  4637. tonemap.glow_texture = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_BLACK);
  4638. }
  4639. if (rb->screen_space_aa == RS::VIEWPORT_SCREEN_SPACE_AA_FXAA) {
  4640. tonemap.use_fxaa = true;
  4641. }
  4642. tonemap.use_debanding = rb->use_debanding;
  4643. tonemap.texture_size = Vector2i(rb->width, rb->height);
  4644. if (env) {
  4645. tonemap.tonemap_mode = env->tone_mapper;
  4646. tonemap.white = env->white;
  4647. tonemap.exposure = env->exposure;
  4648. }
  4649. tonemap.use_color_correction = false;
  4650. tonemap.use_1d_color_correction = false;
  4651. tonemap.color_correction_texture = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE);
  4652. if (can_use_effects && env) {
  4653. tonemap.use_bcs = env->adjustments_enabled;
  4654. tonemap.brightness = env->adjustments_brightness;
  4655. tonemap.contrast = env->adjustments_contrast;
  4656. tonemap.saturation = env->adjustments_saturation;
  4657. if (env->adjustments_enabled && env->color_correction.is_valid()) {
  4658. tonemap.use_color_correction = true;
  4659. tonemap.use_1d_color_correction = env->use_1d_color_correction;
  4660. tonemap.color_correction_texture = storage->texture_get_rd_texture(env->color_correction);
  4661. }
  4662. }
  4663. storage->get_effects()->tonemapper(rb->texture, storage->render_target_get_rd_framebuffer(rb->render_target), tonemap);
  4664. }
  4665. storage->render_target_disable_clear_request(rb->render_target);
  4666. }
  4667. void RendererSceneRenderRD::_render_buffers_debug_draw(RID p_render_buffers, RID p_shadow_atlas) {
  4668. EffectsRD *effects = storage->get_effects();
  4669. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4670. ERR_FAIL_COND(!rb);
  4671. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) {
  4672. if (p_shadow_atlas.is_valid()) {
  4673. RID shadow_atlas_texture = shadow_atlas_get_texture(p_shadow_atlas);
  4674. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4675. effects->copy_to_fb_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, true);
  4676. }
  4677. }
  4678. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) {
  4679. if (directional_shadow_get_texture().is_valid()) {
  4680. RID shadow_atlas_texture = directional_shadow_get_texture();
  4681. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4682. effects->copy_to_fb_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, true);
  4683. }
  4684. }
  4685. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DECAL_ATLAS) {
  4686. RID decal_atlas = storage->decal_atlas_get_texture();
  4687. if (decal_atlas.is_valid()) {
  4688. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4689. effects->copy_to_fb_rect(decal_atlas, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, false, true);
  4690. }
  4691. }
  4692. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE) {
  4693. if (rb->luminance.current.is_valid()) {
  4694. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4695. effects->copy_to_fb_rect(rb->luminance.current, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize / 8), false, true);
  4696. }
  4697. }
  4698. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSAO && rb->ssao.ao_final.is_valid()) {
  4699. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4700. RID ao_buf = rb->ssao.ao_final;
  4701. effects->copy_to_fb_rect(ao_buf, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, true);
  4702. }
  4703. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(p_render_buffers).is_valid()) {
  4704. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4705. effects->copy_to_fb_rect(_render_buffers_get_normal_texture(p_render_buffers), storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, false);
  4706. }
  4707. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_GI_BUFFER && rb->ambient_buffer.is_valid()) {
  4708. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4709. RID ambient_texture = rb->ambient_buffer;
  4710. RID reflection_texture = rb->reflection_buffer;
  4711. effects->copy_to_fb_rect(ambient_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, false, false, true, reflection_texture);
  4712. }
  4713. }
  4714. void RendererSceneRenderRD::environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, bool p_use_1d_color_correction, RID p_color_correction) {
  4715. Environment *env = environment_owner.getornull(p_env);
  4716. ERR_FAIL_COND(!env);
  4717. env->adjustments_enabled = p_enable;
  4718. env->adjustments_brightness = p_brightness;
  4719. env->adjustments_contrast = p_contrast;
  4720. env->adjustments_saturation = p_saturation;
  4721. env->use_1d_color_correction = p_use_1d_color_correction;
  4722. env->color_correction = p_color_correction;
  4723. }
  4724. void RendererSceneRenderRD::_sdfgi_debug_draw(RID p_render_buffers, const CameraMatrix &p_projection, const Transform &p_transform) {
  4725. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4726. ERR_FAIL_COND(!rb);
  4727. if (!rb->sdfgi) {
  4728. return; //eh
  4729. }
  4730. if (!rb->sdfgi->debug_uniform_set.is_valid() || !RD::get_singleton()->uniform_set_is_valid(rb->sdfgi->debug_uniform_set)) {
  4731. Vector<RD::Uniform> uniforms;
  4732. {
  4733. RD::Uniform u;
  4734. u.binding = 1;
  4735. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  4736. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  4737. if (i < rb->sdfgi->cascades.size()) {
  4738. u.ids.push_back(rb->sdfgi->cascades[i].sdf_tex);
  4739. } else {
  4740. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  4741. }
  4742. }
  4743. uniforms.push_back(u);
  4744. }
  4745. {
  4746. RD::Uniform u;
  4747. u.binding = 2;
  4748. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  4749. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  4750. if (i < rb->sdfgi->cascades.size()) {
  4751. u.ids.push_back(rb->sdfgi->cascades[i].light_tex);
  4752. } else {
  4753. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  4754. }
  4755. }
  4756. uniforms.push_back(u);
  4757. }
  4758. {
  4759. RD::Uniform u;
  4760. u.binding = 3;
  4761. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  4762. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  4763. if (i < rb->sdfgi->cascades.size()) {
  4764. u.ids.push_back(rb->sdfgi->cascades[i].light_aniso_0_tex);
  4765. } else {
  4766. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  4767. }
  4768. }
  4769. uniforms.push_back(u);
  4770. }
  4771. {
  4772. RD::Uniform u;
  4773. u.binding = 4;
  4774. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  4775. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  4776. if (i < rb->sdfgi->cascades.size()) {
  4777. u.ids.push_back(rb->sdfgi->cascades[i].light_aniso_1_tex);
  4778. } else {
  4779. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  4780. }
  4781. }
  4782. uniforms.push_back(u);
  4783. }
  4784. {
  4785. RD::Uniform u;
  4786. u.binding = 5;
  4787. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  4788. u.ids.push_back(rb->sdfgi->occlusion_texture);
  4789. uniforms.push_back(u);
  4790. }
  4791. {
  4792. RD::Uniform u;
  4793. u.binding = 8;
  4794. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  4795. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  4796. uniforms.push_back(u);
  4797. }
  4798. {
  4799. RD::Uniform u;
  4800. u.binding = 9;
  4801. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  4802. u.ids.push_back(rb->sdfgi->cascades_ubo);
  4803. uniforms.push_back(u);
  4804. }
  4805. {
  4806. RD::Uniform u;
  4807. u.binding = 10;
  4808. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  4809. u.ids.push_back(rb->texture);
  4810. uniforms.push_back(u);
  4811. }
  4812. {
  4813. RD::Uniform u;
  4814. u.binding = 11;
  4815. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  4816. u.ids.push_back(rb->sdfgi->lightprobe_texture);
  4817. uniforms.push_back(u);
  4818. }
  4819. rb->sdfgi->debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.debug_shader_version, 0);
  4820. }
  4821. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  4822. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.debug_pipeline);
  4823. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->debug_uniform_set, 0);
  4824. SDGIShader::DebugPushConstant push_constant;
  4825. push_constant.grid_size[0] = rb->sdfgi->cascade_size;
  4826. push_constant.grid_size[1] = rb->sdfgi->cascade_size;
  4827. push_constant.grid_size[2] = rb->sdfgi->cascade_size;
  4828. push_constant.max_cascades = rb->sdfgi->cascades.size();
  4829. push_constant.screen_size[0] = rb->width;
  4830. push_constant.screen_size[1] = rb->height;
  4831. push_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  4832. push_constant.use_occlusion = rb->sdfgi->uses_occlusion;
  4833. push_constant.y_mult = rb->sdfgi->y_mult;
  4834. Vector2 vp_half = p_projection.get_viewport_half_extents();
  4835. push_constant.cam_extent[0] = vp_half.x;
  4836. push_constant.cam_extent[1] = vp_half.y;
  4837. push_constant.cam_extent[2] = -p_projection.get_z_near();
  4838. push_constant.cam_transform[0] = p_transform.basis.elements[0][0];
  4839. push_constant.cam_transform[1] = p_transform.basis.elements[1][0];
  4840. push_constant.cam_transform[2] = p_transform.basis.elements[2][0];
  4841. push_constant.cam_transform[3] = 0;
  4842. push_constant.cam_transform[4] = p_transform.basis.elements[0][1];
  4843. push_constant.cam_transform[5] = p_transform.basis.elements[1][1];
  4844. push_constant.cam_transform[6] = p_transform.basis.elements[2][1];
  4845. push_constant.cam_transform[7] = 0;
  4846. push_constant.cam_transform[8] = p_transform.basis.elements[0][2];
  4847. push_constant.cam_transform[9] = p_transform.basis.elements[1][2];
  4848. push_constant.cam_transform[10] = p_transform.basis.elements[2][2];
  4849. push_constant.cam_transform[11] = 0;
  4850. push_constant.cam_transform[12] = p_transform.origin.x;
  4851. push_constant.cam_transform[13] = p_transform.origin.y;
  4852. push_constant.cam_transform[14] = p_transform.origin.z;
  4853. push_constant.cam_transform[15] = 1;
  4854. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::DebugPushConstant));
  4855. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->width, rb->height, 1);
  4856. RD::get_singleton()->compute_list_end();
  4857. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4858. storage->get_effects()->copy_to_fb_rect(rb->texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), true);
  4859. }
  4860. RID RendererSceneRenderRD::render_buffers_get_back_buffer_texture(RID p_render_buffers) {
  4861. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4862. ERR_FAIL_COND_V(!rb, RID());
  4863. if (!rb->blur[0].texture.is_valid()) {
  4864. return RID(); //not valid at the moment
  4865. }
  4866. return rb->blur[0].texture;
  4867. }
  4868. RID RendererSceneRenderRD::render_buffers_get_ao_texture(RID p_render_buffers) {
  4869. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4870. ERR_FAIL_COND_V(!rb, RID());
  4871. return rb->ssao.ao_final;
  4872. }
  4873. RID RendererSceneRenderRD::render_buffers_get_gi_probe_buffer(RID p_render_buffers) {
  4874. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4875. ERR_FAIL_COND_V(!rb, RID());
  4876. if (rb->giprobe_buffer.is_null()) {
  4877. rb->giprobe_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(GI::GIProbeData) * RenderBuffers::MAX_GIPROBES);
  4878. }
  4879. return rb->giprobe_buffer;
  4880. }
  4881. RID RendererSceneRenderRD::render_buffers_get_default_gi_probe_buffer() {
  4882. return default_giprobe_buffer;
  4883. }
  4884. RID RendererSceneRenderRD::render_buffers_get_gi_ambient_texture(RID p_render_buffers) {
  4885. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4886. ERR_FAIL_COND_V(!rb, RID());
  4887. return rb->ambient_buffer;
  4888. }
  4889. RID RendererSceneRenderRD::render_buffers_get_gi_reflection_texture(RID p_render_buffers) {
  4890. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4891. ERR_FAIL_COND_V(!rb, RID());
  4892. return rb->reflection_buffer;
  4893. }
  4894. uint32_t RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_count(RID p_render_buffers) const {
  4895. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4896. ERR_FAIL_COND_V(!rb, 0);
  4897. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  4898. return rb->sdfgi->cascades.size();
  4899. }
  4900. bool RendererSceneRenderRD::render_buffers_is_sdfgi_enabled(RID p_render_buffers) const {
  4901. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4902. ERR_FAIL_COND_V(!rb, false);
  4903. return rb->sdfgi != nullptr;
  4904. }
  4905. RID RendererSceneRenderRD::render_buffers_get_sdfgi_irradiance_probes(RID p_render_buffers) const {
  4906. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4907. ERR_FAIL_COND_V(!rb, RID());
  4908. ERR_FAIL_COND_V(!rb->sdfgi, RID());
  4909. return rb->sdfgi->lightprobe_texture;
  4910. }
  4911. Vector3 RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_offset(RID p_render_buffers, uint32_t p_cascade) const {
  4912. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4913. ERR_FAIL_COND_V(!rb, Vector3());
  4914. ERR_FAIL_COND_V(!rb->sdfgi, Vector3());
  4915. ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), Vector3());
  4916. return Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[p_cascade].position)) * rb->sdfgi->cascades[p_cascade].cell_size;
  4917. }
  4918. Vector3i RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_probe_offset(RID p_render_buffers, uint32_t p_cascade) const {
  4919. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4920. ERR_FAIL_COND_V(!rb, Vector3i());
  4921. ERR_FAIL_COND_V(!rb->sdfgi, Vector3i());
  4922. ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), Vector3i());
  4923. int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  4924. return rb->sdfgi->cascades[p_cascade].position / probe_divisor;
  4925. }
  4926. float RendererSceneRenderRD::render_buffers_get_sdfgi_normal_bias(RID p_render_buffers) const {
  4927. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4928. ERR_FAIL_COND_V(!rb, 0);
  4929. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  4930. return rb->sdfgi->normal_bias;
  4931. }
  4932. float RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_probe_size(RID p_render_buffers, uint32_t p_cascade) const {
  4933. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4934. ERR_FAIL_COND_V(!rb, 0);
  4935. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  4936. ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), 0);
  4937. return float(rb->sdfgi->cascade_size) * rb->sdfgi->cascades[p_cascade].cell_size / float(rb->sdfgi->probe_axis_count - 1);
  4938. }
  4939. uint32_t RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_probe_count(RID p_render_buffers) const {
  4940. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4941. ERR_FAIL_COND_V(!rb, 0);
  4942. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  4943. return rb->sdfgi->probe_axis_count;
  4944. }
  4945. uint32_t RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_size(RID p_render_buffers) const {
  4946. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4947. ERR_FAIL_COND_V(!rb, 0);
  4948. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  4949. return rb->sdfgi->cascade_size;
  4950. }
  4951. bool RendererSceneRenderRD::render_buffers_is_sdfgi_using_occlusion(RID p_render_buffers) const {
  4952. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4953. ERR_FAIL_COND_V(!rb, false);
  4954. ERR_FAIL_COND_V(!rb->sdfgi, false);
  4955. return rb->sdfgi->uses_occlusion;
  4956. }
  4957. float RendererSceneRenderRD::render_buffers_get_sdfgi_energy(RID p_render_buffers) const {
  4958. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4959. ERR_FAIL_COND_V(!rb, 0.0);
  4960. ERR_FAIL_COND_V(!rb->sdfgi, 0.0);
  4961. return rb->sdfgi->energy;
  4962. }
  4963. RID RendererSceneRenderRD::render_buffers_get_sdfgi_occlusion_texture(RID p_render_buffers) const {
  4964. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4965. ERR_FAIL_COND_V(!rb, RID());
  4966. ERR_FAIL_COND_V(!rb->sdfgi, RID());
  4967. return rb->sdfgi->occlusion_texture;
  4968. }
  4969. bool RendererSceneRenderRD::render_buffers_has_volumetric_fog(RID p_render_buffers) const {
  4970. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4971. ERR_FAIL_COND_V(!rb, false);
  4972. return rb->volumetric_fog != nullptr;
  4973. }
  4974. RID RendererSceneRenderRD::render_buffers_get_volumetric_fog_texture(RID p_render_buffers) {
  4975. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4976. ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, RID());
  4977. return rb->volumetric_fog->fog_map;
  4978. }
  4979. RID RendererSceneRenderRD::render_buffers_get_volumetric_fog_sky_uniform_set(RID p_render_buffers) {
  4980. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4981. ERR_FAIL_COND_V(!rb, RID());
  4982. if (!rb->volumetric_fog) {
  4983. return RID();
  4984. }
  4985. return rb->volumetric_fog->sky_uniform_set;
  4986. }
  4987. float RendererSceneRenderRD::render_buffers_get_volumetric_fog_end(RID p_render_buffers) {
  4988. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4989. ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, 0);
  4990. return rb->volumetric_fog->length;
  4991. }
  4992. float RendererSceneRenderRD::render_buffers_get_volumetric_fog_detail_spread(RID p_render_buffers) {
  4993. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4994. ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, 0);
  4995. return rb->volumetric_fog->spread;
  4996. }
  4997. void RendererSceneRenderRD::render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, RS::ViewportMSAA p_msaa, RenderingServer::ViewportScreenSpaceAA p_screen_space_aa, bool p_use_debanding) {
  4998. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4999. rb->width = p_width;
  5000. rb->height = p_height;
  5001. rb->render_target = p_render_target;
  5002. rb->msaa = p_msaa;
  5003. rb->screen_space_aa = p_screen_space_aa;
  5004. rb->use_debanding = p_use_debanding;
  5005. if (rb->cluster_builder == nullptr) {
  5006. rb->cluster_builder = memnew(ClusterBuilderRD);
  5007. }
  5008. rb->cluster_builder->set_shared(&cluster_builder_shared);
  5009. _free_render_buffer_data(rb);
  5010. {
  5011. RD::TextureFormat tf;
  5012. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  5013. tf.width = rb->width;
  5014. tf.height = rb->height;
  5015. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  5016. if (rb->msaa != RS::VIEWPORT_MSAA_DISABLED) {
  5017. tf.usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  5018. } else {
  5019. tf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  5020. }
  5021. rb->texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  5022. }
  5023. {
  5024. RD::TextureFormat tf;
  5025. if (rb->msaa == RS::VIEWPORT_MSAA_DISABLED) {
  5026. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D24_UNORM_S8_UINT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D24_UNORM_S8_UINT : RD::DATA_FORMAT_D32_SFLOAT_S8_UINT;
  5027. } else {
  5028. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  5029. }
  5030. tf.width = p_width;
  5031. tf.height = p_height;
  5032. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT;
  5033. if (rb->msaa != RS::VIEWPORT_MSAA_DISABLED) {
  5034. tf.usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  5035. } else {
  5036. tf.usage_bits |= RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  5037. }
  5038. rb->depth_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  5039. }
  5040. rb->data->configure(rb->texture, rb->depth_texture, p_width, p_height, p_msaa);
  5041. _render_buffers_uniform_set_changed(p_render_buffers);
  5042. rb->cluster_builder->setup(Size2i(p_width, p_height), max_cluster_elements, rb->depth_texture, storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED), rb->texture);
  5043. }
  5044. void RendererSceneRenderRD::gi_set_use_half_resolution(bool p_enable) {
  5045. gi.half_resolution = p_enable;
  5046. }
  5047. void RendererSceneRenderRD::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) {
  5048. sss_quality = p_quality;
  5049. }
  5050. RS::SubSurfaceScatteringQuality RendererSceneRenderRD::sub_surface_scattering_get_quality() const {
  5051. return sss_quality;
  5052. }
  5053. void RendererSceneRenderRD::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) {
  5054. sss_scale = p_scale;
  5055. sss_depth_scale = p_depth_scale;
  5056. }
  5057. void RendererSceneRenderRD::shadows_quality_set(RS::ShadowQuality p_quality) {
  5058. ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");
  5059. if (shadows_quality != p_quality) {
  5060. shadows_quality = p_quality;
  5061. switch (shadows_quality) {
  5062. case RS::SHADOW_QUALITY_HARD: {
  5063. penumbra_shadow_samples = 4;
  5064. soft_shadow_samples = 1;
  5065. shadows_quality_radius = 1.0;
  5066. } break;
  5067. case RS::SHADOW_QUALITY_SOFT_LOW: {
  5068. penumbra_shadow_samples = 8;
  5069. soft_shadow_samples = 4;
  5070. shadows_quality_radius = 2.0;
  5071. } break;
  5072. case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
  5073. penumbra_shadow_samples = 12;
  5074. soft_shadow_samples = 8;
  5075. shadows_quality_radius = 2.0;
  5076. } break;
  5077. case RS::SHADOW_QUALITY_SOFT_HIGH: {
  5078. penumbra_shadow_samples = 24;
  5079. soft_shadow_samples = 16;
  5080. shadows_quality_radius = 3.0;
  5081. } break;
  5082. case RS::SHADOW_QUALITY_SOFT_ULTRA: {
  5083. penumbra_shadow_samples = 32;
  5084. soft_shadow_samples = 32;
  5085. shadows_quality_radius = 4.0;
  5086. } break;
  5087. case RS::SHADOW_QUALITY_MAX:
  5088. break;
  5089. }
  5090. get_vogel_disk(penumbra_shadow_kernel, penumbra_shadow_samples);
  5091. get_vogel_disk(soft_shadow_kernel, soft_shadow_samples);
  5092. }
  5093. }
  5094. void RendererSceneRenderRD::directional_shadow_quality_set(RS::ShadowQuality p_quality) {
  5095. ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");
  5096. if (directional_shadow_quality != p_quality) {
  5097. directional_shadow_quality = p_quality;
  5098. switch (directional_shadow_quality) {
  5099. case RS::SHADOW_QUALITY_HARD: {
  5100. directional_penumbra_shadow_samples = 4;
  5101. directional_soft_shadow_samples = 1;
  5102. directional_shadow_quality_radius = 1.0;
  5103. } break;
  5104. case RS::SHADOW_QUALITY_SOFT_LOW: {
  5105. directional_penumbra_shadow_samples = 8;
  5106. directional_soft_shadow_samples = 4;
  5107. directional_shadow_quality_radius = 2.0;
  5108. } break;
  5109. case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
  5110. directional_penumbra_shadow_samples = 12;
  5111. directional_soft_shadow_samples = 8;
  5112. directional_shadow_quality_radius = 2.0;
  5113. } break;
  5114. case RS::SHADOW_QUALITY_SOFT_HIGH: {
  5115. directional_penumbra_shadow_samples = 24;
  5116. directional_soft_shadow_samples = 16;
  5117. directional_shadow_quality_radius = 3.0;
  5118. } break;
  5119. case RS::SHADOW_QUALITY_SOFT_ULTRA: {
  5120. directional_penumbra_shadow_samples = 32;
  5121. directional_soft_shadow_samples = 32;
  5122. directional_shadow_quality_radius = 4.0;
  5123. } break;
  5124. case RS::SHADOW_QUALITY_MAX:
  5125. break;
  5126. }
  5127. get_vogel_disk(directional_penumbra_shadow_kernel, directional_penumbra_shadow_samples);
  5128. get_vogel_disk(directional_soft_shadow_kernel, directional_soft_shadow_samples);
  5129. }
  5130. }
  5131. int RendererSceneRenderRD::get_roughness_layers() const {
  5132. return roughness_layers;
  5133. }
  5134. bool RendererSceneRenderRD::is_using_radiance_cubemap_array() const {
  5135. return sky_use_cubemap_array;
  5136. }
  5137. RendererSceneRenderRD::RenderBufferData *RendererSceneRenderRD::render_buffers_get_data(RID p_render_buffers) {
  5138. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  5139. ERR_FAIL_COND_V(!rb, nullptr);
  5140. return rb->data;
  5141. }
  5142. void RendererSceneRenderRD::_setup_reflections(const PagedArray<RID> &p_reflections, const Transform &p_camera_inverse_transform, RID p_environment) {
  5143. cluster.reflection_count = 0;
  5144. for (uint32_t i = 0; i < (uint32_t)p_reflections.size(); i++) {
  5145. if (cluster.reflection_count == cluster.max_reflections) {
  5146. break;
  5147. }
  5148. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_reflections[i]);
  5149. if (!rpi) {
  5150. continue;
  5151. }
  5152. cluster.reflection_sort[cluster.reflection_count].instance = rpi;
  5153. cluster.reflection_sort[cluster.reflection_count].depth = -p_camera_inverse_transform.xform(rpi->transform.origin).z;
  5154. cluster.reflection_count++;
  5155. }
  5156. if (cluster.reflection_count > 0) {
  5157. SortArray<Cluster::InstanceSort<ReflectionProbeInstance>> sort_array;
  5158. sort_array.sort(cluster.reflection_sort, cluster.reflection_count);
  5159. }
  5160. for (uint32_t i = 0; i < cluster.reflection_count; i++) {
  5161. ReflectionProbeInstance *rpi = cluster.reflection_sort[i].instance;
  5162. rpi->render_index = i;
  5163. RID base_probe = rpi->probe;
  5164. Cluster::ReflectionData &reflection_ubo = cluster.reflections[i];
  5165. Vector3 extents = storage->reflection_probe_get_extents(base_probe);
  5166. reflection_ubo.box_extents[0] = extents.x;
  5167. reflection_ubo.box_extents[1] = extents.y;
  5168. reflection_ubo.box_extents[2] = extents.z;
  5169. reflection_ubo.index = rpi->atlas_index;
  5170. Vector3 origin_offset = storage->reflection_probe_get_origin_offset(base_probe);
  5171. reflection_ubo.box_offset[0] = origin_offset.x;
  5172. reflection_ubo.box_offset[1] = origin_offset.y;
  5173. reflection_ubo.box_offset[2] = origin_offset.z;
  5174. reflection_ubo.mask = storage->reflection_probe_get_cull_mask(base_probe);
  5175. reflection_ubo.intensity = storage->reflection_probe_get_intensity(base_probe);
  5176. reflection_ubo.ambient_mode = storage->reflection_probe_get_ambient_mode(base_probe);
  5177. reflection_ubo.exterior = !storage->reflection_probe_is_interior(base_probe);
  5178. reflection_ubo.box_project = storage->reflection_probe_is_box_projection(base_probe);
  5179. Color ambient_linear = storage->reflection_probe_get_ambient_color(base_probe).to_linear();
  5180. float interior_ambient_energy = storage->reflection_probe_get_ambient_color_energy(base_probe);
  5181. reflection_ubo.ambient[0] = ambient_linear.r * interior_ambient_energy;
  5182. reflection_ubo.ambient[1] = ambient_linear.g * interior_ambient_energy;
  5183. reflection_ubo.ambient[2] = ambient_linear.b * interior_ambient_energy;
  5184. Transform transform = rpi->transform;
  5185. Transform proj = (p_camera_inverse_transform * transform).inverse();
  5186. RendererStorageRD::store_transform(proj, reflection_ubo.local_matrix);
  5187. current_cluster_builder->add_box(ClusterBuilderRD::BOX_TYPE_REFLECTION_PROBE, transform, extents);
  5188. rpi->last_pass = RSG::rasterizer->get_frame_number();
  5189. }
  5190. if (cluster.reflection_count) {
  5191. RD::get_singleton()->buffer_update(cluster.reflection_buffer, 0, cluster.reflection_count * sizeof(ReflectionData), cluster.reflections, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  5192. }
  5193. }
  5194. void RendererSceneRenderRD::_setup_lights(const PagedArray<RID> &p_lights, const Transform &p_camera_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_positional_light_count) {
  5195. Transform inverse_transform = p_camera_transform.affine_inverse();
  5196. r_directional_light_count = 0;
  5197. r_positional_light_count = 0;
  5198. sky_scene_state.ubo.directional_light_count = 0;
  5199. Plane camera_plane(p_camera_transform.origin, -p_camera_transform.basis.get_axis(Vector3::AXIS_Z).normalized());
  5200. cluster.omni_light_count = 0;
  5201. cluster.spot_light_count = 0;
  5202. for (int i = 0; i < (int)p_lights.size(); i++) {
  5203. LightInstance *li = light_instance_owner.getornull(p_lights[i]);
  5204. if (!li) {
  5205. continue;
  5206. }
  5207. RID base = li->light;
  5208. ERR_CONTINUE(base.is_null());
  5209. RS::LightType type = storage->light_get_type(base);
  5210. switch (type) {
  5211. case RS::LIGHT_DIRECTIONAL: {
  5212. // Copy to SkyDirectionalLightData
  5213. if (r_directional_light_count < sky_scene_state.max_directional_lights) {
  5214. SkyDirectionalLightData &sky_light_data = sky_scene_state.directional_lights[r_directional_light_count];
  5215. Transform light_transform = li->transform;
  5216. Vector3 world_direction = light_transform.basis.xform(Vector3(0, 0, 1)).normalized();
  5217. sky_light_data.direction[0] = world_direction.x;
  5218. sky_light_data.direction[1] = world_direction.y;
  5219. sky_light_data.direction[2] = -world_direction.z;
  5220. float sign = storage->light_is_negative(base) ? -1 : 1;
  5221. sky_light_data.energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY);
  5222. Color linear_col = storage->light_get_color(base).to_linear();
  5223. sky_light_data.color[0] = linear_col.r;
  5224. sky_light_data.color[1] = linear_col.g;
  5225. sky_light_data.color[2] = linear_col.b;
  5226. sky_light_data.enabled = true;
  5227. float angular_diameter = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  5228. if (angular_diameter > 0.0) {
  5229. // I know tan(0) is 0, but let's not risk it with numerical precision.
  5230. // technically this will keep expanding until reaching the sun, but all we care
  5231. // is expand until we reach the radius of the near plane (there can't be more occluders than that)
  5232. angular_diameter = Math::tan(Math::deg2rad(angular_diameter));
  5233. } else {
  5234. angular_diameter = 0.0;
  5235. }
  5236. sky_light_data.size = angular_diameter;
  5237. sky_scene_state.ubo.directional_light_count++;
  5238. }
  5239. if (r_directional_light_count >= cluster.max_directional_lights || storage->light_directional_is_sky_only(base)) {
  5240. continue;
  5241. }
  5242. Cluster::DirectionalLightData &light_data = cluster.directional_lights[r_directional_light_count];
  5243. Transform light_transform = li->transform;
  5244. Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized();
  5245. light_data.direction[0] = direction.x;
  5246. light_data.direction[1] = direction.y;
  5247. light_data.direction[2] = direction.z;
  5248. float sign = storage->light_is_negative(base) ? -1 : 1;
  5249. light_data.energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI;
  5250. Color linear_col = storage->light_get_color(base).to_linear();
  5251. light_data.color[0] = linear_col.r;
  5252. light_data.color[1] = linear_col.g;
  5253. light_data.color[2] = linear_col.b;
  5254. light_data.specular = storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR);
  5255. light_data.mask = storage->light_get_cull_mask(base);
  5256. float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  5257. light_data.size = 1.0 - Math::cos(Math::deg2rad(size)); //angle to cosine offset
  5258. Color shadow_col = storage->light_get_shadow_color(base).to_linear();
  5259. if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_PSSM_SPLITS) {
  5260. light_data.shadow_color1[0] = 1.0;
  5261. light_data.shadow_color1[1] = 0.0;
  5262. light_data.shadow_color1[2] = 0.0;
  5263. light_data.shadow_color1[3] = 1.0;
  5264. light_data.shadow_color2[0] = 0.0;
  5265. light_data.shadow_color2[1] = 1.0;
  5266. light_data.shadow_color2[2] = 0.0;
  5267. light_data.shadow_color2[3] = 1.0;
  5268. light_data.shadow_color3[0] = 0.0;
  5269. light_data.shadow_color3[1] = 0.0;
  5270. light_data.shadow_color3[2] = 1.0;
  5271. light_data.shadow_color3[3] = 1.0;
  5272. light_data.shadow_color4[0] = 1.0;
  5273. light_data.shadow_color4[1] = 1.0;
  5274. light_data.shadow_color4[2] = 0.0;
  5275. light_data.shadow_color4[3] = 1.0;
  5276. } else {
  5277. light_data.shadow_color1[0] = shadow_col.r;
  5278. light_data.shadow_color1[1] = shadow_col.g;
  5279. light_data.shadow_color1[2] = shadow_col.b;
  5280. light_data.shadow_color1[3] = 1.0;
  5281. light_data.shadow_color2[0] = shadow_col.r;
  5282. light_data.shadow_color2[1] = shadow_col.g;
  5283. light_data.shadow_color2[2] = shadow_col.b;
  5284. light_data.shadow_color2[3] = 1.0;
  5285. light_data.shadow_color3[0] = shadow_col.r;
  5286. light_data.shadow_color3[1] = shadow_col.g;
  5287. light_data.shadow_color3[2] = shadow_col.b;
  5288. light_data.shadow_color3[3] = 1.0;
  5289. light_data.shadow_color4[0] = shadow_col.r;
  5290. light_data.shadow_color4[1] = shadow_col.g;
  5291. light_data.shadow_color4[2] = shadow_col.b;
  5292. light_data.shadow_color4[3] = 1.0;
  5293. }
  5294. light_data.shadow_enabled = p_using_shadows && storage->light_has_shadow(base);
  5295. float angular_diameter = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  5296. if (angular_diameter > 0.0) {
  5297. // I know tan(0) is 0, but let's not risk it with numerical precision.
  5298. // technically this will keep expanding until reaching the sun, but all we care
  5299. // is expand until we reach the radius of the near plane (there can't be more occluders than that)
  5300. angular_diameter = Math::tan(Math::deg2rad(angular_diameter));
  5301. } else {
  5302. angular_diameter = 0.0;
  5303. }
  5304. if (light_data.shadow_enabled) {
  5305. RS::LightDirectionalShadowMode smode = storage->light_directional_get_shadow_mode(base);
  5306. int limit = smode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (smode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3);
  5307. light_data.blend_splits = storage->light_directional_get_blend_splits(base);
  5308. for (int j = 0; j < 4; j++) {
  5309. Rect2 atlas_rect = li->shadow_transform[j].atlas_rect;
  5310. CameraMatrix matrix = li->shadow_transform[j].camera;
  5311. float split = li->shadow_transform[MIN(limit, j)].split;
  5312. CameraMatrix bias;
  5313. bias.set_light_bias();
  5314. CameraMatrix rectm;
  5315. rectm.set_light_atlas_rect(atlas_rect);
  5316. Transform modelview = (inverse_transform * li->shadow_transform[j].transform).inverse();
  5317. CameraMatrix shadow_mtx = rectm * bias * matrix * modelview;
  5318. light_data.shadow_split_offsets[j] = split;
  5319. float bias_scale = li->shadow_transform[j].bias_scale;
  5320. light_data.shadow_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * bias_scale;
  5321. light_data.shadow_normal_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * li->shadow_transform[j].shadow_texel_size;
  5322. light_data.shadow_transmittance_bias[j] = storage->light_get_transmittance_bias(base) * bias_scale;
  5323. light_data.shadow_z_range[j] = li->shadow_transform[j].farplane;
  5324. light_data.shadow_range_begin[j] = li->shadow_transform[j].range_begin;
  5325. RendererStorageRD::store_camera(shadow_mtx, light_data.shadow_matrices[j]);
  5326. Vector2 uv_scale = li->shadow_transform[j].uv_scale;
  5327. uv_scale *= atlas_rect.size; //adapt to atlas size
  5328. switch (j) {
  5329. case 0: {
  5330. light_data.uv_scale1[0] = uv_scale.x;
  5331. light_data.uv_scale1[1] = uv_scale.y;
  5332. } break;
  5333. case 1: {
  5334. light_data.uv_scale2[0] = uv_scale.x;
  5335. light_data.uv_scale2[1] = uv_scale.y;
  5336. } break;
  5337. case 2: {
  5338. light_data.uv_scale3[0] = uv_scale.x;
  5339. light_data.uv_scale3[1] = uv_scale.y;
  5340. } break;
  5341. case 3: {
  5342. light_data.uv_scale4[0] = uv_scale.x;
  5343. light_data.uv_scale4[1] = uv_scale.y;
  5344. } break;
  5345. }
  5346. }
  5347. float fade_start = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START);
  5348. light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep
  5349. light_data.fade_to = -light_data.shadow_split_offsets[3];
  5350. light_data.shadow_volumetric_fog_fade = 1.0 / storage->light_get_shadow_volumetric_fog_fade(base);
  5351. light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
  5352. light_data.softshadow_angle = angular_diameter;
  5353. if (angular_diameter <= 0.0) {
  5354. light_data.soft_shadow_scale *= directional_shadow_quality_radius_get(); // Only use quality radius for PCF
  5355. }
  5356. }
  5357. r_directional_light_count++;
  5358. } break;
  5359. case RS::LIGHT_OMNI: {
  5360. if (cluster.omni_light_count >= cluster.max_lights) {
  5361. continue;
  5362. }
  5363. cluster.omni_light_sort[cluster.omni_light_count].instance = li;
  5364. cluster.omni_light_sort[cluster.omni_light_count].depth = camera_plane.distance_to(li->transform.origin);
  5365. cluster.omni_light_count++;
  5366. } break;
  5367. case RS::LIGHT_SPOT: {
  5368. if (cluster.spot_light_count >= cluster.max_lights) {
  5369. continue;
  5370. }
  5371. cluster.spot_light_sort[cluster.spot_light_count].instance = li;
  5372. cluster.spot_light_sort[cluster.spot_light_count].depth = camera_plane.distance_to(li->transform.origin);
  5373. cluster.spot_light_count++;
  5374. } break;
  5375. }
  5376. li->last_pass = RSG::rasterizer->get_frame_number();
  5377. }
  5378. if (cluster.omni_light_count) {
  5379. SortArray<Cluster::InstanceSort<LightInstance>> sorter;
  5380. sorter.sort(cluster.omni_light_sort, cluster.omni_light_count);
  5381. }
  5382. if (cluster.spot_light_count) {
  5383. SortArray<Cluster::InstanceSort<LightInstance>> sorter;
  5384. sorter.sort(cluster.spot_light_sort, cluster.spot_light_count);
  5385. }
  5386. ShadowAtlas *shadow_atlas = nullptr;
  5387. if (p_shadow_atlas.is_valid() && p_using_shadows) {
  5388. shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  5389. }
  5390. for (uint32_t i = 0; i < (cluster.omni_light_count + cluster.spot_light_count); i++) {
  5391. uint32_t index = (i < cluster.omni_light_count) ? i : i - (cluster.omni_light_count);
  5392. Cluster::LightData &light_data = (i < cluster.omni_light_count) ? cluster.omni_lights[index] : cluster.spot_lights[index];
  5393. RS::LightType type = (i < cluster.omni_light_count) ? RS::LIGHT_OMNI : RS::LIGHT_SPOT;
  5394. LightInstance *li = (i < cluster.omni_light_count) ? cluster.omni_light_sort[index].instance : cluster.spot_light_sort[index].instance;
  5395. RID base = li->light;
  5396. Transform light_transform = li->transform;
  5397. float sign = storage->light_is_negative(base) ? -1 : 1;
  5398. Color linear_col = storage->light_get_color(base).to_linear();
  5399. light_data.attenuation = storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION);
  5400. float energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI;
  5401. light_data.color[0] = linear_col.r * energy;
  5402. light_data.color[1] = linear_col.g * energy;
  5403. light_data.color[2] = linear_col.b * energy;
  5404. light_data.specular_amount = storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 2.0;
  5405. float radius = MAX(0.001, storage->light_get_param(base, RS::LIGHT_PARAM_RANGE));
  5406. light_data.inv_radius = 1.0 / radius;
  5407. Vector3 pos = inverse_transform.xform(light_transform.origin);
  5408. light_data.position[0] = pos.x;
  5409. light_data.position[1] = pos.y;
  5410. light_data.position[2] = pos.z;
  5411. Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized();
  5412. light_data.direction[0] = direction.x;
  5413. light_data.direction[1] = direction.y;
  5414. light_data.direction[2] = direction.z;
  5415. float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  5416. light_data.size = size;
  5417. light_data.cone_attenuation = storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  5418. float spot_angle = storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE);
  5419. light_data.cone_angle = Math::cos(Math::deg2rad(spot_angle));
  5420. light_data.mask = storage->light_get_cull_mask(base);
  5421. light_data.atlas_rect[0] = 0;
  5422. light_data.atlas_rect[1] = 0;
  5423. light_data.atlas_rect[2] = 0;
  5424. light_data.atlas_rect[3] = 0;
  5425. RID projector = storage->light_get_projector(base);
  5426. if (projector.is_valid()) {
  5427. Rect2 rect = storage->decal_atlas_get_texture_rect(projector);
  5428. if (type == RS::LIGHT_SPOT) {
  5429. light_data.projector_rect[0] = rect.position.x;
  5430. light_data.projector_rect[1] = rect.position.y + rect.size.height; //flip because shadow is flipped
  5431. light_data.projector_rect[2] = rect.size.width;
  5432. light_data.projector_rect[3] = -rect.size.height;
  5433. } else {
  5434. light_data.projector_rect[0] = rect.position.x;
  5435. light_data.projector_rect[1] = rect.position.y;
  5436. light_data.projector_rect[2] = rect.size.width;
  5437. light_data.projector_rect[3] = rect.size.height * 0.5; //used by dp, so needs to be half
  5438. }
  5439. } else {
  5440. light_data.projector_rect[0] = 0;
  5441. light_data.projector_rect[1] = 0;
  5442. light_data.projector_rect[2] = 0;
  5443. light_data.projector_rect[3] = 0;
  5444. }
  5445. if (shadow_atlas && shadow_atlas->shadow_owners.has(li->self)) {
  5446. // fill in the shadow information
  5447. light_data.shadow_enabled = true;
  5448. if (type == RS::LIGHT_SPOT) {
  5449. light_data.shadow_bias = (storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0);
  5450. float shadow_texel_size = Math::tan(Math::deg2rad(spot_angle)) * radius * 2.0;
  5451. shadow_texel_size *= light_instance_get_shadow_texel_size(li->self, p_shadow_atlas);
  5452. light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size;
  5453. } else { //omni
  5454. light_data.shadow_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0;
  5455. float shadow_texel_size = light_instance_get_shadow_texel_size(li->self, p_shadow_atlas);
  5456. light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 2.0; // applied in -1 .. 1 space
  5457. }
  5458. light_data.transmittance_bias = storage->light_get_transmittance_bias(base);
  5459. Rect2 rect = light_instance_get_shadow_atlas_rect(li->self, p_shadow_atlas);
  5460. light_data.atlas_rect[0] = rect.position.x;
  5461. light_data.atlas_rect[1] = rect.position.y;
  5462. light_data.atlas_rect[2] = rect.size.width;
  5463. light_data.atlas_rect[3] = rect.size.height;
  5464. light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
  5465. light_data.shadow_volumetric_fog_fade = 1.0 / storage->light_get_shadow_volumetric_fog_fade(base);
  5466. if (type == RS::LIGHT_OMNI) {
  5467. light_data.atlas_rect[3] *= 0.5; //one paraboloid on top of another
  5468. Transform proj = (inverse_transform * light_transform).inverse();
  5469. RendererStorageRD::store_transform(proj, light_data.shadow_matrix);
  5470. if (size > 0.0) {
  5471. light_data.soft_shadow_size = size;
  5472. } else {
  5473. light_data.soft_shadow_size = 0.0;
  5474. light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
  5475. }
  5476. } else if (type == RS::LIGHT_SPOT) {
  5477. Transform modelview = (inverse_transform * light_transform).inverse();
  5478. CameraMatrix bias;
  5479. bias.set_light_bias();
  5480. CameraMatrix shadow_mtx = bias * li->shadow_transform[0].camera * modelview;
  5481. RendererStorageRD::store_camera(shadow_mtx, light_data.shadow_matrix);
  5482. if (size > 0.0) {
  5483. CameraMatrix cm = li->shadow_transform[0].camera;
  5484. float half_np = cm.get_z_near() * Math::tan(Math::deg2rad(spot_angle));
  5485. light_data.soft_shadow_size = (size * 0.5 / radius) / (half_np / cm.get_z_near()) * rect.size.width;
  5486. } else {
  5487. light_data.soft_shadow_size = 0.0;
  5488. light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
  5489. }
  5490. }
  5491. } else {
  5492. light_data.shadow_enabled = false;
  5493. }
  5494. li->light_index = index;
  5495. current_cluster_builder->add_light(type == RS::LIGHT_SPOT ? ClusterBuilderRD::LIGHT_TYPE_SPOT : ClusterBuilderRD::LIGHT_TYPE_OMNI, light_transform, radius, spot_angle);
  5496. r_positional_light_count++;
  5497. }
  5498. //update without barriers
  5499. if (cluster.omni_light_count) {
  5500. RD::get_singleton()->buffer_update(cluster.omni_light_buffer, 0, sizeof(Cluster::LightData) * cluster.omni_light_count, cluster.omni_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  5501. }
  5502. if (cluster.spot_light_count) {
  5503. RD::get_singleton()->buffer_update(cluster.spot_light_buffer, 0, sizeof(Cluster::LightData) * cluster.spot_light_count, cluster.spot_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  5504. }
  5505. if (r_directional_light_count) {
  5506. RD::get_singleton()->buffer_update(cluster.directional_light_buffer, 0, sizeof(Cluster::DirectionalLightData) * r_directional_light_count, cluster.directional_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  5507. }
  5508. }
  5509. void RendererSceneRenderRD::_setup_decals(const PagedArray<RID> &p_decals, const Transform &p_camera_inverse_xform) {
  5510. Transform uv_xform;
  5511. uv_xform.basis.scale(Vector3(2.0, 1.0, 2.0));
  5512. uv_xform.origin = Vector3(-1.0, 0.0, -1.0);
  5513. uint32_t decal_count = p_decals.size();
  5514. cluster.decal_count = 0;
  5515. for (uint32_t i = 0; i < decal_count; i++) {
  5516. if (cluster.decal_count == cluster.max_decals) {
  5517. break;
  5518. }
  5519. DecalInstance *di = decal_instance_owner.getornull(p_decals[i]);
  5520. if (!di) {
  5521. continue;
  5522. }
  5523. RID decal = di->decal;
  5524. Transform xform = di->transform;
  5525. real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;
  5526. if (storage->decal_is_distance_fade_enabled(decal)) {
  5527. float fade_begin = storage->decal_get_distance_fade_begin(decal);
  5528. float fade_length = storage->decal_get_distance_fade_length(decal);
  5529. if (distance > fade_begin) {
  5530. if (distance > fade_begin + fade_length) {
  5531. continue; // do not use this decal, its invisible
  5532. }
  5533. }
  5534. }
  5535. cluster.decal_sort[cluster.decal_count].instance = di;
  5536. cluster.decal_sort[cluster.decal_count].depth = distance;
  5537. cluster.decal_count++;
  5538. }
  5539. if (cluster.decal_count > 0) {
  5540. SortArray<Cluster::InstanceSort<DecalInstance>> sort_array;
  5541. sort_array.sort(cluster.decal_sort, cluster.decal_count);
  5542. }
  5543. for (uint32_t i = 0; i < cluster.decal_count; i++) {
  5544. DecalInstance *di = cluster.decal_sort[i].instance;
  5545. RID decal = di->decal;
  5546. Transform xform = di->transform;
  5547. float fade = 1.0;
  5548. if (storage->decal_is_distance_fade_enabled(decal)) {
  5549. real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;
  5550. float fade_begin = storage->decal_get_distance_fade_begin(decal);
  5551. float fade_length = storage->decal_get_distance_fade_length(decal);
  5552. if (distance > fade_begin) {
  5553. fade = 1.0 - (distance - fade_begin) / fade_length;
  5554. }
  5555. }
  5556. Cluster::DecalData &dd = cluster.decals[i];
  5557. Vector3 decal_extents = storage->decal_get_extents(decal);
  5558. Transform scale_xform;
  5559. scale_xform.basis.scale(Vector3(decal_extents.x, decal_extents.y, decal_extents.z));
  5560. Transform to_decal_xform = (p_camera_inverse_xform * di->transform * scale_xform * uv_xform).affine_inverse();
  5561. RendererStorageRD::store_transform(to_decal_xform, dd.xform);
  5562. Vector3 normal = xform.basis.get_axis(Vector3::AXIS_Y).normalized();
  5563. normal = p_camera_inverse_xform.basis.xform(normal); //camera is normalized, so fine
  5564. dd.normal[0] = normal.x;
  5565. dd.normal[1] = normal.y;
  5566. dd.normal[2] = normal.z;
  5567. dd.normal_fade = storage->decal_get_normal_fade(decal);
  5568. RID albedo_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ALBEDO);
  5569. RID emission_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_EMISSION);
  5570. if (albedo_tex.is_valid()) {
  5571. Rect2 rect = storage->decal_atlas_get_texture_rect(albedo_tex);
  5572. dd.albedo_rect[0] = rect.position.x;
  5573. dd.albedo_rect[1] = rect.position.y;
  5574. dd.albedo_rect[2] = rect.size.x;
  5575. dd.albedo_rect[3] = rect.size.y;
  5576. } else {
  5577. if (!emission_tex.is_valid()) {
  5578. continue; //no albedo, no emission, no decal.
  5579. }
  5580. dd.albedo_rect[0] = 0;
  5581. dd.albedo_rect[1] = 0;
  5582. dd.albedo_rect[2] = 0;
  5583. dd.albedo_rect[3] = 0;
  5584. }
  5585. RID normal_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_NORMAL);
  5586. if (normal_tex.is_valid()) {
  5587. Rect2 rect = storage->decal_atlas_get_texture_rect(normal_tex);
  5588. dd.normal_rect[0] = rect.position.x;
  5589. dd.normal_rect[1] = rect.position.y;
  5590. dd.normal_rect[2] = rect.size.x;
  5591. dd.normal_rect[3] = rect.size.y;
  5592. Basis normal_xform = p_camera_inverse_xform.basis * xform.basis.orthonormalized();
  5593. RendererStorageRD::store_basis_3x4(normal_xform, dd.normal_xform);
  5594. } else {
  5595. dd.normal_rect[0] = 0;
  5596. dd.normal_rect[1] = 0;
  5597. dd.normal_rect[2] = 0;
  5598. dd.normal_rect[3] = 0;
  5599. }
  5600. RID orm_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ORM);
  5601. if (orm_tex.is_valid()) {
  5602. Rect2 rect = storage->decal_atlas_get_texture_rect(orm_tex);
  5603. dd.orm_rect[0] = rect.position.x;
  5604. dd.orm_rect[1] = rect.position.y;
  5605. dd.orm_rect[2] = rect.size.x;
  5606. dd.orm_rect[3] = rect.size.y;
  5607. } else {
  5608. dd.orm_rect[0] = 0;
  5609. dd.orm_rect[1] = 0;
  5610. dd.orm_rect[2] = 0;
  5611. dd.orm_rect[3] = 0;
  5612. }
  5613. if (emission_tex.is_valid()) {
  5614. Rect2 rect = storage->decal_atlas_get_texture_rect(emission_tex);
  5615. dd.emission_rect[0] = rect.position.x;
  5616. dd.emission_rect[1] = rect.position.y;
  5617. dd.emission_rect[2] = rect.size.x;
  5618. dd.emission_rect[3] = rect.size.y;
  5619. } else {
  5620. dd.emission_rect[0] = 0;
  5621. dd.emission_rect[1] = 0;
  5622. dd.emission_rect[2] = 0;
  5623. dd.emission_rect[3] = 0;
  5624. }
  5625. Color modulate = storage->decal_get_modulate(decal);
  5626. dd.modulate[0] = modulate.r;
  5627. dd.modulate[1] = modulate.g;
  5628. dd.modulate[2] = modulate.b;
  5629. dd.modulate[3] = modulate.a * fade;
  5630. dd.emission_energy = storage->decal_get_emission_energy(decal) * fade;
  5631. dd.albedo_mix = storage->decal_get_albedo_mix(decal);
  5632. dd.mask = storage->decal_get_cull_mask(decal);
  5633. dd.upper_fade = storage->decal_get_upper_fade(decal);
  5634. dd.lower_fade = storage->decal_get_lower_fade(decal);
  5635. current_cluster_builder->add_box(ClusterBuilderRD::BOX_TYPE_DECAL, xform, decal_extents);
  5636. }
  5637. if (cluster.decal_count > 0) {
  5638. RD::get_singleton()->buffer_update(cluster.decal_buffer, 0, sizeof(Cluster::DecalData) * cluster.decal_count, cluster.decals, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  5639. }
  5640. }
  5641. void RendererSceneRenderRD::_volumetric_fog_erase(RenderBuffers *rb) {
  5642. ERR_FAIL_COND(!rb->volumetric_fog);
  5643. RD::get_singleton()->free(rb->volumetric_fog->prev_light_density_map);
  5644. RD::get_singleton()->free(rb->volumetric_fog->light_density_map);
  5645. RD::get_singleton()->free(rb->volumetric_fog->fog_map);
  5646. if (rb->volumetric_fog->uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
  5647. RD::get_singleton()->free(rb->volumetric_fog->uniform_set);
  5648. }
  5649. if (rb->volumetric_fog->uniform_set2.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set2)) {
  5650. RD::get_singleton()->free(rb->volumetric_fog->uniform_set2);
  5651. }
  5652. if (rb->volumetric_fog->sdfgi_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sdfgi_uniform_set)) {
  5653. RD::get_singleton()->free(rb->volumetric_fog->sdfgi_uniform_set);
  5654. }
  5655. if (rb->volumetric_fog->sky_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sky_uniform_set)) {
  5656. RD::get_singleton()->free(rb->volumetric_fog->sky_uniform_set);
  5657. }
  5658. memdelete(rb->volumetric_fog);
  5659. rb->volumetric_fog = nullptr;
  5660. }
  5661. void RendererSceneRenderRD::_update_volumetric_fog(RID p_render_buffers, RID p_environment, const CameraMatrix &p_cam_projection, const Transform &p_cam_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_gi_probe_count) {
  5662. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  5663. ERR_FAIL_COND(!rb);
  5664. Environment *env = environment_owner.getornull(p_environment);
  5665. float ratio = float(rb->width) / float((rb->width + rb->height) / 2);
  5666. uint32_t target_width = uint32_t(float(volumetric_fog_size) * ratio);
  5667. uint32_t target_height = uint32_t(float(volumetric_fog_size) / ratio);
  5668. if (rb->volumetric_fog) {
  5669. //validate
  5670. if (!env || !env->volumetric_fog_enabled || rb->volumetric_fog->width != target_width || rb->volumetric_fog->height != target_height || rb->volumetric_fog->depth != volumetric_fog_depth) {
  5671. _volumetric_fog_erase(rb);
  5672. _render_buffers_uniform_set_changed(p_render_buffers);
  5673. }
  5674. }
  5675. if (!env || !env->volumetric_fog_enabled) {
  5676. //no reason to enable or update, bye
  5677. return;
  5678. }
  5679. RENDER_TIMESTAMP(">Volumetric Fog");
  5680. if (env && env->volumetric_fog_enabled && !rb->volumetric_fog) {
  5681. //required volumetric fog but not existing, create
  5682. rb->volumetric_fog = memnew(VolumetricFog);
  5683. rb->volumetric_fog->width = target_width;
  5684. rb->volumetric_fog->height = target_height;
  5685. rb->volumetric_fog->depth = volumetric_fog_depth;
  5686. RD::TextureFormat tf;
  5687. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  5688. tf.width = target_width;
  5689. tf.height = target_height;
  5690. tf.depth = volumetric_fog_depth;
  5691. tf.texture_type = RD::TEXTURE_TYPE_3D;
  5692. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  5693. rb->volumetric_fog->light_density_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  5694. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  5695. rb->volumetric_fog->prev_light_density_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  5696. RD::get_singleton()->texture_clear(rb->volumetric_fog->prev_light_density_map, Color(0, 0, 0, 0), 0, 1, 0, 1);
  5697. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  5698. rb->volumetric_fog->fog_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  5699. _render_buffers_uniform_set_changed(p_render_buffers);
  5700. Vector<RD::Uniform> uniforms;
  5701. {
  5702. RD::Uniform u;
  5703. u.binding = 0;
  5704. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  5705. u.ids.push_back(rb->volumetric_fog->fog_map);
  5706. uniforms.push_back(u);
  5707. }
  5708. rb->volumetric_fog->sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_FOG);
  5709. }
  5710. //update volumetric fog
  5711. if (rb->volumetric_fog->uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
  5712. //re create uniform set if needed
  5713. Vector<RD::Uniform> uniforms;
  5714. {
  5715. RD::Uniform u;
  5716. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  5717. u.binding = 1;
  5718. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  5719. if (shadow_atlas == nullptr || shadow_atlas->depth.is_null()) {
  5720. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_BLACK));
  5721. } else {
  5722. u.ids.push_back(shadow_atlas->depth);
  5723. }
  5724. uniforms.push_back(u);
  5725. }
  5726. {
  5727. RD::Uniform u;
  5728. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  5729. u.binding = 2;
  5730. if (directional_shadow.depth.is_valid()) {
  5731. u.ids.push_back(directional_shadow.depth);
  5732. } else {
  5733. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_BLACK));
  5734. }
  5735. uniforms.push_back(u);
  5736. }
  5737. {
  5738. RD::Uniform u;
  5739. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  5740. u.binding = 3;
  5741. u.ids.push_back(get_omni_light_buffer());
  5742. uniforms.push_back(u);
  5743. }
  5744. {
  5745. RD::Uniform u;
  5746. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  5747. u.binding = 4;
  5748. u.ids.push_back(get_spot_light_buffer());
  5749. uniforms.push_back(u);
  5750. }
  5751. {
  5752. RD::Uniform u;
  5753. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  5754. u.binding = 5;
  5755. u.ids.push_back(get_directional_light_buffer());
  5756. uniforms.push_back(u);
  5757. }
  5758. {
  5759. RD::Uniform u;
  5760. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  5761. u.binding = 6;
  5762. u.ids.push_back(rb->cluster_builder->get_cluster_buffer());
  5763. uniforms.push_back(u);
  5764. }
  5765. {
  5766. RD::Uniform u;
  5767. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  5768. u.binding = 7;
  5769. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  5770. uniforms.push_back(u);
  5771. }
  5772. {
  5773. RD::Uniform u;
  5774. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  5775. u.binding = 8;
  5776. u.ids.push_back(rb->volumetric_fog->light_density_map);
  5777. uniforms.push_back(u);
  5778. }
  5779. {
  5780. RD::Uniform u;
  5781. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  5782. u.binding = 9;
  5783. u.ids.push_back(rb->volumetric_fog->fog_map);
  5784. uniforms.push_back(u);
  5785. }
  5786. {
  5787. RD::Uniform u;
  5788. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  5789. u.binding = 10;
  5790. u.ids.push_back(shadow_sampler);
  5791. uniforms.push_back(u);
  5792. }
  5793. {
  5794. RD::Uniform u;
  5795. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  5796. u.binding = 11;
  5797. u.ids.push_back(render_buffers_get_gi_probe_buffer(p_render_buffers));
  5798. uniforms.push_back(u);
  5799. }
  5800. {
  5801. RD::Uniform u;
  5802. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  5803. u.binding = 12;
  5804. for (int i = 0; i < RenderBuffers::MAX_GIPROBES; i++) {
  5805. u.ids.push_back(rb->giprobe_textures[i]);
  5806. }
  5807. uniforms.push_back(u);
  5808. }
  5809. {
  5810. RD::Uniform u;
  5811. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  5812. u.binding = 13;
  5813. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  5814. uniforms.push_back(u);
  5815. }
  5816. {
  5817. RD::Uniform u;
  5818. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  5819. u.binding = 14;
  5820. u.ids.push_back(volumetric_fog.params_ubo);
  5821. uniforms.push_back(u);
  5822. }
  5823. {
  5824. RD::Uniform u;
  5825. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  5826. u.binding = 15;
  5827. u.ids.push_back(rb->volumetric_fog->prev_light_density_map);
  5828. uniforms.push_back(u);
  5829. }
  5830. rb->volumetric_fog->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, 0), 0);
  5831. SWAP(uniforms.write[7].ids.write[0], uniforms.write[8].ids.write[0]);
  5832. rb->volumetric_fog->uniform_set2 = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, 0), 0);
  5833. }
  5834. bool using_sdfgi = env->volumetric_fog_gi_inject > 0.0001 && env->sdfgi_enabled && (rb->sdfgi != nullptr);
  5835. if (using_sdfgi) {
  5836. if (rb->volumetric_fog->sdfgi_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sdfgi_uniform_set)) {
  5837. Vector<RD::Uniform> uniforms;
  5838. {
  5839. RD::Uniform u;
  5840. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  5841. u.binding = 0;
  5842. u.ids.push_back(gi.sdfgi_ubo);
  5843. uniforms.push_back(u);
  5844. }
  5845. {
  5846. RD::Uniform u;
  5847. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  5848. u.binding = 1;
  5849. u.ids.push_back(rb->sdfgi->ambient_texture);
  5850. uniforms.push_back(u);
  5851. }
  5852. {
  5853. RD::Uniform u;
  5854. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  5855. u.binding = 2;
  5856. u.ids.push_back(rb->sdfgi->occlusion_texture);
  5857. uniforms.push_back(u);
  5858. }
  5859. rb->volumetric_fog->sdfgi_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI), 1);
  5860. }
  5861. }
  5862. rb->volumetric_fog->length = env->volumetric_fog_length;
  5863. rb->volumetric_fog->spread = env->volumetric_fog_detail_spread;
  5864. VolumetricFogShader::ParamsUBO params;
  5865. Vector2 frustum_near_size = p_cam_projection.get_viewport_half_extents();
  5866. Vector2 frustum_far_size = p_cam_projection.get_far_plane_half_extents();
  5867. float z_near = p_cam_projection.get_z_near();
  5868. float z_far = p_cam_projection.get_z_far();
  5869. float fog_end = env->volumetric_fog_length;
  5870. Vector2 fog_far_size = frustum_near_size.lerp(frustum_far_size, (fog_end - z_near) / (z_far - z_near));
  5871. Vector2 fog_near_size;
  5872. if (p_cam_projection.is_orthogonal()) {
  5873. fog_near_size = fog_far_size;
  5874. } else {
  5875. fog_near_size = Vector2();
  5876. }
  5877. params.fog_frustum_size_begin[0] = fog_near_size.x;
  5878. params.fog_frustum_size_begin[1] = fog_near_size.y;
  5879. params.fog_frustum_size_end[0] = fog_far_size.x;
  5880. params.fog_frustum_size_end[1] = fog_far_size.y;
  5881. params.z_near = z_near;
  5882. params.z_far = z_far;
  5883. params.fog_frustum_end = fog_end;
  5884. params.fog_volume_size[0] = rb->volumetric_fog->width;
  5885. params.fog_volume_size[1] = rb->volumetric_fog->height;
  5886. params.fog_volume_size[2] = rb->volumetric_fog->depth;
  5887. params.directional_light_count = p_directional_light_count;
  5888. Color light = env->volumetric_fog_light.to_linear();
  5889. params.light_energy[0] = light.r * env->volumetric_fog_light_energy;
  5890. params.light_energy[1] = light.g * env->volumetric_fog_light_energy;
  5891. params.light_energy[2] = light.b * env->volumetric_fog_light_energy;
  5892. params.base_density = env->volumetric_fog_density;
  5893. params.detail_spread = env->volumetric_fog_detail_spread;
  5894. params.gi_inject = env->volumetric_fog_gi_inject;
  5895. params.cam_rotation[0] = p_cam_transform.basis[0][0];
  5896. params.cam_rotation[1] = p_cam_transform.basis[1][0];
  5897. params.cam_rotation[2] = p_cam_transform.basis[2][0];
  5898. params.cam_rotation[3] = 0;
  5899. params.cam_rotation[4] = p_cam_transform.basis[0][1];
  5900. params.cam_rotation[5] = p_cam_transform.basis[1][1];
  5901. params.cam_rotation[6] = p_cam_transform.basis[2][1];
  5902. params.cam_rotation[7] = 0;
  5903. params.cam_rotation[8] = p_cam_transform.basis[0][2];
  5904. params.cam_rotation[9] = p_cam_transform.basis[1][2];
  5905. params.cam_rotation[10] = p_cam_transform.basis[2][2];
  5906. params.cam_rotation[11] = 0;
  5907. params.filter_axis = 0;
  5908. params.max_gi_probes = env->volumetric_fog_gi_inject > 0.001 ? p_gi_probe_count : 0;
  5909. params.temporal_frame = RSG::rasterizer->get_frame_number() % VolumetricFog::MAX_TEMPORAL_FRAMES;
  5910. Transform to_prev_cam_view = rb->volumetric_fog->prev_cam_transform.affine_inverse() * p_cam_transform;
  5911. storage->store_transform(to_prev_cam_view, params.to_prev_view);
  5912. params.use_temporal_reprojection = env->volumetric_fog_temporal_reprojection;
  5913. params.temporal_blend = env->volumetric_fog_temporal_reprojection_amount;
  5914. {
  5915. uint32_t cluster_size = rb->cluster_builder->get_cluster_size();
  5916. params.cluster_shift = get_shift_from_power_of_2(cluster_size);
  5917. uint32_t cluster_screen_width = (rb->width - 1) / cluster_size + 1;
  5918. uint32_t cluster_screen_height = (rb->height - 1) / cluster_size + 1;
  5919. params.cluster_type_size = cluster_screen_width * cluster_screen_height * (32 + 32);
  5920. params.cluster_width = cluster_screen_width;
  5921. params.max_cluster_element_count_div_32 = max_cluster_elements / 32;
  5922. params.screen_size[0] = rb->width;
  5923. params.screen_size[1] = rb->height;
  5924. }
  5925. /* Vector2 dssize = directional_shadow_get_size();
  5926. push_constant.directional_shadow_pixel_size[0] = 1.0 / dssize.x;
  5927. push_constant.directional_shadow_pixel_size[1] = 1.0 / dssize.y;
  5928. */
  5929. RD::get_singleton()->draw_command_begin_label("Render Volumetric Fog");
  5930. RENDER_TIMESTAMP("Render Fog");
  5931. RD::get_singleton()->buffer_update(volumetric_fog.params_ubo, 0, sizeof(VolumetricFogShader::ParamsUBO), &params, RD::BARRIER_MASK_COMPUTE);
  5932. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  5933. bool use_filter = volumetric_fog_filter_active;
  5934. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[using_sdfgi ? VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI : VOLUMETRIC_FOG_SHADER_DENSITY]);
  5935. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0);
  5936. if (using_sdfgi) {
  5937. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->sdfgi_uniform_set, 1);
  5938. }
  5939. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth);
  5940. RD::get_singleton()->draw_command_end_label();
  5941. RD::get_singleton()->compute_list_end();
  5942. RD::get_singleton()->texture_copy(rb->volumetric_fog->light_density_map, rb->volumetric_fog->prev_light_density_map, Vector3(0, 0, 0), Vector3(0, 0, 0), Vector3(rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth), 0, 0, 0, 0);
  5943. compute_list = RD::get_singleton()->compute_list_begin();
  5944. if (use_filter) {
  5945. RD::get_singleton()->draw_command_begin_label("Filter Fog");
  5946. RENDER_TIMESTAMP("Filter Fog");
  5947. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FILTER]);
  5948. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0);
  5949. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth);
  5950. RD::get_singleton()->compute_list_end();
  5951. //need restart for buffer update
  5952. params.filter_axis = 1;
  5953. RD::get_singleton()->buffer_update(volumetric_fog.params_ubo, 0, sizeof(VolumetricFogShader::ParamsUBO), &params);
  5954. compute_list = RD::get_singleton()->compute_list_begin();
  5955. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FILTER]);
  5956. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set2, 0);
  5957. if (using_sdfgi) {
  5958. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->sdfgi_uniform_set, 1);
  5959. }
  5960. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth);
  5961. RD::get_singleton()->compute_list_add_barrier(compute_list);
  5962. RD::get_singleton()->draw_command_end_label();
  5963. }
  5964. RENDER_TIMESTAMP("Integrate Fog");
  5965. RD::get_singleton()->draw_command_begin_label("Integrate Fog");
  5966. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FOG]);
  5967. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0);
  5968. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, 1);
  5969. RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_RASTER);
  5970. RENDER_TIMESTAMP("<Volumetric Fog");
  5971. RD::get_singleton()->draw_command_end_label();
  5972. rb->volumetric_fog->prev_cam_transform = p_cam_transform;
  5973. }
  5974. uint32_t RendererSceneRenderRD::_get_render_state_directional_light_count() const {
  5975. return render_state.directional_light_count;
  5976. }
  5977. bool RendererSceneRenderRD::_needs_post_prepass_render(bool p_use_gi) {
  5978. if (render_state.render_buffers.is_valid()) {
  5979. RenderBuffers *rb = render_buffers_owner.getornull(render_state.render_buffers);
  5980. if (rb->sdfgi != nullptr) {
  5981. return true;
  5982. }
  5983. }
  5984. return false;
  5985. }
  5986. void RendererSceneRenderRD::_post_prepass_render(bool p_use_gi) {
  5987. if (render_state.render_buffers.is_valid()) {
  5988. if (p_use_gi) {
  5989. _sdfgi_update_probes(render_state.render_buffers, render_state.environment);
  5990. }
  5991. }
  5992. }
  5993. void RendererSceneRenderRD::_pre_resolve_render(bool p_use_gi) {
  5994. if (render_state.render_buffers.is_valid()) {
  5995. if (p_use_gi) {
  5996. RD::get_singleton()->compute_list_end();
  5997. }
  5998. }
  5999. }
  6000. void RendererSceneRenderRD::_pre_opaque_render(bool p_use_ssao, bool p_use_gi, RID p_normal_roughness_buffer, RID p_gi_probe_buffer) {
  6001. // Render shadows while GI is rendering, due to how barriers are handled, this should happen at the same time
  6002. if (render_state.render_buffers.is_valid() && p_use_gi) {
  6003. _sdfgi_store_probes(render_state.render_buffers);
  6004. }
  6005. render_state.cube_shadows.clear();
  6006. render_state.shadows.clear();
  6007. render_state.directional_shadows.clear();
  6008. Plane camera_plane(render_state.cam_transform.origin, -render_state.cam_transform.basis.get_axis(Vector3::AXIS_Z));
  6009. float lod_distance_multiplier = render_state.cam_projection.get_lod_multiplier();
  6010. {
  6011. for (int i = 0; i < render_state.render_shadow_count; i++) {
  6012. LightInstance *li = light_instance_owner.getornull(render_state.render_shadows[i].light);
  6013. if (storage->light_get_type(li->light) == RS::LIGHT_DIRECTIONAL) {
  6014. render_state.directional_shadows.push_back(i);
  6015. } else if (storage->light_get_type(li->light) == RS::LIGHT_OMNI && storage->light_omni_get_shadow_mode(li->light) == RS::LIGHT_OMNI_SHADOW_CUBE) {
  6016. render_state.cube_shadows.push_back(i);
  6017. } else {
  6018. render_state.shadows.push_back(i);
  6019. }
  6020. }
  6021. //cube shadows are rendered in their own way
  6022. for (uint32_t i = 0; i < render_state.cube_shadows.size(); i++) {
  6023. _render_shadow_pass(render_state.render_shadows[render_state.cube_shadows[i]].light, render_state.shadow_atlas, render_state.render_shadows[render_state.cube_shadows[i]].pass, render_state.render_shadows[render_state.cube_shadows[i]].instances, camera_plane, lod_distance_multiplier, render_state.screen_lod_threshold, true, true, true);
  6024. }
  6025. if (render_state.directional_shadows.size()) {
  6026. //open the pass for directional shadows
  6027. _update_directional_shadow_atlas();
  6028. RD::get_singleton()->draw_list_begin(directional_shadow.fb, RD::INITIAL_ACTION_DROP, RD::FINAL_ACTION_DISCARD, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_CONTINUE);
  6029. RD::get_singleton()->draw_list_end();
  6030. }
  6031. }
  6032. // Render GI
  6033. bool render_shadows = render_state.directional_shadows.size() || render_state.shadows.size();
  6034. bool render_gi = render_state.render_buffers.is_valid() && p_use_gi;
  6035. if (render_shadows && render_gi) {
  6036. RENDER_TIMESTAMP("Render GI + Render Shadows (parallel)");
  6037. } else if (render_shadows) {
  6038. RENDER_TIMESTAMP("Render Shadows");
  6039. } else if (render_gi) {
  6040. RENDER_TIMESTAMP("Render GI");
  6041. }
  6042. //prepare shadow rendering
  6043. if (render_shadows) {
  6044. _render_shadow_begin();
  6045. //render directional shadows
  6046. for (uint32_t i = 0; i < render_state.directional_shadows.size(); i++) {
  6047. _render_shadow_pass(render_state.render_shadows[render_state.directional_shadows[i]].light, render_state.shadow_atlas, render_state.render_shadows[render_state.directional_shadows[i]].pass, render_state.render_shadows[render_state.directional_shadows[i]].instances, camera_plane, lod_distance_multiplier, render_state.screen_lod_threshold, false, i == render_state.directional_shadows.size() - 1, false);
  6048. }
  6049. //render positional shadows
  6050. for (uint32_t i = 0; i < render_state.shadows.size(); i++) {
  6051. _render_shadow_pass(render_state.render_shadows[render_state.shadows[i]].light, render_state.shadow_atlas, render_state.render_shadows[render_state.shadows[i]].pass, render_state.render_shadows[render_state.shadows[i]].instances, camera_plane, lod_distance_multiplier, render_state.screen_lod_threshold, i == 0, i == render_state.shadows.size() - 1, true);
  6052. }
  6053. _render_shadow_process();
  6054. }
  6055. //start GI
  6056. if (render_gi) {
  6057. _process_gi(render_state.render_buffers, p_normal_roughness_buffer, p_gi_probe_buffer, render_state.environment, render_state.cam_projection, render_state.cam_transform, *render_state.gi_probes);
  6058. }
  6059. //Do shadow rendering (in parallel with GI)
  6060. if (render_shadows) {
  6061. _render_shadow_end(RD::BARRIER_MASK_NO_BARRIER);
  6062. }
  6063. if (render_gi) {
  6064. RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_NO_BARRIER); //use a later barrier
  6065. }
  6066. if (render_state.render_buffers.is_valid()) {
  6067. if (p_use_ssao) {
  6068. _process_ssao(render_state.render_buffers, render_state.environment, p_normal_roughness_buffer, render_state.cam_projection);
  6069. }
  6070. }
  6071. //full barrier here, we need raster, transfer and compute and it depends from the previous work
  6072. RD::get_singleton()->barrier(RD::BARRIER_MASK_ALL, RD::BARRIER_MASK_ALL);
  6073. if (current_cluster_builder) {
  6074. current_cluster_builder->begin(render_state.cam_transform, render_state.cam_projection, !render_state.reflection_probe.is_valid());
  6075. }
  6076. bool using_shadows = true;
  6077. if (render_state.reflection_probe.is_valid()) {
  6078. if (!storage->reflection_probe_renders_shadows(reflection_probe_instance_get_probe(render_state.reflection_probe))) {
  6079. using_shadows = false;
  6080. }
  6081. } else {
  6082. //do not render reflections when rendering a reflection probe
  6083. _setup_reflections(*render_state.reflection_probes, render_state.cam_transform.affine_inverse(), render_state.environment);
  6084. }
  6085. uint32_t directional_light_count = 0;
  6086. uint32_t positional_light_count = 0;
  6087. _setup_lights(*render_state.lights, render_state.cam_transform, render_state.shadow_atlas, using_shadows, directional_light_count, positional_light_count);
  6088. _setup_decals(*render_state.decals, render_state.cam_transform.affine_inverse());
  6089. render_state.directional_light_count = directional_light_count;
  6090. if (current_cluster_builder) {
  6091. current_cluster_builder->bake_cluster();
  6092. }
  6093. if (render_state.render_buffers.is_valid()) {
  6094. bool directional_shadows = false;
  6095. for (uint32_t i = 0; i < directional_light_count; i++) {
  6096. if (cluster.directional_lights[i].shadow_enabled) {
  6097. directional_shadows = true;
  6098. break;
  6099. }
  6100. }
  6101. _update_volumetric_fog(render_state.render_buffers, render_state.environment, render_state.cam_projection, render_state.cam_transform, render_state.shadow_atlas, directional_light_count, directional_shadows, positional_light_count, render_state.gi_probe_count);
  6102. }
  6103. }
  6104. void RendererSceneRenderRD::render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, const PagedArray<GeometryInstance *> &p_instances, const PagedArray<RID> &p_lights, const PagedArray<RID> &p_reflection_probes, const PagedArray<RID> &p_gi_probes, const PagedArray<RID> &p_decals, const PagedArray<RID> &p_lightmaps, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data) {
  6105. //assign render data
  6106. {
  6107. render_state.render_buffers = p_render_buffers;
  6108. render_state.cam_transform = p_cam_transform;
  6109. render_state.cam_projection = p_cam_projection;
  6110. render_state.cam_ortogonal = p_cam_projection.is_orthogonal();
  6111. render_state.instances = &p_instances;
  6112. render_state.lights = &p_lights;
  6113. render_state.reflection_probes = &p_reflection_probes;
  6114. render_state.gi_probes = &p_gi_probes;
  6115. render_state.decals = &p_decals;
  6116. render_state.lightmaps = &p_lightmaps;
  6117. render_state.environment = p_environment;
  6118. render_state.camera_effects = p_camera_effects;
  6119. render_state.shadow_atlas = p_shadow_atlas;
  6120. render_state.reflection_atlas = p_reflection_atlas;
  6121. render_state.reflection_probe = p_reflection_probe;
  6122. render_state.reflection_probe_pass = p_reflection_probe_pass;
  6123. render_state.screen_lod_threshold = p_screen_lod_threshold;
  6124. render_state.render_shadows = p_render_shadows;
  6125. render_state.render_shadow_count = p_render_shadow_count;
  6126. render_state.render_sdfgi_regions = p_render_sdfgi_regions;
  6127. render_state.render_sdfgi_region_count = p_render_sdfgi_region_count;
  6128. render_state.sdfgi_update_data = p_sdfgi_update_data;
  6129. }
  6130. PagedArray<RID> empty;
  6131. if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) {
  6132. render_state.lights = &empty;
  6133. render_state.reflection_probes = &empty;
  6134. render_state.gi_probes = &empty;
  6135. }
  6136. //sdfgi first
  6137. if (p_render_buffers.is_valid()) {
  6138. for (int i = 0; i < render_state.render_sdfgi_region_count; i++) {
  6139. _render_sdfgi_region(p_render_buffers, render_state.render_sdfgi_regions[i].region, render_state.render_sdfgi_regions[i].instances);
  6140. }
  6141. if (render_state.sdfgi_update_data->update_static) {
  6142. _render_sdfgi_static_lights(p_render_buffers, render_state.sdfgi_update_data->static_cascade_count, p_sdfgi_update_data->static_cascade_indices, render_state.sdfgi_update_data->static_positional_lights);
  6143. }
  6144. }
  6145. Color clear_color;
  6146. if (p_render_buffers.is_valid()) {
  6147. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  6148. ERR_FAIL_COND(!rb);
  6149. clear_color = storage->render_target_get_clear_request_color(rb->render_target);
  6150. } else {
  6151. clear_color = storage->get_default_clear_color();
  6152. }
  6153. //assign render indices to giprobes
  6154. for (uint32_t i = 0; i < (uint32_t)p_gi_probes.size(); i++) {
  6155. GIProbeInstance *giprobe_inst = gi_probe_instance_owner.getornull(p_gi_probes[i]);
  6156. if (giprobe_inst) {
  6157. giprobe_inst->render_index = i;
  6158. }
  6159. }
  6160. if (render_buffers_owner.owns(render_state.render_buffers)) {
  6161. RenderBuffers *rb = render_buffers_owner.getornull(render_state.render_buffers);
  6162. current_cluster_builder = rb->cluster_builder;
  6163. } else if (reflection_probe_instance_owner.owns(render_state.reflection_probe)) {
  6164. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(render_state.reflection_probe);
  6165. ReflectionAtlas *ra = reflection_atlas_owner.getornull(rpi->atlas);
  6166. if (!ra) {
  6167. ERR_PRINT("reflection probe has no reflection atlas! Bug?");
  6168. current_cluster_builder = nullptr;
  6169. } else {
  6170. current_cluster_builder = ra->cluster_builder;
  6171. }
  6172. } else {
  6173. ERR_PRINT("No cluster builder, bug"); //should never happen, will crash
  6174. current_cluster_builder = nullptr;
  6175. }
  6176. if (p_render_buffers.is_valid()) {
  6177. _pre_process_gi(p_render_buffers, p_cam_transform);
  6178. }
  6179. render_state.gi_probe_count = 0;
  6180. if (render_state.render_buffers.is_valid()) {
  6181. _setup_giprobes(render_state.render_buffers, render_state.cam_transform, *render_state.gi_probes, render_state.gi_probe_count);
  6182. _sdfgi_update_light(render_state.render_buffers, render_state.environment);
  6183. }
  6184. render_state.depth_prepass_used = false;
  6185. //calls _pre_opaque_render between depth pre-pass and opaque pass
  6186. _render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_ortogonal, p_instances, *render_state.gi_probes, p_lightmaps, p_environment, current_cluster_builder->get_cluster_buffer(), current_cluster_builder->get_cluster_size(), current_cluster_builder->get_max_cluster_elements(), p_camera_effects, p_shadow_atlas, p_reflection_atlas, p_reflection_probe, p_reflection_probe_pass, clear_color, p_screen_lod_threshold);
  6187. if (p_render_buffers.is_valid()) {
  6188. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS || debug_draw == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS || debug_draw == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS || debug_draw == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES) {
  6189. ClusterBuilderRD::ElementType elem_type = ClusterBuilderRD::ELEMENT_TYPE_MAX;
  6190. switch (debug_draw) {
  6191. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS:
  6192. elem_type = ClusterBuilderRD::ELEMENT_TYPE_OMNI_LIGHT;
  6193. break;
  6194. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS:
  6195. elem_type = ClusterBuilderRD::ELEMENT_TYPE_SPOT_LIGHT;
  6196. break;
  6197. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS:
  6198. elem_type = ClusterBuilderRD::ELEMENT_TYPE_DECAL;
  6199. break;
  6200. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES:
  6201. elem_type = ClusterBuilderRD::ELEMENT_TYPE_REFLECTION_PROBE;
  6202. break;
  6203. default: {
  6204. }
  6205. }
  6206. current_cluster_builder->debug(elem_type);
  6207. }
  6208. RENDER_TIMESTAMP("Tonemap");
  6209. _render_buffers_post_process_and_tonemap(p_render_buffers, p_environment, p_camera_effects, p_cam_projection);
  6210. _render_buffers_debug_draw(p_render_buffers, p_shadow_atlas);
  6211. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SDFGI) {
  6212. _sdfgi_debug_draw(p_render_buffers, p_cam_projection, p_cam_transform);
  6213. }
  6214. }
  6215. }
  6216. void RendererSceneRenderRD::_render_shadow_pass(RID p_light, RID p_shadow_atlas, int p_pass, const PagedArray<GeometryInstance *> &p_instances, const Plane &p_camera_plane, float p_lod_distance_multiplier, float p_screen_lod_threshold, bool p_open_pass, bool p_close_pass, bool p_clear_region) {
  6217. LightInstance *light_instance = light_instance_owner.getornull(p_light);
  6218. ERR_FAIL_COND(!light_instance);
  6219. Rect2i atlas_rect;
  6220. uint32_t atlas_size;
  6221. RID atlas_fb;
  6222. bool using_dual_paraboloid = false;
  6223. bool using_dual_paraboloid_flip = false;
  6224. RID render_fb;
  6225. RID render_texture;
  6226. float zfar;
  6227. bool use_pancake = false;
  6228. bool render_cubemap = false;
  6229. bool finalize_cubemap = false;
  6230. bool flip_y = false;
  6231. CameraMatrix light_projection;
  6232. Transform light_transform;
  6233. if (storage->light_get_type(light_instance->light) == RS::LIGHT_DIRECTIONAL) {
  6234. //set pssm stuff
  6235. if (light_instance->last_scene_shadow_pass != scene_pass) {
  6236. light_instance->directional_rect = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light);
  6237. directional_shadow.current_light++;
  6238. light_instance->last_scene_shadow_pass = scene_pass;
  6239. }
  6240. use_pancake = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE) > 0;
  6241. light_projection = light_instance->shadow_transform[p_pass].camera;
  6242. light_transform = light_instance->shadow_transform[p_pass].transform;
  6243. atlas_rect.position.x = light_instance->directional_rect.position.x;
  6244. atlas_rect.position.y = light_instance->directional_rect.position.y;
  6245. atlas_rect.size.width = light_instance->directional_rect.size.x;
  6246. atlas_rect.size.height = light_instance->directional_rect.size.y;
  6247. if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  6248. atlas_rect.size.width /= 2;
  6249. atlas_rect.size.height /= 2;
  6250. if (p_pass == 1) {
  6251. atlas_rect.position.x += atlas_rect.size.width;
  6252. } else if (p_pass == 2) {
  6253. atlas_rect.position.y += atlas_rect.size.height;
  6254. } else if (p_pass == 3) {
  6255. atlas_rect.position.x += atlas_rect.size.width;
  6256. atlas_rect.position.y += atlas_rect.size.height;
  6257. }
  6258. } else if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  6259. atlas_rect.size.height /= 2;
  6260. if (p_pass == 0) {
  6261. } else {
  6262. atlas_rect.position.y += atlas_rect.size.height;
  6263. }
  6264. }
  6265. light_instance->shadow_transform[p_pass].atlas_rect = atlas_rect;
  6266. light_instance->shadow_transform[p_pass].atlas_rect.position /= directional_shadow.size;
  6267. light_instance->shadow_transform[p_pass].atlas_rect.size /= directional_shadow.size;
  6268. zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
  6269. render_fb = directional_shadow.fb;
  6270. render_texture = RID();
  6271. flip_y = true;
  6272. } else {
  6273. //set from shadow atlas
  6274. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  6275. ERR_FAIL_COND(!shadow_atlas);
  6276. ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
  6277. _update_shadow_atlas(shadow_atlas);
  6278. uint32_t key = shadow_atlas->shadow_owners[p_light];
  6279. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  6280. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  6281. ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size());
  6282. uint32_t quadrant_size = shadow_atlas->size >> 1;
  6283. atlas_rect.position.x = (quadrant & 1) * quadrant_size;
  6284. atlas_rect.position.y = (quadrant >> 1) * quadrant_size;
  6285. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  6286. atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  6287. atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  6288. atlas_rect.size.width = shadow_size;
  6289. atlas_rect.size.height = shadow_size;
  6290. zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
  6291. if (storage->light_get_type(light_instance->light) == RS::LIGHT_OMNI) {
  6292. if (storage->light_omni_get_shadow_mode(light_instance->light) == RS::LIGHT_OMNI_SHADOW_CUBE) {
  6293. ShadowCubemap *cubemap = _get_shadow_cubemap(shadow_size / 2);
  6294. render_fb = cubemap->side_fb[p_pass];
  6295. render_texture = cubemap->cubemap;
  6296. light_projection = light_instance->shadow_transform[p_pass].camera;
  6297. light_transform = light_instance->shadow_transform[p_pass].transform;
  6298. render_cubemap = true;
  6299. finalize_cubemap = p_pass == 5;
  6300. atlas_fb = shadow_atlas->fb;
  6301. atlas_size = shadow_atlas->size;
  6302. if (p_pass == 0) {
  6303. _render_shadow_begin();
  6304. }
  6305. } else {
  6306. light_projection = light_instance->shadow_transform[0].camera;
  6307. light_transform = light_instance->shadow_transform[0].transform;
  6308. atlas_rect.size.height /= 2;
  6309. atlas_rect.position.y += p_pass * atlas_rect.size.height;
  6310. using_dual_paraboloid = true;
  6311. using_dual_paraboloid_flip = p_pass == 1;
  6312. render_fb = shadow_atlas->fb;
  6313. flip_y = true;
  6314. }
  6315. } else if (storage->light_get_type(light_instance->light) == RS::LIGHT_SPOT) {
  6316. light_projection = light_instance->shadow_transform[0].camera;
  6317. light_transform = light_instance->shadow_transform[0].transform;
  6318. render_fb = shadow_atlas->fb;
  6319. flip_y = true;
  6320. }
  6321. }
  6322. if (render_cubemap) {
  6323. //rendering to cubemap
  6324. _render_shadow_append(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, false, false, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_lod_threshold, Rect2(), false, true, true, true);
  6325. if (finalize_cubemap) {
  6326. _render_shadow_process();
  6327. _render_shadow_end();
  6328. //reblit
  6329. Rect2 atlas_rect_norm = atlas_rect;
  6330. atlas_rect_norm.position.x /= float(atlas_size);
  6331. atlas_rect_norm.position.y /= float(atlas_size);
  6332. atlas_rect_norm.size.x /= float(atlas_size);
  6333. atlas_rect_norm.size.y /= float(atlas_size);
  6334. atlas_rect_norm.size.height /= 2;
  6335. storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect_norm, light_projection.get_z_near(), light_projection.get_z_far(), false);
  6336. atlas_rect_norm.position.y += atlas_rect_norm.size.height;
  6337. storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect_norm, light_projection.get_z_near(), light_projection.get_z_far(), true);
  6338. //restore transform so it can be properly used
  6339. light_instance_set_shadow_transform(p_light, CameraMatrix(), light_instance->transform, zfar, 0, 0, 0);
  6340. }
  6341. } else {
  6342. //render shadow
  6343. _render_shadow_append(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, using_dual_paraboloid, using_dual_paraboloid_flip, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_lod_threshold, atlas_rect, flip_y, p_clear_region, p_open_pass, p_close_pass);
  6344. }
  6345. }
  6346. void RendererSceneRenderRD::render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, const PagedArray<GeometryInstance *> &p_instances, RID p_framebuffer, const Rect2i &p_region) {
  6347. _render_material(p_cam_transform, p_cam_projection, p_cam_ortogonal, p_instances, p_framebuffer, p_region);
  6348. }
  6349. void RendererSceneRenderRD::_render_sdfgi_region(RID p_render_buffers, int p_region, const PagedArray<GeometryInstance *> &p_instances) {
  6350. //print_line("rendering region " + itos(p_region));
  6351. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  6352. ERR_FAIL_COND(!rb);
  6353. ERR_FAIL_COND(!rb->sdfgi);
  6354. AABB bounds;
  6355. Vector3i from;
  6356. Vector3i size;
  6357. int cascade_prev = _sdfgi_get_pending_region_data(p_render_buffers, p_region - 1, from, size, bounds);
  6358. int cascade_next = _sdfgi_get_pending_region_data(p_render_buffers, p_region + 1, from, size, bounds);
  6359. int cascade = _sdfgi_get_pending_region_data(p_render_buffers, p_region, from, size, bounds);
  6360. ERR_FAIL_COND(cascade < 0);
  6361. if (cascade_prev != cascade) {
  6362. //initialize render
  6363. RD::get_singleton()->texture_clear(rb->sdfgi->render_albedo, Color(0, 0, 0, 0), 0, 1, 0, 1);
  6364. RD::get_singleton()->texture_clear(rb->sdfgi->render_emission, Color(0, 0, 0, 0), 0, 1, 0, 1);
  6365. RD::get_singleton()->texture_clear(rb->sdfgi->render_emission_aniso, Color(0, 0, 0, 0), 0, 1, 0, 1);
  6366. RD::get_singleton()->texture_clear(rb->sdfgi->render_geom_facing, Color(0, 0, 0, 0), 0, 1, 0, 1);
  6367. }
  6368. //print_line("rendering cascade " + itos(p_region) + " objects: " + itos(p_cull_count) + " bounds: " + bounds + " from: " + from + " size: " + size + " cell size: " + rtos(rb->sdfgi->cascades[cascade].cell_size));
  6369. _render_sdfgi(p_render_buffers, from, size, bounds, p_instances, rb->sdfgi->render_albedo, rb->sdfgi->render_emission, rb->sdfgi->render_emission_aniso, rb->sdfgi->render_geom_facing);
  6370. if (cascade_next != cascade) {
  6371. RD::get_singleton()->draw_command_begin_label("SDFGI Pre-Process Cascade");
  6372. RENDER_TIMESTAMP(">SDFGI Update SDF");
  6373. //done rendering! must update SDF
  6374. //clear dispatch indirect data
  6375. SDGIShader::PreprocessPushConstant push_constant;
  6376. zeromem(&push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6377. RENDER_TIMESTAMP("Scroll SDF");
  6378. //scroll
  6379. if (rb->sdfgi->cascades[cascade].dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
  6380. //for scroll
  6381. Vector3i dirty = rb->sdfgi->cascades[cascade].dirty_regions;
  6382. push_constant.scroll[0] = dirty.x;
  6383. push_constant.scroll[1] = dirty.y;
  6384. push_constant.scroll[2] = dirty.z;
  6385. } else {
  6386. //for no scroll
  6387. push_constant.scroll[0] = 0;
  6388. push_constant.scroll[1] = 0;
  6389. push_constant.scroll[2] = 0;
  6390. }
  6391. rb->sdfgi->cascades[cascade].all_dynamic_lights_dirty = true;
  6392. push_constant.grid_size = rb->sdfgi->cascade_size;
  6393. push_constant.cascade = cascade;
  6394. if (rb->sdfgi->cascades[cascade].dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
  6395. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  6396. //must pre scroll existing data because not all is dirty
  6397. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_SCROLL]);
  6398. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].scroll_uniform_set, 0);
  6399. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6400. RD::get_singleton()->compute_list_dispatch_indirect(compute_list, rb->sdfgi->cascades[cascade].solid_cell_dispatch_buffer, 0);
  6401. // no barrier do all together
  6402. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_SCROLL_OCCLUSION]);
  6403. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].scroll_occlusion_uniform_set, 0);
  6404. Vector3i dirty = rb->sdfgi->cascades[cascade].dirty_regions;
  6405. Vector3i groups;
  6406. groups.x = rb->sdfgi->cascade_size - ABS(dirty.x);
  6407. groups.y = rb->sdfgi->cascade_size - ABS(dirty.y);
  6408. groups.z = rb->sdfgi->cascade_size - ABS(dirty.z);
  6409. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6410. RD::get_singleton()->compute_list_dispatch_threads(compute_list, groups.x, groups.y, groups.z);
  6411. //no barrier, continue together
  6412. {
  6413. //scroll probes and their history also
  6414. SDGIShader::IntegratePushConstant ipush_constant;
  6415. ipush_constant.grid_size[1] = rb->sdfgi->cascade_size;
  6416. ipush_constant.grid_size[2] = rb->sdfgi->cascade_size;
  6417. ipush_constant.grid_size[0] = rb->sdfgi->cascade_size;
  6418. ipush_constant.max_cascades = rb->sdfgi->cascades.size();
  6419. ipush_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  6420. ipush_constant.history_index = 0;
  6421. ipush_constant.history_size = rb->sdfgi->history_size;
  6422. ipush_constant.ray_count = 0;
  6423. ipush_constant.ray_bias = 0;
  6424. ipush_constant.sky_mode = 0;
  6425. ipush_constant.sky_energy = 0;
  6426. ipush_constant.sky_color[0] = 0;
  6427. ipush_constant.sky_color[1] = 0;
  6428. ipush_constant.sky_color[2] = 0;
  6429. ipush_constant.y_mult = rb->sdfgi->y_mult;
  6430. ipush_constant.store_ambient_texture = false;
  6431. ipush_constant.image_size[0] = rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count;
  6432. ipush_constant.image_size[1] = rb->sdfgi->probe_axis_count;
  6433. int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  6434. ipush_constant.cascade = cascade;
  6435. ipush_constant.world_offset[0] = rb->sdfgi->cascades[cascade].position.x / probe_divisor;
  6436. ipush_constant.world_offset[1] = rb->sdfgi->cascades[cascade].position.y / probe_divisor;
  6437. ipush_constant.world_offset[2] = rb->sdfgi->cascades[cascade].position.z / probe_divisor;
  6438. ipush_constant.scroll[0] = dirty.x / probe_divisor;
  6439. ipush_constant.scroll[1] = dirty.y / probe_divisor;
  6440. ipush_constant.scroll[2] = dirty.z / probe_divisor;
  6441. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.integrate_pipeline[SDGIShader::INTEGRATE_MODE_SCROLL]);
  6442. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].integrate_uniform_set, 0);
  6443. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdfgi_shader.integrate_default_sky_uniform_set, 1);
  6444. RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDGIShader::IntegratePushConstant));
  6445. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count, rb->sdfgi->probe_axis_count, 1);
  6446. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6447. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.integrate_pipeline[SDGIShader::INTEGRATE_MODE_SCROLL_STORE]);
  6448. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].integrate_uniform_set, 0);
  6449. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdfgi_shader.integrate_default_sky_uniform_set, 1);
  6450. RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDGIShader::IntegratePushConstant));
  6451. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count, rb->sdfgi->probe_axis_count, 1);
  6452. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6453. if (rb->sdfgi->uses_multibounce) {
  6454. //multibounce requires this to be stored so direct light can read from it
  6455. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.integrate_pipeline[SDGIShader::INTEGRATE_MODE_STORE]);
  6456. //convert to octahedral to store
  6457. ipush_constant.image_size[0] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  6458. ipush_constant.image_size[1] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  6459. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].integrate_uniform_set, 0);
  6460. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdfgi_shader.integrate_default_sky_uniform_set, 1);
  6461. RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDGIShader::IntegratePushConstant));
  6462. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, rb->sdfgi->probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, 1);
  6463. }
  6464. }
  6465. //ok finally barrier
  6466. RD::get_singleton()->compute_list_end();
  6467. }
  6468. //clear dispatch indirect data
  6469. uint32_t dispatch_indirct_data[4] = { 0, 0, 0, 0 };
  6470. RD::get_singleton()->buffer_update(rb->sdfgi->cascades[cascade].solid_cell_dispatch_buffer, 0, sizeof(uint32_t) * 4, dispatch_indirct_data);
  6471. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  6472. bool half_size = true; //much faster, very little difference
  6473. static const int optimized_jf_group_size = 8;
  6474. if (half_size) {
  6475. push_constant.grid_size >>= 1;
  6476. uint32_t cascade_half_size = rb->sdfgi->cascade_size >> 1;
  6477. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF]);
  6478. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->sdf_initialize_half_uniform_set, 0);
  6479. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6480. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size);
  6481. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6482. //must start with regular jumpflood
  6483. push_constant.half_size = true;
  6484. {
  6485. RENDER_TIMESTAMP("SDFGI Jump Flood (Half Size)");
  6486. uint32_t s = cascade_half_size;
  6487. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD]);
  6488. int jf_us = 0;
  6489. //start with regular jump flood for very coarse reads, as this is impossible to optimize
  6490. while (s > 1) {
  6491. s /= 2;
  6492. push_constant.step_size = s;
  6493. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_half_uniform_set[jf_us], 0);
  6494. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6495. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size);
  6496. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6497. jf_us = jf_us == 0 ? 1 : 0;
  6498. if (cascade_half_size / (s / 2) >= optimized_jf_group_size) {
  6499. break;
  6500. }
  6501. }
  6502. RENDER_TIMESTAMP("SDFGI Jump Flood Optimized (Half Size)");
  6503. //continue with optimized jump flood for smaller reads
  6504. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]);
  6505. while (s > 1) {
  6506. s /= 2;
  6507. push_constant.step_size = s;
  6508. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_half_uniform_set[jf_us], 0);
  6509. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6510. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size);
  6511. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6512. jf_us = jf_us == 0 ? 1 : 0;
  6513. }
  6514. }
  6515. // restore grid size for last passes
  6516. push_constant.grid_size = rb->sdfgi->cascade_size;
  6517. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_UPSCALE]);
  6518. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->sdf_upscale_uniform_set, 0);
  6519. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6520. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size);
  6521. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6522. //run one pass of fullsize jumpflood to fix up half size arctifacts
  6523. push_constant.half_size = false;
  6524. push_constant.step_size = 1;
  6525. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]);
  6526. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_uniform_set[rb->sdfgi->upscale_jfa_uniform_set_index], 0);
  6527. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6528. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size);
  6529. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6530. } else {
  6531. //full size jumpflood
  6532. RENDER_TIMESTAMP("SDFGI Jump Flood");
  6533. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE]);
  6534. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->sdf_initialize_uniform_set, 0);
  6535. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6536. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size);
  6537. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6538. push_constant.half_size = false;
  6539. {
  6540. uint32_t s = rb->sdfgi->cascade_size;
  6541. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD]);
  6542. int jf_us = 0;
  6543. //start with regular jump flood for very coarse reads, as this is impossible to optimize
  6544. while (s > 1) {
  6545. s /= 2;
  6546. push_constant.step_size = s;
  6547. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_uniform_set[jf_us], 0);
  6548. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6549. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size);
  6550. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6551. jf_us = jf_us == 0 ? 1 : 0;
  6552. if (rb->sdfgi->cascade_size / (s / 2) >= optimized_jf_group_size) {
  6553. break;
  6554. }
  6555. }
  6556. RENDER_TIMESTAMP("SDFGI Jump Flood Optimized");
  6557. //continue with optimized jump flood for smaller reads
  6558. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]);
  6559. while (s > 1) {
  6560. s /= 2;
  6561. push_constant.step_size = s;
  6562. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_uniform_set[jf_us], 0);
  6563. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6564. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size);
  6565. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6566. jf_us = jf_us == 0 ? 1 : 0;
  6567. }
  6568. }
  6569. }
  6570. RENDER_TIMESTAMP("SDFGI Occlusion");
  6571. // occlusion
  6572. {
  6573. uint32_t probe_size = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  6574. Vector3i probe_global_pos = rb->sdfgi->cascades[cascade].position / probe_size;
  6575. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_OCCLUSION]);
  6576. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->occlusion_uniform_set, 0);
  6577. for (int i = 0; i < 8; i++) {
  6578. //dispatch all at once for performance
  6579. Vector3i offset(i & 1, (i >> 1) & 1, (i >> 2) & 1);
  6580. if ((probe_global_pos.x & 1) != 0) {
  6581. offset.x = (offset.x + 1) & 1;
  6582. }
  6583. if ((probe_global_pos.y & 1) != 0) {
  6584. offset.y = (offset.y + 1) & 1;
  6585. }
  6586. if ((probe_global_pos.z & 1) != 0) {
  6587. offset.z = (offset.z + 1) & 1;
  6588. }
  6589. push_constant.probe_offset[0] = offset.x;
  6590. push_constant.probe_offset[1] = offset.y;
  6591. push_constant.probe_offset[2] = offset.z;
  6592. push_constant.occlusion_index = i;
  6593. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6594. Vector3i groups = Vector3i(probe_size + 1, probe_size + 1, probe_size + 1) - offset; //if offset, it's one less probe per axis to compute
  6595. RD::get_singleton()->compute_list_dispatch(compute_list, groups.x, groups.y, groups.z);
  6596. }
  6597. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6598. }
  6599. RENDER_TIMESTAMP("SDFGI Store");
  6600. // store
  6601. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_STORE]);
  6602. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].sdf_store_uniform_set, 0);
  6603. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6604. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size);
  6605. RD::get_singleton()->compute_list_end();
  6606. //clear these textures, as they will have previous garbage on next draw
  6607. RD::get_singleton()->texture_clear(rb->sdfgi->cascades[cascade].light_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  6608. RD::get_singleton()->texture_clear(rb->sdfgi->cascades[cascade].light_aniso_0_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  6609. RD::get_singleton()->texture_clear(rb->sdfgi->cascades[cascade].light_aniso_1_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  6610. #if 0
  6611. Vector<uint8_t> data = RD::get_singleton()->texture_get_data(rb->sdfgi->cascades[cascade].sdf, 0);
  6612. Ref<Image> img;
  6613. img.instance();
  6614. for (uint32_t i = 0; i < rb->sdfgi->cascade_size; i++) {
  6615. Vector<uint8_t> subarr = data.subarray(128 * 128 * i, 128 * 128 * (i + 1) - 1);
  6616. img->create(rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, false, Image::FORMAT_L8, subarr);
  6617. img->save_png("res://cascade_sdf_" + itos(cascade) + "_" + itos(i) + ".png");
  6618. }
  6619. //finalize render and update sdf
  6620. #endif
  6621. #if 0
  6622. Vector<uint8_t> data = RD::get_singleton()->texture_get_data(rb->sdfgi->render_albedo, 0);
  6623. Ref<Image> img;
  6624. img.instance();
  6625. for (uint32_t i = 0; i < rb->sdfgi->cascade_size; i++) {
  6626. Vector<uint8_t> subarr = data.subarray(128 * 128 * i * 2, 128 * 128 * (i + 1) * 2 - 1);
  6627. img->create(rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, false, Image::FORMAT_RGB565, subarr);
  6628. img->convert(Image::FORMAT_RGBA8);
  6629. img->save_png("res://cascade_" + itos(cascade) + "_" + itos(i) + ".png");
  6630. }
  6631. //finalize render and update sdf
  6632. #endif
  6633. RENDER_TIMESTAMP("<SDFGI Update SDF");
  6634. RD::get_singleton()->draw_command_end_label();
  6635. }
  6636. }
  6637. void RendererSceneRenderRD::render_particle_collider_heightfield(RID p_collider, const Transform &p_transform, const PagedArray<GeometryInstance *> &p_instances) {
  6638. ERR_FAIL_COND(!storage->particles_collision_is_heightfield(p_collider));
  6639. Vector3 extents = storage->particles_collision_get_extents(p_collider) * p_transform.basis.get_scale();
  6640. CameraMatrix cm;
  6641. cm.set_orthogonal(-extents.x, extents.x, -extents.z, extents.z, 0, extents.y * 2.0);
  6642. Vector3 cam_pos = p_transform.origin;
  6643. cam_pos.y += extents.y;
  6644. Transform cam_xform;
  6645. cam_xform.set_look_at(cam_pos, cam_pos - p_transform.basis.get_axis(Vector3::AXIS_Y), -p_transform.basis.get_axis(Vector3::AXIS_Z).normalized());
  6646. RID fb = storage->particles_collision_get_heightfield_framebuffer(p_collider);
  6647. _render_particle_collider_heightfield(fb, cam_xform, cm, p_instances);
  6648. }
  6649. void RendererSceneRenderRD::_render_sdfgi_static_lights(RID p_render_buffers, uint32_t p_cascade_count, const uint32_t *p_cascade_indices, const PagedArray<RID> *p_positional_light_cull_result) {
  6650. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  6651. ERR_FAIL_COND(!rb);
  6652. ERR_FAIL_COND(!rb->sdfgi);
  6653. RD::get_singleton()->draw_command_begin_label("SDFGI Render Static Lighs");
  6654. _sdfgi_update_cascades(p_render_buffers); //need cascades updated for this
  6655. SDGIShader::Light lights[SDFGI::MAX_STATIC_LIGHTS];
  6656. uint32_t light_count[SDFGI::MAX_STATIC_LIGHTS];
  6657. for (uint32_t i = 0; i < p_cascade_count; i++) {
  6658. ERR_CONTINUE(p_cascade_indices[i] >= rb->sdfgi->cascades.size());
  6659. SDFGI::Cascade &cc = rb->sdfgi->cascades[p_cascade_indices[i]];
  6660. { //fill light buffer
  6661. AABB cascade_aabb;
  6662. cascade_aabb.position = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + cc.position)) * cc.cell_size;
  6663. cascade_aabb.size = Vector3(1, 1, 1) * rb->sdfgi->cascade_size * cc.cell_size;
  6664. int idx = 0;
  6665. for (uint32_t j = 0; j < (uint32_t)p_positional_light_cull_result[i].size(); j++) {
  6666. if (idx == SDFGI::MAX_STATIC_LIGHTS) {
  6667. break;
  6668. }
  6669. LightInstance *li = light_instance_owner.getornull(p_positional_light_cull_result[i][j]);
  6670. ERR_CONTINUE(!li);
  6671. uint32_t max_sdfgi_cascade = storage->light_get_max_sdfgi_cascade(li->light);
  6672. if (p_cascade_indices[i] > max_sdfgi_cascade) {
  6673. continue;
  6674. }
  6675. if (!cascade_aabb.intersects(li->aabb)) {
  6676. continue;
  6677. }
  6678. lights[idx].type = storage->light_get_type(li->light);
  6679. Vector3 dir = -li->transform.basis.get_axis(Vector3::AXIS_Z);
  6680. if (lights[idx].type == RS::LIGHT_DIRECTIONAL) {
  6681. dir.y *= rb->sdfgi->y_mult; //only makes sense for directional
  6682. dir.normalize();
  6683. }
  6684. lights[idx].direction[0] = dir.x;
  6685. lights[idx].direction[1] = dir.y;
  6686. lights[idx].direction[2] = dir.z;
  6687. Vector3 pos = li->transform.origin;
  6688. pos.y *= rb->sdfgi->y_mult;
  6689. lights[idx].position[0] = pos.x;
  6690. lights[idx].position[1] = pos.y;
  6691. lights[idx].position[2] = pos.z;
  6692. Color color = storage->light_get_color(li->light);
  6693. color = color.to_linear();
  6694. lights[idx].color[0] = color.r;
  6695. lights[idx].color[1] = color.g;
  6696. lights[idx].color[2] = color.b;
  6697. lights[idx].energy = storage->light_get_param(li->light, RS::LIGHT_PARAM_ENERGY);
  6698. lights[idx].has_shadow = storage->light_has_shadow(li->light);
  6699. lights[idx].attenuation = storage->light_get_param(li->light, RS::LIGHT_PARAM_ATTENUATION);
  6700. lights[idx].radius = storage->light_get_param(li->light, RS::LIGHT_PARAM_RANGE);
  6701. lights[idx].spot_angle = Math::deg2rad(storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ANGLE));
  6702. lights[idx].spot_attenuation = storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  6703. idx++;
  6704. }
  6705. if (idx > 0) {
  6706. RD::get_singleton()->buffer_update(cc.lights_buffer, 0, idx * sizeof(SDGIShader::Light), lights);
  6707. }
  6708. light_count[i] = idx;
  6709. }
  6710. }
  6711. /* Static Lights */
  6712. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  6713. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.direct_light_pipeline[SDGIShader::DIRECT_LIGHT_MODE_STATIC]);
  6714. SDGIShader::DirectLightPushConstant dl_push_constant;
  6715. dl_push_constant.grid_size[0] = rb->sdfgi->cascade_size;
  6716. dl_push_constant.grid_size[1] = rb->sdfgi->cascade_size;
  6717. dl_push_constant.grid_size[2] = rb->sdfgi->cascade_size;
  6718. dl_push_constant.max_cascades = rb->sdfgi->cascades.size();
  6719. dl_push_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  6720. dl_push_constant.multibounce = false; // this is static light, do not multibounce yet
  6721. dl_push_constant.y_mult = rb->sdfgi->y_mult;
  6722. //all must be processed
  6723. dl_push_constant.process_offset = 0;
  6724. dl_push_constant.process_increment = 1;
  6725. for (uint32_t i = 0; i < p_cascade_count; i++) {
  6726. ERR_CONTINUE(p_cascade_indices[i] >= rb->sdfgi->cascades.size());
  6727. SDFGI::Cascade &cc = rb->sdfgi->cascades[p_cascade_indices[i]];
  6728. dl_push_constant.light_count = light_count[i];
  6729. dl_push_constant.cascade = p_cascade_indices[i];
  6730. if (dl_push_constant.light_count > 0) {
  6731. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cc.sdf_direct_light_uniform_set, 0);
  6732. RD::get_singleton()->compute_list_set_push_constant(compute_list, &dl_push_constant, sizeof(SDGIShader::DirectLightPushConstant));
  6733. RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cc.solid_cell_dispatch_buffer, 0);
  6734. }
  6735. }
  6736. RD::get_singleton()->compute_list_end();
  6737. RD::get_singleton()->draw_command_end_label();
  6738. }
  6739. bool RendererSceneRenderRD::free(RID p_rid) {
  6740. if (render_buffers_owner.owns(p_rid)) {
  6741. RenderBuffers *rb = render_buffers_owner.getornull(p_rid);
  6742. _free_render_buffer_data(rb);
  6743. memdelete(rb->data);
  6744. if (rb->sdfgi) {
  6745. _sdfgi_erase(rb);
  6746. }
  6747. if (rb->volumetric_fog) {
  6748. _volumetric_fog_erase(rb);
  6749. }
  6750. if (rb->cluster_builder) {
  6751. memdelete(rb->cluster_builder);
  6752. }
  6753. render_buffers_owner.free(p_rid);
  6754. } else if (environment_owner.owns(p_rid)) {
  6755. //not much to delete, just free it
  6756. environment_owner.free(p_rid);
  6757. } else if (camera_effects_owner.owns(p_rid)) {
  6758. //not much to delete, just free it
  6759. camera_effects_owner.free(p_rid);
  6760. } else if (reflection_atlas_owner.owns(p_rid)) {
  6761. reflection_atlas_set_size(p_rid, 0, 0);
  6762. ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_rid);
  6763. if (ra->cluster_builder) {
  6764. memdelete(ra->cluster_builder);
  6765. }
  6766. reflection_atlas_owner.free(p_rid);
  6767. } else if (reflection_probe_instance_owner.owns(p_rid)) {
  6768. //not much to delete, just free it
  6769. //ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_rid);
  6770. reflection_probe_release_atlas_index(p_rid);
  6771. reflection_probe_instance_owner.free(p_rid);
  6772. } else if (decal_instance_owner.owns(p_rid)) {
  6773. decal_instance_owner.free(p_rid);
  6774. } else if (lightmap_instance_owner.owns(p_rid)) {
  6775. lightmap_instance_owner.free(p_rid);
  6776. } else if (gi_probe_instance_owner.owns(p_rid)) {
  6777. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_rid);
  6778. if (gi_probe->texture.is_valid()) {
  6779. RD::get_singleton()->free(gi_probe->texture);
  6780. RD::get_singleton()->free(gi_probe->write_buffer);
  6781. }
  6782. for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) {
  6783. RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture);
  6784. RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth);
  6785. }
  6786. gi_probe_instance_owner.free(p_rid);
  6787. } else if (sky_owner.owns(p_rid)) {
  6788. _update_dirty_skys();
  6789. Sky *sky = sky_owner.getornull(p_rid);
  6790. if (sky->radiance.is_valid()) {
  6791. RD::get_singleton()->free(sky->radiance);
  6792. sky->radiance = RID();
  6793. }
  6794. _clear_reflection_data(sky->reflection);
  6795. if (sky->uniform_buffer.is_valid()) {
  6796. RD::get_singleton()->free(sky->uniform_buffer);
  6797. sky->uniform_buffer = RID();
  6798. }
  6799. if (sky->half_res_pass.is_valid()) {
  6800. RD::get_singleton()->free(sky->half_res_pass);
  6801. sky->half_res_pass = RID();
  6802. }
  6803. if (sky->quarter_res_pass.is_valid()) {
  6804. RD::get_singleton()->free(sky->quarter_res_pass);
  6805. sky->quarter_res_pass = RID();
  6806. }
  6807. if (sky->material.is_valid()) {
  6808. storage->free(sky->material);
  6809. }
  6810. sky_owner.free(p_rid);
  6811. } else if (light_instance_owner.owns(p_rid)) {
  6812. LightInstance *light_instance = light_instance_owner.getornull(p_rid);
  6813. //remove from shadow atlases..
  6814. for (Set<RID>::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) {
  6815. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(E->get());
  6816. ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
  6817. uint32_t key = shadow_atlas->shadow_owners[p_rid];
  6818. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  6819. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  6820. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  6821. shadow_atlas->shadow_owners.erase(p_rid);
  6822. }
  6823. light_instance_owner.free(p_rid);
  6824. } else if (shadow_atlas_owner.owns(p_rid)) {
  6825. shadow_atlas_set_size(p_rid, 0);
  6826. shadow_atlas_owner.free(p_rid);
  6827. } else {
  6828. return false;
  6829. }
  6830. return true;
  6831. }
  6832. void RendererSceneRenderRD::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) {
  6833. debug_draw = p_debug_draw;
  6834. }
  6835. void RendererSceneRenderRD::update() {
  6836. _update_dirty_skys();
  6837. }
  6838. void RendererSceneRenderRD::set_time(double p_time, double p_step) {
  6839. time = p_time;
  6840. time_step = p_step;
  6841. }
  6842. void RendererSceneRenderRD::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_limit) {
  6843. screen_space_roughness_limiter = p_enable;
  6844. screen_space_roughness_limiter_amount = p_amount;
  6845. screen_space_roughness_limiter_limit = p_limit;
  6846. }
  6847. bool RendererSceneRenderRD::screen_space_roughness_limiter_is_active() const {
  6848. return screen_space_roughness_limiter;
  6849. }
  6850. float RendererSceneRenderRD::screen_space_roughness_limiter_get_amount() const {
  6851. return screen_space_roughness_limiter_amount;
  6852. }
  6853. float RendererSceneRenderRD::screen_space_roughness_limiter_get_limit() const {
  6854. return screen_space_roughness_limiter_limit;
  6855. }
  6856. TypedArray<Image> RendererSceneRenderRD::bake_render_uv2(RID p_base, const Vector<RID> &p_material_overrides, const Size2i &p_image_size) {
  6857. RD::TextureFormat tf;
  6858. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  6859. tf.width = p_image_size.width; // Always 64x64
  6860. tf.height = p_image_size.height;
  6861. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  6862. RID albedo_alpha_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  6863. RID normal_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  6864. RID orm_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  6865. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  6866. RID emission_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  6867. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  6868. RID depth_write_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  6869. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  6870. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  6871. RID depth_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  6872. Vector<RID> fb_tex;
  6873. fb_tex.push_back(albedo_alpha_tex);
  6874. fb_tex.push_back(normal_tex);
  6875. fb_tex.push_back(orm_tex);
  6876. fb_tex.push_back(emission_tex);
  6877. fb_tex.push_back(depth_write_tex);
  6878. fb_tex.push_back(depth_tex);
  6879. RID fb = RD::get_singleton()->framebuffer_create(fb_tex);
  6880. //RID sampled_light;
  6881. GeometryInstance *gi = geometry_instance_create(p_base);
  6882. uint32_t sc = RSG::storage->mesh_get_surface_count(p_base);
  6883. Vector<RID> materials;
  6884. materials.resize(sc);
  6885. for (uint32_t i = 0; i < sc; i++) {
  6886. if (i < (uint32_t)p_material_overrides.size()) {
  6887. materials.write[i] = p_material_overrides[i];
  6888. }
  6889. }
  6890. geometry_instance_set_surface_materials(gi, materials);
  6891. if (cull_argument.size() == 0) {
  6892. cull_argument.push_back(nullptr);
  6893. }
  6894. cull_argument[0] = gi;
  6895. _render_uv2(cull_argument, fb, Rect2i(0, 0, p_image_size.width, p_image_size.height));
  6896. geometry_instance_free(gi);
  6897. TypedArray<Image> ret;
  6898. {
  6899. PackedByteArray data = RD::get_singleton()->texture_get_data(albedo_alpha_tex, 0);
  6900. Ref<Image> img;
  6901. img.instance();
  6902. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  6903. RD::get_singleton()->free(albedo_alpha_tex);
  6904. ret.push_back(img);
  6905. }
  6906. {
  6907. PackedByteArray data = RD::get_singleton()->texture_get_data(normal_tex, 0);
  6908. Ref<Image> img;
  6909. img.instance();
  6910. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  6911. RD::get_singleton()->free(normal_tex);
  6912. ret.push_back(img);
  6913. }
  6914. {
  6915. PackedByteArray data = RD::get_singleton()->texture_get_data(orm_tex, 0);
  6916. Ref<Image> img;
  6917. img.instance();
  6918. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  6919. RD::get_singleton()->free(orm_tex);
  6920. ret.push_back(img);
  6921. }
  6922. {
  6923. PackedByteArray data = RD::get_singleton()->texture_get_data(emission_tex, 0);
  6924. Ref<Image> img;
  6925. img.instance();
  6926. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBAH, data);
  6927. RD::get_singleton()->free(emission_tex);
  6928. ret.push_back(img);
  6929. }
  6930. RD::get_singleton()->free(depth_write_tex);
  6931. RD::get_singleton()->free(depth_tex);
  6932. return ret;
  6933. }
  6934. void RendererSceneRenderRD::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) {
  6935. sdfgi_debug_probe_pos = p_position;
  6936. sdfgi_debug_probe_dir = p_dir;
  6937. }
  6938. RendererSceneRenderRD *RendererSceneRenderRD::singleton = nullptr;
  6939. RID RendererSceneRenderRD::get_reflection_probe_buffer() {
  6940. return cluster.reflection_buffer;
  6941. }
  6942. RID RendererSceneRenderRD::get_omni_light_buffer() {
  6943. return cluster.omni_light_buffer;
  6944. }
  6945. RID RendererSceneRenderRD::get_spot_light_buffer() {
  6946. return cluster.spot_light_buffer;
  6947. }
  6948. RID RendererSceneRenderRD::get_directional_light_buffer() {
  6949. return cluster.directional_light_buffer;
  6950. }
  6951. RID RendererSceneRenderRD::get_decal_buffer() {
  6952. return cluster.decal_buffer;
  6953. }
  6954. int RendererSceneRenderRD::get_max_directional_lights() const {
  6955. return cluster.max_directional_lights;
  6956. }
  6957. bool RendererSceneRenderRD::is_low_end() const {
  6958. return low_end;
  6959. }
  6960. RendererSceneRenderRD::RendererSceneRenderRD(RendererStorageRD *p_storage) {
  6961. max_cluster_elements = GLOBAL_GET("rendering/cluster_builder/max_clustered_elements");
  6962. storage = p_storage;
  6963. singleton = this;
  6964. roughness_layers = GLOBAL_GET("rendering/quality/reflections/roughness_layers");
  6965. sky_ggx_samples_quality = GLOBAL_GET("rendering/quality/reflections/ggx_samples");
  6966. sky_use_cubemap_array = GLOBAL_GET("rendering/quality/reflections/texture_array_reflections");
  6967. sdfgi_ray_count = RS::EnvironmentSDFGIRayCount(CLAMP(int32_t(GLOBAL_GET("rendering/sdfgi/probe_ray_count")), 0, int32_t(RS::ENV_SDFGI_RAY_COUNT_MAX - 1)));
  6968. sdfgi_frames_to_converge = RS::EnvironmentSDFGIFramesToConverge(CLAMP(int32_t(GLOBAL_GET("rendering/sdfgi/frames_to_converge")), 0, int32_t(RS::ENV_SDFGI_CONVERGE_MAX - 1)));
  6969. sdfgi_frames_to_update_light = RS::EnvironmentSDFGIFramesToUpdateLight(CLAMP(int32_t(GLOBAL_GET("rendering/sdfgi/frames_to_update_lights")), 0, int32_t(RS::ENV_SDFGI_UPDATE_LIGHT_MAX - 1)));
  6970. directional_shadow.size = GLOBAL_GET("rendering/quality/directional_shadow/size");
  6971. directional_shadow.use_16_bits = GLOBAL_GET("rendering/quality/directional_shadow/16_bits");
  6972. uint32_t textures_per_stage = RD::get_singleton()->limit_get(RD::LIMIT_MAX_TEXTURES_PER_SHADER_STAGE);
  6973. low_end = GLOBAL_GET("rendering/quality/rd_renderer/use_low_end_renderer");
  6974. if (textures_per_stage < 48) {
  6975. low_end = true;
  6976. }
  6977. if (!low_end) {
  6978. //kinda complicated to compute the amount of slots, we try to use as many as we can
  6979. gi_probe_max_lights = 32;
  6980. gi_probe_lights = memnew_arr(GIProbeLight, gi_probe_max_lights);
  6981. gi_probe_lights_uniform = RD::get_singleton()->uniform_buffer_create(gi_probe_max_lights * sizeof(GIProbeLight));
  6982. gi_probe_quality = RS::GIProbeQuality(CLAMP(int(GLOBAL_GET("rendering/quality/gi_probes/quality")), 0, 1));
  6983. String defines = "\n#define MAX_LIGHTS " + itos(gi_probe_max_lights) + "\n";
  6984. Vector<String> versions;
  6985. versions.push_back("\n#define MODE_COMPUTE_LIGHT\n");
  6986. versions.push_back("\n#define MODE_SECOND_BOUNCE\n");
  6987. versions.push_back("\n#define MODE_UPDATE_MIPMAPS\n");
  6988. versions.push_back("\n#define MODE_WRITE_TEXTURE\n");
  6989. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_LIGHTING\n");
  6990. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
  6991. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n");
  6992. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
  6993. giprobe_shader.initialize(versions, defines);
  6994. giprobe_lighting_shader_version = giprobe_shader.version_create();
  6995. for (int i = 0; i < GI_PROBE_SHADER_VERSION_MAX; i++) {
  6996. giprobe_lighting_shader_version_shaders[i] = giprobe_shader.version_get_shader(giprobe_lighting_shader_version, i);
  6997. giprobe_lighting_shader_version_pipelines[i] = RD::get_singleton()->compute_pipeline_create(giprobe_lighting_shader_version_shaders[i]);
  6998. }
  6999. }
  7000. if (!low_end) {
  7001. String defines;
  7002. Vector<String> versions;
  7003. versions.push_back("\n#define MODE_DEBUG_COLOR\n");
  7004. versions.push_back("\n#define MODE_DEBUG_LIGHT\n");
  7005. versions.push_back("\n#define MODE_DEBUG_EMISSION\n");
  7006. versions.push_back("\n#define MODE_DEBUG_LIGHT\n#define MODE_DEBUG_LIGHT_FULL\n");
  7007. giprobe_debug_shader.initialize(versions, defines);
  7008. giprobe_debug_shader_version = giprobe_debug_shader.version_create();
  7009. for (int i = 0; i < GI_PROBE_DEBUG_MAX; i++) {
  7010. giprobe_debug_shader_version_shaders[i] = giprobe_debug_shader.version_get_shader(giprobe_debug_shader_version, i);
  7011. RD::PipelineRasterizationState rs;
  7012. rs.cull_mode = RD::POLYGON_CULL_FRONT;
  7013. RD::PipelineDepthStencilState ds;
  7014. ds.enable_depth_test = true;
  7015. ds.enable_depth_write = true;
  7016. ds.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL;
  7017. giprobe_debug_shader_version_pipelines[i].setup(giprobe_debug_shader_version_shaders[i], RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
  7018. }
  7019. }
  7020. /* SKY SHADER */
  7021. {
  7022. // Start with the directional lights for the sky
  7023. sky_scene_state.max_directional_lights = 4;
  7024. uint32_t directional_light_buffer_size = sky_scene_state.max_directional_lights * sizeof(SkyDirectionalLightData);
  7025. sky_scene_state.directional_lights = memnew_arr(SkyDirectionalLightData, sky_scene_state.max_directional_lights);
  7026. sky_scene_state.last_frame_directional_lights = memnew_arr(SkyDirectionalLightData, sky_scene_state.max_directional_lights);
  7027. sky_scene_state.last_frame_directional_light_count = sky_scene_state.max_directional_lights + 1;
  7028. sky_scene_state.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size);
  7029. String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(sky_scene_state.max_directional_lights) + "\n";
  7030. // Initialize sky
  7031. Vector<String> sky_modes;
  7032. sky_modes.push_back(""); // Full size
  7033. sky_modes.push_back("\n#define USE_HALF_RES_PASS\n"); // Half Res
  7034. sky_modes.push_back("\n#define USE_QUARTER_RES_PASS\n"); // Quarter res
  7035. sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n"); // Cubemap
  7036. sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n#define USE_HALF_RES_PASS\n"); // Half Res Cubemap
  7037. sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n#define USE_QUARTER_RES_PASS\n"); // Quarter res Cubemap
  7038. sky_shader.shader.initialize(sky_modes, defines);
  7039. }
  7040. // register our shader funds
  7041. storage->shader_set_data_request_function(RendererStorageRD::SHADER_TYPE_SKY, _create_sky_shader_funcs);
  7042. storage->material_set_data_request_function(RendererStorageRD::SHADER_TYPE_SKY, _create_sky_material_funcs);
  7043. {
  7044. ShaderCompilerRD::DefaultIdentifierActions actions;
  7045. actions.renames["COLOR"] = "color";
  7046. actions.renames["ALPHA"] = "alpha";
  7047. actions.renames["EYEDIR"] = "cube_normal";
  7048. actions.renames["POSITION"] = "params.position_multiplier.xyz";
  7049. actions.renames["SKY_COORDS"] = "panorama_coords";
  7050. actions.renames["SCREEN_UV"] = "uv";
  7051. actions.renames["TIME"] = "params.time";
  7052. actions.renames["HALF_RES_COLOR"] = "half_res_color";
  7053. actions.renames["QUARTER_RES_COLOR"] = "quarter_res_color";
  7054. actions.renames["RADIANCE"] = "radiance";
  7055. actions.renames["FOG"] = "custom_fog";
  7056. actions.renames["LIGHT0_ENABLED"] = "directional_lights.data[0].enabled";
  7057. actions.renames["LIGHT0_DIRECTION"] = "directional_lights.data[0].direction_energy.xyz";
  7058. actions.renames["LIGHT0_ENERGY"] = "directional_lights.data[0].direction_energy.w";
  7059. actions.renames["LIGHT0_COLOR"] = "directional_lights.data[0].color_size.xyz";
  7060. actions.renames["LIGHT0_SIZE"] = "directional_lights.data[0].color_size.w";
  7061. actions.renames["LIGHT1_ENABLED"] = "directional_lights.data[1].enabled";
  7062. actions.renames["LIGHT1_DIRECTION"] = "directional_lights.data[1].direction_energy.xyz";
  7063. actions.renames["LIGHT1_ENERGY"] = "directional_lights.data[1].direction_energy.w";
  7064. actions.renames["LIGHT1_COLOR"] = "directional_lights.data[1].color_size.xyz";
  7065. actions.renames["LIGHT1_SIZE"] = "directional_lights.data[1].color_size.w";
  7066. actions.renames["LIGHT2_ENABLED"] = "directional_lights.data[2].enabled";
  7067. actions.renames["LIGHT2_DIRECTION"] = "directional_lights.data[2].direction_energy.xyz";
  7068. actions.renames["LIGHT2_ENERGY"] = "directional_lights.data[2].direction_energy.w";
  7069. actions.renames["LIGHT2_COLOR"] = "directional_lights.data[2].color_size.xyz";
  7070. actions.renames["LIGHT2_SIZE"] = "directional_lights.data[2].color_size.w";
  7071. actions.renames["LIGHT3_ENABLED"] = "directional_lights.data[3].enabled";
  7072. actions.renames["LIGHT3_DIRECTION"] = "directional_lights.data[3].direction_energy.xyz";
  7073. actions.renames["LIGHT3_ENERGY"] = "directional_lights.data[3].direction_energy.w";
  7074. actions.renames["LIGHT3_COLOR"] = "directional_lights.data[3].color_size.xyz";
  7075. actions.renames["LIGHT3_SIZE"] = "directional_lights.data[3].color_size.w";
  7076. actions.renames["AT_CUBEMAP_PASS"] = "AT_CUBEMAP_PASS";
  7077. actions.renames["AT_HALF_RES_PASS"] = "AT_HALF_RES_PASS";
  7078. actions.renames["AT_QUARTER_RES_PASS"] = "AT_QUARTER_RES_PASS";
  7079. actions.custom_samplers["RADIANCE"] = "material_samplers[3]";
  7080. actions.usage_defines["HALF_RES_COLOR"] = "\n#define USES_HALF_RES_COLOR\n";
  7081. actions.usage_defines["QUARTER_RES_COLOR"] = "\n#define USES_QUARTER_RES_COLOR\n";
  7082. actions.render_mode_defines["disable_fog"] = "#define DISABLE_FOG\n";
  7083. actions.sampler_array_name = "material_samplers";
  7084. actions.base_texture_binding_index = 1;
  7085. actions.texture_layout_set = 1;
  7086. actions.base_uniform_string = "material.";
  7087. actions.base_varying_index = 10;
  7088. actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP;
  7089. actions.default_repeat = ShaderLanguage::REPEAT_ENABLE;
  7090. actions.global_buffer_array_variable = "global_variables.data";
  7091. sky_shader.compiler.initialize(actions);
  7092. }
  7093. {
  7094. // default material and shader for sky shader
  7095. sky_shader.default_shader = storage->shader_create();
  7096. storage->shader_set_code(sky_shader.default_shader, "shader_type sky; void fragment() { COLOR = vec3(0.0); } \n");
  7097. sky_shader.default_material = storage->material_create();
  7098. storage->material_set_shader(sky_shader.default_material, sky_shader.default_shader);
  7099. SkyMaterialData *md = (SkyMaterialData *)storage->material_get_data(sky_shader.default_material, RendererStorageRD::SHADER_TYPE_SKY);
  7100. sky_shader.default_shader_rd = sky_shader.shader.version_get_shader(md->shader_data->version, SKY_VERSION_BACKGROUND);
  7101. sky_scene_state.uniform_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(SkySceneState::UBO));
  7102. Vector<RD::Uniform> uniforms;
  7103. {
  7104. RD::Uniform u;
  7105. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  7106. u.binding = 0;
  7107. u.ids.resize(12);
  7108. RID *ids_ptr = u.ids.ptrw();
  7109. ids_ptr[0] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  7110. ids_ptr[1] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  7111. ids_ptr[2] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  7112. ids_ptr[3] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  7113. ids_ptr[4] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  7114. ids_ptr[5] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  7115. ids_ptr[6] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  7116. ids_ptr[7] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  7117. ids_ptr[8] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  7118. ids_ptr[9] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  7119. ids_ptr[10] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  7120. ids_ptr[11] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  7121. uniforms.push_back(u);
  7122. }
  7123. {
  7124. RD::Uniform u;
  7125. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  7126. u.binding = 1;
  7127. u.ids.push_back(storage->global_variables_get_storage_buffer());
  7128. uniforms.push_back(u);
  7129. }
  7130. {
  7131. RD::Uniform u;
  7132. u.binding = 2;
  7133. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  7134. u.ids.push_back(sky_scene_state.uniform_buffer);
  7135. uniforms.push_back(u);
  7136. }
  7137. {
  7138. RD::Uniform u;
  7139. u.binding = 3;
  7140. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  7141. u.ids.push_back(sky_scene_state.directional_light_buffer);
  7142. uniforms.push_back(u);
  7143. }
  7144. sky_scene_state.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_UNIFORMS);
  7145. }
  7146. {
  7147. Vector<RD::Uniform> uniforms;
  7148. {
  7149. RD::Uniform u;
  7150. u.binding = 0;
  7151. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  7152. RID vfog = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE);
  7153. u.ids.push_back(vfog);
  7154. uniforms.push_back(u);
  7155. }
  7156. sky_scene_state.default_fog_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_FOG);
  7157. }
  7158. {
  7159. // Need defaults for using fog with clear color
  7160. sky_scene_state.fog_shader = storage->shader_create();
  7161. storage->shader_set_code(sky_scene_state.fog_shader, "shader_type sky; uniform vec4 clear_color; void fragment() { COLOR = clear_color.rgb; } \n");
  7162. sky_scene_state.fog_material = storage->material_create();
  7163. storage->material_set_shader(sky_scene_state.fog_material, sky_scene_state.fog_shader);
  7164. Vector<RD::Uniform> uniforms;
  7165. {
  7166. RD::Uniform u;
  7167. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  7168. u.binding = 0;
  7169. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
  7170. uniforms.push_back(u);
  7171. }
  7172. {
  7173. RD::Uniform u;
  7174. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  7175. u.binding = 1;
  7176. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_WHITE));
  7177. uniforms.push_back(u);
  7178. }
  7179. {
  7180. RD::Uniform u;
  7181. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  7182. u.binding = 2;
  7183. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_WHITE));
  7184. uniforms.push_back(u);
  7185. }
  7186. sky_scene_state.fog_only_texture_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_TEXTURES);
  7187. }
  7188. if (!low_end) {
  7189. //SDFGI
  7190. {
  7191. Vector<String> preprocess_modes;
  7192. preprocess_modes.push_back("\n#define MODE_SCROLL\n");
  7193. preprocess_modes.push_back("\n#define MODE_SCROLL_OCCLUSION\n");
  7194. preprocess_modes.push_back("\n#define MODE_INITIALIZE_JUMP_FLOOD\n");
  7195. preprocess_modes.push_back("\n#define MODE_INITIALIZE_JUMP_FLOOD_HALF\n");
  7196. preprocess_modes.push_back("\n#define MODE_JUMPFLOOD\n");
  7197. preprocess_modes.push_back("\n#define MODE_JUMPFLOOD_OPTIMIZED\n");
  7198. preprocess_modes.push_back("\n#define MODE_UPSCALE_JUMP_FLOOD\n");
  7199. preprocess_modes.push_back("\n#define MODE_OCCLUSION\n");
  7200. preprocess_modes.push_back("\n#define MODE_STORE\n");
  7201. String defines = "\n#define OCCLUSION_SIZE " + itos(SDFGI::CASCADE_SIZE / SDFGI::PROBE_DIVISOR) + "\n";
  7202. sdfgi_shader.preprocess.initialize(preprocess_modes, defines);
  7203. sdfgi_shader.preprocess_shader = sdfgi_shader.preprocess.version_create();
  7204. for (int i = 0; i < SDGIShader::PRE_PROCESS_MAX; i++) {
  7205. sdfgi_shader.preprocess_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, i));
  7206. }
  7207. }
  7208. {
  7209. //calculate tables
  7210. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  7211. Vector<String> direct_light_modes;
  7212. direct_light_modes.push_back("\n#define MODE_PROCESS_STATIC\n");
  7213. direct_light_modes.push_back("\n#define MODE_PROCESS_DYNAMIC\n");
  7214. sdfgi_shader.direct_light.initialize(direct_light_modes, defines);
  7215. sdfgi_shader.direct_light_shader = sdfgi_shader.direct_light.version_create();
  7216. for (int i = 0; i < SDGIShader::DIRECT_LIGHT_MODE_MAX; i++) {
  7217. sdfgi_shader.direct_light_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.direct_light.version_get_shader(sdfgi_shader.direct_light_shader, i));
  7218. }
  7219. }
  7220. {
  7221. //calculate tables
  7222. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  7223. defines += "\n#define SH_SIZE " + itos(SDFGI::SH_SIZE) + "\n";
  7224. if (sky_use_cubemap_array) {
  7225. defines += "\n#define USE_CUBEMAP_ARRAY\n";
  7226. }
  7227. Vector<String> integrate_modes;
  7228. integrate_modes.push_back("\n#define MODE_PROCESS\n");
  7229. integrate_modes.push_back("\n#define MODE_STORE\n");
  7230. integrate_modes.push_back("\n#define MODE_SCROLL\n");
  7231. integrate_modes.push_back("\n#define MODE_SCROLL_STORE\n");
  7232. sdfgi_shader.integrate.initialize(integrate_modes, defines);
  7233. sdfgi_shader.integrate_shader = sdfgi_shader.integrate.version_create();
  7234. for (int i = 0; i < SDGIShader::INTEGRATE_MODE_MAX; i++) {
  7235. sdfgi_shader.integrate_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, i));
  7236. }
  7237. {
  7238. Vector<RD::Uniform> uniforms;
  7239. {
  7240. RD::Uniform u;
  7241. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  7242. u.binding = 0;
  7243. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_WHITE));
  7244. uniforms.push_back(u);
  7245. }
  7246. {
  7247. RD::Uniform u;
  7248. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  7249. u.binding = 1;
  7250. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  7251. uniforms.push_back(u);
  7252. }
  7253. sdfgi_shader.integrate_default_sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, 0), 1);
  7254. }
  7255. }
  7256. //GK
  7257. {
  7258. //calculate tables
  7259. String defines = "\n#define SDFGI_OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  7260. Vector<String> gi_modes;
  7261. gi_modes.push_back("\n#define USE_GIPROBES\n");
  7262. gi_modes.push_back("\n#define USE_SDFGI\n");
  7263. gi_modes.push_back("\n#define USE_SDFGI\n\n#define USE_GIPROBES\n");
  7264. gi_modes.push_back("\n#define MODE_HALF_RES\n#define USE_GIPROBES\n");
  7265. gi_modes.push_back("\n#define MODE_HALF_RES\n#define USE_SDFGI\n");
  7266. gi_modes.push_back("\n#define MODE_HALF_RES\n#define USE_SDFGI\n\n#define USE_GIPROBES\n");
  7267. gi.shader.initialize(gi_modes, defines);
  7268. gi.shader_version = gi.shader.version_create();
  7269. for (int i = 0; i < GI::MODE_MAX; i++) {
  7270. gi.pipelines[i] = RD::get_singleton()->compute_pipeline_create(gi.shader.version_get_shader(gi.shader_version, i));
  7271. }
  7272. gi.sdfgi_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(GI::SDFGIData));
  7273. }
  7274. {
  7275. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  7276. Vector<String> debug_modes;
  7277. debug_modes.push_back("");
  7278. sdfgi_shader.debug.initialize(debug_modes, defines);
  7279. sdfgi_shader.debug_shader = sdfgi_shader.debug.version_create();
  7280. sdfgi_shader.debug_shader_version = sdfgi_shader.debug.version_get_shader(sdfgi_shader.debug_shader, 0);
  7281. sdfgi_shader.debug_pipeline = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.debug_shader_version);
  7282. }
  7283. {
  7284. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  7285. Vector<String> versions;
  7286. versions.push_back("\n#define MODE_PROBES\n");
  7287. versions.push_back("\n#define MODE_VISIBILITY\n");
  7288. sdfgi_shader.debug_probes.initialize(versions, defines);
  7289. sdfgi_shader.debug_probes_shader = sdfgi_shader.debug_probes.version_create();
  7290. {
  7291. RD::PipelineRasterizationState rs;
  7292. rs.cull_mode = RD::POLYGON_CULL_DISABLED;
  7293. RD::PipelineDepthStencilState ds;
  7294. ds.enable_depth_test = true;
  7295. ds.enable_depth_write = true;
  7296. ds.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL;
  7297. for (int i = 0; i < SDGIShader::PROBE_DEBUG_MAX; i++) {
  7298. RID debug_probes_shader_version = sdfgi_shader.debug_probes.version_get_shader(sdfgi_shader.debug_probes_shader, i);
  7299. sdfgi_shader.debug_probes_pipeline[i].setup(debug_probes_shader_version, RD::RENDER_PRIMITIVE_TRIANGLE_STRIPS, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
  7300. }
  7301. }
  7302. }
  7303. default_giprobe_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(GI::GIProbeData) * RenderBuffers::MAX_GIPROBES);
  7304. }
  7305. { //decals
  7306. cluster.max_decals = max_cluster_elements;
  7307. uint32_t decal_buffer_size = cluster.max_decals * sizeof(Cluster::DecalData);
  7308. cluster.decals = memnew_arr(Cluster::DecalData, cluster.max_decals);
  7309. cluster.decal_sort = memnew_arr(Cluster::InstanceSort<DecalInstance>, cluster.max_decals);
  7310. cluster.decal_buffer = RD::get_singleton()->storage_buffer_create(decal_buffer_size);
  7311. }
  7312. { //reflections
  7313. cluster.max_reflections = max_cluster_elements;
  7314. cluster.reflections = memnew_arr(Cluster::ReflectionData, cluster.max_reflections);
  7315. cluster.reflection_sort = memnew_arr(Cluster::InstanceSort<ReflectionProbeInstance>, cluster.max_reflections);
  7316. cluster.reflection_buffer = RD::get_singleton()->storage_buffer_create(sizeof(Cluster::ReflectionData) * cluster.max_reflections);
  7317. }
  7318. { //lights
  7319. cluster.max_lights = max_cluster_elements;
  7320. uint32_t light_buffer_size = cluster.max_lights * sizeof(Cluster::LightData);
  7321. cluster.omni_lights = memnew_arr(Cluster::LightData, cluster.max_lights);
  7322. cluster.omni_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
  7323. cluster.omni_light_sort = memnew_arr(Cluster::InstanceSort<LightInstance>, cluster.max_lights);
  7324. cluster.spot_lights = memnew_arr(Cluster::LightData, cluster.max_lights);
  7325. cluster.spot_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
  7326. cluster.spot_light_sort = memnew_arr(Cluster::InstanceSort<LightInstance>, cluster.max_lights);
  7327. //defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(cluster.max_lights) + "\n";
  7328. cluster.max_directional_lights = MAX_DIRECTIONAL_LIGHTS;
  7329. uint32_t directional_light_buffer_size = cluster.max_directional_lights * sizeof(Cluster::DirectionalLightData);
  7330. cluster.directional_lights = memnew_arr(Cluster::DirectionalLightData, cluster.max_directional_lights);
  7331. cluster.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size);
  7332. }
  7333. if (!low_end) {
  7334. String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(cluster.max_directional_lights) + "\n";
  7335. Vector<String> volumetric_fog_modes;
  7336. volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n");
  7337. volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n#define ENABLE_SDFGI\n");
  7338. volumetric_fog_modes.push_back("\n#define MODE_FILTER\n");
  7339. volumetric_fog_modes.push_back("\n#define MODE_FOG\n");
  7340. volumetric_fog.shader.initialize(volumetric_fog_modes, defines);
  7341. volumetric_fog.shader_version = volumetric_fog.shader.version_create();
  7342. for (int i = 0; i < VOLUMETRIC_FOG_SHADER_MAX; i++) {
  7343. volumetric_fog.pipelines[i] = RD::get_singleton()->compute_pipeline_create(volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, i));
  7344. }
  7345. volumetric_fog.params_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(VolumetricFogShader::ParamsUBO));
  7346. }
  7347. {
  7348. RD::SamplerState sampler;
  7349. sampler.mag_filter = RD::SAMPLER_FILTER_NEAREST;
  7350. sampler.min_filter = RD::SAMPLER_FILTER_NEAREST;
  7351. sampler.enable_compare = true;
  7352. sampler.compare_op = RD::COMPARE_OP_LESS;
  7353. shadow_sampler = RD::get_singleton()->sampler_create(sampler);
  7354. }
  7355. camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_bokeh_shape"))));
  7356. camera_effects_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_use_jitter"));
  7357. environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/quality/ssao/quality"))), GLOBAL_GET("rendering/quality/ssao/half_size"), GLOBAL_GET("rendering/quality/ssao/adaptive_target"), GLOBAL_GET("rendering/quality/ssao/blur_passes"), GLOBAL_GET("rendering/quality/ssao/fadeout_from"), GLOBAL_GET("rendering/quality/ssao/fadeout_to"));
  7358. screen_space_roughness_limiter = GLOBAL_GET("rendering/quality/screen_filters/screen_space_roughness_limiter_enabled");
  7359. screen_space_roughness_limiter_amount = GLOBAL_GET("rendering/quality/screen_filters/screen_space_roughness_limiter_amount");
  7360. screen_space_roughness_limiter_limit = GLOBAL_GET("rendering/quality/screen_filters/screen_space_roughness_limiter_limit");
  7361. glow_bicubic_upscale = int(GLOBAL_GET("rendering/quality/glow/upscale_mode")) > 0;
  7362. glow_high_quality = GLOBAL_GET("rendering/quality/glow/use_high_quality");
  7363. ssr_roughness_quality = RS::EnvironmentSSRRoughnessQuality(int(GLOBAL_GET("rendering/quality/screen_space_reflection/roughness_quality")));
  7364. sss_quality = RS::SubSurfaceScatteringQuality(int(GLOBAL_GET("rendering/quality/subsurface_scattering/subsurface_scattering_quality")));
  7365. sss_scale = GLOBAL_GET("rendering/quality/subsurface_scattering/subsurface_scattering_scale");
  7366. sss_depth_scale = GLOBAL_GET("rendering/quality/subsurface_scattering/subsurface_scattering_depth_scale");
  7367. directional_penumbra_shadow_kernel = memnew_arr(float, 128);
  7368. directional_soft_shadow_kernel = memnew_arr(float, 128);
  7369. penumbra_shadow_kernel = memnew_arr(float, 128);
  7370. soft_shadow_kernel = memnew_arr(float, 128);
  7371. shadows_quality_set(RS::ShadowQuality(int(GLOBAL_GET("rendering/quality/shadows/soft_shadow_quality"))));
  7372. directional_shadow_quality_set(RS::ShadowQuality(int(GLOBAL_GET("rendering/quality/directional_shadow/soft_shadow_quality"))));
  7373. environment_set_volumetric_fog_volume_size(GLOBAL_GET("rendering/volumetric_fog/volume_size"), GLOBAL_GET("rendering/volumetric_fog/volume_depth"));
  7374. environment_set_volumetric_fog_filter_active(GLOBAL_GET("rendering/volumetric_fog/use_filter"));
  7375. cull_argument.set_page_pool(&cull_argument_pool);
  7376. gi.half_resolution = GLOBAL_GET("rendering/quality/gi/use_half_resolution");
  7377. }
  7378. RendererSceneRenderRD::~RendererSceneRenderRD() {
  7379. for (Map<int, ShadowCubemap>::Element *E = shadow_cubemaps.front(); E; E = E->next()) {
  7380. RD::get_singleton()->free(E->get().cubemap);
  7381. }
  7382. if (sky_scene_state.uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_scene_state.uniform_set)) {
  7383. RD::get_singleton()->free(sky_scene_state.uniform_set);
  7384. }
  7385. if (!low_end) {
  7386. RD::get_singleton()->free(default_giprobe_buffer);
  7387. RD::get_singleton()->free(gi_probe_lights_uniform);
  7388. RD::get_singleton()->free(gi.sdfgi_ubo);
  7389. giprobe_debug_shader.version_free(giprobe_debug_shader_version);
  7390. giprobe_shader.version_free(giprobe_lighting_shader_version);
  7391. gi.shader.version_free(gi.shader_version);
  7392. sdfgi_shader.debug_probes.version_free(sdfgi_shader.debug_probes_shader);
  7393. sdfgi_shader.debug.version_free(sdfgi_shader.debug_shader);
  7394. sdfgi_shader.direct_light.version_free(sdfgi_shader.direct_light_shader);
  7395. sdfgi_shader.integrate.version_free(sdfgi_shader.integrate_shader);
  7396. sdfgi_shader.preprocess.version_free(sdfgi_shader.preprocess_shader);
  7397. volumetric_fog.shader.version_free(volumetric_fog.shader_version);
  7398. RD::get_singleton()->free(volumetric_fog.params_ubo);
  7399. memdelete_arr(gi_probe_lights);
  7400. }
  7401. SkyMaterialData *md = (SkyMaterialData *)storage->material_get_data(sky_shader.default_material, RendererStorageRD::SHADER_TYPE_SKY);
  7402. sky_shader.shader.version_free(md->shader_data->version);
  7403. RD::get_singleton()->free(sky_scene_state.directional_light_buffer);
  7404. RD::get_singleton()->free(sky_scene_state.uniform_buffer);
  7405. memdelete_arr(sky_scene_state.directional_lights);
  7406. memdelete_arr(sky_scene_state.last_frame_directional_lights);
  7407. storage->free(sky_shader.default_shader);
  7408. storage->free(sky_shader.default_material);
  7409. storage->free(sky_scene_state.fog_shader);
  7410. storage->free(sky_scene_state.fog_material);
  7411. memdelete_arr(directional_penumbra_shadow_kernel);
  7412. memdelete_arr(directional_soft_shadow_kernel);
  7413. memdelete_arr(penumbra_shadow_kernel);
  7414. memdelete_arr(soft_shadow_kernel);
  7415. {
  7416. RD::get_singleton()->free(cluster.directional_light_buffer);
  7417. RD::get_singleton()->free(cluster.omni_light_buffer);
  7418. RD::get_singleton()->free(cluster.spot_light_buffer);
  7419. RD::get_singleton()->free(cluster.reflection_buffer);
  7420. RD::get_singleton()->free(cluster.decal_buffer);
  7421. memdelete_arr(cluster.directional_lights);
  7422. memdelete_arr(cluster.omni_lights);
  7423. memdelete_arr(cluster.spot_lights);
  7424. memdelete_arr(cluster.omni_light_sort);
  7425. memdelete_arr(cluster.spot_light_sort);
  7426. memdelete_arr(cluster.reflections);
  7427. memdelete_arr(cluster.reflection_sort);
  7428. memdelete_arr(cluster.decals);
  7429. memdelete_arr(cluster.decal_sort);
  7430. }
  7431. RD::get_singleton()->free(shadow_sampler);
  7432. directional_shadow_atlas_set_size(0);
  7433. cull_argument.reset(); //avoid exit error
  7434. }