rasterizer_scene_gles2.cpp 124 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533
  1. /*************************************************************************/
  2. /* rasterizer_scene_gles2.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "rasterizer_scene_gles2.h"
  31. #include "core/math/math_funcs.h"
  32. #include "core/math/transform.h"
  33. #include "core/os/os.h"
  34. #include "core/project_settings.h"
  35. #include "core/vmap.h"
  36. #include "rasterizer_canvas_gles2.h"
  37. #include "servers/visual/visual_server_raster.h"
  38. #ifndef GLES_OVER_GL
  39. #define glClearDepth glClearDepthf
  40. #endif
  41. #ifndef GLES_OVER_GL
  42. #ifdef IPHONE_ENABLED
  43. #include <OpenGLES/ES2/glext.h>
  44. //void *glResolveMultisampleFramebufferAPPLE;
  45. #define GL_READ_FRAMEBUFFER 0x8CA8
  46. #define GL_DRAW_FRAMEBUFFER 0x8CA9
  47. #endif
  48. #endif
  49. static const GLenum _cube_side_enum[6] = {
  50. GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
  51. GL_TEXTURE_CUBE_MAP_POSITIVE_X,
  52. GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
  53. GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
  54. GL_TEXTURE_CUBE_MAP_NEGATIVE_Z,
  55. GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
  56. };
  57. /* SHADOW ATLAS API */
  58. RID RasterizerSceneGLES2::shadow_atlas_create() {
  59. ShadowAtlas *shadow_atlas = memnew(ShadowAtlas);
  60. shadow_atlas->fbo = 0;
  61. shadow_atlas->depth = 0;
  62. shadow_atlas->color = 0;
  63. shadow_atlas->size = 0;
  64. shadow_atlas->smallest_subdiv = 0;
  65. for (int i = 0; i < 4; i++) {
  66. shadow_atlas->size_order[i] = i;
  67. }
  68. return shadow_atlas_owner.make_rid(shadow_atlas);
  69. }
  70. void RasterizerSceneGLES2::shadow_atlas_set_size(RID p_atlas, int p_size) {
  71. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  72. ERR_FAIL_COND(!shadow_atlas);
  73. ERR_FAIL_COND(p_size < 0);
  74. p_size = next_power_of_2(p_size);
  75. if (p_size == shadow_atlas->size)
  76. return;
  77. // erase the old atlast
  78. if (shadow_atlas->fbo) {
  79. if (storage->config.use_rgba_3d_shadows) {
  80. glDeleteRenderbuffers(1, &shadow_atlas->depth);
  81. } else {
  82. glDeleteTextures(1, &shadow_atlas->depth);
  83. }
  84. glDeleteFramebuffers(1, &shadow_atlas->fbo);
  85. if (shadow_atlas->color) {
  86. glDeleteTextures(1, &shadow_atlas->color);
  87. }
  88. shadow_atlas->fbo = 0;
  89. shadow_atlas->depth = 0;
  90. shadow_atlas->color = 0;
  91. }
  92. // erase shadow atlast references from lights
  93. for (Map<RID, uint32_t>::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) {
  94. LightInstance *li = light_instance_owner.getornull(E->key());
  95. ERR_CONTINUE(!li);
  96. li->shadow_atlases.erase(p_atlas);
  97. }
  98. shadow_atlas->shadow_owners.clear();
  99. shadow_atlas->size = p_size;
  100. if (shadow_atlas->size) {
  101. glGenFramebuffers(1, &shadow_atlas->fbo);
  102. glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo);
  103. // create a depth texture
  104. glActiveTexture(GL_TEXTURE0);
  105. if (storage->config.use_rgba_3d_shadows) {
  106. //maximum compatibility, renderbuffer and RGBA shadow
  107. glGenRenderbuffers(1, &shadow_atlas->depth);
  108. glBindRenderbuffer(GL_RENDERBUFFER, directional_shadow.depth);
  109. glRenderbufferStorage(GL_RENDERBUFFER, storage->config.depth_internalformat, shadow_atlas->size, shadow_atlas->size);
  110. glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, shadow_atlas->depth);
  111. glGenTextures(1, &shadow_atlas->color);
  112. glBindTexture(GL_TEXTURE_2D, shadow_atlas->color);
  113. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, shadow_atlas->size, shadow_atlas->size, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
  114. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  115. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  116. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  117. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  118. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, shadow_atlas->color, 0);
  119. } else {
  120. //just depth texture
  121. glGenTextures(1, &shadow_atlas->depth);
  122. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  123. glTexImage2D(GL_TEXTURE_2D, 0, storage->config.depth_internalformat, shadow_atlas->size, shadow_atlas->size, 0, GL_DEPTH_COMPONENT, storage->config.depth_type, NULL);
  124. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  125. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  126. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  127. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  128. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, shadow_atlas->depth, 0);
  129. }
  130. glViewport(0, 0, shadow_atlas->size, shadow_atlas->size);
  131. glDepthMask(GL_TRUE);
  132. glClearDepth(0.0f);
  133. glClear(GL_DEPTH_BUFFER_BIT);
  134. glBindFramebuffer(GL_FRAMEBUFFER, 0);
  135. }
  136. }
  137. void RasterizerSceneGLES2::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
  138. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  139. ERR_FAIL_COND(!shadow_atlas);
  140. ERR_FAIL_INDEX(p_quadrant, 4);
  141. ERR_FAIL_INDEX(p_subdivision, 16384);
  142. uint32_t subdiv = next_power_of_2(p_subdivision);
  143. if (subdiv & 0xaaaaaaaa) { // sqrt(subdiv) must be integer
  144. subdiv <<= 1;
  145. }
  146. subdiv = int(Math::sqrt((float)subdiv));
  147. if (shadow_atlas->quadrants[p_quadrant].shadows.size() == (int)subdiv)
  148. return;
  149. // erase all data from the quadrant
  150. for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
  151. if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
  152. shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  153. LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  154. ERR_CONTINUE(!li);
  155. li->shadow_atlases.erase(p_atlas);
  156. }
  157. }
  158. shadow_atlas->quadrants[p_quadrant].shadows.resize(0);
  159. shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv);
  160. shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;
  161. // cache the smallest subdivision for faster allocations
  162. shadow_atlas->smallest_subdiv = 1 << 30;
  163. for (int i = 0; i < 4; i++) {
  164. if (shadow_atlas->quadrants[i].subdivision) {
  165. shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
  166. }
  167. }
  168. if (shadow_atlas->smallest_subdiv == 1 << 30) {
  169. shadow_atlas->smallest_subdiv = 0;
  170. }
  171. // re-sort the quadrants
  172. int swaps = 0;
  173. do {
  174. swaps = 0;
  175. for (int i = 0; i < 3; i++) {
  176. if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
  177. SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
  178. swaps++;
  179. }
  180. }
  181. } while (swaps > 0);
  182. }
  183. bool RasterizerSceneGLES2::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
  184. for (int i = p_quadrant_count - 1; i >= 0; i--) {
  185. int qidx = p_in_quadrants[i];
  186. if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
  187. return false;
  188. }
  189. // look for an empty space
  190. int sc = shadow_atlas->quadrants[qidx].shadows.size();
  191. ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw();
  192. int found_free_idx = -1; // found a free one
  193. int found_used_idx = -1; // found an existing one, must steal it
  194. uint64_t min_pass = 0; // pass of the existing one, try to use the least recently
  195. for (int j = 0; j < sc; j++) {
  196. if (!sarr[j].owner.is_valid()) {
  197. found_free_idx = j;
  198. break;
  199. }
  200. LightInstance *sli = light_instance_owner.getornull(sarr[j].owner);
  201. ERR_CONTINUE(!sli);
  202. if (sli->last_scene_pass != scene_pass) {
  203. // was just allocated, don't kill it so soon, wait a bit...
  204. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
  205. continue;
  206. }
  207. if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
  208. found_used_idx = j;
  209. min_pass = sli->last_scene_pass;
  210. }
  211. }
  212. }
  213. if (found_free_idx == -1 && found_used_idx == -1) {
  214. continue; // nothing found
  215. }
  216. if (found_free_idx == -1 && found_used_idx != -1) {
  217. found_free_idx = found_used_idx;
  218. }
  219. r_quadrant = qidx;
  220. r_shadow = found_free_idx;
  221. return true;
  222. }
  223. return false;
  224. }
  225. bool RasterizerSceneGLES2::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) {
  226. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  227. ERR_FAIL_COND_V(!shadow_atlas, false);
  228. LightInstance *li = light_instance_owner.getornull(p_light_intance);
  229. ERR_FAIL_COND_V(!li, false);
  230. if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
  231. return false;
  232. }
  233. uint32_t quad_size = shadow_atlas->size >> 1;
  234. int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));
  235. int valid_quadrants[4];
  236. int valid_quadrant_count = 0;
  237. int best_size = -1;
  238. int best_subdiv = -1;
  239. for (int i = 0; i < 4; i++) {
  240. int q = shadow_atlas->size_order[i];
  241. int sd = shadow_atlas->quadrants[q].subdivision;
  242. if (sd == 0) {
  243. continue;
  244. }
  245. int max_fit = quad_size / sd;
  246. if (best_size != -1 && max_fit > best_size) {
  247. break; // what we asked for is bigger than this.
  248. }
  249. valid_quadrants[valid_quadrant_count] = q;
  250. valid_quadrant_count++;
  251. best_subdiv = sd;
  252. if (max_fit >= desired_fit) {
  253. best_size = max_fit;
  254. }
  255. }
  256. ERR_FAIL_COND_V(valid_quadrant_count == 0, false); // no suitable block available
  257. uint64_t tick = OS::get_singleton()->get_ticks_msec();
  258. if (shadow_atlas->shadow_owners.has(p_light_intance)) {
  259. // light was already known!
  260. uint32_t key = shadow_atlas->shadow_owners[p_light_intance];
  261. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  262. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  263. bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
  264. bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version;
  265. if (!should_realloc) {
  266. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  267. return should_redraw;
  268. }
  269. int new_quadrant;
  270. int new_shadow;
  271. // find a better place
  272. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) {
  273. // found a better place
  274. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  275. if (sh->owner.is_valid()) {
  276. // it is take but invalid, so we can take it
  277. shadow_atlas->shadow_owners.erase(sh->owner);
  278. LightInstance *sli = light_instance_owner.get(sh->owner);
  279. sli->shadow_atlases.erase(p_atlas);
  280. }
  281. // erase previous
  282. shadow_atlas->quadrants[q].shadows.write[s].version = 0;
  283. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  284. sh->owner = p_light_intance;
  285. sh->alloc_tick = tick;
  286. sh->version = p_light_version;
  287. li->shadow_atlases.insert(p_atlas);
  288. // make a new key
  289. key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  290. key |= new_shadow;
  291. // update it in the map
  292. shadow_atlas->shadow_owners[p_light_intance] = key;
  293. // make it dirty, so we redraw
  294. return true;
  295. }
  296. // no better place found, so we keep the current place
  297. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  298. return should_redraw;
  299. }
  300. int new_quadrant;
  301. int new_shadow;
  302. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) {
  303. // found a better place
  304. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  305. if (sh->owner.is_valid()) {
  306. // it is take but invalid, so we can take it
  307. shadow_atlas->shadow_owners.erase(sh->owner);
  308. LightInstance *sli = light_instance_owner.get(sh->owner);
  309. sli->shadow_atlases.erase(p_atlas);
  310. }
  311. sh->owner = p_light_intance;
  312. sh->alloc_tick = tick;
  313. sh->version = p_light_version;
  314. li->shadow_atlases.insert(p_atlas);
  315. // make a new key
  316. uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  317. key |= new_shadow;
  318. // update it in the map
  319. shadow_atlas->shadow_owners[p_light_intance] = key;
  320. // make it dirty, so we redraw
  321. return true;
  322. }
  323. return false;
  324. }
  325. void RasterizerSceneGLES2::set_directional_shadow_count(int p_count) {
  326. directional_shadow.light_count = p_count;
  327. directional_shadow.current_light = 0;
  328. }
  329. int RasterizerSceneGLES2::get_directional_light_shadow_size(RID p_light_intance) {
  330. ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);
  331. int shadow_size;
  332. if (directional_shadow.light_count == 1) {
  333. shadow_size = directional_shadow.size;
  334. } else {
  335. shadow_size = directional_shadow.size / 2; //more than 4 not supported anyway
  336. }
  337. LightInstance *light_instance = light_instance_owner.getornull(p_light_intance);
  338. ERR_FAIL_COND_V(!light_instance, 0);
  339. switch (light_instance->light_ptr->directional_shadow_mode) {
  340. case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
  341. break; //none
  342. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
  343. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
  344. shadow_size /= 2;
  345. break;
  346. }
  347. return shadow_size;
  348. }
  349. //////////////////////////////////////////////////////
  350. RID RasterizerSceneGLES2::reflection_atlas_create() {
  351. return RID();
  352. }
  353. void RasterizerSceneGLES2::reflection_atlas_set_size(RID p_ref_atlas, int p_size) {
  354. }
  355. void RasterizerSceneGLES2::reflection_atlas_set_subdivision(RID p_ref_atlas, int p_subdiv) {
  356. }
  357. ////////////////////////////////////////////////////
  358. RID RasterizerSceneGLES2::reflection_probe_instance_create(RID p_probe) {
  359. RasterizerStorageGLES2::ReflectionProbe *probe = storage->reflection_probe_owner.getornull(p_probe);
  360. ERR_FAIL_COND_V(!probe, RID());
  361. ReflectionProbeInstance *rpi = memnew(ReflectionProbeInstance);
  362. rpi->probe_ptr = probe;
  363. rpi->self = reflection_probe_instance_owner.make_rid(rpi);
  364. rpi->probe = p_probe;
  365. rpi->reflection_atlas_index = -1;
  366. rpi->render_step = -1;
  367. rpi->last_pass = 0;
  368. rpi->current_resolution = 0;
  369. rpi->dirty = true;
  370. rpi->index = 0;
  371. for (int i = 0; i < 6; i++) {
  372. glGenFramebuffers(1, &rpi->fbo[i]);
  373. glGenTextures(1, &rpi->color[i]);
  374. }
  375. glGenRenderbuffers(1, &rpi->depth);
  376. rpi->cubemap = 0;
  377. //glGenTextures(1, &rpi->cubemap);
  378. return rpi->self;
  379. }
  380. void RasterizerSceneGLES2::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) {
  381. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  382. ERR_FAIL_COND(!rpi);
  383. rpi->transform = p_transform;
  384. }
  385. void RasterizerSceneGLES2::reflection_probe_release_atlas_index(RID p_instance) {
  386. }
  387. bool RasterizerSceneGLES2::reflection_probe_instance_needs_redraw(RID p_instance) {
  388. const ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  389. ERR_FAIL_COND_V(!rpi, false);
  390. bool need_redraw = rpi->probe_ptr->resolution != rpi->current_resolution || rpi->dirty || rpi->probe_ptr->update_mode == VS::REFLECTION_PROBE_UPDATE_ALWAYS;
  391. rpi->dirty = false;
  392. return need_redraw;
  393. }
  394. bool RasterizerSceneGLES2::reflection_probe_instance_has_reflection(RID p_instance) {
  395. return true;
  396. }
  397. bool RasterizerSceneGLES2::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
  398. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  399. ERR_FAIL_COND_V(!rpi, false);
  400. rpi->render_step = 0;
  401. if (rpi->probe_ptr->resolution != rpi->current_resolution) {
  402. //update cubemap if resolution changed
  403. int size = rpi->probe_ptr->resolution;
  404. rpi->current_resolution = size;
  405. GLenum internal_format = GL_RGB;
  406. GLenum format = GL_RGB;
  407. GLenum type = GL_UNSIGNED_BYTE;
  408. glActiveTexture(GL_TEXTURE0);
  409. glBindRenderbuffer(GL_RENDERBUFFER, rpi->depth);
  410. glRenderbufferStorage(GL_RENDERBUFFER, storage->config.depth_internalformat, size, size);
  411. if (rpi->cubemap != 0) {
  412. glDeleteTextures(1, &rpi->cubemap);
  413. }
  414. glGenTextures(1, &rpi->cubemap);
  415. glBindTexture(GL_TEXTURE_CUBE_MAP, rpi->cubemap);
  416. #if 1
  417. //Mobile hardware (PowerVR specially) prefers this approach, the other one kills the game
  418. for (int i = 0; i < 6; i++) {
  419. glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, size, size, 0, format, type, NULL);
  420. }
  421. glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
  422. //Generate framebuffers for rendering
  423. for (int i = 0; i < 6; i++) {
  424. glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]);
  425. glBindTexture(GL_TEXTURE_2D, rpi->color[i]);
  426. glTexImage2D(GL_TEXTURE_2D, 0, internal_format, size, size, 0, format, type, NULL);
  427. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rpi->color[i], 0);
  428. glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rpi->depth);
  429. GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
  430. ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE);
  431. }
  432. #else
  433. int lod = 0;
  434. //the approach below is fatal for powervr
  435. // Set the initial (empty) mipmaps, all need to be set for this to work in GLES2, even if they won't be used later.
  436. while (size >= 1) {
  437. for (int i = 0; i < 6; i++) {
  438. glTexImage2D(_cube_side_enum[i], lod, internal_format, size, size, 0, format, type, NULL);
  439. if (size == rpi->current_resolution) {
  440. //adjust framebuffer
  441. glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]);
  442. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _cube_side_enum[i], rpi->cubemap, 0);
  443. glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rpi->depth);
  444. #ifdef DEBUG_ENABLED
  445. GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
  446. ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE);
  447. #endif
  448. }
  449. }
  450. lod++;
  451. size >>= 1;
  452. }
  453. #endif
  454. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
  455. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
  456. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  457. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  458. glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES2::system_fbo);
  459. }
  460. return true;
  461. }
  462. bool RasterizerSceneGLES2::reflection_probe_instance_postprocess_step(RID p_instance) {
  463. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  464. ERR_FAIL_COND_V(!rpi, false);
  465. ERR_FAIL_COND_V(rpi->current_resolution == 0, false);
  466. int size = rpi->probe_ptr->resolution;
  467. {
  468. glBindBuffer(GL_ARRAY_BUFFER, 0);
  469. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
  470. glDisable(GL_CULL_FACE);
  471. glDisable(GL_DEPTH_TEST);
  472. glDisable(GL_SCISSOR_TEST);
  473. glDisable(GL_BLEND);
  474. glDepthMask(GL_FALSE);
  475. for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
  476. glDisableVertexAttribArray(i);
  477. }
  478. }
  479. glActiveTexture(GL_TEXTURE0);
  480. glBindTexture(GL_TEXTURE_CUBE_MAP, rpi->cubemap);
  481. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); //use linear, no mipmaps so it does not read from what is being written to
  482. //first of all, copy rendered textures to cubemap
  483. for (int i = 0; i < 6; i++) {
  484. glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]);
  485. glViewport(0, 0, size, size);
  486. glCopyTexSubImage2D(_cube_side_enum[i], 0, 0, 0, 0, 0, size, size);
  487. }
  488. //do filtering
  489. //vdc cache
  490. glActiveTexture(GL_TEXTURE1);
  491. glBindTexture(GL_TEXTURE_2D, storage->resources.radical_inverse_vdc_cache_tex);
  492. // now render to the framebuffer, mipmap level for mipmap level
  493. int lod = 1;
  494. size >>= 1;
  495. int mipmaps = 6;
  496. storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES2::USE_SOURCE_PANORAMA, false);
  497. storage->shaders.cubemap_filter.bind();
  498. glBindFramebuffer(GL_FRAMEBUFFER, storage->resources.mipmap_blur_fbo);
  499. //blur
  500. while (size >= 1) {
  501. glActiveTexture(GL_TEXTURE3);
  502. glBindTexture(GL_TEXTURE_2D, storage->resources.mipmap_blur_color);
  503. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, size, size, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL);
  504. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, storage->resources.mipmap_blur_color, 0);
  505. glViewport(0, 0, size, size);
  506. glActiveTexture(GL_TEXTURE0);
  507. for (int i = 0; i < 6; i++) {
  508. storage->bind_quad_array();
  509. storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::FACE_ID, i);
  510. float roughness = CLAMP(lod / (float)(mipmaps - 1), 0, 1);
  511. storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::ROUGHNESS, roughness);
  512. storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::Z_FLIP, false);
  513. glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
  514. glCopyTexSubImage2D(_cube_side_enum[i], lod, 0, 0, 0, 0, size, size);
  515. }
  516. size >>= 1;
  517. lod++;
  518. }
  519. // restore ranges
  520. glActiveTexture(GL_TEXTURE0);
  521. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
  522. glBindTexture(GL_TEXTURE_2D, 0);
  523. glActiveTexture(GL_TEXTURE3); //back to panorama
  524. glBindTexture(GL_TEXTURE_2D, 0);
  525. glActiveTexture(GL_TEXTURE1);
  526. glBindTexture(GL_TEXTURE_2D, 0);
  527. glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES2::system_fbo);
  528. return true;
  529. }
  530. /* ENVIRONMENT API */
  531. RID RasterizerSceneGLES2::environment_create() {
  532. Environment *env = memnew(Environment);
  533. return environment_owner.make_rid(env);
  534. }
  535. void RasterizerSceneGLES2::environment_set_background(RID p_env, VS::EnvironmentBG p_bg) {
  536. Environment *env = environment_owner.getornull(p_env);
  537. ERR_FAIL_COND(!env);
  538. env->bg_mode = p_bg;
  539. }
  540. void RasterizerSceneGLES2::environment_set_sky(RID p_env, RID p_sky) {
  541. Environment *env = environment_owner.getornull(p_env);
  542. ERR_FAIL_COND(!env);
  543. env->sky = p_sky;
  544. }
  545. void RasterizerSceneGLES2::environment_set_sky_custom_fov(RID p_env, float p_scale) {
  546. Environment *env = environment_owner.getornull(p_env);
  547. ERR_FAIL_COND(!env);
  548. env->sky_custom_fov = p_scale;
  549. }
  550. void RasterizerSceneGLES2::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) {
  551. Environment *env = environment_owner.getornull(p_env);
  552. ERR_FAIL_COND(!env);
  553. env->sky_orientation = p_orientation;
  554. }
  555. void RasterizerSceneGLES2::environment_set_bg_color(RID p_env, const Color &p_color) {
  556. Environment *env = environment_owner.getornull(p_env);
  557. ERR_FAIL_COND(!env);
  558. env->bg_color = p_color;
  559. }
  560. void RasterizerSceneGLES2::environment_set_bg_energy(RID p_env, float p_energy) {
  561. Environment *env = environment_owner.getornull(p_env);
  562. ERR_FAIL_COND(!env);
  563. env->bg_energy = p_energy;
  564. }
  565. void RasterizerSceneGLES2::environment_set_canvas_max_layer(RID p_env, int p_max_layer) {
  566. Environment *env = environment_owner.getornull(p_env);
  567. ERR_FAIL_COND(!env);
  568. env->canvas_max_layer = p_max_layer;
  569. }
  570. void RasterizerSceneGLES2::environment_set_ambient_light(RID p_env, const Color &p_color, float p_energy, float p_sky_contribution) {
  571. Environment *env = environment_owner.getornull(p_env);
  572. ERR_FAIL_COND(!env);
  573. env->ambient_color = p_color;
  574. env->ambient_energy = p_energy;
  575. env->ambient_sky_contribution = p_sky_contribution;
  576. }
  577. void RasterizerSceneGLES2::environment_set_dof_blur_far(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality) {
  578. Environment *env = environment_owner.getornull(p_env);
  579. ERR_FAIL_COND(!env);
  580. }
  581. void RasterizerSceneGLES2::environment_set_dof_blur_near(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality) {
  582. Environment *env = environment_owner.getornull(p_env);
  583. ERR_FAIL_COND(!env);
  584. }
  585. void RasterizerSceneGLES2::environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_bloom_threshold, VS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap, bool p_bicubic_upscale) {
  586. Environment *env = environment_owner.getornull(p_env);
  587. ERR_FAIL_COND(!env);
  588. }
  589. void RasterizerSceneGLES2::environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture) {
  590. Environment *env = environment_owner.getornull(p_env);
  591. ERR_FAIL_COND(!env);
  592. }
  593. void RasterizerSceneGLES2::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_in, float p_fade_out, float p_depth_tolerance, bool p_roughness) {
  594. Environment *env = environment_owner.getornull(p_env);
  595. ERR_FAIL_COND(!env);
  596. }
  597. void RasterizerSceneGLES2::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_radius2, float p_intensity2, float p_bias, float p_light_affect, float p_ao_channel_affect, const Color &p_color, VS::EnvironmentSSAOQuality p_quality, VisualServer::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) {
  598. Environment *env = environment_owner.getornull(p_env);
  599. ERR_FAIL_COND(!env);
  600. }
  601. void RasterizerSceneGLES2::environment_set_tonemap(RID p_env, VS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) {
  602. Environment *env = environment_owner.getornull(p_env);
  603. ERR_FAIL_COND(!env);
  604. }
  605. void RasterizerSceneGLES2::environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, RID p_ramp) {
  606. Environment *env = environment_owner.getornull(p_env);
  607. ERR_FAIL_COND(!env);
  608. }
  609. void RasterizerSceneGLES2::environment_set_fog(RID p_env, bool p_enable, const Color &p_color, const Color &p_sun_color, float p_sun_amount) {
  610. Environment *env = environment_owner.getornull(p_env);
  611. ERR_FAIL_COND(!env);
  612. env->fog_enabled = p_enable;
  613. env->fog_color = p_color;
  614. env->fog_sun_color = p_sun_color;
  615. env->fog_sun_amount = p_sun_amount;
  616. }
  617. void RasterizerSceneGLES2::environment_set_fog_depth(RID p_env, bool p_enable, float p_depth_begin, float p_depth_end, float p_depth_curve, bool p_transmit, float p_transmit_curve) {
  618. Environment *env = environment_owner.getornull(p_env);
  619. ERR_FAIL_COND(!env);
  620. env->fog_depth_enabled = p_enable;
  621. env->fog_depth_begin = p_depth_begin;
  622. env->fog_depth_end = p_depth_end;
  623. env->fog_depth_curve = p_depth_curve;
  624. env->fog_transmit_enabled = p_transmit;
  625. env->fog_transmit_curve = p_transmit_curve;
  626. }
  627. void RasterizerSceneGLES2::environment_set_fog_height(RID p_env, bool p_enable, float p_min_height, float p_max_height, float p_height_curve) {
  628. Environment *env = environment_owner.getornull(p_env);
  629. ERR_FAIL_COND(!env);
  630. env->fog_height_enabled = p_enable;
  631. env->fog_height_min = p_min_height;
  632. env->fog_height_max = p_max_height;
  633. env->fog_height_curve = p_height_curve;
  634. }
  635. bool RasterizerSceneGLES2::is_environment(RID p_env) {
  636. return environment_owner.owns(p_env);
  637. }
  638. VS::EnvironmentBG RasterizerSceneGLES2::environment_get_background(RID p_env) {
  639. const Environment *env = environment_owner.getornull(p_env);
  640. ERR_FAIL_COND_V(!env, VS::ENV_BG_MAX);
  641. return env->bg_mode;
  642. }
  643. int RasterizerSceneGLES2::environment_get_canvas_max_layer(RID p_env) {
  644. const Environment *env = environment_owner.getornull(p_env);
  645. ERR_FAIL_COND_V(!env, -1);
  646. return env->canvas_max_layer;
  647. }
  648. RID RasterizerSceneGLES2::light_instance_create(RID p_light) {
  649. LightInstance *light_instance = memnew(LightInstance);
  650. light_instance->last_scene_pass = 0;
  651. light_instance->light = p_light;
  652. light_instance->light_ptr = storage->light_owner.getornull(p_light);
  653. light_instance->light_index = 0xFFFF;
  654. ERR_FAIL_COND_V(!light_instance->light_ptr, RID());
  655. light_instance->self = light_instance_owner.make_rid(light_instance);
  656. return light_instance->self;
  657. }
  658. void RasterizerSceneGLES2::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) {
  659. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  660. ERR_FAIL_COND(!light_instance);
  661. light_instance->transform = p_transform;
  662. }
  663. void RasterizerSceneGLES2::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale) {
  664. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  665. ERR_FAIL_COND(!light_instance);
  666. if (light_instance->light_ptr->type != VS::LIGHT_DIRECTIONAL) {
  667. p_pass = 0;
  668. }
  669. ERR_FAIL_INDEX(p_pass, 4);
  670. light_instance->shadow_transform[p_pass].camera = p_projection;
  671. light_instance->shadow_transform[p_pass].transform = p_transform;
  672. light_instance->shadow_transform[p_pass].farplane = p_far;
  673. light_instance->shadow_transform[p_pass].split = p_split;
  674. light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
  675. }
  676. void RasterizerSceneGLES2::light_instance_mark_visible(RID p_light_instance) {
  677. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  678. ERR_FAIL_COND(!light_instance);
  679. light_instance->last_scene_pass = scene_pass;
  680. }
  681. //////////////////////
  682. RID RasterizerSceneGLES2::gi_probe_instance_create() {
  683. return RID();
  684. }
  685. void RasterizerSceneGLES2::gi_probe_instance_set_light_data(RID p_probe, RID p_base, RID p_data) {
  686. }
  687. void RasterizerSceneGLES2::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) {
  688. }
  689. void RasterizerSceneGLES2::gi_probe_instance_set_bounds(RID p_probe, const Vector3 &p_bounds) {
  690. }
  691. ////////////////////////////
  692. ////////////////////////////
  693. ////////////////////////////
  694. void RasterizerSceneGLES2::_add_geometry(RasterizerStorageGLES2::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES2::GeometryOwner *p_owner, int p_material, bool p_depth_pass, bool p_shadow_pass) {
  695. RasterizerStorageGLES2::Material *material = NULL;
  696. RID material_src;
  697. if (p_instance->material_override.is_valid()) {
  698. material_src = p_instance->material_override;
  699. } else if (p_material >= 0) {
  700. material_src = p_instance->materials[p_material];
  701. } else {
  702. material_src = p_geometry->material;
  703. }
  704. if (material_src.is_valid()) {
  705. material = storage->material_owner.getornull(material_src);
  706. if (!material->shader || !material->shader->valid) {
  707. material = NULL;
  708. }
  709. }
  710. if (!material) {
  711. material = storage->material_owner.getptr(default_material);
  712. }
  713. ERR_FAIL_COND(!material);
  714. _add_geometry_with_material(p_geometry, p_instance, p_owner, material, p_depth_pass, p_shadow_pass);
  715. while (material->next_pass.is_valid()) {
  716. material = storage->material_owner.getornull(material->next_pass);
  717. if (!material || !material->shader || !material->shader->valid) {
  718. break;
  719. }
  720. _add_geometry_with_material(p_geometry, p_instance, p_owner, material, p_depth_pass, p_shadow_pass);
  721. }
  722. }
  723. void RasterizerSceneGLES2::_add_geometry_with_material(RasterizerStorageGLES2::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES2::GeometryOwner *p_owner, RasterizerStorageGLES2::Material *p_material, bool p_depth_pass, bool p_shadow_pass) {
  724. bool has_base_alpha = (p_material->shader->spatial.uses_alpha && !p_material->shader->spatial.uses_alpha_scissor) || p_material->shader->spatial.uses_screen_texture || p_material->shader->spatial.uses_depth_texture;
  725. bool has_blend_alpha = p_material->shader->spatial.blend_mode != RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MIX;
  726. bool has_alpha = has_base_alpha || has_blend_alpha;
  727. bool mirror = p_instance->mirror;
  728. if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_DISABLED) {
  729. mirror = false;
  730. } else if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_FRONT) {
  731. mirror = !mirror;
  732. }
  733. //if (p_material->shader->spatial.uses_sss) {
  734. // state.used_sss = true;
  735. //}
  736. if (p_material->shader->spatial.uses_screen_texture) {
  737. state.used_screen_texture = true;
  738. }
  739. if (p_depth_pass) {
  740. if (has_blend_alpha || p_material->shader->spatial.uses_depth_texture || (has_base_alpha && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS))
  741. return; //bye
  742. if (!p_material->shader->spatial.uses_alpha_scissor && !p_material->shader->spatial.writes_modelview_or_projection && !p_material->shader->spatial.uses_vertex && !p_material->shader->spatial.uses_discard && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
  743. //shader does not use discard and does not write a vertex position, use generic material
  744. if (p_instance->cast_shadows == VS::SHADOW_CASTING_SETTING_DOUBLE_SIDED) {
  745. p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material_twosided : default_material_twosided);
  746. mirror = false;
  747. } else {
  748. p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material : default_material);
  749. }
  750. }
  751. has_alpha = false;
  752. }
  753. RenderList::Element *e = (has_alpha || p_material->shader->spatial.no_depth_test) ? render_list.add_alpha_element() : render_list.add_element();
  754. if (!e) {
  755. return;
  756. }
  757. e->geometry = p_geometry;
  758. e->material = p_material;
  759. e->instance = p_instance;
  760. e->owner = p_owner;
  761. e->sort_key = 0;
  762. e->depth_key = 0;
  763. e->use_accum = false;
  764. e->light_index = RenderList::MAX_LIGHTS;
  765. e->use_accum_ptr = &e->use_accum;
  766. e->instancing = (e->instance->base_type == VS::INSTANCE_MULTIMESH) ? 1 : 0;
  767. e->front_facing = false;
  768. if (e->geometry->last_pass != render_pass) {
  769. e->geometry->last_pass = render_pass;
  770. e->geometry->index = current_geometry_index++;
  771. }
  772. e->geometry_index = e->geometry->index;
  773. if (e->material->last_pass != render_pass) {
  774. e->material->last_pass = render_pass;
  775. e->material->index = current_material_index++;
  776. if (e->material->shader->last_pass != render_pass) {
  777. e->material->shader->index = current_shader_index++;
  778. }
  779. }
  780. e->material_index = e->material->index;
  781. if (mirror) {
  782. e->front_facing = true;
  783. }
  784. e->refprobe_0_index = RenderList::MAX_REFLECTION_PROBES; //refprobe disabled by default
  785. e->refprobe_1_index = RenderList::MAX_REFLECTION_PROBES; //refprobe disabled by default
  786. if (!p_depth_pass) {
  787. e->depth_layer = e->instance->depth_layer;
  788. e->priority = p_material->render_priority;
  789. if (has_alpha && p_material->shader->spatial.depth_draw_mode == RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
  790. //add element to opaque
  791. RenderList::Element *eo = render_list.add_element();
  792. *eo = *e;
  793. eo->use_accum_ptr = &eo->use_accum;
  794. }
  795. int rpsize = e->instance->reflection_probe_instances.size();
  796. if (rpsize > 0) {
  797. bool first = true;
  798. rpsize = MIN(rpsize, 2); //more than 2 per object are not supported, this keeps it stable
  799. for (int i = 0; i < rpsize; i++) {
  800. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(e->instance->reflection_probe_instances[i]);
  801. if (rpi->last_pass != render_pass) {
  802. continue;
  803. }
  804. if (first) {
  805. e->refprobe_0_index = rpi->index;
  806. first = false;
  807. } else {
  808. e->refprobe_1_index = rpi->index;
  809. break;
  810. }
  811. }
  812. /* if (e->refprobe_0_index > e->refprobe_1_index) { //if both are valid, swap them to keep order as best as possible
  813. uint64_t tmp = e->refprobe_0_index;
  814. e->refprobe_0_index = e->refprobe_1_index;
  815. e->refprobe_1_index = tmp;
  816. }*/
  817. }
  818. //add directional lights
  819. if (p_material->shader->spatial.unshaded) {
  820. e->light_mode = LIGHTMODE_UNSHADED;
  821. } else {
  822. bool copy = false;
  823. for (int i = 0; i < render_directional_lights; i++) {
  824. if (copy) {
  825. RenderList::Element *e2 = has_alpha ? render_list.add_alpha_element() : render_list.add_element();
  826. if (!e2) {
  827. break;
  828. }
  829. *e2 = *e; //this includes accum ptr :)
  830. e = e2;
  831. }
  832. //directional sort key
  833. e->light_type1 = 0;
  834. e->light_type2 = 1;
  835. e->light_index = i;
  836. copy = true;
  837. }
  838. //add omni / spots
  839. for (int i = 0; i < e->instance->light_instances.size(); i++) {
  840. LightInstance *li = light_instance_owner.getornull(e->instance->light_instances[i]);
  841. if (li->light_index >= render_light_instance_count) {
  842. continue; // too many
  843. }
  844. if (copy) {
  845. RenderList::Element *e2 = has_alpha ? render_list.add_alpha_element() : render_list.add_element();
  846. if (!e2) {
  847. break;
  848. }
  849. *e2 = *e; //this includes accum ptr :)
  850. e = e2;
  851. }
  852. //directional sort key
  853. e->light_type1 = 1;
  854. e->light_type2 = li->light_ptr->type == VisualServer::LIGHT_OMNI ? 0 : 1;
  855. e->light_index = li->light_index;
  856. copy = true;
  857. }
  858. if (e->instance->lightmap.is_valid()) {
  859. e->light_mode = LIGHTMODE_LIGHTMAP;
  860. } else if (!e->instance->lightmap_capture_data.empty()) {
  861. e->light_mode = LIGHTMODE_LIGHTMAP_CAPTURE;
  862. } else {
  863. e->light_mode = LIGHTMODE_NORMAL;
  864. }
  865. }
  866. }
  867. // do not add anything here, as lights are duplicated elements..
  868. if (p_material->shader->spatial.uses_time) {
  869. VisualServerRaster::redraw_request();
  870. }
  871. }
  872. void RasterizerSceneGLES2::_copy_texture_to_front_buffer(GLuint p_texture) {
  873. //copy to front buffer
  874. glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo);
  875. glDepthMask(GL_FALSE);
  876. glDisable(GL_DEPTH_TEST);
  877. glDisable(GL_CULL_FACE);
  878. glDisable(GL_BLEND);
  879. glDepthFunc(GL_LEQUAL);
  880. glColorMask(1, 1, 1, 1);
  881. glActiveTexture(GL_TEXTURE0);
  882. glBindTexture(GL_TEXTURE_2D, p_texture);
  883. glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height);
  884. storage->shaders.copy.bind();
  885. storage->bind_quad_array();
  886. glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
  887. glBindBuffer(GL_ARRAY_BUFFER, 0);
  888. }
  889. void RasterizerSceneGLES2::_fill_render_list(InstanceBase **p_cull_result, int p_cull_count, bool p_depth_pass, bool p_shadow_pass) {
  890. render_pass++;
  891. current_material_index = 0;
  892. current_geometry_index = 0;
  893. current_light_index = 0;
  894. current_refprobe_index = 0;
  895. current_shader_index = 0;
  896. for (int i = 0; i < p_cull_count; i++) {
  897. InstanceBase *instance = p_cull_result[i];
  898. switch (instance->base_type) {
  899. case VS::INSTANCE_MESH: {
  900. RasterizerStorageGLES2::Mesh *mesh = storage->mesh_owner.getornull(instance->base);
  901. ERR_CONTINUE(!mesh);
  902. int num_surfaces = mesh->surfaces.size();
  903. for (int j = 0; j < num_surfaces; j++) {
  904. int material_index = instance->materials[j].is_valid() ? j : -1;
  905. RasterizerStorageGLES2::Surface *surface = mesh->surfaces[j];
  906. _add_geometry(surface, instance, NULL, material_index, p_depth_pass, p_shadow_pass);
  907. }
  908. } break;
  909. case VS::INSTANCE_MULTIMESH: {
  910. RasterizerStorageGLES2::MultiMesh *multi_mesh = storage->multimesh_owner.getptr(instance->base);
  911. ERR_CONTINUE(!multi_mesh);
  912. if (multi_mesh->size == 0 || multi_mesh->visible_instances == 0)
  913. continue;
  914. RasterizerStorageGLES2::Mesh *mesh = storage->mesh_owner.getptr(multi_mesh->mesh);
  915. if (!mesh)
  916. continue;
  917. int ssize = mesh->surfaces.size();
  918. for (int j = 0; j < ssize; j++) {
  919. RasterizerStorageGLES2::Surface *s = mesh->surfaces[j];
  920. _add_geometry(s, instance, multi_mesh, -1, p_depth_pass, p_shadow_pass);
  921. }
  922. } break;
  923. case VS::INSTANCE_IMMEDIATE: {
  924. RasterizerStorageGLES2::Immediate *im = storage->immediate_owner.getptr(instance->base);
  925. ERR_CONTINUE(!im);
  926. _add_geometry(im, instance, NULL, -1, p_depth_pass, p_shadow_pass);
  927. } break;
  928. default: {
  929. }
  930. }
  931. }
  932. }
  933. static const GLenum gl_primitive[] = {
  934. GL_POINTS,
  935. GL_LINES,
  936. GL_LINE_STRIP,
  937. GL_LINE_LOOP,
  938. GL_TRIANGLES,
  939. GL_TRIANGLE_STRIP,
  940. GL_TRIANGLE_FAN
  941. };
  942. void RasterizerSceneGLES2::_set_cull(bool p_front, bool p_disabled, bool p_reverse_cull) {
  943. bool front = p_front;
  944. if (p_reverse_cull)
  945. front = !front;
  946. if (p_disabled != state.cull_disabled) {
  947. if (p_disabled)
  948. glDisable(GL_CULL_FACE);
  949. else
  950. glEnable(GL_CULL_FACE);
  951. state.cull_disabled = p_disabled;
  952. }
  953. if (front != state.cull_front) {
  954. glCullFace(front ? GL_FRONT : GL_BACK);
  955. state.cull_front = front;
  956. }
  957. }
  958. bool RasterizerSceneGLES2::_setup_material(RasterizerStorageGLES2::Material *p_material, bool p_alpha_pass, Size2i p_skeleton_tex_size) {
  959. // material parameters
  960. state.scene_shader.set_custom_shader(p_material->shader->custom_code_id);
  961. if (p_material->shader->spatial.uses_screen_texture && storage->frame.current_rt) {
  962. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4);
  963. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->copy_screen_effect.color);
  964. }
  965. if (p_material->shader->spatial.uses_depth_texture && storage->frame.current_rt) {
  966. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4);
  967. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth);
  968. }
  969. bool shader_rebind = state.scene_shader.bind();
  970. if (p_material->shader->spatial.no_depth_test || p_material->shader->spatial.uses_depth_texture) {
  971. glDisable(GL_DEPTH_TEST);
  972. } else {
  973. glEnable(GL_DEPTH_TEST);
  974. }
  975. switch (p_material->shader->spatial.depth_draw_mode) {
  976. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS:
  977. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_OPAQUE: {
  978. glDepthMask(!p_alpha_pass && !p_material->shader->spatial.uses_depth_texture);
  979. } break;
  980. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALWAYS: {
  981. glDepthMask(GL_TRUE && !p_material->shader->spatial.uses_depth_texture);
  982. } break;
  983. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_NEVER: {
  984. glDepthMask(GL_FALSE);
  985. } break;
  986. }
  987. int tc = p_material->textures.size();
  988. const Pair<StringName, RID> *textures = p_material->textures.ptr();
  989. const ShaderLanguage::ShaderNode::Uniform::Hint *texture_hints = p_material->shader->texture_hints.ptr();
  990. state.scene_shader.set_uniform(SceneShaderGLES2::SKELETON_TEXTURE_SIZE, p_skeleton_tex_size);
  991. state.current_main_tex = 0;
  992. for (int i = 0; i < tc; i++) {
  993. glActiveTexture(GL_TEXTURE0 + i);
  994. RasterizerStorageGLES2::Texture *t = storage->texture_owner.getornull(textures[i].second);
  995. if (!t) {
  996. switch (texture_hints[i]) {
  997. case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO:
  998. case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK: {
  999. glBindTexture(GL_TEXTURE_2D, storage->resources.black_tex);
  1000. } break;
  1001. case ShaderLanguage::ShaderNode::Uniform::HINT_ANISO: {
  1002. glBindTexture(GL_TEXTURE_2D, storage->resources.aniso_tex);
  1003. } break;
  1004. case ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL: {
  1005. glBindTexture(GL_TEXTURE_2D, storage->resources.normal_tex);
  1006. } break;
  1007. default: {
  1008. glBindTexture(GL_TEXTURE_2D, storage->resources.white_tex);
  1009. } break;
  1010. }
  1011. continue;
  1012. }
  1013. if (t->redraw_if_visible) { //must check before proxy because this is often used with proxies
  1014. VisualServerRaster::redraw_request();
  1015. }
  1016. t = t->get_ptr();
  1017. #ifdef TOOLS_ENABLED
  1018. if (t->detect_3d) {
  1019. t->detect_3d(t->detect_3d_ud);
  1020. }
  1021. #endif
  1022. #ifdef TOOLS_ENABLED
  1023. if (t->detect_normal && texture_hints[i] == ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL) {
  1024. t->detect_normal(t->detect_normal_ud);
  1025. }
  1026. #endif
  1027. if (t->render_target)
  1028. t->render_target->used_in_frame = true;
  1029. glBindTexture(t->target, t->tex_id);
  1030. if (i == 0) {
  1031. state.current_main_tex = t->tex_id;
  1032. }
  1033. }
  1034. state.scene_shader.use_material((void *)p_material);
  1035. return shader_rebind;
  1036. }
  1037. void RasterizerSceneGLES2::_setup_geometry(RenderList::Element *p_element, RasterizerStorageGLES2::Skeleton *p_skeleton) {
  1038. switch (p_element->instance->base_type) {
  1039. case VS::INSTANCE_MESH: {
  1040. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1041. glBindBuffer(GL_ARRAY_BUFFER, s->vertex_id);
  1042. if (s->index_array_len > 0) {
  1043. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id);
  1044. }
  1045. for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
  1046. if (s->attribs[i].enabled) {
  1047. glEnableVertexAttribArray(i);
  1048. glVertexAttribPointer(s->attribs[i].index, s->attribs[i].size, s->attribs[i].type, s->attribs[i].normalized, s->attribs[i].stride, CAST_INT_TO_UCHAR_PTR(s->attribs[i].offset));
  1049. } else {
  1050. glDisableVertexAttribArray(i);
  1051. switch (i) {
  1052. case VS::ARRAY_NORMAL: {
  1053. glVertexAttrib4f(VS::ARRAY_NORMAL, 0.0, 0.0, 1, 1);
  1054. } break;
  1055. case VS::ARRAY_COLOR: {
  1056. glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1);
  1057. } break;
  1058. default: {
  1059. }
  1060. }
  1061. }
  1062. }
  1063. bool clear_skeleton_buffer = !storage->config.float_texture_supported;
  1064. if (p_skeleton) {
  1065. if (storage->config.float_texture_supported) {
  1066. //use float texture workflow
  1067. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 1);
  1068. glBindTexture(GL_TEXTURE_2D, p_skeleton->tex_id);
  1069. } else {
  1070. //use transform buffer workflow
  1071. ERR_FAIL_COND(p_skeleton->use_2d);
  1072. PoolVector<float> &transform_buffer = storage->resources.skeleton_transform_cpu_buffer;
  1073. if (!s->attribs[VS::ARRAY_BONES].enabled || !s->attribs[VS::ARRAY_WEIGHTS].enabled) {
  1074. break; // the whole instance has a skeleton, but this surface is not affected by it.
  1075. }
  1076. // 3 * vec4 per vertex
  1077. if (transform_buffer.size() < s->array_len * 12) {
  1078. transform_buffer.resize(s->array_len * 12);
  1079. }
  1080. const size_t bones_offset = s->attribs[VS::ARRAY_BONES].offset;
  1081. const size_t bones_stride = s->attribs[VS::ARRAY_BONES].stride;
  1082. const size_t bone_weight_offset = s->attribs[VS::ARRAY_WEIGHTS].offset;
  1083. const size_t bone_weight_stride = s->attribs[VS::ARRAY_WEIGHTS].stride;
  1084. {
  1085. PoolVector<float>::Write write = transform_buffer.write();
  1086. float *buffer = write.ptr();
  1087. PoolVector<uint8_t>::Read vertex_array_read = s->data.read();
  1088. const uint8_t *vertex_data = vertex_array_read.ptr();
  1089. for (int i = 0; i < s->array_len; i++) {
  1090. // do magic
  1091. size_t bones[4];
  1092. float bone_weight[4];
  1093. if (s->attribs[VS::ARRAY_BONES].type == GL_UNSIGNED_BYTE) {
  1094. // read as byte
  1095. const uint8_t *bones_ptr = vertex_data + bones_offset + (i * bones_stride);
  1096. bones[0] = bones_ptr[0];
  1097. bones[1] = bones_ptr[1];
  1098. bones[2] = bones_ptr[2];
  1099. bones[3] = bones_ptr[3];
  1100. } else {
  1101. // read as short
  1102. const uint16_t *bones_ptr = (const uint16_t *)(vertex_data + bones_offset + (i * bones_stride));
  1103. bones[0] = bones_ptr[0];
  1104. bones[1] = bones_ptr[1];
  1105. bones[2] = bones_ptr[2];
  1106. bones[3] = bones_ptr[3];
  1107. }
  1108. if (s->attribs[VS::ARRAY_WEIGHTS].type == GL_FLOAT) {
  1109. // read as float
  1110. const float *weight_ptr = (const float *)(vertex_data + bone_weight_offset + (i * bone_weight_stride));
  1111. bone_weight[0] = weight_ptr[0];
  1112. bone_weight[1] = weight_ptr[1];
  1113. bone_weight[2] = weight_ptr[2];
  1114. bone_weight[3] = weight_ptr[3];
  1115. } else {
  1116. // read as half
  1117. const uint16_t *weight_ptr = (const uint16_t *)(vertex_data + bone_weight_offset + (i * bone_weight_stride));
  1118. bone_weight[0] = (weight_ptr[0] / (float)0xFFFF);
  1119. bone_weight[1] = (weight_ptr[1] / (float)0xFFFF);
  1120. bone_weight[2] = (weight_ptr[2] / (float)0xFFFF);
  1121. bone_weight[3] = (weight_ptr[3] / (float)0xFFFF);
  1122. }
  1123. Transform transform;
  1124. Transform bone_transforms[4] = {
  1125. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[0]),
  1126. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[1]),
  1127. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[2]),
  1128. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[3]),
  1129. };
  1130. transform.origin =
  1131. bone_weight[0] * bone_transforms[0].origin +
  1132. bone_weight[1] * bone_transforms[1].origin +
  1133. bone_weight[2] * bone_transforms[2].origin +
  1134. bone_weight[3] * bone_transforms[3].origin;
  1135. transform.basis =
  1136. bone_transforms[0].basis * bone_weight[0] +
  1137. bone_transforms[1].basis * bone_weight[1] +
  1138. bone_transforms[2].basis * bone_weight[2] +
  1139. bone_transforms[3].basis * bone_weight[3];
  1140. float row[3][4] = {
  1141. { transform.basis[0][0], transform.basis[0][1], transform.basis[0][2], transform.origin[0] },
  1142. { transform.basis[1][0], transform.basis[1][1], transform.basis[1][2], transform.origin[1] },
  1143. { transform.basis[2][0], transform.basis[2][1], transform.basis[2][2], transform.origin[2] },
  1144. };
  1145. size_t transform_buffer_offset = i * 12;
  1146. copymem(&buffer[transform_buffer_offset], row, sizeof(row));
  1147. }
  1148. }
  1149. storage->_update_skeleton_transform_buffer(transform_buffer, s->array_len * 12);
  1150. //enable transform buffer and bind it
  1151. glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer);
  1152. glEnableVertexAttribArray(INSTANCE_BONE_BASE + 0);
  1153. glEnableVertexAttribArray(INSTANCE_BONE_BASE + 1);
  1154. glEnableVertexAttribArray(INSTANCE_BONE_BASE + 2);
  1155. glVertexAttribPointer(INSTANCE_BONE_BASE + 0, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 0));
  1156. glVertexAttribPointer(INSTANCE_BONE_BASE + 1, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 1));
  1157. glVertexAttribPointer(INSTANCE_BONE_BASE + 2, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 2));
  1158. clear_skeleton_buffer = false;
  1159. }
  1160. }
  1161. if (clear_skeleton_buffer) {
  1162. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 0);
  1163. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 1);
  1164. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 2);
  1165. }
  1166. } break;
  1167. case VS::INSTANCE_MULTIMESH: {
  1168. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1169. glBindBuffer(GL_ARRAY_BUFFER, s->vertex_id);
  1170. if (s->index_array_len > 0) {
  1171. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id);
  1172. }
  1173. for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
  1174. if (s->attribs[i].enabled) {
  1175. glEnableVertexAttribArray(i);
  1176. glVertexAttribPointer(s->attribs[i].index, s->attribs[i].size, s->attribs[i].type, s->attribs[i].normalized, s->attribs[i].stride, CAST_INT_TO_UCHAR_PTR(s->attribs[i].offset));
  1177. } else {
  1178. glDisableVertexAttribArray(i);
  1179. switch (i) {
  1180. case VS::ARRAY_NORMAL: {
  1181. glVertexAttrib4f(VS::ARRAY_NORMAL, 0.0, 0.0, 1, 1);
  1182. } break;
  1183. case VS::ARRAY_COLOR: {
  1184. glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1);
  1185. } break;
  1186. default: {
  1187. }
  1188. }
  1189. }
  1190. }
  1191. // prepare multimesh (disable)
  1192. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 0);
  1193. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 1);
  1194. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 2);
  1195. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 3);
  1196. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 4);
  1197. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 0);
  1198. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 1);
  1199. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 2);
  1200. } break;
  1201. case VS::INSTANCE_IMMEDIATE: {
  1202. } break;
  1203. default: {
  1204. }
  1205. }
  1206. }
  1207. void RasterizerSceneGLES2::_render_geometry(RenderList::Element *p_element) {
  1208. switch (p_element->instance->base_type) {
  1209. case VS::INSTANCE_MESH: {
  1210. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1211. // drawing
  1212. if (s->index_array_len > 0) {
  1213. glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0);
  1214. storage->info.render.vertices_count += s->index_array_len;
  1215. } else {
  1216. glDrawArrays(gl_primitive[s->primitive], 0, s->array_len);
  1217. storage->info.render.vertices_count += s->array_len;
  1218. }
  1219. /*
  1220. if (p_element->instance->skeleton.is_valid() && s->attribs[VS::ARRAY_BONES].enabled && s->attribs[VS::ARRAY_WEIGHTS].enabled) {
  1221. //clean up after skeleton
  1222. glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer);
  1223. glDisableVertexAttribArray(VS::ARRAY_MAX + 0);
  1224. glDisableVertexAttribArray(VS::ARRAY_MAX + 1);
  1225. glDisableVertexAttribArray(VS::ARRAY_MAX + 2);
  1226. glVertexAttrib4f(VS::ARRAY_MAX + 0, 1, 0, 0, 0);
  1227. glVertexAttrib4f(VS::ARRAY_MAX + 1, 0, 1, 0, 0);
  1228. glVertexAttrib4f(VS::ARRAY_MAX + 2, 0, 0, 1, 0);
  1229. }
  1230. */
  1231. } break;
  1232. case VS::INSTANCE_MULTIMESH: {
  1233. RasterizerStorageGLES2::MultiMesh *multi_mesh = static_cast<RasterizerStorageGLES2::MultiMesh *>(p_element->owner);
  1234. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1235. int amount = MIN(multi_mesh->size, multi_mesh->visible_instances);
  1236. if (amount == -1) {
  1237. amount = multi_mesh->size;
  1238. }
  1239. int stride = multi_mesh->color_floats + multi_mesh->custom_data_floats + multi_mesh->xform_floats;
  1240. int color_ofs = multi_mesh->xform_floats;
  1241. int custom_data_ofs = color_ofs + multi_mesh->color_floats;
  1242. // drawing
  1243. const float *base_buffer = multi_mesh->data.ptr();
  1244. for (int i = 0; i < amount; i++) {
  1245. const float *buffer = base_buffer + i * stride;
  1246. {
  1247. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 0, &buffer[0]);
  1248. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 1, &buffer[4]);
  1249. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 2, &buffer[8]);
  1250. }
  1251. if (multi_mesh->color_floats) {
  1252. if (multi_mesh->color_format == VS::MULTIMESH_COLOR_8BIT) {
  1253. uint8_t *color_data = (uint8_t *)(buffer + color_ofs);
  1254. glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 3, color_data[0] / 255.0, color_data[1] / 255.0, color_data[2] / 255.0, color_data[3] / 255.0);
  1255. } else {
  1256. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 3, buffer + color_ofs);
  1257. }
  1258. } else {
  1259. glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 3, 1.0, 1.0, 1.0, 1.0);
  1260. }
  1261. if (multi_mesh->custom_data_floats) {
  1262. if (multi_mesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) {
  1263. uint8_t *custom_data = (uint8_t *)(buffer + custom_data_ofs);
  1264. glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 4, custom_data[0] / 255.0, custom_data[1] / 255.0, custom_data[2] / 255.0, custom_data[3] / 255.0);
  1265. } else {
  1266. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 4, buffer + custom_data_ofs);
  1267. }
  1268. }
  1269. if (s->index_array_len > 0) {
  1270. glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0);
  1271. storage->info.render.vertices_count += s->index_array_len;
  1272. } else {
  1273. glDrawArrays(gl_primitive[s->primitive], 0, s->array_len);
  1274. storage->info.render.vertices_count += s->array_len;
  1275. }
  1276. }
  1277. } break;
  1278. case VS::INSTANCE_IMMEDIATE: {
  1279. const RasterizerStorageGLES2::Immediate *im = static_cast<const RasterizerStorageGLES2::Immediate *>(p_element->geometry);
  1280. if (im->building) {
  1281. return;
  1282. }
  1283. bool restore_tex = false;
  1284. glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer);
  1285. for (const List<RasterizerStorageGLES2::Immediate::Chunk>::Element *E = im->chunks.front(); E; E = E->next()) {
  1286. const RasterizerStorageGLES2::Immediate::Chunk &c = E->get();
  1287. if (c.vertices.empty()) {
  1288. continue;
  1289. }
  1290. int vertices = c.vertices.size();
  1291. uint32_t buf_ofs = 0;
  1292. storage->info.render.vertices_count += vertices;
  1293. if (c.texture.is_valid() && storage->texture_owner.owns(c.texture)) {
  1294. RasterizerStorageGLES2::Texture *t = storage->texture_owner.get(c.texture);
  1295. if (t->redraw_if_visible) {
  1296. VisualServerRaster::redraw_request();
  1297. }
  1298. t = t->get_ptr();
  1299. #ifdef TOOLS_ENABLED
  1300. if (t->detect_3d) {
  1301. t->detect_3d(t->detect_3d_ud);
  1302. }
  1303. #endif
  1304. if (t->render_target) {
  1305. t->render_target->used_in_frame = true;
  1306. }
  1307. glActiveTexture(GL_TEXTURE0);
  1308. glBindTexture(t->target, t->tex_id);
  1309. restore_tex = true;
  1310. } else if (restore_tex) {
  1311. glActiveTexture(GL_TEXTURE0);
  1312. glBindTexture(GL_TEXTURE_2D, state.current_main_tex);
  1313. restore_tex = false;
  1314. }
  1315. if (!c.normals.empty()) {
  1316. glEnableVertexAttribArray(VS::ARRAY_NORMAL);
  1317. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector3) * vertices, c.normals.ptr());
  1318. glVertexAttribPointer(VS::ARRAY_NORMAL, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3), CAST_INT_TO_UCHAR_PTR(buf_ofs));
  1319. buf_ofs += sizeof(Vector3) * vertices;
  1320. } else {
  1321. glDisableVertexAttribArray(VS::ARRAY_NORMAL);
  1322. }
  1323. if (!c.tangents.empty()) {
  1324. glEnableVertexAttribArray(VS::ARRAY_TANGENT);
  1325. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Plane) * vertices, c.tangents.ptr());
  1326. glVertexAttribPointer(VS::ARRAY_TANGENT, 4, GL_FLOAT, GL_FALSE, sizeof(Plane), CAST_INT_TO_UCHAR_PTR(buf_ofs));
  1327. buf_ofs += sizeof(Plane) * vertices;
  1328. } else {
  1329. glDisableVertexAttribArray(VS::ARRAY_TANGENT);
  1330. }
  1331. if (!c.colors.empty()) {
  1332. glEnableVertexAttribArray(VS::ARRAY_COLOR);
  1333. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Color) * vertices, c.colors.ptr());
  1334. glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, GL_FALSE, sizeof(Color), CAST_INT_TO_UCHAR_PTR(buf_ofs));
  1335. buf_ofs += sizeof(Color) * vertices;
  1336. } else {
  1337. glDisableVertexAttribArray(VS::ARRAY_COLOR);
  1338. }
  1339. if (!c.uvs.empty()) {
  1340. glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
  1341. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector2) * vertices, c.uvs.ptr());
  1342. glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(Vector2), CAST_INT_TO_UCHAR_PTR(buf_ofs));
  1343. buf_ofs += sizeof(Vector2) * vertices;
  1344. } else {
  1345. glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
  1346. }
  1347. if (!c.uv2s.empty()) {
  1348. glEnableVertexAttribArray(VS::ARRAY_TEX_UV2);
  1349. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector2) * vertices, c.uv2s.ptr());
  1350. glVertexAttribPointer(VS::ARRAY_TEX_UV2, 2, GL_FLOAT, GL_FALSE, sizeof(Vector2), CAST_INT_TO_UCHAR_PTR(buf_ofs));
  1351. buf_ofs += sizeof(Vector2) * vertices;
  1352. } else {
  1353. glDisableVertexAttribArray(VS::ARRAY_TEX_UV2);
  1354. }
  1355. glEnableVertexAttribArray(VS::ARRAY_VERTEX);
  1356. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector3) * vertices, c.vertices.ptr());
  1357. glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3), CAST_INT_TO_UCHAR_PTR(buf_ofs));
  1358. glDrawArrays(gl_primitive[c.primitive], 0, c.vertices.size());
  1359. }
  1360. if (restore_tex) {
  1361. glActiveTexture(GL_TEXTURE0);
  1362. glBindTexture(GL_TEXTURE_2D, state.current_main_tex);
  1363. restore_tex = false;
  1364. }
  1365. } break;
  1366. default: {
  1367. }
  1368. }
  1369. }
  1370. void RasterizerSceneGLES2::_setup_light_type(LightInstance *p_light, ShadowAtlas *shadow_atlas) {
  1371. //turn off all by default
  1372. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, false);
  1373. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, false);
  1374. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, false);
  1375. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, false);
  1376. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_DIRECTIONAL, false);
  1377. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_OMNI, false);
  1378. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_SPOT, false);
  1379. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, false);
  1380. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, false);
  1381. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, false);
  1382. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, false);
  1383. if (!p_light) { //no light, return off
  1384. return;
  1385. }
  1386. //turn on lighting
  1387. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, true);
  1388. switch (p_light->light_ptr->type) {
  1389. case VS::LIGHT_DIRECTIONAL: {
  1390. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_DIRECTIONAL, true);
  1391. switch (p_light->light_ptr->directional_shadow_mode) {
  1392. case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: {
  1393. //no need
  1394. } break;
  1395. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: {
  1396. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, true);
  1397. } break;
  1398. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: {
  1399. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, true);
  1400. } break;
  1401. }
  1402. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, p_light->light_ptr->directional_blend_splits);
  1403. if (!state.render_no_shadows && p_light->light_ptr->shadow) {
  1404. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true);
  1405. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3);
  1406. if (storage->config.use_rgba_3d_shadows) {
  1407. glBindTexture(GL_TEXTURE_2D, directional_shadow.color);
  1408. } else {
  1409. glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
  1410. }
  1411. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5);
  1412. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13);
  1413. }
  1414. } break;
  1415. case VS::LIGHT_OMNI: {
  1416. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_OMNI, true);
  1417. if (!state.render_no_shadows && shadow_atlas && p_light->light_ptr->shadow) {
  1418. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true);
  1419. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3);
  1420. if (storage->config.use_rgba_3d_shadows) {
  1421. glBindTexture(GL_TEXTURE_2D, shadow_atlas->color);
  1422. } else {
  1423. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  1424. }
  1425. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5);
  1426. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13);
  1427. }
  1428. } break;
  1429. case VS::LIGHT_SPOT: {
  1430. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_SPOT, true);
  1431. if (!state.render_no_shadows && shadow_atlas && p_light->light_ptr->shadow) {
  1432. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true);
  1433. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3);
  1434. if (storage->config.use_rgba_3d_shadows) {
  1435. glBindTexture(GL_TEXTURE_2D, shadow_atlas->color);
  1436. } else {
  1437. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  1438. }
  1439. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5);
  1440. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13);
  1441. }
  1442. } break;
  1443. }
  1444. }
  1445. void RasterizerSceneGLES2::_setup_light(LightInstance *light, ShadowAtlas *shadow_atlas, const Transform &p_view_transform) {
  1446. RasterizerStorageGLES2::Light *light_ptr = light->light_ptr;
  1447. //common parameters
  1448. float energy = light_ptr->param[VS::LIGHT_PARAM_ENERGY];
  1449. float specular = light_ptr->param[VS::LIGHT_PARAM_SPECULAR];
  1450. float sign = light_ptr->negative ? -1 : 1;
  1451. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPECULAR, specular);
  1452. Color color = light_ptr->color * sign * energy * Math_PI;
  1453. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_COLOR, color);
  1454. Color shadow_color = light_ptr->shadow_color.to_linear();
  1455. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_COLOR, shadow_color);
  1456. //specific parameters
  1457. switch (light_ptr->type) {
  1458. case VS::LIGHT_DIRECTIONAL: {
  1459. //not using inverse for performance, view should be normalized anyway
  1460. Vector3 direction = p_view_transform.basis.xform_inv(light->transform.basis.xform(Vector3(0, 0, -1))).normalized();
  1461. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_DIRECTION, direction);
  1462. CameraMatrix matrices[4];
  1463. if (!state.render_no_shadows && light_ptr->shadow && directional_shadow.depth) {
  1464. int shadow_count = 0;
  1465. Color split_offsets;
  1466. switch (light_ptr->directional_shadow_mode) {
  1467. case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: {
  1468. shadow_count = 1;
  1469. } break;
  1470. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: {
  1471. shadow_count = 2;
  1472. } break;
  1473. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: {
  1474. shadow_count = 4;
  1475. } break;
  1476. }
  1477. for (int k = 0; k < shadow_count; k++) {
  1478. uint32_t x = light->directional_rect.position.x;
  1479. uint32_t y = light->directional_rect.position.y;
  1480. uint32_t width = light->directional_rect.size.x;
  1481. uint32_t height = light->directional_rect.size.y;
  1482. if (light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  1483. width /= 2;
  1484. height /= 2;
  1485. if (k == 0) {
  1486. } else if (k == 1) {
  1487. x += width;
  1488. } else if (k == 2) {
  1489. y += height;
  1490. } else if (k == 3) {
  1491. x += width;
  1492. y += height;
  1493. }
  1494. } else if (light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  1495. height /= 2;
  1496. if (k == 0) {
  1497. } else {
  1498. y += height;
  1499. }
  1500. }
  1501. split_offsets[k] = light->shadow_transform[k].split;
  1502. Transform modelview = (p_view_transform.inverse() * light->shadow_transform[k].transform).affine_inverse();
  1503. CameraMatrix bias;
  1504. bias.set_light_bias();
  1505. CameraMatrix rectm;
  1506. Rect2 atlas_rect = Rect2(float(x) / directional_shadow.size, float(y) / directional_shadow.size, float(width) / directional_shadow.size, float(height) / directional_shadow.size);
  1507. rectm.set_light_atlas_rect(atlas_rect);
  1508. CameraMatrix shadow_mtx = rectm * bias * light->shadow_transform[k].camera * modelview;
  1509. matrices[k] = shadow_mtx;
  1510. /*Color light_clamp;
  1511. light_clamp[0] = atlas_rect.position.x;
  1512. light_clamp[1] = atlas_rect.position.y;
  1513. light_clamp[2] = atlas_rect.size.x;
  1514. light_clamp[3] = atlas_rect.size.y;*/
  1515. }
  1516. // state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp);
  1517. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / directional_shadow.size, 1.0 / directional_shadow.size));
  1518. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPLIT_OFFSETS, split_offsets);
  1519. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, matrices[0]);
  1520. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX2, matrices[1]);
  1521. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX3, matrices[2]);
  1522. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX4, matrices[3]);
  1523. }
  1524. } break;
  1525. case VS::LIGHT_OMNI: {
  1526. Vector3 position = p_view_transform.xform_inv(light->transform.origin);
  1527. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_POSITION, position);
  1528. float range = light_ptr->param[VS::LIGHT_PARAM_RANGE];
  1529. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_RANGE, range);
  1530. float attenuation = light_ptr->param[VS::LIGHT_PARAM_ATTENUATION];
  1531. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ATTENUATION, attenuation);
  1532. if (!state.render_no_shadows && light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(light->self)) {
  1533. uint32_t key = shadow_atlas->shadow_owners[light->self];
  1534. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03;
  1535. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  1536. ERR_BREAK(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size());
  1537. uint32_t atlas_size = shadow_atlas->size;
  1538. uint32_t quadrant_size = atlas_size >> 1;
  1539. uint32_t x = (quadrant & 1) * quadrant_size;
  1540. uint32_t y = (quadrant >> 1) * quadrant_size;
  1541. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  1542. x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1543. y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1544. uint32_t width = shadow_size;
  1545. uint32_t height = shadow_size;
  1546. if (light->light_ptr->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
  1547. height /= 2;
  1548. } else {
  1549. width /= 2;
  1550. }
  1551. Transform proj = (p_view_transform.inverse() * light->transform).inverse();
  1552. Color light_clamp;
  1553. light_clamp[0] = float(x) / atlas_size;
  1554. light_clamp[1] = float(y) / atlas_size;
  1555. light_clamp[2] = float(width) / atlas_size;
  1556. light_clamp[3] = float(height) / atlas_size;
  1557. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / shadow_atlas->size, 1.0 / shadow_atlas->size));
  1558. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, proj);
  1559. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp);
  1560. }
  1561. } break;
  1562. case VS::LIGHT_SPOT: {
  1563. Vector3 position = p_view_transform.xform_inv(light->transform.origin);
  1564. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_POSITION, position);
  1565. Vector3 direction = p_view_transform.inverse().basis.xform(light->transform.basis.xform(Vector3(0, 0, -1))).normalized();
  1566. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_DIRECTION, direction);
  1567. float attenuation = light_ptr->param[VS::LIGHT_PARAM_ATTENUATION];
  1568. float range = light_ptr->param[VS::LIGHT_PARAM_RANGE];
  1569. float spot_attenuation = light_ptr->param[VS::LIGHT_PARAM_SPOT_ATTENUATION];
  1570. float angle = light_ptr->param[VS::LIGHT_PARAM_SPOT_ANGLE];
  1571. angle = Math::cos(Math::deg2rad(angle));
  1572. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ATTENUATION, attenuation);
  1573. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_ATTENUATION, spot_attenuation);
  1574. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_RANGE, spot_attenuation);
  1575. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_ANGLE, angle);
  1576. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_RANGE, range);
  1577. if (!state.render_no_shadows && light->light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(light->self)) {
  1578. uint32_t key = shadow_atlas->shadow_owners[light->self];
  1579. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03;
  1580. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  1581. ERR_BREAK(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size());
  1582. uint32_t atlas_size = shadow_atlas->size;
  1583. uint32_t quadrant_size = atlas_size >> 1;
  1584. uint32_t x = (quadrant & 1) * quadrant_size;
  1585. uint32_t y = (quadrant >> 1) * quadrant_size;
  1586. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  1587. x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1588. y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1589. uint32_t width = shadow_size;
  1590. uint32_t height = shadow_size;
  1591. Rect2 rect(float(x) / atlas_size, float(y) / atlas_size, float(width) / atlas_size, float(height) / atlas_size);
  1592. Color light_clamp;
  1593. light_clamp[0] = rect.position.x;
  1594. light_clamp[1] = rect.position.y;
  1595. light_clamp[2] = rect.size.x;
  1596. light_clamp[3] = rect.size.y;
  1597. Transform modelview = (p_view_transform.inverse() * light->transform).inverse();
  1598. CameraMatrix bias;
  1599. bias.set_light_bias();
  1600. CameraMatrix rectm;
  1601. rectm.set_light_atlas_rect(rect);
  1602. CameraMatrix shadow_matrix = rectm * bias * light->shadow_transform[0].camera * modelview;
  1603. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / shadow_atlas->size, 1.0 / shadow_atlas->size));
  1604. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, shadow_matrix);
  1605. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp);
  1606. }
  1607. } break;
  1608. default: {
  1609. }
  1610. }
  1611. }
  1612. void RasterizerSceneGLES2::_setup_refprobes(ReflectionProbeInstance *p_refprobe1, ReflectionProbeInstance *p_refprobe2, const Transform &p_view_transform, Environment *p_env) {
  1613. if (p_refprobe1) {
  1614. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_USE_BOX_PROJECT, p_refprobe1->probe_ptr->box_projection);
  1615. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_BOX_EXTENTS, p_refprobe1->probe_ptr->extents);
  1616. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_BOX_OFFSET, p_refprobe1->probe_ptr->origin_offset);
  1617. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_EXTERIOR, !p_refprobe1->probe_ptr->interior);
  1618. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_INTENSITY, p_refprobe1->probe_ptr->intensity);
  1619. Color ambient;
  1620. if (p_refprobe1->probe_ptr->interior) {
  1621. ambient = p_refprobe1->probe_ptr->interior_ambient * p_refprobe1->probe_ptr->interior_ambient_energy;
  1622. ambient.a = p_refprobe1->probe_ptr->interior_ambient_probe_contrib;
  1623. } else if (p_env) {
  1624. ambient = p_env->ambient_color * p_env->ambient_energy;
  1625. ambient.a = p_env->ambient_sky_contribution;
  1626. }
  1627. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_AMBIENT, ambient);
  1628. Transform proj = (p_view_transform.inverse() * p_refprobe1->transform).affine_inverse();
  1629. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_LOCAL_MATRIX, proj);
  1630. }
  1631. if (p_refprobe2) {
  1632. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_USE_BOX_PROJECT, p_refprobe2->probe_ptr->box_projection);
  1633. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_BOX_EXTENTS, p_refprobe2->probe_ptr->extents);
  1634. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_BOX_OFFSET, p_refprobe2->probe_ptr->origin_offset);
  1635. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_EXTERIOR, p_refprobe2->probe_ptr->interior);
  1636. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_INTENSITY, p_refprobe2->probe_ptr->intensity);
  1637. Color ambient;
  1638. if (p_refprobe2->probe_ptr->interior) {
  1639. ambient = p_refprobe2->probe_ptr->interior_ambient * p_refprobe2->probe_ptr->interior_ambient_energy;
  1640. ambient.a = p_refprobe2->probe_ptr->interior_ambient_probe_contrib;
  1641. } else if (p_env) {
  1642. ambient = p_env->ambient_color * p_env->ambient_energy;
  1643. ambient.a = p_env->ambient_sky_contribution;
  1644. }
  1645. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_AMBIENT, ambient);
  1646. Transform proj = (p_view_transform.inverse() * p_refprobe2->transform).affine_inverse();
  1647. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_LOCAL_MATRIX, proj);
  1648. }
  1649. }
  1650. void RasterizerSceneGLES2::_render_render_list(RenderList::Element **p_elements, int p_element_count, const Transform &p_view_transform, const CameraMatrix &p_projection, RID p_shadow_atlas, Environment *p_env, GLuint p_base_env, float p_shadow_bias, float p_shadow_normal_bias, bool p_reverse_cull, bool p_alpha_pass, bool p_shadow) {
  1651. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  1652. Vector2 viewport_size = state.viewport_size;
  1653. Vector2 screen_pixel_size = state.screen_pixel_size;
  1654. bool use_radiance_map = false;
  1655. if (!p_shadow && p_base_env) {
  1656. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 2);
  1657. glBindTexture(GL_TEXTURE_CUBE_MAP, p_base_env);
  1658. use_radiance_map = true;
  1659. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, true); //since prev unshaded is false, this needs to be true if exists
  1660. }
  1661. bool prev_unshaded = false;
  1662. bool prev_instancing = false;
  1663. bool prev_depth_prepass = false;
  1664. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false);
  1665. RasterizerStorageGLES2::Material *prev_material = NULL;
  1666. RasterizerStorageGLES2::Geometry *prev_geometry = NULL;
  1667. RasterizerStorageGLES2::Skeleton *prev_skeleton = NULL;
  1668. RasterizerStorageGLES2::GeometryOwner *prev_owner = NULL;
  1669. Transform view_transform_inverse = p_view_transform.inverse();
  1670. CameraMatrix projection_inverse = p_projection.inverse();
  1671. bool prev_base_pass = false;
  1672. LightInstance *prev_light = NULL;
  1673. bool prev_vertex_lit = false;
  1674. ReflectionProbeInstance *prev_refprobe_1 = NULL;
  1675. ReflectionProbeInstance *prev_refprobe_2 = NULL;
  1676. int prev_blend_mode = -2; //will always catch the first go
  1677. state.cull_front = false;
  1678. state.cull_disabled = false;
  1679. glCullFace(GL_BACK);
  1680. glEnable(GL_CULL_FACE);
  1681. if (p_alpha_pass) {
  1682. glEnable(GL_BLEND);
  1683. } else {
  1684. glDisable(GL_BLEND);
  1685. }
  1686. float fog_max_distance = 0;
  1687. bool using_fog = false;
  1688. if (p_env && !p_shadow && p_env->fog_enabled && (p_env->fog_depth_enabled || p_env->fog_height_enabled)) {
  1689. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_DEPTH_ENABLED, p_env->fog_depth_enabled);
  1690. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_HEIGHT_ENABLED, p_env->fog_height_enabled);
  1691. if (p_env->fog_depth_end > 0) {
  1692. fog_max_distance = p_env->fog_depth_end;
  1693. } else {
  1694. fog_max_distance = p_projection.get_z_far();
  1695. }
  1696. using_fog = true;
  1697. }
  1698. RasterizerStorageGLES2::Texture *prev_lightmap = NULL;
  1699. float lightmap_energy = 1.0;
  1700. bool prev_use_lightmap_capture = false;
  1701. storage->info.render.draw_call_count += p_element_count;
  1702. for (int i = 0; i < p_element_count; i++) {
  1703. RenderList::Element *e = p_elements[i];
  1704. RasterizerStorageGLES2::Material *material = e->material;
  1705. bool rebind = false;
  1706. bool accum_pass = *e->use_accum_ptr;
  1707. *e->use_accum_ptr = true; //set to accum for next time this is found
  1708. LightInstance *light = NULL;
  1709. ReflectionProbeInstance *refprobe_1 = NULL;
  1710. ReflectionProbeInstance *refprobe_2 = NULL;
  1711. RasterizerStorageGLES2::Texture *lightmap = NULL;
  1712. bool use_lightmap_capture = false;
  1713. bool rebind_light = false;
  1714. bool rebind_reflection = false;
  1715. bool rebind_lightmap = false;
  1716. if (!p_shadow && material->shader) {
  1717. bool unshaded = material->shader->spatial.unshaded;
  1718. if (unshaded != prev_unshaded) {
  1719. rebind = true;
  1720. if (unshaded) {
  1721. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, true);
  1722. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false);
  1723. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, false);
  1724. } else {
  1725. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false);
  1726. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, use_radiance_map);
  1727. }
  1728. prev_unshaded = unshaded;
  1729. }
  1730. bool depth_prepass = false;
  1731. if (!p_alpha_pass && material->shader->spatial.depth_draw_mode == RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
  1732. depth_prepass = true;
  1733. }
  1734. if (depth_prepass != prev_depth_prepass) {
  1735. state.scene_shader.set_conditional(SceneShaderGLES2::USE_DEPTH_PREPASS, depth_prepass);
  1736. prev_depth_prepass = depth_prepass;
  1737. rebind = true;
  1738. }
  1739. bool base_pass = !accum_pass && !unshaded; //conditions for a base pass
  1740. if (base_pass != prev_base_pass) {
  1741. state.scene_shader.set_conditional(SceneShaderGLES2::BASE_PASS, base_pass);
  1742. rebind = true;
  1743. prev_base_pass = base_pass;
  1744. }
  1745. if (!unshaded && e->light_index < RenderList::MAX_LIGHTS) {
  1746. light = render_light_instances[e->light_index];
  1747. }
  1748. if (light != prev_light) {
  1749. _setup_light_type(light, shadow_atlas);
  1750. rebind = true;
  1751. rebind_light = true;
  1752. }
  1753. int blend_mode = p_alpha_pass ? material->shader->spatial.blend_mode : -1; // -1 no blend, no mix
  1754. if (accum_pass) { //accum pass force pass
  1755. blend_mode = RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_ADD;
  1756. }
  1757. if (prev_blend_mode != blend_mode) {
  1758. if (prev_blend_mode == -1 && blend_mode != -1) {
  1759. //does blend
  1760. glEnable(GL_BLEND);
  1761. } else if (blend_mode == -1 && prev_blend_mode != -1) {
  1762. //do not blend
  1763. glDisable(GL_BLEND);
  1764. }
  1765. switch (blend_mode) {
  1766. //-1 not handled because not blend is enabled anyway
  1767. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MIX: {
  1768. glBlendEquation(GL_FUNC_ADD);
  1769. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
  1770. glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
  1771. } else {
  1772. glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
  1773. }
  1774. } break;
  1775. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_ADD: {
  1776. glBlendEquation(GL_FUNC_ADD);
  1777. glBlendFunc(p_alpha_pass ? GL_SRC_ALPHA : GL_ONE, GL_ONE);
  1778. } break;
  1779. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_SUB: {
  1780. glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
  1781. glBlendFunc(GL_SRC_ALPHA, GL_ONE);
  1782. } break;
  1783. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MUL: {
  1784. glBlendEquation(GL_FUNC_ADD);
  1785. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
  1786. glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO);
  1787. } else {
  1788. glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE);
  1789. }
  1790. } break;
  1791. }
  1792. prev_blend_mode = blend_mode;
  1793. }
  1794. //condition to enable vertex lighting on this object
  1795. bool vertex_lit = (material->shader->spatial.uses_vertex_lighting || storage->config.force_vertex_shading) && ((!unshaded && light) || using_fog); //fog forces vertex lighting because it still applies even if unshaded or no fog
  1796. if (vertex_lit != prev_vertex_lit) {
  1797. state.scene_shader.set_conditional(SceneShaderGLES2::USE_VERTEX_LIGHTING, vertex_lit);
  1798. prev_vertex_lit = vertex_lit;
  1799. }
  1800. if (!unshaded && !accum_pass && e->refprobe_0_index != RenderList::MAX_REFLECTION_PROBES) {
  1801. ERR_FAIL_INDEX(e->refprobe_0_index, reflection_probe_count);
  1802. refprobe_1 = reflection_probe_instances[e->refprobe_0_index];
  1803. }
  1804. if (!unshaded && !accum_pass && e->refprobe_1_index != RenderList::MAX_REFLECTION_PROBES) {
  1805. ERR_FAIL_INDEX(e->refprobe_1_index, reflection_probe_count);
  1806. refprobe_2 = reflection_probe_instances[e->refprobe_1_index];
  1807. }
  1808. if (refprobe_1 != prev_refprobe_1 || refprobe_2 != prev_refprobe_2) {
  1809. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE1, refprobe_1 != NULL);
  1810. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE2, refprobe_2 != NULL);
  1811. if (refprobe_1 != NULL && refprobe_1 != prev_refprobe_1) {
  1812. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 5);
  1813. glBindTexture(GL_TEXTURE_CUBE_MAP, refprobe_1->cubemap);
  1814. }
  1815. if (refprobe_2 != NULL && refprobe_2 != prev_refprobe_2) {
  1816. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 6);
  1817. glBindTexture(GL_TEXTURE_CUBE_MAP, refprobe_2->cubemap);
  1818. }
  1819. rebind = true;
  1820. rebind_reflection = true;
  1821. }
  1822. use_lightmap_capture = !unshaded && !accum_pass && !e->instance->lightmap_capture_data.empty();
  1823. if (use_lightmap_capture != prev_use_lightmap_capture) {
  1824. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP_CAPTURE, use_lightmap_capture);
  1825. rebind = true;
  1826. }
  1827. if (!unshaded && !accum_pass && e->instance->lightmap.is_valid()) {
  1828. lightmap = storage->texture_owner.getornull(e->instance->lightmap);
  1829. lightmap_energy = 1.0;
  1830. if (lightmap) {
  1831. RasterizerStorageGLES2::LightmapCapture *capture = storage->lightmap_capture_data_owner.getornull(e->instance->lightmap_capture->base);
  1832. if (capture) {
  1833. lightmap_energy = capture->energy;
  1834. }
  1835. }
  1836. }
  1837. if (lightmap != prev_lightmap) {
  1838. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP, lightmap != NULL);
  1839. if (lightmap != NULL) {
  1840. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4);
  1841. glBindTexture(GL_TEXTURE_2D, lightmap->tex_id);
  1842. }
  1843. rebind = true;
  1844. rebind_lightmap = true;
  1845. }
  1846. }
  1847. bool instancing = e->instance->base_type == VS::INSTANCE_MULTIMESH;
  1848. if (instancing != prev_instancing) {
  1849. state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, instancing);
  1850. rebind = true;
  1851. }
  1852. RasterizerStorageGLES2::Skeleton *skeleton = storage->skeleton_owner.getornull(e->instance->skeleton);
  1853. if (skeleton != prev_skeleton) {
  1854. if (skeleton) {
  1855. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, true);
  1856. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, !storage->config.float_texture_supported);
  1857. } else {
  1858. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, false);
  1859. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, false);
  1860. }
  1861. rebind = true;
  1862. }
  1863. if (e->owner != prev_owner || e->geometry != prev_geometry || skeleton != prev_skeleton) {
  1864. _setup_geometry(e, skeleton);
  1865. storage->info.render.surface_switch_count++;
  1866. }
  1867. bool shader_rebind = false;
  1868. if (rebind || material != prev_material) {
  1869. storage->info.render.material_switch_count++;
  1870. shader_rebind = _setup_material(material, p_alpha_pass, Size2i(skeleton ? skeleton->size * 3 : 0, 0));
  1871. if (shader_rebind) {
  1872. storage->info.render.shader_rebind_count++;
  1873. }
  1874. }
  1875. _set_cull(e->front_facing, material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_DISABLED, p_reverse_cull);
  1876. if (i == 0 || shader_rebind) { //first time must rebind
  1877. if (p_shadow) {
  1878. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_BIAS, p_shadow_bias);
  1879. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_NORMAL_BIAS, p_shadow_normal_bias);
  1880. if (state.shadow_is_dual_parabolloid) {
  1881. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_DUAL_PARABOLOID_RENDER_SIDE, state.dual_parbolloid_direction);
  1882. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_DUAL_PARABOLOID_RENDER_ZFAR, state.dual_parbolloid_zfar);
  1883. }
  1884. } else {
  1885. if (use_radiance_map) {
  1886. if (p_env) {
  1887. Transform sky_orientation(p_env->sky_orientation, Vector3(0.0, 0.0, 0.0));
  1888. state.scene_shader.set_uniform(SceneShaderGLES2::RADIANCE_INVERSE_XFORM, sky_orientation.affine_inverse() * p_view_transform);
  1889. } else {
  1890. // would be a bit weird if we don't have this...
  1891. state.scene_shader.set_uniform(SceneShaderGLES2::RADIANCE_INVERSE_XFORM, p_view_transform);
  1892. }
  1893. }
  1894. if (p_env) {
  1895. state.scene_shader.set_uniform(SceneShaderGLES2::BG_ENERGY, p_env->bg_energy);
  1896. state.scene_shader.set_uniform(SceneShaderGLES2::BG_COLOR, p_env->bg_color);
  1897. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_SKY_CONTRIBUTION, p_env->ambient_sky_contribution);
  1898. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_COLOR, p_env->ambient_color);
  1899. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_ENERGY, p_env->ambient_energy);
  1900. } else {
  1901. state.scene_shader.set_uniform(SceneShaderGLES2::BG_ENERGY, 1.0);
  1902. state.scene_shader.set_uniform(SceneShaderGLES2::BG_COLOR, state.default_bg);
  1903. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_SKY_CONTRIBUTION, 1.0);
  1904. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_COLOR, state.default_ambient);
  1905. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_ENERGY, 1.0);
  1906. }
  1907. //rebind all these
  1908. rebind_light = true;
  1909. rebind_reflection = true;
  1910. rebind_lightmap = true;
  1911. if (using_fog) {
  1912. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_COLOR_BASE, p_env->fog_color);
  1913. Color sun_color_amount = p_env->fog_sun_color;
  1914. sun_color_amount.a = p_env->fog_sun_amount;
  1915. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_SUN_COLOR_AMOUNT, sun_color_amount);
  1916. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_TRANSMIT_ENABLED, p_env->fog_transmit_enabled);
  1917. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_TRANSMIT_CURVE, p_env->fog_transmit_curve);
  1918. if (p_env->fog_depth_enabled) {
  1919. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_DEPTH_BEGIN, p_env->fog_depth_begin);
  1920. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_DEPTH_CURVE, p_env->fog_depth_curve);
  1921. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_MAX_DISTANCE, fog_max_distance);
  1922. }
  1923. if (p_env->fog_height_enabled) {
  1924. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MIN, p_env->fog_height_min);
  1925. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MAX, p_env->fog_height_max);
  1926. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MAX, p_env->fog_height_max);
  1927. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_CURVE, p_env->fog_height_curve);
  1928. }
  1929. }
  1930. }
  1931. state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_MATRIX, p_view_transform);
  1932. state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_INVERSE_MATRIX, view_transform_inverse);
  1933. state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_MATRIX, p_projection);
  1934. state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_INVERSE_MATRIX, projection_inverse);
  1935. state.scene_shader.set_uniform(SceneShaderGLES2::TIME, storage->frame.time[0]);
  1936. state.scene_shader.set_uniform(SceneShaderGLES2::VIEWPORT_SIZE, viewport_size);
  1937. state.scene_shader.set_uniform(SceneShaderGLES2::SCREEN_PIXEL_SIZE, screen_pixel_size);
  1938. }
  1939. if (rebind_light && light) {
  1940. _setup_light(light, shadow_atlas, p_view_transform);
  1941. }
  1942. if (rebind_reflection && (refprobe_1 || refprobe_2)) {
  1943. _setup_refprobes(refprobe_1, refprobe_2, p_view_transform, p_env);
  1944. }
  1945. if (rebind_lightmap && lightmap) {
  1946. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHTMAP_ENERGY, lightmap_energy);
  1947. }
  1948. state.scene_shader.set_uniform(SceneShaderGLES2::WORLD_TRANSFORM, e->instance->transform);
  1949. if (skeleton) {
  1950. state.scene_shader.set_uniform(SceneShaderGLES2::SKELETON_IN_WORLD_COORDS, skeleton->use_world_transform);
  1951. state.scene_shader.set_uniform(SceneShaderGLES2::SKELETON_TRANSFORM, skeleton->world_transform);
  1952. state.scene_shader.set_uniform(SceneShaderGLES2::SKELETON_TRANSFORM_INVERSE, skeleton->world_transform_inverse);
  1953. }
  1954. if (use_lightmap_capture) { //this is per instance, must be set always if present
  1955. glUniform4fv(state.scene_shader.get_uniform_location(SceneShaderGLES2::LIGHTMAP_CAPTURES), 12, (const GLfloat *)e->instance->lightmap_capture_data.ptr());
  1956. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHTMAP_CAPTURE_SKY, false);
  1957. }
  1958. _render_geometry(e);
  1959. prev_geometry = e->geometry;
  1960. prev_owner = e->owner;
  1961. prev_material = material;
  1962. prev_skeleton = skeleton;
  1963. prev_instancing = instancing;
  1964. prev_light = light;
  1965. prev_refprobe_1 = refprobe_1;
  1966. prev_refprobe_2 = refprobe_2;
  1967. prev_lightmap = lightmap;
  1968. prev_use_lightmap_capture = use_lightmap_capture;
  1969. }
  1970. _setup_light_type(NULL, NULL); //clear light stuff
  1971. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, false);
  1972. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false);
  1973. state.scene_shader.set_conditional(SceneShaderGLES2::BASE_PASS, false);
  1974. state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, false);
  1975. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false);
  1976. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, false);
  1977. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, false);
  1978. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, false);
  1979. state.scene_shader.set_conditional(SceneShaderGLES2::USE_VERTEX_LIGHTING, false);
  1980. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE1, false);
  1981. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE2, false);
  1982. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP, false);
  1983. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP_CAPTURE, false);
  1984. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_DEPTH_ENABLED, false);
  1985. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_HEIGHT_ENABLED, false);
  1986. state.scene_shader.set_conditional(SceneShaderGLES2::USE_DEPTH_PREPASS, false);
  1987. }
  1988. void RasterizerSceneGLES2::_draw_sky(RasterizerStorageGLES2::Sky *p_sky, const CameraMatrix &p_projection, const Transform &p_transform, bool p_vflip, float p_custom_fov, float p_energy, const Basis &p_sky_orientation) {
  1989. ERR_FAIL_COND(!p_sky);
  1990. RasterizerStorageGLES2::Texture *tex = storage->texture_owner.getornull(p_sky->panorama);
  1991. ERR_FAIL_COND(!tex);
  1992. glActiveTexture(GL_TEXTURE0);
  1993. glBindTexture(tex->target, tex->tex_id);
  1994. glDepthMask(GL_TRUE);
  1995. glEnable(GL_DEPTH_TEST);
  1996. glDisable(GL_CULL_FACE);
  1997. glDisable(GL_BLEND);
  1998. glDepthFunc(GL_LEQUAL);
  1999. // Camera
  2000. CameraMatrix camera;
  2001. if (p_custom_fov) {
  2002. float near_plane = p_projection.get_z_near();
  2003. float far_plane = p_projection.get_z_far();
  2004. float aspect = p_projection.get_aspect();
  2005. camera.set_perspective(p_custom_fov, aspect, near_plane, far_plane);
  2006. } else {
  2007. camera = p_projection;
  2008. }
  2009. float flip_sign = p_vflip ? -1 : 1;
  2010. // If matrix[2][0] or matrix[2][1] we're dealing with an asymmetrical projection matrix. This is the case for stereoscopic rendering (i.e. VR).
  2011. // To ensure the image rendered is perspective correct we need to move some logic into the shader. For this the USE_ASYM_PANO option is introduced.
  2012. // It also means the uv coordinates are ignored in this mode and we don't need our loop.
  2013. bool asymmetrical = ((camera.matrix[2][0] != 0.0) || (camera.matrix[2][1] != 0.0));
  2014. Vector3 vertices[8] = {
  2015. Vector3(-1, -1 * flip_sign, 1),
  2016. Vector3(0, 1, 0),
  2017. Vector3(1, -1 * flip_sign, 1),
  2018. Vector3(1, 1, 0),
  2019. Vector3(1, 1 * flip_sign, 1),
  2020. Vector3(1, 0, 0),
  2021. Vector3(-1, 1 * flip_sign, 1),
  2022. Vector3(0, 0, 0),
  2023. };
  2024. if (!asymmetrical) {
  2025. float vw, vh, zn;
  2026. camera.get_viewport_size(vw, vh);
  2027. zn = p_projection.get_z_near();
  2028. for (int i = 0; i < 4; i++) {
  2029. Vector3 uv = vertices[i * 2 + 1];
  2030. uv.x = (uv.x * 2.0 - 1.0) * vw;
  2031. uv.y = -(uv.y * 2.0 - 1.0) * vh;
  2032. uv.z = -zn;
  2033. vertices[i * 2 + 1] = p_transform.basis.xform(uv).normalized();
  2034. vertices[i * 2 + 1].z = -vertices[i * 2 + 1].z;
  2035. }
  2036. }
  2037. glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts);
  2038. glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(Vector3) * 8, vertices);
  2039. // bind sky vertex array....
  2040. glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3) * 2, 0);
  2041. glVertexAttribPointer(VS::ARRAY_TEX_UV, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3) * 2, CAST_INT_TO_UCHAR_PTR(sizeof(Vector3)));
  2042. glEnableVertexAttribArray(VS::ARRAY_VERTEX);
  2043. glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
  2044. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_ASYM_PANO, asymmetrical);
  2045. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, !asymmetrical);
  2046. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, true);
  2047. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  2048. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false);
  2049. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false);
  2050. storage->shaders.copy.bind();
  2051. storage->shaders.copy.set_uniform(CopyShaderGLES2::MULTIPLIER, p_energy);
  2052. // don't know why but I always have problems setting a uniform mat3, so we're using a transform
  2053. storage->shaders.copy.set_uniform(CopyShaderGLES2::SKY_TRANSFORM, Transform(p_sky_orientation, Vector3(0.0, 0.0, 0.0)).affine_inverse());
  2054. if (asymmetrical) {
  2055. // pack the bits we need from our projection matrix
  2056. storage->shaders.copy.set_uniform(CopyShaderGLES2::ASYM_PROJ, camera.matrix[2][0], camera.matrix[0][0], camera.matrix[2][1], camera.matrix[1][1]);
  2057. ///@TODO I couldn't get mat3 + p_transform.basis to work, that would be better here.
  2058. storage->shaders.copy.set_uniform(CopyShaderGLES2::PANO_TRANSFORM, p_transform);
  2059. }
  2060. glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
  2061. glDisableVertexAttribArray(VS::ARRAY_VERTEX);
  2062. glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
  2063. glBindBuffer(GL_ARRAY_BUFFER, 0);
  2064. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_ASYM_PANO, false);
  2065. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false);
  2066. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false);
  2067. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  2068. }
  2069. void RasterizerSceneGLES2::render_scene(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {
  2070. Transform cam_transform = p_cam_transform;
  2071. storage->info.render.object_count += p_cull_count;
  2072. GLuint current_fb = 0;
  2073. Environment *env = NULL;
  2074. int viewport_width, viewport_height;
  2075. int viewport_x = 0;
  2076. int viewport_y = 0;
  2077. bool probe_interior = false;
  2078. bool reverse_cull = false;
  2079. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]) {
  2080. cam_transform.basis.set_axis(1, -cam_transform.basis.get_axis(1));
  2081. reverse_cull = true;
  2082. }
  2083. if (p_reflection_probe.is_valid()) {
  2084. ReflectionProbeInstance *probe = reflection_probe_instance_owner.getornull(p_reflection_probe);
  2085. ERR_FAIL_COND(!probe);
  2086. state.render_no_shadows = !probe->probe_ptr->enable_shadows;
  2087. if (!probe->probe_ptr->interior) { //use env only if not interior
  2088. env = environment_owner.getornull(p_environment);
  2089. }
  2090. current_fb = probe->fbo[p_reflection_probe_pass];
  2091. viewport_width = probe->probe_ptr->resolution;
  2092. viewport_height = probe->probe_ptr->resolution;
  2093. probe_interior = probe->probe_ptr->interior;
  2094. } else {
  2095. state.render_no_shadows = false;
  2096. if (storage->frame.current_rt->external.fbo != 0) {
  2097. current_fb = storage->frame.current_rt->external.fbo;
  2098. } else {
  2099. if (storage->frame.current_rt->multisample_active) {
  2100. current_fb = storage->frame.current_rt->multisample_fbo;
  2101. } else {
  2102. current_fb = storage->frame.current_rt->fbo;
  2103. }
  2104. }
  2105. env = environment_owner.getornull(p_environment);
  2106. viewport_width = storage->frame.current_rt->width;
  2107. viewport_height = storage->frame.current_rt->height;
  2108. viewport_x = storage->frame.current_rt->x;
  2109. if (storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_DIRECT_TO_SCREEN]) {
  2110. viewport_y = OS::get_singleton()->get_window_size().height - viewport_height - storage->frame.current_rt->y;
  2111. } else {
  2112. viewport_y = storage->frame.current_rt->y;
  2113. }
  2114. }
  2115. state.used_screen_texture = false;
  2116. state.viewport_size.x = viewport_width;
  2117. state.viewport_size.y = viewport_height;
  2118. state.screen_pixel_size.x = 1.0 / viewport_width;
  2119. state.screen_pixel_size.y = 1.0 / viewport_height;
  2120. //push back the directional lights
  2121. if (p_light_cull_count) {
  2122. //hardcoded limit of 256 lights
  2123. render_light_instance_count = MIN(RenderList::MAX_LIGHTS, p_light_cull_count);
  2124. render_light_instances = (LightInstance **)alloca(sizeof(LightInstance *) * render_light_instance_count);
  2125. render_directional_lights = 0;
  2126. //doing this because directional lights are at the end, put them at the beginning
  2127. int index = 0;
  2128. for (int i = render_light_instance_count - 1; i >= 0; i--) {
  2129. RID light_rid = p_light_cull_result[i];
  2130. LightInstance *light = light_instance_owner.getornull(light_rid);
  2131. if (light->light_ptr->type == VS::LIGHT_DIRECTIONAL) {
  2132. render_directional_lights++;
  2133. //as going in reverse, directional lights are always first anyway
  2134. }
  2135. light->light_index = index;
  2136. render_light_instances[index] = light;
  2137. index++;
  2138. }
  2139. } else {
  2140. render_light_instances = NULL;
  2141. render_directional_lights = 0;
  2142. render_light_instance_count = 0;
  2143. }
  2144. if (p_reflection_probe_cull_count) {
  2145. reflection_probe_instances = (ReflectionProbeInstance **)alloca(sizeof(ReflectionProbeInstance *) * p_reflection_probe_cull_count);
  2146. reflection_probe_count = p_reflection_probe_cull_count;
  2147. for (int i = 0; i < p_reflection_probe_cull_count; i++) {
  2148. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_reflection_probe_cull_result[i]);
  2149. ERR_CONTINUE(!rpi);
  2150. rpi->last_pass = render_pass + 1; //will be incremented later
  2151. rpi->index = i;
  2152. reflection_probe_instances[i] = rpi;
  2153. }
  2154. } else {
  2155. reflection_probe_instances = NULL;
  2156. reflection_probe_count = 0;
  2157. }
  2158. // render list stuff
  2159. render_list.clear();
  2160. _fill_render_list(p_cull_result, p_cull_count, false, false);
  2161. // other stuff
  2162. glBindFramebuffer(GL_FRAMEBUFFER, current_fb);
  2163. glViewport(viewport_x, viewport_y, viewport_width, viewport_height);
  2164. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_DIRECT_TO_SCREEN]) {
  2165. glScissor(viewport_x, viewport_y, viewport_width, viewport_height);
  2166. glEnable(GL_SCISSOR_TEST);
  2167. }
  2168. glDepthFunc(GL_LEQUAL);
  2169. glDepthMask(GL_TRUE);
  2170. glClearDepth(1.0f);
  2171. glEnable(GL_DEPTH_TEST);
  2172. // clear color
  2173. Color clear_color(0, 0, 0, 1);
  2174. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
  2175. clear_color = Color(0, 0, 0, 0);
  2176. storage->frame.clear_request = false;
  2177. } else if (!env || env->bg_mode == VS::ENV_BG_CLEAR_COLOR || env->bg_mode == VS::ENV_BG_SKY) {
  2178. if (storage->frame.clear_request) {
  2179. clear_color = storage->frame.clear_request_color;
  2180. storage->frame.clear_request = false;
  2181. }
  2182. } else if (env->bg_mode == VS::ENV_BG_CANVAS || env->bg_mode == VS::ENV_BG_COLOR || env->bg_mode == VS::ENV_BG_COLOR_SKY) {
  2183. clear_color = env->bg_color;
  2184. storage->frame.clear_request = false;
  2185. } else {
  2186. storage->frame.clear_request = false;
  2187. }
  2188. if (!env || env->bg_mode != VS::ENV_BG_KEEP) {
  2189. glClearColor(clear_color.r, clear_color.g, clear_color.b, clear_color.a);
  2190. }
  2191. state.default_ambient = Color(clear_color.r, clear_color.g, clear_color.b, 1.0);
  2192. state.default_bg = Color(clear_color.r, clear_color.g, clear_color.b, 1.0);
  2193. glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
  2194. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_DIRECT_TO_SCREEN]) {
  2195. glDisable(GL_SCISSOR_TEST);
  2196. }
  2197. glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1);
  2198. glBlendEquation(GL_FUNC_ADD);
  2199. glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
  2200. // render sky
  2201. RasterizerStorageGLES2::Sky *sky = NULL;
  2202. GLuint env_radiance_tex = 0;
  2203. if (env) {
  2204. switch (env->bg_mode) {
  2205. case VS::ENV_BG_COLOR_SKY:
  2206. case VS::ENV_BG_SKY: {
  2207. sky = storage->sky_owner.getornull(env->sky);
  2208. if (sky) {
  2209. env_radiance_tex = sky->radiance;
  2210. }
  2211. } break;
  2212. default: {
  2213. // FIXME: implement other background modes
  2214. } break;
  2215. }
  2216. }
  2217. if (probe_interior) {
  2218. env_radiance_tex = 0; //do not use radiance texture on interiors
  2219. state.default_ambient = Color(0, 0, 0, 1); //black as default ambient for interior
  2220. state.default_bg = Color(0, 0, 0, 1); //black as default background for interior
  2221. }
  2222. // render opaque things first
  2223. render_list.sort_by_key(false);
  2224. _render_render_list(render_list.elements, render_list.element_count, cam_transform, p_cam_projection, p_shadow_atlas, env, env_radiance_tex, 0.0, 0.0, reverse_cull, false, false);
  2225. // then draw the sky after
  2226. if (env && env->bg_mode == VS::ENV_BG_SKY && (!storage->frame.current_rt || !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT])) {
  2227. if (sky && sky->panorama.is_valid()) {
  2228. _draw_sky(sky, p_cam_projection, cam_transform, false, env->sky_custom_fov, env->bg_energy, env->sky_orientation);
  2229. }
  2230. }
  2231. if (storage->frame.current_rt && state.used_screen_texture) {
  2232. //copy screen texture
  2233. if (storage->frame.current_rt->multisample_active) {
  2234. // Resolve framebuffer to front buffer before copying
  2235. #ifdef GLES_OVER_GL
  2236. glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->multisample_fbo);
  2237. glReadBuffer(GL_COLOR_ATTACHMENT0);
  2238. glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->fbo);
  2239. glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST);
  2240. glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
  2241. glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
  2242. #elif IPHONE_ENABLED
  2243. glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->multisample_fbo);
  2244. glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->fbo);
  2245. glResolveMultisampleFramebufferAPPLE();
  2246. glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
  2247. glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
  2248. #elif ANDROID_ENABLED
  2249. // In GLES2 AndroidBlit is not available, so just copy color texture manually
  2250. _copy_texture_to_front_buffer(storage->frame.current_rt->multisample_color);
  2251. #endif
  2252. }
  2253. storage->canvas->_copy_screen(Rect2());
  2254. if (storage->frame.current_rt && storage->frame.current_rt->multisample_active) {
  2255. // Rebind the current framebuffer
  2256. glBindFramebuffer(GL_FRAMEBUFFER, current_fb);
  2257. glViewport(0, 0, viewport_width, viewport_height);
  2258. }
  2259. }
  2260. // alpha pass
  2261. glBlendEquation(GL_FUNC_ADD);
  2262. glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
  2263. render_list.sort_by_reverse_depth_and_priority(true);
  2264. _render_render_list(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, cam_transform, p_cam_projection, p_shadow_atlas, env, env_radiance_tex, 0.0, 0.0, reverse_cull, true, false);
  2265. glDisable(GL_DEPTH_TEST);
  2266. if (storage->frame.current_rt && storage->frame.current_rt->multisample_active) {
  2267. #ifdef GLES_OVER_GL
  2268. glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->multisample_fbo);
  2269. glReadBuffer(GL_COLOR_ATTACHMENT0);
  2270. glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->fbo);
  2271. glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST);
  2272. glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
  2273. glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
  2274. #elif IPHONE_ENABLED
  2275. glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->multisample_fbo);
  2276. glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->fbo);
  2277. glResolveMultisampleFramebufferAPPLE();
  2278. glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
  2279. glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
  2280. #elif ANDROID_ENABLED
  2281. // In GLES2 Android Blit is not available, so just copy color texture manually
  2282. _copy_texture_to_front_buffer(storage->frame.current_rt->multisample_color);
  2283. #endif
  2284. }
  2285. //#define GLES2_SHADOW_ATLAS_DEBUG_VIEW
  2286. #ifdef GLES2_SHADOW_ATLAS_DEBUG_VIEW
  2287. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2288. if (shadow_atlas) {
  2289. glActiveTexture(GL_TEXTURE0);
  2290. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  2291. glViewport(0, 0, storage->frame.current_rt->width / 4, storage->frame.current_rt->height / 4);
  2292. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  2293. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false);
  2294. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false);
  2295. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false);
  2296. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false);
  2297. storage->shaders.copy.bind();
  2298. storage->_copy_screen();
  2299. }
  2300. #endif
  2301. //#define GLES2_SHADOW_DIRECTIONAL_DEBUG_VIEW
  2302. #ifdef GLES2_SHADOW_DIRECTIONAL_DEBUG_VIEW
  2303. if (true) {
  2304. glActiveTexture(GL_TEXTURE0);
  2305. glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
  2306. glViewport(0, 0, storage->frame.current_rt->width / 4, storage->frame.current_rt->height / 4);
  2307. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  2308. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false);
  2309. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false);
  2310. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false);
  2311. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false);
  2312. storage->shaders.copy.bind();
  2313. storage->_copy_screen();
  2314. }
  2315. #endif
  2316. }
  2317. void RasterizerSceneGLES2::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) {
  2318. state.render_no_shadows = false;
  2319. LightInstance *light_instance = light_instance_owner.getornull(p_light);
  2320. ERR_FAIL_COND(!light_instance);
  2321. RasterizerStorageGLES2::Light *light = light_instance->light_ptr;
  2322. ERR_FAIL_COND(!light);
  2323. uint32_t x;
  2324. uint32_t y;
  2325. uint32_t width;
  2326. uint32_t height;
  2327. float zfar = 0;
  2328. bool flip_facing = false;
  2329. int custom_vp_size = 0;
  2330. GLuint fbo = 0;
  2331. state.shadow_is_dual_parabolloid = false;
  2332. state.dual_parbolloid_direction = 0.0;
  2333. int current_cubemap = -1;
  2334. float bias = 0;
  2335. float normal_bias = 0;
  2336. CameraMatrix light_projection;
  2337. Transform light_transform;
  2338. // TODO directional light
  2339. if (light->type == VS::LIGHT_DIRECTIONAL) {
  2340. // set pssm stuff
  2341. // TODO set this only when changed
  2342. light_instance->light_directional_index = directional_shadow.current_light;
  2343. light_instance->last_scene_shadow_pass = scene_pass;
  2344. directional_shadow.current_light++;
  2345. if (directional_shadow.light_count == 1) {
  2346. light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size);
  2347. } else if (directional_shadow.light_count == 2) {
  2348. light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size / 2);
  2349. if (light_instance->light_directional_index == 1) {
  2350. light_instance->directional_rect.position.x += light_instance->directional_rect.size.x;
  2351. }
  2352. } else { //3 and 4
  2353. light_instance->directional_rect = Rect2(0, 0, directional_shadow.size / 2, directional_shadow.size / 2);
  2354. if (light_instance->light_directional_index & 1) {
  2355. light_instance->directional_rect.position.x += light_instance->directional_rect.size.x;
  2356. }
  2357. if (light_instance->light_directional_index / 2) {
  2358. light_instance->directional_rect.position.y += light_instance->directional_rect.size.y;
  2359. }
  2360. }
  2361. light_projection = light_instance->shadow_transform[p_pass].camera;
  2362. light_transform = light_instance->shadow_transform[p_pass].transform;
  2363. x = light_instance->directional_rect.position.x;
  2364. y = light_instance->directional_rect.position.y;
  2365. width = light_instance->directional_rect.size.width;
  2366. height = light_instance->directional_rect.size.height;
  2367. if (light->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  2368. width /= 2;
  2369. height /= 2;
  2370. if (p_pass == 0) {
  2371. } else if (p_pass == 1) {
  2372. x += width;
  2373. } else if (p_pass == 2) {
  2374. y += height;
  2375. } else if (p_pass == 3) {
  2376. x += width;
  2377. y += height;
  2378. }
  2379. } else if (light->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  2380. height /= 2;
  2381. if (p_pass == 0) {
  2382. } else {
  2383. y += height;
  2384. }
  2385. }
  2386. float bias_mult = Math::lerp(1.0f, light_instance->shadow_transform[p_pass].bias_scale, light->param[VS::LIGHT_PARAM_SHADOW_BIAS_SPLIT_SCALE]);
  2387. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  2388. bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS] * bias_mult;
  2389. normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] * bias_mult;
  2390. fbo = directional_shadow.fbo;
  2391. } else {
  2392. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2393. ERR_FAIL_COND(!shadow_atlas);
  2394. ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
  2395. fbo = shadow_atlas->fbo;
  2396. uint32_t key = shadow_atlas->shadow_owners[p_light];
  2397. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03;
  2398. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  2399. ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size());
  2400. uint32_t quadrant_size = shadow_atlas->size >> 1;
  2401. x = (quadrant & 1) * quadrant_size;
  2402. y = (quadrant >> 1) * quadrant_size;
  2403. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  2404. x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  2405. y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  2406. width = shadow_size;
  2407. height = shadow_size;
  2408. if (light->type == VS::LIGHT_OMNI) {
  2409. // cubemap only
  2410. if (light->omni_shadow_mode == VS::LIGHT_OMNI_SHADOW_CUBE && storage->config.support_shadow_cubemaps) {
  2411. int cubemap_index = shadow_cubemaps.size() - 1;
  2412. // find an appropriate cubemap to render to
  2413. for (int i = shadow_cubemaps.size() - 1; i >= 0; i--) {
  2414. if (shadow_cubemaps[i].size > shadow_size * 2) {
  2415. break;
  2416. }
  2417. cubemap_index = i;
  2418. }
  2419. fbo = shadow_cubemaps[cubemap_index].fbo[p_pass];
  2420. light_projection = light_instance->shadow_transform[0].camera;
  2421. light_transform = light_instance->shadow_transform[0].transform;
  2422. custom_vp_size = shadow_cubemaps[cubemap_index].size;
  2423. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  2424. current_cubemap = cubemap_index;
  2425. } else {
  2426. //dual parabolloid
  2427. state.shadow_is_dual_parabolloid = true;
  2428. light_projection = light_instance->shadow_transform[0].camera;
  2429. light_transform = light_instance->shadow_transform[0].transform;
  2430. if (light->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
  2431. height /= 2;
  2432. y += p_pass * height;
  2433. } else {
  2434. width /= 2;
  2435. x += p_pass * width;
  2436. }
  2437. state.dual_parbolloid_direction = p_pass == 0 ? 1.0 : -1.0;
  2438. flip_facing = (p_pass == 1);
  2439. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  2440. bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS];
  2441. state.dual_parbolloid_zfar = zfar;
  2442. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH_DUAL_PARABOLOID, true);
  2443. }
  2444. } else if (light->type == VS::LIGHT_SPOT) {
  2445. light_projection = light_instance->shadow_transform[0].camera;
  2446. light_transform = light_instance->shadow_transform[0].transform;
  2447. flip_facing = false;
  2448. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  2449. bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS];
  2450. normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS];
  2451. }
  2452. }
  2453. render_list.clear();
  2454. _fill_render_list(p_cull_result, p_cull_count, true, true);
  2455. render_list.sort_by_depth(false);
  2456. glDisable(GL_BLEND);
  2457. glDisable(GL_DITHER);
  2458. glEnable(GL_DEPTH_TEST);
  2459. glBindFramebuffer(GL_FRAMEBUFFER, fbo);
  2460. glDepthMask(GL_TRUE);
  2461. if (!storage->config.use_rgba_3d_shadows) {
  2462. glColorMask(0, 0, 0, 0);
  2463. }
  2464. if (custom_vp_size) {
  2465. glViewport(0, 0, custom_vp_size, custom_vp_size);
  2466. glScissor(0, 0, custom_vp_size, custom_vp_size);
  2467. } else {
  2468. glViewport(x, y, width, height);
  2469. glScissor(x, y, width, height);
  2470. }
  2471. glEnable(GL_SCISSOR_TEST);
  2472. glClearDepth(1.0f);
  2473. glClear(GL_DEPTH_BUFFER_BIT);
  2474. glDisable(GL_SCISSOR_TEST);
  2475. if (light->reverse_cull) {
  2476. flip_facing = !flip_facing;
  2477. }
  2478. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH, true);
  2479. _render_render_list(render_list.elements, render_list.element_count, light_transform, light_projection, RID(), NULL, 0, bias, normal_bias, flip_facing, false, true);
  2480. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH, false);
  2481. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH_DUAL_PARABOLOID, false);
  2482. // convert cubemap to dual paraboloid if needed
  2483. if (light->type == VS::LIGHT_OMNI && (light->omni_shadow_mode == VS::LIGHT_OMNI_SHADOW_CUBE && storage->config.support_shadow_cubemaps) && p_pass == 5) {
  2484. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2485. glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo);
  2486. state.cube_to_dp_shader.bind();
  2487. glActiveTexture(GL_TEXTURE0);
  2488. glBindTexture(GL_TEXTURE_CUBE_MAP, shadow_cubemaps[current_cubemap].cubemap);
  2489. glDisable(GL_CULL_FACE);
  2490. for (int i = 0; i < 2; i++) {
  2491. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_FLIP, i == 1);
  2492. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_NEAR, light_projection.get_z_near());
  2493. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_FAR, light_projection.get_z_far());
  2494. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::BIAS, light->param[VS::LIGHT_PARAM_SHADOW_BIAS]);
  2495. uint32_t local_width = width;
  2496. uint32_t local_height = height;
  2497. uint32_t local_x = x;
  2498. uint32_t local_y = y;
  2499. if (light->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
  2500. local_height /= 2;
  2501. local_y += i * local_height;
  2502. } else {
  2503. local_width /= 2;
  2504. local_x += i * local_width;
  2505. }
  2506. glViewport(local_x, local_y, local_width, local_height);
  2507. glScissor(local_x, local_y, local_width, local_height);
  2508. glEnable(GL_SCISSOR_TEST);
  2509. glClearDepth(1.0f);
  2510. glClear(GL_DEPTH_BUFFER_BIT);
  2511. glDisable(GL_SCISSOR_TEST);
  2512. glDisable(GL_BLEND);
  2513. storage->_copy_screen();
  2514. }
  2515. }
  2516. if (storage->frame.current_rt) {
  2517. glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height);
  2518. }
  2519. if (!storage->config.use_rgba_3d_shadows) {
  2520. glColorMask(1, 1, 1, 1);
  2521. }
  2522. }
  2523. void RasterizerSceneGLES2::set_scene_pass(uint64_t p_pass) {
  2524. scene_pass = p_pass;
  2525. }
  2526. bool RasterizerSceneGLES2::free(RID p_rid) {
  2527. if (light_instance_owner.owns(p_rid)) {
  2528. LightInstance *light_instance = light_instance_owner.getptr(p_rid);
  2529. //remove from shadow atlases..
  2530. for (Set<RID>::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) {
  2531. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(E->get());
  2532. ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
  2533. uint32_t key = shadow_atlas->shadow_owners[p_rid];
  2534. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  2535. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  2536. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  2537. shadow_atlas->shadow_owners.erase(p_rid);
  2538. }
  2539. light_instance_owner.free(p_rid);
  2540. memdelete(light_instance);
  2541. } else if (shadow_atlas_owner.owns(p_rid)) {
  2542. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(p_rid);
  2543. shadow_atlas_set_size(p_rid, 0);
  2544. shadow_atlas_owner.free(p_rid);
  2545. memdelete(shadow_atlas);
  2546. } else if (reflection_probe_instance_owner.owns(p_rid)) {
  2547. ReflectionProbeInstance *reflection_instance = reflection_probe_instance_owner.get(p_rid);
  2548. for (int i = 0; i < 6; i++) {
  2549. glDeleteFramebuffers(1, &reflection_instance->fbo[i]);
  2550. glDeleteTextures(1, &reflection_instance->color[i]);
  2551. }
  2552. if (reflection_instance->cubemap != 0) {
  2553. glDeleteTextures(1, &reflection_instance->cubemap);
  2554. }
  2555. glDeleteRenderbuffers(1, &reflection_instance->depth);
  2556. reflection_probe_release_atlas_index(p_rid);
  2557. reflection_probe_instance_owner.free(p_rid);
  2558. memdelete(reflection_instance);
  2559. } else {
  2560. return false;
  2561. }
  2562. return true;
  2563. }
  2564. void RasterizerSceneGLES2::set_debug_draw_mode(VS::ViewportDebugDraw p_debug_draw) {
  2565. }
  2566. void RasterizerSceneGLES2::initialize() {
  2567. state.scene_shader.init();
  2568. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RGBA_SHADOWS, storage->config.use_rgba_3d_shadows);
  2569. state.cube_to_dp_shader.init();
  2570. render_list.init();
  2571. render_pass = 1;
  2572. shadow_atlas_realloc_tolerance_msec = 500;
  2573. {
  2574. //default material and shader
  2575. default_shader = storage->shader_create();
  2576. storage->shader_set_code(default_shader, "shader_type spatial;\n");
  2577. default_material = storage->material_create();
  2578. storage->material_set_shader(default_material, default_shader);
  2579. default_shader_twosided = storage->shader_create();
  2580. default_material_twosided = storage->material_create();
  2581. storage->shader_set_code(default_shader_twosided, "shader_type spatial; render_mode cull_disabled;\n");
  2582. storage->material_set_shader(default_material_twosided, default_shader_twosided);
  2583. }
  2584. {
  2585. default_worldcoord_shader = storage->shader_create();
  2586. storage->shader_set_code(default_worldcoord_shader, "shader_type spatial; render_mode world_vertex_coords;\n");
  2587. default_worldcoord_material = storage->material_create();
  2588. storage->material_set_shader(default_worldcoord_material, default_worldcoord_shader);
  2589. default_worldcoord_shader_twosided = storage->shader_create();
  2590. default_worldcoord_material_twosided = storage->material_create();
  2591. storage->shader_set_code(default_worldcoord_shader_twosided, "shader_type spatial; render_mode cull_disabled,world_vertex_coords;\n");
  2592. storage->material_set_shader(default_worldcoord_material_twosided, default_worldcoord_shader_twosided);
  2593. }
  2594. {
  2595. //default material and shader
  2596. default_overdraw_shader = storage->shader_create();
  2597. storage->shader_set_code(default_overdraw_shader, "shader_type spatial;\nrender_mode blend_add,unshaded;\n void fragment() { ALBEDO=vec3(0.4,0.8,0.8); ALPHA=0.2; }");
  2598. default_overdraw_material = storage->material_create();
  2599. storage->material_set_shader(default_overdraw_material, default_overdraw_shader);
  2600. }
  2601. {
  2602. glGenBuffers(1, &state.sky_verts);
  2603. glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts);
  2604. glBufferData(GL_ARRAY_BUFFER, sizeof(Vector3) * 8, NULL, GL_DYNAMIC_DRAW);
  2605. glBindBuffer(GL_ARRAY_BUFFER, 0);
  2606. }
  2607. {
  2608. uint32_t immediate_buffer_size = GLOBAL_DEF("rendering/limits/buffers/immediate_buffer_size_kb", 2048);
  2609. ProjectSettings::get_singleton()->set_custom_property_info("rendering/limits/buffers/immediate_buffer_size_kb", PropertyInfo(Variant::INT, "rendering/limits/buffers/immediate_buffer_size_kb", PROPERTY_HINT_RANGE, "0,8192,1,or_greater"));
  2610. glGenBuffers(1, &state.immediate_buffer);
  2611. glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer);
  2612. glBufferData(GL_ARRAY_BUFFER, immediate_buffer_size * 1024, NULL, GL_DYNAMIC_DRAW);
  2613. glBindBuffer(GL_ARRAY_BUFFER, 0);
  2614. }
  2615. // cubemaps for shadows
  2616. if (storage->config.support_shadow_cubemaps) { //not going to be used
  2617. int max_shadow_cubemap_sampler_size = 512;
  2618. int cube_size = max_shadow_cubemap_sampler_size;
  2619. glActiveTexture(GL_TEXTURE0);
  2620. while (cube_size >= 32) {
  2621. ShadowCubeMap cube;
  2622. cube.size = cube_size;
  2623. glGenTextures(1, &cube.cubemap);
  2624. glBindTexture(GL_TEXTURE_CUBE_MAP, cube.cubemap);
  2625. for (int i = 0; i < 6; i++) {
  2626. glTexImage2D(_cube_side_enum[i], 0, storage->config.depth_internalformat, cube_size, cube_size, 0, GL_DEPTH_COMPONENT, storage->config.depth_type, NULL);
  2627. }
  2628. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  2629. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  2630. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  2631. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  2632. glGenFramebuffers(6, cube.fbo);
  2633. for (int i = 0; i < 6; i++) {
  2634. glBindFramebuffer(GL_FRAMEBUFFER, cube.fbo[i]);
  2635. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, _cube_side_enum[i], cube.cubemap, 0);
  2636. }
  2637. shadow_cubemaps.push_back(cube);
  2638. cube_size >>= 1;
  2639. }
  2640. }
  2641. {
  2642. // directional shadows
  2643. directional_shadow.light_count = 0;
  2644. directional_shadow.size = next_power_of_2(GLOBAL_GET("rendering/quality/directional_shadow/size"));
  2645. glGenFramebuffers(1, &directional_shadow.fbo);
  2646. glBindFramebuffer(GL_FRAMEBUFFER, directional_shadow.fbo);
  2647. if (storage->config.use_rgba_3d_shadows) {
  2648. //maximum compatibility, renderbuffer and RGBA shadow
  2649. glGenRenderbuffers(1, &directional_shadow.depth);
  2650. glBindRenderbuffer(GL_RENDERBUFFER, directional_shadow.depth);
  2651. glRenderbufferStorage(GL_RENDERBUFFER, storage->config.depth_internalformat, directional_shadow.size, directional_shadow.size);
  2652. glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, directional_shadow.depth);
  2653. glGenTextures(1, &directional_shadow.color);
  2654. glBindTexture(GL_TEXTURE_2D, directional_shadow.color);
  2655. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, directional_shadow.size, directional_shadow.size, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
  2656. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  2657. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  2658. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  2659. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  2660. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, directional_shadow.color, 0);
  2661. } else {
  2662. //just a depth buffer
  2663. glGenTextures(1, &directional_shadow.depth);
  2664. glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
  2665. glTexImage2D(GL_TEXTURE_2D, 0, storage->config.depth_internalformat, directional_shadow.size, directional_shadow.size, 0, GL_DEPTH_COMPONENT, storage->config.depth_type, NULL);
  2666. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  2667. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  2668. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  2669. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  2670. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, directional_shadow.depth, 0);
  2671. }
  2672. GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
  2673. if (status != GL_FRAMEBUFFER_COMPLETE) {
  2674. ERR_PRINT("Directional shadow framebuffer status invalid");
  2675. }
  2676. }
  2677. shadow_filter_mode = SHADOW_FILTER_NEAREST;
  2678. glFrontFace(GL_CW);
  2679. }
  2680. void RasterizerSceneGLES2::iteration() {
  2681. shadow_filter_mode = ShadowFilterMode(int(GLOBAL_GET("rendering/quality/shadows/filter_mode")));
  2682. }
  2683. void RasterizerSceneGLES2::finalize() {
  2684. }
  2685. RasterizerSceneGLES2::RasterizerSceneGLES2() {
  2686. }