nav_mesh_queries_3d.cpp 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925
  1. /**************************************************************************/
  2. /* nav_mesh_queries_3d.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #ifndef _3D_DISABLED
  31. #include "nav_mesh_queries_3d.h"
  32. #include "../nav_base.h"
  33. #include "../nav_map.h"
  34. #include "nav_region_iteration_3d.h"
  35. #include "core/math/geometry_3d.h"
  36. #include "servers/navigation/navigation_utilities.h"
  37. #define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (((m_c) - (m_a)).cross((m_b) - (m_a)))
  38. bool NavMeshQueries3D::emit_callback(const Callable &p_callback) {
  39. ERR_FAIL_COND_V(!p_callback.is_valid(), false);
  40. Callable::CallError ce;
  41. Variant result;
  42. p_callback.callp(nullptr, 0, result, ce);
  43. return ce.error == Callable::CallError::CALL_OK;
  44. }
  45. Vector3 NavMeshQueries3D::polygons_get_random_point(const LocalVector<gd::Polygon> &p_polygons, uint32_t p_navigation_layers, bool p_uniformly) {
  46. const LocalVector<gd::Polygon> &region_polygons = p_polygons;
  47. if (region_polygons.is_empty()) {
  48. return Vector3();
  49. }
  50. if (p_uniformly) {
  51. real_t accumulated_area = 0;
  52. RBMap<real_t, uint32_t> region_area_map;
  53. for (uint32_t rp_index = 0; rp_index < region_polygons.size(); rp_index++) {
  54. const gd::Polygon &region_polygon = region_polygons[rp_index];
  55. real_t polyon_area = region_polygon.surface_area;
  56. if (polyon_area == 0.0) {
  57. continue;
  58. }
  59. region_area_map[accumulated_area] = rp_index;
  60. accumulated_area += polyon_area;
  61. }
  62. if (region_area_map.is_empty() || accumulated_area == 0) {
  63. // All polygons have no real surface / no area.
  64. return Vector3();
  65. }
  66. real_t region_area_map_pos = Math::random(real_t(0), accumulated_area);
  67. RBMap<real_t, uint32_t>::Iterator region_E = region_area_map.find_closest(region_area_map_pos);
  68. ERR_FAIL_COND_V(!region_E, Vector3());
  69. uint32_t rrp_polygon_index = region_E->value;
  70. ERR_FAIL_UNSIGNED_INDEX_V(rrp_polygon_index, region_polygons.size(), Vector3());
  71. const gd::Polygon &rr_polygon = region_polygons[rrp_polygon_index];
  72. real_t accumulated_polygon_area = 0;
  73. RBMap<real_t, uint32_t> polygon_area_map;
  74. for (uint32_t rpp_index = 2; rpp_index < rr_polygon.points.size(); rpp_index++) {
  75. real_t face_area = Face3(rr_polygon.points[0].pos, rr_polygon.points[rpp_index - 1].pos, rr_polygon.points[rpp_index].pos).get_area();
  76. if (face_area == 0.0) {
  77. continue;
  78. }
  79. polygon_area_map[accumulated_polygon_area] = rpp_index;
  80. accumulated_polygon_area += face_area;
  81. }
  82. if (polygon_area_map.is_empty() || accumulated_polygon_area == 0) {
  83. // All faces have no real surface / no area.
  84. return Vector3();
  85. }
  86. real_t polygon_area_map_pos = Math::random(real_t(0), accumulated_polygon_area);
  87. RBMap<real_t, uint32_t>::Iterator polygon_E = polygon_area_map.find_closest(polygon_area_map_pos);
  88. ERR_FAIL_COND_V(!polygon_E, Vector3());
  89. uint32_t rrp_face_index = polygon_E->value;
  90. ERR_FAIL_UNSIGNED_INDEX_V(rrp_face_index, rr_polygon.points.size(), Vector3());
  91. const Face3 face(rr_polygon.points[0].pos, rr_polygon.points[rrp_face_index - 1].pos, rr_polygon.points[rrp_face_index].pos);
  92. Vector3 face_random_position = face.get_random_point_inside();
  93. return face_random_position;
  94. } else {
  95. uint32_t rrp_polygon_index = Math::random(int(0), region_polygons.size() - 1);
  96. const gd::Polygon &rr_polygon = region_polygons[rrp_polygon_index];
  97. uint32_t rrp_face_index = Math::random(int(2), rr_polygon.points.size() - 1);
  98. const Face3 face(rr_polygon.points[0].pos, rr_polygon.points[rrp_face_index - 1].pos, rr_polygon.points[rrp_face_index].pos);
  99. Vector3 face_random_position = face.get_random_point_inside();
  100. return face_random_position;
  101. }
  102. }
  103. void NavMeshQueries3D::_query_task_push_back_point_with_metadata(NavMeshPathQueryTask3D &p_query_task, const Vector3 &p_point, const gd::Polygon *p_point_polygon) {
  104. if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
  105. p_query_task.path_meta_point_types.push_back(p_point_polygon->owner->get_type());
  106. }
  107. if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
  108. p_query_task.path_meta_point_rids.push_back(p_point_polygon->owner->get_self());
  109. }
  110. if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
  111. p_query_task.path_meta_point_owners.push_back(p_point_polygon->owner->get_owner_id());
  112. }
  113. p_query_task.path_points.push_back(p_point);
  114. }
  115. void NavMeshQueries3D::map_query_path(NavMap *map, const Ref<NavigationPathQueryParameters3D> &p_query_parameters, Ref<NavigationPathQueryResult3D> p_query_result, const Callable &p_callback) {
  116. ERR_FAIL_NULL(map);
  117. ERR_FAIL_COND(p_query_parameters.is_null());
  118. ERR_FAIL_COND(p_query_result.is_null());
  119. using namespace NavigationUtilities;
  120. NavMeshQueries3D::NavMeshPathQueryTask3D query_task;
  121. query_task.start_position = p_query_parameters->get_start_position();
  122. query_task.target_position = p_query_parameters->get_target_position();
  123. query_task.navigation_layers = p_query_parameters->get_navigation_layers();
  124. query_task.callback = p_callback;
  125. switch (p_query_parameters->get_pathfinding_algorithm()) {
  126. case NavigationPathQueryParameters3D::PathfindingAlgorithm::PATHFINDING_ALGORITHM_ASTAR: {
  127. query_task.pathfinding_algorithm = PathfindingAlgorithm::PATHFINDING_ALGORITHM_ASTAR;
  128. } break;
  129. default: {
  130. WARN_PRINT("No match for used PathfindingAlgorithm - fallback to default");
  131. query_task.pathfinding_algorithm = PathfindingAlgorithm::PATHFINDING_ALGORITHM_ASTAR;
  132. } break;
  133. }
  134. switch (p_query_parameters->get_path_postprocessing()) {
  135. case NavigationPathQueryParameters3D::PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL: {
  136. query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL;
  137. } break;
  138. case NavigationPathQueryParameters3D::PathPostProcessing::PATH_POSTPROCESSING_EDGECENTERED: {
  139. query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_EDGECENTERED;
  140. } break;
  141. case NavigationPathQueryParameters3D::PathPostProcessing::PATH_POSTPROCESSING_NONE: {
  142. query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_NONE;
  143. } break;
  144. default: {
  145. WARN_PRINT("No match for used PathPostProcessing - fallback to default");
  146. query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL;
  147. } break;
  148. }
  149. query_task.metadata_flags = (int64_t)p_query_parameters->get_metadata_flags();
  150. query_task.simplify_path = p_query_parameters->get_simplify_path();
  151. query_task.simplify_epsilon = p_query_parameters->get_simplify_epsilon();
  152. query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_STARTED;
  153. map->query_path(query_task);
  154. p_query_result->set_data(
  155. query_task.path_points,
  156. query_task.path_meta_point_types,
  157. query_task.path_meta_point_rids,
  158. query_task.path_meta_point_owners);
  159. if (query_task.callback.is_valid()) {
  160. if (emit_callback(query_task.callback)) {
  161. query_task.status = NavMeshPathQueryTask3D::TaskStatus::CALLBACK_DISPATCHED;
  162. } else {
  163. query_task.status = NavMeshPathQueryTask3D::TaskStatus::CALLBACK_FAILED;
  164. }
  165. }
  166. }
  167. void NavMeshQueries3D::query_task_polygons_get_path(NavMeshPathQueryTask3D &p_query_task, const LocalVector<gd::Polygon> &p_polygons) {
  168. p_query_task.path_clear();
  169. _query_task_find_start_end_positions(p_query_task, p_polygons);
  170. // Check for trivial cases.
  171. if (!p_query_task.begin_polygon || !p_query_task.end_polygon) {
  172. p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED;
  173. return;
  174. }
  175. if (p_query_task.begin_polygon == p_query_task.end_polygon) {
  176. p_query_task.path_clear();
  177. _query_task_push_back_point_with_metadata(p_query_task, p_query_task.begin_position, p_query_task.begin_polygon);
  178. _query_task_push_back_point_with_metadata(p_query_task, p_query_task.end_position, p_query_task.end_polygon);
  179. p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED;
  180. return;
  181. }
  182. _query_task_build_path_corridor(p_query_task, p_polygons);
  183. if (p_query_task.status == NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED || p_query_task.status == NavMeshPathQueryTask3D::TaskStatus::QUERY_FAILED) {
  184. return;
  185. }
  186. // Post-Process path.
  187. switch (p_query_task.path_postprocessing) {
  188. case PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL: {
  189. _query_task_post_process_corridorfunnel(p_query_task);
  190. } break;
  191. case PathPostProcessing::PATH_POSTPROCESSING_EDGECENTERED: {
  192. _query_task_post_process_edgecentered(p_query_task);
  193. } break;
  194. case PathPostProcessing::PATH_POSTPROCESSING_NONE: {
  195. _query_task_post_process_nopostprocessing(p_query_task);
  196. } break;
  197. default: {
  198. WARN_PRINT("No match for used PathPostProcessing - fallback to default");
  199. _query_task_post_process_corridorfunnel(p_query_task);
  200. } break;
  201. }
  202. p_query_task.path_reverse();
  203. if (p_query_task.simplify_path) {
  204. _query_task_simplified_path_points(p_query_task);
  205. }
  206. #ifdef DEBUG_ENABLED
  207. // Ensure post conditions as path meta arrays if used MUST match in array size with the path points.
  208. if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
  209. DEV_ASSERT(p_query_task.path_points.size() == p_query_task.path_meta_point_types.size());
  210. }
  211. if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
  212. DEV_ASSERT(p_query_task.path_points.size() == p_query_task.path_meta_point_rids.size());
  213. }
  214. if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
  215. DEV_ASSERT(p_query_task.path_points.size() == p_query_task.path_meta_point_owners.size());
  216. }
  217. #endif // DEBUG_ENABLED
  218. p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED;
  219. }
  220. void NavMeshQueries3D::_query_task_build_path_corridor(NavMeshPathQueryTask3D &p_query_task, const LocalVector<gd::Polygon> &p_polygons) {
  221. const Vector3 p_target_position = p_query_task.target_position;
  222. const uint32_t p_navigation_layers = p_query_task.navigation_layers;
  223. const gd::Polygon *begin_poly = p_query_task.begin_polygon;
  224. const gd::Polygon *end_poly = p_query_task.end_polygon;
  225. Vector3 begin_point = p_query_task.begin_position;
  226. Vector3 end_point = p_query_task.end_position;
  227. // Heap of polygons to travel next.
  228. gd::Heap<gd::NavigationPoly *, gd::NavPolyTravelCostGreaterThan, gd::NavPolyHeapIndexer>
  229. &traversable_polys = p_query_task.path_query_slot->traversable_polys;
  230. traversable_polys.clear();
  231. LocalVector<gd::NavigationPoly> &navigation_polys = p_query_task.path_query_slot->path_corridor;
  232. for (gd::NavigationPoly &polygon : navigation_polys) {
  233. polygon.reset();
  234. }
  235. // Initialize the matching navigation polygon.
  236. gd::NavigationPoly &begin_navigation_poly = navigation_polys[begin_poly->id];
  237. begin_navigation_poly.poly = begin_poly;
  238. begin_navigation_poly.entry = begin_point;
  239. begin_navigation_poly.back_navigation_edge_pathway_start = begin_point;
  240. begin_navigation_poly.back_navigation_edge_pathway_end = begin_point;
  241. // This is an implementation of the A* algorithm.
  242. int least_cost_id = begin_poly->id;
  243. int prev_least_cost_id = -1;
  244. bool found_route = false;
  245. const gd::Polygon *reachable_end = nullptr;
  246. real_t distance_to_reachable_end = FLT_MAX;
  247. bool is_reachable = true;
  248. while (true) {
  249. // Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance.
  250. for (const gd::Edge &edge : navigation_polys[least_cost_id].poly->edges) {
  251. // Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon.
  252. for (uint32_t connection_index = 0; connection_index < edge.connections.size(); connection_index++) {
  253. const gd::Edge::Connection &connection = edge.connections[connection_index];
  254. // Only consider the connection to another polygon if this polygon is in a region with compatible layers.
  255. if ((p_navigation_layers & connection.polygon->owner->get_navigation_layers()) == 0) {
  256. continue;
  257. }
  258. const gd::NavigationPoly &least_cost_poly = navigation_polys[least_cost_id];
  259. real_t poly_enter_cost = 0.0;
  260. real_t poly_travel_cost = least_cost_poly.poly->owner->get_travel_cost();
  261. if (prev_least_cost_id != -1 && navigation_polys[prev_least_cost_id].poly->owner->get_self() != least_cost_poly.poly->owner->get_self()) {
  262. poly_enter_cost = least_cost_poly.poly->owner->get_enter_cost();
  263. }
  264. prev_least_cost_id = least_cost_id;
  265. Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end };
  266. const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly.entry, pathway);
  267. const real_t new_traveled_distance = least_cost_poly.entry.distance_to(new_entry) * poly_travel_cost + poly_enter_cost + least_cost_poly.traveled_distance;
  268. // Check if the neighbor polygon has already been processed.
  269. gd::NavigationPoly &neighbor_poly = navigation_polys[connection.polygon->id];
  270. if (neighbor_poly.poly != nullptr) {
  271. // If the neighbor polygon hasn't been traversed yet and the new path leading to
  272. // it is shorter, update the polygon.
  273. if (neighbor_poly.traversable_poly_index < traversable_polys.size() &&
  274. new_traveled_distance < neighbor_poly.traveled_distance) {
  275. neighbor_poly.back_navigation_poly_id = least_cost_id;
  276. neighbor_poly.back_navigation_edge = connection.edge;
  277. neighbor_poly.back_navigation_edge_pathway_start = connection.pathway_start;
  278. neighbor_poly.back_navigation_edge_pathway_end = connection.pathway_end;
  279. neighbor_poly.traveled_distance = new_traveled_distance;
  280. neighbor_poly.distance_to_destination =
  281. new_entry.distance_to(end_point) *
  282. neighbor_poly.poly->owner->get_travel_cost();
  283. neighbor_poly.entry = new_entry;
  284. // Update the priority of the polygon in the heap.
  285. traversable_polys.shift(neighbor_poly.traversable_poly_index);
  286. }
  287. } else {
  288. // Initialize the matching navigation polygon.
  289. neighbor_poly.poly = connection.polygon;
  290. neighbor_poly.back_navigation_poly_id = least_cost_id;
  291. neighbor_poly.back_navigation_edge = connection.edge;
  292. neighbor_poly.back_navigation_edge_pathway_start = connection.pathway_start;
  293. neighbor_poly.back_navigation_edge_pathway_end = connection.pathway_end;
  294. neighbor_poly.traveled_distance = new_traveled_distance;
  295. neighbor_poly.distance_to_destination =
  296. new_entry.distance_to(end_point) *
  297. neighbor_poly.poly->owner->get_travel_cost();
  298. neighbor_poly.entry = new_entry;
  299. // Add the polygon to the heap of polygons to traverse next.
  300. traversable_polys.push(&neighbor_poly);
  301. }
  302. }
  303. }
  304. // When the heap of traversable polygons is empty at this point it means the end polygon is
  305. // unreachable.
  306. if (traversable_polys.is_empty()) {
  307. // Thus use the further reachable polygon
  308. ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons");
  309. is_reachable = false;
  310. if (reachable_end == nullptr) {
  311. // The path is not found and there is not a way out.
  312. break;
  313. }
  314. // Set as end point the furthest reachable point.
  315. end_poly = reachable_end;
  316. real_t end_d = FLT_MAX;
  317. for (size_t point_id = 2; point_id < end_poly->points.size(); point_id++) {
  318. Face3 f(end_poly->points[0].pos, end_poly->points[point_id - 1].pos, end_poly->points[point_id].pos);
  319. Vector3 spoint = f.get_closest_point_to(p_target_position);
  320. real_t dpoint = spoint.distance_to(p_target_position);
  321. if (dpoint < end_d) {
  322. end_point = spoint;
  323. end_d = dpoint;
  324. }
  325. }
  326. // Search all faces of start polygon as well.
  327. bool closest_point_on_start_poly = false;
  328. for (size_t point_id = 2; point_id < begin_poly->points.size(); point_id++) {
  329. Face3 f(begin_poly->points[0].pos, begin_poly->points[point_id - 1].pos, begin_poly->points[point_id].pos);
  330. Vector3 spoint = f.get_closest_point_to(p_target_position);
  331. real_t dpoint = spoint.distance_to(p_target_position);
  332. if (dpoint < end_d) {
  333. end_point = spoint;
  334. end_d = dpoint;
  335. closest_point_on_start_poly = true;
  336. }
  337. }
  338. if (closest_point_on_start_poly) {
  339. // No point to run PostProcessing when start and end convex polygon is the same.
  340. p_query_task.path_clear();
  341. _query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly);
  342. _query_task_push_back_point_with_metadata(p_query_task, end_point, begin_poly);
  343. p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED;
  344. return;
  345. }
  346. for (gd::NavigationPoly &nav_poly : navigation_polys) {
  347. nav_poly.poly = nullptr;
  348. }
  349. navigation_polys[begin_poly->id].poly = begin_poly;
  350. least_cost_id = begin_poly->id;
  351. prev_least_cost_id = -1;
  352. reachable_end = nullptr;
  353. continue;
  354. }
  355. // Pop the polygon with the lowest travel cost from the heap of traversable polygons.
  356. least_cost_id = traversable_polys.pop()->poly->id;
  357. // Store the farthest reachable end polygon in case our goal is not reachable.
  358. if (is_reachable) {
  359. real_t distance = navigation_polys[least_cost_id].entry.distance_to(p_target_position);
  360. if (distance_to_reachable_end > distance) {
  361. distance_to_reachable_end = distance;
  362. reachable_end = navigation_polys[least_cost_id].poly;
  363. }
  364. }
  365. // Check if we reached the end
  366. if (navigation_polys[least_cost_id].poly == end_poly) {
  367. found_route = true;
  368. break;
  369. }
  370. }
  371. // We did not find a route but we have both a start polygon and an end polygon at this point.
  372. // Usually this happens because there was not a single external or internal connected edge, e.g. our start polygon is an isolated, single convex polygon.
  373. if (!found_route) {
  374. real_t end_d = FLT_MAX;
  375. // Search all faces of the start polygon for the closest point to our target position.
  376. for (size_t point_id = 2; point_id < begin_poly->points.size(); point_id++) {
  377. Face3 f(begin_poly->points[0].pos, begin_poly->points[point_id - 1].pos, begin_poly->points[point_id].pos);
  378. Vector3 spoint = f.get_closest_point_to(p_target_position);
  379. real_t dpoint = spoint.distance_to(p_target_position);
  380. if (dpoint < end_d) {
  381. end_point = spoint;
  382. end_d = dpoint;
  383. }
  384. }
  385. p_query_task.path_clear();
  386. _query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly);
  387. _query_task_push_back_point_with_metadata(p_query_task, end_point, begin_poly);
  388. p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED;
  389. return;
  390. }
  391. p_query_task.end_position = end_point;
  392. p_query_task.end_polygon = end_poly;
  393. p_query_task.begin_position = begin_point;
  394. p_query_task.begin_polygon = begin_poly;
  395. p_query_task.least_cost_id = least_cost_id;
  396. }
  397. void NavMeshQueries3D::_query_task_simplified_path_points(NavMeshPathQueryTask3D &p_query_task) {
  398. if (!p_query_task.simplify_path || p_query_task.path_points.size() <= 2) {
  399. return;
  400. }
  401. const LocalVector<uint32_t> &simplified_path_indices = NavMeshQueries3D::get_simplified_path_indices(p_query_task.path_points, p_query_task.simplify_epsilon);
  402. uint32_t index_count = simplified_path_indices.size();
  403. {
  404. Vector3 *points_ptr = p_query_task.path_points.ptr();
  405. for (uint32_t i = 0; i < index_count; i++) {
  406. points_ptr[i] = points_ptr[simplified_path_indices[i]];
  407. }
  408. p_query_task.path_points.resize(index_count);
  409. }
  410. if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
  411. int32_t *types_ptr = p_query_task.path_meta_point_types.ptr();
  412. for (uint32_t i = 0; i < index_count; i++) {
  413. types_ptr[i] = types_ptr[simplified_path_indices[i]];
  414. }
  415. p_query_task.path_meta_point_types.resize(index_count);
  416. }
  417. if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
  418. RID *rids_ptr = p_query_task.path_meta_point_rids.ptr();
  419. for (uint32_t i = 0; i < index_count; i++) {
  420. rids_ptr[i] = rids_ptr[simplified_path_indices[i]];
  421. }
  422. p_query_task.path_meta_point_rids.resize(index_count);
  423. }
  424. if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
  425. int64_t *owners_ptr = p_query_task.path_meta_point_owners.ptr();
  426. for (uint32_t i = 0; i < index_count; i++) {
  427. owners_ptr[i] = owners_ptr[simplified_path_indices[i]];
  428. }
  429. p_query_task.path_meta_point_owners.resize(index_count);
  430. }
  431. }
  432. void NavMeshQueries3D::_query_task_find_start_end_positions(NavMeshPathQueryTask3D &p_query_task, const LocalVector<gd::Polygon> &p_polygons) {
  433. real_t begin_d = FLT_MAX;
  434. real_t end_d = FLT_MAX;
  435. // Find the initial poly and the end poly on this map.
  436. for (const gd::Polygon &p : p_polygons) {
  437. // Only consider the polygon if it in a region with compatible layers.
  438. if ((p_query_task.navigation_layers & p.owner->get_navigation_layers()) == 0) {
  439. continue;
  440. }
  441. // For each face check the distance between the origin/destination.
  442. for (size_t point_id = 2; point_id < p.points.size(); point_id++) {
  443. const Face3 face(p.points[0].pos, p.points[point_id - 1].pos, p.points[point_id].pos);
  444. Vector3 point = face.get_closest_point_to(p_query_task.start_position);
  445. real_t distance_to_point = point.distance_to(p_query_task.start_position);
  446. if (distance_to_point < begin_d) {
  447. begin_d = distance_to_point;
  448. p_query_task.begin_polygon = &p;
  449. p_query_task.begin_position = point;
  450. }
  451. point = face.get_closest_point_to(p_query_task.target_position);
  452. distance_to_point = point.distance_to(p_query_task.target_position);
  453. if (distance_to_point < end_d) {
  454. end_d = distance_to_point;
  455. p_query_task.end_polygon = &p;
  456. p_query_task.end_position = point;
  457. }
  458. }
  459. }
  460. }
  461. void NavMeshQueries3D::_query_task_post_process_corridorfunnel(NavMeshPathQueryTask3D &p_query_task) {
  462. Vector3 end_point = p_query_task.end_position;
  463. const gd::Polygon *end_poly = p_query_task.end_polygon;
  464. Vector3 begin_point = p_query_task.begin_position;
  465. const gd::Polygon *begin_poly = p_query_task.begin_polygon;
  466. uint32_t least_cost_id = p_query_task.least_cost_id;
  467. LocalVector<gd::NavigationPoly> &navigation_polys = p_query_task.path_query_slot->path_corridor;
  468. Vector3 p_map_up = p_query_task.map_up;
  469. // Set the apex poly/point to the end point
  470. gd::NavigationPoly *apex_poly = &navigation_polys[least_cost_id];
  471. Vector3 back_pathway[2] = { apex_poly->back_navigation_edge_pathway_start, apex_poly->back_navigation_edge_pathway_end };
  472. const Vector3 back_edge_closest_point = Geometry3D::get_closest_point_to_segment(end_point, back_pathway);
  473. if (end_point.is_equal_approx(back_edge_closest_point)) {
  474. // The end point is basically on top of the last crossed edge, funneling around the corners would at best do nothing.
  475. // At worst it would add an unwanted path point before the last point due to precision issues so skip to the next polygon.
  476. if (apex_poly->back_navigation_poly_id != -1) {
  477. apex_poly = &navigation_polys[apex_poly->back_navigation_poly_id];
  478. }
  479. }
  480. Vector3 apex_point = end_point;
  481. gd::NavigationPoly *left_poly = apex_poly;
  482. Vector3 left_portal = apex_point;
  483. gd::NavigationPoly *right_poly = apex_poly;
  484. Vector3 right_portal = apex_point;
  485. gd::NavigationPoly *p = apex_poly;
  486. _query_task_push_back_point_with_metadata(p_query_task, end_point, end_poly);
  487. while (p) {
  488. // Set left and right points of the pathway between polygons.
  489. Vector3 left = p->back_navigation_edge_pathway_start;
  490. Vector3 right = p->back_navigation_edge_pathway_end;
  491. if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right).dot(p_map_up) < 0) {
  492. SWAP(left, right);
  493. }
  494. bool skip = false;
  495. if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left).dot(p_map_up) >= 0) {
  496. //process
  497. if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal).dot(p_map_up) > 0) {
  498. left_poly = p;
  499. left_portal = left;
  500. } else {
  501. _query_task_clip_path(p_query_task, apex_poly, right_portal, right_poly);
  502. apex_point = right_portal;
  503. p = right_poly;
  504. left_poly = p;
  505. apex_poly = p;
  506. left_portal = apex_point;
  507. right_portal = apex_point;
  508. _query_task_push_back_point_with_metadata(p_query_task, apex_point, apex_poly->poly);
  509. skip = true;
  510. }
  511. }
  512. if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right).dot(p_map_up) <= 0) {
  513. //process
  514. if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal).dot(p_map_up) < 0) {
  515. right_poly = p;
  516. right_portal = right;
  517. } else {
  518. _query_task_clip_path(p_query_task, apex_poly, left_portal, left_poly);
  519. apex_point = left_portal;
  520. p = left_poly;
  521. right_poly = p;
  522. apex_poly = p;
  523. right_portal = apex_point;
  524. left_portal = apex_point;
  525. _query_task_push_back_point_with_metadata(p_query_task, apex_point, apex_poly->poly);
  526. }
  527. }
  528. // Go to the previous polygon.
  529. if (p->back_navigation_poly_id != -1) {
  530. p = &navigation_polys[p->back_navigation_poly_id];
  531. } else {
  532. // The end
  533. p = nullptr;
  534. }
  535. }
  536. // If the last point is not the begin point, add it to the list.
  537. if (p_query_task.path_points[p_query_task.path_points.size() - 1] != begin_point) {
  538. _query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly);
  539. }
  540. }
  541. void NavMeshQueries3D::_query_task_post_process_edgecentered(NavMeshPathQueryTask3D &p_query_task) {
  542. Vector3 end_point = p_query_task.end_position;
  543. const gd::Polygon *end_poly = p_query_task.end_polygon;
  544. Vector3 begin_point = p_query_task.begin_position;
  545. const gd::Polygon *begin_poly = p_query_task.begin_polygon;
  546. uint32_t least_cost_id = p_query_task.least_cost_id;
  547. LocalVector<gd::NavigationPoly> &navigation_polys = p_query_task.path_query_slot->path_corridor;
  548. _query_task_push_back_point_with_metadata(p_query_task, end_point, end_poly);
  549. // Add mid points
  550. int np_id = least_cost_id;
  551. while (np_id != -1 && navigation_polys[np_id].back_navigation_poly_id != -1) {
  552. if (navigation_polys[np_id].back_navigation_edge != -1) {
  553. int prev = navigation_polys[np_id].back_navigation_edge;
  554. int prev_n = (navigation_polys[np_id].back_navigation_edge + 1) % navigation_polys[np_id].poly->points.size();
  555. Vector3 point = (navigation_polys[np_id].poly->points[prev].pos + navigation_polys[np_id].poly->points[prev_n].pos) * 0.5;
  556. _query_task_push_back_point_with_metadata(p_query_task, point, navigation_polys[np_id].poly);
  557. } else {
  558. _query_task_push_back_point_with_metadata(p_query_task, navigation_polys[np_id].entry, navigation_polys[np_id].poly);
  559. }
  560. np_id = navigation_polys[np_id].back_navigation_poly_id;
  561. }
  562. _query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly);
  563. }
  564. void NavMeshQueries3D::_query_task_post_process_nopostprocessing(NavMeshPathQueryTask3D &p_query_task) {
  565. Vector3 end_point = p_query_task.end_position;
  566. const gd::Polygon *end_poly = p_query_task.end_polygon;
  567. Vector3 begin_point = p_query_task.begin_position;
  568. const gd::Polygon *begin_poly = p_query_task.begin_polygon;
  569. uint32_t least_cost_id = p_query_task.least_cost_id;
  570. LocalVector<gd::NavigationPoly> &navigation_polys = p_query_task.path_query_slot->path_corridor;
  571. _query_task_push_back_point_with_metadata(p_query_task, end_point, end_poly);
  572. // Add mid points
  573. int np_id = least_cost_id;
  574. while (np_id != -1 && navigation_polys[np_id].back_navigation_poly_id != -1) {
  575. _query_task_push_back_point_with_metadata(p_query_task, navigation_polys[np_id].entry, navigation_polys[np_id].poly);
  576. np_id = navigation_polys[np_id].back_navigation_poly_id;
  577. }
  578. _query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly);
  579. }
  580. Vector3 NavMeshQueries3D::polygons_get_closest_point_to_segment(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) {
  581. bool use_collision = p_use_collision;
  582. Vector3 closest_point;
  583. real_t closest_point_distance = FLT_MAX;
  584. for (const gd::Polygon &polygon : p_polygons) {
  585. // For each face check the distance to the segment.
  586. for (size_t point_id = 2; point_id < polygon.points.size(); point_id += 1) {
  587. const Face3 face(polygon.points[0].pos, polygon.points[point_id - 1].pos, polygon.points[point_id].pos);
  588. Vector3 intersection_point;
  589. if (face.intersects_segment(p_from, p_to, &intersection_point)) {
  590. const real_t d = p_from.distance_to(intersection_point);
  591. if (!use_collision) {
  592. closest_point = intersection_point;
  593. use_collision = true;
  594. closest_point_distance = d;
  595. } else if (closest_point_distance > d) {
  596. closest_point = intersection_point;
  597. closest_point_distance = d;
  598. }
  599. }
  600. // If segment does not itersect face, check the distance from segment's endpoints.
  601. else if (!use_collision) {
  602. const Vector3 p_from_closest = face.get_closest_point_to(p_from);
  603. const real_t d_p_from = p_from.distance_to(p_from_closest);
  604. if (closest_point_distance > d_p_from) {
  605. closest_point = p_from_closest;
  606. closest_point_distance = d_p_from;
  607. }
  608. const Vector3 p_to_closest = face.get_closest_point_to(p_to);
  609. const real_t d_p_to = p_to.distance_to(p_to_closest);
  610. if (closest_point_distance > d_p_to) {
  611. closest_point = p_to_closest;
  612. closest_point_distance = d_p_to;
  613. }
  614. }
  615. }
  616. // Finally, check for a case when shortest distance is between some point located on a face's edge and some point located on a line segment.
  617. if (!use_collision) {
  618. for (size_t point_id = 0; point_id < polygon.points.size(); point_id += 1) {
  619. Vector3 a, b;
  620. Geometry3D::get_closest_points_between_segments(
  621. p_from,
  622. p_to,
  623. polygon.points[point_id].pos,
  624. polygon.points[(point_id + 1) % polygon.points.size()].pos,
  625. a,
  626. b);
  627. const real_t d = a.distance_to(b);
  628. if (d < closest_point_distance) {
  629. closest_point_distance = d;
  630. closest_point = b;
  631. }
  632. }
  633. }
  634. }
  635. return closest_point;
  636. }
  637. Vector3 NavMeshQueries3D::polygons_get_closest_point(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
  638. gd::ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
  639. return cp.point;
  640. }
  641. Vector3 NavMeshQueries3D::polygons_get_closest_point_normal(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
  642. gd::ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
  643. return cp.normal;
  644. }
  645. gd::ClosestPointQueryResult NavMeshQueries3D::polygons_get_closest_point_info(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
  646. gd::ClosestPointQueryResult result;
  647. real_t closest_point_distance_squared = FLT_MAX;
  648. for (const gd::Polygon &polygon : p_polygons) {
  649. Vector3 plane_normal = (polygon.points[1].pos - polygon.points[0].pos).cross(polygon.points[2].pos - polygon.points[0].pos);
  650. Vector3 closest_on_polygon;
  651. real_t closest = FLT_MAX;
  652. bool inside = true;
  653. Vector3 previous = polygon.points[polygon.points.size() - 1].pos;
  654. for (size_t point_id = 0; point_id < polygon.points.size(); ++point_id) {
  655. Vector3 edge = polygon.points[point_id].pos - previous;
  656. Vector3 to_point = p_point - previous;
  657. Vector3 edge_to_point_pormal = edge.cross(to_point);
  658. bool clockwise = edge_to_point_pormal.dot(plane_normal) > 0;
  659. // If we are not clockwise, the point will never be inside the polygon and so the closest point will be on an edge.
  660. if (!clockwise) {
  661. inside = false;
  662. real_t point_projected_on_edge = edge.dot(to_point);
  663. real_t edge_square = edge.length_squared();
  664. if (point_projected_on_edge > edge_square) {
  665. real_t distance = polygon.points[point_id].pos.distance_squared_to(p_point);
  666. if (distance < closest) {
  667. closest_on_polygon = polygon.points[point_id].pos;
  668. closest = distance;
  669. }
  670. } else if (point_projected_on_edge < 0.f) {
  671. real_t distance = previous.distance_squared_to(p_point);
  672. if (distance < closest) {
  673. closest_on_polygon = previous;
  674. closest = distance;
  675. }
  676. } else {
  677. // If we project on this edge, this will be the closest point.
  678. real_t percent = point_projected_on_edge / edge_square;
  679. closest_on_polygon = previous + percent * edge;
  680. break;
  681. }
  682. }
  683. previous = polygon.points[point_id].pos;
  684. }
  685. if (inside) {
  686. Vector3 plane_normalized = plane_normal.normalized();
  687. real_t distance = plane_normalized.dot(p_point - polygon.points[0].pos);
  688. real_t distance_squared = distance * distance;
  689. if (distance_squared < closest_point_distance_squared) {
  690. closest_point_distance_squared = distance_squared;
  691. result.point = p_point - plane_normalized * distance;
  692. result.normal = plane_normal;
  693. result.owner = polygon.owner->get_self();
  694. if (Math::is_zero_approx(distance)) {
  695. break;
  696. }
  697. }
  698. } else {
  699. real_t distance = closest_on_polygon.distance_squared_to(p_point);
  700. if (distance < closest_point_distance_squared) {
  701. closest_point_distance_squared = distance;
  702. result.point = closest_on_polygon;
  703. result.normal = plane_normal;
  704. result.owner = polygon.owner->get_self();
  705. }
  706. }
  707. }
  708. return result;
  709. }
  710. RID NavMeshQueries3D::polygons_get_closest_point_owner(const LocalVector<gd::Polygon> &p_polygons, const Vector3 &p_point) {
  711. gd::ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
  712. return cp.owner;
  713. }
  714. void NavMeshQueries3D::_query_task_clip_path(NavMeshPathQueryTask3D &p_query_task, const gd::NavigationPoly *from_poly, const Vector3 &p_to_point, const gd::NavigationPoly *p_to_poly) {
  715. Vector3 from = p_query_task.path_points[p_query_task.path_points.size() - 1];
  716. const LocalVector<gd::NavigationPoly> &p_navigation_polys = p_query_task.path_query_slot->path_corridor;
  717. const Vector3 p_map_up = p_query_task.map_up;
  718. if (from.is_equal_approx(p_to_point)) {
  719. return;
  720. }
  721. Plane cut_plane;
  722. cut_plane.normal = (from - p_to_point).cross(p_map_up);
  723. if (cut_plane.normal == Vector3()) {
  724. return;
  725. }
  726. cut_plane.normal.normalize();
  727. cut_plane.d = cut_plane.normal.dot(from);
  728. while (from_poly != p_to_poly) {
  729. Vector3 pathway_start = from_poly->back_navigation_edge_pathway_start;
  730. Vector3 pathway_end = from_poly->back_navigation_edge_pathway_end;
  731. ERR_FAIL_COND(from_poly->back_navigation_poly_id == -1);
  732. from_poly = &p_navigation_polys[from_poly->back_navigation_poly_id];
  733. if (!pathway_start.is_equal_approx(pathway_end)) {
  734. Vector3 inters;
  735. if (cut_plane.intersects_segment(pathway_start, pathway_end, &inters)) {
  736. if (!inters.is_equal_approx(p_to_point) && !inters.is_equal_approx(p_query_task.path_points[p_query_task.path_points.size() - 1])) {
  737. _query_task_push_back_point_with_metadata(p_query_task, inters, from_poly->poly);
  738. }
  739. }
  740. }
  741. }
  742. }
  743. LocalVector<uint32_t> NavMeshQueries3D::get_simplified_path_indices(const LocalVector<Vector3> &p_path, real_t p_epsilon) {
  744. p_epsilon = MAX(0.0, p_epsilon);
  745. real_t squared_epsilon = p_epsilon * p_epsilon;
  746. LocalVector<uint32_t> simplified_path_indices;
  747. simplified_path_indices.reserve(p_path.size());
  748. simplified_path_indices.push_back(0);
  749. simplify_path_segment(0, p_path.size() - 1, p_path, squared_epsilon, simplified_path_indices);
  750. simplified_path_indices.push_back(p_path.size() - 1);
  751. return simplified_path_indices;
  752. }
  753. void NavMeshQueries3D::simplify_path_segment(int p_start_inx, int p_end_inx, const LocalVector<Vector3> &p_points, real_t p_epsilon, LocalVector<uint32_t> &r_simplified_path_indices) {
  754. Vector3 path_segment[2] = { p_points[p_start_inx], p_points[p_end_inx] };
  755. real_t point_max_distance = 0.0;
  756. int point_max_index = 0;
  757. for (int i = p_start_inx; i < p_end_inx; i++) {
  758. const Vector3 &checked_point = p_points[i];
  759. const Vector3 closest_point = Geometry3D::get_closest_point_to_segment(checked_point, path_segment);
  760. real_t distance_squared = closest_point.distance_squared_to(checked_point);
  761. if (distance_squared > point_max_distance) {
  762. point_max_index = i;
  763. point_max_distance = distance_squared;
  764. }
  765. }
  766. if (point_max_distance > p_epsilon) {
  767. simplify_path_segment(p_start_inx, point_max_index, p_points, p_epsilon, r_simplified_path_indices);
  768. r_simplified_path_indices.push_back(point_max_index);
  769. simplify_path_segment(point_max_index, p_end_inx, p_points, p_epsilon, r_simplified_path_indices);
  770. }
  771. }
  772. #endif // _3D_DISABLED