renderer_scene_render_rd.cpp 331 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632
  1. /*************************************************************************/
  2. /* renderer_scene_render_rd.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "renderer_scene_render_rd.h"
  31. #include "core/config/project_settings.h"
  32. #include "core/os/os.h"
  33. #include "renderer_compositor_rd.h"
  34. #include "servers/rendering/rendering_server_default.h"
  35. uint64_t RendererSceneRenderRD::auto_exposure_counter = 2;
  36. void get_vogel_disk(float *r_kernel, int p_sample_count) {
  37. const float golden_angle = 2.4;
  38. for (int i = 0; i < p_sample_count; i++) {
  39. float r = Math::sqrt(float(i) + 0.5) / Math::sqrt(float(p_sample_count));
  40. float theta = float(i) * golden_angle;
  41. r_kernel[i * 4] = Math::cos(theta) * r;
  42. r_kernel[i * 4 + 1] = Math::sin(theta) * r;
  43. }
  44. }
  45. void RendererSceneRenderRD::_clear_reflection_data(ReflectionData &rd) {
  46. rd.layers.clear();
  47. rd.radiance_base_cubemap = RID();
  48. if (rd.downsampled_radiance_cubemap.is_valid()) {
  49. RD::get_singleton()->free(rd.downsampled_radiance_cubemap);
  50. }
  51. rd.downsampled_radiance_cubemap = RID();
  52. rd.downsampled_layer.mipmaps.clear();
  53. rd.coefficient_buffer = RID();
  54. }
  55. void RendererSceneRenderRD::_update_reflection_data(ReflectionData &rd, int p_size, int p_mipmaps, bool p_use_array, RID p_base_cube, int p_base_layer, bool p_low_quality) {
  56. //recreate radiance and all data
  57. int mipmaps = p_mipmaps;
  58. uint32_t w = p_size, h = p_size;
  59. if (p_use_array) {
  60. int layers = p_low_quality ? 8 : roughness_layers;
  61. for (int i = 0; i < layers; i++) {
  62. ReflectionData::Layer layer;
  63. uint32_t mmw = w;
  64. uint32_t mmh = h;
  65. layer.mipmaps.resize(mipmaps);
  66. layer.views.resize(mipmaps);
  67. for (int j = 0; j < mipmaps; j++) {
  68. ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j];
  69. mm.size.width = mmw;
  70. mm.size.height = mmh;
  71. for (int k = 0; k < 6; k++) {
  72. mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6 + k, j);
  73. Vector<RID> fbtex;
  74. fbtex.push_back(mm.views[k]);
  75. mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex);
  76. }
  77. layer.views.write[j] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + i * 6, j, RD::TEXTURE_SLICE_CUBEMAP);
  78. mmw = MAX(1, mmw >> 1);
  79. mmh = MAX(1, mmh >> 1);
  80. }
  81. rd.layers.push_back(layer);
  82. }
  83. } else {
  84. mipmaps = p_low_quality ? 8 : mipmaps;
  85. //regular cubemap, lower quality (aliasing, less memory)
  86. ReflectionData::Layer layer;
  87. uint32_t mmw = w;
  88. uint32_t mmh = h;
  89. layer.mipmaps.resize(mipmaps);
  90. layer.views.resize(mipmaps);
  91. for (int j = 0; j < mipmaps; j++) {
  92. ReflectionData::Layer::Mipmap &mm = layer.mipmaps.write[j];
  93. mm.size.width = mmw;
  94. mm.size.height = mmh;
  95. for (int k = 0; k < 6; k++) {
  96. mm.views[k] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer + k, j);
  97. Vector<RID> fbtex;
  98. fbtex.push_back(mm.views[k]);
  99. mm.framebuffers[k] = RD::get_singleton()->framebuffer_create(fbtex);
  100. }
  101. layer.views.write[j] = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, j, RD::TEXTURE_SLICE_CUBEMAP);
  102. mmw = MAX(1, mmw >> 1);
  103. mmh = MAX(1, mmh >> 1);
  104. }
  105. rd.layers.push_back(layer);
  106. }
  107. rd.radiance_base_cubemap = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), p_base_cube, p_base_layer, 0, RD::TEXTURE_SLICE_CUBEMAP);
  108. RD::TextureFormat tf;
  109. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  110. tf.width = 64; // Always 64x64
  111. tf.height = 64;
  112. tf.texture_type = RD::TEXTURE_TYPE_CUBE;
  113. tf.array_layers = 6;
  114. tf.mipmaps = 7;
  115. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  116. rd.downsampled_radiance_cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView());
  117. {
  118. uint32_t mmw = 64;
  119. uint32_t mmh = 64;
  120. rd.downsampled_layer.mipmaps.resize(7);
  121. for (int j = 0; j < rd.downsampled_layer.mipmaps.size(); j++) {
  122. ReflectionData::DownsampleLayer::Mipmap &mm = rd.downsampled_layer.mipmaps.write[j];
  123. mm.size.width = mmw;
  124. mm.size.height = mmh;
  125. mm.view = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rd.downsampled_radiance_cubemap, 0, j, RD::TEXTURE_SLICE_CUBEMAP);
  126. mmw = MAX(1, mmw >> 1);
  127. mmh = MAX(1, mmh >> 1);
  128. }
  129. }
  130. }
  131. void RendererSceneRenderRD::_create_reflection_fast_filter(ReflectionData &rd, bool p_use_arrays) {
  132. storage->get_effects()->cubemap_downsample(rd.radiance_base_cubemap, rd.downsampled_layer.mipmaps[0].view, rd.downsampled_layer.mipmaps[0].size);
  133. for (int i = 1; i < rd.downsampled_layer.mipmaps.size(); i++) {
  134. storage->get_effects()->cubemap_downsample(rd.downsampled_layer.mipmaps[i - 1].view, rd.downsampled_layer.mipmaps[i].view, rd.downsampled_layer.mipmaps[i].size);
  135. }
  136. Vector<RID> views;
  137. if (p_use_arrays) {
  138. for (int i = 1; i < rd.layers.size(); i++) {
  139. views.push_back(rd.layers[i].views[0]);
  140. }
  141. } else {
  142. for (int i = 1; i < rd.layers[0].views.size(); i++) {
  143. views.push_back(rd.layers[0].views[i]);
  144. }
  145. }
  146. storage->get_effects()->cubemap_filter(rd.downsampled_radiance_cubemap, views, p_use_arrays);
  147. }
  148. void RendererSceneRenderRD::_create_reflection_importance_sample(ReflectionData &rd, bool p_use_arrays, int p_cube_side, int p_base_layer) {
  149. if (p_use_arrays) {
  150. //render directly to the layers
  151. storage->get_effects()->cubemap_roughness(rd.radiance_base_cubemap, rd.layers[p_base_layer].views[0], p_cube_side, sky_ggx_samples_quality, float(p_base_layer) / (rd.layers.size() - 1.0), rd.layers[p_base_layer].mipmaps[0].size.x);
  152. } else {
  153. storage->get_effects()->cubemap_roughness(rd.layers[0].views[p_base_layer - 1], rd.layers[0].views[p_base_layer], p_cube_side, sky_ggx_samples_quality, float(p_base_layer) / (rd.layers[0].mipmaps.size() - 1.0), rd.layers[0].mipmaps[p_base_layer].size.x);
  154. }
  155. }
  156. void RendererSceneRenderRD::_update_reflection_mipmaps(ReflectionData &rd, int p_start, int p_end) {
  157. for (int i = p_start; i < p_end; i++) {
  158. for (int j = 0; j < rd.layers[i].mipmaps.size() - 1; j++) {
  159. for (int k = 0; k < 6; k++) {
  160. RID view = rd.layers[i].mipmaps[j].views[k];
  161. RID texture = rd.layers[i].mipmaps[j + 1].views[k];
  162. Size2i size = rd.layers[i].mipmaps[j + 1].size;
  163. storage->get_effects()->make_mipmap(view, texture, size);
  164. }
  165. }
  166. }
  167. }
  168. void RendererSceneRenderRD::_sdfgi_erase(RenderBuffers *rb) {
  169. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  170. const SDFGI::Cascade &c = rb->sdfgi->cascades[i];
  171. RD::get_singleton()->free(c.light_data);
  172. RD::get_singleton()->free(c.light_aniso_0_tex);
  173. RD::get_singleton()->free(c.light_aniso_1_tex);
  174. RD::get_singleton()->free(c.sdf_tex);
  175. RD::get_singleton()->free(c.solid_cell_dispatch_buffer);
  176. RD::get_singleton()->free(c.solid_cell_buffer);
  177. RD::get_singleton()->free(c.lightprobe_history_tex);
  178. RD::get_singleton()->free(c.lightprobe_average_tex);
  179. RD::get_singleton()->free(c.lights_buffer);
  180. }
  181. RD::get_singleton()->free(rb->sdfgi->render_albedo);
  182. RD::get_singleton()->free(rb->sdfgi->render_emission);
  183. RD::get_singleton()->free(rb->sdfgi->render_emission_aniso);
  184. RD::get_singleton()->free(rb->sdfgi->render_sdf[0]);
  185. RD::get_singleton()->free(rb->sdfgi->render_sdf[1]);
  186. RD::get_singleton()->free(rb->sdfgi->render_sdf_half[0]);
  187. RD::get_singleton()->free(rb->sdfgi->render_sdf_half[1]);
  188. for (int i = 0; i < 8; i++) {
  189. RD::get_singleton()->free(rb->sdfgi->render_occlusion[i]);
  190. }
  191. RD::get_singleton()->free(rb->sdfgi->render_geom_facing);
  192. RD::get_singleton()->free(rb->sdfgi->lightprobe_data);
  193. RD::get_singleton()->free(rb->sdfgi->lightprobe_history_scroll);
  194. RD::get_singleton()->free(rb->sdfgi->occlusion_data);
  195. RD::get_singleton()->free(rb->sdfgi->ambient_texture);
  196. RD::get_singleton()->free(rb->sdfgi->cascades_ubo);
  197. memdelete(rb->sdfgi);
  198. rb->sdfgi = nullptr;
  199. }
  200. const Vector3i RendererSceneRenderRD::SDFGI::Cascade::DIRTY_ALL = Vector3i(0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF);
  201. void RendererSceneRenderRD::sdfgi_update(RID p_render_buffers, RID p_environment, const Vector3 &p_world_position) {
  202. Environment *env = environment_owner.getornull(p_environment);
  203. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  204. bool needs_sdfgi = env && env->sdfgi_enabled;
  205. if (!needs_sdfgi) {
  206. if (rb->sdfgi != nullptr) {
  207. //erase it
  208. _sdfgi_erase(rb);
  209. _render_buffers_uniform_set_changed(p_render_buffers);
  210. }
  211. return;
  212. }
  213. static const uint32_t history_frames_to_converge[RS::ENV_SDFGI_CONVERGE_MAX] = { 5, 10, 15, 20, 25, 30 };
  214. uint32_t requested_history_size = history_frames_to_converge[sdfgi_frames_to_converge];
  215. if (rb->sdfgi && (rb->sdfgi->cascade_mode != env->sdfgi_cascades || rb->sdfgi->min_cell_size != env->sdfgi_min_cell_size || requested_history_size != rb->sdfgi->history_size || rb->sdfgi->uses_occlusion != env->sdfgi_use_occlusion || rb->sdfgi->y_scale_mode != env->sdfgi_y_scale)) {
  216. //configuration changed, erase
  217. _sdfgi_erase(rb);
  218. }
  219. SDFGI *sdfgi = rb->sdfgi;
  220. if (sdfgi == nullptr) {
  221. //re-create
  222. rb->sdfgi = memnew(SDFGI);
  223. sdfgi = rb->sdfgi;
  224. sdfgi->cascade_mode = env->sdfgi_cascades;
  225. sdfgi->min_cell_size = env->sdfgi_min_cell_size;
  226. sdfgi->uses_occlusion = env->sdfgi_use_occlusion;
  227. sdfgi->y_scale_mode = env->sdfgi_y_scale;
  228. static const float y_scale[3] = { 1.0, 1.5, 2.0 };
  229. sdfgi->y_mult = y_scale[sdfgi->y_scale_mode];
  230. static const int cascasde_size[3] = { 4, 6, 8 };
  231. sdfgi->cascades.resize(cascasde_size[sdfgi->cascade_mode]);
  232. sdfgi->probe_axis_count = SDFGI::PROBE_DIVISOR + 1;
  233. sdfgi->solid_cell_ratio = sdfgi_solid_cell_ratio;
  234. sdfgi->solid_cell_count = uint32_t(float(sdfgi->cascade_size * sdfgi->cascade_size * sdfgi->cascade_size) * sdfgi->solid_cell_ratio);
  235. float base_cell_size = sdfgi->min_cell_size;
  236. RD::TextureFormat tf_sdf;
  237. tf_sdf.format = RD::DATA_FORMAT_R8_UNORM;
  238. tf_sdf.width = sdfgi->cascade_size; // Always 64x64
  239. tf_sdf.height = sdfgi->cascade_size;
  240. tf_sdf.depth = sdfgi->cascade_size;
  241. tf_sdf.texture_type = RD::TEXTURE_TYPE_3D;
  242. tf_sdf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  243. {
  244. RD::TextureFormat tf_render = tf_sdf;
  245. tf_render.format = RD::DATA_FORMAT_R16_UINT;
  246. sdfgi->render_albedo = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  247. tf_render.format = RD::DATA_FORMAT_R32_UINT;
  248. sdfgi->render_emission = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  249. sdfgi->render_emission_aniso = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  250. tf_render.format = RD::DATA_FORMAT_R8_UNORM; //at least its easy to visualize
  251. for (int i = 0; i < 8; i++) {
  252. sdfgi->render_occlusion[i] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  253. }
  254. tf_render.format = RD::DATA_FORMAT_R32_UINT;
  255. sdfgi->render_geom_facing = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  256. tf_render.format = RD::DATA_FORMAT_R8G8B8A8_UINT;
  257. sdfgi->render_sdf[0] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  258. sdfgi->render_sdf[1] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  259. tf_render.width /= 2;
  260. tf_render.height /= 2;
  261. tf_render.depth /= 2;
  262. sdfgi->render_sdf_half[0] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  263. sdfgi->render_sdf_half[1] = RD::get_singleton()->texture_create(tf_render, RD::TextureView());
  264. }
  265. RD::TextureFormat tf_occlusion = tf_sdf;
  266. tf_occlusion.format = RD::DATA_FORMAT_R16_UINT;
  267. tf_occlusion.shareable_formats.push_back(RD::DATA_FORMAT_R16_UINT);
  268. tf_occlusion.shareable_formats.push_back(RD::DATA_FORMAT_R4G4B4A4_UNORM_PACK16);
  269. tf_occlusion.depth *= sdfgi->cascades.size(); //use depth for occlusion slices
  270. tf_occlusion.width *= 2; //use width for the other half
  271. RD::TextureFormat tf_light = tf_sdf;
  272. tf_light.format = RD::DATA_FORMAT_R32_UINT;
  273. tf_light.shareable_formats.push_back(RD::DATA_FORMAT_R32_UINT);
  274. tf_light.shareable_formats.push_back(RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32);
  275. RD::TextureFormat tf_aniso0 = tf_sdf;
  276. tf_aniso0.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  277. RD::TextureFormat tf_aniso1 = tf_sdf;
  278. tf_aniso1.format = RD::DATA_FORMAT_R8G8_UNORM;
  279. int passes = nearest_shift(sdfgi->cascade_size) - 1;
  280. //store lightprobe SH
  281. RD::TextureFormat tf_probes;
  282. tf_probes.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  283. tf_probes.width = sdfgi->probe_axis_count * sdfgi->probe_axis_count;
  284. tf_probes.height = sdfgi->probe_axis_count * SDFGI::SH_SIZE;
  285. tf_probes.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  286. tf_probes.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  287. sdfgi->history_size = requested_history_size;
  288. RD::TextureFormat tf_probe_history = tf_probes;
  289. tf_probe_history.format = RD::DATA_FORMAT_R16G16B16A16_SINT; //signed integer because SH are signed
  290. tf_probe_history.array_layers = sdfgi->history_size;
  291. RD::TextureFormat tf_probe_average = tf_probes;
  292. tf_probe_average.format = RD::DATA_FORMAT_R32G32B32A32_SINT; //signed integer because SH are signed
  293. tf_probe_average.texture_type = RD::TEXTURE_TYPE_2D;
  294. sdfgi->lightprobe_history_scroll = RD::get_singleton()->texture_create(tf_probe_history, RD::TextureView());
  295. sdfgi->lightprobe_average_scroll = RD::get_singleton()->texture_create(tf_probe_average, RD::TextureView());
  296. {
  297. //octahedral lightprobes
  298. RD::TextureFormat tf_octprobes = tf_probes;
  299. tf_octprobes.array_layers = sdfgi->cascades.size() * 2;
  300. tf_octprobes.format = RD::DATA_FORMAT_R32_UINT; //pack well with RGBE
  301. tf_octprobes.width = sdfgi->probe_axis_count * sdfgi->probe_axis_count * (SDFGI::LIGHTPROBE_OCT_SIZE + 2);
  302. tf_octprobes.height = sdfgi->probe_axis_count * (SDFGI::LIGHTPROBE_OCT_SIZE + 2);
  303. tf_octprobes.shareable_formats.push_back(RD::DATA_FORMAT_R32_UINT);
  304. tf_octprobes.shareable_formats.push_back(RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32);
  305. //lightprobe texture is an octahedral texture
  306. sdfgi->lightprobe_data = RD::get_singleton()->texture_create(tf_octprobes, RD::TextureView());
  307. RD::TextureView tv;
  308. tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32;
  309. sdfgi->lightprobe_texture = RD::get_singleton()->texture_create_shared(tv, sdfgi->lightprobe_data);
  310. //texture handling ambient data, to integrate with volumetric foc
  311. RD::TextureFormat tf_ambient = tf_probes;
  312. tf_ambient.array_layers = sdfgi->cascades.size();
  313. tf_ambient.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; //pack well with RGBE
  314. tf_ambient.width = sdfgi->probe_axis_count * sdfgi->probe_axis_count;
  315. tf_ambient.height = sdfgi->probe_axis_count;
  316. tf_ambient.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  317. //lightprobe texture is an octahedral texture
  318. sdfgi->ambient_texture = RD::get_singleton()->texture_create(tf_ambient, RD::TextureView());
  319. }
  320. sdfgi->cascades_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES);
  321. sdfgi->occlusion_data = RD::get_singleton()->texture_create(tf_occlusion, RD::TextureView());
  322. {
  323. RD::TextureView tv;
  324. tv.format_override = RD::DATA_FORMAT_R4G4B4A4_UNORM_PACK16;
  325. sdfgi->occlusion_texture = RD::get_singleton()->texture_create_shared(tv, sdfgi->occlusion_data);
  326. }
  327. for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) {
  328. SDFGI::Cascade &cascade = sdfgi->cascades[i];
  329. /* 3D Textures */
  330. cascade.sdf_tex = RD::get_singleton()->texture_create(tf_sdf, RD::TextureView());
  331. cascade.light_data = RD::get_singleton()->texture_create(tf_light, RD::TextureView());
  332. cascade.light_aniso_0_tex = RD::get_singleton()->texture_create(tf_aniso0, RD::TextureView());
  333. cascade.light_aniso_1_tex = RD::get_singleton()->texture_create(tf_aniso1, RD::TextureView());
  334. {
  335. RD::TextureView tv;
  336. tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32;
  337. cascade.light_tex = RD::get_singleton()->texture_create_shared(tv, cascade.light_data);
  338. RD::get_singleton()->texture_clear(cascade.light_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  339. RD::get_singleton()->texture_clear(cascade.light_aniso_0_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  340. RD::get_singleton()->texture_clear(cascade.light_aniso_1_tex, Color(0, 0, 0, 0), 0, 1, 0, 1);
  341. }
  342. cascade.cell_size = base_cell_size;
  343. Vector3 world_position = p_world_position;
  344. world_position.y *= sdfgi->y_mult;
  345. int32_t probe_cells = sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  346. Vector3 probe_size = Vector3(1, 1, 1) * cascade.cell_size * probe_cells;
  347. Vector3i probe_pos = Vector3i((world_position / probe_size + Vector3(0.5, 0.5, 0.5)).floor());
  348. cascade.position = probe_pos * probe_cells;
  349. cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
  350. base_cell_size *= 2.0;
  351. /* Probe History */
  352. cascade.lightprobe_history_tex = RD::get_singleton()->texture_create(tf_probe_history, RD::TextureView());
  353. RD::get_singleton()->texture_clear(cascade.lightprobe_history_tex, Color(0, 0, 0, 0), 0, 1, 0, tf_probe_history.array_layers); //needs to be cleared for average to work
  354. cascade.lightprobe_average_tex = RD::get_singleton()->texture_create(tf_probe_average, RD::TextureView());
  355. RD::get_singleton()->texture_clear(cascade.lightprobe_average_tex, Color(0, 0, 0, 0), 0, 1, 0, 1); //needs to be cleared for average to work
  356. /* Buffers */
  357. cascade.solid_cell_buffer = RD::get_singleton()->storage_buffer_create(sizeof(SDFGI::Cascade::SolidCell) * sdfgi->solid_cell_count);
  358. cascade.solid_cell_dispatch_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4, Vector<uint8_t>(), RD::STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT);
  359. cascade.lights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(SDGIShader::Light) * MAX(SDFGI::MAX_STATIC_LIGHTS, SDFGI::MAX_DYNAMIC_LIGHTS));
  360. {
  361. Vector<RD::Uniform> uniforms;
  362. {
  363. RD::Uniform u;
  364. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  365. u.binding = 1;
  366. u.ids.push_back(sdfgi->render_sdf[(passes & 1) ? 1 : 0]); //if passes are even, we read from buffer 0, else we read from buffer 1
  367. uniforms.push_back(u);
  368. }
  369. {
  370. RD::Uniform u;
  371. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  372. u.binding = 2;
  373. u.ids.push_back(sdfgi->render_albedo);
  374. uniforms.push_back(u);
  375. }
  376. {
  377. RD::Uniform u;
  378. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  379. u.binding = 3;
  380. for (int j = 0; j < 8; j++) {
  381. u.ids.push_back(sdfgi->render_occlusion[j]);
  382. }
  383. uniforms.push_back(u);
  384. }
  385. {
  386. RD::Uniform u;
  387. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  388. u.binding = 4;
  389. u.ids.push_back(sdfgi->render_emission);
  390. uniforms.push_back(u);
  391. }
  392. {
  393. RD::Uniform u;
  394. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  395. u.binding = 5;
  396. u.ids.push_back(sdfgi->render_emission_aniso);
  397. uniforms.push_back(u);
  398. }
  399. {
  400. RD::Uniform u;
  401. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  402. u.binding = 6;
  403. u.ids.push_back(sdfgi->render_geom_facing);
  404. uniforms.push_back(u);
  405. }
  406. {
  407. RD::Uniform u;
  408. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  409. u.binding = 7;
  410. u.ids.push_back(cascade.sdf_tex);
  411. uniforms.push_back(u);
  412. }
  413. {
  414. RD::Uniform u;
  415. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  416. u.binding = 8;
  417. u.ids.push_back(sdfgi->occlusion_data);
  418. uniforms.push_back(u);
  419. }
  420. {
  421. RD::Uniform u;
  422. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  423. u.binding = 10;
  424. u.ids.push_back(cascade.solid_cell_dispatch_buffer);
  425. uniforms.push_back(u);
  426. }
  427. {
  428. RD::Uniform u;
  429. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  430. u.binding = 11;
  431. u.ids.push_back(cascade.solid_cell_buffer);
  432. uniforms.push_back(u);
  433. }
  434. cascade.sdf_store_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_STORE), 0);
  435. }
  436. {
  437. Vector<RD::Uniform> uniforms;
  438. {
  439. RD::Uniform u;
  440. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  441. u.binding = 1;
  442. u.ids.push_back(sdfgi->render_albedo);
  443. uniforms.push_back(u);
  444. }
  445. {
  446. RD::Uniform u;
  447. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  448. u.binding = 2;
  449. u.ids.push_back(sdfgi->render_geom_facing);
  450. uniforms.push_back(u);
  451. }
  452. {
  453. RD::Uniform u;
  454. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  455. u.binding = 3;
  456. u.ids.push_back(sdfgi->render_emission);
  457. uniforms.push_back(u);
  458. }
  459. {
  460. RD::Uniform u;
  461. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  462. u.binding = 4;
  463. u.ids.push_back(sdfgi->render_emission_aniso);
  464. uniforms.push_back(u);
  465. }
  466. {
  467. RD::Uniform u;
  468. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  469. u.binding = 5;
  470. u.ids.push_back(cascade.solid_cell_dispatch_buffer);
  471. uniforms.push_back(u);
  472. }
  473. {
  474. RD::Uniform u;
  475. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  476. u.binding = 6;
  477. u.ids.push_back(cascade.solid_cell_buffer);
  478. uniforms.push_back(u);
  479. }
  480. cascade.scroll_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_SCROLL), 0);
  481. }
  482. {
  483. Vector<RD::Uniform> uniforms;
  484. {
  485. RD::Uniform u;
  486. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  487. u.binding = 1;
  488. for (int j = 0; j < 8; j++) {
  489. u.ids.push_back(sdfgi->render_occlusion[j]);
  490. }
  491. uniforms.push_back(u);
  492. }
  493. {
  494. RD::Uniform u;
  495. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  496. u.binding = 2;
  497. u.ids.push_back(sdfgi->occlusion_data);
  498. uniforms.push_back(u);
  499. }
  500. cascade.scroll_occlusion_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_SCROLL_OCCLUSION), 0);
  501. }
  502. }
  503. //direct light
  504. for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) {
  505. SDFGI::Cascade &cascade = sdfgi->cascades[i];
  506. Vector<RD::Uniform> uniforms;
  507. {
  508. RD::Uniform u;
  509. u.binding = 1;
  510. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  511. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  512. if (j < rb->sdfgi->cascades.size()) {
  513. u.ids.push_back(rb->sdfgi->cascades[j].sdf_tex);
  514. } else {
  515. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  516. }
  517. }
  518. uniforms.push_back(u);
  519. }
  520. {
  521. RD::Uniform u;
  522. u.binding = 2;
  523. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  524. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  525. uniforms.push_back(u);
  526. }
  527. {
  528. RD::Uniform u;
  529. u.binding = 3;
  530. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  531. u.ids.push_back(cascade.solid_cell_dispatch_buffer);
  532. uniforms.push_back(u);
  533. }
  534. {
  535. RD::Uniform u;
  536. u.binding = 4;
  537. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  538. u.ids.push_back(cascade.solid_cell_buffer);
  539. uniforms.push_back(u);
  540. }
  541. {
  542. RD::Uniform u;
  543. u.binding = 5;
  544. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  545. u.ids.push_back(cascade.light_data);
  546. uniforms.push_back(u);
  547. }
  548. {
  549. RD::Uniform u;
  550. u.binding = 6;
  551. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  552. u.ids.push_back(cascade.light_aniso_0_tex);
  553. uniforms.push_back(u);
  554. }
  555. {
  556. RD::Uniform u;
  557. u.binding = 7;
  558. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  559. u.ids.push_back(cascade.light_aniso_1_tex);
  560. uniforms.push_back(u);
  561. }
  562. {
  563. RD::Uniform u;
  564. u.binding = 8;
  565. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  566. u.ids.push_back(rb->sdfgi->cascades_ubo);
  567. uniforms.push_back(u);
  568. }
  569. {
  570. RD::Uniform u;
  571. u.binding = 9;
  572. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  573. u.ids.push_back(cascade.lights_buffer);
  574. uniforms.push_back(u);
  575. }
  576. {
  577. RD::Uniform u;
  578. u.binding = 10;
  579. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  580. u.ids.push_back(rb->sdfgi->lightprobe_texture);
  581. uniforms.push_back(u);
  582. }
  583. cascade.sdf_direct_light_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.direct_light.version_get_shader(sdfgi_shader.direct_light_shader, 0), 0);
  584. }
  585. //preprocess initialize uniform set
  586. {
  587. Vector<RD::Uniform> uniforms;
  588. {
  589. RD::Uniform u;
  590. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  591. u.binding = 1;
  592. u.ids.push_back(sdfgi->render_albedo);
  593. uniforms.push_back(u);
  594. }
  595. {
  596. RD::Uniform u;
  597. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  598. u.binding = 2;
  599. u.ids.push_back(sdfgi->render_sdf[0]);
  600. uniforms.push_back(u);
  601. }
  602. sdfgi->sdf_initialize_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE), 0);
  603. }
  604. {
  605. Vector<RD::Uniform> uniforms;
  606. {
  607. RD::Uniform u;
  608. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  609. u.binding = 1;
  610. u.ids.push_back(sdfgi->render_albedo);
  611. uniforms.push_back(u);
  612. }
  613. {
  614. RD::Uniform u;
  615. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  616. u.binding = 2;
  617. u.ids.push_back(sdfgi->render_sdf_half[0]);
  618. uniforms.push_back(u);
  619. }
  620. sdfgi->sdf_initialize_half_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF), 0);
  621. }
  622. //jump flood uniform set
  623. {
  624. Vector<RD::Uniform> uniforms;
  625. {
  626. RD::Uniform u;
  627. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  628. u.binding = 1;
  629. u.ids.push_back(sdfgi->render_sdf[0]);
  630. uniforms.push_back(u);
  631. }
  632. {
  633. RD::Uniform u;
  634. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  635. u.binding = 2;
  636. u.ids.push_back(sdfgi->render_sdf[1]);
  637. uniforms.push_back(u);
  638. }
  639. sdfgi->jump_flood_uniform_set[0] = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  640. SWAP(uniforms.write[0].ids.write[0], uniforms.write[1].ids.write[0]);
  641. sdfgi->jump_flood_uniform_set[1] = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  642. }
  643. //jump flood half uniform set
  644. {
  645. Vector<RD::Uniform> uniforms;
  646. {
  647. RD::Uniform u;
  648. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  649. u.binding = 1;
  650. u.ids.push_back(sdfgi->render_sdf_half[0]);
  651. uniforms.push_back(u);
  652. }
  653. {
  654. RD::Uniform u;
  655. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  656. u.binding = 2;
  657. u.ids.push_back(sdfgi->render_sdf_half[1]);
  658. uniforms.push_back(u);
  659. }
  660. sdfgi->jump_flood_half_uniform_set[0] = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  661. SWAP(uniforms.write[0].ids.write[0], uniforms.write[1].ids.write[0]);
  662. sdfgi->jump_flood_half_uniform_set[1] = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD), 0);
  663. }
  664. //upscale half size sdf
  665. {
  666. Vector<RD::Uniform> uniforms;
  667. {
  668. RD::Uniform u;
  669. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  670. u.binding = 1;
  671. u.ids.push_back(sdfgi->render_albedo);
  672. uniforms.push_back(u);
  673. }
  674. {
  675. RD::Uniform u;
  676. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  677. u.binding = 2;
  678. u.ids.push_back(sdfgi->render_sdf_half[(passes & 1) ? 0 : 1]); //reverse pass order because half size
  679. uniforms.push_back(u);
  680. }
  681. {
  682. RD::Uniform u;
  683. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  684. u.binding = 3;
  685. u.ids.push_back(sdfgi->render_sdf[(passes & 1) ? 0 : 1]); //reverse pass order because it needs an extra JFA pass
  686. uniforms.push_back(u);
  687. }
  688. sdfgi->upscale_jfa_uniform_set_index = (passes & 1) ? 0 : 1;
  689. sdfgi->sdf_upscale_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_JUMP_FLOOD_UPSCALE), 0);
  690. }
  691. //occlusion uniform set
  692. {
  693. Vector<RD::Uniform> uniforms;
  694. {
  695. RD::Uniform u;
  696. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  697. u.binding = 1;
  698. u.ids.push_back(sdfgi->render_albedo);
  699. uniforms.push_back(u);
  700. }
  701. {
  702. RD::Uniform u;
  703. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  704. u.binding = 2;
  705. for (int i = 0; i < 8; i++) {
  706. u.ids.push_back(sdfgi->render_occlusion[i]);
  707. }
  708. uniforms.push_back(u);
  709. }
  710. {
  711. RD::Uniform u;
  712. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  713. u.binding = 3;
  714. u.ids.push_back(sdfgi->render_geom_facing);
  715. uniforms.push_back(u);
  716. }
  717. sdfgi->occlusion_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, SDGIShader::PRE_PROCESS_OCCLUSION), 0);
  718. }
  719. for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) {
  720. //integrate uniform
  721. Vector<RD::Uniform> uniforms;
  722. {
  723. RD::Uniform u;
  724. u.binding = 1;
  725. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  726. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  727. if (j < sdfgi->cascades.size()) {
  728. u.ids.push_back(sdfgi->cascades[j].sdf_tex);
  729. } else {
  730. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  731. }
  732. }
  733. uniforms.push_back(u);
  734. }
  735. {
  736. RD::Uniform u;
  737. u.binding = 2;
  738. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  739. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  740. if (j < sdfgi->cascades.size()) {
  741. u.ids.push_back(sdfgi->cascades[j].light_tex);
  742. } else {
  743. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  744. }
  745. }
  746. uniforms.push_back(u);
  747. }
  748. {
  749. RD::Uniform u;
  750. u.binding = 3;
  751. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  752. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  753. if (j < sdfgi->cascades.size()) {
  754. u.ids.push_back(sdfgi->cascades[j].light_aniso_0_tex);
  755. } else {
  756. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  757. }
  758. }
  759. uniforms.push_back(u);
  760. }
  761. {
  762. RD::Uniform u;
  763. u.binding = 4;
  764. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  765. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  766. if (j < sdfgi->cascades.size()) {
  767. u.ids.push_back(sdfgi->cascades[j].light_aniso_1_tex);
  768. } else {
  769. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  770. }
  771. }
  772. uniforms.push_back(u);
  773. }
  774. {
  775. RD::Uniform u;
  776. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  777. u.binding = 6;
  778. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  779. uniforms.push_back(u);
  780. }
  781. {
  782. RD::Uniform u;
  783. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  784. u.binding = 7;
  785. u.ids.push_back(sdfgi->cascades_ubo);
  786. uniforms.push_back(u);
  787. }
  788. {
  789. RD::Uniform u;
  790. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  791. u.binding = 8;
  792. u.ids.push_back(sdfgi->lightprobe_data);
  793. uniforms.push_back(u);
  794. }
  795. {
  796. RD::Uniform u;
  797. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  798. u.binding = 9;
  799. u.ids.push_back(sdfgi->cascades[i].lightprobe_history_tex);
  800. uniforms.push_back(u);
  801. }
  802. {
  803. RD::Uniform u;
  804. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  805. u.binding = 10;
  806. u.ids.push_back(sdfgi->cascades[i].lightprobe_average_tex);
  807. uniforms.push_back(u);
  808. }
  809. {
  810. RD::Uniform u;
  811. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  812. u.binding = 11;
  813. u.ids.push_back(sdfgi->lightprobe_history_scroll);
  814. uniforms.push_back(u);
  815. }
  816. {
  817. RD::Uniform u;
  818. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  819. u.binding = 12;
  820. u.ids.push_back(sdfgi->lightprobe_average_scroll);
  821. uniforms.push_back(u);
  822. }
  823. {
  824. RD::Uniform u;
  825. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  826. u.binding = 13;
  827. RID parent_average;
  828. if (i < sdfgi->cascades.size() - 1) {
  829. parent_average = sdfgi->cascades[i + 1].lightprobe_average_tex;
  830. } else {
  831. parent_average = sdfgi->cascades[i - 1].lightprobe_average_tex; //to use something, but it won't be used
  832. }
  833. u.ids.push_back(parent_average);
  834. uniforms.push_back(u);
  835. }
  836. {
  837. RD::Uniform u;
  838. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  839. u.binding = 14;
  840. u.ids.push_back(sdfgi->ambient_texture);
  841. uniforms.push_back(u);
  842. }
  843. sdfgi->cascades[i].integrate_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, 0), 0);
  844. }
  845. sdfgi->uses_multibounce = env->sdfgi_use_multibounce;
  846. sdfgi->energy = env->sdfgi_energy;
  847. sdfgi->normal_bias = env->sdfgi_normal_bias;
  848. sdfgi->probe_bias = env->sdfgi_probe_bias;
  849. sdfgi->reads_sky = env->sdfgi_read_sky_light;
  850. _render_buffers_uniform_set_changed(p_render_buffers);
  851. return; //done. all levels will need to be rendered which its going to take a bit
  852. }
  853. //check for updates
  854. sdfgi->uses_multibounce = env->sdfgi_use_multibounce;
  855. sdfgi->energy = env->sdfgi_energy;
  856. sdfgi->normal_bias = env->sdfgi_normal_bias;
  857. sdfgi->probe_bias = env->sdfgi_probe_bias;
  858. sdfgi->reads_sky = env->sdfgi_read_sky_light;
  859. int32_t drag_margin = (sdfgi->cascade_size / SDFGI::PROBE_DIVISOR) / 2;
  860. for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) {
  861. SDFGI::Cascade &cascade = sdfgi->cascades[i];
  862. cascade.dirty_regions = Vector3i();
  863. Vector3 probe_half_size = Vector3(1, 1, 1) * cascade.cell_size * float(sdfgi->cascade_size / SDFGI::PROBE_DIVISOR) * 0.5;
  864. probe_half_size = Vector3(0, 0, 0);
  865. Vector3 world_position = p_world_position;
  866. world_position.y *= sdfgi->y_mult;
  867. Vector3i pos_in_cascade = Vector3i((world_position + probe_half_size) / cascade.cell_size);
  868. for (int j = 0; j < 3; j++) {
  869. if (pos_in_cascade[j] < cascade.position[j]) {
  870. while (pos_in_cascade[j] < (cascade.position[j] - drag_margin)) {
  871. cascade.position[j] -= drag_margin * 2;
  872. cascade.dirty_regions[j] += drag_margin * 2;
  873. }
  874. } else if (pos_in_cascade[j] > cascade.position[j]) {
  875. while (pos_in_cascade[j] > (cascade.position[j] + drag_margin)) {
  876. cascade.position[j] += drag_margin * 2;
  877. cascade.dirty_regions[j] -= drag_margin * 2;
  878. }
  879. }
  880. if (cascade.dirty_regions[j] == 0) {
  881. continue; // not dirty
  882. } else if (uint32_t(ABS(cascade.dirty_regions[j])) >= sdfgi->cascade_size) {
  883. //moved too much, just redraw everything (make all dirty)
  884. cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
  885. break;
  886. }
  887. }
  888. if (cascade.dirty_regions != Vector3i() && cascade.dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
  889. //see how much the total dirty volume represents from the total volume
  890. uint32_t total_volume = sdfgi->cascade_size * sdfgi->cascade_size * sdfgi->cascade_size;
  891. uint32_t safe_volume = 1;
  892. for (int j = 0; j < 3; j++) {
  893. safe_volume *= sdfgi->cascade_size - ABS(cascade.dirty_regions[j]);
  894. }
  895. uint32_t dirty_volume = total_volume - safe_volume;
  896. if (dirty_volume > (safe_volume / 2)) {
  897. //more than half the volume is dirty, make all dirty so its only rendered once
  898. cascade.dirty_regions = SDFGI::Cascade::DIRTY_ALL;
  899. }
  900. }
  901. }
  902. }
  903. int RendererSceneRenderRD::sdfgi_get_pending_region_count(RID p_render_buffers) const {
  904. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  905. ERR_FAIL_COND_V(rb == nullptr, 0);
  906. if (rb->sdfgi == nullptr) {
  907. return 0;
  908. }
  909. int dirty_count = 0;
  910. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  911. const SDFGI::Cascade &c = rb->sdfgi->cascades[i];
  912. if (c.dirty_regions == SDFGI::Cascade::DIRTY_ALL) {
  913. dirty_count++;
  914. } else {
  915. for (int j = 0; j < 3; j++) {
  916. if (c.dirty_regions[j] != 0) {
  917. dirty_count++;
  918. }
  919. }
  920. }
  921. }
  922. return dirty_count;
  923. }
  924. int RendererSceneRenderRD::_sdfgi_get_pending_region_data(RID p_render_buffers, int p_region, Vector3i &r_local_offset, Vector3i &r_local_size, AABB &r_bounds) const {
  925. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  926. ERR_FAIL_COND_V(rb == nullptr, -1);
  927. ERR_FAIL_COND_V(rb->sdfgi == nullptr, -1);
  928. int dirty_count = 0;
  929. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  930. const SDFGI::Cascade &c = rb->sdfgi->cascades[i];
  931. if (c.dirty_regions == SDFGI::Cascade::DIRTY_ALL) {
  932. if (dirty_count == p_region) {
  933. r_local_offset = Vector3i();
  934. r_local_size = Vector3i(1, 1, 1) * rb->sdfgi->cascade_size;
  935. r_bounds.position = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + c.position)) * c.cell_size * Vector3(1, 1.0 / rb->sdfgi->y_mult, 1);
  936. r_bounds.size = Vector3(r_local_size) * c.cell_size * Vector3(1, 1.0 / rb->sdfgi->y_mult, 1);
  937. return i;
  938. }
  939. dirty_count++;
  940. } else {
  941. for (int j = 0; j < 3; j++) {
  942. if (c.dirty_regions[j] != 0) {
  943. if (dirty_count == p_region) {
  944. Vector3i from = Vector3i(0, 0, 0);
  945. Vector3i to = Vector3i(1, 1, 1) * rb->sdfgi->cascade_size;
  946. if (c.dirty_regions[j] > 0) {
  947. //fill from the beginning
  948. to[j] = c.dirty_regions[j];
  949. } else {
  950. //fill from the end
  951. from[j] = to[j] + c.dirty_regions[j];
  952. }
  953. for (int k = 0; k < j; k++) {
  954. // "chip" away previous regions to avoid re-voxelizing the same thing
  955. if (c.dirty_regions[k] > 0) {
  956. from[k] += c.dirty_regions[k];
  957. } else if (c.dirty_regions[k] < 0) {
  958. to[k] += c.dirty_regions[k];
  959. }
  960. }
  961. r_local_offset = from;
  962. r_local_size = to - from;
  963. r_bounds.position = Vector3(from + Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + c.position) * c.cell_size * Vector3(1, 1.0 / rb->sdfgi->y_mult, 1);
  964. r_bounds.size = Vector3(r_local_size) * c.cell_size * Vector3(1, 1.0 / rb->sdfgi->y_mult, 1);
  965. return i;
  966. }
  967. dirty_count++;
  968. }
  969. }
  970. }
  971. }
  972. return -1;
  973. }
  974. AABB RendererSceneRenderRD::sdfgi_get_pending_region_bounds(RID p_render_buffers, int p_region) const {
  975. AABB bounds;
  976. Vector3i from;
  977. Vector3i size;
  978. int c = _sdfgi_get_pending_region_data(p_render_buffers, p_region, from, size, bounds);
  979. ERR_FAIL_COND_V(c == -1, AABB());
  980. return bounds;
  981. }
  982. uint32_t RendererSceneRenderRD::sdfgi_get_pending_region_cascade(RID p_render_buffers, int p_region) const {
  983. AABB bounds;
  984. Vector3i from;
  985. Vector3i size;
  986. return _sdfgi_get_pending_region_data(p_render_buffers, p_region, from, size, bounds);
  987. }
  988. void RendererSceneRenderRD::_sdfgi_update_cascades(RID p_render_buffers) {
  989. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  990. ERR_FAIL_COND(rb == nullptr);
  991. if (rb->sdfgi == nullptr) {
  992. return;
  993. }
  994. //update cascades
  995. SDFGI::Cascade::UBO cascade_data[SDFGI::MAX_CASCADES];
  996. int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  997. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  998. Vector3 pos = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[i].position)) * rb->sdfgi->cascades[i].cell_size;
  999. cascade_data[i].offset[0] = pos.x;
  1000. cascade_data[i].offset[1] = pos.y;
  1001. cascade_data[i].offset[2] = pos.z;
  1002. cascade_data[i].to_cell = 1.0 / rb->sdfgi->cascades[i].cell_size;
  1003. cascade_data[i].probe_offset[0] = rb->sdfgi->cascades[i].position.x / probe_divisor;
  1004. cascade_data[i].probe_offset[1] = rb->sdfgi->cascades[i].position.y / probe_divisor;
  1005. cascade_data[i].probe_offset[2] = rb->sdfgi->cascades[i].position.z / probe_divisor;
  1006. cascade_data[i].pad = 0;
  1007. }
  1008. RD::get_singleton()->buffer_update(rb->sdfgi->cascades_ubo, 0, sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES, cascade_data, true);
  1009. }
  1010. void RendererSceneRenderRD::sdfgi_update_probes(RID p_render_buffers, RID p_environment, const Vector<RID> &p_directional_lights, const RID *p_positional_light_instances, uint32_t p_positional_light_count) {
  1011. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1012. ERR_FAIL_COND(rb == nullptr);
  1013. if (rb->sdfgi == nullptr) {
  1014. return;
  1015. }
  1016. Environment *env = environment_owner.getornull(p_environment);
  1017. RENDER_TIMESTAMP(">SDFGI Update Probes");
  1018. /* Update Cascades UBO */
  1019. _sdfgi_update_cascades(p_render_buffers);
  1020. /* Update Dynamic Lights Buffer */
  1021. RENDER_TIMESTAMP("Update Lights");
  1022. /* Update dynamic lights */
  1023. {
  1024. int32_t cascade_light_count[SDFGI::MAX_CASCADES];
  1025. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  1026. SDFGI::Cascade &cascade = rb->sdfgi->cascades[i];
  1027. SDGIShader::Light lights[SDFGI::MAX_DYNAMIC_LIGHTS];
  1028. uint32_t idx = 0;
  1029. for (uint32_t j = 0; j < (uint32_t)p_directional_lights.size(); j++) {
  1030. if (idx == SDFGI::MAX_DYNAMIC_LIGHTS) {
  1031. break;
  1032. }
  1033. LightInstance *li = light_instance_owner.getornull(p_directional_lights[j]);
  1034. ERR_CONTINUE(!li);
  1035. if (storage->light_directional_is_sky_only(li->light)) {
  1036. continue;
  1037. }
  1038. Vector3 dir = -li->transform.basis.get_axis(Vector3::AXIS_Z);
  1039. dir.y *= rb->sdfgi->y_mult;
  1040. dir.normalize();
  1041. lights[idx].direction[0] = dir.x;
  1042. lights[idx].direction[1] = dir.y;
  1043. lights[idx].direction[2] = dir.z;
  1044. Color color = storage->light_get_color(li->light);
  1045. color = color.to_linear();
  1046. lights[idx].color[0] = color.r;
  1047. lights[idx].color[1] = color.g;
  1048. lights[idx].color[2] = color.b;
  1049. lights[idx].type = RS::LIGHT_DIRECTIONAL;
  1050. lights[idx].energy = storage->light_get_param(li->light, RS::LIGHT_PARAM_ENERGY);
  1051. lights[idx].has_shadow = storage->light_has_shadow(li->light);
  1052. idx++;
  1053. }
  1054. AABB cascade_aabb;
  1055. cascade_aabb.position = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + cascade.position)) * cascade.cell_size;
  1056. cascade_aabb.size = Vector3(1, 1, 1) * rb->sdfgi->cascade_size * cascade.cell_size;
  1057. for (uint32_t j = 0; j < p_positional_light_count; j++) {
  1058. if (idx == SDFGI::MAX_DYNAMIC_LIGHTS) {
  1059. break;
  1060. }
  1061. LightInstance *li = light_instance_owner.getornull(p_positional_light_instances[j]);
  1062. ERR_CONTINUE(!li);
  1063. uint32_t max_sdfgi_cascade = storage->light_get_max_sdfgi_cascade(li->light);
  1064. if (i > max_sdfgi_cascade) {
  1065. continue;
  1066. }
  1067. if (!cascade_aabb.intersects(li->aabb)) {
  1068. continue;
  1069. }
  1070. Vector3 dir = -li->transform.basis.get_axis(Vector3::AXIS_Z);
  1071. //faster to not do this here
  1072. //dir.y *= rb->sdfgi->y_mult;
  1073. //dir.normalize();
  1074. lights[idx].direction[0] = dir.x;
  1075. lights[idx].direction[1] = dir.y;
  1076. lights[idx].direction[2] = dir.z;
  1077. Vector3 pos = li->transform.origin;
  1078. pos.y *= rb->sdfgi->y_mult;
  1079. lights[idx].position[0] = pos.x;
  1080. lights[idx].position[1] = pos.y;
  1081. lights[idx].position[2] = pos.z;
  1082. Color color = storage->light_get_color(li->light);
  1083. color = color.to_linear();
  1084. lights[idx].color[0] = color.r;
  1085. lights[idx].color[1] = color.g;
  1086. lights[idx].color[2] = color.b;
  1087. lights[idx].type = storage->light_get_type(li->light);
  1088. lights[idx].energy = storage->light_get_param(li->light, RS::LIGHT_PARAM_ENERGY);
  1089. lights[idx].has_shadow = storage->light_has_shadow(li->light);
  1090. lights[idx].attenuation = storage->light_get_param(li->light, RS::LIGHT_PARAM_ATTENUATION);
  1091. lights[idx].radius = storage->light_get_param(li->light, RS::LIGHT_PARAM_RANGE);
  1092. lights[idx].spot_angle = Math::deg2rad(storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ANGLE));
  1093. lights[idx].spot_attenuation = storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  1094. idx++;
  1095. }
  1096. if (idx > 0) {
  1097. RD::get_singleton()->buffer_update(cascade.lights_buffer, 0, idx * sizeof(SDGIShader::Light), lights, true);
  1098. }
  1099. cascade_light_count[i] = idx;
  1100. }
  1101. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1102. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.direct_light_pipeline[SDGIShader::DIRECT_LIGHT_MODE_DYNAMIC]);
  1103. SDGIShader::DirectLightPushConstant push_constant;
  1104. push_constant.grid_size[0] = rb->sdfgi->cascade_size;
  1105. push_constant.grid_size[1] = rb->sdfgi->cascade_size;
  1106. push_constant.grid_size[2] = rb->sdfgi->cascade_size;
  1107. push_constant.max_cascades = rb->sdfgi->cascades.size();
  1108. push_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  1109. push_constant.multibounce = rb->sdfgi->uses_multibounce;
  1110. push_constant.y_mult = rb->sdfgi->y_mult;
  1111. push_constant.process_offset = 0;
  1112. push_constant.process_increment = 1;
  1113. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  1114. SDFGI::Cascade &cascade = rb->sdfgi->cascades[i];
  1115. push_constant.light_count = cascade_light_count[i];
  1116. push_constant.cascade = i;
  1117. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cascade.sdf_direct_light_uniform_set, 0);
  1118. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::DirectLightPushConstant));
  1119. RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cascade.solid_cell_dispatch_buffer, 0);
  1120. }
  1121. RD::get_singleton()->compute_list_end();
  1122. }
  1123. RENDER_TIMESTAMP("Raytrace");
  1124. SDGIShader::IntegratePushConstant push_constant;
  1125. push_constant.grid_size[1] = rb->sdfgi->cascade_size;
  1126. push_constant.grid_size[2] = rb->sdfgi->cascade_size;
  1127. push_constant.grid_size[0] = rb->sdfgi->cascade_size;
  1128. push_constant.max_cascades = rb->sdfgi->cascades.size();
  1129. push_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  1130. push_constant.history_index = rb->sdfgi->render_pass % rb->sdfgi->history_size;
  1131. push_constant.history_size = rb->sdfgi->history_size;
  1132. static const uint32_t ray_count[RS::ENV_SDFGI_RAY_COUNT_MAX] = { 8, 16, 32, 64, 96, 128 };
  1133. push_constant.ray_count = ray_count[sdfgi_ray_count];
  1134. push_constant.ray_bias = rb->sdfgi->probe_bias;
  1135. push_constant.image_size[0] = rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count;
  1136. push_constant.image_size[1] = rb->sdfgi->probe_axis_count;
  1137. push_constant.store_ambient_texture = env->volumetric_fog_enabled;
  1138. RID sky_uniform_set = sdfgi_shader.integrate_default_sky_uniform_set;
  1139. push_constant.sky_mode = SDGIShader::IntegratePushConstant::SKY_MODE_DISABLED;
  1140. push_constant.y_mult = rb->sdfgi->y_mult;
  1141. if (rb->sdfgi->reads_sky && env) {
  1142. push_constant.sky_energy = env->bg_energy;
  1143. if (env->background == RS::ENV_BG_CLEAR_COLOR) {
  1144. push_constant.sky_mode = SDGIShader::IntegratePushConstant::SKY_MODE_COLOR;
  1145. Color c = storage->get_default_clear_color().to_linear();
  1146. push_constant.sky_color[0] = c.r;
  1147. push_constant.sky_color[1] = c.g;
  1148. push_constant.sky_color[2] = c.b;
  1149. } else if (env->background == RS::ENV_BG_COLOR) {
  1150. push_constant.sky_mode = SDGIShader::IntegratePushConstant::SKY_MODE_COLOR;
  1151. Color c = env->bg_color;
  1152. push_constant.sky_color[0] = c.r;
  1153. push_constant.sky_color[1] = c.g;
  1154. push_constant.sky_color[2] = c.b;
  1155. } else if (env->background == RS::ENV_BG_SKY) {
  1156. Sky *sky = sky_owner.getornull(env->sky);
  1157. if (sky && sky->radiance.is_valid()) {
  1158. if (sky->sdfgi_integrate_sky_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(sky->sdfgi_integrate_sky_uniform_set)) {
  1159. Vector<RD::Uniform> uniforms;
  1160. {
  1161. RD::Uniform u;
  1162. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1163. u.binding = 0;
  1164. u.ids.push_back(sky->radiance);
  1165. uniforms.push_back(u);
  1166. }
  1167. {
  1168. RD::Uniform u;
  1169. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  1170. u.binding = 1;
  1171. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1172. uniforms.push_back(u);
  1173. }
  1174. sky->sdfgi_integrate_sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, 0), 1);
  1175. }
  1176. sky_uniform_set = sky->sdfgi_integrate_sky_uniform_set;
  1177. push_constant.sky_mode = SDGIShader::IntegratePushConstant::SKY_MODE_SKY;
  1178. }
  1179. }
  1180. }
  1181. rb->sdfgi->render_pass++;
  1182. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1183. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.integrate_pipeline[SDGIShader::INTEGRATE_MODE_PROCESS]);
  1184. int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  1185. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  1186. push_constant.cascade = i;
  1187. push_constant.world_offset[0] = rb->sdfgi->cascades[i].position.x / probe_divisor;
  1188. push_constant.world_offset[1] = rb->sdfgi->cascades[i].position.y / probe_divisor;
  1189. push_constant.world_offset[2] = rb->sdfgi->cascades[i].position.z / probe_divisor;
  1190. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[i].integrate_uniform_set, 0);
  1191. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sky_uniform_set, 1);
  1192. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::IntegratePushConstant));
  1193. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count, rb->sdfgi->probe_axis_count, 1, 8, 8, 1);
  1194. }
  1195. RD::get_singleton()->compute_list_add_barrier(compute_list); //wait until done
  1196. // Then store values into the lightprobe texture. Separating these steps has a small performance hit, but it allows for multiple bounces
  1197. RENDER_TIMESTAMP("Average Probes");
  1198. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.integrate_pipeline[SDGIShader::INTEGRATE_MODE_STORE]);
  1199. //convert to octahedral to store
  1200. push_constant.image_size[0] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  1201. push_constant.image_size[1] *= SDFGI::LIGHTPROBE_OCT_SIZE;
  1202. for (uint32_t i = 0; i < rb->sdfgi->cascades.size(); i++) {
  1203. push_constant.cascade = i;
  1204. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[i].integrate_uniform_set, 0);
  1205. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::IntegratePushConstant));
  1206. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, rb->sdfgi->probe_axis_count * SDFGI::LIGHTPROBE_OCT_SIZE, 1, 8, 8, 1);
  1207. }
  1208. RD::get_singleton()->compute_list_end();
  1209. RENDER_TIMESTAMP("<SDFGI Update Probes");
  1210. }
  1211. void RendererSceneRenderRD::_setup_giprobes(RID p_render_buffers, const Transform &p_transform, const PagedArray<RID> &p_gi_probes, uint32_t &r_gi_probes_used) {
  1212. r_gi_probes_used = 0;
  1213. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1214. ERR_FAIL_COND(rb == nullptr);
  1215. RID gi_probe_buffer = render_buffers_get_gi_probe_buffer(p_render_buffers);
  1216. GI::GIProbeData gi_probe_data[RenderBuffers::MAX_GIPROBES];
  1217. bool giprobes_changed = false;
  1218. Transform to_camera;
  1219. to_camera.origin = p_transform.origin; //only translation, make local
  1220. for (int i = 0; i < RenderBuffers::MAX_GIPROBES; i++) {
  1221. RID texture;
  1222. if (i < (int)p_gi_probes.size()) {
  1223. GIProbeInstance *gipi = gi_probe_instance_owner.getornull(p_gi_probes[i]);
  1224. if (gipi) {
  1225. texture = gipi->texture;
  1226. GI::GIProbeData &gipd = gi_probe_data[i];
  1227. RID base_probe = gipi->probe;
  1228. Transform to_cell = storage->gi_probe_get_to_cell_xform(gipi->probe) * gipi->transform.affine_inverse() * to_camera;
  1229. gipd.xform[0] = to_cell.basis.elements[0][0];
  1230. gipd.xform[1] = to_cell.basis.elements[1][0];
  1231. gipd.xform[2] = to_cell.basis.elements[2][0];
  1232. gipd.xform[3] = 0;
  1233. gipd.xform[4] = to_cell.basis.elements[0][1];
  1234. gipd.xform[5] = to_cell.basis.elements[1][1];
  1235. gipd.xform[6] = to_cell.basis.elements[2][1];
  1236. gipd.xform[7] = 0;
  1237. gipd.xform[8] = to_cell.basis.elements[0][2];
  1238. gipd.xform[9] = to_cell.basis.elements[1][2];
  1239. gipd.xform[10] = to_cell.basis.elements[2][2];
  1240. gipd.xform[11] = 0;
  1241. gipd.xform[12] = to_cell.origin.x;
  1242. gipd.xform[13] = to_cell.origin.y;
  1243. gipd.xform[14] = to_cell.origin.z;
  1244. gipd.xform[15] = 1;
  1245. Vector3 bounds = storage->gi_probe_get_octree_size(base_probe);
  1246. gipd.bounds[0] = bounds.x;
  1247. gipd.bounds[1] = bounds.y;
  1248. gipd.bounds[2] = bounds.z;
  1249. gipd.dynamic_range = storage->gi_probe_get_dynamic_range(base_probe) * storage->gi_probe_get_energy(base_probe);
  1250. gipd.bias = storage->gi_probe_get_bias(base_probe);
  1251. gipd.normal_bias = storage->gi_probe_get_normal_bias(base_probe);
  1252. gipd.blend_ambient = !storage->gi_probe_is_interior(base_probe);
  1253. gipd.anisotropy_strength = 0;
  1254. gipd.ao = storage->gi_probe_get_ao(base_probe);
  1255. gipd.ao_size = Math::pow(storage->gi_probe_get_ao_size(base_probe), 4.0f);
  1256. gipd.mipmaps = gipi->mipmaps.size();
  1257. }
  1258. r_gi_probes_used++;
  1259. }
  1260. if (texture == RID()) {
  1261. texture = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE);
  1262. }
  1263. if (texture != rb->giprobe_textures[i]) {
  1264. giprobes_changed = true;
  1265. rb->giprobe_textures[i] = texture;
  1266. }
  1267. }
  1268. if (giprobes_changed) {
  1269. if (RD::get_singleton()->uniform_set_is_valid(rb->gi_uniform_set)) {
  1270. RD::get_singleton()->free(rb->gi_uniform_set);
  1271. }
  1272. rb->gi_uniform_set = RID();
  1273. if (rb->volumetric_fog) {
  1274. if (RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
  1275. RD::get_singleton()->free(rb->volumetric_fog->uniform_set);
  1276. RD::get_singleton()->free(rb->volumetric_fog->uniform_set2);
  1277. }
  1278. rb->volumetric_fog->uniform_set = RID();
  1279. rb->volumetric_fog->uniform_set2 = RID();
  1280. }
  1281. }
  1282. if (p_gi_probes.size() > 0) {
  1283. RD::get_singleton()->buffer_update(gi_probe_buffer, 0, sizeof(GI::GIProbeData) * MIN((uint64_t)RenderBuffers::MAX_GIPROBES, p_gi_probes.size()), gi_probe_data, true);
  1284. }
  1285. }
  1286. void RendererSceneRenderRD::_process_gi(RID p_render_buffers, RID p_normal_roughness_buffer, RID p_ambient_buffer, RID p_reflection_buffer, RID p_gi_probe_buffer, RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform, const PagedArray<RID> &p_gi_probes) {
  1287. RENDER_TIMESTAMP("Render GI");
  1288. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  1289. ERR_FAIL_COND(rb == nullptr);
  1290. Environment *env = environment_owner.getornull(p_environment);
  1291. GI::PushConstant push_constant;
  1292. push_constant.screen_size[0] = rb->width;
  1293. push_constant.screen_size[1] = rb->height;
  1294. push_constant.z_near = p_projection.get_z_near();
  1295. push_constant.z_far = p_projection.get_z_far();
  1296. push_constant.orthogonal = p_projection.is_orthogonal();
  1297. push_constant.proj_info[0] = -2.0f / (rb->width * p_projection.matrix[0][0]);
  1298. push_constant.proj_info[1] = -2.0f / (rb->height * p_projection.matrix[1][1]);
  1299. push_constant.proj_info[2] = (1.0f - p_projection.matrix[0][2]) / p_projection.matrix[0][0];
  1300. push_constant.proj_info[3] = (1.0f + p_projection.matrix[1][2]) / p_projection.matrix[1][1];
  1301. push_constant.max_giprobes = MIN((uint64_t)RenderBuffers::MAX_GIPROBES, p_gi_probes.size());
  1302. push_constant.high_quality_vct = gi_probe_quality == RS::GI_PROBE_QUALITY_HIGH;
  1303. push_constant.use_sdfgi = rb->sdfgi != nullptr;
  1304. if (env) {
  1305. push_constant.ao_color[0] = env->ao_color.r;
  1306. push_constant.ao_color[1] = env->ao_color.g;
  1307. push_constant.ao_color[2] = env->ao_color.b;
  1308. } else {
  1309. push_constant.ao_color[0] = 0;
  1310. push_constant.ao_color[1] = 0;
  1311. push_constant.ao_color[2] = 0;
  1312. }
  1313. push_constant.cam_rotation[0] = p_transform.basis[0][0];
  1314. push_constant.cam_rotation[1] = p_transform.basis[1][0];
  1315. push_constant.cam_rotation[2] = p_transform.basis[2][0];
  1316. push_constant.cam_rotation[3] = 0;
  1317. push_constant.cam_rotation[4] = p_transform.basis[0][1];
  1318. push_constant.cam_rotation[5] = p_transform.basis[1][1];
  1319. push_constant.cam_rotation[6] = p_transform.basis[2][1];
  1320. push_constant.cam_rotation[7] = 0;
  1321. push_constant.cam_rotation[8] = p_transform.basis[0][2];
  1322. push_constant.cam_rotation[9] = p_transform.basis[1][2];
  1323. push_constant.cam_rotation[10] = p_transform.basis[2][2];
  1324. push_constant.cam_rotation[11] = 0;
  1325. if (rb->sdfgi) {
  1326. GI::SDFGIData sdfgi_data;
  1327. sdfgi_data.grid_size[0] = rb->sdfgi->cascade_size;
  1328. sdfgi_data.grid_size[1] = rb->sdfgi->cascade_size;
  1329. sdfgi_data.grid_size[2] = rb->sdfgi->cascade_size;
  1330. sdfgi_data.max_cascades = rb->sdfgi->cascades.size();
  1331. sdfgi_data.probe_axis_size = rb->sdfgi->probe_axis_count;
  1332. sdfgi_data.cascade_probe_size[0] = sdfgi_data.probe_axis_size - 1; //float version for performance
  1333. sdfgi_data.cascade_probe_size[1] = sdfgi_data.probe_axis_size - 1;
  1334. sdfgi_data.cascade_probe_size[2] = sdfgi_data.probe_axis_size - 1;
  1335. float csize = rb->sdfgi->cascade_size;
  1336. sdfgi_data.probe_to_uvw = 1.0 / float(sdfgi_data.cascade_probe_size[0]);
  1337. sdfgi_data.use_occlusion = rb->sdfgi->uses_occlusion;
  1338. //sdfgi_data.energy = rb->sdfgi->energy;
  1339. sdfgi_data.y_mult = rb->sdfgi->y_mult;
  1340. float cascade_voxel_size = (csize / sdfgi_data.cascade_probe_size[0]);
  1341. float occlusion_clamp = (cascade_voxel_size - 0.5) / cascade_voxel_size;
  1342. sdfgi_data.occlusion_clamp[0] = occlusion_clamp;
  1343. sdfgi_data.occlusion_clamp[1] = occlusion_clamp;
  1344. sdfgi_data.occlusion_clamp[2] = occlusion_clamp;
  1345. sdfgi_data.normal_bias = (rb->sdfgi->normal_bias / csize) * sdfgi_data.cascade_probe_size[0];
  1346. //vec2 tex_pixel_size = 1.0 / vec2(ivec2( (OCT_SIZE+2) * params.probe_axis_size * params.probe_axis_size, (OCT_SIZE+2) * params.probe_axis_size ) );
  1347. //vec3 probe_uv_offset = (ivec3(OCT_SIZE+2,OCT_SIZE+2,(OCT_SIZE+2) * params.probe_axis_size)) * tex_pixel_size.xyx;
  1348. uint32_t oct_size = SDFGI::LIGHTPROBE_OCT_SIZE;
  1349. sdfgi_data.lightprobe_tex_pixel_size[0] = 1.0 / ((oct_size + 2) * sdfgi_data.probe_axis_size * sdfgi_data.probe_axis_size);
  1350. sdfgi_data.lightprobe_tex_pixel_size[1] = 1.0 / ((oct_size + 2) * sdfgi_data.probe_axis_size);
  1351. sdfgi_data.lightprobe_tex_pixel_size[2] = 1.0;
  1352. sdfgi_data.energy = rb->sdfgi->energy;
  1353. sdfgi_data.lightprobe_uv_offset[0] = float(oct_size + 2) * sdfgi_data.lightprobe_tex_pixel_size[0];
  1354. sdfgi_data.lightprobe_uv_offset[1] = float(oct_size + 2) * sdfgi_data.lightprobe_tex_pixel_size[1];
  1355. sdfgi_data.lightprobe_uv_offset[2] = float((oct_size + 2) * sdfgi_data.probe_axis_size) * sdfgi_data.lightprobe_tex_pixel_size[0];
  1356. sdfgi_data.occlusion_renormalize[0] = 0.5;
  1357. sdfgi_data.occlusion_renormalize[1] = 1.0;
  1358. sdfgi_data.occlusion_renormalize[2] = 1.0 / float(sdfgi_data.max_cascades);
  1359. int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  1360. for (uint32_t i = 0; i < sdfgi_data.max_cascades; i++) {
  1361. GI::SDFGIData::ProbeCascadeData &c = sdfgi_data.cascades[i];
  1362. Vector3 pos = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[i].position)) * rb->sdfgi->cascades[i].cell_size;
  1363. Vector3 cam_origin = p_transform.origin;
  1364. cam_origin.y *= rb->sdfgi->y_mult;
  1365. pos -= cam_origin; //make pos local to camera, to reduce numerical error
  1366. c.position[0] = pos.x;
  1367. c.position[1] = pos.y;
  1368. c.position[2] = pos.z;
  1369. c.to_probe = 1.0 / (float(rb->sdfgi->cascade_size) * rb->sdfgi->cascades[i].cell_size / float(rb->sdfgi->probe_axis_count - 1));
  1370. Vector3i probe_ofs = rb->sdfgi->cascades[i].position / probe_divisor;
  1371. c.probe_world_offset[0] = probe_ofs.x;
  1372. c.probe_world_offset[1] = probe_ofs.y;
  1373. c.probe_world_offset[2] = probe_ofs.z;
  1374. c.to_cell = 1.0 / rb->sdfgi->cascades[i].cell_size;
  1375. }
  1376. RD::get_singleton()->buffer_update(gi.sdfgi_ubo, 0, sizeof(GI::SDFGIData), &sdfgi_data, true);
  1377. }
  1378. if (rb->gi_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->gi_uniform_set)) {
  1379. Vector<RD::Uniform> uniforms;
  1380. {
  1381. RD::Uniform u;
  1382. u.binding = 1;
  1383. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1384. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  1385. if (rb->sdfgi && j < rb->sdfgi->cascades.size()) {
  1386. u.ids.push_back(rb->sdfgi->cascades[j].sdf_tex);
  1387. } else {
  1388. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1389. }
  1390. }
  1391. uniforms.push_back(u);
  1392. }
  1393. {
  1394. RD::Uniform u;
  1395. u.binding = 2;
  1396. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1397. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  1398. if (rb->sdfgi && j < rb->sdfgi->cascades.size()) {
  1399. u.ids.push_back(rb->sdfgi->cascades[j].light_tex);
  1400. } else {
  1401. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1402. }
  1403. }
  1404. uniforms.push_back(u);
  1405. }
  1406. {
  1407. RD::Uniform u;
  1408. u.binding = 3;
  1409. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1410. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  1411. if (rb->sdfgi && j < rb->sdfgi->cascades.size()) {
  1412. u.ids.push_back(rb->sdfgi->cascades[j].light_aniso_0_tex);
  1413. } else {
  1414. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1415. }
  1416. }
  1417. uniforms.push_back(u);
  1418. }
  1419. {
  1420. RD::Uniform u;
  1421. u.binding = 4;
  1422. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1423. for (uint32_t j = 0; j < SDFGI::MAX_CASCADES; j++) {
  1424. if (rb->sdfgi && j < rb->sdfgi->cascades.size()) {
  1425. u.ids.push_back(rb->sdfgi->cascades[j].light_aniso_1_tex);
  1426. } else {
  1427. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1428. }
  1429. }
  1430. uniforms.push_back(u);
  1431. }
  1432. {
  1433. RD::Uniform u;
  1434. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1435. u.binding = 5;
  1436. if (rb->sdfgi) {
  1437. u.ids.push_back(rb->sdfgi->occlusion_texture);
  1438. } else {
  1439. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  1440. }
  1441. uniforms.push_back(u);
  1442. }
  1443. {
  1444. RD::Uniform u;
  1445. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  1446. u.binding = 6;
  1447. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1448. uniforms.push_back(u);
  1449. }
  1450. {
  1451. RD::Uniform u;
  1452. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  1453. u.binding = 7;
  1454. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  1455. uniforms.push_back(u);
  1456. }
  1457. {
  1458. RD::Uniform u;
  1459. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  1460. u.binding = 9;
  1461. u.ids.push_back(p_ambient_buffer);
  1462. uniforms.push_back(u);
  1463. }
  1464. {
  1465. RD::Uniform u;
  1466. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  1467. u.binding = 10;
  1468. u.ids.push_back(p_reflection_buffer);
  1469. uniforms.push_back(u);
  1470. }
  1471. {
  1472. RD::Uniform u;
  1473. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1474. u.binding = 11;
  1475. if (rb->sdfgi) {
  1476. u.ids.push_back(rb->sdfgi->lightprobe_texture);
  1477. } else {
  1478. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE));
  1479. }
  1480. uniforms.push_back(u);
  1481. }
  1482. {
  1483. RD::Uniform u;
  1484. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1485. u.binding = 12;
  1486. u.ids.push_back(rb->depth_texture);
  1487. uniforms.push_back(u);
  1488. }
  1489. {
  1490. RD::Uniform u;
  1491. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1492. u.binding = 13;
  1493. u.ids.push_back(p_normal_roughness_buffer);
  1494. uniforms.push_back(u);
  1495. }
  1496. {
  1497. RD::Uniform u;
  1498. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1499. u.binding = 14;
  1500. RID buffer = p_gi_probe_buffer.is_valid() ? p_gi_probe_buffer : storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_BLACK);
  1501. u.ids.push_back(buffer);
  1502. uniforms.push_back(u);
  1503. }
  1504. {
  1505. RD::Uniform u;
  1506. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1507. u.binding = 15;
  1508. u.ids.push_back(gi.sdfgi_ubo);
  1509. uniforms.push_back(u);
  1510. }
  1511. {
  1512. RD::Uniform u;
  1513. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  1514. u.binding = 16;
  1515. u.ids.push_back(rb->giprobe_buffer);
  1516. uniforms.push_back(u);
  1517. }
  1518. {
  1519. RD::Uniform u;
  1520. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1521. u.binding = 17;
  1522. for (int i = 0; i < RenderBuffers::MAX_GIPROBES; i++) {
  1523. u.ids.push_back(rb->giprobe_textures[i]);
  1524. }
  1525. uniforms.push_back(u);
  1526. }
  1527. rb->gi_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, gi.shader.version_get_shader(gi.shader_version, 0), 0);
  1528. }
  1529. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  1530. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, gi.pipelines[0]);
  1531. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->gi_uniform_set, 0);
  1532. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GI::PushConstant));
  1533. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->width, rb->height, 1, 8, 8, 1);
  1534. RD::get_singleton()->compute_list_end();
  1535. }
  1536. RID RendererSceneRenderRD::sky_create() {
  1537. return sky_owner.make_rid(Sky());
  1538. }
  1539. void RendererSceneRenderRD::_sky_invalidate(Sky *p_sky) {
  1540. if (!p_sky->dirty) {
  1541. p_sky->dirty = true;
  1542. p_sky->dirty_list = dirty_sky_list;
  1543. dirty_sky_list = p_sky;
  1544. }
  1545. }
  1546. void RendererSceneRenderRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) {
  1547. Sky *sky = sky_owner.getornull(p_sky);
  1548. ERR_FAIL_COND(!sky);
  1549. ERR_FAIL_COND(p_radiance_size < 32 || p_radiance_size > 2048);
  1550. if (sky->radiance_size == p_radiance_size) {
  1551. return;
  1552. }
  1553. sky->radiance_size = p_radiance_size;
  1554. if (sky->mode == RS::SKY_MODE_REALTIME && sky->radiance_size != 256) {
  1555. WARN_PRINT("Realtime Skies can only use a radiance size of 256. Radiance size will be set to 256 internally.");
  1556. sky->radiance_size = 256;
  1557. }
  1558. _sky_invalidate(sky);
  1559. if (sky->radiance.is_valid()) {
  1560. RD::get_singleton()->free(sky->radiance);
  1561. sky->radiance = RID();
  1562. }
  1563. _clear_reflection_data(sky->reflection);
  1564. }
  1565. void RendererSceneRenderRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) {
  1566. Sky *sky = sky_owner.getornull(p_sky);
  1567. ERR_FAIL_COND(!sky);
  1568. if (sky->mode == p_mode) {
  1569. return;
  1570. }
  1571. sky->mode = p_mode;
  1572. if (sky->mode == RS::SKY_MODE_REALTIME && sky->radiance_size != 256) {
  1573. WARN_PRINT("Realtime Skies can only use a radiance size of 256. Radiance size will be set to 256 internally.");
  1574. sky_set_radiance_size(p_sky, 256);
  1575. }
  1576. _sky_invalidate(sky);
  1577. if (sky->radiance.is_valid()) {
  1578. RD::get_singleton()->free(sky->radiance);
  1579. sky->radiance = RID();
  1580. }
  1581. _clear_reflection_data(sky->reflection);
  1582. }
  1583. void RendererSceneRenderRD::sky_set_material(RID p_sky, RID p_material) {
  1584. Sky *sky = sky_owner.getornull(p_sky);
  1585. ERR_FAIL_COND(!sky);
  1586. sky->material = p_material;
  1587. _sky_invalidate(sky);
  1588. }
  1589. Ref<Image> RendererSceneRenderRD::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) {
  1590. Sky *sky = sky_owner.getornull(p_sky);
  1591. ERR_FAIL_COND_V(!sky, Ref<Image>());
  1592. _update_dirty_skys();
  1593. if (sky->radiance.is_valid()) {
  1594. RD::TextureFormat tf;
  1595. tf.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  1596. tf.width = p_size.width;
  1597. tf.height = p_size.height;
  1598. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  1599. RID rad_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1600. storage->get_effects()->copy_cubemap_to_panorama(sky->radiance, rad_tex, p_size, p_bake_irradiance ? roughness_layers : 0, sky->reflection.layers.size() > 1);
  1601. Vector<uint8_t> data = RD::get_singleton()->texture_get_data(rad_tex, 0);
  1602. RD::get_singleton()->free(rad_tex);
  1603. Ref<Image> img;
  1604. img.instance();
  1605. img->create(p_size.width, p_size.height, false, Image::FORMAT_RGBAF, data);
  1606. for (int i = 0; i < p_size.width; i++) {
  1607. for (int j = 0; j < p_size.height; j++) {
  1608. Color c = img->get_pixel(i, j);
  1609. c.r *= p_energy;
  1610. c.g *= p_energy;
  1611. c.b *= p_energy;
  1612. img->set_pixel(i, j, c);
  1613. }
  1614. }
  1615. return img;
  1616. }
  1617. return Ref<Image>();
  1618. }
  1619. void RendererSceneRenderRD::_update_dirty_skys() {
  1620. Sky *sky = dirty_sky_list;
  1621. while (sky) {
  1622. bool texture_set_dirty = false;
  1623. //update sky configuration if texture is missing
  1624. if (sky->radiance.is_null()) {
  1625. int mipmaps = Image::get_image_required_mipmaps(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBAH) + 1;
  1626. uint32_t w = sky->radiance_size, h = sky->radiance_size;
  1627. int layers = roughness_layers;
  1628. if (sky->mode == RS::SKY_MODE_REALTIME) {
  1629. layers = 8;
  1630. if (roughness_layers != 8) {
  1631. WARN_PRINT("When using REALTIME skies, roughness_layers should be set to 8 in the project settings for best quality reflections");
  1632. }
  1633. }
  1634. if (sky_use_cubemap_array) {
  1635. //array (higher quality, 6 times more memory)
  1636. RD::TextureFormat tf;
  1637. tf.array_layers = layers * 6;
  1638. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1639. tf.texture_type = RD::TEXTURE_TYPE_CUBE_ARRAY;
  1640. tf.mipmaps = mipmaps;
  1641. tf.width = w;
  1642. tf.height = h;
  1643. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1644. sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1645. _update_reflection_data(sky->reflection, sky->radiance_size, mipmaps, true, sky->radiance, 0, sky->mode == RS::SKY_MODE_REALTIME);
  1646. } else {
  1647. //regular cubemap, lower quality (aliasing, less memory)
  1648. RD::TextureFormat tf;
  1649. tf.array_layers = 6;
  1650. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1651. tf.texture_type = RD::TEXTURE_TYPE_CUBE;
  1652. tf.mipmaps = MIN(mipmaps, layers);
  1653. tf.width = w;
  1654. tf.height = h;
  1655. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1656. sky->radiance = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1657. _update_reflection_data(sky->reflection, sky->radiance_size, MIN(mipmaps, layers), false, sky->radiance, 0, sky->mode == RS::SKY_MODE_REALTIME);
  1658. }
  1659. texture_set_dirty = true;
  1660. }
  1661. // Create subpass buffers if they haven't been created already
  1662. if (sky->half_res_pass.is_null() && !RD::get_singleton()->texture_is_valid(sky->half_res_pass) && sky->screen_size.x >= 4 && sky->screen_size.y >= 4) {
  1663. RD::TextureFormat tformat;
  1664. tformat.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1665. tformat.width = sky->screen_size.x / 2;
  1666. tformat.height = sky->screen_size.y / 2;
  1667. tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  1668. tformat.texture_type = RD::TEXTURE_TYPE_2D;
  1669. sky->half_res_pass = RD::get_singleton()->texture_create(tformat, RD::TextureView());
  1670. Vector<RID> texs;
  1671. texs.push_back(sky->half_res_pass);
  1672. sky->half_res_framebuffer = RD::get_singleton()->framebuffer_create(texs);
  1673. texture_set_dirty = true;
  1674. }
  1675. if (sky->quarter_res_pass.is_null() && !RD::get_singleton()->texture_is_valid(sky->quarter_res_pass) && sky->screen_size.x >= 4 && sky->screen_size.y >= 4) {
  1676. RD::TextureFormat tformat;
  1677. tformat.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1678. tformat.width = sky->screen_size.x / 4;
  1679. tformat.height = sky->screen_size.y / 4;
  1680. tformat.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  1681. tformat.texture_type = RD::TEXTURE_TYPE_2D;
  1682. sky->quarter_res_pass = RD::get_singleton()->texture_create(tformat, RD::TextureView());
  1683. Vector<RID> texs;
  1684. texs.push_back(sky->quarter_res_pass);
  1685. sky->quarter_res_framebuffer = RD::get_singleton()->framebuffer_create(texs);
  1686. texture_set_dirty = true;
  1687. }
  1688. if (texture_set_dirty) {
  1689. for (int i = 0; i < SKY_TEXTURE_SET_MAX; i++) {
  1690. if (sky->texture_uniform_sets[i].is_valid() && RD::get_singleton()->uniform_set_is_valid(sky->texture_uniform_sets[i])) {
  1691. RD::get_singleton()->free(sky->texture_uniform_sets[i]);
  1692. sky->texture_uniform_sets[i] = RID();
  1693. }
  1694. }
  1695. }
  1696. sky->reflection.dirty = true;
  1697. sky->processing_layer = 0;
  1698. Sky *next = sky->dirty_list;
  1699. sky->dirty_list = nullptr;
  1700. sky->dirty = false;
  1701. sky = next;
  1702. }
  1703. dirty_sky_list = nullptr;
  1704. }
  1705. RID RendererSceneRenderRD::sky_get_radiance_texture_rd(RID p_sky) const {
  1706. Sky *sky = sky_owner.getornull(p_sky);
  1707. ERR_FAIL_COND_V(!sky, RID());
  1708. return sky->radiance;
  1709. }
  1710. RID RendererSceneRenderRD::sky_get_radiance_uniform_set_rd(RID p_sky, RID p_shader, int p_set) const {
  1711. Sky *sky = sky_owner.getornull(p_sky);
  1712. ERR_FAIL_COND_V(!sky, RID());
  1713. if (sky->uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(sky->uniform_set)) {
  1714. sky->uniform_set = RID();
  1715. if (sky->radiance.is_valid()) {
  1716. Vector<RD::Uniform> uniforms;
  1717. {
  1718. RD::Uniform u;
  1719. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1720. u.binding = 0;
  1721. u.ids.push_back(sky->radiance);
  1722. uniforms.push_back(u);
  1723. }
  1724. sky->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, p_shader, p_set);
  1725. }
  1726. }
  1727. return sky->uniform_set;
  1728. }
  1729. RID RendererSceneRenderRD::_get_sky_textures(Sky *p_sky, SkyTextureSetVersion p_version) {
  1730. if (p_sky->texture_uniform_sets[p_version].is_valid() && RD::get_singleton()->uniform_set_is_valid(p_sky->texture_uniform_sets[p_version])) {
  1731. return p_sky->texture_uniform_sets[p_version];
  1732. }
  1733. Vector<RD::Uniform> uniforms;
  1734. {
  1735. RD::Uniform u;
  1736. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1737. u.binding = 0;
  1738. if (p_sky->radiance.is_valid() && p_version <= SKY_TEXTURE_SET_QUARTER_RES) {
  1739. u.ids.push_back(p_sky->radiance);
  1740. } else {
  1741. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
  1742. }
  1743. uniforms.push_back(u);
  1744. }
  1745. {
  1746. RD::Uniform u;
  1747. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1748. u.binding = 1; // half res
  1749. if (p_sky->half_res_pass.is_valid() && p_version != SKY_TEXTURE_SET_HALF_RES && p_version != SKY_TEXTURE_SET_CUBEMAP_HALF_RES) {
  1750. if (p_version >= SKY_TEXTURE_SET_CUBEMAP) {
  1751. u.ids.push_back(p_sky->reflection.layers[0].views[1]);
  1752. } else {
  1753. u.ids.push_back(p_sky->half_res_pass);
  1754. }
  1755. } else {
  1756. if (p_version < SKY_TEXTURE_SET_CUBEMAP) {
  1757. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_WHITE));
  1758. } else {
  1759. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
  1760. }
  1761. }
  1762. uniforms.push_back(u);
  1763. }
  1764. {
  1765. RD::Uniform u;
  1766. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  1767. u.binding = 2; // quarter res
  1768. if (p_sky->quarter_res_pass.is_valid() && p_version != SKY_TEXTURE_SET_QUARTER_RES && p_version != SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES) {
  1769. if (p_version >= SKY_TEXTURE_SET_CUBEMAP) {
  1770. u.ids.push_back(p_sky->reflection.layers[0].views[2]);
  1771. } else {
  1772. u.ids.push_back(p_sky->quarter_res_pass);
  1773. }
  1774. } else {
  1775. if (p_version < SKY_TEXTURE_SET_CUBEMAP) {
  1776. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_WHITE));
  1777. } else {
  1778. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
  1779. }
  1780. }
  1781. uniforms.push_back(u);
  1782. }
  1783. p_sky->texture_uniform_sets[p_version] = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_TEXTURES);
  1784. return p_sky->texture_uniform_sets[p_version];
  1785. }
  1786. RID RendererSceneRenderRD::sky_get_material(RID p_sky) const {
  1787. Sky *sky = sky_owner.getornull(p_sky);
  1788. ERR_FAIL_COND_V(!sky, RID());
  1789. return sky->material;
  1790. }
  1791. void RendererSceneRenderRD::_draw_sky(bool p_can_continue_color, bool p_can_continue_depth, RID p_fb, RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform) {
  1792. ERR_FAIL_COND(!is_environment(p_environment));
  1793. SkyMaterialData *material = nullptr;
  1794. Sky *sky = sky_owner.getornull(environment_get_sky(p_environment));
  1795. RID sky_material;
  1796. RS::EnvironmentBG background = environment_get_background(p_environment);
  1797. if (!(background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) || sky) {
  1798. ERR_FAIL_COND(!sky);
  1799. sky_material = sky_get_material(environment_get_sky(p_environment));
  1800. if (sky_material.is_valid()) {
  1801. material = (SkyMaterialData *)storage->material_get_data(sky_material, RendererStorageRD::SHADER_TYPE_SKY);
  1802. if (!material || !material->shader_data->valid) {
  1803. material = nullptr;
  1804. }
  1805. }
  1806. if (!material) {
  1807. sky_material = sky_shader.default_material;
  1808. material = (SkyMaterialData *)storage->material_get_data(sky_material, RendererStorageRD::SHADER_TYPE_SKY);
  1809. }
  1810. }
  1811. if (background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) {
  1812. sky_material = sky_scene_state.fog_material;
  1813. material = (SkyMaterialData *)storage->material_get_data(sky_material, RendererStorageRD::SHADER_TYPE_SKY);
  1814. }
  1815. ERR_FAIL_COND(!material);
  1816. SkyShaderData *shader_data = material->shader_data;
  1817. ERR_FAIL_COND(!shader_data);
  1818. Basis sky_transform = environment_get_sky_orientation(p_environment);
  1819. sky_transform.invert();
  1820. float multiplier = environment_get_bg_energy(p_environment);
  1821. float custom_fov = environment_get_sky_custom_fov(p_environment);
  1822. // Camera
  1823. CameraMatrix camera;
  1824. if (custom_fov) {
  1825. float near_plane = p_projection.get_z_near();
  1826. float far_plane = p_projection.get_z_far();
  1827. float aspect = p_projection.get_aspect();
  1828. camera.set_perspective(custom_fov, aspect, near_plane, far_plane);
  1829. } else {
  1830. camera = p_projection;
  1831. }
  1832. sky_transform = p_transform.basis * sky_transform;
  1833. if (shader_data->uses_quarter_res) {
  1834. PipelineCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_QUARTER_RES];
  1835. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_QUARTER_RES);
  1836. Vector<Color> clear_colors;
  1837. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  1838. RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(sky->quarter_res_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors);
  1839. storage->get_effects()->render_sky(draw_list, time, sky->quarter_res_framebuffer, sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin);
  1840. RD::get_singleton()->draw_list_end();
  1841. }
  1842. if (shader_data->uses_half_res) {
  1843. PipelineCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_HALF_RES];
  1844. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_HALF_RES);
  1845. Vector<Color> clear_colors;
  1846. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  1847. RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(sky->half_res_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors);
  1848. storage->get_effects()->render_sky(draw_list, time, sky->half_res_framebuffer, sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin);
  1849. RD::get_singleton()->draw_list_end();
  1850. }
  1851. PipelineCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_BACKGROUND];
  1852. RID texture_uniform_set;
  1853. if (sky) {
  1854. texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_BACKGROUND);
  1855. } else {
  1856. texture_uniform_set = sky_scene_state.fog_only_texture_uniform_set;
  1857. }
  1858. RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_fb, RD::INITIAL_ACTION_CONTINUE, p_can_continue_color ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CONTINUE, p_can_continue_depth ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ);
  1859. storage->get_effects()->render_sky(draw_list, time, p_fb, sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, camera, sky_transform, multiplier, p_transform.origin);
  1860. RD::get_singleton()->draw_list_end();
  1861. }
  1862. void RendererSceneRenderRD::_setup_sky(RID p_environment, RID p_render_buffers, const CameraMatrix &p_projection, const Transform &p_transform, const Size2i p_screen_size) {
  1863. ERR_FAIL_COND(!is_environment(p_environment));
  1864. SkyMaterialData *material = nullptr;
  1865. Sky *sky = sky_owner.getornull(environment_get_sky(p_environment));
  1866. RID sky_material;
  1867. SkyShaderData *shader_data = nullptr;
  1868. RS::EnvironmentBG background = environment_get_background(p_environment);
  1869. if (!(background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) || sky) {
  1870. ERR_FAIL_COND(!sky);
  1871. sky_material = sky_get_material(environment_get_sky(p_environment));
  1872. if (sky_material.is_valid()) {
  1873. material = (SkyMaterialData *)storage->material_get_data(sky_material, RendererStorageRD::SHADER_TYPE_SKY);
  1874. if (!material || !material->shader_data->valid) {
  1875. material = nullptr;
  1876. }
  1877. }
  1878. if (!material) {
  1879. sky_material = sky_shader.default_material;
  1880. material = (SkyMaterialData *)storage->material_get_data(sky_material, RendererStorageRD::SHADER_TYPE_SKY);
  1881. }
  1882. ERR_FAIL_COND(!material);
  1883. shader_data = material->shader_data;
  1884. ERR_FAIL_COND(!shader_data);
  1885. }
  1886. if (sky) {
  1887. // Invalidate supbass buffers if screen size changes
  1888. if (sky->screen_size != p_screen_size) {
  1889. sky->screen_size = p_screen_size;
  1890. sky->screen_size.x = sky->screen_size.x < 4 ? 4 : sky->screen_size.x;
  1891. sky->screen_size.y = sky->screen_size.y < 4 ? 4 : sky->screen_size.y;
  1892. if (shader_data->uses_half_res) {
  1893. if (sky->half_res_pass.is_valid()) {
  1894. RD::get_singleton()->free(sky->half_res_pass);
  1895. sky->half_res_pass = RID();
  1896. }
  1897. _sky_invalidate(sky);
  1898. }
  1899. if (shader_data->uses_quarter_res) {
  1900. if (sky->quarter_res_pass.is_valid()) {
  1901. RD::get_singleton()->free(sky->quarter_res_pass);
  1902. sky->quarter_res_pass = RID();
  1903. }
  1904. _sky_invalidate(sky);
  1905. }
  1906. }
  1907. // Create new subpass buffers if necessary
  1908. if ((shader_data->uses_half_res && sky->half_res_pass.is_null()) ||
  1909. (shader_data->uses_quarter_res && sky->quarter_res_pass.is_null()) ||
  1910. sky->radiance.is_null()) {
  1911. _sky_invalidate(sky);
  1912. _update_dirty_skys();
  1913. }
  1914. if (shader_data->uses_time && time - sky->prev_time > 0.00001) {
  1915. sky->prev_time = time;
  1916. sky->reflection.dirty = true;
  1917. RenderingServerDefault::redraw_request();
  1918. }
  1919. if (material != sky->prev_material) {
  1920. sky->prev_material = material;
  1921. sky->reflection.dirty = true;
  1922. }
  1923. if (material->uniform_set_updated) {
  1924. material->uniform_set_updated = false;
  1925. sky->reflection.dirty = true;
  1926. }
  1927. if (!p_transform.origin.is_equal_approx(sky->prev_position) && shader_data->uses_position) {
  1928. sky->prev_position = p_transform.origin;
  1929. sky->reflection.dirty = true;
  1930. }
  1931. if (shader_data->uses_light) {
  1932. // Check whether the directional_light_buffer changes
  1933. bool light_data_dirty = false;
  1934. if (sky_scene_state.ubo.directional_light_count != sky_scene_state.last_frame_directional_light_count) {
  1935. light_data_dirty = true;
  1936. for (uint32_t i = sky_scene_state.ubo.directional_light_count; i < sky_scene_state.max_directional_lights; i++) {
  1937. sky_scene_state.directional_lights[i].enabled = false;
  1938. }
  1939. }
  1940. if (!light_data_dirty) {
  1941. for (uint32_t i = 0; i < sky_scene_state.ubo.directional_light_count; i++) {
  1942. if (sky_scene_state.directional_lights[i].direction[0] != sky_scene_state.last_frame_directional_lights[i].direction[0] ||
  1943. sky_scene_state.directional_lights[i].direction[1] != sky_scene_state.last_frame_directional_lights[i].direction[1] ||
  1944. sky_scene_state.directional_lights[i].direction[2] != sky_scene_state.last_frame_directional_lights[i].direction[2] ||
  1945. sky_scene_state.directional_lights[i].energy != sky_scene_state.last_frame_directional_lights[i].energy ||
  1946. sky_scene_state.directional_lights[i].color[0] != sky_scene_state.last_frame_directional_lights[i].color[0] ||
  1947. sky_scene_state.directional_lights[i].color[1] != sky_scene_state.last_frame_directional_lights[i].color[1] ||
  1948. sky_scene_state.directional_lights[i].color[2] != sky_scene_state.last_frame_directional_lights[i].color[2] ||
  1949. sky_scene_state.directional_lights[i].enabled != sky_scene_state.last_frame_directional_lights[i].enabled ||
  1950. sky_scene_state.directional_lights[i].size != sky_scene_state.last_frame_directional_lights[i].size) {
  1951. light_data_dirty = true;
  1952. break;
  1953. }
  1954. }
  1955. }
  1956. if (light_data_dirty) {
  1957. RD::get_singleton()->buffer_update(sky_scene_state.directional_light_buffer, 0, sizeof(SkyDirectionalLightData) * sky_scene_state.max_directional_lights, sky_scene_state.directional_lights, true);
  1958. RendererSceneRenderRD::SkyDirectionalLightData *temp = sky_scene_state.last_frame_directional_lights;
  1959. sky_scene_state.last_frame_directional_lights = sky_scene_state.directional_lights;
  1960. sky_scene_state.directional_lights = temp;
  1961. sky_scene_state.last_frame_directional_light_count = sky_scene_state.ubo.directional_light_count;
  1962. sky->reflection.dirty = true;
  1963. }
  1964. }
  1965. }
  1966. //setup fog variables
  1967. sky_scene_state.ubo.volumetric_fog_enabled = false;
  1968. if (p_render_buffers.is_valid()) {
  1969. if (render_buffers_has_volumetric_fog(p_render_buffers)) {
  1970. sky_scene_state.ubo.volumetric_fog_enabled = true;
  1971. float fog_end = render_buffers_get_volumetric_fog_end(p_render_buffers);
  1972. if (fog_end > 0.0) {
  1973. sky_scene_state.ubo.volumetric_fog_inv_length = 1.0 / fog_end;
  1974. } else {
  1975. sky_scene_state.ubo.volumetric_fog_inv_length = 1.0;
  1976. }
  1977. float fog_detail_spread = render_buffers_get_volumetric_fog_detail_spread(p_render_buffers); //reverse lookup
  1978. if (fog_detail_spread > 0.0) {
  1979. sky_scene_state.ubo.volumetric_fog_detail_spread = 1.0 / fog_detail_spread;
  1980. } else {
  1981. sky_scene_state.ubo.volumetric_fog_detail_spread = 1.0;
  1982. }
  1983. }
  1984. RID fog_uniform_set = render_buffers_get_volumetric_fog_sky_uniform_set(p_render_buffers);
  1985. if (fog_uniform_set != RID()) {
  1986. sky_scene_state.fog_uniform_set = fog_uniform_set;
  1987. } else {
  1988. sky_scene_state.fog_uniform_set = sky_scene_state.default_fog_uniform_set;
  1989. }
  1990. }
  1991. sky_scene_state.ubo.z_far = p_projection.get_z_far();
  1992. sky_scene_state.ubo.fog_enabled = environment_is_fog_enabled(p_environment);
  1993. sky_scene_state.ubo.fog_density = environment_get_fog_density(p_environment);
  1994. sky_scene_state.ubo.fog_aerial_perspective = environment_get_fog_aerial_perspective(p_environment);
  1995. Color fog_color = environment_get_fog_light_color(p_environment).to_linear();
  1996. float fog_energy = environment_get_fog_light_energy(p_environment);
  1997. sky_scene_state.ubo.fog_light_color[0] = fog_color.r * fog_energy;
  1998. sky_scene_state.ubo.fog_light_color[1] = fog_color.g * fog_energy;
  1999. sky_scene_state.ubo.fog_light_color[2] = fog_color.b * fog_energy;
  2000. sky_scene_state.ubo.fog_sun_scatter = environment_get_fog_sun_scatter(p_environment);
  2001. RD::get_singleton()->buffer_update(sky_scene_state.uniform_buffer, 0, sizeof(SkySceneState::UBO), &sky_scene_state.ubo, true);
  2002. }
  2003. void RendererSceneRenderRD::_update_sky(RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform) {
  2004. ERR_FAIL_COND(!is_environment(p_environment));
  2005. Sky *sky = sky_owner.getornull(environment_get_sky(p_environment));
  2006. ERR_FAIL_COND(!sky);
  2007. RID sky_material = sky_get_material(environment_get_sky(p_environment));
  2008. SkyMaterialData *material = nullptr;
  2009. if (sky_material.is_valid()) {
  2010. material = (SkyMaterialData *)storage->material_get_data(sky_material, RendererStorageRD::SHADER_TYPE_SKY);
  2011. if (!material || !material->shader_data->valid) {
  2012. material = nullptr;
  2013. }
  2014. }
  2015. if (!material) {
  2016. sky_material = sky_shader.default_material;
  2017. material = (SkyMaterialData *)storage->material_get_data(sky_material, RendererStorageRD::SHADER_TYPE_SKY);
  2018. }
  2019. ERR_FAIL_COND(!material);
  2020. SkyShaderData *shader_data = material->shader_data;
  2021. ERR_FAIL_COND(!shader_data);
  2022. float multiplier = environment_get_bg_energy(p_environment);
  2023. bool update_single_frame = sky->mode == RS::SKY_MODE_REALTIME || sky->mode == RS::SKY_MODE_QUALITY;
  2024. RS::SkyMode sky_mode = sky->mode;
  2025. if (sky_mode == RS::SKY_MODE_AUTOMATIC) {
  2026. if (shader_data->uses_time || shader_data->uses_position) {
  2027. update_single_frame = true;
  2028. sky_mode = RS::SKY_MODE_REALTIME;
  2029. } else if (shader_data->uses_light || shader_data->ubo_size > 0) {
  2030. update_single_frame = false;
  2031. sky_mode = RS::SKY_MODE_INCREMENTAL;
  2032. } else {
  2033. update_single_frame = true;
  2034. sky_mode = RS::SKY_MODE_QUALITY;
  2035. }
  2036. }
  2037. if (sky->processing_layer == 0 && sky_mode == RS::SKY_MODE_INCREMENTAL) {
  2038. // On the first frame after creating sky, rebuild in single frame
  2039. update_single_frame = true;
  2040. sky_mode = RS::SKY_MODE_QUALITY;
  2041. }
  2042. int max_processing_layer = sky_use_cubemap_array ? sky->reflection.layers.size() : sky->reflection.layers[0].mipmaps.size();
  2043. // Update radiance cubemap
  2044. if (sky->reflection.dirty && (sky->processing_layer >= max_processing_layer || update_single_frame)) {
  2045. static const Vector3 view_normals[6] = {
  2046. Vector3(+1, 0, 0),
  2047. Vector3(-1, 0, 0),
  2048. Vector3(0, +1, 0),
  2049. Vector3(0, -1, 0),
  2050. Vector3(0, 0, +1),
  2051. Vector3(0, 0, -1)
  2052. };
  2053. static const Vector3 view_up[6] = {
  2054. Vector3(0, -1, 0),
  2055. Vector3(0, -1, 0),
  2056. Vector3(0, 0, +1),
  2057. Vector3(0, 0, -1),
  2058. Vector3(0, -1, 0),
  2059. Vector3(0, -1, 0)
  2060. };
  2061. CameraMatrix cm;
  2062. cm.set_perspective(90, 1, 0.01, 10.0);
  2063. CameraMatrix correction;
  2064. correction.set_depth_correction(true);
  2065. cm = correction * cm;
  2066. if (shader_data->uses_quarter_res) {
  2067. PipelineCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP_QUARTER_RES];
  2068. Vector<Color> clear_colors;
  2069. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  2070. RD::DrawListID cubemap_draw_list;
  2071. for (int i = 0; i < 6; i++) {
  2072. Transform local_view;
  2073. local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]);
  2074. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP_QUARTER_RES);
  2075. cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[2].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD);
  2076. storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[2].framebuffers[i], sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin);
  2077. RD::get_singleton()->draw_list_end();
  2078. }
  2079. }
  2080. if (shader_data->uses_half_res) {
  2081. PipelineCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP_HALF_RES];
  2082. Vector<Color> clear_colors;
  2083. clear_colors.push_back(Color(0.0, 0.0, 0.0));
  2084. RD::DrawListID cubemap_draw_list;
  2085. for (int i = 0; i < 6; i++) {
  2086. Transform local_view;
  2087. local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]);
  2088. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP_HALF_RES);
  2089. cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[1].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD);
  2090. storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[1].framebuffers[i], sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin);
  2091. RD::get_singleton()->draw_list_end();
  2092. }
  2093. }
  2094. RD::DrawListID cubemap_draw_list;
  2095. PipelineCacheRD *pipeline = &shader_data->pipelines[SKY_VERSION_CUBEMAP];
  2096. for (int i = 0; i < 6; i++) {
  2097. Transform local_view;
  2098. local_view.set_look_at(Vector3(0, 0, 0), view_normals[i], view_up[i]);
  2099. RID texture_uniform_set = _get_sky_textures(sky, SKY_TEXTURE_SET_CUBEMAP);
  2100. cubemap_draw_list = RD::get_singleton()->draw_list_begin(sky->reflection.layers[0].mipmaps[0].framebuffers[i], RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_DISCARD);
  2101. storage->get_effects()->render_sky(cubemap_draw_list, time, sky->reflection.layers[0].mipmaps[0].framebuffers[i], sky_scene_state.uniform_set, sky_scene_state.fog_uniform_set, pipeline, material->uniform_set, texture_uniform_set, cm, local_view.basis, multiplier, p_transform.origin);
  2102. RD::get_singleton()->draw_list_end();
  2103. }
  2104. if (sky_mode == RS::SKY_MODE_REALTIME) {
  2105. _create_reflection_fast_filter(sky->reflection, sky_use_cubemap_array);
  2106. if (sky_use_cubemap_array) {
  2107. _update_reflection_mipmaps(sky->reflection, 0, sky->reflection.layers.size());
  2108. }
  2109. } else {
  2110. if (update_single_frame) {
  2111. for (int i = 1; i < max_processing_layer; i++) {
  2112. _create_reflection_importance_sample(sky->reflection, sky_use_cubemap_array, 10, i);
  2113. }
  2114. if (sky_use_cubemap_array) {
  2115. _update_reflection_mipmaps(sky->reflection, 0, sky->reflection.layers.size());
  2116. }
  2117. } else {
  2118. if (sky_use_cubemap_array) {
  2119. // Multi-Frame so just update the first array level
  2120. _update_reflection_mipmaps(sky->reflection, 0, 1);
  2121. }
  2122. }
  2123. sky->processing_layer = 1;
  2124. }
  2125. sky->reflection.dirty = false;
  2126. } else {
  2127. if (sky_mode == RS::SKY_MODE_INCREMENTAL && sky->processing_layer < max_processing_layer) {
  2128. _create_reflection_importance_sample(sky->reflection, sky_use_cubemap_array, 10, sky->processing_layer);
  2129. if (sky_use_cubemap_array) {
  2130. _update_reflection_mipmaps(sky->reflection, sky->processing_layer, sky->processing_layer + 1);
  2131. }
  2132. sky->processing_layer++;
  2133. }
  2134. }
  2135. }
  2136. /* SKY SHADER */
  2137. void RendererSceneRenderRD::SkyShaderData::set_code(const String &p_code) {
  2138. //compile
  2139. code = p_code;
  2140. valid = false;
  2141. ubo_size = 0;
  2142. uniforms.clear();
  2143. if (code == String()) {
  2144. return; //just invalid, but no error
  2145. }
  2146. ShaderCompilerRD::GeneratedCode gen_code;
  2147. ShaderCompilerRD::IdentifierActions actions;
  2148. uses_time = false;
  2149. uses_half_res = false;
  2150. uses_quarter_res = false;
  2151. uses_position = false;
  2152. uses_light = false;
  2153. actions.render_mode_flags["use_half_res_pass"] = &uses_half_res;
  2154. actions.render_mode_flags["use_quarter_res_pass"] = &uses_quarter_res;
  2155. actions.usage_flag_pointers["TIME"] = &uses_time;
  2156. actions.usage_flag_pointers["POSITION"] = &uses_position;
  2157. actions.usage_flag_pointers["LIGHT0_ENABLED"] = &uses_light;
  2158. actions.usage_flag_pointers["LIGHT0_ENERGY"] = &uses_light;
  2159. actions.usage_flag_pointers["LIGHT0_DIRECTION"] = &uses_light;
  2160. actions.usage_flag_pointers["LIGHT0_COLOR"] = &uses_light;
  2161. actions.usage_flag_pointers["LIGHT0_SIZE"] = &uses_light;
  2162. actions.usage_flag_pointers["LIGHT1_ENABLED"] = &uses_light;
  2163. actions.usage_flag_pointers["LIGHT1_ENERGY"] = &uses_light;
  2164. actions.usage_flag_pointers["LIGHT1_DIRECTION"] = &uses_light;
  2165. actions.usage_flag_pointers["LIGHT1_COLOR"] = &uses_light;
  2166. actions.usage_flag_pointers["LIGHT1_SIZE"] = &uses_light;
  2167. actions.usage_flag_pointers["LIGHT2_ENABLED"] = &uses_light;
  2168. actions.usage_flag_pointers["LIGHT2_ENERGY"] = &uses_light;
  2169. actions.usage_flag_pointers["LIGHT2_DIRECTION"] = &uses_light;
  2170. actions.usage_flag_pointers["LIGHT2_COLOR"] = &uses_light;
  2171. actions.usage_flag_pointers["LIGHT2_SIZE"] = &uses_light;
  2172. actions.usage_flag_pointers["LIGHT3_ENABLED"] = &uses_light;
  2173. actions.usage_flag_pointers["LIGHT3_ENERGY"] = &uses_light;
  2174. actions.usage_flag_pointers["LIGHT3_DIRECTION"] = &uses_light;
  2175. actions.usage_flag_pointers["LIGHT3_COLOR"] = &uses_light;
  2176. actions.usage_flag_pointers["LIGHT3_SIZE"] = &uses_light;
  2177. actions.uniforms = &uniforms;
  2178. RendererSceneRenderRD *scene_singleton = (RendererSceneRenderRD *)RendererSceneRenderRD::singleton;
  2179. Error err = scene_singleton->sky_shader.compiler.compile(RS::SHADER_SKY, code, &actions, path, gen_code);
  2180. ERR_FAIL_COND(err != OK);
  2181. if (version.is_null()) {
  2182. version = scene_singleton->sky_shader.shader.version_create();
  2183. }
  2184. #if 0
  2185. print_line("**compiling shader:");
  2186. print_line("**defines:\n");
  2187. for (int i = 0; i < gen_code.defines.size(); i++) {
  2188. print_line(gen_code.defines[i]);
  2189. }
  2190. print_line("\n**uniforms:\n" + gen_code.uniforms);
  2191. // print_line("\n**vertex_globals:\n" + gen_code.vertex_global);
  2192. // print_line("\n**vertex_code:\n" + gen_code.vertex);
  2193. print_line("\n**fragment_globals:\n" + gen_code.fragment_global);
  2194. print_line("\n**fragment_code:\n" + gen_code.fragment);
  2195. print_line("\n**light_code:\n" + gen_code.light);
  2196. #endif
  2197. scene_singleton->sky_shader.shader.version_set_code(version, gen_code.uniforms, gen_code.vertex_global, gen_code.vertex, gen_code.fragment_global, gen_code.light, gen_code.fragment, gen_code.defines);
  2198. ERR_FAIL_COND(!scene_singleton->sky_shader.shader.version_is_valid(version));
  2199. ubo_size = gen_code.uniform_total_size;
  2200. ubo_offsets = gen_code.uniform_offsets;
  2201. texture_uniforms = gen_code.texture_uniforms;
  2202. //update pipelines
  2203. for (int i = 0; i < SKY_VERSION_MAX; i++) {
  2204. RD::PipelineDepthStencilState depth_stencil_state;
  2205. depth_stencil_state.enable_depth_test = true;
  2206. depth_stencil_state.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL;
  2207. RID shader_variant = scene_singleton->sky_shader.shader.version_get_shader(version, i);
  2208. pipelines[i].setup(shader_variant, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), depth_stencil_state, RD::PipelineColorBlendState::create_disabled(), 0);
  2209. }
  2210. valid = true;
  2211. }
  2212. void RendererSceneRenderRD::SkyShaderData::set_default_texture_param(const StringName &p_name, RID p_texture) {
  2213. if (!p_texture.is_valid()) {
  2214. default_texture_params.erase(p_name);
  2215. } else {
  2216. default_texture_params[p_name] = p_texture;
  2217. }
  2218. }
  2219. void RendererSceneRenderRD::SkyShaderData::get_param_list(List<PropertyInfo> *p_param_list) const {
  2220. Map<int, StringName> order;
  2221. for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = uniforms.front(); E; E = E->next()) {
  2222. if (E->get().scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_GLOBAL || E->get().scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
  2223. continue;
  2224. }
  2225. if (E->get().texture_order >= 0) {
  2226. order[E->get().texture_order + 100000] = E->key();
  2227. } else {
  2228. order[E->get().order] = E->key();
  2229. }
  2230. }
  2231. for (Map<int, StringName>::Element *E = order.front(); E; E = E->next()) {
  2232. PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniforms[E->get()]);
  2233. pi.name = E->get();
  2234. p_param_list->push_back(pi);
  2235. }
  2236. }
  2237. void RendererSceneRenderRD::SkyShaderData::get_instance_param_list(List<RendererStorage::InstanceShaderParam> *p_param_list) const {
  2238. for (Map<StringName, ShaderLanguage::ShaderNode::Uniform>::Element *E = uniforms.front(); E; E = E->next()) {
  2239. if (E->get().scope != ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
  2240. continue;
  2241. }
  2242. RendererStorage::InstanceShaderParam p;
  2243. p.info = ShaderLanguage::uniform_to_property_info(E->get());
  2244. p.info.name = E->key(); //supply name
  2245. p.index = E->get().instance_index;
  2246. p.default_value = ShaderLanguage::constant_value_to_variant(E->get().default_value, E->get().type, E->get().hint);
  2247. p_param_list->push_back(p);
  2248. }
  2249. }
  2250. bool RendererSceneRenderRD::SkyShaderData::is_param_texture(const StringName &p_param) const {
  2251. if (!uniforms.has(p_param)) {
  2252. return false;
  2253. }
  2254. return uniforms[p_param].texture_order >= 0;
  2255. }
  2256. bool RendererSceneRenderRD::SkyShaderData::is_animated() const {
  2257. return false;
  2258. }
  2259. bool RendererSceneRenderRD::SkyShaderData::casts_shadows() const {
  2260. return false;
  2261. }
  2262. Variant RendererSceneRenderRD::SkyShaderData::get_default_parameter(const StringName &p_parameter) const {
  2263. if (uniforms.has(p_parameter)) {
  2264. ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter];
  2265. Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value;
  2266. return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.hint);
  2267. }
  2268. return Variant();
  2269. }
  2270. RendererSceneRenderRD::SkyShaderData::SkyShaderData() {
  2271. valid = false;
  2272. }
  2273. RendererSceneRenderRD::SkyShaderData::~SkyShaderData() {
  2274. RendererSceneRenderRD *scene_singleton = (RendererSceneRenderRD *)RendererSceneRenderRD::singleton;
  2275. ERR_FAIL_COND(!scene_singleton);
  2276. //pipeline variants will clear themselves if shader is gone
  2277. if (version.is_valid()) {
  2278. scene_singleton->sky_shader.shader.version_free(version);
  2279. }
  2280. }
  2281. RendererStorageRD::ShaderData *RendererSceneRenderRD::_create_sky_shader_func() {
  2282. SkyShaderData *shader_data = memnew(SkyShaderData);
  2283. return shader_data;
  2284. }
  2285. void RendererSceneRenderRD::SkyMaterialData::update_parameters(const Map<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
  2286. RendererSceneRenderRD *scene_singleton = (RendererSceneRenderRD *)RendererSceneRenderRD::singleton;
  2287. uniform_set_updated = true;
  2288. if ((uint32_t)ubo_data.size() != shader_data->ubo_size) {
  2289. p_uniform_dirty = true;
  2290. if (uniform_buffer.is_valid()) {
  2291. RD::get_singleton()->free(uniform_buffer);
  2292. uniform_buffer = RID();
  2293. }
  2294. ubo_data.resize(shader_data->ubo_size);
  2295. if (ubo_data.size()) {
  2296. uniform_buffer = RD::get_singleton()->uniform_buffer_create(ubo_data.size());
  2297. memset(ubo_data.ptrw(), 0, ubo_data.size()); //clear
  2298. }
  2299. //clear previous uniform set
  2300. if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  2301. RD::get_singleton()->free(uniform_set);
  2302. uniform_set = RID();
  2303. }
  2304. }
  2305. //check whether buffer changed
  2306. if (p_uniform_dirty && ubo_data.size()) {
  2307. update_uniform_buffer(shader_data->uniforms, shader_data->ubo_offsets.ptr(), p_parameters, ubo_data.ptrw(), ubo_data.size(), false);
  2308. RD::get_singleton()->buffer_update(uniform_buffer, 0, ubo_data.size(), ubo_data.ptrw());
  2309. }
  2310. uint32_t tex_uniform_count = shader_data->texture_uniforms.size();
  2311. if ((uint32_t)texture_cache.size() != tex_uniform_count) {
  2312. texture_cache.resize(tex_uniform_count);
  2313. p_textures_dirty = true;
  2314. //clear previous uniform set
  2315. if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  2316. RD::get_singleton()->free(uniform_set);
  2317. uniform_set = RID();
  2318. }
  2319. }
  2320. if (p_textures_dirty && tex_uniform_count) {
  2321. update_textures(p_parameters, shader_data->default_texture_params, shader_data->texture_uniforms, texture_cache.ptrw(), true);
  2322. }
  2323. if (shader_data->ubo_size == 0 && shader_data->texture_uniforms.size() == 0) {
  2324. // This material does not require an uniform set, so don't create it.
  2325. return;
  2326. }
  2327. if (!p_textures_dirty && uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  2328. //no reason to update uniform set, only UBO (or nothing) was needed to update
  2329. return;
  2330. }
  2331. Vector<RD::Uniform> uniforms;
  2332. {
  2333. if (shader_data->ubo_size) {
  2334. RD::Uniform u;
  2335. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  2336. u.binding = 0;
  2337. u.ids.push_back(uniform_buffer);
  2338. uniforms.push_back(u);
  2339. }
  2340. const RID *textures = texture_cache.ptrw();
  2341. for (uint32_t i = 0; i < tex_uniform_count; i++) {
  2342. RD::Uniform u;
  2343. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  2344. u.binding = 1 + i;
  2345. u.ids.push_back(textures[i]);
  2346. uniforms.push_back(u);
  2347. }
  2348. }
  2349. uniform_set = RD::get_singleton()->uniform_set_create(uniforms, scene_singleton->sky_shader.shader.version_get_shader(shader_data->version, 0), SKY_SET_MATERIAL);
  2350. }
  2351. RendererSceneRenderRD::SkyMaterialData::~SkyMaterialData() {
  2352. if (uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(uniform_set)) {
  2353. RD::get_singleton()->free(uniform_set);
  2354. }
  2355. if (uniform_buffer.is_valid()) {
  2356. RD::get_singleton()->free(uniform_buffer);
  2357. }
  2358. }
  2359. RendererStorageRD::MaterialData *RendererSceneRenderRD::_create_sky_material_func(SkyShaderData *p_shader) {
  2360. SkyMaterialData *material_data = memnew(SkyMaterialData);
  2361. material_data->shader_data = p_shader;
  2362. material_data->last_frame = false;
  2363. //update will happen later anyway so do nothing.
  2364. return material_data;
  2365. }
  2366. RID RendererSceneRenderRD::environment_create() {
  2367. return environment_owner.make_rid(Environment());
  2368. }
  2369. void RendererSceneRenderRD::environment_set_background(RID p_env, RS::EnvironmentBG p_bg) {
  2370. Environment *env = environment_owner.getornull(p_env);
  2371. ERR_FAIL_COND(!env);
  2372. env->background = p_bg;
  2373. }
  2374. void RendererSceneRenderRD::environment_set_sky(RID p_env, RID p_sky) {
  2375. Environment *env = environment_owner.getornull(p_env);
  2376. ERR_FAIL_COND(!env);
  2377. env->sky = p_sky;
  2378. }
  2379. void RendererSceneRenderRD::environment_set_sky_custom_fov(RID p_env, float p_scale) {
  2380. Environment *env = environment_owner.getornull(p_env);
  2381. ERR_FAIL_COND(!env);
  2382. env->sky_custom_fov = p_scale;
  2383. }
  2384. void RendererSceneRenderRD::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) {
  2385. Environment *env = environment_owner.getornull(p_env);
  2386. ERR_FAIL_COND(!env);
  2387. env->sky_orientation = p_orientation;
  2388. }
  2389. void RendererSceneRenderRD::environment_set_bg_color(RID p_env, const Color &p_color) {
  2390. Environment *env = environment_owner.getornull(p_env);
  2391. ERR_FAIL_COND(!env);
  2392. env->bg_color = p_color;
  2393. }
  2394. void RendererSceneRenderRD::environment_set_bg_energy(RID p_env, float p_energy) {
  2395. Environment *env = environment_owner.getornull(p_env);
  2396. ERR_FAIL_COND(!env);
  2397. env->bg_energy = p_energy;
  2398. }
  2399. void RendererSceneRenderRD::environment_set_canvas_max_layer(RID p_env, int p_max_layer) {
  2400. Environment *env = environment_owner.getornull(p_env);
  2401. ERR_FAIL_COND(!env);
  2402. env->canvas_max_layer = p_max_layer;
  2403. }
  2404. void RendererSceneRenderRD::environment_set_ambient_light(RID p_env, const Color &p_color, RS::EnvironmentAmbientSource p_ambient, float p_energy, float p_sky_contribution, RS::EnvironmentReflectionSource p_reflection_source, const Color &p_ao_color) {
  2405. Environment *env = environment_owner.getornull(p_env);
  2406. ERR_FAIL_COND(!env);
  2407. env->ambient_light = p_color;
  2408. env->ambient_source = p_ambient;
  2409. env->ambient_light_energy = p_energy;
  2410. env->ambient_sky_contribution = p_sky_contribution;
  2411. env->reflection_source = p_reflection_source;
  2412. env->ao_color = p_ao_color;
  2413. }
  2414. RS::EnvironmentBG RendererSceneRenderRD::environment_get_background(RID p_env) const {
  2415. Environment *env = environment_owner.getornull(p_env);
  2416. ERR_FAIL_COND_V(!env, RS::ENV_BG_MAX);
  2417. return env->background;
  2418. }
  2419. RID RendererSceneRenderRD::environment_get_sky(RID p_env) const {
  2420. Environment *env = environment_owner.getornull(p_env);
  2421. ERR_FAIL_COND_V(!env, RID());
  2422. return env->sky;
  2423. }
  2424. float RendererSceneRenderRD::environment_get_sky_custom_fov(RID p_env) const {
  2425. Environment *env = environment_owner.getornull(p_env);
  2426. ERR_FAIL_COND_V(!env, 0);
  2427. return env->sky_custom_fov;
  2428. }
  2429. Basis RendererSceneRenderRD::environment_get_sky_orientation(RID p_env) const {
  2430. Environment *env = environment_owner.getornull(p_env);
  2431. ERR_FAIL_COND_V(!env, Basis());
  2432. return env->sky_orientation;
  2433. }
  2434. Color RendererSceneRenderRD::environment_get_bg_color(RID p_env) const {
  2435. Environment *env = environment_owner.getornull(p_env);
  2436. ERR_FAIL_COND_V(!env, Color());
  2437. return env->bg_color;
  2438. }
  2439. float RendererSceneRenderRD::environment_get_bg_energy(RID p_env) const {
  2440. Environment *env = environment_owner.getornull(p_env);
  2441. ERR_FAIL_COND_V(!env, 0);
  2442. return env->bg_energy;
  2443. }
  2444. int RendererSceneRenderRD::environment_get_canvas_max_layer(RID p_env) const {
  2445. Environment *env = environment_owner.getornull(p_env);
  2446. ERR_FAIL_COND_V(!env, 0);
  2447. return env->canvas_max_layer;
  2448. }
  2449. Color RendererSceneRenderRD::environment_get_ambient_light_color(RID p_env) const {
  2450. Environment *env = environment_owner.getornull(p_env);
  2451. ERR_FAIL_COND_V(!env, Color());
  2452. return env->ambient_light;
  2453. }
  2454. RS::EnvironmentAmbientSource RendererSceneRenderRD::environment_get_ambient_source(RID p_env) const {
  2455. Environment *env = environment_owner.getornull(p_env);
  2456. ERR_FAIL_COND_V(!env, RS::ENV_AMBIENT_SOURCE_BG);
  2457. return env->ambient_source;
  2458. }
  2459. float RendererSceneRenderRD::environment_get_ambient_light_energy(RID p_env) const {
  2460. Environment *env = environment_owner.getornull(p_env);
  2461. ERR_FAIL_COND_V(!env, 0);
  2462. return env->ambient_light_energy;
  2463. }
  2464. float RendererSceneRenderRD::environment_get_ambient_sky_contribution(RID p_env) const {
  2465. Environment *env = environment_owner.getornull(p_env);
  2466. ERR_FAIL_COND_V(!env, 0);
  2467. return env->ambient_sky_contribution;
  2468. }
  2469. RS::EnvironmentReflectionSource RendererSceneRenderRD::environment_get_reflection_source(RID p_env) const {
  2470. Environment *env = environment_owner.getornull(p_env);
  2471. ERR_FAIL_COND_V(!env, RS::ENV_REFLECTION_SOURCE_DISABLED);
  2472. return env->reflection_source;
  2473. }
  2474. Color RendererSceneRenderRD::environment_get_ao_color(RID p_env) const {
  2475. Environment *env = environment_owner.getornull(p_env);
  2476. ERR_FAIL_COND_V(!env, Color());
  2477. return env->ao_color;
  2478. }
  2479. void RendererSceneRenderRD::environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) {
  2480. Environment *env = environment_owner.getornull(p_env);
  2481. ERR_FAIL_COND(!env);
  2482. env->exposure = p_exposure;
  2483. env->tone_mapper = p_tone_mapper;
  2484. if (!env->auto_exposure && p_auto_exposure) {
  2485. env->auto_exposure_version = ++auto_exposure_counter;
  2486. }
  2487. env->auto_exposure = p_auto_exposure;
  2488. env->white = p_white;
  2489. env->min_luminance = p_min_luminance;
  2490. env->max_luminance = p_max_luminance;
  2491. env->auto_exp_speed = p_auto_exp_speed;
  2492. env->auto_exp_scale = p_auto_exp_scale;
  2493. }
  2494. void RendererSceneRenderRD::environment_set_glow(RID p_env, bool p_enable, Vector<float> p_levels, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap) {
  2495. Environment *env = environment_owner.getornull(p_env);
  2496. ERR_FAIL_COND(!env);
  2497. ERR_FAIL_COND_MSG(p_levels.size() != 7, "Size of array of glow levels must be 7");
  2498. env->glow_enabled = p_enable;
  2499. env->glow_levels = p_levels;
  2500. env->glow_intensity = p_intensity;
  2501. env->glow_strength = p_strength;
  2502. env->glow_mix = p_mix;
  2503. env->glow_bloom = p_bloom_threshold;
  2504. env->glow_blend_mode = p_blend_mode;
  2505. env->glow_hdr_bleed_threshold = p_hdr_bleed_threshold;
  2506. env->glow_hdr_bleed_scale = p_hdr_bleed_scale;
  2507. env->glow_hdr_luminance_cap = p_hdr_luminance_cap;
  2508. }
  2509. void RendererSceneRenderRD::environment_glow_set_use_bicubic_upscale(bool p_enable) {
  2510. glow_bicubic_upscale = p_enable;
  2511. }
  2512. void RendererSceneRenderRD::environment_glow_set_use_high_quality(bool p_enable) {
  2513. glow_high_quality = p_enable;
  2514. }
  2515. void RendererSceneRenderRD::environment_set_sdfgi(RID p_env, bool p_enable, RS::EnvironmentSDFGICascades p_cascades, float p_min_cell_size, RS::EnvironmentSDFGIYScale p_y_scale, bool p_use_occlusion, bool p_use_multibounce, bool p_read_sky, float p_energy, float p_normal_bias, float p_probe_bias) {
  2516. Environment *env = environment_owner.getornull(p_env);
  2517. ERR_FAIL_COND(!env);
  2518. if (low_end) {
  2519. return;
  2520. }
  2521. env->sdfgi_enabled = p_enable;
  2522. env->sdfgi_cascades = p_cascades;
  2523. env->sdfgi_min_cell_size = p_min_cell_size;
  2524. env->sdfgi_use_occlusion = p_use_occlusion;
  2525. env->sdfgi_use_multibounce = p_use_multibounce;
  2526. env->sdfgi_read_sky_light = p_read_sky;
  2527. env->sdfgi_energy = p_energy;
  2528. env->sdfgi_normal_bias = p_normal_bias;
  2529. env->sdfgi_probe_bias = p_probe_bias;
  2530. env->sdfgi_y_scale = p_y_scale;
  2531. }
  2532. void RendererSceneRenderRD::environment_set_fog(RID p_env, bool p_enable, const Color &p_light_color, float p_light_energy, float p_sun_scatter, float p_density, float p_height, float p_height_density, float p_fog_aerial_perspective) {
  2533. Environment *env = environment_owner.getornull(p_env);
  2534. ERR_FAIL_COND(!env);
  2535. env->fog_enabled = p_enable;
  2536. env->fog_light_color = p_light_color;
  2537. env->fog_light_energy = p_light_energy;
  2538. env->fog_sun_scatter = p_sun_scatter;
  2539. env->fog_density = p_density;
  2540. env->fog_height = p_height;
  2541. env->fog_height_density = p_height_density;
  2542. env->fog_aerial_perspective = p_fog_aerial_perspective;
  2543. }
  2544. bool RendererSceneRenderRD::environment_is_fog_enabled(RID p_env) const {
  2545. const Environment *env = environment_owner.getornull(p_env);
  2546. ERR_FAIL_COND_V(!env, false);
  2547. return env->fog_enabled;
  2548. }
  2549. Color RendererSceneRenderRD::environment_get_fog_light_color(RID p_env) const {
  2550. const Environment *env = environment_owner.getornull(p_env);
  2551. ERR_FAIL_COND_V(!env, Color());
  2552. return env->fog_light_color;
  2553. }
  2554. float RendererSceneRenderRD::environment_get_fog_light_energy(RID p_env) const {
  2555. const Environment *env = environment_owner.getornull(p_env);
  2556. ERR_FAIL_COND_V(!env, 0);
  2557. return env->fog_light_energy;
  2558. }
  2559. float RendererSceneRenderRD::environment_get_fog_sun_scatter(RID p_env) const {
  2560. const Environment *env = environment_owner.getornull(p_env);
  2561. ERR_FAIL_COND_V(!env, 0);
  2562. return env->fog_sun_scatter;
  2563. }
  2564. float RendererSceneRenderRD::environment_get_fog_density(RID p_env) const {
  2565. const Environment *env = environment_owner.getornull(p_env);
  2566. ERR_FAIL_COND_V(!env, 0);
  2567. return env->fog_density;
  2568. }
  2569. float RendererSceneRenderRD::environment_get_fog_height(RID p_env) const {
  2570. const Environment *env = environment_owner.getornull(p_env);
  2571. ERR_FAIL_COND_V(!env, 0);
  2572. return env->fog_height;
  2573. }
  2574. float RendererSceneRenderRD::environment_get_fog_height_density(RID p_env) const {
  2575. const Environment *env = environment_owner.getornull(p_env);
  2576. ERR_FAIL_COND_V(!env, 0);
  2577. return env->fog_height_density;
  2578. }
  2579. float RendererSceneRenderRD::environment_get_fog_aerial_perspective(RID p_env) const {
  2580. const Environment *env = environment_owner.getornull(p_env);
  2581. ERR_FAIL_COND_V(!env, 0);
  2582. return env->fog_aerial_perspective;
  2583. }
  2584. void RendererSceneRenderRD::environment_set_volumetric_fog(RID p_env, bool p_enable, float p_density, const Color &p_light, float p_light_energy, float p_length, float p_detail_spread, float p_gi_inject, RenderingServer::EnvVolumetricFogShadowFilter p_shadow_filter) {
  2585. Environment *env = environment_owner.getornull(p_env);
  2586. ERR_FAIL_COND(!env);
  2587. if (low_end) {
  2588. return;
  2589. }
  2590. env->volumetric_fog_enabled = p_enable;
  2591. env->volumetric_fog_density = p_density;
  2592. env->volumetric_fog_light = p_light;
  2593. env->volumetric_fog_light_energy = p_light_energy;
  2594. env->volumetric_fog_length = p_length;
  2595. env->volumetric_fog_detail_spread = p_detail_spread;
  2596. env->volumetric_fog_shadow_filter = p_shadow_filter;
  2597. env->volumetric_fog_gi_inject = p_gi_inject;
  2598. }
  2599. void RendererSceneRenderRD::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) {
  2600. volumetric_fog_size = p_size;
  2601. volumetric_fog_depth = p_depth;
  2602. }
  2603. void RendererSceneRenderRD::environment_set_volumetric_fog_filter_active(bool p_enable) {
  2604. volumetric_fog_filter_active = p_enable;
  2605. }
  2606. void RendererSceneRenderRD::environment_set_volumetric_fog_directional_shadow_shrink_size(int p_shrink_size) {
  2607. p_shrink_size = nearest_power_of_2_templated(p_shrink_size);
  2608. if (volumetric_fog_directional_shadow_shrink == (uint32_t)p_shrink_size) {
  2609. return;
  2610. }
  2611. _clear_shadow_shrink_stages(directional_shadow.shrink_stages);
  2612. }
  2613. void RendererSceneRenderRD::environment_set_volumetric_fog_positional_shadow_shrink_size(int p_shrink_size) {
  2614. p_shrink_size = nearest_power_of_2_templated(p_shrink_size);
  2615. if (volumetric_fog_positional_shadow_shrink == (uint32_t)p_shrink_size) {
  2616. return;
  2617. }
  2618. for (uint32_t i = 0; i < shadow_atlas_owner.get_rid_count(); i++) {
  2619. ShadowAtlas *sa = shadow_atlas_owner.get_ptr_by_index(i);
  2620. _clear_shadow_shrink_stages(sa->shrink_stages);
  2621. }
  2622. }
  2623. void RendererSceneRenderRD::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) {
  2624. sdfgi_ray_count = p_ray_count;
  2625. }
  2626. void RendererSceneRenderRD::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) {
  2627. sdfgi_frames_to_converge = p_frames;
  2628. }
  2629. void RendererSceneRenderRD::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance) {
  2630. Environment *env = environment_owner.getornull(p_env);
  2631. ERR_FAIL_COND(!env);
  2632. if (low_end) {
  2633. return;
  2634. }
  2635. env->ssr_enabled = p_enable;
  2636. env->ssr_max_steps = p_max_steps;
  2637. env->ssr_fade_in = p_fade_int;
  2638. env->ssr_fade_out = p_fade_out;
  2639. env->ssr_depth_tolerance = p_depth_tolerance;
  2640. }
  2641. void RendererSceneRenderRD::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) {
  2642. ssr_roughness_quality = p_quality;
  2643. }
  2644. RS::EnvironmentSSRRoughnessQuality RendererSceneRenderRD::environment_get_ssr_roughness_quality() const {
  2645. return ssr_roughness_quality;
  2646. }
  2647. void RendererSceneRenderRD::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_power, float p_detail, float p_horizon, float p_sharpness, float p_light_affect, float p_ao_channel_affect) {
  2648. Environment *env = environment_owner.getornull(p_env);
  2649. ERR_FAIL_COND(!env);
  2650. if (low_end) {
  2651. return;
  2652. }
  2653. env->ssao_enabled = p_enable;
  2654. env->ssao_radius = p_radius;
  2655. env->ssao_intensity = p_intensity;
  2656. env->ssao_power = p_power;
  2657. env->ssao_detail = p_detail;
  2658. env->ssao_horizon = p_horizon;
  2659. env->ssao_sharpness = p_sharpness;
  2660. env->ssao_direct_light_affect = p_light_affect;
  2661. env->ssao_ao_channel_affect = p_ao_channel_affect;
  2662. }
  2663. void RendererSceneRenderRD::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) {
  2664. ssao_quality = p_quality;
  2665. ssao_half_size = p_half_size;
  2666. ssao_adaptive_target = p_adaptive_target;
  2667. ssao_blur_passes = p_blur_passes;
  2668. ssao_fadeout_from = p_fadeout_from;
  2669. ssao_fadeout_to = p_fadeout_to;
  2670. }
  2671. bool RendererSceneRenderRD::environment_is_ssao_enabled(RID p_env) const {
  2672. Environment *env = environment_owner.getornull(p_env);
  2673. ERR_FAIL_COND_V(!env, false);
  2674. return env->ssao_enabled;
  2675. }
  2676. float RendererSceneRenderRD::environment_get_ssao_ao_affect(RID p_env) const {
  2677. Environment *env = environment_owner.getornull(p_env);
  2678. ERR_FAIL_COND_V(!env, 0.0);
  2679. return env->ssao_ao_channel_affect;
  2680. }
  2681. float RendererSceneRenderRD::environment_get_ssao_light_affect(RID p_env) const {
  2682. Environment *env = environment_owner.getornull(p_env);
  2683. ERR_FAIL_COND_V(!env, 0.0);
  2684. return env->ssao_direct_light_affect;
  2685. }
  2686. bool RendererSceneRenderRD::environment_is_ssr_enabled(RID p_env) const {
  2687. Environment *env = environment_owner.getornull(p_env);
  2688. ERR_FAIL_COND_V(!env, false);
  2689. return env->ssr_enabled;
  2690. }
  2691. bool RendererSceneRenderRD::environment_is_sdfgi_enabled(RID p_env) const {
  2692. Environment *env = environment_owner.getornull(p_env);
  2693. ERR_FAIL_COND_V(!env, false);
  2694. return env->sdfgi_enabled;
  2695. }
  2696. bool RendererSceneRenderRD::is_environment(RID p_env) const {
  2697. return environment_owner.owns(p_env);
  2698. }
  2699. Ref<Image> RendererSceneRenderRD::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) {
  2700. Environment *env = environment_owner.getornull(p_env);
  2701. ERR_FAIL_COND_V(!env, Ref<Image>());
  2702. if (env->background == RS::ENV_BG_CAMERA_FEED || env->background == RS::ENV_BG_CANVAS || env->background == RS::ENV_BG_KEEP) {
  2703. return Ref<Image>(); //nothing to bake
  2704. }
  2705. if (env->background == RS::ENV_BG_CLEAR_COLOR || env->background == RS::ENV_BG_COLOR) {
  2706. Color color;
  2707. if (env->background == RS::ENV_BG_CLEAR_COLOR) {
  2708. color = storage->get_default_clear_color();
  2709. } else {
  2710. color = env->bg_color;
  2711. }
  2712. color.r *= env->bg_energy;
  2713. color.g *= env->bg_energy;
  2714. color.b *= env->bg_energy;
  2715. Ref<Image> ret;
  2716. ret.instance();
  2717. ret->create(p_size.width, p_size.height, false, Image::FORMAT_RGBAF);
  2718. for (int i = 0; i < p_size.width; i++) {
  2719. for (int j = 0; j < p_size.height; j++) {
  2720. ret->set_pixel(i, j, color);
  2721. }
  2722. }
  2723. return ret;
  2724. }
  2725. if (env->background == RS::ENV_BG_SKY && env->sky.is_valid()) {
  2726. return sky_bake_panorama(env->sky, env->bg_energy, p_bake_irradiance, p_size);
  2727. }
  2728. return Ref<Image>();
  2729. }
  2730. ////////////////////////////////////////////////////////////
  2731. RID RendererSceneRenderRD::reflection_atlas_create() {
  2732. ReflectionAtlas ra;
  2733. ra.count = GLOBAL_GET("rendering/quality/reflection_atlas/reflection_count");
  2734. ra.size = GLOBAL_GET("rendering/quality/reflection_atlas/reflection_size");
  2735. return reflection_atlas_owner.make_rid(ra);
  2736. }
  2737. void RendererSceneRenderRD::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) {
  2738. ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_ref_atlas);
  2739. ERR_FAIL_COND(!ra);
  2740. if (ra->size == p_reflection_size && ra->count == p_reflection_count) {
  2741. return; //no changes
  2742. }
  2743. ra->size = p_reflection_size;
  2744. ra->count = p_reflection_count;
  2745. if (ra->reflection.is_valid()) {
  2746. //clear and invalidate everything
  2747. RD::get_singleton()->free(ra->reflection);
  2748. ra->reflection = RID();
  2749. RD::get_singleton()->free(ra->depth_buffer);
  2750. ra->depth_buffer = RID();
  2751. for (int i = 0; i < ra->reflections.size(); i++) {
  2752. _clear_reflection_data(ra->reflections.write[i].data);
  2753. if (ra->reflections[i].owner.is_null()) {
  2754. continue;
  2755. }
  2756. reflection_probe_release_atlas_index(ra->reflections[i].owner);
  2757. //rp->atlasindex clear
  2758. }
  2759. ra->reflections.clear();
  2760. }
  2761. }
  2762. int RendererSceneRenderRD::reflection_atlas_get_size(RID p_ref_atlas) const {
  2763. ReflectionAtlas *ra = reflection_atlas_owner.getornull(p_ref_atlas);
  2764. ERR_FAIL_COND_V(!ra, 0);
  2765. return ra->size;
  2766. }
  2767. ////////////////////////
  2768. RID RendererSceneRenderRD::reflection_probe_instance_create(RID p_probe) {
  2769. ReflectionProbeInstance rpi;
  2770. rpi.probe = p_probe;
  2771. return reflection_probe_instance_owner.make_rid(rpi);
  2772. }
  2773. void RendererSceneRenderRD::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) {
  2774. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2775. ERR_FAIL_COND(!rpi);
  2776. rpi->transform = p_transform;
  2777. rpi->dirty = true;
  2778. }
  2779. void RendererSceneRenderRD::reflection_probe_release_atlas_index(RID p_instance) {
  2780. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2781. ERR_FAIL_COND(!rpi);
  2782. if (rpi->atlas.is_null()) {
  2783. return; //nothing to release
  2784. }
  2785. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  2786. ERR_FAIL_COND(!atlas);
  2787. ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size());
  2788. atlas->reflections.write[rpi->atlas_index].owner = RID();
  2789. rpi->atlas_index = -1;
  2790. rpi->atlas = RID();
  2791. }
  2792. bool RendererSceneRenderRD::reflection_probe_instance_needs_redraw(RID p_instance) {
  2793. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2794. ERR_FAIL_COND_V(!rpi, false);
  2795. if (rpi->rendering) {
  2796. return false;
  2797. }
  2798. if (rpi->dirty) {
  2799. return true;
  2800. }
  2801. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
  2802. return true;
  2803. }
  2804. return rpi->atlas_index == -1;
  2805. }
  2806. bool RendererSceneRenderRD::reflection_probe_instance_has_reflection(RID p_instance) {
  2807. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2808. ERR_FAIL_COND_V(!rpi, false);
  2809. return rpi->atlas.is_valid();
  2810. }
  2811. bool RendererSceneRenderRD::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
  2812. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(p_reflection_atlas);
  2813. ERR_FAIL_COND_V(!atlas, false);
  2814. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2815. ERR_FAIL_COND_V(!rpi, false);
  2816. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->size != 256) {
  2817. WARN_PRINT("ReflectionProbes set to UPDATE_ALWAYS must have an atlas size of 256. Please update the atlas size in the ProjectSettings.");
  2818. reflection_atlas_set_size(p_reflection_atlas, 256, atlas->count);
  2819. }
  2820. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->reflections[0].data.layers[0].mipmaps.size() != 8) {
  2821. // Invalidate reflection atlas, need to regenerate
  2822. RD::get_singleton()->free(atlas->reflection);
  2823. atlas->reflection = RID();
  2824. for (int i = 0; i < atlas->reflections.size(); i++) {
  2825. if (atlas->reflections[i].owner.is_null()) {
  2826. continue;
  2827. }
  2828. reflection_probe_release_atlas_index(atlas->reflections[i].owner);
  2829. }
  2830. atlas->reflections.clear();
  2831. }
  2832. if (atlas->reflection.is_null()) {
  2833. int mipmaps = MIN(roughness_layers, Image::get_image_required_mipmaps(atlas->size, atlas->size, Image::FORMAT_RGBAH) + 1);
  2834. mipmaps = storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS ? 8 : mipmaps; // always use 8 mipmaps with real time filtering
  2835. {
  2836. //reflection atlas was unused, create:
  2837. RD::TextureFormat tf;
  2838. tf.array_layers = 6 * atlas->count;
  2839. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  2840. tf.texture_type = RD::TEXTURE_TYPE_CUBE_ARRAY;
  2841. tf.mipmaps = mipmaps;
  2842. tf.width = atlas->size;
  2843. tf.height = atlas->size;
  2844. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  2845. atlas->reflection = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2846. }
  2847. {
  2848. RD::TextureFormat tf;
  2849. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  2850. tf.width = atlas->size;
  2851. tf.height = atlas->size;
  2852. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  2853. atlas->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2854. }
  2855. atlas->reflections.resize(atlas->count);
  2856. for (int i = 0; i < atlas->count; i++) {
  2857. _update_reflection_data(atlas->reflections.write[i].data, atlas->size, mipmaps, false, atlas->reflection, i * 6, storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS);
  2858. for (int j = 0; j < 6; j++) {
  2859. Vector<RID> fb;
  2860. fb.push_back(atlas->reflections.write[i].data.layers[0].mipmaps[0].views[j]);
  2861. fb.push_back(atlas->depth_buffer);
  2862. atlas->reflections.write[i].fbs[j] = RD::get_singleton()->framebuffer_create(fb);
  2863. }
  2864. }
  2865. Vector<RID> fb;
  2866. fb.push_back(atlas->depth_buffer);
  2867. atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb);
  2868. }
  2869. if (rpi->atlas_index == -1) {
  2870. for (int i = 0; i < atlas->reflections.size(); i++) {
  2871. if (atlas->reflections[i].owner.is_null()) {
  2872. rpi->atlas_index = i;
  2873. break;
  2874. }
  2875. }
  2876. //find the one used last
  2877. if (rpi->atlas_index == -1) {
  2878. //everything is in use, find the one least used via LRU
  2879. uint64_t pass_min = 0;
  2880. for (int i = 0; i < atlas->reflections.size(); i++) {
  2881. ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.getornull(atlas->reflections[i].owner);
  2882. if (rpi2->last_pass < pass_min) {
  2883. pass_min = rpi2->last_pass;
  2884. rpi->atlas_index = i;
  2885. }
  2886. }
  2887. }
  2888. }
  2889. rpi->atlas = p_reflection_atlas;
  2890. rpi->rendering = true;
  2891. rpi->dirty = false;
  2892. rpi->processing_layer = 1;
  2893. rpi->processing_side = 0;
  2894. return true;
  2895. }
  2896. bool RendererSceneRenderRD::reflection_probe_instance_postprocess_step(RID p_instance) {
  2897. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2898. ERR_FAIL_COND_V(!rpi, false);
  2899. ERR_FAIL_COND_V(!rpi->rendering, false);
  2900. ERR_FAIL_COND_V(rpi->atlas.is_null(), false);
  2901. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  2902. if (!atlas || rpi->atlas_index == -1) {
  2903. //does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering)
  2904. rpi->rendering = false;
  2905. return false;
  2906. }
  2907. if (storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
  2908. // Using real time reflections, all roughness is done in one step
  2909. _create_reflection_fast_filter(atlas->reflections.write[rpi->atlas_index].data, false);
  2910. rpi->rendering = false;
  2911. rpi->processing_side = 0;
  2912. rpi->processing_layer = 1;
  2913. return true;
  2914. }
  2915. if (rpi->processing_layer > 1) {
  2916. _create_reflection_importance_sample(atlas->reflections.write[rpi->atlas_index].data, false, 10, rpi->processing_layer);
  2917. rpi->processing_layer++;
  2918. if (rpi->processing_layer == atlas->reflections[rpi->atlas_index].data.layers[0].mipmaps.size()) {
  2919. rpi->rendering = false;
  2920. rpi->processing_side = 0;
  2921. rpi->processing_layer = 1;
  2922. return true;
  2923. }
  2924. return false;
  2925. } else {
  2926. _create_reflection_importance_sample(atlas->reflections.write[rpi->atlas_index].data, false, rpi->processing_side, rpi->processing_layer);
  2927. }
  2928. rpi->processing_side++;
  2929. if (rpi->processing_side == 6) {
  2930. rpi->processing_side = 0;
  2931. rpi->processing_layer++;
  2932. }
  2933. return false;
  2934. }
  2935. uint32_t RendererSceneRenderRD::reflection_probe_instance_get_resolution(RID p_instance) {
  2936. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2937. ERR_FAIL_COND_V(!rpi, 0);
  2938. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  2939. ERR_FAIL_COND_V(!atlas, 0);
  2940. return atlas->size;
  2941. }
  2942. RID RendererSceneRenderRD::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) {
  2943. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2944. ERR_FAIL_COND_V(!rpi, RID());
  2945. ERR_FAIL_INDEX_V(p_index, 6, RID());
  2946. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  2947. ERR_FAIL_COND_V(!atlas, RID());
  2948. return atlas->reflections[rpi->atlas_index].fbs[p_index];
  2949. }
  2950. RID RendererSceneRenderRD::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) {
  2951. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  2952. ERR_FAIL_COND_V(!rpi, RID());
  2953. ERR_FAIL_INDEX_V(p_index, 6, RID());
  2954. ReflectionAtlas *atlas = reflection_atlas_owner.getornull(rpi->atlas);
  2955. ERR_FAIL_COND_V(!atlas, RID());
  2956. return atlas->depth_fb;
  2957. }
  2958. ///////////////////////////////////////////////////////////
  2959. RID RendererSceneRenderRD::shadow_atlas_create() {
  2960. return shadow_atlas_owner.make_rid(ShadowAtlas());
  2961. }
  2962. void RendererSceneRenderRD::shadow_atlas_set_size(RID p_atlas, int p_size) {
  2963. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  2964. ERR_FAIL_COND(!shadow_atlas);
  2965. ERR_FAIL_COND(p_size < 0);
  2966. p_size = next_power_of_2(p_size);
  2967. if (p_size == shadow_atlas->size) {
  2968. return;
  2969. }
  2970. // erasing atlas
  2971. if (shadow_atlas->depth.is_valid()) {
  2972. RD::get_singleton()->free(shadow_atlas->depth);
  2973. shadow_atlas->depth = RID();
  2974. _clear_shadow_shrink_stages(shadow_atlas->shrink_stages);
  2975. }
  2976. for (int i = 0; i < 4; i++) {
  2977. //clear subdivisions
  2978. shadow_atlas->quadrants[i].shadows.resize(0);
  2979. shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision);
  2980. }
  2981. //erase shadow atlas reference from lights
  2982. for (Map<RID, uint32_t>::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) {
  2983. LightInstance *li = light_instance_owner.getornull(E->key());
  2984. ERR_CONTINUE(!li);
  2985. li->shadow_atlases.erase(p_atlas);
  2986. }
  2987. //clear owners
  2988. shadow_atlas->shadow_owners.clear();
  2989. shadow_atlas->size = p_size;
  2990. if (shadow_atlas->size) {
  2991. RD::TextureFormat tf;
  2992. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  2993. tf.width = shadow_atlas->size;
  2994. tf.height = shadow_atlas->size;
  2995. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  2996. shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2997. }
  2998. }
  2999. void RendererSceneRenderRD::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
  3000. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  3001. ERR_FAIL_COND(!shadow_atlas);
  3002. ERR_FAIL_INDEX(p_quadrant, 4);
  3003. ERR_FAIL_INDEX(p_subdivision, 16384);
  3004. uint32_t subdiv = next_power_of_2(p_subdivision);
  3005. if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer
  3006. subdiv <<= 1;
  3007. }
  3008. subdiv = int(Math::sqrt((float)subdiv));
  3009. //obtain the number that will be x*x
  3010. if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) {
  3011. return;
  3012. }
  3013. //erase all data from quadrant
  3014. for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
  3015. if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
  3016. shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  3017. LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  3018. ERR_CONTINUE(!li);
  3019. li->shadow_atlases.erase(p_atlas);
  3020. }
  3021. }
  3022. shadow_atlas->quadrants[p_quadrant].shadows.resize(0);
  3023. shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv);
  3024. shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;
  3025. //cache the smallest subdiv (for faster allocation in light update)
  3026. shadow_atlas->smallest_subdiv = 1 << 30;
  3027. for (int i = 0; i < 4; i++) {
  3028. if (shadow_atlas->quadrants[i].subdivision) {
  3029. shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
  3030. }
  3031. }
  3032. if (shadow_atlas->smallest_subdiv == 1 << 30) {
  3033. shadow_atlas->smallest_subdiv = 0;
  3034. }
  3035. //resort the size orders, simple bublesort for 4 elements..
  3036. int swaps = 0;
  3037. do {
  3038. swaps = 0;
  3039. for (int i = 0; i < 3; i++) {
  3040. if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
  3041. SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
  3042. swaps++;
  3043. }
  3044. }
  3045. } while (swaps > 0);
  3046. }
  3047. bool RendererSceneRenderRD::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
  3048. for (int i = p_quadrant_count - 1; i >= 0; i--) {
  3049. int qidx = p_in_quadrants[i];
  3050. if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
  3051. return false;
  3052. }
  3053. //look for an empty space
  3054. int sc = shadow_atlas->quadrants[qidx].shadows.size();
  3055. ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw();
  3056. int found_free_idx = -1; //found a free one
  3057. int found_used_idx = -1; //found existing one, must steal it
  3058. uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion)
  3059. for (int j = 0; j < sc; j++) {
  3060. if (!sarr[j].owner.is_valid()) {
  3061. found_free_idx = j;
  3062. break;
  3063. }
  3064. LightInstance *sli = light_instance_owner.getornull(sarr[j].owner);
  3065. ERR_CONTINUE(!sli);
  3066. if (sli->last_scene_pass != scene_pass) {
  3067. //was just allocated, don't kill it so soon, wait a bit..
  3068. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
  3069. continue;
  3070. }
  3071. if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
  3072. found_used_idx = j;
  3073. min_pass = sli->last_scene_pass;
  3074. }
  3075. }
  3076. }
  3077. if (found_free_idx == -1 && found_used_idx == -1) {
  3078. continue; //nothing found
  3079. }
  3080. if (found_free_idx == -1 && found_used_idx != -1) {
  3081. found_free_idx = found_used_idx;
  3082. }
  3083. r_quadrant = qidx;
  3084. r_shadow = found_free_idx;
  3085. return true;
  3086. }
  3087. return false;
  3088. }
  3089. bool RendererSceneRenderRD::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) {
  3090. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  3091. ERR_FAIL_COND_V(!shadow_atlas, false);
  3092. LightInstance *li = light_instance_owner.getornull(p_light_intance);
  3093. ERR_FAIL_COND_V(!li, false);
  3094. if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
  3095. return false;
  3096. }
  3097. uint32_t quad_size = shadow_atlas->size >> 1;
  3098. int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));
  3099. int valid_quadrants[4];
  3100. int valid_quadrant_count = 0;
  3101. int best_size = -1; //best size found
  3102. int best_subdiv = -1; //subdiv for the best size
  3103. //find the quadrants this fits into, and the best possible size it can fit into
  3104. for (int i = 0; i < 4; i++) {
  3105. int q = shadow_atlas->size_order[i];
  3106. int sd = shadow_atlas->quadrants[q].subdivision;
  3107. if (sd == 0) {
  3108. continue; //unused
  3109. }
  3110. int max_fit = quad_size / sd;
  3111. if (best_size != -1 && max_fit > best_size) {
  3112. break; //too large
  3113. }
  3114. valid_quadrants[valid_quadrant_count++] = q;
  3115. best_subdiv = sd;
  3116. if (max_fit >= desired_fit) {
  3117. best_size = max_fit;
  3118. }
  3119. }
  3120. ERR_FAIL_COND_V(valid_quadrant_count == 0, false);
  3121. uint64_t tick = OS::get_singleton()->get_ticks_msec();
  3122. //see if it already exists
  3123. if (shadow_atlas->shadow_owners.has(p_light_intance)) {
  3124. //it does!
  3125. uint32_t key = shadow_atlas->shadow_owners[p_light_intance];
  3126. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  3127. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  3128. bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
  3129. bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version;
  3130. if (!should_realloc) {
  3131. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  3132. //already existing, see if it should redraw or it's just OK
  3133. return should_redraw;
  3134. }
  3135. int new_quadrant, new_shadow;
  3136. //find a better place
  3137. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) {
  3138. //found a better place!
  3139. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  3140. if (sh->owner.is_valid()) {
  3141. //is taken, but is invalid, erasing it
  3142. shadow_atlas->shadow_owners.erase(sh->owner);
  3143. LightInstance *sli = light_instance_owner.getornull(sh->owner);
  3144. sli->shadow_atlases.erase(p_atlas);
  3145. }
  3146. //erase previous
  3147. shadow_atlas->quadrants[q].shadows.write[s].version = 0;
  3148. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  3149. sh->owner = p_light_intance;
  3150. sh->alloc_tick = tick;
  3151. sh->version = p_light_version;
  3152. li->shadow_atlases.insert(p_atlas);
  3153. //make new key
  3154. key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  3155. key |= new_shadow;
  3156. //update it in map
  3157. shadow_atlas->shadow_owners[p_light_intance] = key;
  3158. //make it dirty, as it should redraw anyway
  3159. return true;
  3160. }
  3161. //no better place for this shadow found, keep current
  3162. //already existing, see if it should redraw or it's just OK
  3163. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  3164. return should_redraw;
  3165. }
  3166. int new_quadrant, new_shadow;
  3167. //find a better place
  3168. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) {
  3169. //found a better place!
  3170. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  3171. if (sh->owner.is_valid()) {
  3172. //is taken, but is invalid, erasing it
  3173. shadow_atlas->shadow_owners.erase(sh->owner);
  3174. LightInstance *sli = light_instance_owner.getornull(sh->owner);
  3175. sli->shadow_atlases.erase(p_atlas);
  3176. }
  3177. sh->owner = p_light_intance;
  3178. sh->alloc_tick = tick;
  3179. sh->version = p_light_version;
  3180. li->shadow_atlases.insert(p_atlas);
  3181. //make new key
  3182. uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  3183. key |= new_shadow;
  3184. //update it in map
  3185. shadow_atlas->shadow_owners[p_light_intance] = key;
  3186. //make it dirty, as it should redraw anyway
  3187. return true;
  3188. }
  3189. //no place to allocate this light, apologies
  3190. return false;
  3191. }
  3192. void RendererSceneRenderRD::directional_shadow_atlas_set_size(int p_size) {
  3193. p_size = nearest_power_of_2_templated(p_size);
  3194. if (directional_shadow.size == p_size) {
  3195. return;
  3196. }
  3197. directional_shadow.size = p_size;
  3198. if (directional_shadow.depth.is_valid()) {
  3199. RD::get_singleton()->free(directional_shadow.depth);
  3200. _clear_shadow_shrink_stages(directional_shadow.shrink_stages);
  3201. directional_shadow.depth = RID();
  3202. }
  3203. if (p_size > 0) {
  3204. RD::TextureFormat tf;
  3205. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  3206. tf.width = p_size;
  3207. tf.height = p_size;
  3208. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  3209. directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3210. }
  3211. _base_uniforms_changed();
  3212. }
  3213. void RendererSceneRenderRD::set_directional_shadow_count(int p_count) {
  3214. directional_shadow.light_count = p_count;
  3215. directional_shadow.current_light = 0;
  3216. }
  3217. static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) {
  3218. int split_h = 1;
  3219. int split_v = 1;
  3220. while (split_h * split_v < p_shadow_count) {
  3221. if (split_h == split_v) {
  3222. split_h <<= 1;
  3223. } else {
  3224. split_v <<= 1;
  3225. }
  3226. }
  3227. Rect2i rect(0, 0, p_size, p_size);
  3228. rect.size.width /= split_h;
  3229. rect.size.height /= split_v;
  3230. rect.position.x = rect.size.width * (p_shadow_index % split_h);
  3231. rect.position.y = rect.size.height * (p_shadow_index / split_h);
  3232. return rect;
  3233. }
  3234. int RendererSceneRenderRD::get_directional_light_shadow_size(RID p_light_intance) {
  3235. ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);
  3236. Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0);
  3237. LightInstance *light_instance = light_instance_owner.getornull(p_light_intance);
  3238. ERR_FAIL_COND_V(!light_instance, 0);
  3239. switch (storage->light_directional_get_shadow_mode(light_instance->light)) {
  3240. case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
  3241. break; //none
  3242. case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
  3243. r.size.height /= 2;
  3244. break;
  3245. case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
  3246. r.size /= 2;
  3247. break;
  3248. }
  3249. return MAX(r.size.width, r.size.height);
  3250. }
  3251. //////////////////////////////////////////////////
  3252. RID RendererSceneRenderRD::camera_effects_create() {
  3253. return camera_effects_owner.make_rid(CameraEffects());
  3254. }
  3255. void RendererSceneRenderRD::camera_effects_set_dof_blur_quality(RS::DOFBlurQuality p_quality, bool p_use_jitter) {
  3256. dof_blur_quality = p_quality;
  3257. dof_blur_use_jitter = p_use_jitter;
  3258. }
  3259. void RendererSceneRenderRD::camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape p_shape) {
  3260. dof_blur_bokeh_shape = p_shape;
  3261. }
  3262. void RendererSceneRenderRD::camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount) {
  3263. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  3264. ERR_FAIL_COND(!camfx);
  3265. camfx->dof_blur_far_enabled = p_far_enable;
  3266. camfx->dof_blur_far_distance = p_far_distance;
  3267. camfx->dof_blur_far_transition = p_far_transition;
  3268. camfx->dof_blur_near_enabled = p_near_enable;
  3269. camfx->dof_blur_near_distance = p_near_distance;
  3270. camfx->dof_blur_near_transition = p_near_transition;
  3271. camfx->dof_blur_amount = p_amount;
  3272. }
  3273. void RendererSceneRenderRD::camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure) {
  3274. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  3275. ERR_FAIL_COND(!camfx);
  3276. camfx->override_exposure_enabled = p_enable;
  3277. camfx->override_exposure = p_exposure;
  3278. }
  3279. RID RendererSceneRenderRD::light_instance_create(RID p_light) {
  3280. RID li = light_instance_owner.make_rid(LightInstance());
  3281. LightInstance *light_instance = light_instance_owner.getornull(li);
  3282. light_instance->self = li;
  3283. light_instance->light = p_light;
  3284. light_instance->light_type = storage->light_get_type(p_light);
  3285. return li;
  3286. }
  3287. void RendererSceneRenderRD::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) {
  3288. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  3289. ERR_FAIL_COND(!light_instance);
  3290. light_instance->transform = p_transform;
  3291. }
  3292. void RendererSceneRenderRD::light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) {
  3293. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  3294. ERR_FAIL_COND(!light_instance);
  3295. light_instance->aabb = p_aabb;
  3296. }
  3297. void RendererSceneRenderRD::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) {
  3298. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  3299. ERR_FAIL_COND(!light_instance);
  3300. if (storage->light_get_type(light_instance->light) != RS::LIGHT_DIRECTIONAL) {
  3301. p_pass = 0;
  3302. }
  3303. ERR_FAIL_INDEX(p_pass, 4);
  3304. light_instance->shadow_transform[p_pass].camera = p_projection;
  3305. light_instance->shadow_transform[p_pass].transform = p_transform;
  3306. light_instance->shadow_transform[p_pass].farplane = p_far;
  3307. light_instance->shadow_transform[p_pass].split = p_split;
  3308. light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
  3309. light_instance->shadow_transform[p_pass].range_begin = p_range_begin;
  3310. light_instance->shadow_transform[p_pass].shadow_texel_size = p_shadow_texel_size;
  3311. light_instance->shadow_transform[p_pass].uv_scale = p_uv_scale;
  3312. }
  3313. void RendererSceneRenderRD::light_instance_mark_visible(RID p_light_instance) {
  3314. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  3315. ERR_FAIL_COND(!light_instance);
  3316. light_instance->last_scene_pass = scene_pass;
  3317. }
  3318. RendererSceneRenderRD::ShadowCubemap *RendererSceneRenderRD::_get_shadow_cubemap(int p_size) {
  3319. if (!shadow_cubemaps.has(p_size)) {
  3320. ShadowCubemap sc;
  3321. {
  3322. RD::TextureFormat tf;
  3323. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  3324. tf.width = p_size;
  3325. tf.height = p_size;
  3326. tf.texture_type = RD::TEXTURE_TYPE_CUBE;
  3327. tf.array_layers = 6;
  3328. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  3329. sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3330. }
  3331. for (int i = 0; i < 6; i++) {
  3332. RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0);
  3333. Vector<RID> fbtex;
  3334. fbtex.push_back(side_texture);
  3335. sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex);
  3336. }
  3337. shadow_cubemaps[p_size] = sc;
  3338. }
  3339. return &shadow_cubemaps[p_size];
  3340. }
  3341. RendererSceneRenderRD::ShadowMap *RendererSceneRenderRD::_get_shadow_map(const Size2i &p_size) {
  3342. if (!shadow_maps.has(p_size)) {
  3343. ShadowMap sm;
  3344. {
  3345. RD::TextureFormat tf;
  3346. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  3347. tf.width = p_size.width;
  3348. tf.height = p_size.height;
  3349. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  3350. sm.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3351. }
  3352. Vector<RID> fbtex;
  3353. fbtex.push_back(sm.depth);
  3354. sm.fb = RD::get_singleton()->framebuffer_create(fbtex);
  3355. shadow_maps[p_size] = sm;
  3356. }
  3357. return &shadow_maps[p_size];
  3358. }
  3359. //////////////////////////
  3360. RID RendererSceneRenderRD::decal_instance_create(RID p_decal) {
  3361. DecalInstance di;
  3362. di.decal = p_decal;
  3363. return decal_instance_owner.make_rid(di);
  3364. }
  3365. void RendererSceneRenderRD::decal_instance_set_transform(RID p_decal, const Transform &p_transform) {
  3366. DecalInstance *di = decal_instance_owner.getornull(p_decal);
  3367. ERR_FAIL_COND(!di);
  3368. di->transform = p_transform;
  3369. }
  3370. /////////////////////////////////
  3371. RID RendererSceneRenderRD::lightmap_instance_create(RID p_lightmap) {
  3372. LightmapInstance li;
  3373. li.lightmap = p_lightmap;
  3374. return lightmap_instance_owner.make_rid(li);
  3375. }
  3376. void RendererSceneRenderRD::lightmap_instance_set_transform(RID p_lightmap, const Transform &p_transform) {
  3377. LightmapInstance *li = lightmap_instance_owner.getornull(p_lightmap);
  3378. ERR_FAIL_COND(!li);
  3379. li->transform = p_transform;
  3380. }
  3381. /////////////////////////////////
  3382. RID RendererSceneRenderRD::gi_probe_instance_create(RID p_base) {
  3383. GIProbeInstance gi_probe;
  3384. gi_probe.probe = p_base;
  3385. RID rid = gi_probe_instance_owner.make_rid(gi_probe);
  3386. return rid;
  3387. }
  3388. void RendererSceneRenderRD::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) {
  3389. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
  3390. ERR_FAIL_COND(!gi_probe);
  3391. gi_probe->transform = p_xform;
  3392. }
  3393. bool RendererSceneRenderRD::gi_probe_needs_update(RID p_probe) const {
  3394. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
  3395. ERR_FAIL_COND_V(!gi_probe, false);
  3396. if (low_end) {
  3397. return false;
  3398. }
  3399. //return true;
  3400. return gi_probe->last_probe_version != storage->gi_probe_get_version(gi_probe->probe);
  3401. }
  3402. void RendererSceneRenderRD::gi_probe_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<GeometryInstance *> &p_dynamic_objects) {
  3403. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_probe);
  3404. ERR_FAIL_COND(!gi_probe);
  3405. if (low_end) {
  3406. return;
  3407. }
  3408. uint32_t data_version = storage->gi_probe_get_data_version(gi_probe->probe);
  3409. // (RE)CREATE IF NEEDED
  3410. if (gi_probe->last_probe_data_version != data_version) {
  3411. //need to re-create everything
  3412. if (gi_probe->texture.is_valid()) {
  3413. RD::get_singleton()->free(gi_probe->texture);
  3414. RD::get_singleton()->free(gi_probe->write_buffer);
  3415. gi_probe->mipmaps.clear();
  3416. }
  3417. for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) {
  3418. RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture);
  3419. RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth);
  3420. }
  3421. gi_probe->dynamic_maps.clear();
  3422. Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  3423. if (octree_size != Vector3i()) {
  3424. //can create a 3D texture
  3425. Vector<int> levels = storage->gi_probe_get_level_counts(gi_probe->probe);
  3426. RD::TextureFormat tf;
  3427. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  3428. tf.width = octree_size.x;
  3429. tf.height = octree_size.y;
  3430. tf.depth = octree_size.z;
  3431. tf.texture_type = RD::TEXTURE_TYPE_3D;
  3432. tf.mipmaps = levels.size();
  3433. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  3434. gi_probe->texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  3435. RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, levels.size(), 0, 1, false);
  3436. {
  3437. int total_elements = 0;
  3438. for (int i = 0; i < levels.size(); i++) {
  3439. total_elements += levels[i];
  3440. }
  3441. gi_probe->write_buffer = RD::get_singleton()->storage_buffer_create(total_elements * 16);
  3442. }
  3443. for (int i = 0; i < levels.size(); i++) {
  3444. GIProbeInstance::Mipmap mipmap;
  3445. mipmap.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), gi_probe->texture, 0, i, RD::TEXTURE_SLICE_3D);
  3446. mipmap.level = levels.size() - i - 1;
  3447. mipmap.cell_offset = 0;
  3448. for (uint32_t j = 0; j < mipmap.level; j++) {
  3449. mipmap.cell_offset += levels[j];
  3450. }
  3451. mipmap.cell_count = levels[mipmap.level];
  3452. Vector<RD::Uniform> uniforms;
  3453. {
  3454. RD::Uniform u;
  3455. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  3456. u.binding = 1;
  3457. u.ids.push_back(storage->gi_probe_get_octree_buffer(gi_probe->probe));
  3458. uniforms.push_back(u);
  3459. }
  3460. {
  3461. RD::Uniform u;
  3462. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  3463. u.binding = 2;
  3464. u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe));
  3465. uniforms.push_back(u);
  3466. }
  3467. {
  3468. RD::Uniform u;
  3469. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  3470. u.binding = 4;
  3471. u.ids.push_back(gi_probe->write_buffer);
  3472. uniforms.push_back(u);
  3473. }
  3474. {
  3475. RD::Uniform u;
  3476. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3477. u.binding = 9;
  3478. u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe));
  3479. uniforms.push_back(u);
  3480. }
  3481. {
  3482. RD::Uniform u;
  3483. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  3484. u.binding = 10;
  3485. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  3486. uniforms.push_back(u);
  3487. }
  3488. {
  3489. Vector<RD::Uniform> copy_uniforms = uniforms;
  3490. if (i == 0) {
  3491. {
  3492. RD::Uniform u;
  3493. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  3494. u.binding = 3;
  3495. u.ids.push_back(gi_probe_lights_uniform);
  3496. copy_uniforms.push_back(u);
  3497. }
  3498. mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT], 0);
  3499. copy_uniforms = uniforms; //restore
  3500. {
  3501. RD::Uniform u;
  3502. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3503. u.binding = 5;
  3504. u.ids.push_back(gi_probe->texture);
  3505. copy_uniforms.push_back(u);
  3506. }
  3507. mipmap.second_bounce_uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE], 0);
  3508. } else {
  3509. mipmap.uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP], 0);
  3510. }
  3511. }
  3512. {
  3513. RD::Uniform u;
  3514. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3515. u.binding = 5;
  3516. u.ids.push_back(mipmap.texture);
  3517. uniforms.push_back(u);
  3518. }
  3519. mipmap.write_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE], 0);
  3520. gi_probe->mipmaps.push_back(mipmap);
  3521. }
  3522. {
  3523. uint32_t dynamic_map_size = MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
  3524. uint32_t oversample = nearest_power_of_2_templated(4);
  3525. int mipmap_index = 0;
  3526. while (mipmap_index < gi_probe->mipmaps.size()) {
  3527. GIProbeInstance::DynamicMap dmap;
  3528. if (oversample > 0) {
  3529. dmap.size = dynamic_map_size * (1 << oversample);
  3530. dmap.mipmap = -1;
  3531. oversample--;
  3532. } else {
  3533. dmap.size = dynamic_map_size >> mipmap_index;
  3534. dmap.mipmap = mipmap_index;
  3535. mipmap_index++;
  3536. }
  3537. RD::TextureFormat dtf;
  3538. dtf.width = dmap.size;
  3539. dtf.height = dmap.size;
  3540. dtf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  3541. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  3542. if (gi_probe->dynamic_maps.size() == 0) {
  3543. dtf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  3544. }
  3545. dmap.texture = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  3546. if (gi_probe->dynamic_maps.size() == 0) {
  3547. //render depth for first one
  3548. dtf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  3549. dtf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  3550. dmap.fb_depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  3551. }
  3552. //just use depth as-is
  3553. dtf.format = RD::DATA_FORMAT_R32_SFLOAT;
  3554. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  3555. dmap.depth = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  3556. if (gi_probe->dynamic_maps.size() == 0) {
  3557. dtf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  3558. dtf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  3559. dmap.albedo = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  3560. dmap.normal = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  3561. dmap.orm = RD::get_singleton()->texture_create(dtf, RD::TextureView());
  3562. Vector<RID> fb;
  3563. fb.push_back(dmap.albedo);
  3564. fb.push_back(dmap.normal);
  3565. fb.push_back(dmap.orm);
  3566. fb.push_back(dmap.texture); //emission
  3567. fb.push_back(dmap.depth);
  3568. fb.push_back(dmap.fb_depth);
  3569. dmap.fb = RD::get_singleton()->framebuffer_create(fb);
  3570. {
  3571. Vector<RD::Uniform> uniforms;
  3572. {
  3573. RD::Uniform u;
  3574. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  3575. u.binding = 3;
  3576. u.ids.push_back(gi_probe_lights_uniform);
  3577. uniforms.push_back(u);
  3578. }
  3579. {
  3580. RD::Uniform u;
  3581. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3582. u.binding = 5;
  3583. u.ids.push_back(dmap.albedo);
  3584. uniforms.push_back(u);
  3585. }
  3586. {
  3587. RD::Uniform u;
  3588. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3589. u.binding = 6;
  3590. u.ids.push_back(dmap.normal);
  3591. uniforms.push_back(u);
  3592. }
  3593. {
  3594. RD::Uniform u;
  3595. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3596. u.binding = 7;
  3597. u.ids.push_back(dmap.orm);
  3598. uniforms.push_back(u);
  3599. }
  3600. {
  3601. RD::Uniform u;
  3602. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3603. u.binding = 8;
  3604. u.ids.push_back(dmap.fb_depth);
  3605. uniforms.push_back(u);
  3606. }
  3607. {
  3608. RD::Uniform u;
  3609. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3610. u.binding = 9;
  3611. u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe));
  3612. uniforms.push_back(u);
  3613. }
  3614. {
  3615. RD::Uniform u;
  3616. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  3617. u.binding = 10;
  3618. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  3619. uniforms.push_back(u);
  3620. }
  3621. {
  3622. RD::Uniform u;
  3623. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3624. u.binding = 11;
  3625. u.ids.push_back(dmap.texture);
  3626. uniforms.push_back(u);
  3627. }
  3628. {
  3629. RD::Uniform u;
  3630. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3631. u.binding = 12;
  3632. u.ids.push_back(dmap.depth);
  3633. uniforms.push_back(u);
  3634. }
  3635. dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING], 0);
  3636. }
  3637. } else {
  3638. bool plot = dmap.mipmap >= 0;
  3639. bool write = dmap.mipmap < (gi_probe->mipmaps.size() - 1);
  3640. Vector<RD::Uniform> uniforms;
  3641. {
  3642. RD::Uniform u;
  3643. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3644. u.binding = 5;
  3645. u.ids.push_back(gi_probe->dynamic_maps[gi_probe->dynamic_maps.size() - 1].texture);
  3646. uniforms.push_back(u);
  3647. }
  3648. {
  3649. RD::Uniform u;
  3650. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3651. u.binding = 6;
  3652. u.ids.push_back(gi_probe->dynamic_maps[gi_probe->dynamic_maps.size() - 1].depth);
  3653. uniforms.push_back(u);
  3654. }
  3655. if (write) {
  3656. {
  3657. RD::Uniform u;
  3658. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3659. u.binding = 7;
  3660. u.ids.push_back(dmap.texture);
  3661. uniforms.push_back(u);
  3662. }
  3663. {
  3664. RD::Uniform u;
  3665. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3666. u.binding = 8;
  3667. u.ids.push_back(dmap.depth);
  3668. uniforms.push_back(u);
  3669. }
  3670. }
  3671. {
  3672. RD::Uniform u;
  3673. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  3674. u.binding = 9;
  3675. u.ids.push_back(storage->gi_probe_get_sdf_texture(gi_probe->probe));
  3676. uniforms.push_back(u);
  3677. }
  3678. {
  3679. RD::Uniform u;
  3680. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  3681. u.binding = 10;
  3682. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  3683. uniforms.push_back(u);
  3684. }
  3685. if (plot) {
  3686. {
  3687. RD::Uniform u;
  3688. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  3689. u.binding = 11;
  3690. u.ids.push_back(gi_probe->mipmaps[dmap.mipmap].texture);
  3691. uniforms.push_back(u);
  3692. }
  3693. }
  3694. dmap.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_lighting_shader_version_shaders[(write && plot) ? GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT : write ? GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE : GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT], 0);
  3695. }
  3696. gi_probe->dynamic_maps.push_back(dmap);
  3697. }
  3698. }
  3699. }
  3700. gi_probe->last_probe_data_version = data_version;
  3701. p_update_light_instances = true; //just in case
  3702. _base_uniforms_changed();
  3703. }
  3704. // UDPDATE TIME
  3705. if (gi_probe->has_dynamic_object_data) {
  3706. //if it has dynamic object data, it needs to be cleared
  3707. RD::get_singleton()->texture_clear(gi_probe->texture, Color(0, 0, 0, 0), 0, gi_probe->mipmaps.size(), 0, 1, true);
  3708. }
  3709. uint32_t light_count = 0;
  3710. if (p_update_light_instances || p_dynamic_objects.size() > 0) {
  3711. light_count = MIN(gi_probe_max_lights, (uint32_t)p_light_instances.size());
  3712. {
  3713. Transform to_cell = storage->gi_probe_get_to_cell_xform(gi_probe->probe);
  3714. Transform to_probe_xform = (gi_probe->transform * to_cell.affine_inverse()).affine_inverse();
  3715. //update lights
  3716. for (uint32_t i = 0; i < light_count; i++) {
  3717. GIProbeLight &l = gi_probe_lights[i];
  3718. RID light_instance = p_light_instances[i];
  3719. RID light = light_instance_get_base_light(light_instance);
  3720. l.type = storage->light_get_type(light);
  3721. if (l.type == RS::LIGHT_DIRECTIONAL && storage->light_directional_is_sky_only(light)) {
  3722. light_count--;
  3723. continue;
  3724. }
  3725. l.attenuation = storage->light_get_param(light, RS::LIGHT_PARAM_ATTENUATION);
  3726. l.energy = storage->light_get_param(light, RS::LIGHT_PARAM_ENERGY) * storage->light_get_param(light, RS::LIGHT_PARAM_INDIRECT_ENERGY);
  3727. l.radius = to_cell.basis.xform(Vector3(storage->light_get_param(light, RS::LIGHT_PARAM_RANGE), 0, 0)).length();
  3728. Color color = storage->light_get_color(light).to_linear();
  3729. l.color[0] = color.r;
  3730. l.color[1] = color.g;
  3731. l.color[2] = color.b;
  3732. l.spot_angle_radians = Math::deg2rad(storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ANGLE));
  3733. l.spot_attenuation = storage->light_get_param(light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  3734. Transform xform = light_instance_get_base_transform(light_instance);
  3735. Vector3 pos = to_probe_xform.xform(xform.origin);
  3736. Vector3 dir = to_probe_xform.basis.xform(-xform.basis.get_axis(2)).normalized();
  3737. l.position[0] = pos.x;
  3738. l.position[1] = pos.y;
  3739. l.position[2] = pos.z;
  3740. l.direction[0] = dir.x;
  3741. l.direction[1] = dir.y;
  3742. l.direction[2] = dir.z;
  3743. l.has_shadow = storage->light_has_shadow(light);
  3744. }
  3745. RD::get_singleton()->buffer_update(gi_probe_lights_uniform, 0, sizeof(GIProbeLight) * light_count, gi_probe_lights, true);
  3746. }
  3747. }
  3748. if (gi_probe->has_dynamic_object_data || p_update_light_instances || p_dynamic_objects.size()) {
  3749. // PROCESS MIPMAPS
  3750. if (gi_probe->mipmaps.size()) {
  3751. //can update mipmaps
  3752. Vector3i probe_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  3753. GIProbePushConstant push_constant;
  3754. push_constant.limits[0] = probe_size.x;
  3755. push_constant.limits[1] = probe_size.y;
  3756. push_constant.limits[2] = probe_size.z;
  3757. push_constant.stack_size = gi_probe->mipmaps.size();
  3758. push_constant.emission_scale = 1.0;
  3759. push_constant.propagation = storage->gi_probe_get_propagation(gi_probe->probe);
  3760. push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe);
  3761. push_constant.light_count = light_count;
  3762. push_constant.aniso_strength = 0;
  3763. /* print_line("probe update to version " + itos(gi_probe->last_probe_version));
  3764. print_line("propagation " + rtos(push_constant.propagation));
  3765. print_line("dynrange " + rtos(push_constant.dynamic_range));
  3766. */
  3767. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  3768. int passes;
  3769. if (p_update_light_instances) {
  3770. passes = storage->gi_probe_is_using_two_bounces(gi_probe->probe) ? 2 : 1;
  3771. } else {
  3772. passes = 1; //only re-blitting is necessary
  3773. }
  3774. int wg_size = 64;
  3775. int wg_limit_x = RD::get_singleton()->limit_get(RD::LIMIT_MAX_COMPUTE_WORKGROUP_COUNT_X);
  3776. for (int pass = 0; pass < passes; pass++) {
  3777. if (p_update_light_instances) {
  3778. for (int i = 0; i < gi_probe->mipmaps.size(); i++) {
  3779. if (i == 0) {
  3780. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[pass == 0 ? GI_PROBE_SHADER_VERSION_COMPUTE_LIGHT : GI_PROBE_SHADER_VERSION_COMPUTE_SECOND_BOUNCE]);
  3781. } else if (i == 1) {
  3782. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_COMPUTE_MIPMAP]);
  3783. }
  3784. if (pass == 1 || i > 0) {
  3785. RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
  3786. }
  3787. if (pass == 0 || i > 0) {
  3788. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].uniform_set, 0);
  3789. } else {
  3790. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].second_bounce_uniform_set, 0);
  3791. }
  3792. push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset;
  3793. push_constant.cell_count = gi_probe->mipmaps[i].cell_count;
  3794. int wg_todo = (gi_probe->mipmaps[i].cell_count - 1) / wg_size + 1;
  3795. while (wg_todo) {
  3796. int wg_count = MIN(wg_todo, wg_limit_x);
  3797. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant));
  3798. RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
  3799. wg_todo -= wg_count;
  3800. push_constant.cell_offset += wg_count * wg_size;
  3801. }
  3802. }
  3803. RD::get_singleton()->compute_list_add_barrier(compute_list); //wait til previous step is done
  3804. }
  3805. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_WRITE_TEXTURE]);
  3806. for (int i = 0; i < gi_probe->mipmaps.size(); i++) {
  3807. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->mipmaps[i].write_uniform_set, 0);
  3808. push_constant.cell_offset = gi_probe->mipmaps[i].cell_offset;
  3809. push_constant.cell_count = gi_probe->mipmaps[i].cell_count;
  3810. int wg_todo = (gi_probe->mipmaps[i].cell_count - 1) / wg_size + 1;
  3811. while (wg_todo) {
  3812. int wg_count = MIN(wg_todo, wg_limit_x);
  3813. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbePushConstant));
  3814. RD::get_singleton()->compute_list_dispatch(compute_list, wg_count, 1, 1);
  3815. wg_todo -= wg_count;
  3816. push_constant.cell_offset += wg_count * wg_size;
  3817. }
  3818. }
  3819. }
  3820. RD::get_singleton()->compute_list_end();
  3821. }
  3822. }
  3823. gi_probe->has_dynamic_object_data = false; //clear until dynamic object data is used again
  3824. if (p_dynamic_objects.size() && gi_probe->dynamic_maps.size()) {
  3825. Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  3826. int multiplier = gi_probe->dynamic_maps[0].size / MAX(MAX(octree_size.x, octree_size.y), octree_size.z);
  3827. Transform oversample_scale;
  3828. oversample_scale.basis.scale(Vector3(multiplier, multiplier, multiplier));
  3829. Transform to_cell = oversample_scale * storage->gi_probe_get_to_cell_xform(gi_probe->probe);
  3830. Transform to_world_xform = gi_probe->transform * to_cell.affine_inverse();
  3831. Transform to_probe_xform = to_world_xform.affine_inverse();
  3832. AABB probe_aabb(Vector3(), octree_size);
  3833. //this could probably be better parallelized in compute..
  3834. for (int i = 0; i < (int)p_dynamic_objects.size(); i++) {
  3835. GeometryInstance *instance = p_dynamic_objects[i];
  3836. //transform aabb to giprobe
  3837. AABB aabb = (to_probe_xform * geometry_instance_get_transform(instance)).xform(geometry_instance_get_aabb(instance));
  3838. //this needs to wrap to grid resolution to avoid jitter
  3839. //also extend margin a bit just in case
  3840. Vector3i begin = aabb.position - Vector3i(1, 1, 1);
  3841. Vector3i end = aabb.position + aabb.size + Vector3i(1, 1, 1);
  3842. for (int j = 0; j < 3; j++) {
  3843. if ((end[j] - begin[j]) & 1) {
  3844. end[j]++; //for half extents split, it needs to be even
  3845. }
  3846. begin[j] = MAX(begin[j], 0);
  3847. end[j] = MIN(end[j], octree_size[j] * multiplier);
  3848. }
  3849. //aabb = aabb.intersection(probe_aabb); //intersect
  3850. aabb.position = begin;
  3851. aabb.size = end - begin;
  3852. //print_line("aabb: " + aabb);
  3853. for (int j = 0; j < 6; j++) {
  3854. //if (j != 0 && j != 3) {
  3855. // continue;
  3856. //}
  3857. static const Vector3 render_z[6] = {
  3858. Vector3(1, 0, 0),
  3859. Vector3(0, 1, 0),
  3860. Vector3(0, 0, 1),
  3861. Vector3(-1, 0, 0),
  3862. Vector3(0, -1, 0),
  3863. Vector3(0, 0, -1),
  3864. };
  3865. static const Vector3 render_up[6] = {
  3866. Vector3(0, 1, 0),
  3867. Vector3(0, 0, 1),
  3868. Vector3(0, 1, 0),
  3869. Vector3(0, 1, 0),
  3870. Vector3(0, 0, 1),
  3871. Vector3(0, 1, 0),
  3872. };
  3873. Vector3 render_dir = render_z[j];
  3874. Vector3 up_dir = render_up[j];
  3875. Vector3 center = aabb.position + aabb.size * 0.5;
  3876. Transform xform;
  3877. xform.set_look_at(center - aabb.size * 0.5 * render_dir, center, up_dir);
  3878. Vector3 x_dir = xform.basis.get_axis(0).abs();
  3879. int x_axis = int(Vector3(0, 1, 2).dot(x_dir));
  3880. Vector3 y_dir = xform.basis.get_axis(1).abs();
  3881. int y_axis = int(Vector3(0, 1, 2).dot(y_dir));
  3882. Vector3 z_dir = -xform.basis.get_axis(2);
  3883. int z_axis = int(Vector3(0, 1, 2).dot(z_dir.abs()));
  3884. Rect2i rect(aabb.position[x_axis], aabb.position[y_axis], aabb.size[x_axis], aabb.size[y_axis]);
  3885. bool x_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(0)) < 0);
  3886. bool y_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(1)) < 0);
  3887. bool z_flip = bool(Vector3(1, 1, 1).dot(xform.basis.get_axis(2)) > 0);
  3888. CameraMatrix cm;
  3889. cm.set_orthogonal(-rect.size.width / 2, rect.size.width / 2, -rect.size.height / 2, rect.size.height / 2, 0.0001, aabb.size[z_axis]);
  3890. if (cull_argument.size() == 0) {
  3891. cull_argument.push_back(nullptr);
  3892. }
  3893. cull_argument[0] = instance;
  3894. _render_material(to_world_xform * xform, cm, true, cull_argument, gi_probe->dynamic_maps[0].fb, Rect2i(Vector2i(), rect.size));
  3895. GIProbeDynamicPushConstant push_constant;
  3896. zeromem(&push_constant, sizeof(GIProbeDynamicPushConstant));
  3897. push_constant.limits[0] = octree_size.x;
  3898. push_constant.limits[1] = octree_size.y;
  3899. push_constant.limits[2] = octree_size.z;
  3900. push_constant.light_count = p_light_instances.size();
  3901. push_constant.x_dir[0] = x_dir[0];
  3902. push_constant.x_dir[1] = x_dir[1];
  3903. push_constant.x_dir[2] = x_dir[2];
  3904. push_constant.y_dir[0] = y_dir[0];
  3905. push_constant.y_dir[1] = y_dir[1];
  3906. push_constant.y_dir[2] = y_dir[2];
  3907. push_constant.z_dir[0] = z_dir[0];
  3908. push_constant.z_dir[1] = z_dir[1];
  3909. push_constant.z_dir[2] = z_dir[2];
  3910. push_constant.z_base = xform.origin[z_axis];
  3911. push_constant.z_sign = (z_flip ? -1.0 : 1.0);
  3912. push_constant.pos_multiplier = float(1.0) / multiplier;
  3913. push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe);
  3914. push_constant.flip_x = x_flip;
  3915. push_constant.flip_y = y_flip;
  3916. push_constant.rect_pos[0] = rect.position[0];
  3917. push_constant.rect_pos[1] = rect.position[1];
  3918. push_constant.rect_size[0] = rect.size[0];
  3919. push_constant.rect_size[1] = rect.size[1];
  3920. push_constant.prev_rect_ofs[0] = 0;
  3921. push_constant.prev_rect_ofs[1] = 0;
  3922. push_constant.prev_rect_size[0] = 0;
  3923. push_constant.prev_rect_size[1] = 0;
  3924. push_constant.on_mipmap = false;
  3925. push_constant.propagation = storage->gi_probe_get_propagation(gi_probe->probe);
  3926. push_constant.pad[0] = 0;
  3927. push_constant.pad[1] = 0;
  3928. push_constant.pad[2] = 0;
  3929. //process lighting
  3930. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  3931. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_OBJECT_LIGHTING]);
  3932. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->dynamic_maps[0].uniform_set, 0);
  3933. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbeDynamicPushConstant));
  3934. RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1);
  3935. //print_line("rect: " + itos(i) + ": " + rect);
  3936. for (int k = 1; k < gi_probe->dynamic_maps.size(); k++) {
  3937. // enlarge the rect if needed so all pixels fit when downscaled,
  3938. // this ensures downsampling is smooth and optimal because no pixels are left behind
  3939. //x
  3940. if (rect.position.x & 1) {
  3941. rect.size.x++;
  3942. push_constant.prev_rect_ofs[0] = 1; //this is used to ensure reading is also optimal
  3943. } else {
  3944. push_constant.prev_rect_ofs[0] = 0;
  3945. }
  3946. if (rect.size.x & 1) {
  3947. rect.size.x++;
  3948. }
  3949. rect.position.x >>= 1;
  3950. rect.size.x = MAX(1, rect.size.x >> 1);
  3951. //y
  3952. if (rect.position.y & 1) {
  3953. rect.size.y++;
  3954. push_constant.prev_rect_ofs[1] = 1;
  3955. } else {
  3956. push_constant.prev_rect_ofs[1] = 0;
  3957. }
  3958. if (rect.size.y & 1) {
  3959. rect.size.y++;
  3960. }
  3961. rect.position.y >>= 1;
  3962. rect.size.y = MAX(1, rect.size.y >> 1);
  3963. //shrink limits to ensure plot does not go outside map
  3964. if (gi_probe->dynamic_maps[k].mipmap > 0) {
  3965. for (int l = 0; l < 3; l++) {
  3966. push_constant.limits[l] = MAX(1, push_constant.limits[l] >> 1);
  3967. }
  3968. }
  3969. //print_line("rect: " + itos(i) + ": " + rect);
  3970. push_constant.rect_pos[0] = rect.position[0];
  3971. push_constant.rect_pos[1] = rect.position[1];
  3972. push_constant.prev_rect_size[0] = push_constant.rect_size[0];
  3973. push_constant.prev_rect_size[1] = push_constant.rect_size[1];
  3974. push_constant.rect_size[0] = rect.size[0];
  3975. push_constant.rect_size[1] = rect.size[1];
  3976. push_constant.on_mipmap = gi_probe->dynamic_maps[k].mipmap > 0;
  3977. RD::get_singleton()->compute_list_add_barrier(compute_list);
  3978. if (gi_probe->dynamic_maps[k].mipmap < 0) {
  3979. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE]);
  3980. } else if (k < gi_probe->dynamic_maps.size() - 1) {
  3981. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_WRITE_PLOT]);
  3982. } else {
  3983. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, giprobe_lighting_shader_version_pipelines[GI_PROBE_SHADER_VERSION_DYNAMIC_SHRINK_PLOT]);
  3984. }
  3985. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, gi_probe->dynamic_maps[k].uniform_set, 0);
  3986. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(GIProbeDynamicPushConstant));
  3987. RD::get_singleton()->compute_list_dispatch(compute_list, (rect.size.x - 1) / 8 + 1, (rect.size.y - 1) / 8 + 1, 1);
  3988. }
  3989. RD::get_singleton()->compute_list_end();
  3990. }
  3991. }
  3992. gi_probe->has_dynamic_object_data = true; //clear until dynamic object data is used again
  3993. }
  3994. gi_probe->last_probe_version = storage->gi_probe_get_version(gi_probe->probe);
  3995. }
  3996. void RendererSceneRenderRD::_debug_giprobe(RID p_gi_probe, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform, bool p_lighting, bool p_emission, float p_alpha) {
  3997. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_gi_probe);
  3998. ERR_FAIL_COND(!gi_probe);
  3999. if (gi_probe->mipmaps.size() == 0) {
  4000. return;
  4001. }
  4002. CameraMatrix transform = (p_camera_with_transform * CameraMatrix(gi_probe->transform)) * CameraMatrix(storage->gi_probe_get_to_cell_xform(gi_probe->probe).affine_inverse());
  4003. int level = 0;
  4004. Vector3i octree_size = storage->gi_probe_get_octree_size(gi_probe->probe);
  4005. GIProbeDebugPushConstant push_constant;
  4006. push_constant.alpha = p_alpha;
  4007. push_constant.dynamic_range = storage->gi_probe_get_dynamic_range(gi_probe->probe);
  4008. push_constant.cell_offset = gi_probe->mipmaps[level].cell_offset;
  4009. push_constant.level = level;
  4010. push_constant.bounds[0] = octree_size.x >> level;
  4011. push_constant.bounds[1] = octree_size.y >> level;
  4012. push_constant.bounds[2] = octree_size.z >> level;
  4013. push_constant.pad = 0;
  4014. for (int i = 0; i < 4; i++) {
  4015. for (int j = 0; j < 4; j++) {
  4016. push_constant.projection[i * 4 + j] = transform.matrix[i][j];
  4017. }
  4018. }
  4019. if (giprobe_debug_uniform_set.is_valid()) {
  4020. RD::get_singleton()->free(giprobe_debug_uniform_set);
  4021. }
  4022. Vector<RD::Uniform> uniforms;
  4023. {
  4024. RD::Uniform u;
  4025. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  4026. u.binding = 1;
  4027. u.ids.push_back(storage->gi_probe_get_data_buffer(gi_probe->probe));
  4028. uniforms.push_back(u);
  4029. }
  4030. {
  4031. RD::Uniform u;
  4032. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  4033. u.binding = 2;
  4034. u.ids.push_back(gi_probe->texture);
  4035. uniforms.push_back(u);
  4036. }
  4037. {
  4038. RD::Uniform u;
  4039. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  4040. u.binding = 3;
  4041. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  4042. uniforms.push_back(u);
  4043. }
  4044. int cell_count;
  4045. if (!p_emission && p_lighting && gi_probe->has_dynamic_object_data) {
  4046. cell_count = push_constant.bounds[0] * push_constant.bounds[1] * push_constant.bounds[2];
  4047. } else {
  4048. cell_count = gi_probe->mipmaps[level].cell_count;
  4049. }
  4050. giprobe_debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, giprobe_debug_shader_version_shaders[0], 0);
  4051. RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, giprobe_debug_shader_version_pipelines[p_emission ? GI_PROBE_DEBUG_EMISSION : p_lighting ? (gi_probe->has_dynamic_object_data ? GI_PROBE_DEBUG_LIGHT_FULL : GI_PROBE_DEBUG_LIGHT) : GI_PROBE_DEBUG_COLOR].get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  4052. RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, giprobe_debug_uniform_set, 0);
  4053. RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(GIProbeDebugPushConstant));
  4054. RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, 36);
  4055. }
  4056. void RendererSceneRenderRD::_debug_sdfgi_probes(RID p_render_buffers, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform) {
  4057. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4058. ERR_FAIL_COND(!rb);
  4059. if (!rb->sdfgi) {
  4060. return; //nothing to debug
  4061. }
  4062. SDGIShader::DebugProbesPushConstant push_constant;
  4063. for (int i = 0; i < 4; i++) {
  4064. for (int j = 0; j < 4; j++) {
  4065. push_constant.projection[i * 4 + j] = p_camera_with_transform.matrix[i][j];
  4066. }
  4067. }
  4068. //gen spheres from strips
  4069. uint32_t band_points = 16;
  4070. push_constant.band_power = 4;
  4071. push_constant.sections_in_band = ((band_points / 2) - 1);
  4072. push_constant.band_mask = band_points - 2;
  4073. push_constant.section_arc = (Math_PI * 2.0) / float(push_constant.sections_in_band);
  4074. push_constant.y_mult = rb->sdfgi->y_mult;
  4075. uint32_t total_points = push_constant.sections_in_band * band_points;
  4076. uint32_t total_probes = rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count;
  4077. push_constant.grid_size[0] = rb->sdfgi->cascade_size;
  4078. push_constant.grid_size[1] = rb->sdfgi->cascade_size;
  4079. push_constant.grid_size[2] = rb->sdfgi->cascade_size;
  4080. push_constant.cascade = 0;
  4081. push_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  4082. if (!rb->sdfgi->debug_probes_uniform_set.is_valid() || !RD::get_singleton()->uniform_set_is_valid(rb->sdfgi->debug_probes_uniform_set)) {
  4083. Vector<RD::Uniform> uniforms;
  4084. {
  4085. RD::Uniform u;
  4086. u.binding = 1;
  4087. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  4088. u.ids.push_back(rb->sdfgi->cascades_ubo);
  4089. uniforms.push_back(u);
  4090. }
  4091. {
  4092. RD::Uniform u;
  4093. u.binding = 2;
  4094. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  4095. u.ids.push_back(rb->sdfgi->lightprobe_texture);
  4096. uniforms.push_back(u);
  4097. }
  4098. {
  4099. RD::Uniform u;
  4100. u.binding = 3;
  4101. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  4102. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  4103. uniforms.push_back(u);
  4104. }
  4105. {
  4106. RD::Uniform u;
  4107. u.binding = 4;
  4108. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  4109. u.ids.push_back(rb->sdfgi->occlusion_texture);
  4110. uniforms.push_back(u);
  4111. }
  4112. rb->sdfgi->debug_probes_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.debug_probes.version_get_shader(sdfgi_shader.debug_probes_shader, 0), 0);
  4113. }
  4114. RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, sdfgi_shader.debug_probes_pipeline[SDGIShader::PROBE_DEBUG_PROBES].get_render_pipeline(RD::INVALID_FORMAT_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  4115. RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, rb->sdfgi->debug_probes_uniform_set, 0);
  4116. RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(SDGIShader::DebugProbesPushConstant));
  4117. RD::get_singleton()->draw_list_draw(p_draw_list, false, total_probes, total_points);
  4118. if (sdfgi_debug_probe_dir != Vector3()) {
  4119. print_line("CLICK DEBUG ME?");
  4120. uint32_t cascade = 0;
  4121. Vector3 offset = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[cascade].position)) * rb->sdfgi->cascades[cascade].cell_size * Vector3(1.0, 1.0 / rb->sdfgi->y_mult, 1.0);
  4122. Vector3 probe_size = rb->sdfgi->cascades[cascade].cell_size * (rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR) * Vector3(1.0, 1.0 / rb->sdfgi->y_mult, 1.0);
  4123. Vector3 ray_from = sdfgi_debug_probe_pos;
  4124. Vector3 ray_to = sdfgi_debug_probe_pos + sdfgi_debug_probe_dir * rb->sdfgi->cascades[cascade].cell_size * Math::sqrt(3.0) * rb->sdfgi->cascade_size;
  4125. float sphere_radius = 0.2;
  4126. float closest_dist = 1e20;
  4127. sdfgi_debug_probe_enabled = false;
  4128. Vector3i probe_from = rb->sdfgi->cascades[cascade].position / (rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR);
  4129. for (int i = 0; i < (SDFGI::PROBE_DIVISOR + 1); i++) {
  4130. for (int j = 0; j < (SDFGI::PROBE_DIVISOR + 1); j++) {
  4131. for (int k = 0; k < (SDFGI::PROBE_DIVISOR + 1); k++) {
  4132. Vector3 pos = offset + probe_size * Vector3(i, j, k);
  4133. Vector3 res;
  4134. if (Geometry3D::segment_intersects_sphere(ray_from, ray_to, pos, sphere_radius, &res)) {
  4135. float d = ray_from.distance_to(res);
  4136. if (d < closest_dist) {
  4137. closest_dist = d;
  4138. sdfgi_debug_probe_enabled = true;
  4139. sdfgi_debug_probe_index = probe_from + Vector3i(i, j, k);
  4140. }
  4141. }
  4142. }
  4143. }
  4144. }
  4145. if (sdfgi_debug_probe_enabled) {
  4146. print_line("found: " + sdfgi_debug_probe_index);
  4147. } else {
  4148. print_line("no found");
  4149. }
  4150. sdfgi_debug_probe_dir = Vector3();
  4151. }
  4152. if (sdfgi_debug_probe_enabled) {
  4153. uint32_t cascade = 0;
  4154. uint32_t probe_cells = (rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR);
  4155. Vector3i probe_from = rb->sdfgi->cascades[cascade].position / probe_cells;
  4156. Vector3i ofs = sdfgi_debug_probe_index - probe_from;
  4157. if (ofs.x < 0 || ofs.y < 0 || ofs.z < 0) {
  4158. return;
  4159. }
  4160. if (ofs.x > SDFGI::PROBE_DIVISOR || ofs.y > SDFGI::PROBE_DIVISOR || ofs.z > SDFGI::PROBE_DIVISOR) {
  4161. return;
  4162. }
  4163. uint32_t mult = (SDFGI::PROBE_DIVISOR + 1);
  4164. uint32_t index = ofs.z * mult * mult + ofs.y * mult + ofs.x;
  4165. push_constant.probe_debug_index = index;
  4166. uint32_t cell_count = probe_cells * 2 * probe_cells * 2 * probe_cells * 2;
  4167. RD::get_singleton()->draw_list_bind_render_pipeline(p_draw_list, sdfgi_shader.debug_probes_pipeline[SDGIShader::PROBE_DEBUG_VISIBILITY].get_render_pipeline(RD::INVALID_FORMAT_ID, RD::get_singleton()->framebuffer_get_format(p_framebuffer)));
  4168. RD::get_singleton()->draw_list_bind_uniform_set(p_draw_list, rb->sdfgi->debug_probes_uniform_set, 0);
  4169. RD::get_singleton()->draw_list_set_push_constant(p_draw_list, &push_constant, sizeof(SDGIShader::DebugProbesPushConstant));
  4170. RD::get_singleton()->draw_list_draw(p_draw_list, false, cell_count, total_points);
  4171. }
  4172. }
  4173. ////////////////////////////////
  4174. RID RendererSceneRenderRD::render_buffers_create() {
  4175. RenderBuffers rb;
  4176. rb.data = _create_render_buffer_data();
  4177. return render_buffers_owner.make_rid(rb);
  4178. }
  4179. void RendererSceneRenderRD::_allocate_blur_textures(RenderBuffers *rb) {
  4180. ERR_FAIL_COND(!rb->blur[0].texture.is_null());
  4181. uint32_t mipmaps_required = Image::get_image_required_mipmaps(rb->width, rb->height, Image::FORMAT_RGBAH);
  4182. RD::TextureFormat tf;
  4183. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  4184. tf.width = rb->width;
  4185. tf.height = rb->height;
  4186. tf.texture_type = RD::TEXTURE_TYPE_2D;
  4187. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
  4188. tf.mipmaps = mipmaps_required;
  4189. rb->blur[0].texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4190. //the second one is smaller (only used for separatable part of blur)
  4191. tf.width >>= 1;
  4192. tf.height >>= 1;
  4193. tf.mipmaps--;
  4194. rb->blur[1].texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4195. int base_width = rb->width;
  4196. int base_height = rb->height;
  4197. for (uint32_t i = 0; i < mipmaps_required; i++) {
  4198. RenderBuffers::Blur::Mipmap mm;
  4199. mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[0].texture, 0, i);
  4200. mm.width = base_width;
  4201. mm.height = base_height;
  4202. rb->blur[0].mipmaps.push_back(mm);
  4203. if (i > 0) {
  4204. mm.texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->blur[1].texture, 0, i - 1);
  4205. rb->blur[1].mipmaps.push_back(mm);
  4206. }
  4207. base_width = MAX(1, base_width >> 1);
  4208. base_height = MAX(1, base_height >> 1);
  4209. }
  4210. }
  4211. void RendererSceneRenderRD::_allocate_luminance_textures(RenderBuffers *rb) {
  4212. ERR_FAIL_COND(!rb->luminance.current.is_null());
  4213. int w = rb->width;
  4214. int h = rb->height;
  4215. while (true) {
  4216. w = MAX(w / 8, 1);
  4217. h = MAX(h / 8, 1);
  4218. RD::TextureFormat tf;
  4219. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  4220. tf.width = w;
  4221. tf.height = h;
  4222. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  4223. bool final = w == 1 && h == 1;
  4224. if (final) {
  4225. tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT;
  4226. }
  4227. RID texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4228. rb->luminance.reduce.push_back(texture);
  4229. if (final) {
  4230. rb->luminance.current = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4231. break;
  4232. }
  4233. }
  4234. }
  4235. void RendererSceneRenderRD::_free_render_buffer_data(RenderBuffers *rb) {
  4236. if (rb->texture.is_valid()) {
  4237. RD::get_singleton()->free(rb->texture);
  4238. rb->texture = RID();
  4239. }
  4240. if (rb->depth_texture.is_valid()) {
  4241. RD::get_singleton()->free(rb->depth_texture);
  4242. rb->depth_texture = RID();
  4243. }
  4244. for (int i = 0; i < 2; i++) {
  4245. if (rb->blur[i].texture.is_valid()) {
  4246. RD::get_singleton()->free(rb->blur[i].texture);
  4247. rb->blur[i].texture = RID();
  4248. rb->blur[i].mipmaps.clear();
  4249. }
  4250. }
  4251. for (int i = 0; i < rb->luminance.reduce.size(); i++) {
  4252. RD::get_singleton()->free(rb->luminance.reduce[i]);
  4253. }
  4254. for (int i = 0; i < rb->luminance.reduce.size(); i++) {
  4255. RD::get_singleton()->free(rb->luminance.reduce[i]);
  4256. }
  4257. rb->luminance.reduce.clear();
  4258. if (rb->luminance.current.is_valid()) {
  4259. RD::get_singleton()->free(rb->luminance.current);
  4260. rb->luminance.current = RID();
  4261. }
  4262. if (rb->ssao.depth.is_valid()) {
  4263. RD::get_singleton()->free(rb->ssao.depth);
  4264. RD::get_singleton()->free(rb->ssao.ao_deinterleaved);
  4265. RD::get_singleton()->free(rb->ssao.ao_pong);
  4266. RD::get_singleton()->free(rb->ssao.ao_final);
  4267. RD::get_singleton()->free(rb->ssao.importance_map[0]);
  4268. RD::get_singleton()->free(rb->ssao.importance_map[1]);
  4269. rb->ssao.depth = RID();
  4270. rb->ssao.ao_deinterleaved = RID();
  4271. rb->ssao.ao_pong = RID();
  4272. rb->ssao.ao_final = RID();
  4273. rb->ssao.importance_map[0] = RID();
  4274. rb->ssao.importance_map[1] = RID();
  4275. rb->ssao.depth_slices.clear();
  4276. rb->ssao.ao_deinterleaved_slices.clear();
  4277. rb->ssao.ao_pong_slices.clear();
  4278. }
  4279. if (rb->ssr.blur_radius[0].is_valid()) {
  4280. RD::get_singleton()->free(rb->ssr.blur_radius[0]);
  4281. RD::get_singleton()->free(rb->ssr.blur_radius[1]);
  4282. rb->ssr.blur_radius[0] = RID();
  4283. rb->ssr.blur_radius[1] = RID();
  4284. }
  4285. if (rb->ssr.depth_scaled.is_valid()) {
  4286. RD::get_singleton()->free(rb->ssr.depth_scaled);
  4287. rb->ssr.depth_scaled = RID();
  4288. RD::get_singleton()->free(rb->ssr.normal_scaled);
  4289. rb->ssr.normal_scaled = RID();
  4290. }
  4291. }
  4292. void RendererSceneRenderRD::_process_sss(RID p_render_buffers, const CameraMatrix &p_camera) {
  4293. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4294. ERR_FAIL_COND(!rb);
  4295. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  4296. if (!can_use_effects) {
  4297. //just copy
  4298. return;
  4299. }
  4300. if (rb->blur[0].texture.is_null()) {
  4301. _allocate_blur_textures(rb);
  4302. _render_buffers_uniform_set_changed(p_render_buffers);
  4303. }
  4304. storage->get_effects()->sub_surface_scattering(rb->texture, rb->blur[0].mipmaps[0].texture, rb->depth_texture, p_camera, Size2i(rb->width, rb->height), sss_scale, sss_depth_scale, sss_quality);
  4305. }
  4306. void RendererSceneRenderRD::_process_ssr(RID p_render_buffers, RID p_dest_framebuffer, RID p_normal_buffer, RID p_specular_buffer, RID p_metallic, const Color &p_metallic_mask, RID p_environment, const CameraMatrix &p_projection, bool p_use_additive) {
  4307. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4308. ERR_FAIL_COND(!rb);
  4309. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  4310. if (!can_use_effects) {
  4311. //just copy
  4312. storage->get_effects()->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : rb->texture, RID());
  4313. return;
  4314. }
  4315. Environment *env = environment_owner.getornull(p_environment);
  4316. ERR_FAIL_COND(!env);
  4317. ERR_FAIL_COND(!env->ssr_enabled);
  4318. if (rb->ssr.depth_scaled.is_null()) {
  4319. RD::TextureFormat tf;
  4320. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  4321. tf.width = rb->width / 2;
  4322. tf.height = rb->height / 2;
  4323. tf.texture_type = RD::TEXTURE_TYPE_2D;
  4324. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  4325. rb->ssr.depth_scaled = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4326. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  4327. rb->ssr.normal_scaled = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4328. }
  4329. if (ssr_roughness_quality != RS::ENV_SSR_ROUGNESS_QUALITY_DISABLED && !rb->ssr.blur_radius[0].is_valid()) {
  4330. RD::TextureFormat tf;
  4331. tf.format = RD::DATA_FORMAT_R8_UNORM;
  4332. tf.width = rb->width / 2;
  4333. tf.height = rb->height / 2;
  4334. tf.texture_type = RD::TEXTURE_TYPE_2D;
  4335. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  4336. rb->ssr.blur_radius[0] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4337. rb->ssr.blur_radius[1] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4338. }
  4339. if (rb->blur[0].texture.is_null()) {
  4340. _allocate_blur_textures(rb);
  4341. _render_buffers_uniform_set_changed(p_render_buffers);
  4342. }
  4343. storage->get_effects()->screen_space_reflection(rb->texture, p_normal_buffer, ssr_roughness_quality, rb->ssr.blur_radius[0], rb->ssr.blur_radius[1], p_metallic, p_metallic_mask, rb->depth_texture, rb->ssr.depth_scaled, rb->ssr.normal_scaled, rb->blur[0].mipmaps[1].texture, rb->blur[1].mipmaps[0].texture, Size2i(rb->width / 2, rb->height / 2), env->ssr_max_steps, env->ssr_fade_in, env->ssr_fade_out, env->ssr_depth_tolerance, p_projection);
  4344. storage->get_effects()->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : rb->texture, rb->blur[0].mipmaps[1].texture);
  4345. }
  4346. void RendererSceneRenderRD::_process_ssao(RID p_render_buffers, RID p_environment, RID p_normal_buffer, const CameraMatrix &p_projection) {
  4347. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4348. ERR_FAIL_COND(!rb);
  4349. Environment *env = environment_owner.getornull(p_environment);
  4350. ERR_FAIL_COND(!env);
  4351. RENDER_TIMESTAMP("Process SSAO");
  4352. if (rb->ssao.ao_final.is_valid() && ssao_using_half_size != ssao_half_size) {
  4353. RD::get_singleton()->free(rb->ssao.depth);
  4354. RD::get_singleton()->free(rb->ssao.ao_deinterleaved);
  4355. RD::get_singleton()->free(rb->ssao.ao_pong);
  4356. RD::get_singleton()->free(rb->ssao.ao_final);
  4357. RD::get_singleton()->free(rb->ssao.importance_map[0]);
  4358. RD::get_singleton()->free(rb->ssao.importance_map[1]);
  4359. rb->ssao.depth = RID();
  4360. rb->ssao.ao_deinterleaved = RID();
  4361. rb->ssao.ao_pong = RID();
  4362. rb->ssao.ao_final = RID();
  4363. rb->ssao.importance_map[0] = RID();
  4364. rb->ssao.importance_map[1] = RID();
  4365. rb->ssao.depth_slices.clear();
  4366. rb->ssao.ao_deinterleaved_slices.clear();
  4367. rb->ssao.ao_pong_slices.clear();
  4368. }
  4369. int buffer_width;
  4370. int buffer_height;
  4371. int half_width;
  4372. int half_height;
  4373. if (ssao_half_size) {
  4374. buffer_width = (rb->width + 3) / 4;
  4375. buffer_height = (rb->height + 3) / 4;
  4376. half_width = (rb->width + 7) / 8;
  4377. half_height = (rb->height + 7) / 8;
  4378. } else {
  4379. buffer_width = (rb->width + 1) / 2;
  4380. buffer_height = (rb->height + 1) / 2;
  4381. half_width = (rb->width + 3) / 4;
  4382. half_height = (rb->height + 3) / 4;
  4383. }
  4384. bool uniform_sets_are_invalid = false;
  4385. if (rb->ssao.depth.is_null()) {
  4386. //allocate depth slices
  4387. {
  4388. RD::TextureFormat tf;
  4389. tf.format = RD::DATA_FORMAT_R16_SFLOAT;
  4390. tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  4391. tf.width = buffer_width;
  4392. tf.height = buffer_height;
  4393. tf.mipmaps = 4;
  4394. tf.array_layers = 4;
  4395. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4396. rb->ssao.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4397. for (uint32_t i = 0; i < tf.mipmaps; i++) {
  4398. RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.depth, 0, i, RD::TEXTURE_SLICE_2D_ARRAY);
  4399. rb->ssao.depth_slices.push_back(slice);
  4400. }
  4401. }
  4402. {
  4403. RD::TextureFormat tf;
  4404. tf.format = RD::DATA_FORMAT_R8G8_UNORM;
  4405. tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  4406. tf.width = buffer_width;
  4407. tf.height = buffer_height;
  4408. tf.array_layers = 4;
  4409. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4410. rb->ssao.ao_deinterleaved = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4411. for (uint32_t i = 0; i < 4; i++) {
  4412. RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.ao_deinterleaved, i, 0);
  4413. rb->ssao.ao_deinterleaved_slices.push_back(slice);
  4414. }
  4415. }
  4416. {
  4417. RD::TextureFormat tf;
  4418. tf.format = RD::DATA_FORMAT_R8G8_UNORM;
  4419. tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  4420. tf.width = buffer_width;
  4421. tf.height = buffer_height;
  4422. tf.array_layers = 4;
  4423. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4424. rb->ssao.ao_pong = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4425. for (uint32_t i = 0; i < 4; i++) {
  4426. RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ssao.ao_pong, i, 0);
  4427. rb->ssao.ao_pong_slices.push_back(slice);
  4428. }
  4429. }
  4430. {
  4431. RD::TextureFormat tf;
  4432. tf.format = RD::DATA_FORMAT_R8_UNORM;
  4433. tf.width = half_width;
  4434. tf.height = half_height;
  4435. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4436. rb->ssao.importance_map[0] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4437. rb->ssao.importance_map[1] = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4438. }
  4439. {
  4440. RD::TextureFormat tf;
  4441. tf.format = RD::DATA_FORMAT_R8_UNORM;
  4442. tf.width = rb->width;
  4443. tf.height = rb->height;
  4444. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4445. rb->ssao.ao_final = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4446. _render_buffers_uniform_set_changed(p_render_buffers);
  4447. }
  4448. ssao_using_half_size = ssao_half_size;
  4449. uniform_sets_are_invalid = true;
  4450. }
  4451. EffectsRD::SSAOSettings settings;
  4452. settings.radius = env->ssao_radius;
  4453. settings.intensity = env->ssao_intensity;
  4454. settings.power = env->ssao_power;
  4455. settings.detail = env->ssao_detail;
  4456. settings.horizon = env->ssao_horizon;
  4457. settings.sharpness = env->ssao_sharpness;
  4458. settings.quality = ssao_quality;
  4459. settings.half_size = ssao_half_size;
  4460. settings.adaptive_target = ssao_adaptive_target;
  4461. settings.blur_passes = ssao_blur_passes;
  4462. settings.fadeout_from = ssao_fadeout_from;
  4463. settings.fadeout_to = ssao_fadeout_to;
  4464. settings.full_screen_size = Size2i(rb->width, rb->height);
  4465. settings.half_screen_size = Size2i(buffer_width, buffer_height);
  4466. settings.quarter_screen_size = Size2i(half_width, half_height);
  4467. storage->get_effects()->generate_ssao(rb->depth_texture, p_normal_buffer, rb->ssao.depth, rb->ssao.depth_slices, rb->ssao.ao_deinterleaved, rb->ssao.ao_deinterleaved_slices, rb->ssao.ao_pong, rb->ssao.ao_pong_slices, rb->ssao.ao_final, rb->ssao.importance_map[0], rb->ssao.importance_map[1], p_projection, settings, uniform_sets_are_invalid);
  4468. }
  4469. void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(RID p_render_buffers, RID p_environment, RID p_camera_effects, const CameraMatrix &p_projection) {
  4470. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4471. ERR_FAIL_COND(!rb);
  4472. Environment *env = environment_owner.getornull(p_environment);
  4473. //glow (if enabled)
  4474. CameraEffects *camfx = camera_effects_owner.getornull(p_camera_effects);
  4475. bool can_use_effects = rb->width >= 8 && rb->height >= 8;
  4476. if (can_use_effects && camfx && (camfx->dof_blur_near_enabled || camfx->dof_blur_far_enabled) && camfx->dof_blur_amount > 0.0) {
  4477. if (rb->blur[0].texture.is_null()) {
  4478. _allocate_blur_textures(rb);
  4479. _render_buffers_uniform_set_changed(p_render_buffers);
  4480. }
  4481. float bokeh_size = camfx->dof_blur_amount * 64.0;
  4482. storage->get_effects()->bokeh_dof(rb->texture, rb->depth_texture, Size2i(rb->width, rb->height), rb->blur[0].mipmaps[0].texture, rb->blur[1].mipmaps[0].texture, rb->blur[0].mipmaps[1].texture, camfx->dof_blur_far_enabled, camfx->dof_blur_far_distance, camfx->dof_blur_far_transition, camfx->dof_blur_near_enabled, camfx->dof_blur_near_distance, camfx->dof_blur_near_transition, bokeh_size, dof_blur_bokeh_shape, dof_blur_quality, dof_blur_use_jitter, p_projection.get_z_near(), p_projection.get_z_far(), p_projection.is_orthogonal());
  4483. }
  4484. if (can_use_effects && env && env->auto_exposure) {
  4485. if (rb->luminance.current.is_null()) {
  4486. _allocate_luminance_textures(rb);
  4487. _render_buffers_uniform_set_changed(p_render_buffers);
  4488. }
  4489. bool set_immediate = env->auto_exposure_version != rb->auto_exposure_version;
  4490. rb->auto_exposure_version = env->auto_exposure_version;
  4491. double step = env->auto_exp_speed * time_step;
  4492. storage->get_effects()->luminance_reduction(rb->texture, Size2i(rb->width, rb->height), rb->luminance.reduce, rb->luminance.current, env->min_luminance, env->max_luminance, step, set_immediate);
  4493. //swap final reduce with prev luminance
  4494. SWAP(rb->luminance.current, rb->luminance.reduce.write[rb->luminance.reduce.size() - 1]);
  4495. RenderingServerDefault::redraw_request(); //redraw all the time if auto exposure rendering is on
  4496. }
  4497. int max_glow_level = -1;
  4498. if (can_use_effects && env && env->glow_enabled) {
  4499. /* see that blur textures are allocated */
  4500. if (rb->blur[1].texture.is_null()) {
  4501. _allocate_blur_textures(rb);
  4502. _render_buffers_uniform_set_changed(p_render_buffers);
  4503. }
  4504. for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
  4505. if (env->glow_levels[i] > 0.0) {
  4506. if (i >= rb->blur[1].mipmaps.size()) {
  4507. max_glow_level = rb->blur[1].mipmaps.size() - 1;
  4508. } else {
  4509. max_glow_level = i;
  4510. }
  4511. }
  4512. }
  4513. for (int i = 0; i < (max_glow_level + 1); i++) {
  4514. int vp_w = rb->blur[1].mipmaps[i].width;
  4515. int vp_h = rb->blur[1].mipmaps[i].height;
  4516. if (i == 0) {
  4517. RID luminance_texture;
  4518. if (env->auto_exposure && rb->luminance.current.is_valid()) {
  4519. luminance_texture = rb->luminance.current;
  4520. }
  4521. storage->get_effects()->gaussian_glow(rb->texture, rb->blur[1].mipmaps[i].texture, Size2i(vp_w, vp_h), env->glow_strength, glow_high_quality, true, env->glow_hdr_luminance_cap, env->exposure, env->glow_bloom, env->glow_hdr_bleed_threshold, env->glow_hdr_bleed_scale, luminance_texture, env->auto_exp_scale);
  4522. } else {
  4523. storage->get_effects()->gaussian_glow(rb->blur[1].mipmaps[i - 1].texture, rb->blur[1].mipmaps[i].texture, Size2i(vp_w, vp_h), env->glow_strength, glow_high_quality);
  4524. }
  4525. }
  4526. }
  4527. {
  4528. //tonemap
  4529. EffectsRD::TonemapSettings tonemap;
  4530. if (can_use_effects && env && env->auto_exposure && rb->luminance.current.is_valid()) {
  4531. tonemap.use_auto_exposure = true;
  4532. tonemap.exposure_texture = rb->luminance.current;
  4533. tonemap.auto_exposure_grey = env->auto_exp_scale;
  4534. } else {
  4535. tonemap.exposure_texture = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_WHITE);
  4536. }
  4537. if (can_use_effects && env && env->glow_enabled) {
  4538. tonemap.use_glow = true;
  4539. tonemap.glow_mode = EffectsRD::TonemapSettings::GlowMode(env->glow_blend_mode);
  4540. tonemap.glow_intensity = env->glow_blend_mode == RS::ENV_GLOW_BLEND_MODE_MIX ? env->glow_mix : env->glow_intensity;
  4541. for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
  4542. tonemap.glow_levels[i] = env->glow_levels[i];
  4543. }
  4544. tonemap.glow_texture_size.x = rb->blur[1].mipmaps[0].width;
  4545. tonemap.glow_texture_size.y = rb->blur[1].mipmaps[0].height;
  4546. tonemap.glow_use_bicubic_upscale = glow_bicubic_upscale;
  4547. tonemap.glow_texture = rb->blur[1].texture;
  4548. } else {
  4549. tonemap.glow_texture = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_BLACK);
  4550. }
  4551. if (rb->screen_space_aa == RS::VIEWPORT_SCREEN_SPACE_AA_FXAA) {
  4552. tonemap.use_fxaa = true;
  4553. }
  4554. tonemap.use_debanding = rb->use_debanding;
  4555. tonemap.texture_size = Vector2i(rb->width, rb->height);
  4556. if (env) {
  4557. tonemap.tonemap_mode = env->tone_mapper;
  4558. tonemap.white = env->white;
  4559. tonemap.exposure = env->exposure;
  4560. }
  4561. tonemap.use_color_correction = false;
  4562. tonemap.use_1d_color_correction = false;
  4563. tonemap.color_correction_texture = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE);
  4564. if (can_use_effects && env) {
  4565. tonemap.use_bcs = env->adjustments_enabled;
  4566. tonemap.brightness = env->adjustments_brightness;
  4567. tonemap.contrast = env->adjustments_contrast;
  4568. tonemap.saturation = env->adjustments_saturation;
  4569. if (env->adjustments_enabled && env->color_correction.is_valid()) {
  4570. tonemap.use_color_correction = true;
  4571. tonemap.use_1d_color_correction = env->use_1d_color_correction;
  4572. tonemap.color_correction_texture = storage->texture_get_rd_texture(env->color_correction);
  4573. }
  4574. }
  4575. storage->get_effects()->tonemapper(rb->texture, storage->render_target_get_rd_framebuffer(rb->render_target), tonemap);
  4576. }
  4577. storage->render_target_disable_clear_request(rb->render_target);
  4578. }
  4579. void RendererSceneRenderRD::_render_buffers_debug_draw(RID p_render_buffers, RID p_shadow_atlas) {
  4580. EffectsRD *effects = storage->get_effects();
  4581. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4582. ERR_FAIL_COND(!rb);
  4583. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) {
  4584. if (p_shadow_atlas.is_valid()) {
  4585. RID shadow_atlas_texture = shadow_atlas_get_texture(p_shadow_atlas);
  4586. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4587. effects->copy_to_fb_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, true);
  4588. }
  4589. }
  4590. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) {
  4591. if (directional_shadow_get_texture().is_valid()) {
  4592. RID shadow_atlas_texture = directional_shadow_get_texture();
  4593. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4594. effects->copy_to_fb_rect(shadow_atlas_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, true);
  4595. }
  4596. }
  4597. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DECAL_ATLAS) {
  4598. RID decal_atlas = storage->decal_atlas_get_texture();
  4599. if (decal_atlas.is_valid()) {
  4600. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4601. effects->copy_to_fb_rect(decal_atlas, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2i(Vector2(), rtsize / 2), false, false, true);
  4602. }
  4603. }
  4604. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE) {
  4605. if (rb->luminance.current.is_valid()) {
  4606. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4607. effects->copy_to_fb_rect(rb->luminance.current, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize / 8), false, true);
  4608. }
  4609. }
  4610. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSAO && rb->ssao.ao_final.is_valid()) {
  4611. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4612. RID ao_buf = rb->ssao.ao_final;
  4613. effects->copy_to_fb_rect(ao_buf, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, true);
  4614. }
  4615. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(p_render_buffers).is_valid()) {
  4616. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4617. effects->copy_to_fb_rect(_render_buffers_get_normal_texture(p_render_buffers), storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, false);
  4618. }
  4619. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_GI_BUFFER && _render_buffers_get_ambient_texture(p_render_buffers).is_valid()) {
  4620. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4621. RID ambient_texture = _render_buffers_get_ambient_texture(p_render_buffers);
  4622. RID reflection_texture = _render_buffers_get_reflection_texture(p_render_buffers);
  4623. effects->copy_to_fb_rect(ambient_texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), false, false, false, true, reflection_texture);
  4624. }
  4625. }
  4626. void RendererSceneRenderRD::environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, bool p_use_1d_color_correction, RID p_color_correction) {
  4627. Environment *env = environment_owner.getornull(p_env);
  4628. ERR_FAIL_COND(!env);
  4629. env->adjustments_enabled = p_enable;
  4630. env->adjustments_brightness = p_brightness;
  4631. env->adjustments_contrast = p_contrast;
  4632. env->adjustments_saturation = p_saturation;
  4633. env->use_1d_color_correction = p_use_1d_color_correction;
  4634. env->color_correction = p_color_correction;
  4635. }
  4636. void RendererSceneRenderRD::_sdfgi_debug_draw(RID p_render_buffers, const CameraMatrix &p_projection, const Transform &p_transform) {
  4637. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4638. ERR_FAIL_COND(!rb);
  4639. if (!rb->sdfgi) {
  4640. return; //eh
  4641. }
  4642. if (!rb->sdfgi->debug_uniform_set.is_valid() || !RD::get_singleton()->uniform_set_is_valid(rb->sdfgi->debug_uniform_set)) {
  4643. Vector<RD::Uniform> uniforms;
  4644. {
  4645. RD::Uniform u;
  4646. u.binding = 1;
  4647. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  4648. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  4649. if (i < rb->sdfgi->cascades.size()) {
  4650. u.ids.push_back(rb->sdfgi->cascades[i].sdf_tex);
  4651. } else {
  4652. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  4653. }
  4654. }
  4655. uniforms.push_back(u);
  4656. }
  4657. {
  4658. RD::Uniform u;
  4659. u.binding = 2;
  4660. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  4661. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  4662. if (i < rb->sdfgi->cascades.size()) {
  4663. u.ids.push_back(rb->sdfgi->cascades[i].light_tex);
  4664. } else {
  4665. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  4666. }
  4667. }
  4668. uniforms.push_back(u);
  4669. }
  4670. {
  4671. RD::Uniform u;
  4672. u.binding = 3;
  4673. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  4674. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  4675. if (i < rb->sdfgi->cascades.size()) {
  4676. u.ids.push_back(rb->sdfgi->cascades[i].light_aniso_0_tex);
  4677. } else {
  4678. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  4679. }
  4680. }
  4681. uniforms.push_back(u);
  4682. }
  4683. {
  4684. RD::Uniform u;
  4685. u.binding = 4;
  4686. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  4687. for (uint32_t i = 0; i < SDFGI::MAX_CASCADES; i++) {
  4688. if (i < rb->sdfgi->cascades.size()) {
  4689. u.ids.push_back(rb->sdfgi->cascades[i].light_aniso_1_tex);
  4690. } else {
  4691. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
  4692. }
  4693. }
  4694. uniforms.push_back(u);
  4695. }
  4696. {
  4697. RD::Uniform u;
  4698. u.binding = 5;
  4699. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  4700. u.ids.push_back(rb->sdfgi->occlusion_texture);
  4701. uniforms.push_back(u);
  4702. }
  4703. {
  4704. RD::Uniform u;
  4705. u.binding = 8;
  4706. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  4707. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  4708. uniforms.push_back(u);
  4709. }
  4710. {
  4711. RD::Uniform u;
  4712. u.binding = 9;
  4713. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  4714. u.ids.push_back(rb->sdfgi->cascades_ubo);
  4715. uniforms.push_back(u);
  4716. }
  4717. {
  4718. RD::Uniform u;
  4719. u.binding = 10;
  4720. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  4721. u.ids.push_back(rb->texture);
  4722. uniforms.push_back(u);
  4723. }
  4724. {
  4725. RD::Uniform u;
  4726. u.binding = 11;
  4727. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  4728. u.ids.push_back(rb->sdfgi->lightprobe_texture);
  4729. uniforms.push_back(u);
  4730. }
  4731. rb->sdfgi->debug_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.debug_shader_version, 0);
  4732. }
  4733. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  4734. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.debug_pipeline);
  4735. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->debug_uniform_set, 0);
  4736. SDGIShader::DebugPushConstant push_constant;
  4737. push_constant.grid_size[0] = rb->sdfgi->cascade_size;
  4738. push_constant.grid_size[1] = rb->sdfgi->cascade_size;
  4739. push_constant.grid_size[2] = rb->sdfgi->cascade_size;
  4740. push_constant.max_cascades = rb->sdfgi->cascades.size();
  4741. push_constant.screen_size[0] = rb->width;
  4742. push_constant.screen_size[1] = rb->height;
  4743. push_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  4744. push_constant.use_occlusion = rb->sdfgi->uses_occlusion;
  4745. push_constant.y_mult = rb->sdfgi->y_mult;
  4746. Vector2 vp_half = p_projection.get_viewport_half_extents();
  4747. push_constant.cam_extent[0] = vp_half.x;
  4748. push_constant.cam_extent[1] = vp_half.y;
  4749. push_constant.cam_extent[2] = -p_projection.get_z_near();
  4750. push_constant.cam_transform[0] = p_transform.basis.elements[0][0];
  4751. push_constant.cam_transform[1] = p_transform.basis.elements[1][0];
  4752. push_constant.cam_transform[2] = p_transform.basis.elements[2][0];
  4753. push_constant.cam_transform[3] = 0;
  4754. push_constant.cam_transform[4] = p_transform.basis.elements[0][1];
  4755. push_constant.cam_transform[5] = p_transform.basis.elements[1][1];
  4756. push_constant.cam_transform[6] = p_transform.basis.elements[2][1];
  4757. push_constant.cam_transform[7] = 0;
  4758. push_constant.cam_transform[8] = p_transform.basis.elements[0][2];
  4759. push_constant.cam_transform[9] = p_transform.basis.elements[1][2];
  4760. push_constant.cam_transform[10] = p_transform.basis.elements[2][2];
  4761. push_constant.cam_transform[11] = 0;
  4762. push_constant.cam_transform[12] = p_transform.origin.x;
  4763. push_constant.cam_transform[13] = p_transform.origin.y;
  4764. push_constant.cam_transform[14] = p_transform.origin.z;
  4765. push_constant.cam_transform[15] = 1;
  4766. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::DebugPushConstant));
  4767. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->width, rb->height, 1, 8, 8, 1);
  4768. RD::get_singleton()->compute_list_end();
  4769. Size2 rtsize = storage->render_target_get_size(rb->render_target);
  4770. storage->get_effects()->copy_to_fb_rect(rb->texture, storage->render_target_get_rd_framebuffer(rb->render_target), Rect2(Vector2(), rtsize), true);
  4771. }
  4772. RID RendererSceneRenderRD::render_buffers_get_back_buffer_texture(RID p_render_buffers) {
  4773. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4774. ERR_FAIL_COND_V(!rb, RID());
  4775. if (!rb->blur[0].texture.is_valid()) {
  4776. return RID(); //not valid at the moment
  4777. }
  4778. return rb->blur[0].texture;
  4779. }
  4780. RID RendererSceneRenderRD::render_buffers_get_ao_texture(RID p_render_buffers) {
  4781. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4782. ERR_FAIL_COND_V(!rb, RID());
  4783. return rb->ssao.ao_final;
  4784. }
  4785. RID RendererSceneRenderRD::render_buffers_get_gi_probe_buffer(RID p_render_buffers) {
  4786. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4787. ERR_FAIL_COND_V(!rb, RID());
  4788. if (rb->giprobe_buffer.is_null()) {
  4789. rb->giprobe_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(GI::GIProbeData) * RenderBuffers::MAX_GIPROBES);
  4790. }
  4791. return rb->giprobe_buffer;
  4792. }
  4793. RID RendererSceneRenderRD::render_buffers_get_default_gi_probe_buffer() {
  4794. return default_giprobe_buffer;
  4795. }
  4796. uint32_t RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_count(RID p_render_buffers) const {
  4797. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4798. ERR_FAIL_COND_V(!rb, 0);
  4799. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  4800. return rb->sdfgi->cascades.size();
  4801. }
  4802. bool RendererSceneRenderRD::render_buffers_is_sdfgi_enabled(RID p_render_buffers) const {
  4803. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4804. ERR_FAIL_COND_V(!rb, false);
  4805. return rb->sdfgi != nullptr;
  4806. }
  4807. RID RendererSceneRenderRD::render_buffers_get_sdfgi_irradiance_probes(RID p_render_buffers) const {
  4808. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4809. ERR_FAIL_COND_V(!rb, RID());
  4810. ERR_FAIL_COND_V(!rb->sdfgi, RID());
  4811. return rb->sdfgi->lightprobe_texture;
  4812. }
  4813. Vector3 RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_offset(RID p_render_buffers, uint32_t p_cascade) const {
  4814. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4815. ERR_FAIL_COND_V(!rb, Vector3());
  4816. ERR_FAIL_COND_V(!rb->sdfgi, Vector3());
  4817. ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), Vector3());
  4818. return Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + rb->sdfgi->cascades[p_cascade].position)) * rb->sdfgi->cascades[p_cascade].cell_size;
  4819. }
  4820. Vector3i RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_probe_offset(RID p_render_buffers, uint32_t p_cascade) const {
  4821. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4822. ERR_FAIL_COND_V(!rb, Vector3i());
  4823. ERR_FAIL_COND_V(!rb->sdfgi, Vector3i());
  4824. ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), Vector3i());
  4825. int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  4826. return rb->sdfgi->cascades[p_cascade].position / probe_divisor;
  4827. }
  4828. float RendererSceneRenderRD::render_buffers_get_sdfgi_normal_bias(RID p_render_buffers) const {
  4829. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4830. ERR_FAIL_COND_V(!rb, 0);
  4831. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  4832. return rb->sdfgi->normal_bias;
  4833. }
  4834. float RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_probe_size(RID p_render_buffers, uint32_t p_cascade) const {
  4835. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4836. ERR_FAIL_COND_V(!rb, 0);
  4837. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  4838. ERR_FAIL_UNSIGNED_INDEX_V(p_cascade, rb->sdfgi->cascades.size(), 0);
  4839. return float(rb->sdfgi->cascade_size) * rb->sdfgi->cascades[p_cascade].cell_size / float(rb->sdfgi->probe_axis_count - 1);
  4840. }
  4841. uint32_t RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_probe_count(RID p_render_buffers) const {
  4842. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4843. ERR_FAIL_COND_V(!rb, 0);
  4844. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  4845. return rb->sdfgi->probe_axis_count;
  4846. }
  4847. uint32_t RendererSceneRenderRD::render_buffers_get_sdfgi_cascade_size(RID p_render_buffers) const {
  4848. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4849. ERR_FAIL_COND_V(!rb, 0);
  4850. ERR_FAIL_COND_V(!rb->sdfgi, 0);
  4851. return rb->sdfgi->cascade_size;
  4852. }
  4853. bool RendererSceneRenderRD::render_buffers_is_sdfgi_using_occlusion(RID p_render_buffers) const {
  4854. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4855. ERR_FAIL_COND_V(!rb, false);
  4856. ERR_FAIL_COND_V(!rb->sdfgi, false);
  4857. return rb->sdfgi->uses_occlusion;
  4858. }
  4859. float RendererSceneRenderRD::render_buffers_get_sdfgi_energy(RID p_render_buffers) const {
  4860. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4861. ERR_FAIL_COND_V(!rb, 0.0);
  4862. ERR_FAIL_COND_V(!rb->sdfgi, 0.0);
  4863. return rb->sdfgi->energy;
  4864. }
  4865. RID RendererSceneRenderRD::render_buffers_get_sdfgi_occlusion_texture(RID p_render_buffers) const {
  4866. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4867. ERR_FAIL_COND_V(!rb, RID());
  4868. ERR_FAIL_COND_V(!rb->sdfgi, RID());
  4869. return rb->sdfgi->occlusion_texture;
  4870. }
  4871. bool RendererSceneRenderRD::render_buffers_has_volumetric_fog(RID p_render_buffers) const {
  4872. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4873. ERR_FAIL_COND_V(!rb, false);
  4874. return rb->volumetric_fog != nullptr;
  4875. }
  4876. RID RendererSceneRenderRD::render_buffers_get_volumetric_fog_texture(RID p_render_buffers) {
  4877. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4878. ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, RID());
  4879. return rb->volumetric_fog->fog_map;
  4880. }
  4881. RID RendererSceneRenderRD::render_buffers_get_volumetric_fog_sky_uniform_set(RID p_render_buffers) {
  4882. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4883. ERR_FAIL_COND_V(!rb, RID());
  4884. if (!rb->volumetric_fog) {
  4885. return RID();
  4886. }
  4887. return rb->volumetric_fog->sky_uniform_set;
  4888. }
  4889. float RendererSceneRenderRD::render_buffers_get_volumetric_fog_end(RID p_render_buffers) {
  4890. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4891. ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, 0);
  4892. return rb->volumetric_fog->length;
  4893. }
  4894. float RendererSceneRenderRD::render_buffers_get_volumetric_fog_detail_spread(RID p_render_buffers) {
  4895. const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4896. ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, 0);
  4897. return rb->volumetric_fog->spread;
  4898. }
  4899. void RendererSceneRenderRD::render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, RS::ViewportMSAA p_msaa, RenderingServer::ViewportScreenSpaceAA p_screen_space_aa, bool p_use_debanding) {
  4900. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  4901. rb->width = p_width;
  4902. rb->height = p_height;
  4903. rb->render_target = p_render_target;
  4904. rb->msaa = p_msaa;
  4905. rb->screen_space_aa = p_screen_space_aa;
  4906. rb->use_debanding = p_use_debanding;
  4907. _free_render_buffer_data(rb);
  4908. {
  4909. RD::TextureFormat tf;
  4910. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  4911. tf.width = rb->width;
  4912. tf.height = rb->height;
  4913. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4914. if (rb->msaa != RS::VIEWPORT_MSAA_DISABLED) {
  4915. tf.usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4916. } else {
  4917. tf.usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT;
  4918. }
  4919. rb->texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4920. }
  4921. {
  4922. RD::TextureFormat tf;
  4923. if (rb->msaa == RS::VIEWPORT_MSAA_DISABLED) {
  4924. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D24_UNORM_S8_UINT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D24_UNORM_S8_UINT : RD::DATA_FORMAT_D32_SFLOAT_S8_UINT;
  4925. } else {
  4926. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  4927. }
  4928. tf.width = p_width;
  4929. tf.height = p_height;
  4930. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT;
  4931. if (rb->msaa != RS::VIEWPORT_MSAA_DISABLED) {
  4932. tf.usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  4933. } else {
  4934. tf.usage_bits |= RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  4935. }
  4936. rb->depth_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  4937. }
  4938. rb->data->configure(rb->texture, rb->depth_texture, p_width, p_height, p_msaa);
  4939. _render_buffers_uniform_set_changed(p_render_buffers);
  4940. }
  4941. void RendererSceneRenderRD::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) {
  4942. sss_quality = p_quality;
  4943. }
  4944. RS::SubSurfaceScatteringQuality RendererSceneRenderRD::sub_surface_scattering_get_quality() const {
  4945. return sss_quality;
  4946. }
  4947. void RendererSceneRenderRD::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) {
  4948. sss_scale = p_scale;
  4949. sss_depth_scale = p_depth_scale;
  4950. }
  4951. void RendererSceneRenderRD::shadows_quality_set(RS::ShadowQuality p_quality) {
  4952. ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");
  4953. if (shadows_quality != p_quality) {
  4954. shadows_quality = p_quality;
  4955. switch (shadows_quality) {
  4956. case RS::SHADOW_QUALITY_HARD: {
  4957. penumbra_shadow_samples = 4;
  4958. soft_shadow_samples = 1;
  4959. shadows_quality_radius = 1.0;
  4960. } break;
  4961. case RS::SHADOW_QUALITY_SOFT_LOW: {
  4962. penumbra_shadow_samples = 8;
  4963. soft_shadow_samples = 4;
  4964. shadows_quality_radius = 2.0;
  4965. } break;
  4966. case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
  4967. penumbra_shadow_samples = 12;
  4968. soft_shadow_samples = 8;
  4969. shadows_quality_radius = 2.0;
  4970. } break;
  4971. case RS::SHADOW_QUALITY_SOFT_HIGH: {
  4972. penumbra_shadow_samples = 24;
  4973. soft_shadow_samples = 16;
  4974. shadows_quality_radius = 3.0;
  4975. } break;
  4976. case RS::SHADOW_QUALITY_SOFT_ULTRA: {
  4977. penumbra_shadow_samples = 32;
  4978. soft_shadow_samples = 32;
  4979. shadows_quality_radius = 4.0;
  4980. } break;
  4981. case RS::SHADOW_QUALITY_MAX:
  4982. break;
  4983. }
  4984. get_vogel_disk(penumbra_shadow_kernel, penumbra_shadow_samples);
  4985. get_vogel_disk(soft_shadow_kernel, soft_shadow_samples);
  4986. }
  4987. }
  4988. void RendererSceneRenderRD::directional_shadow_quality_set(RS::ShadowQuality p_quality) {
  4989. ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");
  4990. if (directional_shadow_quality != p_quality) {
  4991. directional_shadow_quality = p_quality;
  4992. switch (directional_shadow_quality) {
  4993. case RS::SHADOW_QUALITY_HARD: {
  4994. directional_penumbra_shadow_samples = 4;
  4995. directional_soft_shadow_samples = 1;
  4996. directional_shadow_quality_radius = 1.0;
  4997. } break;
  4998. case RS::SHADOW_QUALITY_SOFT_LOW: {
  4999. directional_penumbra_shadow_samples = 8;
  5000. directional_soft_shadow_samples = 4;
  5001. directional_shadow_quality_radius = 2.0;
  5002. } break;
  5003. case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
  5004. directional_penumbra_shadow_samples = 12;
  5005. directional_soft_shadow_samples = 8;
  5006. directional_shadow_quality_radius = 2.0;
  5007. } break;
  5008. case RS::SHADOW_QUALITY_SOFT_HIGH: {
  5009. directional_penumbra_shadow_samples = 24;
  5010. directional_soft_shadow_samples = 16;
  5011. directional_shadow_quality_radius = 3.0;
  5012. } break;
  5013. case RS::SHADOW_QUALITY_SOFT_ULTRA: {
  5014. directional_penumbra_shadow_samples = 32;
  5015. directional_soft_shadow_samples = 32;
  5016. directional_shadow_quality_radius = 4.0;
  5017. } break;
  5018. case RS::SHADOW_QUALITY_MAX:
  5019. break;
  5020. }
  5021. get_vogel_disk(directional_penumbra_shadow_kernel, directional_penumbra_shadow_samples);
  5022. get_vogel_disk(directional_soft_shadow_kernel, directional_soft_shadow_samples);
  5023. }
  5024. }
  5025. int RendererSceneRenderRD::get_roughness_layers() const {
  5026. return roughness_layers;
  5027. }
  5028. bool RendererSceneRenderRD::is_using_radiance_cubemap_array() const {
  5029. return sky_use_cubemap_array;
  5030. }
  5031. RendererSceneRenderRD::RenderBufferData *RendererSceneRenderRD::render_buffers_get_data(RID p_render_buffers) {
  5032. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  5033. ERR_FAIL_COND_V(!rb, nullptr);
  5034. return rb->data;
  5035. }
  5036. void RendererSceneRenderRD::_setup_reflections(const PagedArray<RID> &p_reflections, const Transform &p_camera_inverse_transform, RID p_environment) {
  5037. for (uint32_t i = 0; i < (uint32_t)p_reflections.size(); i++) {
  5038. RID rpi = p_reflections[i];
  5039. if (i >= cluster.max_reflections) {
  5040. reflection_probe_instance_set_render_index(rpi, 0); //invalid, but something needs to be set
  5041. continue;
  5042. }
  5043. reflection_probe_instance_set_render_index(rpi, i);
  5044. RID base_probe = reflection_probe_instance_get_probe(rpi);
  5045. Cluster::ReflectionData &reflection_ubo = cluster.reflections[i];
  5046. Vector3 extents = storage->reflection_probe_get_extents(base_probe);
  5047. reflection_ubo.box_extents[0] = extents.x;
  5048. reflection_ubo.box_extents[1] = extents.y;
  5049. reflection_ubo.box_extents[2] = extents.z;
  5050. reflection_ubo.index = reflection_probe_instance_get_atlas_index(rpi);
  5051. Vector3 origin_offset = storage->reflection_probe_get_origin_offset(base_probe);
  5052. reflection_ubo.box_offset[0] = origin_offset.x;
  5053. reflection_ubo.box_offset[1] = origin_offset.y;
  5054. reflection_ubo.box_offset[2] = origin_offset.z;
  5055. reflection_ubo.mask = storage->reflection_probe_get_cull_mask(base_probe);
  5056. float intensity = storage->reflection_probe_get_intensity(base_probe);
  5057. bool interior = storage->reflection_probe_is_interior(base_probe);
  5058. bool box_projection = storage->reflection_probe_is_box_projection(base_probe);
  5059. reflection_ubo.params[0] = intensity;
  5060. reflection_ubo.params[1] = 0;
  5061. reflection_ubo.params[2] = interior ? 1.0 : 0.0;
  5062. reflection_ubo.params[3] = box_projection ? 1.0 : 0.0;
  5063. Color ambient_linear = storage->reflection_probe_get_ambient_color(base_probe).to_linear();
  5064. float interior_ambient_energy = storage->reflection_probe_get_ambient_color_energy(base_probe);
  5065. uint32_t ambient_mode = storage->reflection_probe_get_ambient_mode(base_probe);
  5066. reflection_ubo.ambient[0] = ambient_linear.r * interior_ambient_energy;
  5067. reflection_ubo.ambient[1] = ambient_linear.g * interior_ambient_energy;
  5068. reflection_ubo.ambient[2] = ambient_linear.b * interior_ambient_energy;
  5069. reflection_ubo.ambient_mode = ambient_mode;
  5070. Transform transform = reflection_probe_instance_get_transform(rpi);
  5071. Transform proj = (p_camera_inverse_transform * transform).inverse();
  5072. RendererStorageRD::store_transform(proj, reflection_ubo.local_matrix);
  5073. cluster.builder.add_reflection_probe(transform, extents);
  5074. reflection_probe_instance_set_render_pass(rpi, RSG::rasterizer->get_frame_number());
  5075. }
  5076. if (p_reflections.size()) {
  5077. RD::get_singleton()->buffer_update(cluster.reflection_buffer, 0, MIN(cluster.max_reflections, (unsigned int)p_reflections.size()) * sizeof(ReflectionData), cluster.reflections, true);
  5078. }
  5079. }
  5080. void RendererSceneRenderRD::_setup_lights(const PagedArray<RID> &p_lights, const Transform &p_camera_inverse_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_positional_light_count) {
  5081. uint32_t light_count = 0;
  5082. r_directional_light_count = 0;
  5083. r_positional_light_count = 0;
  5084. sky_scene_state.ubo.directional_light_count = 0;
  5085. for (int i = 0; i < (int)p_lights.size(); i++) {
  5086. RID li = p_lights[i];
  5087. RID base = light_instance_get_base_light(li);
  5088. ERR_CONTINUE(base.is_null());
  5089. RS::LightType type = storage->light_get_type(base);
  5090. switch (type) {
  5091. case RS::LIGHT_DIRECTIONAL: {
  5092. // Copy to SkyDirectionalLightData
  5093. if (r_directional_light_count < sky_scene_state.max_directional_lights) {
  5094. SkyDirectionalLightData &sky_light_data = sky_scene_state.directional_lights[r_directional_light_count];
  5095. Transform light_transform = light_instance_get_base_transform(li);
  5096. Vector3 world_direction = light_transform.basis.xform(Vector3(0, 0, 1)).normalized();
  5097. sky_light_data.direction[0] = world_direction.x;
  5098. sky_light_data.direction[1] = world_direction.y;
  5099. sky_light_data.direction[2] = -world_direction.z;
  5100. float sign = storage->light_is_negative(base) ? -1 : 1;
  5101. sky_light_data.energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY);
  5102. Color linear_col = storage->light_get_color(base).to_linear();
  5103. sky_light_data.color[0] = linear_col.r;
  5104. sky_light_data.color[1] = linear_col.g;
  5105. sky_light_data.color[2] = linear_col.b;
  5106. sky_light_data.enabled = true;
  5107. float angular_diameter = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  5108. if (angular_diameter > 0.0) {
  5109. // I know tan(0) is 0, but let's not risk it with numerical precision.
  5110. // technically this will keep expanding until reaching the sun, but all we care
  5111. // is expand until we reach the radius of the near plane (there can't be more occluders than that)
  5112. angular_diameter = Math::tan(Math::deg2rad(angular_diameter));
  5113. } else {
  5114. angular_diameter = 0.0;
  5115. }
  5116. sky_light_data.size = angular_diameter;
  5117. sky_scene_state.ubo.directional_light_count++;
  5118. }
  5119. if (r_directional_light_count >= cluster.max_directional_lights || storage->light_directional_is_sky_only(base)) {
  5120. continue;
  5121. }
  5122. Cluster::DirectionalLightData &light_data = cluster.directional_lights[r_directional_light_count];
  5123. Transform light_transform = light_instance_get_base_transform(li);
  5124. Vector3 direction = p_camera_inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized();
  5125. light_data.direction[0] = direction.x;
  5126. light_data.direction[1] = direction.y;
  5127. light_data.direction[2] = direction.z;
  5128. float sign = storage->light_is_negative(base) ? -1 : 1;
  5129. light_data.energy = sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI;
  5130. Color linear_col = storage->light_get_color(base).to_linear();
  5131. light_data.color[0] = linear_col.r;
  5132. light_data.color[1] = linear_col.g;
  5133. light_data.color[2] = linear_col.b;
  5134. light_data.specular = storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR);
  5135. light_data.mask = storage->light_get_cull_mask(base);
  5136. float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  5137. light_data.size = 1.0 - Math::cos(Math::deg2rad(size)); //angle to cosine offset
  5138. Color shadow_col = storage->light_get_shadow_color(base).to_linear();
  5139. if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_PSSM_SPLITS) {
  5140. light_data.shadow_color1[0] = 1.0;
  5141. light_data.shadow_color1[1] = 0.0;
  5142. light_data.shadow_color1[2] = 0.0;
  5143. light_data.shadow_color1[3] = 1.0;
  5144. light_data.shadow_color2[0] = 0.0;
  5145. light_data.shadow_color2[1] = 1.0;
  5146. light_data.shadow_color2[2] = 0.0;
  5147. light_data.shadow_color2[3] = 1.0;
  5148. light_data.shadow_color3[0] = 0.0;
  5149. light_data.shadow_color3[1] = 0.0;
  5150. light_data.shadow_color3[2] = 1.0;
  5151. light_data.shadow_color3[3] = 1.0;
  5152. light_data.shadow_color4[0] = 1.0;
  5153. light_data.shadow_color4[1] = 1.0;
  5154. light_data.shadow_color4[2] = 0.0;
  5155. light_data.shadow_color4[3] = 1.0;
  5156. } else {
  5157. light_data.shadow_color1[0] = shadow_col.r;
  5158. light_data.shadow_color1[1] = shadow_col.g;
  5159. light_data.shadow_color1[2] = shadow_col.b;
  5160. light_data.shadow_color1[3] = 1.0;
  5161. light_data.shadow_color2[0] = shadow_col.r;
  5162. light_data.shadow_color2[1] = shadow_col.g;
  5163. light_data.shadow_color2[2] = shadow_col.b;
  5164. light_data.shadow_color2[3] = 1.0;
  5165. light_data.shadow_color3[0] = shadow_col.r;
  5166. light_data.shadow_color3[1] = shadow_col.g;
  5167. light_data.shadow_color3[2] = shadow_col.b;
  5168. light_data.shadow_color3[3] = 1.0;
  5169. light_data.shadow_color4[0] = shadow_col.r;
  5170. light_data.shadow_color4[1] = shadow_col.g;
  5171. light_data.shadow_color4[2] = shadow_col.b;
  5172. light_data.shadow_color4[3] = 1.0;
  5173. }
  5174. light_data.shadow_enabled = p_using_shadows && storage->light_has_shadow(base);
  5175. float angular_diameter = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  5176. if (angular_diameter > 0.0) {
  5177. // I know tan(0) is 0, but let's not risk it with numerical precision.
  5178. // technically this will keep expanding until reaching the sun, but all we care
  5179. // is expand until we reach the radius of the near plane (there can't be more occluders than that)
  5180. angular_diameter = Math::tan(Math::deg2rad(angular_diameter));
  5181. } else {
  5182. angular_diameter = 0.0;
  5183. }
  5184. if (light_data.shadow_enabled) {
  5185. RS::LightDirectionalShadowMode smode = storage->light_directional_get_shadow_mode(base);
  5186. int limit = smode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (smode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3);
  5187. light_data.blend_splits = storage->light_directional_get_blend_splits(base);
  5188. for (int j = 0; j < 4; j++) {
  5189. Rect2 atlas_rect = light_instance_get_directional_shadow_atlas_rect(li, j);
  5190. CameraMatrix matrix = light_instance_get_shadow_camera(li, j);
  5191. float split = light_instance_get_directional_shadow_split(li, MIN(limit, j));
  5192. CameraMatrix bias;
  5193. bias.set_light_bias();
  5194. CameraMatrix rectm;
  5195. rectm.set_light_atlas_rect(atlas_rect);
  5196. Transform modelview = (p_camera_inverse_transform * light_instance_get_shadow_transform(li, j)).inverse();
  5197. CameraMatrix shadow_mtx = rectm * bias * matrix * modelview;
  5198. light_data.shadow_split_offsets[j] = split;
  5199. float bias_scale = light_instance_get_shadow_bias_scale(li, j);
  5200. light_data.shadow_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * bias_scale;
  5201. light_data.shadow_normal_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * light_instance_get_directional_shadow_texel_size(li, j);
  5202. light_data.shadow_transmittance_bias[j] = storage->light_get_transmittance_bias(base) * bias_scale;
  5203. light_data.shadow_z_range[j] = light_instance_get_shadow_range(li, j);
  5204. light_data.shadow_range_begin[j] = light_instance_get_shadow_range_begin(li, j);
  5205. RendererStorageRD::store_camera(shadow_mtx, light_data.shadow_matrices[j]);
  5206. Vector2 uv_scale = light_instance_get_shadow_uv_scale(li, j);
  5207. uv_scale *= atlas_rect.size; //adapt to atlas size
  5208. switch (j) {
  5209. case 0: {
  5210. light_data.uv_scale1[0] = uv_scale.x;
  5211. light_data.uv_scale1[1] = uv_scale.y;
  5212. } break;
  5213. case 1: {
  5214. light_data.uv_scale2[0] = uv_scale.x;
  5215. light_data.uv_scale2[1] = uv_scale.y;
  5216. } break;
  5217. case 2: {
  5218. light_data.uv_scale3[0] = uv_scale.x;
  5219. light_data.uv_scale3[1] = uv_scale.y;
  5220. } break;
  5221. case 3: {
  5222. light_data.uv_scale4[0] = uv_scale.x;
  5223. light_data.uv_scale4[1] = uv_scale.y;
  5224. } break;
  5225. }
  5226. }
  5227. float fade_start = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START);
  5228. light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep
  5229. light_data.fade_to = -light_data.shadow_split_offsets[3];
  5230. light_data.shadow_volumetric_fog_fade = 1.0 / storage->light_get_shadow_volumetric_fog_fade(base);
  5231. light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
  5232. light_data.softshadow_angle = angular_diameter;
  5233. if (angular_diameter <= 0.0) {
  5234. light_data.soft_shadow_scale *= directional_shadow_quality_radius_get(); // Only use quality radius for PCF
  5235. }
  5236. }
  5237. r_directional_light_count++;
  5238. } break;
  5239. case RS::LIGHT_SPOT:
  5240. case RS::LIGHT_OMNI: {
  5241. if (light_count >= cluster.max_lights) {
  5242. continue;
  5243. }
  5244. Transform light_transform = light_instance_get_base_transform(li);
  5245. Cluster::LightData &light_data = cluster.lights[light_count];
  5246. cluster.lights_instances[light_count] = li;
  5247. float sign = storage->light_is_negative(base) ? -1 : 1;
  5248. Color linear_col = storage->light_get_color(base).to_linear();
  5249. light_data.attenuation_energy[0] = Math::make_half_float(storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION));
  5250. light_data.attenuation_energy[1] = Math::make_half_float(sign * storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI);
  5251. light_data.color_specular[0] = MIN(uint32_t(linear_col.r * 255), 255);
  5252. light_data.color_specular[1] = MIN(uint32_t(linear_col.g * 255), 255);
  5253. light_data.color_specular[2] = MIN(uint32_t(linear_col.b * 255), 255);
  5254. light_data.color_specular[3] = MIN(uint32_t(storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 255), 255);
  5255. float radius = MAX(0.001, storage->light_get_param(base, RS::LIGHT_PARAM_RANGE));
  5256. light_data.inv_radius = 1.0 / radius;
  5257. Vector3 pos = p_camera_inverse_transform.xform(light_transform.origin);
  5258. light_data.position[0] = pos.x;
  5259. light_data.position[1] = pos.y;
  5260. light_data.position[2] = pos.z;
  5261. Vector3 direction = p_camera_inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized();
  5262. light_data.direction[0] = direction.x;
  5263. light_data.direction[1] = direction.y;
  5264. light_data.direction[2] = direction.z;
  5265. float size = storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  5266. light_data.size = size;
  5267. light_data.cone_attenuation_angle[0] = Math::make_half_float(storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION));
  5268. float spot_angle = storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE);
  5269. light_data.cone_attenuation_angle[1] = Math::make_half_float(Math::cos(Math::deg2rad(spot_angle)));
  5270. light_data.mask = storage->light_get_cull_mask(base);
  5271. light_data.atlas_rect[0] = 0;
  5272. light_data.atlas_rect[1] = 0;
  5273. light_data.atlas_rect[2] = 0;
  5274. light_data.atlas_rect[3] = 0;
  5275. RID projector = storage->light_get_projector(base);
  5276. if (projector.is_valid()) {
  5277. Rect2 rect = storage->decal_atlas_get_texture_rect(projector);
  5278. if (type == RS::LIGHT_SPOT) {
  5279. light_data.projector_rect[0] = rect.position.x;
  5280. light_data.projector_rect[1] = rect.position.y + rect.size.height; //flip because shadow is flipped
  5281. light_data.projector_rect[2] = rect.size.width;
  5282. light_data.projector_rect[3] = -rect.size.height;
  5283. } else {
  5284. light_data.projector_rect[0] = rect.position.x;
  5285. light_data.projector_rect[1] = rect.position.y;
  5286. light_data.projector_rect[2] = rect.size.width;
  5287. light_data.projector_rect[3] = rect.size.height * 0.5; //used by dp, so needs to be half
  5288. }
  5289. } else {
  5290. light_data.projector_rect[0] = 0;
  5291. light_data.projector_rect[1] = 0;
  5292. light_data.projector_rect[2] = 0;
  5293. light_data.projector_rect[3] = 0;
  5294. }
  5295. if (p_using_shadows && p_shadow_atlas.is_valid() && shadow_atlas_owns_light_instance(p_shadow_atlas, li)) {
  5296. // fill in the shadow information
  5297. Color shadow_color = storage->light_get_shadow_color(base);
  5298. light_data.shadow_color_enabled[0] = MIN(uint32_t(shadow_color.r * 255), 255);
  5299. light_data.shadow_color_enabled[1] = MIN(uint32_t(shadow_color.g * 255), 255);
  5300. light_data.shadow_color_enabled[2] = MIN(uint32_t(shadow_color.b * 255), 255);
  5301. light_data.shadow_color_enabled[3] = 255;
  5302. if (type == RS::LIGHT_SPOT) {
  5303. light_data.shadow_bias = (storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0);
  5304. float shadow_texel_size = Math::tan(Math::deg2rad(spot_angle)) * radius * 2.0;
  5305. shadow_texel_size *= light_instance_get_shadow_texel_size(li, p_shadow_atlas);
  5306. light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size;
  5307. } else { //omni
  5308. light_data.shadow_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * radius / 10.0;
  5309. float shadow_texel_size = light_instance_get_shadow_texel_size(li, p_shadow_atlas);
  5310. light_data.shadow_normal_bias = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 2.0; // applied in -1 .. 1 space
  5311. }
  5312. light_data.transmittance_bias = storage->light_get_transmittance_bias(base);
  5313. Rect2 rect = light_instance_get_shadow_atlas_rect(li, p_shadow_atlas);
  5314. light_data.atlas_rect[0] = rect.position.x;
  5315. light_data.atlas_rect[1] = rect.position.y;
  5316. light_data.atlas_rect[2] = rect.size.width;
  5317. light_data.atlas_rect[3] = rect.size.height;
  5318. light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
  5319. light_data.shadow_volumetric_fog_fade = 1.0 / storage->light_get_shadow_volumetric_fog_fade(base);
  5320. if (type == RS::LIGHT_OMNI) {
  5321. light_data.atlas_rect[3] *= 0.5; //one paraboloid on top of another
  5322. Transform proj = (p_camera_inverse_transform * light_transform).inverse();
  5323. RendererStorageRD::store_transform(proj, light_data.shadow_matrix);
  5324. if (size > 0.0) {
  5325. light_data.soft_shadow_size = size;
  5326. } else {
  5327. light_data.soft_shadow_size = 0.0;
  5328. light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
  5329. }
  5330. } else if (type == RS::LIGHT_SPOT) {
  5331. Transform modelview = (p_camera_inverse_transform * light_transform).inverse();
  5332. CameraMatrix bias;
  5333. bias.set_light_bias();
  5334. CameraMatrix shadow_mtx = bias * light_instance_get_shadow_camera(li, 0) * modelview;
  5335. RendererStorageRD::store_camera(shadow_mtx, light_data.shadow_matrix);
  5336. if (size > 0.0) {
  5337. CameraMatrix cm = light_instance_get_shadow_camera(li, 0);
  5338. float half_np = cm.get_z_near() * Math::tan(Math::deg2rad(spot_angle));
  5339. light_data.soft_shadow_size = (size * 0.5 / radius) / (half_np / cm.get_z_near()) * rect.size.width;
  5340. } else {
  5341. light_data.soft_shadow_size = 0.0;
  5342. light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
  5343. }
  5344. }
  5345. } else {
  5346. light_data.shadow_color_enabled[3] = 0;
  5347. }
  5348. light_instance_set_index(li, light_count);
  5349. cluster.builder.add_light(type == RS::LIGHT_SPOT ? LightClusterBuilder::LIGHT_TYPE_SPOT : LightClusterBuilder::LIGHT_TYPE_OMNI, light_transform, radius, spot_angle);
  5350. light_count++;
  5351. r_positional_light_count++;
  5352. } break;
  5353. }
  5354. light_instance_set_render_pass(li, RSG::rasterizer->get_frame_number());
  5355. //update UBO for forward rendering, blit to texture for clustered
  5356. }
  5357. if (light_count) {
  5358. RD::get_singleton()->buffer_update(cluster.light_buffer, 0, sizeof(Cluster::LightData) * light_count, cluster.lights, true);
  5359. }
  5360. if (r_directional_light_count) {
  5361. RD::get_singleton()->buffer_update(cluster.directional_light_buffer, 0, sizeof(Cluster::DirectionalLightData) * r_directional_light_count, cluster.directional_lights, true);
  5362. }
  5363. }
  5364. void RendererSceneRenderRD::_setup_decals(const PagedArray<RID> &p_decals, const Transform &p_camera_inverse_xform) {
  5365. Transform uv_xform;
  5366. uv_xform.basis.scale(Vector3(2.0, 1.0, 2.0));
  5367. uv_xform.origin = Vector3(-1.0, 0.0, -1.0);
  5368. uint32_t decal_count = MIN((uint32_t)p_decals.size(), cluster.max_decals);
  5369. int idx = 0;
  5370. for (uint32_t i = 0; i < decal_count; i++) {
  5371. RID di = p_decals[i];
  5372. RID decal = decal_instance_get_base(di);
  5373. Transform xform = decal_instance_get_transform(di);
  5374. float fade = 1.0;
  5375. if (storage->decal_is_distance_fade_enabled(decal)) {
  5376. real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;
  5377. float fade_begin = storage->decal_get_distance_fade_begin(decal);
  5378. float fade_length = storage->decal_get_distance_fade_length(decal);
  5379. if (distance > fade_begin) {
  5380. if (distance > fade_begin + fade_length) {
  5381. continue; // do not use this decal, its invisible
  5382. }
  5383. fade = 1.0 - (distance - fade_begin) / fade_length;
  5384. }
  5385. }
  5386. Cluster::DecalData &dd = cluster.decals[idx];
  5387. Vector3 decal_extents = storage->decal_get_extents(decal);
  5388. Transform scale_xform;
  5389. scale_xform.basis.scale(Vector3(decal_extents.x, decal_extents.y, decal_extents.z));
  5390. Transform to_decal_xform = (p_camera_inverse_xform * decal_instance_get_transform(di) * scale_xform * uv_xform).affine_inverse();
  5391. RendererStorageRD::store_transform(to_decal_xform, dd.xform);
  5392. Vector3 normal = xform.basis.get_axis(Vector3::AXIS_Y).normalized();
  5393. normal = p_camera_inverse_xform.basis.xform(normal); //camera is normalized, so fine
  5394. dd.normal[0] = normal.x;
  5395. dd.normal[1] = normal.y;
  5396. dd.normal[2] = normal.z;
  5397. dd.normal_fade = storage->decal_get_normal_fade(decal);
  5398. RID albedo_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ALBEDO);
  5399. RID emission_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_EMISSION);
  5400. if (albedo_tex.is_valid()) {
  5401. Rect2 rect = storage->decal_atlas_get_texture_rect(albedo_tex);
  5402. dd.albedo_rect[0] = rect.position.x;
  5403. dd.albedo_rect[1] = rect.position.y;
  5404. dd.albedo_rect[2] = rect.size.x;
  5405. dd.albedo_rect[3] = rect.size.y;
  5406. } else {
  5407. if (!emission_tex.is_valid()) {
  5408. continue; //no albedo, no emission, no decal.
  5409. }
  5410. dd.albedo_rect[0] = 0;
  5411. dd.albedo_rect[1] = 0;
  5412. dd.albedo_rect[2] = 0;
  5413. dd.albedo_rect[3] = 0;
  5414. }
  5415. RID normal_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_NORMAL);
  5416. if (normal_tex.is_valid()) {
  5417. Rect2 rect = storage->decal_atlas_get_texture_rect(normal_tex);
  5418. dd.normal_rect[0] = rect.position.x;
  5419. dd.normal_rect[1] = rect.position.y;
  5420. dd.normal_rect[2] = rect.size.x;
  5421. dd.normal_rect[3] = rect.size.y;
  5422. Basis normal_xform = p_camera_inverse_xform.basis * xform.basis.orthonormalized();
  5423. RendererStorageRD::store_basis_3x4(normal_xform, dd.normal_xform);
  5424. } else {
  5425. dd.normal_rect[0] = 0;
  5426. dd.normal_rect[1] = 0;
  5427. dd.normal_rect[2] = 0;
  5428. dd.normal_rect[3] = 0;
  5429. }
  5430. RID orm_tex = storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ORM);
  5431. if (orm_tex.is_valid()) {
  5432. Rect2 rect = storage->decal_atlas_get_texture_rect(orm_tex);
  5433. dd.orm_rect[0] = rect.position.x;
  5434. dd.orm_rect[1] = rect.position.y;
  5435. dd.orm_rect[2] = rect.size.x;
  5436. dd.orm_rect[3] = rect.size.y;
  5437. } else {
  5438. dd.orm_rect[0] = 0;
  5439. dd.orm_rect[1] = 0;
  5440. dd.orm_rect[2] = 0;
  5441. dd.orm_rect[3] = 0;
  5442. }
  5443. if (emission_tex.is_valid()) {
  5444. Rect2 rect = storage->decal_atlas_get_texture_rect(emission_tex);
  5445. dd.emission_rect[0] = rect.position.x;
  5446. dd.emission_rect[1] = rect.position.y;
  5447. dd.emission_rect[2] = rect.size.x;
  5448. dd.emission_rect[3] = rect.size.y;
  5449. } else {
  5450. dd.emission_rect[0] = 0;
  5451. dd.emission_rect[1] = 0;
  5452. dd.emission_rect[2] = 0;
  5453. dd.emission_rect[3] = 0;
  5454. }
  5455. Color modulate = storage->decal_get_modulate(decal);
  5456. dd.modulate[0] = modulate.r;
  5457. dd.modulate[1] = modulate.g;
  5458. dd.modulate[2] = modulate.b;
  5459. dd.modulate[3] = modulate.a * fade;
  5460. dd.emission_energy = storage->decal_get_emission_energy(decal) * fade;
  5461. dd.albedo_mix = storage->decal_get_albedo_mix(decal);
  5462. dd.mask = storage->decal_get_cull_mask(decal);
  5463. dd.upper_fade = storage->decal_get_upper_fade(decal);
  5464. dd.lower_fade = storage->decal_get_lower_fade(decal);
  5465. cluster.builder.add_decal(xform, decal_extents);
  5466. idx++;
  5467. }
  5468. if (idx > 0) {
  5469. RD::get_singleton()->buffer_update(cluster.decal_buffer, 0, sizeof(Cluster::DecalData) * idx, cluster.decals, true);
  5470. }
  5471. }
  5472. void RendererSceneRenderRD::_volumetric_fog_erase(RenderBuffers *rb) {
  5473. ERR_FAIL_COND(!rb->volumetric_fog);
  5474. RD::get_singleton()->free(rb->volumetric_fog->light_density_map);
  5475. RD::get_singleton()->free(rb->volumetric_fog->fog_map);
  5476. if (rb->volumetric_fog->uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
  5477. RD::get_singleton()->free(rb->volumetric_fog->uniform_set);
  5478. }
  5479. if (rb->volumetric_fog->uniform_set2.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set2)) {
  5480. RD::get_singleton()->free(rb->volumetric_fog->uniform_set2);
  5481. }
  5482. if (rb->volumetric_fog->sdfgi_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sdfgi_uniform_set)) {
  5483. RD::get_singleton()->free(rb->volumetric_fog->sdfgi_uniform_set);
  5484. }
  5485. if (rb->volumetric_fog->sky_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sky_uniform_set)) {
  5486. RD::get_singleton()->free(rb->volumetric_fog->sky_uniform_set);
  5487. }
  5488. memdelete(rb->volumetric_fog);
  5489. rb->volumetric_fog = nullptr;
  5490. }
  5491. void RendererSceneRenderRD::_allocate_shadow_shrink_stages(RID p_base, int p_base_size, Vector<ShadowShrinkStage> &shrink_stages, uint32_t p_target_size) {
  5492. //create fog mipmaps
  5493. uint32_t fog_texture_size = p_target_size;
  5494. uint32_t base_texture_size = p_base_size;
  5495. ShadowShrinkStage first;
  5496. first.size = base_texture_size;
  5497. first.texture = p_base;
  5498. shrink_stages.push_back(first); //put depth first in case we dont find smaller ones
  5499. while (fog_texture_size < base_texture_size) {
  5500. base_texture_size = MAX(base_texture_size / 8, fog_texture_size);
  5501. ShadowShrinkStage s;
  5502. s.size = base_texture_size;
  5503. RD::TextureFormat tf;
  5504. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  5505. tf.width = base_texture_size;
  5506. tf.height = base_texture_size;
  5507. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  5508. if (base_texture_size == fog_texture_size) {
  5509. s.filter_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  5510. tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT;
  5511. }
  5512. s.texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  5513. shrink_stages.push_back(s);
  5514. }
  5515. }
  5516. void RendererSceneRenderRD::_clear_shadow_shrink_stages(Vector<ShadowShrinkStage> &shrink_stages) {
  5517. for (int i = 1; i < shrink_stages.size(); i++) {
  5518. RD::get_singleton()->free(shrink_stages[i].texture);
  5519. if (shrink_stages[i].filter_texture.is_valid()) {
  5520. RD::get_singleton()->free(shrink_stages[i].filter_texture);
  5521. }
  5522. }
  5523. shrink_stages.clear();
  5524. }
  5525. void RendererSceneRenderRD::_update_volumetric_fog(RID p_render_buffers, RID p_environment, const CameraMatrix &p_cam_projection, const Transform &p_cam_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_gi_probe_count) {
  5526. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  5527. ERR_FAIL_COND(!rb);
  5528. Environment *env = environment_owner.getornull(p_environment);
  5529. float ratio = float(rb->width) / float((rb->width + rb->height) / 2);
  5530. uint32_t target_width = uint32_t(float(volumetric_fog_size) * ratio);
  5531. uint32_t target_height = uint32_t(float(volumetric_fog_size) / ratio);
  5532. if (rb->volumetric_fog) {
  5533. //validate
  5534. if (!env || !env->volumetric_fog_enabled || rb->volumetric_fog->width != target_width || rb->volumetric_fog->height != target_height || rb->volumetric_fog->depth != volumetric_fog_depth) {
  5535. _volumetric_fog_erase(rb);
  5536. _render_buffers_uniform_set_changed(p_render_buffers);
  5537. }
  5538. }
  5539. if (!env || !env->volumetric_fog_enabled) {
  5540. //no reason to enable or update, bye
  5541. return;
  5542. }
  5543. if (env && env->volumetric_fog_enabled && !rb->volumetric_fog) {
  5544. //required volumetric fog but not existing, create
  5545. rb->volumetric_fog = memnew(VolumetricFog);
  5546. rb->volumetric_fog->width = target_width;
  5547. rb->volumetric_fog->height = target_height;
  5548. rb->volumetric_fog->depth = volumetric_fog_depth;
  5549. RD::TextureFormat tf;
  5550. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  5551. tf.width = target_width;
  5552. tf.height = target_height;
  5553. tf.depth = volumetric_fog_depth;
  5554. tf.texture_type = RD::TEXTURE_TYPE_3D;
  5555. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  5556. rb->volumetric_fog->light_density_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  5557. tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT;
  5558. rb->volumetric_fog->fog_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
  5559. _render_buffers_uniform_set_changed(p_render_buffers);
  5560. Vector<RD::Uniform> uniforms;
  5561. {
  5562. RD::Uniform u;
  5563. u.binding = 0;
  5564. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  5565. u.ids.push_back(rb->volumetric_fog->fog_map);
  5566. uniforms.push_back(u);
  5567. }
  5568. rb->volumetric_fog->sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_FOG);
  5569. }
  5570. //update directional shadow
  5571. if (p_use_directional_shadows) {
  5572. if (directional_shadow.shrink_stages.is_empty()) {
  5573. if (rb->volumetric_fog->uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
  5574. //invalidate uniform set, we will need a new one
  5575. RD::get_singleton()->free(rb->volumetric_fog->uniform_set);
  5576. rb->volumetric_fog->uniform_set = RID();
  5577. }
  5578. _allocate_shadow_shrink_stages(directional_shadow.depth, directional_shadow.size, directional_shadow.shrink_stages, volumetric_fog_directional_shadow_shrink);
  5579. }
  5580. if (directional_shadow.shrink_stages.size() > 1) {
  5581. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  5582. for (int i = 1; i < directional_shadow.shrink_stages.size(); i++) {
  5583. int32_t src_size = directional_shadow.shrink_stages[i - 1].size;
  5584. int32_t dst_size = directional_shadow.shrink_stages[i].size;
  5585. Rect2i r(0, 0, src_size, src_size);
  5586. int32_t shrink_limit = 8 / (src_size / dst_size);
  5587. storage->get_effects()->reduce_shadow(directional_shadow.shrink_stages[i - 1].texture, directional_shadow.shrink_stages[i].texture, Size2i(src_size, src_size), r, shrink_limit, compute_list);
  5588. RD::get_singleton()->compute_list_add_barrier(compute_list);
  5589. if (env->volumetric_fog_shadow_filter != RS::ENV_VOLUMETRIC_FOG_SHADOW_FILTER_DISABLED && directional_shadow.shrink_stages[i].filter_texture.is_valid()) {
  5590. Rect2i rf(0, 0, dst_size, dst_size);
  5591. storage->get_effects()->filter_shadow(directional_shadow.shrink_stages[i].texture, directional_shadow.shrink_stages[i].filter_texture, Size2i(dst_size, dst_size), rf, env->volumetric_fog_shadow_filter, compute_list);
  5592. }
  5593. }
  5594. RD::get_singleton()->compute_list_end();
  5595. }
  5596. }
  5597. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  5598. if (shadow_atlas) {
  5599. //shrink shadows that need to be shrunk
  5600. bool force_shrink_shadows = false;
  5601. if (shadow_atlas->shrink_stages.is_empty()) {
  5602. if (rb->volumetric_fog->uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
  5603. //invalidate uniform set, we will need a new one
  5604. RD::get_singleton()->free(rb->volumetric_fog->uniform_set);
  5605. rb->volumetric_fog->uniform_set = RID();
  5606. }
  5607. _allocate_shadow_shrink_stages(shadow_atlas->depth, shadow_atlas->size, shadow_atlas->shrink_stages, volumetric_fog_positional_shadow_shrink);
  5608. force_shrink_shadows = true;
  5609. }
  5610. if (rb->volumetric_fog->last_shadow_filter != env->volumetric_fog_shadow_filter) {
  5611. //if shadow filter changed, invalidate caches
  5612. rb->volumetric_fog->last_shadow_filter = env->volumetric_fog_shadow_filter;
  5613. force_shrink_shadows = true;
  5614. }
  5615. cluster.lights_shadow_rect_cache_count = 0;
  5616. for (int i = 0; i < p_positional_light_count; i++) {
  5617. if (cluster.lights[i].shadow_color_enabled[3] > 127) {
  5618. RID li = cluster.lights_instances[i];
  5619. ERR_CONTINUE(!shadow_atlas->shadow_owners.has(li));
  5620. uint32_t key = shadow_atlas->shadow_owners[li];
  5621. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  5622. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  5623. ERR_CONTINUE((int)shadow >= shadow_atlas->quadrants[quadrant].shadows.size());
  5624. ShadowAtlas::Quadrant::Shadow &s = shadow_atlas->quadrants[quadrant].shadows.write[shadow];
  5625. if (!force_shrink_shadows && s.fog_version == s.version) {
  5626. continue; //do not update, no need
  5627. }
  5628. s.fog_version = s.version;
  5629. uint32_t quadrant_size = shadow_atlas->size >> 1;
  5630. Rect2i atlas_rect;
  5631. atlas_rect.position.x = (quadrant & 1) * quadrant_size;
  5632. atlas_rect.position.y = (quadrant >> 1) * quadrant_size;
  5633. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  5634. atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  5635. atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  5636. atlas_rect.size.x = shadow_size;
  5637. atlas_rect.size.y = shadow_size;
  5638. cluster.lights_shadow_rect_cache[cluster.lights_shadow_rect_cache_count] = atlas_rect;
  5639. cluster.lights_shadow_rect_cache_count++;
  5640. if (cluster.lights_shadow_rect_cache_count == cluster.max_lights) {
  5641. break; //light limit reached
  5642. }
  5643. }
  5644. }
  5645. if (cluster.lights_shadow_rect_cache_count > 0) {
  5646. //there are shadows to be shrunk, try to do them in parallel
  5647. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  5648. for (int i = 1; i < shadow_atlas->shrink_stages.size(); i++) {
  5649. int32_t base_size = shadow_atlas->shrink_stages[0].size;
  5650. int32_t src_size = shadow_atlas->shrink_stages[i - 1].size;
  5651. int32_t dst_size = shadow_atlas->shrink_stages[i].size;
  5652. uint32_t rect_divisor = base_size / src_size;
  5653. int32_t shrink_limit = 8 / (src_size / dst_size);
  5654. //shrink in parallel for more performance
  5655. for (uint32_t j = 0; j < cluster.lights_shadow_rect_cache_count; j++) {
  5656. Rect2i src_rect = cluster.lights_shadow_rect_cache[j];
  5657. src_rect.position /= rect_divisor;
  5658. src_rect.size /= rect_divisor;
  5659. storage->get_effects()->reduce_shadow(shadow_atlas->shrink_stages[i - 1].texture, shadow_atlas->shrink_stages[i].texture, Size2i(src_size, src_size), src_rect, shrink_limit, compute_list);
  5660. }
  5661. RD::get_singleton()->compute_list_add_barrier(compute_list);
  5662. if (env->volumetric_fog_shadow_filter != RS::ENV_VOLUMETRIC_FOG_SHADOW_FILTER_DISABLED && shadow_atlas->shrink_stages[i].filter_texture.is_valid()) {
  5663. uint32_t filter_divisor = base_size / dst_size;
  5664. //filter in parallel for more performance
  5665. for (uint32_t j = 0; j < cluster.lights_shadow_rect_cache_count; j++) {
  5666. Rect2i dst_rect = cluster.lights_shadow_rect_cache[j];
  5667. dst_rect.position /= filter_divisor;
  5668. dst_rect.size /= filter_divisor;
  5669. storage->get_effects()->filter_shadow(shadow_atlas->shrink_stages[i].texture, shadow_atlas->shrink_stages[i].filter_texture, Size2i(dst_size, dst_size), dst_rect, env->volumetric_fog_shadow_filter, compute_list, true, false);
  5670. }
  5671. RD::get_singleton()->compute_list_add_barrier(compute_list);
  5672. for (uint32_t j = 0; j < cluster.lights_shadow_rect_cache_count; j++) {
  5673. Rect2i dst_rect = cluster.lights_shadow_rect_cache[j];
  5674. dst_rect.position /= filter_divisor;
  5675. dst_rect.size /= filter_divisor;
  5676. storage->get_effects()->filter_shadow(shadow_atlas->shrink_stages[i].texture, shadow_atlas->shrink_stages[i].filter_texture, Size2i(dst_size, dst_size), dst_rect, env->volumetric_fog_shadow_filter, compute_list, false, true);
  5677. }
  5678. }
  5679. }
  5680. RD::get_singleton()->compute_list_end();
  5681. }
  5682. }
  5683. //update volumetric fog
  5684. if (rb->volumetric_fog->uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
  5685. //re create uniform set if needed
  5686. Vector<RD::Uniform> uniforms;
  5687. {
  5688. RD::Uniform u;
  5689. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  5690. u.binding = 1;
  5691. if (shadow_atlas == nullptr || shadow_atlas->shrink_stages.size() == 0) {
  5692. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_BLACK));
  5693. } else {
  5694. u.ids.push_back(shadow_atlas->shrink_stages[shadow_atlas->shrink_stages.size() - 1].texture);
  5695. }
  5696. uniforms.push_back(u);
  5697. }
  5698. {
  5699. RD::Uniform u;
  5700. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  5701. u.binding = 2;
  5702. if (directional_shadow.shrink_stages.size() == 0) {
  5703. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_BLACK));
  5704. } else {
  5705. u.ids.push_back(directional_shadow.shrink_stages[directional_shadow.shrink_stages.size() - 1].texture);
  5706. }
  5707. uniforms.push_back(u);
  5708. }
  5709. {
  5710. RD::Uniform u;
  5711. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  5712. u.binding = 3;
  5713. u.ids.push_back(get_positional_light_buffer());
  5714. uniforms.push_back(u);
  5715. }
  5716. {
  5717. RD::Uniform u;
  5718. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  5719. u.binding = 4;
  5720. u.ids.push_back(get_directional_light_buffer());
  5721. uniforms.push_back(u);
  5722. }
  5723. {
  5724. RD::Uniform u;
  5725. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  5726. u.binding = 5;
  5727. u.ids.push_back(get_cluster_builder_texture());
  5728. uniforms.push_back(u);
  5729. }
  5730. {
  5731. RD::Uniform u;
  5732. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  5733. u.binding = 6;
  5734. u.ids.push_back(get_cluster_builder_indices_buffer());
  5735. uniforms.push_back(u);
  5736. }
  5737. {
  5738. RD::Uniform u;
  5739. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  5740. u.binding = 7;
  5741. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  5742. uniforms.push_back(u);
  5743. }
  5744. {
  5745. RD::Uniform u;
  5746. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  5747. u.binding = 8;
  5748. u.ids.push_back(rb->volumetric_fog->light_density_map);
  5749. uniforms.push_back(u);
  5750. }
  5751. {
  5752. RD::Uniform u;
  5753. u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
  5754. u.binding = 9;
  5755. u.ids.push_back(rb->volumetric_fog->fog_map);
  5756. uniforms.push_back(u);
  5757. }
  5758. {
  5759. RD::Uniform u;
  5760. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  5761. u.binding = 10;
  5762. u.ids.push_back(shadow_sampler);
  5763. uniforms.push_back(u);
  5764. }
  5765. {
  5766. RD::Uniform u;
  5767. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  5768. u.binding = 11;
  5769. u.ids.push_back(render_buffers_get_gi_probe_buffer(p_render_buffers));
  5770. uniforms.push_back(u);
  5771. }
  5772. {
  5773. RD::Uniform u;
  5774. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  5775. u.binding = 12;
  5776. for (int i = 0; i < RenderBuffers::MAX_GIPROBES; i++) {
  5777. u.ids.push_back(rb->giprobe_textures[i]);
  5778. }
  5779. uniforms.push_back(u);
  5780. }
  5781. {
  5782. RD::Uniform u;
  5783. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  5784. u.binding = 13;
  5785. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  5786. uniforms.push_back(u);
  5787. }
  5788. rb->volumetric_fog->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, 0), 0);
  5789. SWAP(uniforms.write[7].ids.write[0], uniforms.write[8].ids.write[0]);
  5790. rb->volumetric_fog->uniform_set2 = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, 0), 0);
  5791. }
  5792. bool using_sdfgi = env->volumetric_fog_gi_inject > 0.0001 && env->sdfgi_enabled && (rb->sdfgi != nullptr);
  5793. if (using_sdfgi) {
  5794. if (rb->volumetric_fog->sdfgi_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sdfgi_uniform_set)) {
  5795. Vector<RD::Uniform> uniforms;
  5796. {
  5797. RD::Uniform u;
  5798. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  5799. u.binding = 0;
  5800. u.ids.push_back(gi.sdfgi_ubo);
  5801. uniforms.push_back(u);
  5802. }
  5803. {
  5804. RD::Uniform u;
  5805. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  5806. u.binding = 1;
  5807. u.ids.push_back(rb->sdfgi->ambient_texture);
  5808. uniforms.push_back(u);
  5809. }
  5810. {
  5811. RD::Uniform u;
  5812. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  5813. u.binding = 2;
  5814. u.ids.push_back(rb->sdfgi->occlusion_texture);
  5815. uniforms.push_back(u);
  5816. }
  5817. rb->volumetric_fog->sdfgi_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI), 1);
  5818. }
  5819. }
  5820. rb->volumetric_fog->length = env->volumetric_fog_length;
  5821. rb->volumetric_fog->spread = env->volumetric_fog_detail_spread;
  5822. VolumetricFogShader::PushConstant push_constant;
  5823. Vector2 frustum_near_size = p_cam_projection.get_viewport_half_extents();
  5824. Vector2 frustum_far_size = p_cam_projection.get_far_plane_half_extents();
  5825. float z_near = p_cam_projection.get_z_near();
  5826. float z_far = p_cam_projection.get_z_far();
  5827. float fog_end = env->volumetric_fog_length;
  5828. Vector2 fog_far_size = frustum_near_size.lerp(frustum_far_size, (fog_end - z_near) / (z_far - z_near));
  5829. Vector2 fog_near_size;
  5830. if (p_cam_projection.is_orthogonal()) {
  5831. fog_near_size = fog_far_size;
  5832. } else {
  5833. fog_near_size = Vector2();
  5834. }
  5835. push_constant.fog_frustum_size_begin[0] = fog_near_size.x;
  5836. push_constant.fog_frustum_size_begin[1] = fog_near_size.y;
  5837. push_constant.fog_frustum_size_end[0] = fog_far_size.x;
  5838. push_constant.fog_frustum_size_end[1] = fog_far_size.y;
  5839. push_constant.z_near = z_near;
  5840. push_constant.z_far = z_far;
  5841. push_constant.fog_frustum_end = fog_end;
  5842. push_constant.fog_volume_size[0] = rb->volumetric_fog->width;
  5843. push_constant.fog_volume_size[1] = rb->volumetric_fog->height;
  5844. push_constant.fog_volume_size[2] = rb->volumetric_fog->depth;
  5845. push_constant.directional_light_count = p_directional_light_count;
  5846. Color light = env->volumetric_fog_light.to_linear();
  5847. push_constant.light_energy[0] = light.r * env->volumetric_fog_light_energy;
  5848. push_constant.light_energy[1] = light.g * env->volumetric_fog_light_energy;
  5849. push_constant.light_energy[2] = light.b * env->volumetric_fog_light_energy;
  5850. push_constant.base_density = env->volumetric_fog_density;
  5851. push_constant.detail_spread = env->volumetric_fog_detail_spread;
  5852. push_constant.gi_inject = env->volumetric_fog_gi_inject;
  5853. push_constant.cam_rotation[0] = p_cam_transform.basis[0][0];
  5854. push_constant.cam_rotation[1] = p_cam_transform.basis[1][0];
  5855. push_constant.cam_rotation[2] = p_cam_transform.basis[2][0];
  5856. push_constant.cam_rotation[3] = 0;
  5857. push_constant.cam_rotation[4] = p_cam_transform.basis[0][1];
  5858. push_constant.cam_rotation[5] = p_cam_transform.basis[1][1];
  5859. push_constant.cam_rotation[6] = p_cam_transform.basis[2][1];
  5860. push_constant.cam_rotation[7] = 0;
  5861. push_constant.cam_rotation[8] = p_cam_transform.basis[0][2];
  5862. push_constant.cam_rotation[9] = p_cam_transform.basis[1][2];
  5863. push_constant.cam_rotation[10] = p_cam_transform.basis[2][2];
  5864. push_constant.cam_rotation[11] = 0;
  5865. push_constant.filter_axis = 0;
  5866. push_constant.max_gi_probes = env->volumetric_fog_gi_inject > 0.001 ? p_gi_probe_count : 0;
  5867. /* Vector2 dssize = directional_shadow_get_size();
  5868. push_constant.directional_shadow_pixel_size[0] = 1.0 / dssize.x;
  5869. push_constant.directional_shadow_pixel_size[1] = 1.0 / dssize.y;
  5870. */
  5871. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  5872. bool use_filter = volumetric_fog_filter_active;
  5873. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[using_sdfgi ? VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI : VOLUMETRIC_FOG_SHADER_DENSITY]);
  5874. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0);
  5875. if (using_sdfgi) {
  5876. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->sdfgi_uniform_set, 1);
  5877. }
  5878. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VolumetricFogShader::PushConstant));
  5879. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth, 4, 4, 4);
  5880. RD::get_singleton()->compute_list_add_barrier(compute_list);
  5881. if (use_filter) {
  5882. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FILTER]);
  5883. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0);
  5884. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VolumetricFogShader::PushConstant));
  5885. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth, 8, 8, 1);
  5886. RD::get_singleton()->compute_list_add_barrier(compute_list);
  5887. push_constant.filter_axis = 1;
  5888. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set2, 0);
  5889. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VolumetricFogShader::PushConstant));
  5890. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth, 8, 8, 1);
  5891. RD::get_singleton()->compute_list_add_barrier(compute_list);
  5892. }
  5893. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FOG]);
  5894. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0);
  5895. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VolumetricFogShader::PushConstant));
  5896. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, 1, 8, 8, 1);
  5897. RD::get_singleton()->compute_list_end();
  5898. }
  5899. void RendererSceneRenderRD::render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, const PagedArray<GeometryInstance *> &p_instances, const PagedArray<RID> &p_lights, const PagedArray<RID> &p_reflection_probes, const PagedArray<RID> &p_gi_probes, const PagedArray<RID> &p_decals, const PagedArray<RID> &p_lightmaps, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_lod_threshold) {
  5900. Color clear_color;
  5901. if (p_render_buffers.is_valid()) {
  5902. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  5903. ERR_FAIL_COND(!rb);
  5904. clear_color = storage->render_target_get_clear_request_color(rb->render_target);
  5905. } else {
  5906. clear_color = storage->get_default_clear_color();
  5907. }
  5908. //assign render indices to giprobes
  5909. for (uint32_t i = 0; i < (uint32_t)p_gi_probes.size(); i++) {
  5910. GIProbeInstance *giprobe_inst = gi_probe_instance_owner.getornull(p_gi_probes[i]);
  5911. if (giprobe_inst) {
  5912. giprobe_inst->render_index = i;
  5913. }
  5914. }
  5915. const PagedArray<RID> *lights = &p_lights;
  5916. const PagedArray<RID> *reflections = &p_reflection_probes;
  5917. const PagedArray<RID> *gi_probes = &p_gi_probes;
  5918. PagedArray<RID> empty;
  5919. if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) {
  5920. lights = &empty;
  5921. reflections = &empty;
  5922. gi_probes = &empty;
  5923. }
  5924. cluster.builder.begin(p_cam_transform.affine_inverse(), p_cam_projection); //prepare cluster
  5925. bool using_shadows = true;
  5926. if (p_reflection_probe.is_valid()) {
  5927. if (!storage->reflection_probe_renders_shadows(reflection_probe_instance_get_probe(p_reflection_probe))) {
  5928. using_shadows = false;
  5929. }
  5930. } else {
  5931. //do not render reflections when rendering a reflection probe
  5932. _setup_reflections(*reflections, p_cam_transform.affine_inverse(), p_environment);
  5933. }
  5934. uint32_t directional_light_count = 0;
  5935. uint32_t positional_light_count = 0;
  5936. _setup_lights(*lights, p_cam_transform.affine_inverse(), p_shadow_atlas, using_shadows, directional_light_count, positional_light_count);
  5937. _setup_decals(p_decals, p_cam_transform.affine_inverse());
  5938. cluster.builder.bake_cluster(); //bake to cluster
  5939. uint32_t gi_probe_count = 0;
  5940. _setup_giprobes(p_render_buffers, p_cam_transform, *gi_probes, gi_probe_count);
  5941. if (p_render_buffers.is_valid()) {
  5942. bool directional_shadows = false;
  5943. for (uint32_t i = 0; i < directional_light_count; i++) {
  5944. if (cluster.directional_lights[i].shadow_enabled) {
  5945. directional_shadows = true;
  5946. break;
  5947. }
  5948. }
  5949. _update_volumetric_fog(p_render_buffers, p_environment, p_cam_projection, p_cam_transform, p_shadow_atlas, directional_light_count, directional_shadows, positional_light_count, gi_probe_count);
  5950. }
  5951. _render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_ortogonal, p_instances, directional_light_count, *gi_probes, p_lightmaps, p_environment, p_camera_effects, p_shadow_atlas, p_reflection_atlas, p_reflection_probe, p_reflection_probe_pass, clear_color, p_screen_lod_threshold);
  5952. if (p_render_buffers.is_valid()) {
  5953. RENDER_TIMESTAMP("Tonemap");
  5954. _render_buffers_post_process_and_tonemap(p_render_buffers, p_environment, p_camera_effects, p_cam_projection);
  5955. _render_buffers_debug_draw(p_render_buffers, p_shadow_atlas);
  5956. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SDFGI) {
  5957. _sdfgi_debug_draw(p_render_buffers, p_cam_projection, p_cam_transform);
  5958. }
  5959. }
  5960. }
  5961. void RendererSceneRenderRD::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, const PagedArray<GeometryInstance *> &p_instances, const Plane &p_camera_plane, float p_lod_distance_multiplier, float p_screen_lod_threshold) {
  5962. LightInstance *light_instance = light_instance_owner.getornull(p_light);
  5963. ERR_FAIL_COND(!light_instance);
  5964. Rect2i atlas_rect;
  5965. RID atlas_texture;
  5966. bool using_dual_paraboloid = false;
  5967. bool using_dual_paraboloid_flip = false;
  5968. float znear = 0;
  5969. float zfar = 0;
  5970. RID render_fb;
  5971. RID render_texture;
  5972. float bias = 0;
  5973. float normal_bias = 0;
  5974. bool use_pancake = false;
  5975. bool use_linear_depth = false;
  5976. bool render_cubemap = false;
  5977. bool finalize_cubemap = false;
  5978. CameraMatrix light_projection;
  5979. Transform light_transform;
  5980. if (storage->light_get_type(light_instance->light) == RS::LIGHT_DIRECTIONAL) {
  5981. //set pssm stuff
  5982. if (light_instance->last_scene_shadow_pass != scene_pass) {
  5983. light_instance->directional_rect = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light);
  5984. directional_shadow.current_light++;
  5985. light_instance->last_scene_shadow_pass = scene_pass;
  5986. }
  5987. use_pancake = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE) > 0;
  5988. light_projection = light_instance->shadow_transform[p_pass].camera;
  5989. light_transform = light_instance->shadow_transform[p_pass].transform;
  5990. atlas_rect.position.x = light_instance->directional_rect.position.x;
  5991. atlas_rect.position.y = light_instance->directional_rect.position.y;
  5992. atlas_rect.size.width = light_instance->directional_rect.size.x;
  5993. atlas_rect.size.height = light_instance->directional_rect.size.y;
  5994. if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  5995. atlas_rect.size.width /= 2;
  5996. atlas_rect.size.height /= 2;
  5997. if (p_pass == 1) {
  5998. atlas_rect.position.x += atlas_rect.size.width;
  5999. } else if (p_pass == 2) {
  6000. atlas_rect.position.y += atlas_rect.size.height;
  6001. } else if (p_pass == 3) {
  6002. atlas_rect.position.x += atlas_rect.size.width;
  6003. atlas_rect.position.y += atlas_rect.size.height;
  6004. }
  6005. } else if (storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  6006. atlas_rect.size.height /= 2;
  6007. if (p_pass == 0) {
  6008. } else {
  6009. atlas_rect.position.y += atlas_rect.size.height;
  6010. }
  6011. }
  6012. light_instance->shadow_transform[p_pass].atlas_rect = atlas_rect;
  6013. light_instance->shadow_transform[p_pass].atlas_rect.position /= directional_shadow.size;
  6014. light_instance->shadow_transform[p_pass].atlas_rect.size /= directional_shadow.size;
  6015. float bias_mult = light_instance->shadow_transform[p_pass].bias_scale;
  6016. zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
  6017. bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_BIAS) * bias_mult;
  6018. normal_bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * bias_mult;
  6019. ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size);
  6020. render_fb = shadow_map->fb;
  6021. render_texture = shadow_map->depth;
  6022. atlas_texture = directional_shadow.depth;
  6023. } else {
  6024. //set from shadow atlas
  6025. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  6026. ERR_FAIL_COND(!shadow_atlas);
  6027. ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
  6028. uint32_t key = shadow_atlas->shadow_owners[p_light];
  6029. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  6030. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  6031. ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size());
  6032. uint32_t quadrant_size = shadow_atlas->size >> 1;
  6033. atlas_rect.position.x = (quadrant & 1) * quadrant_size;
  6034. atlas_rect.position.y = (quadrant >> 1) * quadrant_size;
  6035. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  6036. atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  6037. atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  6038. atlas_rect.size.width = shadow_size;
  6039. atlas_rect.size.height = shadow_size;
  6040. atlas_texture = shadow_atlas->depth;
  6041. zfar = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
  6042. bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_BIAS);
  6043. normal_bias = storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS);
  6044. if (storage->light_get_type(light_instance->light) == RS::LIGHT_OMNI) {
  6045. if (storage->light_omni_get_shadow_mode(light_instance->light) == RS::LIGHT_OMNI_SHADOW_CUBE) {
  6046. ShadowCubemap *cubemap = _get_shadow_cubemap(shadow_size / 2);
  6047. render_fb = cubemap->side_fb[p_pass];
  6048. render_texture = cubemap->cubemap;
  6049. light_projection = light_instance->shadow_transform[0].camera;
  6050. light_transform = light_instance->shadow_transform[0].transform;
  6051. render_cubemap = true;
  6052. finalize_cubemap = p_pass == 5;
  6053. } else {
  6054. light_projection = light_instance->shadow_transform[0].camera;
  6055. light_transform = light_instance->shadow_transform[0].transform;
  6056. atlas_rect.size.height /= 2;
  6057. atlas_rect.position.y += p_pass * atlas_rect.size.height;
  6058. using_dual_paraboloid = true;
  6059. using_dual_paraboloid_flip = p_pass == 1;
  6060. ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size);
  6061. render_fb = shadow_map->fb;
  6062. render_texture = shadow_map->depth;
  6063. }
  6064. } else if (storage->light_get_type(light_instance->light) == RS::LIGHT_SPOT) {
  6065. light_projection = light_instance->shadow_transform[0].camera;
  6066. light_transform = light_instance->shadow_transform[0].transform;
  6067. ShadowMap *shadow_map = _get_shadow_map(atlas_rect.size);
  6068. render_fb = shadow_map->fb;
  6069. render_texture = shadow_map->depth;
  6070. znear = light_instance->shadow_transform[0].camera.get_z_near();
  6071. use_linear_depth = true;
  6072. }
  6073. }
  6074. if (render_cubemap) {
  6075. //rendering to cubemap
  6076. _render_shadow(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, false, false, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_lod_threshold);
  6077. if (finalize_cubemap) {
  6078. //reblit
  6079. atlas_rect.size.height /= 2;
  6080. storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_texture, atlas_rect, light_projection.get_z_near(), light_projection.get_z_far(), 0.0, false);
  6081. atlas_rect.position.y += atlas_rect.size.height;
  6082. storage->get_effects()->copy_cubemap_to_dp(render_texture, atlas_texture, atlas_rect, light_projection.get_z_near(), light_projection.get_z_far(), 0.0, true);
  6083. }
  6084. } else {
  6085. //render shadow
  6086. _render_shadow(render_fb, p_instances, light_projection, light_transform, zfar, bias, normal_bias, using_dual_paraboloid, using_dual_paraboloid_flip, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_lod_threshold);
  6087. //copy to atlas
  6088. if (use_linear_depth) {
  6089. storage->get_effects()->copy_depth_to_rect_and_linearize(render_texture, atlas_texture, atlas_rect, true, znear, zfar);
  6090. } else {
  6091. storage->get_effects()->copy_depth_to_rect(render_texture, atlas_texture, atlas_rect, true);
  6092. }
  6093. //does not work from depth to color
  6094. //RD::get_singleton()->texture_copy(render_texture, atlas_texture, Vector3(0, 0, 0), Vector3(atlas_rect.position.x, atlas_rect.position.y, 0), Vector3(atlas_rect.size.x, atlas_rect.size.y, 1), 0, 0, 0, 0, true);
  6095. }
  6096. }
  6097. void RendererSceneRenderRD::render_material(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, const PagedArray<GeometryInstance *> &p_instances, RID p_framebuffer, const Rect2i &p_region) {
  6098. _render_material(p_cam_transform, p_cam_projection, p_cam_ortogonal, p_instances, p_framebuffer, p_region);
  6099. }
  6100. void RendererSceneRenderRD::render_sdfgi(RID p_render_buffers, int p_region, const PagedArray<GeometryInstance *> &p_instances) {
  6101. //print_line("rendering region " + itos(p_region));
  6102. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  6103. ERR_FAIL_COND(!rb);
  6104. ERR_FAIL_COND(!rb->sdfgi);
  6105. AABB bounds;
  6106. Vector3i from;
  6107. Vector3i size;
  6108. int cascade_prev = _sdfgi_get_pending_region_data(p_render_buffers, p_region - 1, from, size, bounds);
  6109. int cascade_next = _sdfgi_get_pending_region_data(p_render_buffers, p_region + 1, from, size, bounds);
  6110. int cascade = _sdfgi_get_pending_region_data(p_render_buffers, p_region, from, size, bounds);
  6111. ERR_FAIL_COND(cascade < 0);
  6112. if (cascade_prev != cascade) {
  6113. //initialize render
  6114. RD::get_singleton()->texture_clear(rb->sdfgi->render_albedo, Color(0, 0, 0, 0), 0, 1, 0, 1, true);
  6115. RD::get_singleton()->texture_clear(rb->sdfgi->render_emission, Color(0, 0, 0, 0), 0, 1, 0, 1, true);
  6116. RD::get_singleton()->texture_clear(rb->sdfgi->render_emission_aniso, Color(0, 0, 0, 0), 0, 1, 0, 1, true);
  6117. RD::get_singleton()->texture_clear(rb->sdfgi->render_geom_facing, Color(0, 0, 0, 0), 0, 1, 0, 1, true);
  6118. }
  6119. //print_line("rendering cascade " + itos(p_region) + " objects: " + itos(p_cull_count) + " bounds: " + bounds + " from: " + from + " size: " + size + " cell size: " + rtos(rb->sdfgi->cascades[cascade].cell_size));
  6120. _render_sdfgi(p_render_buffers, from, size, bounds, p_instances, rb->sdfgi->render_albedo, rb->sdfgi->render_emission, rb->sdfgi->render_emission_aniso, rb->sdfgi->render_geom_facing);
  6121. if (cascade_next != cascade) {
  6122. RENDER_TIMESTAMP(">SDFGI Update SDF");
  6123. //done rendering! must update SDF
  6124. //clear dispatch indirect data
  6125. SDGIShader::PreprocessPushConstant push_constant;
  6126. zeromem(&push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6127. RENDER_TIMESTAMP("Scroll SDF");
  6128. //scroll
  6129. if (rb->sdfgi->cascades[cascade].dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
  6130. //for scroll
  6131. Vector3i dirty = rb->sdfgi->cascades[cascade].dirty_regions;
  6132. push_constant.scroll[0] = dirty.x;
  6133. push_constant.scroll[1] = dirty.y;
  6134. push_constant.scroll[2] = dirty.z;
  6135. } else {
  6136. //for no scroll
  6137. push_constant.scroll[0] = 0;
  6138. push_constant.scroll[1] = 0;
  6139. push_constant.scroll[2] = 0;
  6140. }
  6141. push_constant.grid_size = rb->sdfgi->cascade_size;
  6142. push_constant.cascade = cascade;
  6143. if (rb->sdfgi->cascades[cascade].dirty_regions != SDFGI::Cascade::DIRTY_ALL) {
  6144. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  6145. //must pre scroll existing data because not all is dirty
  6146. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_SCROLL]);
  6147. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].scroll_uniform_set, 0);
  6148. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6149. RD::get_singleton()->compute_list_dispatch_indirect(compute_list, rb->sdfgi->cascades[cascade].solid_cell_dispatch_buffer, 0);
  6150. // no barrier do all together
  6151. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_SCROLL_OCCLUSION]);
  6152. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].scroll_occlusion_uniform_set, 0);
  6153. Vector3i dirty = rb->sdfgi->cascades[cascade].dirty_regions;
  6154. Vector3i groups;
  6155. groups.x = rb->sdfgi->cascade_size - ABS(dirty.x);
  6156. groups.y = rb->sdfgi->cascade_size - ABS(dirty.y);
  6157. groups.z = rb->sdfgi->cascade_size - ABS(dirty.z);
  6158. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6159. RD::get_singleton()->compute_list_dispatch_threads(compute_list, groups.x, groups.y, groups.z, 4, 4, 4);
  6160. //no barrier, continue together
  6161. {
  6162. //scroll probes and their history also
  6163. SDGIShader::IntegratePushConstant ipush_constant;
  6164. ipush_constant.grid_size[1] = rb->sdfgi->cascade_size;
  6165. ipush_constant.grid_size[2] = rb->sdfgi->cascade_size;
  6166. ipush_constant.grid_size[0] = rb->sdfgi->cascade_size;
  6167. ipush_constant.max_cascades = rb->sdfgi->cascades.size();
  6168. ipush_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  6169. ipush_constant.history_index = 0;
  6170. ipush_constant.history_size = rb->sdfgi->history_size;
  6171. ipush_constant.ray_count = 0;
  6172. ipush_constant.ray_bias = 0;
  6173. ipush_constant.sky_mode = 0;
  6174. ipush_constant.sky_energy = 0;
  6175. ipush_constant.sky_color[0] = 0;
  6176. ipush_constant.sky_color[1] = 0;
  6177. ipush_constant.sky_color[2] = 0;
  6178. ipush_constant.y_mult = rb->sdfgi->y_mult;
  6179. ipush_constant.store_ambient_texture = false;
  6180. ipush_constant.image_size[0] = rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count;
  6181. ipush_constant.image_size[1] = rb->sdfgi->probe_axis_count;
  6182. int32_t probe_divisor = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  6183. ipush_constant.cascade = cascade;
  6184. ipush_constant.world_offset[0] = rb->sdfgi->cascades[cascade].position.x / probe_divisor;
  6185. ipush_constant.world_offset[1] = rb->sdfgi->cascades[cascade].position.y / probe_divisor;
  6186. ipush_constant.world_offset[2] = rb->sdfgi->cascades[cascade].position.z / probe_divisor;
  6187. ipush_constant.scroll[0] = dirty.x / probe_divisor;
  6188. ipush_constant.scroll[1] = dirty.y / probe_divisor;
  6189. ipush_constant.scroll[2] = dirty.z / probe_divisor;
  6190. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.integrate_pipeline[SDGIShader::INTEGRATE_MODE_SCROLL]);
  6191. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].integrate_uniform_set, 0);
  6192. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdfgi_shader.integrate_default_sky_uniform_set, 1);
  6193. RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDGIShader::IntegratePushConstant));
  6194. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count, rb->sdfgi->probe_axis_count, 1, 8, 8, 1);
  6195. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6196. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.integrate_pipeline[SDGIShader::INTEGRATE_MODE_SCROLL_STORE]);
  6197. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].integrate_uniform_set, 0);
  6198. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sdfgi_shader.integrate_default_sky_uniform_set, 1);
  6199. RD::get_singleton()->compute_list_set_push_constant(compute_list, &ipush_constant, sizeof(SDGIShader::IntegratePushConstant));
  6200. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count, rb->sdfgi->probe_axis_count, 1, 8, 8, 1);
  6201. }
  6202. //ok finally barrier
  6203. RD::get_singleton()->compute_list_end();
  6204. }
  6205. //clear dispatch indirect data
  6206. uint32_t dispatch_indirct_data[4] = { 0, 0, 0, 0 };
  6207. RD::get_singleton()->buffer_update(rb->sdfgi->cascades[cascade].solid_cell_dispatch_buffer, 0, sizeof(uint32_t) * 4, dispatch_indirct_data, true);
  6208. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  6209. bool half_size = true; //much faster, very little difference
  6210. static const int optimized_jf_group_size = 8;
  6211. if (half_size) {
  6212. push_constant.grid_size >>= 1;
  6213. uint32_t cascade_half_size = rb->sdfgi->cascade_size >> 1;
  6214. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE_HALF]);
  6215. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->sdf_initialize_half_uniform_set, 0);
  6216. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6217. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size, 4, 4, 4);
  6218. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6219. //must start with regular jumpflood
  6220. push_constant.half_size = true;
  6221. {
  6222. RENDER_TIMESTAMP("SDFGI Jump Flood (Half Size)");
  6223. uint32_t s = cascade_half_size;
  6224. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD]);
  6225. int jf_us = 0;
  6226. //start with regular jump flood for very coarse reads, as this is impossible to optimize
  6227. while (s > 1) {
  6228. s /= 2;
  6229. push_constant.step_size = s;
  6230. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_half_uniform_set[jf_us], 0);
  6231. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6232. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size, 4, 4, 4);
  6233. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6234. jf_us = jf_us == 0 ? 1 : 0;
  6235. if (cascade_half_size / (s / 2) >= optimized_jf_group_size) {
  6236. break;
  6237. }
  6238. }
  6239. RENDER_TIMESTAMP("SDFGI Jump Flood Optimized (Half Size)");
  6240. //continue with optimized jump flood for smaller reads
  6241. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]);
  6242. while (s > 1) {
  6243. s /= 2;
  6244. push_constant.step_size = s;
  6245. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_half_uniform_set[jf_us], 0);
  6246. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6247. RD::get_singleton()->compute_list_dispatch_threads(compute_list, cascade_half_size, cascade_half_size, cascade_half_size, optimized_jf_group_size, optimized_jf_group_size, optimized_jf_group_size);
  6248. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6249. jf_us = jf_us == 0 ? 1 : 0;
  6250. }
  6251. }
  6252. // restore grid size for last passes
  6253. push_constant.grid_size = rb->sdfgi->cascade_size;
  6254. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_UPSCALE]);
  6255. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->sdf_upscale_uniform_set, 0);
  6256. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6257. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, 4, 4, 4);
  6258. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6259. //run one pass of fullsize jumpflood to fix up half size arctifacts
  6260. push_constant.half_size = false;
  6261. push_constant.step_size = 1;
  6262. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]);
  6263. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_uniform_set[rb->sdfgi->upscale_jfa_uniform_set_index], 0);
  6264. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6265. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, optimized_jf_group_size, optimized_jf_group_size, optimized_jf_group_size);
  6266. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6267. } else {
  6268. //full size jumpflood
  6269. RENDER_TIMESTAMP("SDFGI Jump Flood");
  6270. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_INITIALIZE]);
  6271. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->sdf_initialize_uniform_set, 0);
  6272. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6273. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, 4, 4, 4);
  6274. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6275. push_constant.half_size = false;
  6276. {
  6277. uint32_t s = rb->sdfgi->cascade_size;
  6278. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD]);
  6279. int jf_us = 0;
  6280. //start with regular jump flood for very coarse reads, as this is impossible to optimize
  6281. while (s > 1) {
  6282. s /= 2;
  6283. push_constant.step_size = s;
  6284. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_uniform_set[jf_us], 0);
  6285. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6286. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, 4, 4, 4);
  6287. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6288. jf_us = jf_us == 0 ? 1 : 0;
  6289. if (rb->sdfgi->cascade_size / (s / 2) >= optimized_jf_group_size) {
  6290. break;
  6291. }
  6292. }
  6293. RENDER_TIMESTAMP("SDFGI Jump Flood Optimized");
  6294. //continue with optimized jump flood for smaller reads
  6295. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_JUMP_FLOOD_OPTIMIZED]);
  6296. while (s > 1) {
  6297. s /= 2;
  6298. push_constant.step_size = s;
  6299. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->jump_flood_uniform_set[jf_us], 0);
  6300. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6301. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, optimized_jf_group_size, optimized_jf_group_size, optimized_jf_group_size);
  6302. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6303. jf_us = jf_us == 0 ? 1 : 0;
  6304. }
  6305. }
  6306. }
  6307. RENDER_TIMESTAMP("SDFGI Occlusion");
  6308. // occlusion
  6309. {
  6310. uint32_t probe_size = rb->sdfgi->cascade_size / SDFGI::PROBE_DIVISOR;
  6311. Vector3i probe_global_pos = rb->sdfgi->cascades[cascade].position / probe_size;
  6312. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_OCCLUSION]);
  6313. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->occlusion_uniform_set, 0);
  6314. for (int i = 0; i < 8; i++) {
  6315. //dispatch all at once for performance
  6316. Vector3i offset(i & 1, (i >> 1) & 1, (i >> 2) & 1);
  6317. if ((probe_global_pos.x & 1) != 0) {
  6318. offset.x = (offset.x + 1) & 1;
  6319. }
  6320. if ((probe_global_pos.y & 1) != 0) {
  6321. offset.y = (offset.y + 1) & 1;
  6322. }
  6323. if ((probe_global_pos.z & 1) != 0) {
  6324. offset.z = (offset.z + 1) & 1;
  6325. }
  6326. push_constant.probe_offset[0] = offset.x;
  6327. push_constant.probe_offset[1] = offset.y;
  6328. push_constant.probe_offset[2] = offset.z;
  6329. push_constant.occlusion_index = i;
  6330. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6331. Vector3i groups = Vector3i(probe_size + 1, probe_size + 1, probe_size + 1) - offset; //if offset, it's one less probe per axis to compute
  6332. RD::get_singleton()->compute_list_dispatch(compute_list, groups.x, groups.y, groups.z);
  6333. }
  6334. RD::get_singleton()->compute_list_add_barrier(compute_list);
  6335. }
  6336. RENDER_TIMESTAMP("SDFGI Store");
  6337. // store
  6338. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.preprocess_pipeline[SDGIShader::PRE_PROCESS_STORE]);
  6339. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->sdfgi->cascades[cascade].sdf_store_uniform_set, 0);
  6340. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SDGIShader::PreprocessPushConstant));
  6341. RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, 4, 4, 4);
  6342. RD::get_singleton()->compute_list_end();
  6343. //clear these textures, as they will have previous garbage on next draw
  6344. RD::get_singleton()->texture_clear(rb->sdfgi->cascades[cascade].light_tex, Color(0, 0, 0, 0), 0, 1, 0, 1, true);
  6345. RD::get_singleton()->texture_clear(rb->sdfgi->cascades[cascade].light_aniso_0_tex, Color(0, 0, 0, 0), 0, 1, 0, 1, true);
  6346. RD::get_singleton()->texture_clear(rb->sdfgi->cascades[cascade].light_aniso_1_tex, Color(0, 0, 0, 0), 0, 1, 0, 1, true);
  6347. #if 0
  6348. Vector<uint8_t> data = RD::get_singleton()->texture_get_data(rb->sdfgi->cascades[cascade].sdf, 0);
  6349. Ref<Image> img;
  6350. img.instance();
  6351. for (uint32_t i = 0; i < rb->sdfgi->cascade_size; i++) {
  6352. Vector<uint8_t> subarr = data.subarray(128 * 128 * i, 128 * 128 * (i + 1) - 1);
  6353. img->create(rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, false, Image::FORMAT_L8, subarr);
  6354. img->save_png("res://cascade_sdf_" + itos(cascade) + "_" + itos(i) + ".png");
  6355. }
  6356. //finalize render and update sdf
  6357. #endif
  6358. #if 0
  6359. Vector<uint8_t> data = RD::get_singleton()->texture_get_data(rb->sdfgi->render_albedo, 0);
  6360. Ref<Image> img;
  6361. img.instance();
  6362. for (uint32_t i = 0; i < rb->sdfgi->cascade_size; i++) {
  6363. Vector<uint8_t> subarr = data.subarray(128 * 128 * i * 2, 128 * 128 * (i + 1) * 2 - 1);
  6364. img->create(rb->sdfgi->cascade_size, rb->sdfgi->cascade_size, false, Image::FORMAT_RGB565, subarr);
  6365. img->convert(Image::FORMAT_RGBA8);
  6366. img->save_png("res://cascade_" + itos(cascade) + "_" + itos(i) + ".png");
  6367. }
  6368. //finalize render and update sdf
  6369. #endif
  6370. RENDER_TIMESTAMP("<SDFGI Update SDF");
  6371. }
  6372. }
  6373. void RendererSceneRenderRD::render_particle_collider_heightfield(RID p_collider, const Transform &p_transform, const PagedArray<GeometryInstance *> &p_instances) {
  6374. ERR_FAIL_COND(!storage->particles_collision_is_heightfield(p_collider));
  6375. Vector3 extents = storage->particles_collision_get_extents(p_collider) * p_transform.basis.get_scale();
  6376. CameraMatrix cm;
  6377. cm.set_orthogonal(-extents.x, extents.x, -extents.z, extents.z, 0, extents.y * 2.0);
  6378. Vector3 cam_pos = p_transform.origin;
  6379. cam_pos.y += extents.y;
  6380. Transform cam_xform;
  6381. cam_xform.set_look_at(cam_pos, cam_pos - p_transform.basis.get_axis(Vector3::AXIS_Y), -p_transform.basis.get_axis(Vector3::AXIS_Z).normalized());
  6382. RID fb = storage->particles_collision_get_heightfield_framebuffer(p_collider);
  6383. _render_particle_collider_heightfield(fb, cam_xform, cm, p_instances);
  6384. }
  6385. void RendererSceneRenderRD::render_sdfgi_static_lights(RID p_render_buffers, uint32_t p_cascade_count, const uint32_t *p_cascade_indices, const PagedArray<RID> *p_positional_light_cull_result) {
  6386. RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
  6387. ERR_FAIL_COND(!rb);
  6388. ERR_FAIL_COND(!rb->sdfgi);
  6389. _sdfgi_update_cascades(p_render_buffers); //need cascades updated for this
  6390. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  6391. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, sdfgi_shader.direct_light_pipeline[SDGIShader::DIRECT_LIGHT_MODE_STATIC]);
  6392. SDGIShader::DirectLightPushConstant dl_push_constant;
  6393. dl_push_constant.grid_size[0] = rb->sdfgi->cascade_size;
  6394. dl_push_constant.grid_size[1] = rb->sdfgi->cascade_size;
  6395. dl_push_constant.grid_size[2] = rb->sdfgi->cascade_size;
  6396. dl_push_constant.max_cascades = rb->sdfgi->cascades.size();
  6397. dl_push_constant.probe_axis_size = rb->sdfgi->probe_axis_count;
  6398. dl_push_constant.multibounce = false; // this is static light, do not multibounce yet
  6399. dl_push_constant.y_mult = rb->sdfgi->y_mult;
  6400. //all must be processed
  6401. dl_push_constant.process_offset = 0;
  6402. dl_push_constant.process_increment = 1;
  6403. SDGIShader::Light lights[SDFGI::MAX_STATIC_LIGHTS];
  6404. for (uint32_t i = 0; i < p_cascade_count; i++) {
  6405. ERR_CONTINUE(p_cascade_indices[i] >= rb->sdfgi->cascades.size());
  6406. SDFGI::Cascade &cc = rb->sdfgi->cascades[p_cascade_indices[i]];
  6407. { //fill light buffer
  6408. AABB cascade_aabb;
  6409. cascade_aabb.position = Vector3((Vector3i(1, 1, 1) * -int32_t(rb->sdfgi->cascade_size >> 1) + cc.position)) * cc.cell_size;
  6410. cascade_aabb.size = Vector3(1, 1, 1) * rb->sdfgi->cascade_size * cc.cell_size;
  6411. int idx = 0;
  6412. for (uint32_t j = 0; j < (uint32_t)p_positional_light_cull_result[i].size(); j++) {
  6413. if (idx == SDFGI::MAX_STATIC_LIGHTS) {
  6414. break;
  6415. }
  6416. LightInstance *li = light_instance_owner.getornull(p_positional_light_cull_result[i][j]);
  6417. ERR_CONTINUE(!li);
  6418. uint32_t max_sdfgi_cascade = storage->light_get_max_sdfgi_cascade(li->light);
  6419. if (p_cascade_indices[i] > max_sdfgi_cascade) {
  6420. continue;
  6421. }
  6422. if (!cascade_aabb.intersects(li->aabb)) {
  6423. continue;
  6424. }
  6425. lights[idx].type = storage->light_get_type(li->light);
  6426. Vector3 dir = -li->transform.basis.get_axis(Vector3::AXIS_Z);
  6427. if (lights[idx].type == RS::LIGHT_DIRECTIONAL) {
  6428. dir.y *= rb->sdfgi->y_mult; //only makes sense for directional
  6429. dir.normalize();
  6430. }
  6431. lights[idx].direction[0] = dir.x;
  6432. lights[idx].direction[1] = dir.y;
  6433. lights[idx].direction[2] = dir.z;
  6434. Vector3 pos = li->transform.origin;
  6435. pos.y *= rb->sdfgi->y_mult;
  6436. lights[idx].position[0] = pos.x;
  6437. lights[idx].position[1] = pos.y;
  6438. lights[idx].position[2] = pos.z;
  6439. Color color = storage->light_get_color(li->light);
  6440. color = color.to_linear();
  6441. lights[idx].color[0] = color.r;
  6442. lights[idx].color[1] = color.g;
  6443. lights[idx].color[2] = color.b;
  6444. lights[idx].energy = storage->light_get_param(li->light, RS::LIGHT_PARAM_ENERGY);
  6445. lights[idx].has_shadow = storage->light_has_shadow(li->light);
  6446. lights[idx].attenuation = storage->light_get_param(li->light, RS::LIGHT_PARAM_ATTENUATION);
  6447. lights[idx].radius = storage->light_get_param(li->light, RS::LIGHT_PARAM_RANGE);
  6448. lights[idx].spot_angle = Math::deg2rad(storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ANGLE));
  6449. lights[idx].spot_attenuation = storage->light_get_param(li->light, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  6450. idx++;
  6451. }
  6452. if (idx > 0) {
  6453. RD::get_singleton()->buffer_update(cc.lights_buffer, 0, idx * sizeof(SDGIShader::Light), lights, true);
  6454. }
  6455. dl_push_constant.light_count = idx;
  6456. }
  6457. dl_push_constant.cascade = p_cascade_indices[i];
  6458. if (dl_push_constant.light_count > 0) {
  6459. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, cc.sdf_direct_light_uniform_set, 0);
  6460. RD::get_singleton()->compute_list_set_push_constant(compute_list, &dl_push_constant, sizeof(SDGIShader::DirectLightPushConstant));
  6461. RD::get_singleton()->compute_list_dispatch_indirect(compute_list, cc.solid_cell_dispatch_buffer, 0);
  6462. }
  6463. }
  6464. RD::get_singleton()->compute_list_end();
  6465. }
  6466. bool RendererSceneRenderRD::free(RID p_rid) {
  6467. if (render_buffers_owner.owns(p_rid)) {
  6468. RenderBuffers *rb = render_buffers_owner.getornull(p_rid);
  6469. _free_render_buffer_data(rb);
  6470. memdelete(rb->data);
  6471. if (rb->sdfgi) {
  6472. _sdfgi_erase(rb);
  6473. }
  6474. if (rb->volumetric_fog) {
  6475. _volumetric_fog_erase(rb);
  6476. }
  6477. render_buffers_owner.free(p_rid);
  6478. } else if (environment_owner.owns(p_rid)) {
  6479. //not much to delete, just free it
  6480. environment_owner.free(p_rid);
  6481. } else if (camera_effects_owner.owns(p_rid)) {
  6482. //not much to delete, just free it
  6483. camera_effects_owner.free(p_rid);
  6484. } else if (reflection_atlas_owner.owns(p_rid)) {
  6485. reflection_atlas_set_size(p_rid, 0, 0);
  6486. reflection_atlas_owner.free(p_rid);
  6487. } else if (reflection_probe_instance_owner.owns(p_rid)) {
  6488. //not much to delete, just free it
  6489. //ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_rid);
  6490. reflection_probe_release_atlas_index(p_rid);
  6491. reflection_probe_instance_owner.free(p_rid);
  6492. } else if (decal_instance_owner.owns(p_rid)) {
  6493. decal_instance_owner.free(p_rid);
  6494. } else if (lightmap_instance_owner.owns(p_rid)) {
  6495. lightmap_instance_owner.free(p_rid);
  6496. } else if (gi_probe_instance_owner.owns(p_rid)) {
  6497. GIProbeInstance *gi_probe = gi_probe_instance_owner.getornull(p_rid);
  6498. if (gi_probe->texture.is_valid()) {
  6499. RD::get_singleton()->free(gi_probe->texture);
  6500. RD::get_singleton()->free(gi_probe->write_buffer);
  6501. }
  6502. for (int i = 0; i < gi_probe->dynamic_maps.size(); i++) {
  6503. RD::get_singleton()->free(gi_probe->dynamic_maps[i].texture);
  6504. RD::get_singleton()->free(gi_probe->dynamic_maps[i].depth);
  6505. }
  6506. gi_probe_instance_owner.free(p_rid);
  6507. } else if (sky_owner.owns(p_rid)) {
  6508. _update_dirty_skys();
  6509. Sky *sky = sky_owner.getornull(p_rid);
  6510. if (sky->radiance.is_valid()) {
  6511. RD::get_singleton()->free(sky->radiance);
  6512. sky->radiance = RID();
  6513. }
  6514. _clear_reflection_data(sky->reflection);
  6515. if (sky->uniform_buffer.is_valid()) {
  6516. RD::get_singleton()->free(sky->uniform_buffer);
  6517. sky->uniform_buffer = RID();
  6518. }
  6519. if (sky->half_res_pass.is_valid()) {
  6520. RD::get_singleton()->free(sky->half_res_pass);
  6521. sky->half_res_pass = RID();
  6522. }
  6523. if (sky->quarter_res_pass.is_valid()) {
  6524. RD::get_singleton()->free(sky->quarter_res_pass);
  6525. sky->quarter_res_pass = RID();
  6526. }
  6527. if (sky->material.is_valid()) {
  6528. storage->free(sky->material);
  6529. }
  6530. sky_owner.free(p_rid);
  6531. } else if (light_instance_owner.owns(p_rid)) {
  6532. LightInstance *light_instance = light_instance_owner.getornull(p_rid);
  6533. //remove from shadow atlases..
  6534. for (Set<RID>::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) {
  6535. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(E->get());
  6536. ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
  6537. uint32_t key = shadow_atlas->shadow_owners[p_rid];
  6538. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  6539. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  6540. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  6541. shadow_atlas->shadow_owners.erase(p_rid);
  6542. }
  6543. light_instance_owner.free(p_rid);
  6544. } else if (shadow_atlas_owner.owns(p_rid)) {
  6545. shadow_atlas_set_size(p_rid, 0);
  6546. shadow_atlas_owner.free(p_rid);
  6547. } else {
  6548. return false;
  6549. }
  6550. return true;
  6551. }
  6552. void RendererSceneRenderRD::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) {
  6553. debug_draw = p_debug_draw;
  6554. }
  6555. void RendererSceneRenderRD::update() {
  6556. _update_dirty_skys();
  6557. }
  6558. void RendererSceneRenderRD::set_time(double p_time, double p_step) {
  6559. time = p_time;
  6560. time_step = p_step;
  6561. }
  6562. void RendererSceneRenderRD::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_limit) {
  6563. screen_space_roughness_limiter = p_enable;
  6564. screen_space_roughness_limiter_amount = p_amount;
  6565. screen_space_roughness_limiter_limit = p_limit;
  6566. }
  6567. bool RendererSceneRenderRD::screen_space_roughness_limiter_is_active() const {
  6568. return screen_space_roughness_limiter;
  6569. }
  6570. float RendererSceneRenderRD::screen_space_roughness_limiter_get_amount() const {
  6571. return screen_space_roughness_limiter_amount;
  6572. }
  6573. float RendererSceneRenderRD::screen_space_roughness_limiter_get_limit() const {
  6574. return screen_space_roughness_limiter_limit;
  6575. }
  6576. TypedArray<Image> RendererSceneRenderRD::bake_render_uv2(RID p_base, const Vector<RID> &p_material_overrides, const Size2i &p_image_size) {
  6577. RD::TextureFormat tf;
  6578. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  6579. tf.width = p_image_size.width; // Always 64x64
  6580. tf.height = p_image_size.height;
  6581. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  6582. RID albedo_alpha_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  6583. RID normal_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  6584. RID orm_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  6585. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  6586. RID emission_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  6587. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  6588. RID depth_write_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  6589. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  6590. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  6591. RID depth_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  6592. Vector<RID> fb_tex;
  6593. fb_tex.push_back(albedo_alpha_tex);
  6594. fb_tex.push_back(normal_tex);
  6595. fb_tex.push_back(orm_tex);
  6596. fb_tex.push_back(emission_tex);
  6597. fb_tex.push_back(depth_write_tex);
  6598. fb_tex.push_back(depth_tex);
  6599. RID fb = RD::get_singleton()->framebuffer_create(fb_tex);
  6600. //RID sampled_light;
  6601. GeometryInstance *gi = geometry_instance_create(p_base);
  6602. uint32_t sc = RSG::storage->mesh_get_surface_count(p_base);
  6603. Vector<RID> materials;
  6604. materials.resize(sc);
  6605. for (uint32_t i = 0; i < sc; i++) {
  6606. if (i < (uint32_t)p_material_overrides.size()) {
  6607. materials.write[i] = p_material_overrides[i];
  6608. }
  6609. }
  6610. geometry_instance_set_surface_materials(gi, materials);
  6611. if (cull_argument.size() == 0) {
  6612. cull_argument.push_back(nullptr);
  6613. }
  6614. cull_argument[0] = gi;
  6615. _render_uv2(cull_argument, fb, Rect2i(0, 0, p_image_size.width, p_image_size.height));
  6616. geometry_instance_free(gi);
  6617. TypedArray<Image> ret;
  6618. {
  6619. PackedByteArray data = RD::get_singleton()->texture_get_data(albedo_alpha_tex, 0);
  6620. Ref<Image> img;
  6621. img.instance();
  6622. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  6623. RD::get_singleton()->free(albedo_alpha_tex);
  6624. ret.push_back(img);
  6625. }
  6626. {
  6627. PackedByteArray data = RD::get_singleton()->texture_get_data(normal_tex, 0);
  6628. Ref<Image> img;
  6629. img.instance();
  6630. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  6631. RD::get_singleton()->free(normal_tex);
  6632. ret.push_back(img);
  6633. }
  6634. {
  6635. PackedByteArray data = RD::get_singleton()->texture_get_data(orm_tex, 0);
  6636. Ref<Image> img;
  6637. img.instance();
  6638. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  6639. RD::get_singleton()->free(orm_tex);
  6640. ret.push_back(img);
  6641. }
  6642. {
  6643. PackedByteArray data = RD::get_singleton()->texture_get_data(emission_tex, 0);
  6644. Ref<Image> img;
  6645. img.instance();
  6646. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBAH, data);
  6647. RD::get_singleton()->free(emission_tex);
  6648. ret.push_back(img);
  6649. }
  6650. RD::get_singleton()->free(depth_write_tex);
  6651. RD::get_singleton()->free(depth_tex);
  6652. return ret;
  6653. }
  6654. void RendererSceneRenderRD::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) {
  6655. sdfgi_debug_probe_pos = p_position;
  6656. sdfgi_debug_probe_dir = p_dir;
  6657. }
  6658. RendererSceneRenderRD *RendererSceneRenderRD::singleton = nullptr;
  6659. RID RendererSceneRenderRD::get_cluster_builder_texture() {
  6660. return cluster.builder.get_cluster_texture();
  6661. }
  6662. RID RendererSceneRenderRD::get_cluster_builder_indices_buffer() {
  6663. return cluster.builder.get_cluster_indices_buffer();
  6664. }
  6665. RID RendererSceneRenderRD::get_reflection_probe_buffer() {
  6666. return cluster.reflection_buffer;
  6667. }
  6668. RID RendererSceneRenderRD::get_positional_light_buffer() {
  6669. return cluster.light_buffer;
  6670. }
  6671. RID RendererSceneRenderRD::get_directional_light_buffer() {
  6672. return cluster.directional_light_buffer;
  6673. }
  6674. RID RendererSceneRenderRD::get_decal_buffer() {
  6675. return cluster.decal_buffer;
  6676. }
  6677. int RendererSceneRenderRD::get_max_directional_lights() const {
  6678. return cluster.max_directional_lights;
  6679. }
  6680. bool RendererSceneRenderRD::is_low_end() const {
  6681. return low_end;
  6682. }
  6683. RendererSceneRenderRD::RendererSceneRenderRD(RendererStorageRD *p_storage) {
  6684. storage = p_storage;
  6685. singleton = this;
  6686. roughness_layers = GLOBAL_GET("rendering/quality/reflections/roughness_layers");
  6687. sky_ggx_samples_quality = GLOBAL_GET("rendering/quality/reflections/ggx_samples");
  6688. sky_use_cubemap_array = GLOBAL_GET("rendering/quality/reflections/texture_array_reflections");
  6689. // sky_use_cubemap_array = false;
  6690. uint32_t textures_per_stage = RD::get_singleton()->limit_get(RD::LIMIT_MAX_TEXTURES_PER_SHADER_STAGE);
  6691. low_end = GLOBAL_GET("rendering/quality/rd_renderer/use_low_end_renderer");
  6692. if (textures_per_stage < 48) {
  6693. low_end = true;
  6694. }
  6695. if (!low_end) {
  6696. //kinda complicated to compute the amount of slots, we try to use as many as we can
  6697. gi_probe_max_lights = 32;
  6698. gi_probe_lights = memnew_arr(GIProbeLight, gi_probe_max_lights);
  6699. gi_probe_lights_uniform = RD::get_singleton()->uniform_buffer_create(gi_probe_max_lights * sizeof(GIProbeLight));
  6700. gi_probe_quality = RS::GIProbeQuality(CLAMP(int(GLOBAL_GET("rendering/quality/gi_probes/quality")), 0, 1));
  6701. String defines = "\n#define MAX_LIGHTS " + itos(gi_probe_max_lights) + "\n";
  6702. Vector<String> versions;
  6703. versions.push_back("\n#define MODE_COMPUTE_LIGHT\n");
  6704. versions.push_back("\n#define MODE_SECOND_BOUNCE\n");
  6705. versions.push_back("\n#define MODE_UPDATE_MIPMAPS\n");
  6706. versions.push_back("\n#define MODE_WRITE_TEXTURE\n");
  6707. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_LIGHTING\n");
  6708. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
  6709. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n");
  6710. versions.push_back("\n#define MODE_DYNAMIC\n#define MODE_DYNAMIC_SHRINK\n#define MODE_DYNAMIC_SHRINK_PLOT\n#define MODE_DYNAMIC_SHRINK_WRITE\n");
  6711. giprobe_shader.initialize(versions, defines);
  6712. giprobe_lighting_shader_version = giprobe_shader.version_create();
  6713. for (int i = 0; i < GI_PROBE_SHADER_VERSION_MAX; i++) {
  6714. giprobe_lighting_shader_version_shaders[i] = giprobe_shader.version_get_shader(giprobe_lighting_shader_version, i);
  6715. giprobe_lighting_shader_version_pipelines[i] = RD::get_singleton()->compute_pipeline_create(giprobe_lighting_shader_version_shaders[i]);
  6716. }
  6717. }
  6718. if (!low_end) {
  6719. String defines;
  6720. Vector<String> versions;
  6721. versions.push_back("\n#define MODE_DEBUG_COLOR\n");
  6722. versions.push_back("\n#define MODE_DEBUG_LIGHT\n");
  6723. versions.push_back("\n#define MODE_DEBUG_EMISSION\n");
  6724. versions.push_back("\n#define MODE_DEBUG_LIGHT\n#define MODE_DEBUG_LIGHT_FULL\n");
  6725. giprobe_debug_shader.initialize(versions, defines);
  6726. giprobe_debug_shader_version = giprobe_debug_shader.version_create();
  6727. for (int i = 0; i < GI_PROBE_DEBUG_MAX; i++) {
  6728. giprobe_debug_shader_version_shaders[i] = giprobe_debug_shader.version_get_shader(giprobe_debug_shader_version, i);
  6729. RD::PipelineRasterizationState rs;
  6730. rs.cull_mode = RD::POLYGON_CULL_FRONT;
  6731. RD::PipelineDepthStencilState ds;
  6732. ds.enable_depth_test = true;
  6733. ds.enable_depth_write = true;
  6734. ds.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL;
  6735. giprobe_debug_shader_version_pipelines[i].setup(giprobe_debug_shader_version_shaders[i], RD::RENDER_PRIMITIVE_TRIANGLES, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
  6736. }
  6737. }
  6738. /* SKY SHADER */
  6739. {
  6740. // Start with the directional lights for the sky
  6741. sky_scene_state.max_directional_lights = 4;
  6742. uint32_t directional_light_buffer_size = sky_scene_state.max_directional_lights * sizeof(SkyDirectionalLightData);
  6743. sky_scene_state.directional_lights = memnew_arr(SkyDirectionalLightData, sky_scene_state.max_directional_lights);
  6744. sky_scene_state.last_frame_directional_lights = memnew_arr(SkyDirectionalLightData, sky_scene_state.max_directional_lights);
  6745. sky_scene_state.last_frame_directional_light_count = sky_scene_state.max_directional_lights + 1;
  6746. sky_scene_state.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size);
  6747. String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(sky_scene_state.max_directional_lights) + "\n";
  6748. // Initialize sky
  6749. Vector<String> sky_modes;
  6750. sky_modes.push_back(""); // Full size
  6751. sky_modes.push_back("\n#define USE_HALF_RES_PASS\n"); // Half Res
  6752. sky_modes.push_back("\n#define USE_QUARTER_RES_PASS\n"); // Quarter res
  6753. sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n"); // Cubemap
  6754. sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n#define USE_HALF_RES_PASS\n"); // Half Res Cubemap
  6755. sky_modes.push_back("\n#define USE_CUBEMAP_PASS\n#define USE_QUARTER_RES_PASS\n"); // Quarter res Cubemap
  6756. sky_shader.shader.initialize(sky_modes, defines);
  6757. }
  6758. // register our shader funds
  6759. storage->shader_set_data_request_function(RendererStorageRD::SHADER_TYPE_SKY, _create_sky_shader_funcs);
  6760. storage->material_set_data_request_function(RendererStorageRD::SHADER_TYPE_SKY, _create_sky_material_funcs);
  6761. {
  6762. ShaderCompilerRD::DefaultIdentifierActions actions;
  6763. actions.renames["COLOR"] = "color";
  6764. actions.renames["ALPHA"] = "alpha";
  6765. actions.renames["EYEDIR"] = "cube_normal";
  6766. actions.renames["POSITION"] = "params.position_multiplier.xyz";
  6767. actions.renames["SKY_COORDS"] = "panorama_coords";
  6768. actions.renames["SCREEN_UV"] = "uv";
  6769. actions.renames["TIME"] = "params.time";
  6770. actions.renames["HALF_RES_COLOR"] = "half_res_color";
  6771. actions.renames["QUARTER_RES_COLOR"] = "quarter_res_color";
  6772. actions.renames["RADIANCE"] = "radiance";
  6773. actions.renames["FOG"] = "custom_fog";
  6774. actions.renames["LIGHT0_ENABLED"] = "directional_lights.data[0].enabled";
  6775. actions.renames["LIGHT0_DIRECTION"] = "directional_lights.data[0].direction_energy.xyz";
  6776. actions.renames["LIGHT0_ENERGY"] = "directional_lights.data[0].direction_energy.w";
  6777. actions.renames["LIGHT0_COLOR"] = "directional_lights.data[0].color_size.xyz";
  6778. actions.renames["LIGHT0_SIZE"] = "directional_lights.data[0].color_size.w";
  6779. actions.renames["LIGHT1_ENABLED"] = "directional_lights.data[1].enabled";
  6780. actions.renames["LIGHT1_DIRECTION"] = "directional_lights.data[1].direction_energy.xyz";
  6781. actions.renames["LIGHT1_ENERGY"] = "directional_lights.data[1].direction_energy.w";
  6782. actions.renames["LIGHT1_COLOR"] = "directional_lights.data[1].color_size.xyz";
  6783. actions.renames["LIGHT1_SIZE"] = "directional_lights.data[1].color_size.w";
  6784. actions.renames["LIGHT2_ENABLED"] = "directional_lights.data[2].enabled";
  6785. actions.renames["LIGHT2_DIRECTION"] = "directional_lights.data[2].direction_energy.xyz";
  6786. actions.renames["LIGHT2_ENERGY"] = "directional_lights.data[2].direction_energy.w";
  6787. actions.renames["LIGHT2_COLOR"] = "directional_lights.data[2].color_size.xyz";
  6788. actions.renames["LIGHT2_SIZE"] = "directional_lights.data[2].color_size.w";
  6789. actions.renames["LIGHT3_ENABLED"] = "directional_lights.data[3].enabled";
  6790. actions.renames["LIGHT3_DIRECTION"] = "directional_lights.data[3].direction_energy.xyz";
  6791. actions.renames["LIGHT3_ENERGY"] = "directional_lights.data[3].direction_energy.w";
  6792. actions.renames["LIGHT3_COLOR"] = "directional_lights.data[3].color_size.xyz";
  6793. actions.renames["LIGHT3_SIZE"] = "directional_lights.data[3].color_size.w";
  6794. actions.renames["AT_CUBEMAP_PASS"] = "AT_CUBEMAP_PASS";
  6795. actions.renames["AT_HALF_RES_PASS"] = "AT_HALF_RES_PASS";
  6796. actions.renames["AT_QUARTER_RES_PASS"] = "AT_QUARTER_RES_PASS";
  6797. actions.custom_samplers["RADIANCE"] = "material_samplers[3]";
  6798. actions.usage_defines["HALF_RES_COLOR"] = "\n#define USES_HALF_RES_COLOR\n";
  6799. actions.usage_defines["QUARTER_RES_COLOR"] = "\n#define USES_QUARTER_RES_COLOR\n";
  6800. actions.render_mode_defines["disable_fog"] = "#define DISABLE_FOG\n";
  6801. actions.sampler_array_name = "material_samplers";
  6802. actions.base_texture_binding_index = 1;
  6803. actions.texture_layout_set = 1;
  6804. actions.base_uniform_string = "material.";
  6805. actions.base_varying_index = 10;
  6806. actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP;
  6807. actions.default_repeat = ShaderLanguage::REPEAT_ENABLE;
  6808. actions.global_buffer_array_variable = "global_variables.data";
  6809. sky_shader.compiler.initialize(actions);
  6810. }
  6811. {
  6812. // default material and shader for sky shader
  6813. sky_shader.default_shader = storage->shader_create();
  6814. storage->shader_set_code(sky_shader.default_shader, "shader_type sky; void fragment() { COLOR = vec3(0.0); } \n");
  6815. sky_shader.default_material = storage->material_create();
  6816. storage->material_set_shader(sky_shader.default_material, sky_shader.default_shader);
  6817. SkyMaterialData *md = (SkyMaterialData *)storage->material_get_data(sky_shader.default_material, RendererStorageRD::SHADER_TYPE_SKY);
  6818. sky_shader.default_shader_rd = sky_shader.shader.version_get_shader(md->shader_data->version, SKY_VERSION_BACKGROUND);
  6819. sky_scene_state.uniform_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(SkySceneState::UBO));
  6820. Vector<RD::Uniform> uniforms;
  6821. {
  6822. RD::Uniform u;
  6823. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  6824. u.binding = 0;
  6825. u.ids.resize(12);
  6826. RID *ids_ptr = u.ids.ptrw();
  6827. ids_ptr[0] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  6828. ids_ptr[1] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  6829. ids_ptr[2] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  6830. ids_ptr[3] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  6831. ids_ptr[4] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  6832. ids_ptr[5] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
  6833. ids_ptr[6] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  6834. ids_ptr[7] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  6835. ids_ptr[8] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  6836. ids_ptr[9] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  6837. ids_ptr[10] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  6838. ids_ptr[11] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
  6839. uniforms.push_back(u);
  6840. }
  6841. {
  6842. RD::Uniform u;
  6843. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  6844. u.binding = 1;
  6845. u.ids.push_back(storage->global_variables_get_storage_buffer());
  6846. uniforms.push_back(u);
  6847. }
  6848. {
  6849. RD::Uniform u;
  6850. u.binding = 2;
  6851. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  6852. u.ids.push_back(sky_scene_state.uniform_buffer);
  6853. uniforms.push_back(u);
  6854. }
  6855. {
  6856. RD::Uniform u;
  6857. u.binding = 3;
  6858. u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
  6859. u.ids.push_back(sky_scene_state.directional_light_buffer);
  6860. uniforms.push_back(u);
  6861. }
  6862. sky_scene_state.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_UNIFORMS);
  6863. }
  6864. {
  6865. Vector<RD::Uniform> uniforms;
  6866. {
  6867. RD::Uniform u;
  6868. u.binding = 0;
  6869. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  6870. RID vfog = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE);
  6871. u.ids.push_back(vfog);
  6872. uniforms.push_back(u);
  6873. }
  6874. sky_scene_state.default_fog_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_FOG);
  6875. }
  6876. {
  6877. // Need defaults for using fog with clear color
  6878. sky_scene_state.fog_shader = storage->shader_create();
  6879. storage->shader_set_code(sky_scene_state.fog_shader, "shader_type sky; uniform vec4 clear_color; void fragment() { COLOR = clear_color.rgb; } \n");
  6880. sky_scene_state.fog_material = storage->material_create();
  6881. storage->material_set_shader(sky_scene_state.fog_material, sky_scene_state.fog_shader);
  6882. Vector<RD::Uniform> uniforms;
  6883. {
  6884. RD::Uniform u;
  6885. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  6886. u.binding = 0;
  6887. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK));
  6888. uniforms.push_back(u);
  6889. }
  6890. {
  6891. RD::Uniform u;
  6892. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  6893. u.binding = 1;
  6894. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_WHITE));
  6895. uniforms.push_back(u);
  6896. }
  6897. {
  6898. RD::Uniform u;
  6899. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  6900. u.binding = 2;
  6901. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_WHITE));
  6902. uniforms.push_back(u);
  6903. }
  6904. sky_scene_state.fog_only_texture_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sky_shader.default_shader_rd, SKY_SET_TEXTURES);
  6905. }
  6906. if (!low_end) {
  6907. //SDFGI
  6908. {
  6909. Vector<String> preprocess_modes;
  6910. preprocess_modes.push_back("\n#define MODE_SCROLL\n");
  6911. preprocess_modes.push_back("\n#define MODE_SCROLL_OCCLUSION\n");
  6912. preprocess_modes.push_back("\n#define MODE_INITIALIZE_JUMP_FLOOD\n");
  6913. preprocess_modes.push_back("\n#define MODE_INITIALIZE_JUMP_FLOOD_HALF\n");
  6914. preprocess_modes.push_back("\n#define MODE_JUMPFLOOD\n");
  6915. preprocess_modes.push_back("\n#define MODE_JUMPFLOOD_OPTIMIZED\n");
  6916. preprocess_modes.push_back("\n#define MODE_UPSCALE_JUMP_FLOOD\n");
  6917. preprocess_modes.push_back("\n#define MODE_OCCLUSION\n");
  6918. preprocess_modes.push_back("\n#define MODE_STORE\n");
  6919. String defines = "\n#define OCCLUSION_SIZE " + itos(SDFGI::CASCADE_SIZE / SDFGI::PROBE_DIVISOR) + "\n";
  6920. sdfgi_shader.preprocess.initialize(preprocess_modes, defines);
  6921. sdfgi_shader.preprocess_shader = sdfgi_shader.preprocess.version_create();
  6922. for (int i = 0; i < SDGIShader::PRE_PROCESS_MAX; i++) {
  6923. sdfgi_shader.preprocess_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.preprocess.version_get_shader(sdfgi_shader.preprocess_shader, i));
  6924. }
  6925. }
  6926. {
  6927. //calculate tables
  6928. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  6929. Vector<String> direct_light_modes;
  6930. direct_light_modes.push_back("\n#define MODE_PROCESS_STATIC\n");
  6931. direct_light_modes.push_back("\n#define MODE_PROCESS_DYNAMIC\n");
  6932. sdfgi_shader.direct_light.initialize(direct_light_modes, defines);
  6933. sdfgi_shader.direct_light_shader = sdfgi_shader.direct_light.version_create();
  6934. for (int i = 0; i < SDGIShader::DIRECT_LIGHT_MODE_MAX; i++) {
  6935. sdfgi_shader.direct_light_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.direct_light.version_get_shader(sdfgi_shader.direct_light_shader, i));
  6936. }
  6937. }
  6938. {
  6939. //calculate tables
  6940. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  6941. defines += "\n#define SH_SIZE " + itos(SDFGI::SH_SIZE) + "\n";
  6942. Vector<String> integrate_modes;
  6943. integrate_modes.push_back("\n#define MODE_PROCESS\n");
  6944. integrate_modes.push_back("\n#define MODE_STORE\n");
  6945. integrate_modes.push_back("\n#define MODE_SCROLL\n");
  6946. integrate_modes.push_back("\n#define MODE_SCROLL_STORE\n");
  6947. sdfgi_shader.integrate.initialize(integrate_modes, defines);
  6948. sdfgi_shader.integrate_shader = sdfgi_shader.integrate.version_create();
  6949. for (int i = 0; i < SDGIShader::INTEGRATE_MODE_MAX; i++) {
  6950. sdfgi_shader.integrate_pipeline[i] = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, i));
  6951. }
  6952. {
  6953. Vector<RD::Uniform> uniforms;
  6954. {
  6955. RD::Uniform u;
  6956. u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
  6957. u.binding = 0;
  6958. u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_WHITE));
  6959. uniforms.push_back(u);
  6960. }
  6961. {
  6962. RD::Uniform u;
  6963. u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
  6964. u.binding = 1;
  6965. u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
  6966. uniforms.push_back(u);
  6967. }
  6968. sdfgi_shader.integrate_default_sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, 0), 1);
  6969. }
  6970. }
  6971. {
  6972. //calculate tables
  6973. String defines = "\n#define SDFGI_OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  6974. Vector<String> gi_modes;
  6975. gi_modes.push_back("");
  6976. gi.shader.initialize(gi_modes, defines);
  6977. gi.shader_version = gi.shader.version_create();
  6978. for (int i = 0; i < GI::MODE_MAX; i++) {
  6979. gi.pipelines[i] = RD::get_singleton()->compute_pipeline_create(gi.shader.version_get_shader(gi.shader_version, i));
  6980. }
  6981. gi.sdfgi_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(GI::SDFGIData));
  6982. }
  6983. {
  6984. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  6985. Vector<String> debug_modes;
  6986. debug_modes.push_back("");
  6987. sdfgi_shader.debug.initialize(debug_modes, defines);
  6988. sdfgi_shader.debug_shader = sdfgi_shader.debug.version_create();
  6989. sdfgi_shader.debug_shader_version = sdfgi_shader.debug.version_get_shader(sdfgi_shader.debug_shader, 0);
  6990. sdfgi_shader.debug_pipeline = RD::get_singleton()->compute_pipeline_create(sdfgi_shader.debug_shader_version);
  6991. }
  6992. {
  6993. String defines = "\n#define OCT_SIZE " + itos(SDFGI::LIGHTPROBE_OCT_SIZE) + "\n";
  6994. Vector<String> versions;
  6995. versions.push_back("\n#define MODE_PROBES\n");
  6996. versions.push_back("\n#define MODE_VISIBILITY\n");
  6997. sdfgi_shader.debug_probes.initialize(versions, defines);
  6998. sdfgi_shader.debug_probes_shader = sdfgi_shader.debug_probes.version_create();
  6999. {
  7000. RD::PipelineRasterizationState rs;
  7001. rs.cull_mode = RD::POLYGON_CULL_DISABLED;
  7002. RD::PipelineDepthStencilState ds;
  7003. ds.enable_depth_test = true;
  7004. ds.enable_depth_write = true;
  7005. ds.depth_compare_operator = RD::COMPARE_OP_LESS_OR_EQUAL;
  7006. for (int i = 0; i < SDGIShader::PROBE_DEBUG_MAX; i++) {
  7007. RID debug_probes_shader_version = sdfgi_shader.debug_probes.version_get_shader(sdfgi_shader.debug_probes_shader, i);
  7008. sdfgi_shader.debug_probes_pipeline[i].setup(debug_probes_shader_version, RD::RENDER_PRIMITIVE_TRIANGLE_STRIPS, rs, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(), 0);
  7009. }
  7010. }
  7011. }
  7012. default_giprobe_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(GI::GIProbeData) * RenderBuffers::MAX_GIPROBES);
  7013. }
  7014. //cluster setup
  7015. uint32_t uniform_max_size = RD::get_singleton()->limit_get(RD::LIMIT_MAX_UNIFORM_BUFFER_SIZE);
  7016. { //reflections
  7017. uint32_t reflection_buffer_size;
  7018. if (uniform_max_size < 65536) {
  7019. //Yes, you guessed right, ARM again
  7020. reflection_buffer_size = uniform_max_size;
  7021. } else {
  7022. reflection_buffer_size = 65536;
  7023. }
  7024. cluster.max_reflections = reflection_buffer_size / sizeof(Cluster::ReflectionData);
  7025. cluster.reflections = memnew_arr(Cluster::ReflectionData, cluster.max_reflections);
  7026. cluster.reflection_buffer = RD::get_singleton()->storage_buffer_create(reflection_buffer_size);
  7027. }
  7028. { //lights
  7029. cluster.max_lights = MIN(1024 * 1024, uniform_max_size) / sizeof(Cluster::LightData); //1mb of lights
  7030. uint32_t light_buffer_size = cluster.max_lights * sizeof(Cluster::LightData);
  7031. cluster.lights = memnew_arr(Cluster::LightData, cluster.max_lights);
  7032. cluster.light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
  7033. //defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(cluster.max_lights) + "\n";
  7034. cluster.lights_instances = memnew_arr(RID, cluster.max_lights);
  7035. cluster.lights_shadow_rect_cache = memnew_arr(Rect2i, cluster.max_lights);
  7036. cluster.max_directional_lights = MAX_DIRECTIONAL_LIGHTS;
  7037. uint32_t directional_light_buffer_size = cluster.max_directional_lights * sizeof(Cluster::DirectionalLightData);
  7038. cluster.directional_lights = memnew_arr(Cluster::DirectionalLightData, cluster.max_directional_lights);
  7039. cluster.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size);
  7040. }
  7041. { //decals
  7042. cluster.max_decals = MIN(1024 * 1024, uniform_max_size) / sizeof(Cluster::DecalData); //1mb of decals
  7043. uint32_t decal_buffer_size = cluster.max_decals * sizeof(Cluster::DecalData);
  7044. cluster.decals = memnew_arr(Cluster::DecalData, cluster.max_decals);
  7045. cluster.decal_buffer = RD::get_singleton()->storage_buffer_create(decal_buffer_size);
  7046. }
  7047. cluster.builder.setup(16, 8, 24);
  7048. if (!low_end) {
  7049. String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(cluster.max_directional_lights) + "\n";
  7050. Vector<String> volumetric_fog_modes;
  7051. volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n");
  7052. volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n#define ENABLE_SDFGI\n");
  7053. volumetric_fog_modes.push_back("\n#define MODE_FILTER\n");
  7054. volumetric_fog_modes.push_back("\n#define MODE_FOG\n");
  7055. volumetric_fog.shader.initialize(volumetric_fog_modes, defines);
  7056. volumetric_fog.shader_version = volumetric_fog.shader.version_create();
  7057. for (int i = 0; i < VOLUMETRIC_FOG_SHADER_MAX; i++) {
  7058. volumetric_fog.pipelines[i] = RD::get_singleton()->compute_pipeline_create(volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, i));
  7059. }
  7060. }
  7061. {
  7062. RD::SamplerState sampler;
  7063. sampler.mag_filter = RD::SAMPLER_FILTER_NEAREST;
  7064. sampler.min_filter = RD::SAMPLER_FILTER_NEAREST;
  7065. sampler.enable_compare = true;
  7066. sampler.compare_op = RD::COMPARE_OP_LESS;
  7067. shadow_sampler = RD::get_singleton()->sampler_create(sampler);
  7068. }
  7069. camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_bokeh_shape"))));
  7070. camera_effects_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_use_jitter"));
  7071. environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/quality/ssao/quality"))), GLOBAL_GET("rendering/quality/ssao/half_size"), GLOBAL_GET("rendering/quality/ssao/adaptive_target"), GLOBAL_GET("rendering/quality/ssao/blur_passes"), GLOBAL_GET("rendering/quality/ssao/fadeout_from"), GLOBAL_GET("rendering/quality/ssao/fadeout_to"));
  7072. screen_space_roughness_limiter = GLOBAL_GET("rendering/quality/screen_filters/screen_space_roughness_limiter_enabled");
  7073. screen_space_roughness_limiter_amount = GLOBAL_GET("rendering/quality/screen_filters/screen_space_roughness_limiter_amount");
  7074. screen_space_roughness_limiter_limit = GLOBAL_GET("rendering/quality/screen_filters/screen_space_roughness_limiter_limit");
  7075. glow_bicubic_upscale = int(GLOBAL_GET("rendering/quality/glow/upscale_mode")) > 0;
  7076. glow_high_quality = GLOBAL_GET("rendering/quality/glow/use_high_quality");
  7077. ssr_roughness_quality = RS::EnvironmentSSRRoughnessQuality(int(GLOBAL_GET("rendering/quality/screen_space_reflection/roughness_quality")));
  7078. sss_quality = RS::SubSurfaceScatteringQuality(int(GLOBAL_GET("rendering/quality/subsurface_scattering/subsurface_scattering_quality")));
  7079. sss_scale = GLOBAL_GET("rendering/quality/subsurface_scattering/subsurface_scattering_scale");
  7080. sss_depth_scale = GLOBAL_GET("rendering/quality/subsurface_scattering/subsurface_scattering_depth_scale");
  7081. directional_penumbra_shadow_kernel = memnew_arr(float, 128);
  7082. directional_soft_shadow_kernel = memnew_arr(float, 128);
  7083. penumbra_shadow_kernel = memnew_arr(float, 128);
  7084. soft_shadow_kernel = memnew_arr(float, 128);
  7085. shadows_quality_set(RS::ShadowQuality(int(GLOBAL_GET("rendering/quality/shadows/soft_shadow_quality"))));
  7086. directional_shadow_quality_set(RS::ShadowQuality(int(GLOBAL_GET("rendering/quality/directional_shadow/soft_shadow_quality"))));
  7087. environment_set_volumetric_fog_volume_size(GLOBAL_GET("rendering/volumetric_fog/volume_size"), GLOBAL_GET("rendering/volumetric_fog/volume_depth"));
  7088. environment_set_volumetric_fog_filter_active(GLOBAL_GET("rendering/volumetric_fog/use_filter"));
  7089. environment_set_volumetric_fog_directional_shadow_shrink_size(GLOBAL_GET("rendering/volumetric_fog/directional_shadow_shrink"));
  7090. environment_set_volumetric_fog_positional_shadow_shrink_size(GLOBAL_GET("rendering/volumetric_fog/positional_shadow_shrink"));
  7091. cull_argument.set_page_pool(&cull_argument_pool);
  7092. }
  7093. RendererSceneRenderRD::~RendererSceneRenderRD() {
  7094. for (Map<Vector2i, ShadowMap>::Element *E = shadow_maps.front(); E; E = E->next()) {
  7095. RD::get_singleton()->free(E->get().depth);
  7096. }
  7097. for (Map<int, ShadowCubemap>::Element *E = shadow_cubemaps.front(); E; E = E->next()) {
  7098. RD::get_singleton()->free(E->get().cubemap);
  7099. }
  7100. if (sky_scene_state.uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_scene_state.uniform_set)) {
  7101. RD::get_singleton()->free(sky_scene_state.uniform_set);
  7102. }
  7103. if (!low_end) {
  7104. RD::get_singleton()->free(default_giprobe_buffer);
  7105. RD::get_singleton()->free(gi_probe_lights_uniform);
  7106. RD::get_singleton()->free(gi.sdfgi_ubo);
  7107. giprobe_debug_shader.version_free(giprobe_debug_shader_version);
  7108. giprobe_shader.version_free(giprobe_lighting_shader_version);
  7109. gi.shader.version_free(gi.shader_version);
  7110. sdfgi_shader.debug_probes.version_free(sdfgi_shader.debug_probes_shader);
  7111. sdfgi_shader.debug.version_free(sdfgi_shader.debug_shader);
  7112. sdfgi_shader.direct_light.version_free(sdfgi_shader.direct_light_shader);
  7113. sdfgi_shader.integrate.version_free(sdfgi_shader.integrate_shader);
  7114. sdfgi_shader.preprocess.version_free(sdfgi_shader.preprocess_shader);
  7115. volumetric_fog.shader.version_free(volumetric_fog.shader_version);
  7116. memdelete_arr(gi_probe_lights);
  7117. }
  7118. SkyMaterialData *md = (SkyMaterialData *)storage->material_get_data(sky_shader.default_material, RendererStorageRD::SHADER_TYPE_SKY);
  7119. sky_shader.shader.version_free(md->shader_data->version);
  7120. RD::get_singleton()->free(sky_scene_state.directional_light_buffer);
  7121. RD::get_singleton()->free(sky_scene_state.uniform_buffer);
  7122. memdelete_arr(sky_scene_state.directional_lights);
  7123. memdelete_arr(sky_scene_state.last_frame_directional_lights);
  7124. storage->free(sky_shader.default_shader);
  7125. storage->free(sky_shader.default_material);
  7126. storage->free(sky_scene_state.fog_shader);
  7127. storage->free(sky_scene_state.fog_material);
  7128. memdelete_arr(directional_penumbra_shadow_kernel);
  7129. memdelete_arr(directional_soft_shadow_kernel);
  7130. memdelete_arr(penumbra_shadow_kernel);
  7131. memdelete_arr(soft_shadow_kernel);
  7132. {
  7133. RD::get_singleton()->free(cluster.directional_light_buffer);
  7134. RD::get_singleton()->free(cluster.light_buffer);
  7135. RD::get_singleton()->free(cluster.reflection_buffer);
  7136. RD::get_singleton()->free(cluster.decal_buffer);
  7137. memdelete_arr(cluster.directional_lights);
  7138. memdelete_arr(cluster.lights);
  7139. memdelete_arr(cluster.lights_shadow_rect_cache);
  7140. memdelete_arr(cluster.lights_instances);
  7141. memdelete_arr(cluster.reflections);
  7142. memdelete_arr(cluster.decals);
  7143. }
  7144. RD::get_singleton()->free(shadow_sampler);
  7145. directional_shadow_atlas_set_size(0);
  7146. cull_argument.reset(); //avoid exit error
  7147. }