rasterizer_scene_gles2.cpp 117 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349
  1. /*************************************************************************/
  2. /* rasterizer_scene_gles2.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "rasterizer_scene_gles2.h"
  31. #include "core/math/math_funcs.h"
  32. #include "core/math/transform.h"
  33. #include "core/os/os.h"
  34. #include "core/project_settings.h"
  35. #include "core/vmap.h"
  36. #include "rasterizer_canvas_gles2.h"
  37. #include "servers/visual/visual_server_raster.h"
  38. #ifndef GLES_OVER_GL
  39. #define glClearDepth glClearDepthf
  40. #endif
  41. #define _DEPTH_COMPONENT24_OES 0x81A6
  42. static const GLenum _cube_side_enum[6] = {
  43. GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
  44. GL_TEXTURE_CUBE_MAP_POSITIVE_X,
  45. GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
  46. GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
  47. GL_TEXTURE_CUBE_MAP_NEGATIVE_Z,
  48. GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
  49. };
  50. /* SHADOW ATLAS API */
  51. RID RasterizerSceneGLES2::shadow_atlas_create() {
  52. ShadowAtlas *shadow_atlas = memnew(ShadowAtlas);
  53. shadow_atlas->fbo = 0;
  54. shadow_atlas->depth = 0;
  55. shadow_atlas->color = 0;
  56. shadow_atlas->size = 0;
  57. shadow_atlas->smallest_subdiv = 0;
  58. for (int i = 0; i < 4; i++) {
  59. shadow_atlas->size_order[i] = i;
  60. }
  61. return shadow_atlas_owner.make_rid(shadow_atlas);
  62. }
  63. void RasterizerSceneGLES2::shadow_atlas_set_size(RID p_atlas, int p_size) {
  64. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  65. ERR_FAIL_COND(!shadow_atlas);
  66. ERR_FAIL_COND(p_size < 0);
  67. p_size = next_power_of_2(p_size);
  68. if (p_size == shadow_atlas->size)
  69. return;
  70. // erase the old atlast
  71. if (shadow_atlas->fbo) {
  72. glDeleteTextures(1, &shadow_atlas->depth);
  73. glDeleteFramebuffers(1, &shadow_atlas->fbo);
  74. if (shadow_atlas->color) {
  75. glDeleteTextures(1, &shadow_atlas->color);
  76. }
  77. shadow_atlas->fbo = 0;
  78. shadow_atlas->depth = 0;
  79. shadow_atlas->color = 0;
  80. }
  81. // erase shadow atlast references from lights
  82. for (Map<RID, uint32_t>::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) {
  83. LightInstance *li = light_instance_owner.getornull(E->key());
  84. ERR_CONTINUE(!li);
  85. li->shadow_atlases.erase(p_atlas);
  86. }
  87. shadow_atlas->shadow_owners.clear();
  88. shadow_atlas->size = p_size;
  89. if (shadow_atlas->size) {
  90. glGenFramebuffers(1, &shadow_atlas->fbo);
  91. glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo);
  92. // create a depth texture
  93. glActiveTexture(GL_TEXTURE0);
  94. glGenTextures(1, &shadow_atlas->depth);
  95. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  96. glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, shadow_atlas->size, shadow_atlas->size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
  97. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  98. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  99. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  100. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  101. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, shadow_atlas->depth, 0);
  102. if (storage->config.use_rgba_3d_shadows) {
  103. glGenTextures(1, &shadow_atlas->color);
  104. glBindTexture(GL_TEXTURE_2D, shadow_atlas->color);
  105. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, shadow_atlas->size, shadow_atlas->size, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
  106. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  107. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  108. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  109. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  110. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, shadow_atlas->color, 0);
  111. }
  112. glViewport(0, 0, shadow_atlas->size, shadow_atlas->size);
  113. glDepthMask(GL_TRUE);
  114. glClearDepth(0.0f);
  115. glClear(GL_DEPTH_BUFFER_BIT);
  116. glBindFramebuffer(GL_FRAMEBUFFER, 0);
  117. }
  118. }
  119. void RasterizerSceneGLES2::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
  120. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  121. ERR_FAIL_COND(!shadow_atlas);
  122. ERR_FAIL_INDEX(p_quadrant, 4);
  123. ERR_FAIL_INDEX(p_subdivision, 16384);
  124. uint32_t subdiv = next_power_of_2(p_subdivision);
  125. if (subdiv & 0xaaaaaaaa) { // sqrt(subdiv) must be integer
  126. subdiv <<= 1;
  127. }
  128. subdiv = int(Math::sqrt((float)subdiv));
  129. if (shadow_atlas->quadrants[p_quadrant].shadows.size() == subdiv)
  130. return;
  131. // erase all data from the quadrant
  132. for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
  133. if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
  134. shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  135. LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  136. ERR_CONTINUE(!li);
  137. li->shadow_atlases.erase(p_atlas);
  138. }
  139. }
  140. shadow_atlas->quadrants[p_quadrant].shadows.resize(0);
  141. shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv);
  142. shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;
  143. // cache the smallest subdivision for faster allocations
  144. shadow_atlas->smallest_subdiv = 1 << 30;
  145. for (int i = 0; i < 4; i++) {
  146. if (shadow_atlas->quadrants[i].subdivision) {
  147. shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
  148. }
  149. }
  150. if (shadow_atlas->smallest_subdiv == 1 << 30) {
  151. shadow_atlas->smallest_subdiv = 0;
  152. }
  153. // re-sort the quadrants
  154. int swaps = 0;
  155. do {
  156. swaps = 0;
  157. for (int i = 0; i < 3; i++) {
  158. if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
  159. SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
  160. swaps++;
  161. }
  162. }
  163. } while (swaps > 0);
  164. }
  165. bool RasterizerSceneGLES2::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
  166. for (int i = p_quadrant_count - 1; i >= 0; i--) {
  167. int qidx = p_in_quadrants[i];
  168. if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
  169. return false;
  170. }
  171. // look for an empty space
  172. int sc = shadow_atlas->quadrants[qidx].shadows.size();
  173. ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw();
  174. int found_free_idx = -1; // found a free one
  175. int found_used_idx = -1; // found an existing one, must steal it
  176. uint64_t min_pass = 0; // pass of the existing one, try to use the least recently
  177. for (int j = 0; j < sc; j++) {
  178. if (!sarr[j].owner.is_valid()) {
  179. found_free_idx = j;
  180. break;
  181. }
  182. LightInstance *sli = light_instance_owner.getornull(sarr[j].owner);
  183. ERR_CONTINUE(!sli);
  184. if (sli->last_scene_pass != scene_pass) {
  185. // was just allocated, don't kill it so soon, wait a bit...
  186. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
  187. continue;
  188. }
  189. if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
  190. found_used_idx = j;
  191. min_pass = sli->last_scene_pass;
  192. }
  193. }
  194. }
  195. if (found_free_idx == -1 && found_used_idx == -1) {
  196. continue; // nothing found
  197. }
  198. if (found_free_idx == -1 && found_used_idx != -1) {
  199. found_free_idx = found_used_idx;
  200. }
  201. r_quadrant = qidx;
  202. r_shadow = found_free_idx;
  203. return true;
  204. }
  205. return false;
  206. }
  207. bool RasterizerSceneGLES2::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) {
  208. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
  209. ERR_FAIL_COND_V(!shadow_atlas, false);
  210. LightInstance *li = light_instance_owner.getornull(p_light_intance);
  211. ERR_FAIL_COND_V(!li, false);
  212. if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
  213. return false;
  214. }
  215. uint32_t quad_size = shadow_atlas->size >> 1;
  216. int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));
  217. int valid_quadrants[4];
  218. int valid_quadrant_count = 0;
  219. int best_size = -1;
  220. int best_subdiv = -1;
  221. for (int i = 0; i < 4; i++) {
  222. int q = shadow_atlas->size_order[i];
  223. int sd = shadow_atlas->quadrants[q].subdivision;
  224. if (sd == 0) {
  225. continue;
  226. }
  227. int max_fit = quad_size / sd;
  228. if (best_size != -1 && max_fit > best_size) {
  229. break; // what we asked for is bigger than this.
  230. }
  231. valid_quadrants[valid_quadrant_count] = q;
  232. valid_quadrant_count++;
  233. best_subdiv = sd;
  234. if (max_fit >= desired_fit) {
  235. best_size = max_fit;
  236. }
  237. }
  238. ERR_FAIL_COND_V(valid_quadrant_count == 0, false); // no suitable block available
  239. uint64_t tick = OS::get_singleton()->get_ticks_msec();
  240. if (shadow_atlas->shadow_owners.has(p_light_intance)) {
  241. // light was already known!
  242. uint32_t key = shadow_atlas->shadow_owners[p_light_intance];
  243. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  244. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  245. bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
  246. bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version;
  247. if (!should_realloc) {
  248. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  249. return should_redraw;
  250. }
  251. int new_quadrant;
  252. int new_shadow;
  253. // find a better place
  254. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) {
  255. // found a better place
  256. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  257. if (sh->owner.is_valid()) {
  258. // it is take but invalid, so we can take it
  259. shadow_atlas->shadow_owners.erase(sh->owner);
  260. LightInstance *sli = light_instance_owner.get(sh->owner);
  261. sli->shadow_atlases.erase(p_atlas);
  262. }
  263. // erase previous
  264. shadow_atlas->quadrants[q].shadows.write[s].version = 0;
  265. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  266. sh->owner = p_light_intance;
  267. sh->alloc_tick = tick;
  268. sh->version = p_light_version;
  269. li->shadow_atlases.insert(p_atlas);
  270. // make a new key
  271. key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  272. key |= new_shadow;
  273. // update it in the map
  274. shadow_atlas->shadow_owners[p_light_intance] = key;
  275. // make it dirty, so we redraw
  276. return true;
  277. }
  278. // no better place found, so we keep the current place
  279. shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
  280. return should_redraw;
  281. }
  282. int new_quadrant;
  283. int new_shadow;
  284. if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) {
  285. // found a better place
  286. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  287. if (sh->owner.is_valid()) {
  288. // it is take but invalid, so we can take it
  289. shadow_atlas->shadow_owners.erase(sh->owner);
  290. LightInstance *sli = light_instance_owner.get(sh->owner);
  291. sli->shadow_atlases.erase(p_atlas);
  292. }
  293. sh->owner = p_light_intance;
  294. sh->alloc_tick = tick;
  295. sh->version = p_light_version;
  296. li->shadow_atlases.insert(p_atlas);
  297. // make a new key
  298. uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  299. key |= new_shadow;
  300. // update it in the map
  301. shadow_atlas->shadow_owners[p_light_intance] = key;
  302. // make it dirty, so we redraw
  303. return true;
  304. }
  305. return false;
  306. }
  307. void RasterizerSceneGLES2::set_directional_shadow_count(int p_count) {
  308. directional_shadow.light_count = p_count;
  309. directional_shadow.current_light = 0;
  310. }
  311. int RasterizerSceneGLES2::get_directional_light_shadow_size(RID p_light_intance) {
  312. ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);
  313. int shadow_size;
  314. if (directional_shadow.light_count == 1) {
  315. shadow_size = directional_shadow.size;
  316. } else {
  317. shadow_size = directional_shadow.size / 2; //more than 4 not supported anyway
  318. }
  319. LightInstance *light_instance = light_instance_owner.getornull(p_light_intance);
  320. ERR_FAIL_COND_V(!light_instance, 0);
  321. switch (light_instance->light_ptr->directional_shadow_mode) {
  322. case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
  323. break; //none
  324. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
  325. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
  326. shadow_size /= 2;
  327. break;
  328. }
  329. return shadow_size;
  330. }
  331. //////////////////////////////////////////////////////
  332. RID RasterizerSceneGLES2::reflection_atlas_create() {
  333. return RID();
  334. }
  335. void RasterizerSceneGLES2::reflection_atlas_set_size(RID p_ref_atlas, int p_size) {
  336. }
  337. void RasterizerSceneGLES2::reflection_atlas_set_subdivision(RID p_ref_atlas, int p_subdiv) {
  338. }
  339. ////////////////////////////////////////////////////
  340. RID RasterizerSceneGLES2::reflection_probe_instance_create(RID p_probe) {
  341. RasterizerStorageGLES2::ReflectionProbe *probe = storage->reflection_probe_owner.getornull(p_probe);
  342. ERR_FAIL_COND_V(!probe, RID());
  343. ReflectionProbeInstance *rpi = memnew(ReflectionProbeInstance);
  344. rpi->probe_ptr = probe;
  345. rpi->self = reflection_probe_instance_owner.make_rid(rpi);
  346. rpi->probe = p_probe;
  347. rpi->reflection_atlas_index = -1;
  348. rpi->render_step = -1;
  349. rpi->last_pass = 0;
  350. rpi->current_resolution = 0;
  351. rpi->dirty = true;
  352. rpi->last_pass = 0;
  353. rpi->index = 0;
  354. for (int i = 0; i < 6; i++) {
  355. glGenFramebuffers(1, &rpi->fbo[i]);
  356. glGenTextures(1, &rpi->color[i]);
  357. }
  358. glGenTextures(1, &rpi->depth);
  359. rpi->cubemap = 0;
  360. //glGenTextures(1, &rpi->cubemap);
  361. return rpi->self;
  362. }
  363. void RasterizerSceneGLES2::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) {
  364. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  365. ERR_FAIL_COND(!rpi);
  366. rpi->transform = p_transform;
  367. }
  368. void RasterizerSceneGLES2::reflection_probe_release_atlas_index(RID p_instance) {
  369. }
  370. bool RasterizerSceneGLES2::reflection_probe_instance_needs_redraw(RID p_instance) {
  371. const ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  372. ERR_FAIL_COND_V(!rpi, false);
  373. bool need_redraw = rpi->probe_ptr->resolution != rpi->current_resolution || rpi->dirty || rpi->probe_ptr->update_mode == VS::REFLECTION_PROBE_UPDATE_ALWAYS;
  374. rpi->dirty = false;
  375. return need_redraw;
  376. }
  377. bool RasterizerSceneGLES2::reflection_probe_instance_has_reflection(RID p_instance) {
  378. return true;
  379. }
  380. bool RasterizerSceneGLES2::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
  381. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  382. ERR_FAIL_COND_V(!rpi, false);
  383. rpi->render_step = 0;
  384. if (rpi->probe_ptr->resolution != rpi->current_resolution) {
  385. //update cubemap if resolution changed
  386. int size = rpi->probe_ptr->resolution;
  387. rpi->current_resolution = size;
  388. GLenum internal_format = GL_RGB;
  389. GLenum format = GL_RGB;
  390. GLenum type = GL_UNSIGNED_BYTE;
  391. glActiveTexture(GL_TEXTURE0);
  392. glBindTexture(GL_TEXTURE_2D, rpi->depth);
  393. glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, size, size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
  394. if (rpi->cubemap != 0) {
  395. glDeleteTextures(1, &rpi->cubemap);
  396. }
  397. glGenTextures(1, &rpi->cubemap);
  398. glBindTexture(GL_TEXTURE_CUBE_MAP, rpi->cubemap);
  399. #if 1
  400. //Mobile hardware (PowerVR specially) prefers this approach, the other one kills the game
  401. for (int i = 0; i < 6; i++) {
  402. glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, size, size, 0, format, type, NULL);
  403. }
  404. glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
  405. //Generate framebuffers for rendering
  406. for (int i = 0; i < 6; i++) {
  407. glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]);
  408. glBindTexture(GL_TEXTURE_2D, rpi->color[i]);
  409. glTexImage2D(GL_TEXTURE_2D, 0, internal_format, size, size, 0, format, type, NULL);
  410. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rpi->color[i], 0);
  411. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rpi->depth, 0);
  412. GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
  413. ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE);
  414. }
  415. #else
  416. int lod = 0;
  417. //the approach below is fatal for powervr
  418. // Set the initial (empty) mipmaps, all need to be set for this to work in GLES2, even if later wont be used.
  419. while (size >= 1) {
  420. for (int i = 0; i < 6; i++) {
  421. glTexImage2D(_cube_side_enum[i], lod, internal_format, size, size, 0, format, type, NULL);
  422. if (size == rpi->current_resolution) {
  423. //adjust framebuffer
  424. glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]);
  425. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _cube_side_enum[i], rpi->cubemap, 0);
  426. glBindRenderbuffer(GL_RENDERBUFFER, rpi->depth);
  427. glRenderbufferStorage(GL_RENDERBUFFER, _DEPTH_COMPONENT24_OES, size, size);
  428. glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rpi->depth);
  429. #ifdef DEBUG_ENABLED
  430. GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
  431. ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE);
  432. #endif
  433. }
  434. }
  435. lod++;
  436. size >>= 1;
  437. }
  438. #endif
  439. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
  440. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
  441. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  442. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  443. glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES2::system_fbo);
  444. }
  445. return true;
  446. }
  447. bool RasterizerSceneGLES2::reflection_probe_instance_postprocess_step(RID p_instance) {
  448. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
  449. ERR_FAIL_COND_V(!rpi, false);
  450. ERR_FAIL_COND_V(rpi->current_resolution == 0, false);
  451. int size = rpi->probe_ptr->resolution;
  452. {
  453. glBindBuffer(GL_ARRAY_BUFFER, 0);
  454. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
  455. glDisable(GL_CULL_FACE);
  456. glDisable(GL_DEPTH_TEST);
  457. glDisable(GL_SCISSOR_TEST);
  458. glDisable(GL_BLEND);
  459. glDepthMask(GL_FALSE);
  460. for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
  461. glDisableVertexAttribArray(i);
  462. }
  463. }
  464. glActiveTexture(GL_TEXTURE0);
  465. glBindTexture(GL_TEXTURE_CUBE_MAP, rpi->cubemap);
  466. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); //use linear, no mipmaps so it does not read from what is being written to
  467. //first of all, copy rendered textures to cubemap
  468. for (int i = 0; i < 6; i++) {
  469. glBindFramebuffer(GL_FRAMEBUFFER, rpi->fbo[i]);
  470. glViewport(0, 0, size, size);
  471. glCopyTexImage2D(_cube_side_enum[i], 0, GL_RGB, 0, 0, size, size, 0);
  472. }
  473. //do filtering
  474. //vdc cache
  475. glActiveTexture(GL_TEXTURE1);
  476. glBindTexture(GL_TEXTURE_2D, storage->resources.radical_inverse_vdc_cache_tex);
  477. // now render to the framebuffer, mipmap level for mipmap level
  478. int lod = 1;
  479. size >>= 1;
  480. int mipmaps = 6;
  481. storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES2::USE_SOURCE_PANORAMA, false);
  482. storage->shaders.cubemap_filter.bind();
  483. glBindFramebuffer(GL_FRAMEBUFFER, storage->resources.mipmap_blur_fbo);
  484. //blur
  485. while (size >= 1) {
  486. glActiveTexture(GL_TEXTURE3);
  487. glBindTexture(GL_TEXTURE_2D, storage->resources.mipmap_blur_color);
  488. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, size, size, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL);
  489. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, storage->resources.mipmap_blur_color, 0);
  490. glViewport(0, 0, size, size);
  491. glActiveTexture(GL_TEXTURE0);
  492. for (int i = 0; i < 6; i++) {
  493. storage->bind_quad_array();
  494. storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::FACE_ID, i);
  495. float roughness = CLAMP(lod / (float)(mipmaps - 1), 0, 1);
  496. storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::ROUGHNESS, roughness);
  497. storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES2::Z_FLIP, false);
  498. glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
  499. glCopyTexImage2D(_cube_side_enum[i], lod, GL_RGB, 0, 0, size, size, 0);
  500. }
  501. size >>= 1;
  502. lod++;
  503. }
  504. // restore ranges
  505. glActiveTexture(GL_TEXTURE0);
  506. glTexParameterf(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
  507. glBindTexture(GL_TEXTURE_2D, 0);
  508. glActiveTexture(GL_TEXTURE3); //back to panorama
  509. glBindTexture(GL_TEXTURE_2D, 0);
  510. glActiveTexture(GL_TEXTURE1);
  511. glBindTexture(GL_TEXTURE_2D, 0);
  512. glBindFramebuffer(GL_FRAMEBUFFER, RasterizerStorageGLES2::system_fbo);
  513. return true;
  514. }
  515. /* ENVIRONMENT API */
  516. RID RasterizerSceneGLES2::environment_create() {
  517. Environment *env = memnew(Environment);
  518. return environment_owner.make_rid(env);
  519. }
  520. void RasterizerSceneGLES2::environment_set_background(RID p_env, VS::EnvironmentBG p_bg) {
  521. Environment *env = environment_owner.getornull(p_env);
  522. ERR_FAIL_COND(!env);
  523. env->bg_mode = p_bg;
  524. }
  525. void RasterizerSceneGLES2::environment_set_sky(RID p_env, RID p_sky) {
  526. Environment *env = environment_owner.getornull(p_env);
  527. ERR_FAIL_COND(!env);
  528. env->sky = p_sky;
  529. }
  530. void RasterizerSceneGLES2::environment_set_sky_custom_fov(RID p_env, float p_scale) {
  531. Environment *env = environment_owner.getornull(p_env);
  532. ERR_FAIL_COND(!env);
  533. env->sky_custom_fov = p_scale;
  534. }
  535. void RasterizerSceneGLES2::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) {
  536. Environment *env = environment_owner.getornull(p_env);
  537. ERR_FAIL_COND(!env);
  538. env->sky_orientation = p_orientation;
  539. }
  540. void RasterizerSceneGLES2::environment_set_bg_color(RID p_env, const Color &p_color) {
  541. Environment *env = environment_owner.getornull(p_env);
  542. ERR_FAIL_COND(!env);
  543. env->bg_color = p_color;
  544. }
  545. void RasterizerSceneGLES2::environment_set_bg_energy(RID p_env, float p_energy) {
  546. Environment *env = environment_owner.getornull(p_env);
  547. ERR_FAIL_COND(!env);
  548. env->bg_energy = p_energy;
  549. }
  550. void RasterizerSceneGLES2::environment_set_canvas_max_layer(RID p_env, int p_max_layer) {
  551. Environment *env = environment_owner.getornull(p_env);
  552. ERR_FAIL_COND(!env);
  553. env->canvas_max_layer = p_max_layer;
  554. }
  555. void RasterizerSceneGLES2::environment_set_ambient_light(RID p_env, const Color &p_color, float p_energy, float p_sky_contribution) {
  556. Environment *env = environment_owner.getornull(p_env);
  557. ERR_FAIL_COND(!env);
  558. env->ambient_color = p_color;
  559. env->ambient_energy = p_energy;
  560. env->ambient_sky_contribution = p_sky_contribution;
  561. }
  562. void RasterizerSceneGLES2::environment_set_dof_blur_far(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality) {
  563. Environment *env = environment_owner.getornull(p_env);
  564. ERR_FAIL_COND(!env);
  565. }
  566. void RasterizerSceneGLES2::environment_set_dof_blur_near(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality) {
  567. Environment *env = environment_owner.getornull(p_env);
  568. ERR_FAIL_COND(!env);
  569. }
  570. void RasterizerSceneGLES2::environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_bloom_threshold, VS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap, bool p_bicubic_upscale) {
  571. Environment *env = environment_owner.getornull(p_env);
  572. ERR_FAIL_COND(!env);
  573. }
  574. void RasterizerSceneGLES2::environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture) {
  575. Environment *env = environment_owner.getornull(p_env);
  576. ERR_FAIL_COND(!env);
  577. }
  578. void RasterizerSceneGLES2::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_in, float p_fade_out, float p_depth_tolerance, bool p_roughness) {
  579. Environment *env = environment_owner.getornull(p_env);
  580. ERR_FAIL_COND(!env);
  581. }
  582. void RasterizerSceneGLES2::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_radius2, float p_intensity2, float p_bias, float p_light_affect, float p_ao_channel_affect, const Color &p_color, VS::EnvironmentSSAOQuality p_quality, VisualServer::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) {
  583. Environment *env = environment_owner.getornull(p_env);
  584. ERR_FAIL_COND(!env);
  585. }
  586. void RasterizerSceneGLES2::environment_set_tonemap(RID p_env, VS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) {
  587. Environment *env = environment_owner.getornull(p_env);
  588. ERR_FAIL_COND(!env);
  589. }
  590. void RasterizerSceneGLES2::environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, RID p_ramp) {
  591. Environment *env = environment_owner.getornull(p_env);
  592. ERR_FAIL_COND(!env);
  593. }
  594. void RasterizerSceneGLES2::environment_set_fog(RID p_env, bool p_enable, const Color &p_color, const Color &p_sun_color, float p_sun_amount) {
  595. Environment *env = environment_owner.getornull(p_env);
  596. ERR_FAIL_COND(!env);
  597. env->fog_enabled = p_enable;
  598. env->fog_color = p_color;
  599. env->fog_sun_color = p_sun_color;
  600. env->fog_sun_amount = p_sun_amount;
  601. }
  602. void RasterizerSceneGLES2::environment_set_fog_depth(RID p_env, bool p_enable, float p_depth_begin, float p_depth_end, float p_depth_curve, bool p_transmit, float p_transmit_curve) {
  603. Environment *env = environment_owner.getornull(p_env);
  604. ERR_FAIL_COND(!env);
  605. env->fog_depth_enabled = p_enable;
  606. env->fog_depth_begin = p_depth_begin;
  607. env->fog_depth_end = p_depth_end;
  608. env->fog_depth_curve = p_depth_curve;
  609. env->fog_transmit_enabled = p_transmit;
  610. env->fog_transmit_curve = p_transmit_curve;
  611. }
  612. void RasterizerSceneGLES2::environment_set_fog_height(RID p_env, bool p_enable, float p_min_height, float p_max_height, float p_height_curve) {
  613. Environment *env = environment_owner.getornull(p_env);
  614. ERR_FAIL_COND(!env);
  615. env->fog_height_enabled = p_enable;
  616. env->fog_height_min = p_min_height;
  617. env->fog_height_max = p_max_height;
  618. env->fog_height_curve = p_height_curve;
  619. }
  620. bool RasterizerSceneGLES2::is_environment(RID p_env) {
  621. return environment_owner.owns(p_env);
  622. }
  623. VS::EnvironmentBG RasterizerSceneGLES2::environment_get_background(RID p_env) {
  624. const Environment *env = environment_owner.getornull(p_env);
  625. ERR_FAIL_COND_V(!env, VS::ENV_BG_MAX);
  626. return env->bg_mode;
  627. }
  628. int RasterizerSceneGLES2::environment_get_canvas_max_layer(RID p_env) {
  629. const Environment *env = environment_owner.getornull(p_env);
  630. ERR_FAIL_COND_V(!env, -1);
  631. return env->canvas_max_layer;
  632. }
  633. RID RasterizerSceneGLES2::light_instance_create(RID p_light) {
  634. LightInstance *light_instance = memnew(LightInstance);
  635. light_instance->last_scene_pass = 0;
  636. light_instance->light = p_light;
  637. light_instance->light_ptr = storage->light_owner.getornull(p_light);
  638. light_instance->light_index = 0xFFFF;
  639. ERR_FAIL_COND_V(!light_instance->light_ptr, RID());
  640. light_instance->self = light_instance_owner.make_rid(light_instance);
  641. return light_instance->self;
  642. }
  643. void RasterizerSceneGLES2::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) {
  644. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  645. ERR_FAIL_COND(!light_instance);
  646. light_instance->transform = p_transform;
  647. }
  648. void RasterizerSceneGLES2::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale) {
  649. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  650. ERR_FAIL_COND(!light_instance);
  651. if (light_instance->light_ptr->type != VS::LIGHT_DIRECTIONAL) {
  652. p_pass = 0;
  653. }
  654. ERR_FAIL_INDEX(p_pass, 4);
  655. light_instance->shadow_transform[p_pass].camera = p_projection;
  656. light_instance->shadow_transform[p_pass].transform = p_transform;
  657. light_instance->shadow_transform[p_pass].farplane = p_far;
  658. light_instance->shadow_transform[p_pass].split = p_split;
  659. light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
  660. }
  661. void RasterizerSceneGLES2::light_instance_mark_visible(RID p_light_instance) {
  662. LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
  663. ERR_FAIL_COND(!light_instance);
  664. light_instance->last_scene_pass = scene_pass;
  665. }
  666. //////////////////////
  667. RID RasterizerSceneGLES2::gi_probe_instance_create() {
  668. return RID();
  669. }
  670. void RasterizerSceneGLES2::gi_probe_instance_set_light_data(RID p_probe, RID p_base, RID p_data) {
  671. }
  672. void RasterizerSceneGLES2::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) {
  673. }
  674. void RasterizerSceneGLES2::gi_probe_instance_set_bounds(RID p_probe, const Vector3 &p_bounds) {
  675. }
  676. ////////////////////////////
  677. ////////////////////////////
  678. ////////////////////////////
  679. void RasterizerSceneGLES2::_add_geometry(RasterizerStorageGLES2::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES2::GeometryOwner *p_owner, int p_material, bool p_depth_pass, bool p_shadow_pass) {
  680. RasterizerStorageGLES2::Material *material = NULL;
  681. RID material_src;
  682. if (p_instance->material_override.is_valid()) {
  683. material_src = p_instance->material_override;
  684. } else if (p_material >= 0) {
  685. material_src = p_instance->materials[p_material];
  686. } else {
  687. material_src = p_geometry->material;
  688. }
  689. if (material_src.is_valid()) {
  690. material = storage->material_owner.getornull(material_src);
  691. if (!material->shader || !material->shader->valid) {
  692. material = NULL;
  693. }
  694. }
  695. if (!material) {
  696. material = storage->material_owner.getptr(default_material);
  697. }
  698. ERR_FAIL_COND(!material);
  699. _add_geometry_with_material(p_geometry, p_instance, p_owner, material, p_depth_pass, p_shadow_pass);
  700. while (material->next_pass.is_valid()) {
  701. material = storage->material_owner.getornull(material->next_pass);
  702. if (!material || !material->shader || !material->shader->valid) {
  703. break;
  704. }
  705. _add_geometry_with_material(p_geometry, p_instance, p_owner, material, p_depth_pass, p_shadow_pass);
  706. }
  707. }
  708. void RasterizerSceneGLES2::_add_geometry_with_material(RasterizerStorageGLES2::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES2::GeometryOwner *p_owner, RasterizerStorageGLES2::Material *p_material, bool p_depth_pass, bool p_shadow_pass) {
  709. bool has_base_alpha = (p_material->shader->spatial.uses_alpha && !p_material->shader->spatial.uses_alpha_scissor) || p_material->shader->spatial.uses_screen_texture || p_material->shader->spatial.uses_depth_texture;
  710. bool has_blend_alpha = p_material->shader->spatial.blend_mode != RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MIX;
  711. bool has_alpha = has_base_alpha || has_blend_alpha;
  712. bool mirror = p_instance->mirror;
  713. if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_DISABLED) {
  714. mirror = false;
  715. } else if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_FRONT) {
  716. mirror = !mirror;
  717. }
  718. //if (p_material->shader->spatial.uses_sss) {
  719. // state.used_sss = true;
  720. //}
  721. if (p_material->shader->spatial.uses_screen_texture) {
  722. state.used_screen_texture = true;
  723. }
  724. if (p_depth_pass) {
  725. if (has_blend_alpha || p_material->shader->spatial.uses_depth_texture || (has_base_alpha && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS))
  726. return; //bye
  727. if (!p_material->shader->spatial.uses_alpha_scissor && !p_material->shader->spatial.writes_modelview_or_projection && !p_material->shader->spatial.uses_vertex && !p_material->shader->spatial.uses_discard && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
  728. //shader does not use discard and does not write a vertex position, use generic material
  729. if (p_instance->cast_shadows == VS::SHADOW_CASTING_SETTING_DOUBLE_SIDED) {
  730. p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material_twosided : default_material_twosided);
  731. mirror = false;
  732. } else {
  733. p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material : default_material);
  734. }
  735. }
  736. has_alpha = false;
  737. }
  738. RenderList::Element *e = has_alpha ? render_list.add_alpha_element() : render_list.add_element();
  739. if (!e) {
  740. return;
  741. }
  742. e->geometry = p_geometry;
  743. e->material = p_material;
  744. e->instance = p_instance;
  745. e->owner = p_owner;
  746. e->sort_key = 0;
  747. e->depth_key = 0;
  748. e->use_accum = false;
  749. e->light_index = RenderList::MAX_LIGHTS;
  750. e->use_accum_ptr = &e->use_accum;
  751. e->instancing = (e->instance->base_type == VS::INSTANCE_MULTIMESH) ? 1 : 0;
  752. if (e->geometry->last_pass != render_pass) {
  753. e->geometry->last_pass = render_pass;
  754. e->geometry->index = current_geometry_index++;
  755. }
  756. e->geometry_index = e->geometry->index;
  757. if (e->material->last_pass != render_pass) {
  758. e->material->last_pass = render_pass;
  759. e->material->index = current_material_index++;
  760. if (e->material->shader->last_pass != render_pass) {
  761. e->material->shader->index = current_shader_index++;
  762. }
  763. }
  764. e->material_index = e->material->index;
  765. e->refprobe_0_index = RenderList::MAX_REFLECTION_PROBES; //refprobe disabled by default
  766. e->refprobe_1_index = RenderList::MAX_REFLECTION_PROBES; //refprobe disabled by default
  767. if (!p_depth_pass) {
  768. e->depth_layer = e->instance->depth_layer;
  769. e->priority = p_material->render_priority;
  770. if (has_alpha && p_material->shader->spatial.depth_draw_mode == RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
  771. //add element to opaque
  772. RenderList::Element *eo = render_list.add_element();
  773. *eo = *e;
  774. eo->use_accum_ptr = &eo->use_accum;
  775. }
  776. int rpsize = e->instance->reflection_probe_instances.size();
  777. if (rpsize > 0) {
  778. bool first = true;
  779. rpsize = MIN(rpsize, 2); //more than 2 per object are not supported, this keeps it stable
  780. for (int i = 0; i < rpsize; i++) {
  781. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(e->instance->reflection_probe_instances[i]);
  782. if (rpi->last_pass != render_pass) {
  783. continue;
  784. }
  785. if (first) {
  786. e->refprobe_0_index = rpi->index;
  787. first = false;
  788. } else {
  789. e->refprobe_1_index = rpi->index;
  790. break;
  791. }
  792. }
  793. /* if (e->refprobe_0_index > e->refprobe_1_index) { //if both are valid, swap them to keep order as best as possible
  794. uint64_t tmp = e->refprobe_0_index;
  795. e->refprobe_0_index = e->refprobe_1_index;
  796. e->refprobe_1_index = tmp;
  797. }*/
  798. }
  799. //add directional lights
  800. if (p_material->shader->spatial.unshaded) {
  801. e->light_mode = LIGHTMODE_UNSHADED;
  802. } else {
  803. bool copy = false;
  804. for (int i = 0; i < render_directional_lights; i++) {
  805. if (copy) {
  806. RenderList::Element *e2 = has_alpha ? render_list.add_alpha_element() : render_list.add_element();
  807. if (!e2) {
  808. break;
  809. }
  810. *e2 = *e; //this includes accum ptr :)
  811. e = e2;
  812. }
  813. //directional sort key
  814. e->light_type1 = 0;
  815. e->light_type2 = 1;
  816. e->light_index = i;
  817. copy = true;
  818. }
  819. //add omni / spots
  820. for (int i = 0; i < e->instance->light_instances.size(); i++) {
  821. LightInstance *li = light_instance_owner.getornull(e->instance->light_instances[i]);
  822. if (li->light_index >= render_light_instance_count) {
  823. continue; // too many
  824. }
  825. if (copy) {
  826. RenderList::Element *e2 = has_alpha ? render_list.add_alpha_element() : render_list.add_element();
  827. if (!e2) {
  828. break;
  829. }
  830. *e2 = *e; //this includes accum ptr :)
  831. e = e2;
  832. }
  833. //directional sort key
  834. e->light_type1 = 1;
  835. e->light_type2 = li->light_ptr->type == VisualServer::LIGHT_OMNI ? 0 : 1;
  836. e->light_index = li->light_index;
  837. copy = true;
  838. }
  839. if (e->instance->lightmap.is_valid()) {
  840. e->light_mode = LIGHTMODE_LIGHTMAP;
  841. } else if (!e->instance->lightmap_capture_data.empty()) {
  842. e->light_mode = LIGHTMODE_LIGHTMAP_CAPTURE;
  843. } else {
  844. e->light_mode = LIGHTMODE_NORMAL;
  845. }
  846. }
  847. }
  848. // do not add anything here, as lights are duplicated elements..
  849. if (p_material->shader->spatial.uses_time) {
  850. VisualServerRaster::redraw_request();
  851. }
  852. }
  853. void RasterizerSceneGLES2::_fill_render_list(InstanceBase **p_cull_result, int p_cull_count, bool p_depth_pass, bool p_shadow_pass) {
  854. render_pass++;
  855. current_material_index = 0;
  856. current_geometry_index = 0;
  857. current_light_index = 0;
  858. current_refprobe_index = 0;
  859. current_shader_index = 0;
  860. for (int i = 0; i < p_cull_count; i++) {
  861. InstanceBase *instance = p_cull_result[i];
  862. switch (instance->base_type) {
  863. case VS::INSTANCE_MESH: {
  864. RasterizerStorageGLES2::Mesh *mesh = storage->mesh_owner.getornull(instance->base);
  865. ERR_CONTINUE(!mesh);
  866. int num_surfaces = mesh->surfaces.size();
  867. for (int j = 0; j < num_surfaces; j++) {
  868. int material_index = instance->materials[j].is_valid() ? j : -1;
  869. RasterizerStorageGLES2::Surface *surface = mesh->surfaces[j];
  870. _add_geometry(surface, instance, NULL, material_index, p_depth_pass, p_shadow_pass);
  871. }
  872. } break;
  873. case VS::INSTANCE_MULTIMESH: {
  874. RasterizerStorageGLES2::MultiMesh *multi_mesh = storage->multimesh_owner.getptr(instance->base);
  875. ERR_CONTINUE(!multi_mesh);
  876. if (multi_mesh->size == 0 || multi_mesh->visible_instances == 0)
  877. continue;
  878. RasterizerStorageGLES2::Mesh *mesh = storage->mesh_owner.getptr(multi_mesh->mesh);
  879. if (!mesh)
  880. continue;
  881. int ssize = mesh->surfaces.size();
  882. for (int j = 0; j < ssize; j++) {
  883. RasterizerStorageGLES2::Surface *s = mesh->surfaces[j];
  884. _add_geometry(s, instance, multi_mesh, -1, p_depth_pass, p_shadow_pass);
  885. }
  886. } break;
  887. case VS::INSTANCE_IMMEDIATE: {
  888. RasterizerStorageGLES2::Immediate *im = storage->immediate_owner.getptr(instance->base);
  889. ERR_CONTINUE(!im);
  890. _add_geometry(im, instance, NULL, -1, p_depth_pass, p_shadow_pass);
  891. } break;
  892. default: {}
  893. }
  894. }
  895. }
  896. static const GLenum gl_primitive[] = {
  897. GL_POINTS,
  898. GL_LINES,
  899. GL_LINE_STRIP,
  900. GL_LINE_LOOP,
  901. GL_TRIANGLES,
  902. GL_TRIANGLE_STRIP,
  903. GL_TRIANGLE_FAN
  904. };
  905. bool RasterizerSceneGLES2::_setup_material(RasterizerStorageGLES2::Material *p_material, bool p_reverse_cull, bool p_alpha_pass, Size2i p_skeleton_tex_size) {
  906. // material parameters
  907. state.scene_shader.set_custom_shader(p_material->shader->custom_code_id);
  908. if (p_material->shader->spatial.uses_screen_texture && storage->frame.current_rt) {
  909. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4);
  910. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->copy_screen_effect.color);
  911. }
  912. if (p_material->shader->spatial.uses_depth_texture && storage->frame.current_rt) {
  913. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4);
  914. glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth);
  915. }
  916. bool shader_rebind = state.scene_shader.bind();
  917. if (p_material->shader->spatial.no_depth_test || p_material->shader->spatial.uses_depth_texture) {
  918. glDisable(GL_DEPTH_TEST);
  919. } else {
  920. glEnable(GL_DEPTH_TEST);
  921. }
  922. switch (p_material->shader->spatial.depth_draw_mode) {
  923. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS:
  924. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_OPAQUE: {
  925. glDepthMask(!p_alpha_pass && !p_material->shader->spatial.uses_depth_texture);
  926. } break;
  927. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALWAYS: {
  928. glDepthMask(GL_TRUE && !p_material->shader->spatial.uses_depth_texture);
  929. } break;
  930. case RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_NEVER: {
  931. glDepthMask(GL_FALSE);
  932. } break;
  933. }
  934. switch (p_material->shader->spatial.cull_mode) {
  935. case RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_DISABLED: {
  936. glDisable(GL_CULL_FACE);
  937. } break;
  938. case RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_BACK: {
  939. glEnable(GL_CULL_FACE);
  940. glCullFace(p_reverse_cull ? GL_FRONT : GL_BACK);
  941. } break;
  942. case RasterizerStorageGLES2::Shader::Spatial::CULL_MODE_FRONT: {
  943. glEnable(GL_CULL_FACE);
  944. glCullFace(p_reverse_cull ? GL_BACK : GL_FRONT);
  945. } break;
  946. }
  947. int tc = p_material->textures.size();
  948. Pair<StringName, RID> *textures = p_material->textures.ptrw();
  949. ShaderLanguage::ShaderNode::Uniform::Hint *texture_hints = p_material->shader->texture_hints.ptrw();
  950. state.scene_shader.set_uniform(SceneShaderGLES2::SKELETON_TEXTURE_SIZE, p_skeleton_tex_size);
  951. state.current_main_tex = 0;
  952. for (int i = 0; i < tc; i++) {
  953. glActiveTexture(GL_TEXTURE0 + i);
  954. RasterizerStorageGLES2::Texture *t = storage->texture_owner.getornull(textures[i].second);
  955. if (!t) {
  956. switch (texture_hints[i]) {
  957. case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO:
  958. case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK: {
  959. glBindTexture(GL_TEXTURE_2D, storage->resources.black_tex);
  960. } break;
  961. case ShaderLanguage::ShaderNode::Uniform::HINT_ANISO: {
  962. glBindTexture(GL_TEXTURE_2D, storage->resources.aniso_tex);
  963. } break;
  964. case ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL: {
  965. glBindTexture(GL_TEXTURE_2D, storage->resources.normal_tex);
  966. } break;
  967. default: {
  968. glBindTexture(GL_TEXTURE_2D, storage->resources.white_tex);
  969. } break;
  970. }
  971. continue;
  972. }
  973. t = t->get_ptr();
  974. if (t->redraw_if_visible) { //must check before proxy because this is often used with proxies
  975. VisualServerRaster::redraw_request();
  976. }
  977. #ifdef TOOLS_ENABLED
  978. if (t->detect_3d) {
  979. t->detect_3d(t->detect_3d_ud);
  980. }
  981. #endif
  982. #ifdef TOOLS_ENABLED
  983. if (t->detect_normal && texture_hints[i] == ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL) {
  984. t->detect_normal(t->detect_normal_ud);
  985. }
  986. #endif
  987. if (t->render_target)
  988. t->render_target->used_in_frame = true;
  989. glBindTexture(t->target, t->tex_id);
  990. if (i == 0) {
  991. state.current_main_tex = t->tex_id;
  992. }
  993. }
  994. state.scene_shader.use_material((void *)p_material);
  995. return shader_rebind;
  996. }
  997. void RasterizerSceneGLES2::_setup_geometry(RenderList::Element *p_element, RasterizerStorageGLES2::Skeleton *p_skeleton) {
  998. switch (p_element->instance->base_type) {
  999. case VS::INSTANCE_MESH: {
  1000. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1001. glBindBuffer(GL_ARRAY_BUFFER, s->vertex_id);
  1002. if (s->index_array_len > 0) {
  1003. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id);
  1004. }
  1005. for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
  1006. if (s->attribs[i].enabled) {
  1007. glEnableVertexAttribArray(i);
  1008. glVertexAttribPointer(s->attribs[i].index, s->attribs[i].size, s->attribs[i].type, s->attribs[i].normalized, s->attribs[i].stride, (uint8_t *)0 + s->attribs[i].offset);
  1009. } else {
  1010. glDisableVertexAttribArray(i);
  1011. switch (i) {
  1012. case VS::ARRAY_NORMAL: {
  1013. glVertexAttrib4f(VS::ARRAY_NORMAL, 0.0, 0.0, 1, 1);
  1014. } break;
  1015. case VS::ARRAY_COLOR: {
  1016. glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1);
  1017. } break;
  1018. default: {}
  1019. }
  1020. }
  1021. }
  1022. bool clear_skeleton_buffer = !storage->config.float_texture_supported;
  1023. if (p_skeleton) {
  1024. if (storage->config.float_texture_supported) {
  1025. //use float texture workflow
  1026. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 1);
  1027. glBindTexture(GL_TEXTURE_2D, p_skeleton->tex_id);
  1028. } else {
  1029. //use transform buffer workflow
  1030. ERR_FAIL_COND(p_skeleton->use_2d);
  1031. PoolVector<float> &transform_buffer = storage->resources.skeleton_transform_cpu_buffer;
  1032. if (!s->attribs[VS::ARRAY_BONES].enabled || !s->attribs[VS::ARRAY_WEIGHTS].enabled) {
  1033. break; // the whole instance has a skeleton, but this surface is not affected by it.
  1034. }
  1035. // 3 * vec4 per vertex
  1036. if (transform_buffer.size() < s->array_len * 12) {
  1037. transform_buffer.resize(s->array_len * 12);
  1038. }
  1039. const size_t bones_offset = s->attribs[VS::ARRAY_BONES].offset;
  1040. const size_t bones_stride = s->attribs[VS::ARRAY_BONES].stride;
  1041. const size_t bone_weight_offset = s->attribs[VS::ARRAY_WEIGHTS].offset;
  1042. const size_t bone_weight_stride = s->attribs[VS::ARRAY_WEIGHTS].stride;
  1043. {
  1044. PoolVector<float>::Write write = transform_buffer.write();
  1045. float *buffer = write.ptr();
  1046. PoolVector<uint8_t>::Read vertex_array_read = s->data.read();
  1047. const uint8_t *vertex_data = vertex_array_read.ptr();
  1048. for (int i = 0; i < s->array_len; i++) {
  1049. // do magic
  1050. size_t bones[4];
  1051. float bone_weight[4];
  1052. if (s->attribs[VS::ARRAY_BONES].type == GL_UNSIGNED_BYTE) {
  1053. // read as byte
  1054. const uint8_t *bones_ptr = vertex_data + bones_offset + (i * bones_stride);
  1055. bones[0] = bones_ptr[0];
  1056. bones[1] = bones_ptr[1];
  1057. bones[2] = bones_ptr[2];
  1058. bones[3] = bones_ptr[3];
  1059. } else {
  1060. // read as short
  1061. const uint16_t *bones_ptr = (const uint16_t *)(vertex_data + bones_offset + (i * bones_stride));
  1062. bones[0] = bones_ptr[0];
  1063. bones[1] = bones_ptr[1];
  1064. bones[2] = bones_ptr[2];
  1065. bones[3] = bones_ptr[3];
  1066. }
  1067. if (s->attribs[VS::ARRAY_WEIGHTS].type == GL_FLOAT) {
  1068. // read as float
  1069. const float *weight_ptr = (const float *)(vertex_data + bone_weight_offset + (i * bone_weight_stride));
  1070. bone_weight[0] = weight_ptr[0];
  1071. bone_weight[1] = weight_ptr[1];
  1072. bone_weight[2] = weight_ptr[2];
  1073. bone_weight[3] = weight_ptr[3];
  1074. } else {
  1075. // read as half
  1076. const uint16_t *weight_ptr = (const uint16_t *)(vertex_data + bone_weight_offset + (i * bone_weight_stride));
  1077. bone_weight[0] = (weight_ptr[0] / (float)0xFFFF);
  1078. bone_weight[1] = (weight_ptr[1] / (float)0xFFFF);
  1079. bone_weight[2] = (weight_ptr[2] / (float)0xFFFF);
  1080. bone_weight[3] = (weight_ptr[3] / (float)0xFFFF);
  1081. }
  1082. Transform transform;
  1083. Transform bone_transforms[4] = {
  1084. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[0]),
  1085. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[1]),
  1086. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[2]),
  1087. storage->skeleton_bone_get_transform(p_element->instance->skeleton, bones[3]),
  1088. };
  1089. transform.origin =
  1090. bone_weight[0] * bone_transforms[0].origin +
  1091. bone_weight[1] * bone_transforms[1].origin +
  1092. bone_weight[2] * bone_transforms[2].origin +
  1093. bone_weight[3] * bone_transforms[3].origin;
  1094. transform.basis =
  1095. bone_transforms[0].basis * bone_weight[0] +
  1096. bone_transforms[1].basis * bone_weight[1] +
  1097. bone_transforms[2].basis * bone_weight[2] +
  1098. bone_transforms[3].basis * bone_weight[3];
  1099. float row[3][4] = {
  1100. { transform.basis[0][0], transform.basis[0][1], transform.basis[0][2], transform.origin[0] },
  1101. { transform.basis[1][0], transform.basis[1][1], transform.basis[1][2], transform.origin[1] },
  1102. { transform.basis[2][0], transform.basis[2][1], transform.basis[2][2], transform.origin[2] },
  1103. };
  1104. size_t transform_buffer_offset = i * 12;
  1105. copymem(&buffer[transform_buffer_offset], row, sizeof(row));
  1106. }
  1107. }
  1108. storage->_update_skeleton_transform_buffer(transform_buffer, s->array_len * 12);
  1109. //enable transform buffer and bind it
  1110. glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer);
  1111. glEnableVertexAttribArray(INSTANCE_BONE_BASE + 0);
  1112. glEnableVertexAttribArray(INSTANCE_BONE_BASE + 1);
  1113. glEnableVertexAttribArray(INSTANCE_BONE_BASE + 2);
  1114. glVertexAttribPointer(INSTANCE_BONE_BASE + 0, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 0));
  1115. glVertexAttribPointer(INSTANCE_BONE_BASE + 1, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 1));
  1116. glVertexAttribPointer(INSTANCE_BONE_BASE + 2, 4, GL_FLOAT, GL_FALSE, sizeof(float) * 12, (const void *)(sizeof(float) * 4 * 2));
  1117. clear_skeleton_buffer = false;
  1118. }
  1119. }
  1120. if (clear_skeleton_buffer) {
  1121. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 0);
  1122. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 1);
  1123. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 2);
  1124. }
  1125. } break;
  1126. case VS::INSTANCE_MULTIMESH: {
  1127. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1128. glBindBuffer(GL_ARRAY_BUFFER, s->vertex_id);
  1129. if (s->index_array_len > 0) {
  1130. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id);
  1131. }
  1132. for (int i = 0; i < VS::ARRAY_MAX - 1; i++) {
  1133. if (s->attribs[i].enabled) {
  1134. glEnableVertexAttribArray(i);
  1135. glVertexAttribPointer(s->attribs[i].index, s->attribs[i].size, s->attribs[i].type, s->attribs[i].normalized, s->attribs[i].stride, (uint8_t *)0 + s->attribs[i].offset);
  1136. } else {
  1137. glDisableVertexAttribArray(i);
  1138. switch (i) {
  1139. case VS::ARRAY_NORMAL: {
  1140. glVertexAttrib4f(VS::ARRAY_NORMAL, 0.0, 0.0, 1, 1);
  1141. } break;
  1142. case VS::ARRAY_COLOR: {
  1143. glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1);
  1144. } break;
  1145. default: {}
  1146. }
  1147. }
  1148. }
  1149. // prepare multimesh (disable)
  1150. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 0);
  1151. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 1);
  1152. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 2);
  1153. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 3);
  1154. glDisableVertexAttribArray(INSTANCE_ATTRIB_BASE + 4);
  1155. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 0);
  1156. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 1);
  1157. glDisableVertexAttribArray(INSTANCE_BONE_BASE + 2);
  1158. } break;
  1159. case VS::INSTANCE_IMMEDIATE: {
  1160. } break;
  1161. default: {}
  1162. }
  1163. }
  1164. void RasterizerSceneGLES2::_render_geometry(RenderList::Element *p_element) {
  1165. switch (p_element->instance->base_type) {
  1166. case VS::INSTANCE_MESH: {
  1167. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1168. // drawing
  1169. if (s->index_array_len > 0) {
  1170. glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0);
  1171. } else {
  1172. glDrawArrays(gl_primitive[s->primitive], 0, s->array_len);
  1173. }
  1174. /*
  1175. if (p_element->instance->skeleton.is_valid() && s->attribs[VS::ARRAY_BONES].enabled && s->attribs[VS::ARRAY_WEIGHTS].enabled) {
  1176. //clean up after skeleton
  1177. glBindBuffer(GL_ARRAY_BUFFER, storage->resources.skeleton_transform_buffer);
  1178. glDisableVertexAttribArray(VS::ARRAY_MAX + 0);
  1179. glDisableVertexAttribArray(VS::ARRAY_MAX + 1);
  1180. glDisableVertexAttribArray(VS::ARRAY_MAX + 2);
  1181. glVertexAttrib4f(VS::ARRAY_MAX + 0, 1, 0, 0, 0);
  1182. glVertexAttrib4f(VS::ARRAY_MAX + 1, 0, 1, 0, 0);
  1183. glVertexAttrib4f(VS::ARRAY_MAX + 2, 0, 0, 1, 0);
  1184. }
  1185. */
  1186. } break;
  1187. case VS::INSTANCE_MULTIMESH: {
  1188. RasterizerStorageGLES2::MultiMesh *multi_mesh = static_cast<RasterizerStorageGLES2::MultiMesh *>(p_element->owner);
  1189. RasterizerStorageGLES2::Surface *s = static_cast<RasterizerStorageGLES2::Surface *>(p_element->geometry);
  1190. int amount = MIN(multi_mesh->size, multi_mesh->visible_instances);
  1191. if (amount == -1) {
  1192. amount = multi_mesh->size;
  1193. }
  1194. int stride = multi_mesh->color_floats + multi_mesh->custom_data_floats + multi_mesh->xform_floats;
  1195. int color_ofs = multi_mesh->xform_floats;
  1196. int custom_data_ofs = color_ofs + multi_mesh->color_floats;
  1197. // drawing
  1198. const float *base_buffer = multi_mesh->data.ptr();
  1199. for (int i = 0; i < amount; i++) {
  1200. const float *buffer = base_buffer + i * stride;
  1201. {
  1202. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 0, &buffer[0]);
  1203. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 1, &buffer[4]);
  1204. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 2, &buffer[8]);
  1205. }
  1206. if (multi_mesh->color_floats) {
  1207. if (multi_mesh->color_format == VS::MULTIMESH_COLOR_8BIT) {
  1208. uint8_t *color_data = (uint8_t *)(buffer + color_ofs);
  1209. glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 3, color_data[0] / 255.0, color_data[1] / 255.0, color_data[2] / 255.0, color_data[3] / 255.0);
  1210. } else {
  1211. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 3, buffer + color_ofs);
  1212. }
  1213. } else {
  1214. glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 3, 1.0, 1.0, 1.0, 1.0);
  1215. }
  1216. if (multi_mesh->custom_data_floats) {
  1217. if (multi_mesh->custom_data_format == VS::MULTIMESH_CUSTOM_DATA_8BIT) {
  1218. uint8_t *custom_data = (uint8_t *)(buffer + custom_data_ofs);
  1219. glVertexAttrib4f(INSTANCE_ATTRIB_BASE + 4, custom_data[0] / 255.0, custom_data[1] / 255.0, custom_data[2] / 255.0, custom_data[3] / 255.0);
  1220. } else {
  1221. glVertexAttrib4fv(INSTANCE_ATTRIB_BASE + 4, buffer + custom_data_ofs);
  1222. }
  1223. }
  1224. if (s->index_array_len > 0) {
  1225. glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0);
  1226. } else {
  1227. glDrawArrays(gl_primitive[s->primitive], 0, s->array_len);
  1228. }
  1229. }
  1230. } break;
  1231. case VS::INSTANCE_IMMEDIATE: {
  1232. const RasterizerStorageGLES2::Immediate *im = static_cast<const RasterizerStorageGLES2::Immediate *>(p_element->geometry);
  1233. if (im->building) {
  1234. return;
  1235. }
  1236. bool restore_tex = false;
  1237. glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer);
  1238. for (const List<RasterizerStorageGLES2::Immediate::Chunk>::Element *E = im->chunks.front(); E; E = E->next()) {
  1239. const RasterizerStorageGLES2::Immediate::Chunk &c = E->get();
  1240. if (c.vertices.empty()) {
  1241. continue;
  1242. }
  1243. int vertices = c.vertices.size();
  1244. uint32_t buf_ofs = 0;
  1245. storage->info.render.vertices_count += vertices;
  1246. if (c.texture.is_valid() && storage->texture_owner.owns(c.texture)) {
  1247. RasterizerStorageGLES2::Texture *t = storage->texture_owner.get(c.texture);
  1248. t = t->get_ptr();
  1249. if (t->redraw_if_visible) {
  1250. VisualServerRaster::redraw_request();
  1251. }
  1252. #ifdef TOOLS_ENABLED
  1253. if (t->detect_3d) {
  1254. t->detect_3d(t->detect_3d_ud);
  1255. }
  1256. #endif
  1257. if (t->render_target) {
  1258. t->render_target->used_in_frame = true;
  1259. }
  1260. glActiveTexture(GL_TEXTURE0);
  1261. glBindTexture(t->target, t->tex_id);
  1262. restore_tex = true;
  1263. } else if (restore_tex) {
  1264. glActiveTexture(GL_TEXTURE0);
  1265. glBindTexture(GL_TEXTURE_2D, state.current_main_tex);
  1266. restore_tex = false;
  1267. }
  1268. if (!c.normals.empty()) {
  1269. glEnableVertexAttribArray(VS::ARRAY_NORMAL);
  1270. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector3) * vertices, c.normals.ptr());
  1271. glVertexAttribPointer(VS::ARRAY_NORMAL, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3), ((uint8_t *)NULL) + buf_ofs);
  1272. buf_ofs += sizeof(Vector3) * vertices;
  1273. } else {
  1274. glDisableVertexAttribArray(VS::ARRAY_NORMAL);
  1275. }
  1276. if (!c.tangents.empty()) {
  1277. glEnableVertexAttribArray(VS::ARRAY_TANGENT);
  1278. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Plane) * vertices, c.tangents.ptr());
  1279. glVertexAttribPointer(VS::ARRAY_TANGENT, 4, GL_FLOAT, GL_FALSE, sizeof(Plane), ((uint8_t *)NULL) + buf_ofs);
  1280. buf_ofs += sizeof(Plane) * vertices;
  1281. } else {
  1282. glDisableVertexAttribArray(VS::ARRAY_TANGENT);
  1283. }
  1284. if (!c.colors.empty()) {
  1285. glEnableVertexAttribArray(VS::ARRAY_COLOR);
  1286. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Color) * vertices, c.colors.ptr());
  1287. glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, GL_FALSE, sizeof(Color), ((uint8_t *)NULL) + buf_ofs);
  1288. buf_ofs += sizeof(Color) * vertices;
  1289. } else {
  1290. glDisableVertexAttribArray(VS::ARRAY_COLOR);
  1291. }
  1292. if (!c.uvs.empty()) {
  1293. glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
  1294. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector2) * vertices, c.uvs.ptr());
  1295. glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(Vector2), ((uint8_t *)NULL) + buf_ofs);
  1296. buf_ofs += sizeof(Vector2) * vertices;
  1297. } else {
  1298. glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
  1299. }
  1300. if (!c.uv2s.empty()) {
  1301. glEnableVertexAttribArray(VS::ARRAY_TEX_UV2);
  1302. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector2) * vertices, c.uv2s.ptr());
  1303. glVertexAttribPointer(VS::ARRAY_TEX_UV2, 2, GL_FLOAT, GL_FALSE, sizeof(Vector2), ((uint8_t *)NULL) + buf_ofs);
  1304. buf_ofs += sizeof(Vector2) * vertices;
  1305. } else {
  1306. glDisableVertexAttribArray(VS::ARRAY_TEX_UV2);
  1307. }
  1308. glEnableVertexAttribArray(VS::ARRAY_VERTEX);
  1309. glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector3) * vertices, c.vertices.ptr());
  1310. glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3), ((uint8_t *)NULL) + buf_ofs);
  1311. glDrawArrays(gl_primitive[c.primitive], 0, c.vertices.size());
  1312. }
  1313. if (restore_tex) {
  1314. glActiveTexture(GL_TEXTURE0);
  1315. glBindTexture(GL_TEXTURE_2D, state.current_main_tex);
  1316. restore_tex = false;
  1317. }
  1318. } break;
  1319. default: {}
  1320. }
  1321. }
  1322. void RasterizerSceneGLES2::_setup_light_type(LightInstance *p_light, ShadowAtlas *shadow_atlas) {
  1323. //turn off all by default
  1324. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, false);
  1325. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, false);
  1326. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, false);
  1327. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, false);
  1328. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_DIRECTIONAL, false);
  1329. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_OMNI, false);
  1330. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_SPOT, false);
  1331. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, false);
  1332. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, false);
  1333. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, false);
  1334. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, false);
  1335. if (!p_light) { //no light, return off
  1336. return;
  1337. }
  1338. //turn on lighting
  1339. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, true);
  1340. switch (p_light->light_ptr->type) {
  1341. case VS::LIGHT_DIRECTIONAL: {
  1342. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_DIRECTIONAL, true);
  1343. switch (p_light->light_ptr->directional_shadow_mode) {
  1344. case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: {
  1345. //no need
  1346. } break;
  1347. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: {
  1348. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, true);
  1349. } break;
  1350. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: {
  1351. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, true);
  1352. } break;
  1353. }
  1354. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, p_light->light_ptr->directional_blend_splits);
  1355. if (!state.render_no_shadows && p_light->light_ptr->shadow) {
  1356. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true);
  1357. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3);
  1358. if (storage->config.use_rgba_3d_shadows) {
  1359. glBindTexture(GL_TEXTURE_2D, directional_shadow.color);
  1360. } else {
  1361. glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
  1362. }
  1363. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5);
  1364. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13);
  1365. }
  1366. } break;
  1367. case VS::LIGHT_OMNI: {
  1368. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_OMNI, true);
  1369. if (!state.render_no_shadows && shadow_atlas && p_light->light_ptr->shadow) {
  1370. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true);
  1371. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3);
  1372. if (storage->config.use_rgba_3d_shadows) {
  1373. glBindTexture(GL_TEXTURE_2D, shadow_atlas->color);
  1374. } else {
  1375. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  1376. }
  1377. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5);
  1378. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13);
  1379. }
  1380. } break;
  1381. case VS::LIGHT_SPOT: {
  1382. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_MODE_SPOT, true);
  1383. if (!state.render_no_shadows && shadow_atlas && p_light->light_ptr->shadow) {
  1384. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SHADOW, true);
  1385. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3);
  1386. if (storage->config.use_rgba_3d_shadows) {
  1387. glBindTexture(GL_TEXTURE_2D, shadow_atlas->color);
  1388. } else {
  1389. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  1390. }
  1391. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5);
  1392. state.scene_shader.set_conditional(SceneShaderGLES2::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13);
  1393. }
  1394. } break;
  1395. }
  1396. }
  1397. void RasterizerSceneGLES2::_setup_light(LightInstance *light, ShadowAtlas *shadow_atlas, const Transform &p_view_transform) {
  1398. RasterizerStorageGLES2::Light *light_ptr = light->light_ptr;
  1399. //common parameters
  1400. float energy = light_ptr->param[VS::LIGHT_PARAM_ENERGY];
  1401. float specular = light_ptr->param[VS::LIGHT_PARAM_SPECULAR];
  1402. float sign = light_ptr->negative ? -1 : 1;
  1403. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPECULAR, specular);
  1404. Color color = light_ptr->color * sign * energy * Math_PI;
  1405. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_COLOR, color);
  1406. Color shadow_color = light_ptr->shadow_color.to_linear();
  1407. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_COLOR, shadow_color);
  1408. //specific parameters
  1409. switch (light_ptr->type) {
  1410. case VS::LIGHT_DIRECTIONAL: {
  1411. //not using inverse for performance, view should be normalized anyway
  1412. Vector3 direction = p_view_transform.basis.xform_inv(light->transform.basis.xform(Vector3(0, 0, -1))).normalized();
  1413. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_DIRECTION, direction);
  1414. CameraMatrix matrices[4];
  1415. if (!state.render_no_shadows && light_ptr->shadow && directional_shadow.depth) {
  1416. int shadow_count = 0;
  1417. Color split_offsets;
  1418. switch (light_ptr->directional_shadow_mode) {
  1419. case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: {
  1420. shadow_count = 1;
  1421. } break;
  1422. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: {
  1423. shadow_count = 2;
  1424. } break;
  1425. case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: {
  1426. shadow_count = 4;
  1427. } break;
  1428. }
  1429. for (int k = 0; k < shadow_count; k++) {
  1430. uint32_t x = light->directional_rect.position.x;
  1431. uint32_t y = light->directional_rect.position.y;
  1432. uint32_t width = light->directional_rect.size.x;
  1433. uint32_t height = light->directional_rect.size.y;
  1434. if (light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  1435. width /= 2;
  1436. height /= 2;
  1437. if (k == 0) {
  1438. } else if (k == 1) {
  1439. x += width;
  1440. } else if (k == 2) {
  1441. y += height;
  1442. } else if (k == 3) {
  1443. x += width;
  1444. y += height;
  1445. }
  1446. } else if (light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  1447. height /= 2;
  1448. if (k == 0) {
  1449. } else {
  1450. y += height;
  1451. }
  1452. }
  1453. split_offsets[k] = light->shadow_transform[k].split;
  1454. Transform modelview = (p_view_transform.inverse() * light->shadow_transform[k].transform).affine_inverse();
  1455. CameraMatrix bias;
  1456. bias.set_light_bias();
  1457. CameraMatrix rectm;
  1458. Rect2 atlas_rect = Rect2(float(x) / directional_shadow.size, float(y) / directional_shadow.size, float(width) / directional_shadow.size, float(height) / directional_shadow.size);
  1459. rectm.set_light_atlas_rect(atlas_rect);
  1460. CameraMatrix shadow_mtx = rectm * bias * light->shadow_transform[k].camera * modelview;
  1461. matrices[k] = shadow_mtx;
  1462. /*Color light_clamp;
  1463. light_clamp[0] = atlas_rect.position.x;
  1464. light_clamp[1] = atlas_rect.position.y;
  1465. light_clamp[2] = atlas_rect.size.x;
  1466. light_clamp[3] = atlas_rect.size.y;*/
  1467. }
  1468. // state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp);
  1469. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / directional_shadow.size, 1.0 / directional_shadow.size));
  1470. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPLIT_OFFSETS, split_offsets);
  1471. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, matrices[0]);
  1472. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX2, matrices[1]);
  1473. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX3, matrices[2]);
  1474. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX4, matrices[3]);
  1475. }
  1476. } break;
  1477. case VS::LIGHT_OMNI: {
  1478. Vector3 position = p_view_transform.xform_inv(light->transform.origin);
  1479. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_POSITION, position);
  1480. float range = light_ptr->param[VS::LIGHT_PARAM_RANGE];
  1481. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_RANGE, range);
  1482. float attenuation = light_ptr->param[VS::LIGHT_PARAM_ATTENUATION];
  1483. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ATTENUATION, attenuation);
  1484. if (!state.render_no_shadows && light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(light->self)) {
  1485. uint32_t key = shadow_atlas->shadow_owners[light->self];
  1486. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03;
  1487. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  1488. ERR_BREAK(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size());
  1489. uint32_t atlas_size = shadow_atlas->size;
  1490. uint32_t quadrant_size = atlas_size >> 1;
  1491. uint32_t x = (quadrant & 1) * quadrant_size;
  1492. uint32_t y = (quadrant >> 1) * quadrant_size;
  1493. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  1494. x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1495. y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1496. uint32_t width = shadow_size;
  1497. uint32_t height = shadow_size;
  1498. if (light->light_ptr->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
  1499. height /= 2;
  1500. } else {
  1501. width /= 2;
  1502. }
  1503. Transform proj = (p_view_transform.inverse() * light->transform).inverse();
  1504. Color light_clamp;
  1505. light_clamp[0] = float(x) / atlas_size;
  1506. light_clamp[1] = float(y) / atlas_size;
  1507. light_clamp[2] = float(width) / atlas_size;
  1508. light_clamp[3] = float(height) / atlas_size;
  1509. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / shadow_atlas->size, 1.0 / shadow_atlas->size));
  1510. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, proj);
  1511. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp);
  1512. }
  1513. } break;
  1514. case VS::LIGHT_SPOT: {
  1515. Vector3 position = p_view_transform.xform_inv(light->transform.origin);
  1516. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_POSITION, position);
  1517. Vector3 direction = p_view_transform.inverse().basis.xform(light->transform.basis.xform(Vector3(0, 0, -1))).normalized();
  1518. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_DIRECTION, direction);
  1519. float attenuation = light_ptr->param[VS::LIGHT_PARAM_ATTENUATION];
  1520. float range = light_ptr->param[VS::LIGHT_PARAM_RANGE];
  1521. float spot_attenuation = light_ptr->param[VS::LIGHT_PARAM_SPOT_ATTENUATION];
  1522. float angle = light_ptr->param[VS::LIGHT_PARAM_SPOT_ANGLE];
  1523. angle = Math::cos(Math::deg2rad(angle));
  1524. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_ATTENUATION, attenuation);
  1525. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_ATTENUATION, spot_attenuation);
  1526. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_RANGE, spot_attenuation);
  1527. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SPOT_ANGLE, angle);
  1528. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_RANGE, range);
  1529. if (!state.render_no_shadows && light->light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(light->self)) {
  1530. uint32_t key = shadow_atlas->shadow_owners[light->self];
  1531. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03;
  1532. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  1533. ERR_BREAK(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size());
  1534. uint32_t atlas_size = shadow_atlas->size;
  1535. uint32_t quadrant_size = atlas_size >> 1;
  1536. uint32_t x = (quadrant & 1) * quadrant_size;
  1537. uint32_t y = (quadrant >> 1) * quadrant_size;
  1538. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  1539. x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1540. y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  1541. uint32_t width = shadow_size;
  1542. uint32_t height = shadow_size;
  1543. Rect2 rect(float(x) / atlas_size, float(y) / atlas_size, float(width) / atlas_size, float(height) / atlas_size);
  1544. Color light_clamp;
  1545. light_clamp[0] = rect.position.x;
  1546. light_clamp[1] = rect.position.y;
  1547. light_clamp[2] = rect.size.x;
  1548. light_clamp[3] = rect.size.y;
  1549. Transform modelview = (p_view_transform.inverse() * light->transform).inverse();
  1550. CameraMatrix bias;
  1551. bias.set_light_bias();
  1552. CameraMatrix rectm;
  1553. rectm.set_light_atlas_rect(rect);
  1554. CameraMatrix shadow_matrix = rectm * bias * light->shadow_transform[0].camera * modelview;
  1555. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_PIXEL_SIZE, Size2(1.0 / shadow_atlas->size, 1.0 / shadow_atlas->size));
  1556. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_SHADOW_MATRIX, shadow_matrix);
  1557. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_CLAMP, light_clamp);
  1558. }
  1559. } break;
  1560. default: {}
  1561. }
  1562. }
  1563. void RasterizerSceneGLES2::_setup_refprobes(ReflectionProbeInstance *p_refprobe1, ReflectionProbeInstance *p_refprobe2, const Transform &p_view_transform, Environment *p_env) {
  1564. if (p_refprobe1) {
  1565. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_USE_BOX_PROJECT, p_refprobe1->probe_ptr->box_projection);
  1566. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_BOX_EXTENTS, p_refprobe1->probe_ptr->extents);
  1567. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_BOX_OFFSET, p_refprobe1->probe_ptr->origin_offset);
  1568. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_EXTERIOR, !p_refprobe1->probe_ptr->interior);
  1569. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_INTENSITY, p_refprobe1->probe_ptr->intensity);
  1570. Color ambient;
  1571. if (p_refprobe1->probe_ptr->interior) {
  1572. ambient = p_refprobe1->probe_ptr->interior_ambient * p_refprobe1->probe_ptr->interior_ambient_energy;
  1573. ambient.a = p_refprobe1->probe_ptr->interior_ambient_probe_contrib;
  1574. } else if (p_env) {
  1575. ambient = p_env->ambient_color * p_env->ambient_energy;
  1576. ambient.a = p_env->ambient_sky_contribution;
  1577. }
  1578. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_AMBIENT, ambient);
  1579. Transform proj = (p_view_transform.inverse() * p_refprobe1->transform).affine_inverse();
  1580. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE1_LOCAL_MATRIX, proj);
  1581. }
  1582. if (p_refprobe2) {
  1583. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_USE_BOX_PROJECT, p_refprobe2->probe_ptr->box_projection);
  1584. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_BOX_EXTENTS, p_refprobe2->probe_ptr->extents);
  1585. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_BOX_OFFSET, p_refprobe2->probe_ptr->origin_offset);
  1586. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_EXTERIOR, p_refprobe2->probe_ptr->interior);
  1587. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_INTENSITY, p_refprobe2->probe_ptr->intensity);
  1588. Color ambient;
  1589. if (p_refprobe2->probe_ptr->interior) {
  1590. ambient = p_refprobe2->probe_ptr->interior_ambient * p_refprobe2->probe_ptr->interior_ambient_energy;
  1591. ambient.a = p_refprobe2->probe_ptr->interior_ambient_probe_contrib;
  1592. } else if (p_env) {
  1593. ambient = p_env->ambient_color * p_env->ambient_energy;
  1594. ambient.a = p_env->ambient_sky_contribution;
  1595. }
  1596. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_AMBIENT, ambient);
  1597. Transform proj = (p_view_transform.inverse() * p_refprobe2->transform).affine_inverse();
  1598. state.scene_shader.set_uniform(SceneShaderGLES2::REFPROBE2_LOCAL_MATRIX, proj);
  1599. }
  1600. }
  1601. void RasterizerSceneGLES2::_render_render_list(RenderList::Element **p_elements, int p_element_count, const Transform &p_view_transform, const CameraMatrix &p_projection, RID p_shadow_atlas, Environment *p_env, GLuint p_base_env, float p_shadow_bias, float p_shadow_normal_bias, bool p_reverse_cull, bool p_alpha_pass, bool p_shadow) {
  1602. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  1603. Vector2 viewport_size = state.viewport_size;
  1604. Vector2 screen_pixel_size = state.screen_pixel_size;
  1605. bool use_radiance_map = false;
  1606. if (!p_shadow && p_base_env) {
  1607. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 2);
  1608. glBindTexture(GL_TEXTURE_CUBE_MAP, p_base_env);
  1609. use_radiance_map = true;
  1610. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, true); //since prev unshaded is false, this needs to be true if exists
  1611. }
  1612. bool prev_unshaded = false;
  1613. bool prev_instancing = false;
  1614. bool prev_depth_prepass = false;
  1615. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false);
  1616. RasterizerStorageGLES2::Material *prev_material = NULL;
  1617. RasterizerStorageGLES2::Geometry *prev_geometry = NULL;
  1618. RasterizerStorageGLES2::Skeleton *prev_skeleton = NULL;
  1619. RasterizerStorageGLES2::GeometryOwner *prev_owner = NULL;
  1620. Transform view_transform_inverse = p_view_transform.inverse();
  1621. CameraMatrix projection_inverse = p_projection.inverse();
  1622. bool prev_base_pass = false;
  1623. LightInstance *prev_light = NULL;
  1624. bool prev_vertex_lit = false;
  1625. ReflectionProbeInstance *prev_refprobe_1 = NULL;
  1626. ReflectionProbeInstance *prev_refprobe_2 = NULL;
  1627. int prev_blend_mode = -2; //will always catch the first go
  1628. if (p_alpha_pass) {
  1629. glEnable(GL_BLEND);
  1630. } else {
  1631. glDisable(GL_BLEND);
  1632. }
  1633. float fog_max_distance = 0;
  1634. bool using_fog = false;
  1635. if (p_env && !p_shadow && p_env->fog_enabled && (p_env->fog_depth_enabled || p_env->fog_height_enabled)) {
  1636. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_DEPTH_ENABLED, p_env->fog_depth_enabled);
  1637. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_HEIGHT_ENABLED, p_env->fog_height_enabled);
  1638. if (p_env->fog_depth_end > 0) {
  1639. fog_max_distance = p_env->fog_depth_end;
  1640. } else {
  1641. fog_max_distance = p_projection.get_z_far();
  1642. }
  1643. using_fog = true;
  1644. }
  1645. RasterizerStorageGLES2::Texture *prev_lightmap = NULL;
  1646. float lightmap_energy = 1.0;
  1647. bool prev_use_lightmap_capture = false;
  1648. for (int i = 0; i < p_element_count; i++) {
  1649. RenderList::Element *e = p_elements[i];
  1650. RasterizerStorageGLES2::Material *material = e->material;
  1651. bool rebind = false;
  1652. bool accum_pass = *e->use_accum_ptr;
  1653. *e->use_accum_ptr = true; //set to accum for next time this is found
  1654. LightInstance *light = NULL;
  1655. ReflectionProbeInstance *refprobe_1 = NULL;
  1656. ReflectionProbeInstance *refprobe_2 = NULL;
  1657. RasterizerStorageGLES2::Texture *lightmap = NULL;
  1658. bool use_lightmap_capture = false;
  1659. bool rebind_light = false;
  1660. bool rebind_reflection = false;
  1661. bool rebind_lightmap = false;
  1662. if (!p_shadow) {
  1663. bool unshaded = material->shader->spatial.unshaded;
  1664. if (unshaded != prev_unshaded) {
  1665. rebind = true;
  1666. if (unshaded) {
  1667. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, true);
  1668. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false);
  1669. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTING, false);
  1670. } else {
  1671. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false);
  1672. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, use_radiance_map);
  1673. }
  1674. prev_unshaded = unshaded;
  1675. }
  1676. bool depth_prepass = false;
  1677. if (!p_alpha_pass && material->shader && material->shader->spatial.depth_draw_mode == RasterizerStorageGLES2::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
  1678. depth_prepass = true;
  1679. }
  1680. if (depth_prepass != prev_depth_prepass) {
  1681. state.scene_shader.set_conditional(SceneShaderGLES2::USE_DEPTH_PREPASS, depth_prepass);
  1682. prev_depth_prepass = depth_prepass;
  1683. rebind = true;
  1684. }
  1685. bool base_pass = !accum_pass && !unshaded; //conditions for a base pass
  1686. if (base_pass != prev_base_pass) {
  1687. state.scene_shader.set_conditional(SceneShaderGLES2::BASE_PASS, base_pass);
  1688. rebind = true;
  1689. prev_base_pass = base_pass;
  1690. }
  1691. if (!unshaded && e->light_index < RenderList::MAX_LIGHTS) {
  1692. light = render_light_instances[e->light_index];
  1693. }
  1694. if (light != prev_light) {
  1695. _setup_light_type(light, shadow_atlas);
  1696. rebind = true;
  1697. rebind_light = true;
  1698. }
  1699. int blend_mode = p_alpha_pass ? material->shader->spatial.blend_mode : -1; // -1 no blend, no mix
  1700. if (accum_pass) { //accum pass force pass
  1701. blend_mode = RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_ADD;
  1702. }
  1703. if (prev_blend_mode != blend_mode) {
  1704. if (prev_blend_mode == -1 && blend_mode != -1) {
  1705. //does blend
  1706. glEnable(GL_BLEND);
  1707. } else if (blend_mode == -1 && prev_blend_mode != -1) {
  1708. //do not blend
  1709. glDisable(GL_BLEND);
  1710. }
  1711. switch (blend_mode) {
  1712. //-1 not handled because not blend is enabled anyway
  1713. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MIX: {
  1714. glBlendEquation(GL_FUNC_ADD);
  1715. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
  1716. glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
  1717. } else {
  1718. glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
  1719. }
  1720. } break;
  1721. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_ADD: {
  1722. glBlendEquation(GL_FUNC_ADD);
  1723. glBlendFunc(p_alpha_pass ? GL_SRC_ALPHA : GL_ONE, GL_ONE);
  1724. } break;
  1725. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_SUB: {
  1726. glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
  1727. glBlendFunc(GL_SRC_ALPHA, GL_ONE);
  1728. } break;
  1729. case RasterizerStorageGLES2::Shader::Spatial::BLEND_MODE_MUL: {
  1730. glBlendEquation(GL_FUNC_ADD);
  1731. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
  1732. glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO);
  1733. } else {
  1734. glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE);
  1735. }
  1736. } break;
  1737. }
  1738. prev_blend_mode = blend_mode;
  1739. }
  1740. //condition to enable vertex lighting on this object
  1741. bool vertex_lit = (material->shader->spatial.uses_vertex_lighting || storage->config.force_vertex_shading) && ((!unshaded && light) || using_fog); //fog forces vertex lighting because it still applies even if unshaded or no fog
  1742. if (vertex_lit != prev_vertex_lit) {
  1743. state.scene_shader.set_conditional(SceneShaderGLES2::USE_VERTEX_LIGHTING, vertex_lit);
  1744. prev_vertex_lit = vertex_lit;
  1745. }
  1746. if (!unshaded && !accum_pass && e->refprobe_0_index != RenderList::MAX_REFLECTION_PROBES) {
  1747. ERR_FAIL_INDEX(e->refprobe_0_index, reflection_probe_count);
  1748. refprobe_1 = reflection_probe_instances[e->refprobe_0_index];
  1749. }
  1750. if (!unshaded && !accum_pass && e->refprobe_1_index != RenderList::MAX_REFLECTION_PROBES) {
  1751. ERR_FAIL_INDEX(e->refprobe_1_index, reflection_probe_count);
  1752. refprobe_2 = reflection_probe_instances[e->refprobe_1_index];
  1753. }
  1754. if (refprobe_1 != prev_refprobe_1 || refprobe_2 != prev_refprobe_2) {
  1755. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE1, refprobe_1 != NULL);
  1756. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE2, refprobe_2 != NULL);
  1757. if (refprobe_1 != NULL && refprobe_1 != prev_refprobe_1) {
  1758. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 5);
  1759. glBindTexture(GL_TEXTURE_CUBE_MAP, refprobe_1->cubemap);
  1760. }
  1761. if (refprobe_2 != NULL && refprobe_2 != prev_refprobe_2) {
  1762. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 6);
  1763. glBindTexture(GL_TEXTURE_CUBE_MAP, refprobe_2->cubemap);
  1764. }
  1765. rebind = true;
  1766. rebind_reflection = true;
  1767. }
  1768. use_lightmap_capture = !unshaded && !accum_pass && !e->instance->lightmap_capture_data.empty();
  1769. if (use_lightmap_capture != prev_use_lightmap_capture) {
  1770. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP_CAPTURE, use_lightmap_capture);
  1771. rebind = true;
  1772. }
  1773. if (!unshaded && !accum_pass && e->instance->lightmap.is_valid()) {
  1774. lightmap = storage->texture_owner.getornull(e->instance->lightmap);
  1775. lightmap_energy = 1.0;
  1776. if (lightmap) {
  1777. RasterizerStorageGLES2::LightmapCapture *capture = storage->lightmap_capture_data_owner.getornull(e->instance->lightmap_capture->base);
  1778. if (capture) {
  1779. lightmap_energy = capture->energy;
  1780. }
  1781. }
  1782. }
  1783. if (lightmap != prev_lightmap) {
  1784. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP, lightmap != NULL);
  1785. if (lightmap != NULL) {
  1786. glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4);
  1787. glBindTexture(GL_TEXTURE_2D, lightmap->tex_id);
  1788. }
  1789. rebind = true;
  1790. rebind_lightmap = true;
  1791. }
  1792. }
  1793. bool instancing = e->instance->base_type == VS::INSTANCE_MULTIMESH;
  1794. if (instancing != prev_instancing) {
  1795. state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, instancing);
  1796. rebind = true;
  1797. }
  1798. RasterizerStorageGLES2::Skeleton *skeleton = storage->skeleton_owner.getornull(e->instance->skeleton);
  1799. if (skeleton != prev_skeleton) {
  1800. if (skeleton) {
  1801. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, true);
  1802. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, !storage->config.float_texture_supported);
  1803. } else {
  1804. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, false);
  1805. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON_SOFTWARE, false);
  1806. }
  1807. rebind = true;
  1808. }
  1809. if (e->owner != prev_owner || e->geometry != prev_geometry || skeleton != prev_skeleton) {
  1810. _setup_geometry(e, skeleton);
  1811. }
  1812. bool shader_rebind = false;
  1813. if (rebind || material != prev_material) {
  1814. shader_rebind = _setup_material(material, p_reverse_cull, p_alpha_pass, Size2i(skeleton ? skeleton->size * 3 : 0, 0));
  1815. }
  1816. if (i == 0 || shader_rebind) { //first time must rebind
  1817. if (p_shadow) {
  1818. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_BIAS, p_shadow_bias);
  1819. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHT_NORMAL_BIAS, p_shadow_normal_bias);
  1820. if (state.shadow_is_dual_parabolloid) {
  1821. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_DUAL_PARABOLOID_RENDER_SIDE, state.dual_parbolloid_direction);
  1822. state.scene_shader.set_uniform(SceneShaderGLES2::SHADOW_DUAL_PARABOLOID_RENDER_ZFAR, state.dual_parbolloid_zfar);
  1823. }
  1824. } else {
  1825. if (use_radiance_map) {
  1826. if (p_env) {
  1827. Transform sky_orientation(p_env->sky_orientation, Vector3(0.0, 0.0, 0.0));
  1828. state.scene_shader.set_uniform(SceneShaderGLES2::RADIANCE_INVERSE_XFORM, sky_orientation.affine_inverse() * p_view_transform);
  1829. } else {
  1830. // would be a bit weird if we don't have this...
  1831. state.scene_shader.set_uniform(SceneShaderGLES2::RADIANCE_INVERSE_XFORM, p_view_transform);
  1832. }
  1833. }
  1834. if (p_env) {
  1835. state.scene_shader.set_uniform(SceneShaderGLES2::BG_ENERGY, p_env->bg_energy);
  1836. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_SKY_CONTRIBUTION, p_env->ambient_sky_contribution);
  1837. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_COLOR, p_env->ambient_color);
  1838. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_ENERGY, p_env->ambient_energy);
  1839. } else {
  1840. state.scene_shader.set_uniform(SceneShaderGLES2::BG_ENERGY, 1.0);
  1841. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_SKY_CONTRIBUTION, 1.0);
  1842. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_COLOR, state.default_ambient);
  1843. state.scene_shader.set_uniform(SceneShaderGLES2::AMBIENT_ENERGY, 1.0);
  1844. }
  1845. //rebind all these
  1846. rebind_light = true;
  1847. rebind_reflection = true;
  1848. rebind_lightmap = true;
  1849. if (using_fog) {
  1850. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_COLOR_BASE, p_env->fog_color);
  1851. Color sun_color_amount = p_env->fog_sun_color;
  1852. sun_color_amount.a = p_env->fog_sun_amount;
  1853. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_SUN_COLOR_AMOUNT, sun_color_amount);
  1854. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_TRANSMIT_ENABLED, p_env->fog_transmit_enabled);
  1855. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_TRANSMIT_CURVE, p_env->fog_transmit_curve);
  1856. if (p_env->fog_depth_enabled) {
  1857. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_DEPTH_BEGIN, p_env->fog_depth_begin);
  1858. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_DEPTH_CURVE, p_env->fog_depth_curve);
  1859. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_MAX_DISTANCE, fog_max_distance);
  1860. }
  1861. if (p_env->fog_height_enabled) {
  1862. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MIN, p_env->fog_height_min);
  1863. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MAX, p_env->fog_height_max);
  1864. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_MAX, p_env->fog_height_max);
  1865. state.scene_shader.set_uniform(SceneShaderGLES2::FOG_HEIGHT_CURVE, p_env->fog_height_curve);
  1866. }
  1867. }
  1868. }
  1869. state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_MATRIX, p_view_transform);
  1870. state.scene_shader.set_uniform(SceneShaderGLES2::CAMERA_INVERSE_MATRIX, view_transform_inverse);
  1871. state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_MATRIX, p_projection);
  1872. state.scene_shader.set_uniform(SceneShaderGLES2::PROJECTION_INVERSE_MATRIX, projection_inverse);
  1873. state.scene_shader.set_uniform(SceneShaderGLES2::TIME, storage->frame.time[0]);
  1874. state.scene_shader.set_uniform(SceneShaderGLES2::VIEWPORT_SIZE, viewport_size);
  1875. state.scene_shader.set_uniform(SceneShaderGLES2::SCREEN_PIXEL_SIZE, screen_pixel_size);
  1876. }
  1877. if (rebind_light && light) {
  1878. _setup_light(light, shadow_atlas, p_view_transform);
  1879. }
  1880. if (rebind_reflection && (refprobe_1 || refprobe_2)) {
  1881. _setup_refprobes(refprobe_1, refprobe_2, p_view_transform, p_env);
  1882. }
  1883. if (rebind_lightmap && lightmap) {
  1884. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHTMAP_ENERGY, lightmap_energy);
  1885. }
  1886. state.scene_shader.set_uniform(SceneShaderGLES2::WORLD_TRANSFORM, e->instance->transform);
  1887. if (use_lightmap_capture) { //this is per instance, must be set always if present
  1888. glUniform4fv(state.scene_shader.get_uniform_location(SceneShaderGLES2::LIGHTMAP_CAPTURES), 12, (const GLfloat *)e->instance->lightmap_capture_data.ptr());
  1889. state.scene_shader.set_uniform(SceneShaderGLES2::LIGHTMAP_CAPTURE_SKY, false);
  1890. }
  1891. _render_geometry(e);
  1892. prev_geometry = e->geometry;
  1893. prev_owner = e->owner;
  1894. prev_material = material;
  1895. prev_skeleton = skeleton;
  1896. prev_instancing = instancing;
  1897. prev_light = light;
  1898. prev_refprobe_1 = refprobe_1;
  1899. prev_refprobe_2 = refprobe_2;
  1900. prev_lightmap = lightmap;
  1901. prev_use_lightmap_capture = use_lightmap_capture;
  1902. }
  1903. _setup_light_type(NULL, NULL); //clear light stuff
  1904. state.scene_shader.set_conditional(SceneShaderGLES2::USE_SKELETON, false);
  1905. state.scene_shader.set_conditional(SceneShaderGLES2::SHADELESS, false);
  1906. state.scene_shader.set_conditional(SceneShaderGLES2::BASE_PASS, false);
  1907. state.scene_shader.set_conditional(SceneShaderGLES2::USE_INSTANCING, false);
  1908. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false);
  1909. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM4, false);
  1910. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM2, false);
  1911. state.scene_shader.set_conditional(SceneShaderGLES2::LIGHT_USE_PSSM_BLEND, false);
  1912. state.scene_shader.set_conditional(SceneShaderGLES2::USE_VERTEX_LIGHTING, false);
  1913. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE1, false);
  1914. state.scene_shader.set_conditional(SceneShaderGLES2::USE_REFLECTION_PROBE2, false);
  1915. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP, false);
  1916. state.scene_shader.set_conditional(SceneShaderGLES2::USE_LIGHTMAP_CAPTURE, false);
  1917. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_DEPTH_ENABLED, false);
  1918. state.scene_shader.set_conditional(SceneShaderGLES2::FOG_HEIGHT_ENABLED, false);
  1919. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RADIANCE_MAP, false);
  1920. }
  1921. void RasterizerSceneGLES2::_draw_sky(RasterizerStorageGLES2::Sky *p_sky, const CameraMatrix &p_projection, const Transform &p_transform, bool p_vflip, float p_custom_fov, float p_energy, const Basis &p_sky_orientation) {
  1922. ERR_FAIL_COND(!p_sky);
  1923. RasterizerStorageGLES2::Texture *tex = storage->texture_owner.getornull(p_sky->panorama);
  1924. ERR_FAIL_COND(!tex);
  1925. glActiveTexture(GL_TEXTURE0);
  1926. glBindTexture(tex->target, tex->tex_id);
  1927. glDepthMask(GL_TRUE);
  1928. glEnable(GL_DEPTH_TEST);
  1929. glDisable(GL_CULL_FACE);
  1930. glDisable(GL_BLEND);
  1931. glDepthFunc(GL_LEQUAL);
  1932. // Camera
  1933. CameraMatrix camera;
  1934. if (p_custom_fov) {
  1935. float near_plane = p_projection.get_z_near();
  1936. float far_plane = p_projection.get_z_far();
  1937. float aspect = p_projection.get_aspect();
  1938. camera.set_perspective(p_custom_fov, aspect, near_plane, far_plane);
  1939. } else {
  1940. camera = p_projection;
  1941. }
  1942. float flip_sign = p_vflip ? -1 : 1;
  1943. // If matrix[2][0] or matrix[2][1] we're dealing with an asymmetrical projection matrix. This is the case for stereoscopic rendering (i.e. VR).
  1944. // To ensure the image rendered is perspective correct we need to move some logic into the shader. For this the USE_ASYM_PANO option is introduced.
  1945. // It also means the uv coordinates are ignored in this mode and we don't need our loop.
  1946. bool asymmetrical = ((camera.matrix[2][0] != 0.0) || (camera.matrix[2][1] != 0.0));
  1947. Vector3 vertices[8] = {
  1948. Vector3(-1, -1 * flip_sign, 1),
  1949. Vector3(0, 1, 0),
  1950. Vector3(1, -1 * flip_sign, 1),
  1951. Vector3(1, 1, 0),
  1952. Vector3(1, 1 * flip_sign, 1),
  1953. Vector3(1, 0, 0),
  1954. Vector3(-1, 1 * flip_sign, 1),
  1955. Vector3(0, 0, 0),
  1956. };
  1957. if (!asymmetrical) {
  1958. float vw, vh, zn;
  1959. camera.get_viewport_size(vw, vh);
  1960. zn = p_projection.get_z_near();
  1961. for (int i = 0; i < 4; i++) {
  1962. Vector3 uv = vertices[i * 2 + 1];
  1963. uv.x = (uv.x * 2.0 - 1.0) * vw;
  1964. uv.y = -(uv.y * 2.0 - 1.0) * vh;
  1965. uv.z = -zn;
  1966. vertices[i * 2 + 1] = p_transform.basis.xform(uv).normalized();
  1967. vertices[i * 2 + 1].z = -vertices[i * 2 + 1].z;
  1968. }
  1969. }
  1970. glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts);
  1971. glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(Vector3) * 8, vertices);
  1972. // bind sky vertex array....
  1973. glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3) * 2, 0);
  1974. glVertexAttribPointer(VS::ARRAY_TEX_UV, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3) * 2, ((uint8_t *)NULL) + sizeof(Vector3));
  1975. glEnableVertexAttribArray(VS::ARRAY_VERTEX);
  1976. glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
  1977. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_ASYM_PANO, asymmetrical);
  1978. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, !asymmetrical);
  1979. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, true);
  1980. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  1981. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false);
  1982. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false);
  1983. storage->shaders.copy.bind();
  1984. storage->shaders.copy.set_uniform(CopyShaderGLES2::MULTIPLIER, p_energy);
  1985. // don't know why but I always have problems setting a uniform mat3, so we're using a transform
  1986. storage->shaders.copy.set_uniform(CopyShaderGLES2::SKY_TRANSFORM, Transform(p_sky_orientation, Vector3(0.0, 0.0, 0.0)).affine_inverse());
  1987. if (asymmetrical) {
  1988. // pack the bits we need from our projection matrix
  1989. storage->shaders.copy.set_uniform(CopyShaderGLES2::ASYM_PROJ, camera.matrix[2][0], camera.matrix[0][0], camera.matrix[2][1], camera.matrix[1][1]);
  1990. ///@TODO I couldn't get mat3 + p_transform.basis to work, that would be better here.
  1991. storage->shaders.copy.set_uniform(CopyShaderGLES2::PANO_TRANSFORM, p_transform);
  1992. }
  1993. glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
  1994. glDisableVertexAttribArray(VS::ARRAY_VERTEX);
  1995. glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
  1996. glBindBuffer(GL_ARRAY_BUFFER, 0);
  1997. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_ASYM_PANO, false);
  1998. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false);
  1999. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false);
  2000. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  2001. }
  2002. void RasterizerSceneGLES2::render_scene(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {
  2003. Transform cam_transform = p_cam_transform;
  2004. GLuint current_fb = 0;
  2005. Environment *env = NULL;
  2006. int viewport_width, viewport_height;
  2007. bool probe_interior = false;
  2008. bool reverse_cull = false;
  2009. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]) {
  2010. cam_transform.basis.set_axis(1, -cam_transform.basis.get_axis(1));
  2011. reverse_cull = true;
  2012. }
  2013. if (p_reflection_probe.is_valid()) {
  2014. ReflectionProbeInstance *probe = reflection_probe_instance_owner.getornull(p_reflection_probe);
  2015. ERR_FAIL_COND(!probe);
  2016. state.render_no_shadows = !probe->probe_ptr->enable_shadows;
  2017. if (!probe->probe_ptr->interior) { //use env only if not interior
  2018. env = environment_owner.getornull(p_environment);
  2019. }
  2020. current_fb = probe->fbo[p_reflection_probe_pass];
  2021. viewport_width = probe->probe_ptr->resolution;
  2022. viewport_height = probe->probe_ptr->resolution;
  2023. probe_interior = probe->probe_ptr->interior;
  2024. } else {
  2025. state.render_no_shadows = false;
  2026. current_fb = storage->frame.current_rt->fbo;
  2027. env = environment_owner.getornull(p_environment);
  2028. viewport_width = storage->frame.current_rt->width;
  2029. viewport_height = storage->frame.current_rt->height;
  2030. }
  2031. state.used_screen_texture = false;
  2032. state.viewport_size.x = viewport_width;
  2033. state.viewport_size.y = viewport_height;
  2034. state.screen_pixel_size.x = 1.0 / viewport_width;
  2035. state.screen_pixel_size.y = 1.0 / viewport_height;
  2036. //push back the directional lights
  2037. if (p_light_cull_count) {
  2038. //hardcoded limit of 256 lights
  2039. render_light_instance_count = MIN(RenderList::MAX_LIGHTS, p_light_cull_count);
  2040. render_light_instances = (LightInstance **)alloca(sizeof(LightInstance *) * render_light_instance_count);
  2041. render_directional_lights = 0;
  2042. //doing this because directional lights are at the end, put them at the beginning
  2043. int index = 0;
  2044. for (int i = render_light_instance_count - 1; i >= 0; i--) {
  2045. RID light_rid = p_light_cull_result[i];
  2046. LightInstance *light = light_instance_owner.getornull(light_rid);
  2047. if (light->light_ptr->type == VS::LIGHT_DIRECTIONAL) {
  2048. render_directional_lights++;
  2049. //as going in reverse, directional lights are always first anyway
  2050. }
  2051. light->light_index = index;
  2052. render_light_instances[index] = light;
  2053. index++;
  2054. }
  2055. } else {
  2056. render_light_instances = NULL;
  2057. render_directional_lights = 0;
  2058. render_light_instance_count = 0;
  2059. }
  2060. if (p_reflection_probe_cull_count) {
  2061. reflection_probe_instances = (ReflectionProbeInstance **)alloca(sizeof(ReflectionProbeInstance *) * p_reflection_probe_cull_count);
  2062. reflection_probe_count = p_reflection_probe_cull_count;
  2063. for (int i = 0; i < p_reflection_probe_cull_count; i++) {
  2064. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_reflection_probe_cull_result[i]);
  2065. ERR_CONTINUE(!rpi);
  2066. rpi->last_pass = render_pass + 1; //will be incremented later
  2067. rpi->index = i;
  2068. reflection_probe_instances[i] = rpi;
  2069. }
  2070. } else {
  2071. reflection_probe_instances = NULL;
  2072. reflection_probe_count = 0;
  2073. }
  2074. // render list stuff
  2075. render_list.clear();
  2076. _fill_render_list(p_cull_result, p_cull_count, false, false);
  2077. // other stuff
  2078. glBindFramebuffer(GL_FRAMEBUFFER, current_fb);
  2079. glViewport(0, 0, viewport_width, viewport_height);
  2080. glDepthFunc(GL_LEQUAL);
  2081. glDepthMask(GL_TRUE);
  2082. glClearDepth(1.0f);
  2083. glEnable(GL_DEPTH_TEST);
  2084. // clear color
  2085. Color clear_color(0, 0, 0, 1);
  2086. if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
  2087. clear_color = Color(0, 0, 0, 0);
  2088. storage->frame.clear_request = false;
  2089. } else if (!env || env->bg_mode == VS::ENV_BG_CLEAR_COLOR || env->bg_mode == VS::ENV_BG_SKY) {
  2090. if (storage->frame.clear_request) {
  2091. clear_color = storage->frame.clear_request_color;
  2092. storage->frame.clear_request = false;
  2093. }
  2094. } else if (env->bg_mode == VS::ENV_BG_CANVAS || env->bg_mode == VS::ENV_BG_COLOR || env->bg_mode == VS::ENV_BG_COLOR_SKY) {
  2095. clear_color = env->bg_color;
  2096. storage->frame.clear_request = false;
  2097. } else {
  2098. storage->frame.clear_request = false;
  2099. }
  2100. if (!env || env->bg_mode != VS::ENV_BG_KEEP) {
  2101. glClearColor(clear_color.r, clear_color.g, clear_color.b, clear_color.a);
  2102. }
  2103. state.default_ambient = Color(clear_color.r, clear_color.g, clear_color.b, 1.0);
  2104. glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
  2105. glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1);
  2106. glBlendEquation(GL_FUNC_ADD);
  2107. glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
  2108. // render sky
  2109. RasterizerStorageGLES2::Sky *sky = NULL;
  2110. GLuint env_radiance_tex = 0;
  2111. if (env) {
  2112. switch (env->bg_mode) {
  2113. case VS::ENV_BG_COLOR_SKY:
  2114. case VS::ENV_BG_SKY: {
  2115. sky = storage->sky_owner.getornull(env->sky);
  2116. if (sky) {
  2117. env_radiance_tex = sky->radiance;
  2118. }
  2119. } break;
  2120. default: {
  2121. // FIXME: implement other background modes
  2122. } break;
  2123. }
  2124. }
  2125. if (env && env->bg_mode == VS::ENV_BG_SKY && (!storage->frame.current_rt || !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT])) {
  2126. if (sky && sky->panorama.is_valid()) {
  2127. _draw_sky(sky, p_cam_projection, cam_transform, false, env->sky_custom_fov, env->bg_energy, env->sky_orientation);
  2128. }
  2129. }
  2130. if (probe_interior) {
  2131. env_radiance_tex = 0; //do not use radiance texture on interiors
  2132. state.default_ambient = Color(0, 0, 0, 1); //black as default ambient for interior
  2133. }
  2134. // render opaque things first
  2135. render_list.sort_by_key(false);
  2136. _render_render_list(render_list.elements, render_list.element_count, cam_transform, p_cam_projection, p_shadow_atlas, env, env_radiance_tex, 0.0, 0.0, reverse_cull, false, false);
  2137. if (storage->frame.current_rt && state.used_screen_texture) {
  2138. //copy screen texture
  2139. storage->canvas->_copy_screen(Rect2());
  2140. }
  2141. // alpha pass
  2142. glBlendEquation(GL_FUNC_ADD);
  2143. glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
  2144. render_list.sort_by_depth(true);
  2145. _render_render_list(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, cam_transform, p_cam_projection, p_shadow_atlas, env, env_radiance_tex, 0.0, 0.0, reverse_cull, true, false);
  2146. glDisable(GL_DEPTH_TEST);
  2147. //#define GLES2_SHADOW_ATLAS_DEBUG_VIEW
  2148. #ifdef GLES2_SHADOW_ATLAS_DEBUG_VIEW
  2149. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2150. if (shadow_atlas) {
  2151. glActiveTexture(GL_TEXTURE0);
  2152. glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
  2153. glViewport(0, 0, storage->frame.current_rt->width / 4, storage->frame.current_rt->height / 4);
  2154. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  2155. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false);
  2156. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false);
  2157. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false);
  2158. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false);
  2159. storage->shaders.copy.bind();
  2160. storage->_copy_screen();
  2161. }
  2162. #endif
  2163. //#define GLES2_SHADOW_DIRECTIONAL_DEBUG_VIEW
  2164. #ifdef GLES2_SHADOW_DIRECTIONAL_DEBUG_VIEW
  2165. if (true) {
  2166. glActiveTexture(GL_TEXTURE0);
  2167. glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
  2168. glViewport(0, 0, storage->frame.current_rt->width / 4, storage->frame.current_rt->height / 4);
  2169. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUBEMAP, false);
  2170. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_COPY_SECTION, false);
  2171. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_CUSTOM_ALPHA, false);
  2172. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_MULTIPLIER, false);
  2173. storage->shaders.copy.set_conditional(CopyShaderGLES2::USE_PANORAMA, false);
  2174. storage->shaders.copy.bind();
  2175. storage->_copy_screen();
  2176. }
  2177. #endif
  2178. }
  2179. void RasterizerSceneGLES2::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) {
  2180. state.render_no_shadows = false;
  2181. LightInstance *light_instance = light_instance_owner.getornull(p_light);
  2182. ERR_FAIL_COND(!light_instance);
  2183. RasterizerStorageGLES2::Light *light = light_instance->light_ptr;
  2184. ERR_FAIL_COND(!light);
  2185. uint32_t x;
  2186. uint32_t y;
  2187. uint32_t width;
  2188. uint32_t height;
  2189. float zfar = 0;
  2190. bool flip_facing = false;
  2191. int custom_vp_size = 0;
  2192. GLuint fbo = 0;
  2193. state.shadow_is_dual_parabolloid = false;
  2194. state.dual_parbolloid_direction = 0.0;
  2195. int current_cubemap = -1;
  2196. float bias = 0;
  2197. float normal_bias = 0;
  2198. CameraMatrix light_projection;
  2199. Transform light_transform;
  2200. // TODO directional light
  2201. if (light->type == VS::LIGHT_DIRECTIONAL) {
  2202. // set pssm stuff
  2203. // TODO set this only when changed
  2204. light_instance->light_directional_index = directional_shadow.current_light;
  2205. light_instance->last_scene_shadow_pass = scene_pass;
  2206. directional_shadow.current_light++;
  2207. if (directional_shadow.light_count == 1) {
  2208. light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size);
  2209. } else if (directional_shadow.light_count == 2) {
  2210. light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size / 2);
  2211. if (light_instance->light_directional_index == 1) {
  2212. light_instance->directional_rect.position.x += light_instance->directional_rect.size.x;
  2213. }
  2214. } else { //3 and 4
  2215. light_instance->directional_rect = Rect2(0, 0, directional_shadow.size / 2, directional_shadow.size / 2);
  2216. if (light_instance->light_directional_index & 1) {
  2217. light_instance->directional_rect.position.x += light_instance->directional_rect.size.x;
  2218. }
  2219. if (light_instance->light_directional_index / 2) {
  2220. light_instance->directional_rect.position.y += light_instance->directional_rect.size.y;
  2221. }
  2222. }
  2223. light_projection = light_instance->shadow_transform[p_pass].camera;
  2224. light_transform = light_instance->shadow_transform[p_pass].transform;
  2225. x = light_instance->directional_rect.position.x;
  2226. y = light_instance->directional_rect.position.y;
  2227. width = light_instance->directional_rect.size.width;
  2228. height = light_instance->directional_rect.size.height;
  2229. if (light->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  2230. width /= 2;
  2231. height /= 2;
  2232. if (p_pass == 0) {
  2233. } else if (p_pass == 1) {
  2234. x += width;
  2235. } else if (p_pass == 2) {
  2236. y += height;
  2237. } else if (p_pass == 3) {
  2238. x += width;
  2239. y += height;
  2240. }
  2241. } else if (light->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  2242. height /= 2;
  2243. if (p_pass == 0) {
  2244. } else {
  2245. y += height;
  2246. }
  2247. }
  2248. float bias_mult = Math::lerp(1.0f, light_instance->shadow_transform[p_pass].bias_scale, light->param[VS::LIGHT_PARAM_SHADOW_BIAS_SPLIT_SCALE]);
  2249. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  2250. bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS] * bias_mult;
  2251. normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] * bias_mult;
  2252. fbo = directional_shadow.fbo;
  2253. } else {
  2254. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2255. ERR_FAIL_COND(!shadow_atlas);
  2256. ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
  2257. fbo = shadow_atlas->fbo;
  2258. uint32_t key = shadow_atlas->shadow_owners[p_light];
  2259. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x03;
  2260. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  2261. ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size());
  2262. uint32_t quadrant_size = shadow_atlas->size >> 1;
  2263. x = (quadrant & 1) * quadrant_size;
  2264. y = (quadrant >> 1) * quadrant_size;
  2265. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  2266. x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  2267. y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  2268. width = shadow_size;
  2269. height = shadow_size;
  2270. if (light->type == VS::LIGHT_OMNI) {
  2271. // cubemap only
  2272. if (light->omni_shadow_mode == VS::LIGHT_OMNI_SHADOW_CUBE && storage->config.support_write_depth) {
  2273. int cubemap_index = shadow_cubemaps.size() - 1;
  2274. // find an appropriate cubemap to render to
  2275. for (int i = shadow_cubemaps.size() - 1; i >= 0; i--) {
  2276. if (shadow_cubemaps[i].size > shadow_size * 2) {
  2277. break;
  2278. }
  2279. cubemap_index = i;
  2280. }
  2281. fbo = shadow_cubemaps[cubemap_index].fbo[p_pass];
  2282. light_projection = light_instance->shadow_transform[0].camera;
  2283. light_transform = light_instance->shadow_transform[0].transform;
  2284. custom_vp_size = shadow_cubemaps[cubemap_index].size;
  2285. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  2286. current_cubemap = cubemap_index;
  2287. } else {
  2288. //dual parabolloid
  2289. state.shadow_is_dual_parabolloid = true;
  2290. light_projection = light_instance->shadow_transform[0].camera;
  2291. light_transform = light_instance->shadow_transform[0].transform;
  2292. if (light->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
  2293. height /= 2;
  2294. y += p_pass * height;
  2295. } else {
  2296. width /= 2;
  2297. x += p_pass * width;
  2298. }
  2299. state.dual_parbolloid_direction = p_pass == 0 ? 1.0 : -1.0;
  2300. flip_facing = (p_pass == 1);
  2301. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  2302. bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS];
  2303. state.dual_parbolloid_zfar = zfar;
  2304. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH_DUAL_PARABOLOID, true);
  2305. }
  2306. } else if (light->type == VS::LIGHT_SPOT) {
  2307. light_projection = light_instance->shadow_transform[0].camera;
  2308. light_transform = light_instance->shadow_transform[0].transform;
  2309. flip_facing = false;
  2310. zfar = light->param[VS::LIGHT_PARAM_RANGE];
  2311. bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS];
  2312. normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS];
  2313. }
  2314. }
  2315. render_list.clear();
  2316. _fill_render_list(p_cull_result, p_cull_count, true, true);
  2317. render_list.sort_by_depth(false);
  2318. glDisable(GL_BLEND);
  2319. glDisable(GL_DITHER);
  2320. glEnable(GL_DEPTH_TEST);
  2321. glBindFramebuffer(GL_FRAMEBUFFER, fbo);
  2322. glDepthMask(GL_TRUE);
  2323. if (!storage->config.use_rgba_3d_shadows) {
  2324. glColorMask(0, 0, 0, 0);
  2325. }
  2326. if (custom_vp_size) {
  2327. glViewport(0, 0, custom_vp_size, custom_vp_size);
  2328. glScissor(0, 0, custom_vp_size, custom_vp_size);
  2329. } else {
  2330. glViewport(x, y, width, height);
  2331. glScissor(x, y, width, height);
  2332. }
  2333. glEnable(GL_SCISSOR_TEST);
  2334. glClearDepth(1.0f);
  2335. glClear(GL_DEPTH_BUFFER_BIT);
  2336. glDisable(GL_SCISSOR_TEST);
  2337. if (light->reverse_cull) {
  2338. flip_facing = !flip_facing;
  2339. }
  2340. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH, true);
  2341. _render_render_list(render_list.elements, render_list.element_count, light_transform, light_projection, RID(), NULL, 0, bias, normal_bias, flip_facing, false, true);
  2342. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH, false);
  2343. state.scene_shader.set_conditional(SceneShaderGLES2::RENDER_DEPTH_DUAL_PARABOLOID, false);
  2344. // convert cubemap to dual paraboloid if needed
  2345. if (light->type == VS::LIGHT_OMNI && (light->omni_shadow_mode == VS::LIGHT_OMNI_SHADOW_CUBE && storage->config.support_write_depth) && p_pass == 5) {
  2346. ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
  2347. glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo);
  2348. state.cube_to_dp_shader.bind();
  2349. glActiveTexture(GL_TEXTURE0);
  2350. glBindTexture(GL_TEXTURE_CUBE_MAP, shadow_cubemaps[current_cubemap].cubemap);
  2351. glDisable(GL_CULL_FACE);
  2352. for (int i = 0; i < 2; i++) {
  2353. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_FLIP, i == 1);
  2354. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_NEAR, light_projection.get_z_near());
  2355. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::Z_FAR, light_projection.get_z_far());
  2356. state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES2::BIAS, light->param[VS::LIGHT_PARAM_SHADOW_BIAS]);
  2357. uint32_t local_width = width;
  2358. uint32_t local_height = height;
  2359. uint32_t local_x = x;
  2360. uint32_t local_y = y;
  2361. if (light->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
  2362. local_height /= 2;
  2363. local_y += i * local_height;
  2364. } else {
  2365. local_width /= 2;
  2366. local_x += i * local_width;
  2367. }
  2368. glViewport(local_x, local_y, local_width, local_height);
  2369. glScissor(local_x, local_y, local_width, local_height);
  2370. glEnable(GL_SCISSOR_TEST);
  2371. glClearDepth(1.0f);
  2372. glClear(GL_DEPTH_BUFFER_BIT);
  2373. glDisable(GL_SCISSOR_TEST);
  2374. glDisable(GL_BLEND);
  2375. storage->_copy_screen();
  2376. }
  2377. }
  2378. if (storage->frame.current_rt) {
  2379. glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height);
  2380. }
  2381. if (!storage->config.use_rgba_3d_shadows) {
  2382. glColorMask(1, 1, 1, 1);
  2383. }
  2384. }
  2385. void RasterizerSceneGLES2::set_scene_pass(uint64_t p_pass) {
  2386. scene_pass = p_pass;
  2387. }
  2388. bool RasterizerSceneGLES2::free(RID p_rid) {
  2389. if (light_instance_owner.owns(p_rid)) {
  2390. LightInstance *light_instance = light_instance_owner.getptr(p_rid);
  2391. //remove from shadow atlases..
  2392. for (Set<RID>::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) {
  2393. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(E->get());
  2394. ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
  2395. uint32_t key = shadow_atlas->shadow_owners[p_rid];
  2396. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  2397. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  2398. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  2399. shadow_atlas->shadow_owners.erase(p_rid);
  2400. }
  2401. light_instance_owner.free(p_rid);
  2402. memdelete(light_instance);
  2403. } else if (shadow_atlas_owner.owns(p_rid)) {
  2404. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(p_rid);
  2405. shadow_atlas_set_size(p_rid, 0);
  2406. shadow_atlas_owner.free(p_rid);
  2407. memdelete(shadow_atlas);
  2408. } else if (reflection_probe_instance_owner.owns(p_rid)) {
  2409. ReflectionProbeInstance *reflection_instance = reflection_probe_instance_owner.get(p_rid);
  2410. for (int i = 0; i < 6; i++) {
  2411. glDeleteFramebuffers(1, &reflection_instance->fbo[i]);
  2412. glDeleteTextures(1, &reflection_instance->color[i]);
  2413. }
  2414. if (reflection_instance->cubemap != 0) {
  2415. glDeleteTextures(1, &reflection_instance->cubemap);
  2416. }
  2417. glDeleteTextures(1, &reflection_instance->depth);
  2418. reflection_probe_release_atlas_index(p_rid);
  2419. reflection_probe_instance_owner.free(p_rid);
  2420. memdelete(reflection_instance);
  2421. } else {
  2422. return false;
  2423. }
  2424. return true;
  2425. }
  2426. void RasterizerSceneGLES2::set_debug_draw_mode(VS::ViewportDebugDraw p_debug_draw) {
  2427. }
  2428. void RasterizerSceneGLES2::initialize() {
  2429. state.scene_shader.init();
  2430. state.scene_shader.set_conditional(SceneShaderGLES2::USE_RGBA_SHADOWS, storage->config.use_rgba_3d_shadows);
  2431. state.cube_to_dp_shader.init();
  2432. render_list.init();
  2433. render_pass = 1;
  2434. shadow_atlas_realloc_tolerance_msec = 500;
  2435. {
  2436. //default material and shader
  2437. default_shader = storage->shader_create();
  2438. storage->shader_set_code(default_shader, "shader_type spatial;\n");
  2439. default_material = storage->material_create();
  2440. storage->material_set_shader(default_material, default_shader);
  2441. default_shader_twosided = storage->shader_create();
  2442. default_material_twosided = storage->material_create();
  2443. storage->shader_set_code(default_shader_twosided, "shader_type spatial; render_mode cull_disabled;\n");
  2444. storage->material_set_shader(default_material_twosided, default_shader_twosided);
  2445. }
  2446. {
  2447. default_worldcoord_shader = storage->shader_create();
  2448. storage->shader_set_code(default_worldcoord_shader, "shader_type spatial; render_mode world_vertex_coords;\n");
  2449. default_worldcoord_material = storage->material_create();
  2450. storage->material_set_shader(default_worldcoord_material, default_worldcoord_shader);
  2451. default_worldcoord_shader_twosided = storage->shader_create();
  2452. default_worldcoord_material_twosided = storage->material_create();
  2453. storage->shader_set_code(default_worldcoord_shader_twosided, "shader_type spatial; render_mode cull_disabled,world_vertex_coords;\n");
  2454. storage->material_set_shader(default_worldcoord_material_twosided, default_worldcoord_shader_twosided);
  2455. }
  2456. {
  2457. //default material and shader
  2458. default_overdraw_shader = storage->shader_create();
  2459. storage->shader_set_code(default_overdraw_shader, "shader_type spatial;\nrender_mode blend_add,unshaded;\n void fragment() { ALBEDO=vec3(0.4,0.8,0.8); ALPHA=0.2; }");
  2460. default_overdraw_material = storage->material_create();
  2461. storage->material_set_shader(default_overdraw_material, default_overdraw_shader);
  2462. }
  2463. {
  2464. glGenBuffers(1, &state.sky_verts);
  2465. glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts);
  2466. glBufferData(GL_ARRAY_BUFFER, sizeof(Vector3) * 8, NULL, GL_DYNAMIC_DRAW);
  2467. glBindBuffer(GL_ARRAY_BUFFER, 0);
  2468. }
  2469. {
  2470. uint32_t immediate_buffer_size = GLOBAL_DEF("rendering/limits/buffers/immediate_buffer_size_kb", 2048);
  2471. ProjectSettings::get_singleton()->set_custom_property_info("rendering/limits/buffers/immediate_buffer_size_kb", PropertyInfo(Variant::INT, "rendering/limits/buffers/immediate_buffer_size_kb", PROPERTY_HINT_RANGE, "0,8192,1,or_greater"));
  2472. glGenBuffers(1, &state.immediate_buffer);
  2473. glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer);
  2474. glBufferData(GL_ARRAY_BUFFER, immediate_buffer_size * 1024, NULL, GL_DYNAMIC_DRAW);
  2475. glBindBuffer(GL_ARRAY_BUFFER, 0);
  2476. }
  2477. // cubemaps for shadows
  2478. if (storage->config.support_write_depth) { //not going to be used
  2479. int max_shadow_cubemap_sampler_size = 512;
  2480. int cube_size = max_shadow_cubemap_sampler_size;
  2481. glActiveTexture(GL_TEXTURE0);
  2482. while (cube_size >= 32) {
  2483. ShadowCubeMap cube;
  2484. cube.size = cube_size;
  2485. glGenTextures(1, &cube.cubemap);
  2486. glBindTexture(GL_TEXTURE_CUBE_MAP, cube.cubemap);
  2487. for (int i = 0; i < 6; i++) {
  2488. glTexImage2D(_cube_side_enum[i], 0, GL_DEPTH_COMPONENT, cube_size, cube_size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
  2489. }
  2490. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  2491. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  2492. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  2493. glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  2494. glGenFramebuffers(6, cube.fbo);
  2495. for (int i = 0; i < 6; i++) {
  2496. glBindFramebuffer(GL_FRAMEBUFFER, cube.fbo[i]);
  2497. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, _cube_side_enum[i], cube.cubemap, 0);
  2498. }
  2499. shadow_cubemaps.push_back(cube);
  2500. cube_size >>= 1;
  2501. }
  2502. }
  2503. {
  2504. // directional shadows
  2505. directional_shadow.light_count = 0;
  2506. directional_shadow.size = next_power_of_2(GLOBAL_GET("rendering/quality/directional_shadow/size"));
  2507. glGenFramebuffers(1, &directional_shadow.fbo);
  2508. glBindFramebuffer(GL_FRAMEBUFFER, directional_shadow.fbo);
  2509. glGenTextures(1, &directional_shadow.depth);
  2510. glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
  2511. glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, directional_shadow.size, directional_shadow.size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
  2512. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  2513. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  2514. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  2515. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  2516. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, directional_shadow.depth, 0);
  2517. if (storage->config.use_rgba_3d_shadows) {
  2518. glGenTextures(1, &directional_shadow.color);
  2519. glBindTexture(GL_TEXTURE_2D, directional_shadow.color);
  2520. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, directional_shadow.size, directional_shadow.size, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
  2521. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  2522. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  2523. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  2524. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  2525. glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, directional_shadow.color, 0);
  2526. }
  2527. GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
  2528. if (status != GL_FRAMEBUFFER_COMPLETE) {
  2529. ERR_PRINT("Directional shadow framebuffer status invalid");
  2530. }
  2531. }
  2532. shadow_filter_mode = SHADOW_FILTER_NEAREST;
  2533. glFrontFace(GL_CW);
  2534. }
  2535. void RasterizerSceneGLES2::iteration() {
  2536. shadow_filter_mode = ShadowFilterMode(int(GLOBAL_GET("rendering/quality/shadows/filter_mode")));
  2537. }
  2538. void RasterizerSceneGLES2::finalize() {
  2539. }
  2540. RasterizerSceneGLES2::RasterizerSceneGLES2() {
  2541. }