mesh.cpp 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369
  1. /**************************************************************************/
  2. /* mesh.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "mesh.h"
  31. #include "core/math/convex_hull.h"
  32. #include "core/templates/pair.h"
  33. #include "scene/resources/surface_tool.h"
  34. #ifndef PHYSICS_3D_DISABLED
  35. #include "scene/resources/3d/concave_polygon_shape_3d.h"
  36. #include "scene/resources/3d/convex_polygon_shape_3d.h"
  37. #endif // PHYSICS_3D_DISABLED
  38. void MeshConvexDecompositionSettings::set_max_concavity(real_t p_max_concavity) {
  39. max_concavity = CLAMP(p_max_concavity, 0.001, 1.0);
  40. }
  41. real_t MeshConvexDecompositionSettings::get_max_concavity() const {
  42. return max_concavity;
  43. }
  44. void MeshConvexDecompositionSettings::set_symmetry_planes_clipping_bias(real_t p_symmetry_planes_clipping_bias) {
  45. symmetry_planes_clipping_bias = CLAMP(p_symmetry_planes_clipping_bias, 0.0, 1.0);
  46. }
  47. real_t MeshConvexDecompositionSettings::get_symmetry_planes_clipping_bias() const {
  48. return symmetry_planes_clipping_bias;
  49. }
  50. void MeshConvexDecompositionSettings::set_revolution_axes_clipping_bias(real_t p_revolution_axes_clipping_bias) {
  51. revolution_axes_clipping_bias = CLAMP(p_revolution_axes_clipping_bias, 0.0, 1.0);
  52. }
  53. real_t MeshConvexDecompositionSettings::get_revolution_axes_clipping_bias() const {
  54. return revolution_axes_clipping_bias;
  55. }
  56. void MeshConvexDecompositionSettings::set_min_volume_per_convex_hull(real_t p_min_volume_per_convex_hull) {
  57. min_volume_per_convex_hull = CLAMP(p_min_volume_per_convex_hull, 0.0001, 0.01);
  58. }
  59. real_t MeshConvexDecompositionSettings::get_min_volume_per_convex_hull() const {
  60. return min_volume_per_convex_hull;
  61. }
  62. void MeshConvexDecompositionSettings::set_resolution(uint32_t p_resolution) {
  63. resolution = p_resolution < 10'000 ? 10'000 : (p_resolution > 100'000 ? 100'000 : p_resolution);
  64. }
  65. uint32_t MeshConvexDecompositionSettings::get_resolution() const {
  66. return resolution;
  67. }
  68. void MeshConvexDecompositionSettings::set_max_num_vertices_per_convex_hull(uint32_t p_max_num_vertices_per_convex_hull) {
  69. max_num_vertices_per_convex_hull = p_max_num_vertices_per_convex_hull < 4 ? 4 : (p_max_num_vertices_per_convex_hull > 1024 ? 1024 : p_max_num_vertices_per_convex_hull);
  70. }
  71. uint32_t MeshConvexDecompositionSettings::get_max_num_vertices_per_convex_hull() const {
  72. return max_num_vertices_per_convex_hull;
  73. }
  74. void MeshConvexDecompositionSettings::set_plane_downsampling(uint32_t p_plane_downsampling) {
  75. plane_downsampling = p_plane_downsampling < 1 ? 1 : (p_plane_downsampling > 16 ? 16 : p_plane_downsampling);
  76. }
  77. uint32_t MeshConvexDecompositionSettings::get_plane_downsampling() const {
  78. return plane_downsampling;
  79. }
  80. void MeshConvexDecompositionSettings::set_convex_hull_downsampling(uint32_t p_convex_hull_downsampling) {
  81. convex_hull_downsampling = p_convex_hull_downsampling < 1 ? 1 : (p_convex_hull_downsampling > 16 ? 16 : p_convex_hull_downsampling);
  82. }
  83. uint32_t MeshConvexDecompositionSettings::get_convex_hull_downsampling() const {
  84. return convex_hull_downsampling;
  85. }
  86. void MeshConvexDecompositionSettings::set_normalize_mesh(bool p_normalize_mesh) {
  87. normalize_mesh = p_normalize_mesh;
  88. }
  89. bool MeshConvexDecompositionSettings::get_normalize_mesh() const {
  90. return normalize_mesh;
  91. }
  92. void MeshConvexDecompositionSettings::set_mode(Mode p_mode) {
  93. mode = p_mode;
  94. }
  95. MeshConvexDecompositionSettings::Mode MeshConvexDecompositionSettings::get_mode() const {
  96. return mode;
  97. }
  98. void MeshConvexDecompositionSettings::set_convex_hull_approximation(bool p_convex_hull_approximation) {
  99. convex_hull_approximation = p_convex_hull_approximation;
  100. }
  101. bool MeshConvexDecompositionSettings::get_convex_hull_approximation() const {
  102. return convex_hull_approximation;
  103. }
  104. void MeshConvexDecompositionSettings::set_max_convex_hulls(uint32_t p_max_convex_hulls) {
  105. max_convex_hulls = p_max_convex_hulls < 1 ? 1 : (p_max_convex_hulls > 32 ? 32 : p_max_convex_hulls);
  106. }
  107. uint32_t MeshConvexDecompositionSettings::get_max_convex_hulls() const {
  108. return max_convex_hulls;
  109. }
  110. void MeshConvexDecompositionSettings::set_project_hull_vertices(bool p_project_hull_vertices) {
  111. project_hull_vertices = p_project_hull_vertices;
  112. }
  113. bool MeshConvexDecompositionSettings::get_project_hull_vertices() const {
  114. return project_hull_vertices;
  115. }
  116. void MeshConvexDecompositionSettings::_bind_methods() {
  117. ClassDB::bind_method(D_METHOD("set_max_concavity", "max_concavity"), &MeshConvexDecompositionSettings::set_max_concavity);
  118. ClassDB::bind_method(D_METHOD("get_max_concavity"), &MeshConvexDecompositionSettings::get_max_concavity);
  119. ClassDB::bind_method(D_METHOD("set_symmetry_planes_clipping_bias", "symmetry_planes_clipping_bias"), &MeshConvexDecompositionSettings::set_symmetry_planes_clipping_bias);
  120. ClassDB::bind_method(D_METHOD("get_symmetry_planes_clipping_bias"), &MeshConvexDecompositionSettings::get_symmetry_planes_clipping_bias);
  121. ClassDB::bind_method(D_METHOD("set_revolution_axes_clipping_bias", "revolution_axes_clipping_bias"), &MeshConvexDecompositionSettings::set_revolution_axes_clipping_bias);
  122. ClassDB::bind_method(D_METHOD("get_revolution_axes_clipping_bias"), &MeshConvexDecompositionSettings::get_revolution_axes_clipping_bias);
  123. ClassDB::bind_method(D_METHOD("set_min_volume_per_convex_hull", "min_volume_per_convex_hull"), &MeshConvexDecompositionSettings::set_min_volume_per_convex_hull);
  124. ClassDB::bind_method(D_METHOD("get_min_volume_per_convex_hull"), &MeshConvexDecompositionSettings::get_min_volume_per_convex_hull);
  125. ClassDB::bind_method(D_METHOD("set_resolution", "min_volume_per_convex_hull"), &MeshConvexDecompositionSettings::set_resolution);
  126. ClassDB::bind_method(D_METHOD("get_resolution"), &MeshConvexDecompositionSettings::get_resolution);
  127. ClassDB::bind_method(D_METHOD("set_max_num_vertices_per_convex_hull", "max_num_vertices_per_convex_hull"), &MeshConvexDecompositionSettings::set_max_num_vertices_per_convex_hull);
  128. ClassDB::bind_method(D_METHOD("get_max_num_vertices_per_convex_hull"), &MeshConvexDecompositionSettings::get_max_num_vertices_per_convex_hull);
  129. ClassDB::bind_method(D_METHOD("set_plane_downsampling", "plane_downsampling"), &MeshConvexDecompositionSettings::set_plane_downsampling);
  130. ClassDB::bind_method(D_METHOD("get_plane_downsampling"), &MeshConvexDecompositionSettings::get_plane_downsampling);
  131. ClassDB::bind_method(D_METHOD("set_convex_hull_downsampling", "convex_hull_downsampling"), &MeshConvexDecompositionSettings::set_convex_hull_downsampling);
  132. ClassDB::bind_method(D_METHOD("get_convex_hull_downsampling"), &MeshConvexDecompositionSettings::get_convex_hull_downsampling);
  133. ClassDB::bind_method(D_METHOD("set_normalize_mesh", "normalize_mesh"), &MeshConvexDecompositionSettings::set_normalize_mesh);
  134. ClassDB::bind_method(D_METHOD("get_normalize_mesh"), &MeshConvexDecompositionSettings::get_normalize_mesh);
  135. ClassDB::bind_method(D_METHOD("set_mode", "mode"), &MeshConvexDecompositionSettings::set_mode);
  136. ClassDB::bind_method(D_METHOD("get_mode"), &MeshConvexDecompositionSettings::get_mode);
  137. ClassDB::bind_method(D_METHOD("set_convex_hull_approximation", "convex_hull_approximation"), &MeshConvexDecompositionSettings::set_convex_hull_approximation);
  138. ClassDB::bind_method(D_METHOD("get_convex_hull_approximation"), &MeshConvexDecompositionSettings::get_convex_hull_approximation);
  139. ClassDB::bind_method(D_METHOD("set_max_convex_hulls", "max_convex_hulls"), &MeshConvexDecompositionSettings::set_max_convex_hulls);
  140. ClassDB::bind_method(D_METHOD("get_max_convex_hulls"), &MeshConvexDecompositionSettings::get_max_convex_hulls);
  141. ClassDB::bind_method(D_METHOD("set_project_hull_vertices", "project_hull_vertices"), &MeshConvexDecompositionSettings::set_project_hull_vertices);
  142. ClassDB::bind_method(D_METHOD("get_project_hull_vertices"), &MeshConvexDecompositionSettings::get_project_hull_vertices);
  143. ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "max_concavity", PROPERTY_HINT_RANGE, "0.001,1.0,0.001"), "set_max_concavity", "get_max_concavity");
  144. ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "symmetry_planes_clipping_bias", PROPERTY_HINT_RANGE, "0.0,1.0,0.01"), "set_symmetry_planes_clipping_bias", "get_symmetry_planes_clipping_bias");
  145. ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "revolution_axes_clipping_bias", PROPERTY_HINT_RANGE, "0.0,1.0,0.01"), "set_revolution_axes_clipping_bias", "get_revolution_axes_clipping_bias");
  146. ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "min_volume_per_convex_hull", PROPERTY_HINT_RANGE, "0.0001,0.01,0.0001"), "set_min_volume_per_convex_hull", "get_min_volume_per_convex_hull");
  147. ADD_PROPERTY(PropertyInfo(Variant::INT, "resolution"), "set_resolution", "get_resolution");
  148. ADD_PROPERTY(PropertyInfo(Variant::INT, "max_num_vertices_per_convex_hull"), "set_max_num_vertices_per_convex_hull", "get_max_num_vertices_per_convex_hull");
  149. ADD_PROPERTY(PropertyInfo(Variant::INT, "plane_downsampling", PROPERTY_HINT_RANGE, "1,16,1"), "set_plane_downsampling", "get_plane_downsampling");
  150. ADD_PROPERTY(PropertyInfo(Variant::INT, "convex_hull_downsampling", PROPERTY_HINT_RANGE, "1,16,1"), "set_convex_hull_downsampling", "get_convex_hull_downsampling");
  151. ADD_PROPERTY(PropertyInfo(Variant::BOOL, "normalize_mesh"), "set_normalize_mesh", "get_normalize_mesh");
  152. ADD_PROPERTY(PropertyInfo(Variant::INT, "mode", PROPERTY_HINT_ENUM, "Voxel,Tetrahedron"), "set_mode", "get_mode");
  153. ADD_PROPERTY(PropertyInfo(Variant::BOOL, "convex_hull_approximation"), "set_convex_hull_approximation", "get_convex_hull_approximation");
  154. ADD_PROPERTY(PropertyInfo(Variant::INT, "max_convex_hulls"), "set_max_convex_hulls", "get_max_convex_hulls");
  155. ADD_PROPERTY(PropertyInfo(Variant::BOOL, "project_hull_vertices"), "set_project_hull_vertices", "get_project_hull_vertices");
  156. BIND_ENUM_CONSTANT(CONVEX_DECOMPOSITION_MODE_VOXEL);
  157. BIND_ENUM_CONSTANT(CONVEX_DECOMPOSITION_MODE_TETRAHEDRON);
  158. }
  159. #ifndef PHYSICS_3D_DISABLED
  160. Mesh::ConvexDecompositionFunc Mesh::convex_decomposition_function = nullptr;
  161. #endif // PHYSICS_3D_DISABLED
  162. int Mesh::get_surface_count() const {
  163. int ret = 0;
  164. GDVIRTUAL_CALL(_get_surface_count, ret);
  165. return ret;
  166. }
  167. int Mesh::surface_get_array_len(int p_idx) const {
  168. int ret = 0;
  169. GDVIRTUAL_CALL(_surface_get_array_len, p_idx, ret);
  170. return ret;
  171. }
  172. int Mesh::surface_get_array_index_len(int p_idx) const {
  173. int ret = 0;
  174. GDVIRTUAL_CALL(_surface_get_array_index_len, p_idx, ret);
  175. return ret;
  176. }
  177. Array Mesh::surface_get_arrays(int p_surface) const {
  178. Array ret;
  179. GDVIRTUAL_CALL(_surface_get_arrays, p_surface, ret);
  180. return ret;
  181. }
  182. TypedArray<Array> Mesh::surface_get_blend_shape_arrays(int p_surface) const {
  183. TypedArray<Array> ret;
  184. GDVIRTUAL_CALL(_surface_get_blend_shape_arrays, p_surface, ret);
  185. return ret;
  186. }
  187. Dictionary Mesh::surface_get_lods(int p_surface) const {
  188. Dictionary ret;
  189. GDVIRTUAL_CALL(_surface_get_lods, p_surface, ret);
  190. return ret;
  191. }
  192. BitField<Mesh::ArrayFormat> Mesh::surface_get_format(int p_idx) const {
  193. uint32_t ret = 0;
  194. GDVIRTUAL_CALL(_surface_get_format, p_idx, ret);
  195. return ret;
  196. }
  197. Mesh::PrimitiveType Mesh::surface_get_primitive_type(int p_idx) const {
  198. uint32_t ret = PRIMITIVE_MAX;
  199. GDVIRTUAL_CALL(_surface_get_primitive_type, p_idx, ret);
  200. return (Mesh::PrimitiveType)ret;
  201. }
  202. void Mesh::surface_set_material(int p_idx, const Ref<Material> &p_material) {
  203. GDVIRTUAL_CALL(_surface_set_material, p_idx, p_material);
  204. }
  205. Ref<Material> Mesh::surface_get_material(int p_idx) const {
  206. Ref<Material> ret;
  207. GDVIRTUAL_CALL(_surface_get_material, p_idx, ret);
  208. return ret;
  209. }
  210. int Mesh::get_blend_shape_count() const {
  211. int ret = 0;
  212. GDVIRTUAL_CALL(_get_blend_shape_count, ret);
  213. return ret;
  214. }
  215. StringName Mesh::get_blend_shape_name(int p_index) const {
  216. StringName ret;
  217. GDVIRTUAL_CALL(_get_blend_shape_name, p_index, ret);
  218. return ret;
  219. }
  220. void Mesh::set_blend_shape_name(int p_index, const StringName &p_name) {
  221. GDVIRTUAL_CALL(_set_blend_shape_name, p_index, p_name);
  222. }
  223. AABB Mesh::get_aabb() const {
  224. AABB ret;
  225. GDVIRTUAL_CALL(_get_aabb, ret);
  226. return ret;
  227. }
  228. Ref<TriangleMesh> Mesh::generate_triangle_mesh() const {
  229. if (triangle_mesh.is_valid()) {
  230. return triangle_mesh;
  231. }
  232. int faces_size = 0;
  233. for (int i = 0; i < get_surface_count(); i++) {
  234. switch (surface_get_primitive_type(i)) {
  235. case PRIMITIVE_TRIANGLES: {
  236. int len = (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? surface_get_array_index_len(i) : surface_get_array_len(i);
  237. // Don't error if zero, it's valid (we'll just skip it later).
  238. ERR_CONTINUE_MSG((len % 3) != 0, vformat("Ignoring surface %d, incorrect %s count: %d (for PRIMITIVE_TRIANGLES).", i, (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? "index" : "vertex", len));
  239. faces_size += len;
  240. } break;
  241. case PRIMITIVE_TRIANGLE_STRIP: {
  242. int len = (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? surface_get_array_index_len(i) : surface_get_array_len(i);
  243. // Don't error if zero, it's valid (we'll just skip it later).
  244. ERR_CONTINUE_MSG(len != 0 && len < 3, vformat("Ignoring surface %d, incorrect %s count: %d (for PRIMITIVE_TRIANGLE_STRIP).", i, (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? "index" : "vertex", len));
  245. faces_size += (len == 0) ? 0 : (len - 2) * 3;
  246. } break;
  247. default: {
  248. } break;
  249. }
  250. }
  251. if (faces_size == 0) {
  252. return triangle_mesh;
  253. }
  254. Vector<Vector3> faces;
  255. faces.resize(faces_size);
  256. Vector<int32_t> surface_indices;
  257. surface_indices.resize(faces_size / 3);
  258. Vector3 *facesw = faces.ptrw();
  259. int32_t *surface_indicesw = surface_indices.ptrw();
  260. int widx = 0;
  261. for (int i = 0; i < get_surface_count(); i++) {
  262. Mesh::PrimitiveType primitive = surface_get_primitive_type(i);
  263. if (primitive != PRIMITIVE_TRIANGLES && primitive != PRIMITIVE_TRIANGLE_STRIP) {
  264. continue;
  265. }
  266. int len = (surface_get_format(i) & ARRAY_FORMAT_INDEX) ? surface_get_array_index_len(i) : surface_get_array_len(i);
  267. if ((primitive == PRIMITIVE_TRIANGLES && (len == 0 || (len % 3) != 0)) ||
  268. (primitive == PRIMITIVE_TRIANGLE_STRIP && len < 3) ||
  269. (surface_get_format(i) & ARRAY_FLAG_USES_EMPTY_VERTEX_ARRAY)) {
  270. // Error was already shown, just skip (including zero).
  271. continue;
  272. }
  273. Array a = surface_get_arrays(i);
  274. ERR_FAIL_COND_V(a.is_empty(), Ref<TriangleMesh>());
  275. int vc = surface_get_array_len(i);
  276. Vector<Vector3> vertices = a[ARRAY_VERTEX];
  277. ERR_FAIL_COND_V(vertices.is_empty(), Ref<TriangleMesh>());
  278. const Vector3 *vr = vertices.ptr();
  279. int32_t from_index = widx / 3;
  280. if (surface_get_format(i) & ARRAY_FORMAT_INDEX) {
  281. int ic = surface_get_array_index_len(i);
  282. Vector<int> indices = a[ARRAY_INDEX];
  283. const int *ir = indices.ptr();
  284. if (primitive == PRIMITIVE_TRIANGLES) {
  285. for (int j = 0; j < ic; j++) {
  286. int index = ir[j];
  287. ERR_FAIL_COND_V(index >= vc, Ref<TriangleMesh>());
  288. facesw[widx++] = vr[index];
  289. }
  290. } else { // PRIMITIVE_TRIANGLE_STRIP
  291. for (int j = 2; j < ic; j++) {
  292. facesw[widx++] = vr[ir[j - 2]];
  293. facesw[widx++] = vr[ir[j - 1]];
  294. facesw[widx++] = vr[ir[j]];
  295. }
  296. }
  297. } else {
  298. if (primitive == PRIMITIVE_TRIANGLES) {
  299. for (int j = 0; j < vc; j++) {
  300. facesw[widx++] = vr[j];
  301. }
  302. } else { // PRIMITIVE_TRIANGLE_STRIP
  303. for (int j = 2; j < vc; j++) {
  304. facesw[widx++] = vr[j - 2];
  305. facesw[widx++] = vr[j - 1];
  306. facesw[widx++] = vr[j];
  307. }
  308. }
  309. }
  310. int32_t to_index = widx / 3;
  311. for (int j = from_index; j < to_index; j++) {
  312. surface_indicesw[j] = i;
  313. }
  314. }
  315. triangle_mesh.instantiate();
  316. triangle_mesh->create(faces);
  317. return triangle_mesh;
  318. }
  319. Ref<TriangleMesh> Mesh::generate_surface_triangle_mesh(int p_surface) const {
  320. ERR_FAIL_INDEX_V(p_surface, get_surface_count(), Ref<TriangleMesh>());
  321. if (surface_triangle_meshes.size() != get_surface_count()) {
  322. surface_triangle_meshes.resize(get_surface_count());
  323. }
  324. if (surface_triangle_meshes[p_surface].is_valid()) {
  325. return surface_triangle_meshes[p_surface];
  326. }
  327. int facecount = 0;
  328. if (surface_get_primitive_type(p_surface) != PRIMITIVE_TRIANGLES) {
  329. return Ref<TriangleMesh>();
  330. }
  331. if (surface_get_format(p_surface) & ARRAY_FORMAT_INDEX) {
  332. facecount += surface_get_array_index_len(p_surface);
  333. } else {
  334. facecount += surface_get_array_len(p_surface);
  335. }
  336. Vector<Vector3> faces;
  337. faces.resize(facecount);
  338. Vector3 *facesw = faces.ptrw();
  339. Array a = surface_get_arrays(p_surface);
  340. ERR_FAIL_COND_V(a.is_empty(), Ref<TriangleMesh>());
  341. int vc = surface_get_array_len(p_surface);
  342. Vector<Vector3> vertices = a[ARRAY_VERTEX];
  343. const Vector3 *vr = vertices.ptr();
  344. int widx = 0;
  345. if (surface_get_format(p_surface) & ARRAY_FORMAT_INDEX) {
  346. int ic = surface_get_array_index_len(p_surface);
  347. Vector<int> indices = a[ARRAY_INDEX];
  348. const int *ir = indices.ptr();
  349. for (int j = 0; j < ic; j++) {
  350. int index = ir[j];
  351. facesw[widx++] = vr[index];
  352. }
  353. } else {
  354. for (int j = 0; j < vc; j++) {
  355. facesw[widx++] = vr[j];
  356. }
  357. }
  358. Ref<TriangleMesh> tr_mesh = Ref<TriangleMesh>(memnew(TriangleMesh));
  359. tr_mesh->create(faces);
  360. surface_triangle_meshes.set(p_surface, tr_mesh);
  361. return tr_mesh;
  362. }
  363. void Mesh::generate_debug_mesh_lines(Vector<Vector3> &r_lines) {
  364. if (debug_lines.size() > 0) {
  365. r_lines = debug_lines;
  366. return;
  367. }
  368. Ref<TriangleMesh> tm = generate_triangle_mesh();
  369. if (tm.is_null()) {
  370. return;
  371. }
  372. Vector<int> triangle_indices;
  373. tm->get_indices(&triangle_indices);
  374. const int triangles_num = tm->get_triangles().size();
  375. Vector<Vector3> vertices = tm->get_vertices();
  376. debug_lines.resize(tm->get_triangles().size() * 6); // 3 lines x 2 points each line
  377. const int *ind_r = triangle_indices.ptr();
  378. const Vector3 *ver_r = vertices.ptr();
  379. for (int j = 0, x = 0, i = 0; i < triangles_num; j += 6, x += 3, ++i) {
  380. // Triangle line 1
  381. debug_lines.write[j + 0] = ver_r[ind_r[x + 0]];
  382. debug_lines.write[j + 1] = ver_r[ind_r[x + 1]];
  383. // Triangle line 2
  384. debug_lines.write[j + 2] = ver_r[ind_r[x + 1]];
  385. debug_lines.write[j + 3] = ver_r[ind_r[x + 2]];
  386. // Triangle line 3
  387. debug_lines.write[j + 4] = ver_r[ind_r[x + 2]];
  388. debug_lines.write[j + 5] = ver_r[ind_r[x + 0]];
  389. }
  390. r_lines = debug_lines;
  391. }
  392. void Mesh::generate_debug_mesh_indices(Vector<Vector3> &r_points) {
  393. Ref<TriangleMesh> tm = generate_triangle_mesh();
  394. if (tm.is_null()) {
  395. return;
  396. }
  397. Vector<Vector3> vertices = tm->get_vertices();
  398. int vertices_size = vertices.size();
  399. r_points.resize(vertices_size);
  400. for (int i = 0; i < vertices_size; ++i) {
  401. r_points.write[i] = vertices[i];
  402. }
  403. }
  404. Vector<Vector3> Mesh::_get_faces() const {
  405. return Variant(get_faces());
  406. }
  407. Vector<Face3> Mesh::get_faces() const {
  408. Ref<TriangleMesh> tm = generate_triangle_mesh();
  409. if (tm.is_valid()) {
  410. return tm->get_faces();
  411. }
  412. return Vector<Face3>();
  413. }
  414. Vector<Face3> Mesh::get_surface_faces(int p_surface) const {
  415. Ref<TriangleMesh> tm = generate_surface_triangle_mesh(p_surface);
  416. if (tm.is_valid()) {
  417. return tm->get_faces();
  418. }
  419. return Vector<Face3>();
  420. }
  421. #ifndef PHYSICS_3D_DISABLED
  422. Ref<ConvexPolygonShape3D> Mesh::create_convex_shape(bool p_clean, bool p_simplify) const {
  423. if (p_simplify) {
  424. Ref<MeshConvexDecompositionSettings> settings = Ref<MeshConvexDecompositionSettings>();
  425. settings.instantiate();
  426. settings->set_max_convex_hulls(1);
  427. settings->set_max_concavity(1.0);
  428. Vector<Ref<Shape3D>> decomposed = convex_decompose(settings);
  429. if (decomposed.size() == 1) {
  430. return decomposed[0];
  431. } else {
  432. ERR_PRINT("Convex shape simplification failed, falling back to simpler process.");
  433. }
  434. }
  435. Vector<Vector3> vertices;
  436. for (int i = 0; i < get_surface_count(); i++) {
  437. Array a = surface_get_arrays(i);
  438. ERR_FAIL_COND_V(a.is_empty(), Ref<ConvexPolygonShape3D>());
  439. Vector<Vector3> v = a[ARRAY_VERTEX];
  440. vertices.append_array(v);
  441. }
  442. Ref<ConvexPolygonShape3D> shape = memnew(ConvexPolygonShape3D);
  443. if (p_clean) {
  444. Geometry3D::MeshData md;
  445. Error err = ConvexHullComputer::convex_hull(vertices, md);
  446. if (err == OK) {
  447. shape->set_points(md.vertices);
  448. return shape;
  449. } else {
  450. ERR_PRINT("Convex shape cleaning failed, falling back to simpler process.");
  451. }
  452. }
  453. shape->set_points(vertices);
  454. return shape;
  455. }
  456. Ref<ConcavePolygonShape3D> Mesh::create_trimesh_shape() const {
  457. Vector<Face3> faces = get_faces();
  458. if (faces.is_empty()) {
  459. return Ref<ConcavePolygonShape3D>();
  460. }
  461. Vector<Vector3> face_points;
  462. face_points.resize(faces.size() * 3);
  463. for (int i = 0; i < face_points.size(); i += 3) {
  464. Face3 f = faces.get(i / 3);
  465. face_points.set(i, f.vertex[0]);
  466. face_points.set(i + 1, f.vertex[1]);
  467. face_points.set(i + 2, f.vertex[2]);
  468. }
  469. Ref<ConcavePolygonShape3D> shape = memnew(ConcavePolygonShape3D);
  470. shape->set_faces(face_points);
  471. return shape;
  472. }
  473. #endif // PHYSICS_3D_DISABLED
  474. Ref<Mesh> Mesh::create_outline(float p_margin) const {
  475. Array arrays;
  476. int index_accum = 0;
  477. for (int i = 0; i < get_surface_count(); i++) {
  478. if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES) {
  479. continue;
  480. }
  481. Array a = surface_get_arrays(i);
  482. ERR_FAIL_COND_V(a.is_empty(), Ref<ArrayMesh>());
  483. if (i == 0) {
  484. arrays = a;
  485. Vector<Vector3> v = a[ARRAY_VERTEX];
  486. index_accum += v.size();
  487. } else {
  488. int vcount = 0;
  489. for (int j = 0; j < arrays.size(); j++) {
  490. if (arrays[j].get_type() == Variant::NIL || a[j].get_type() == Variant::NIL) {
  491. //mismatch, do not use
  492. arrays[j] = Variant();
  493. continue;
  494. }
  495. switch (j) {
  496. case ARRAY_VERTEX:
  497. case ARRAY_NORMAL: {
  498. Vector<Vector3> dst = arrays[j];
  499. Vector<Vector3> src = a[j];
  500. if (j == ARRAY_VERTEX) {
  501. vcount = src.size();
  502. }
  503. if (dst.is_empty() || src.is_empty()) {
  504. arrays[j] = Variant();
  505. continue;
  506. }
  507. dst.append_array(src);
  508. arrays[j] = dst;
  509. } break;
  510. case ARRAY_TANGENT:
  511. case ARRAY_BONES:
  512. case ARRAY_WEIGHTS: {
  513. Vector<real_t> dst = arrays[j];
  514. Vector<real_t> src = a[j];
  515. if (dst.is_empty() || src.is_empty()) {
  516. arrays[j] = Variant();
  517. continue;
  518. }
  519. dst.append_array(src);
  520. arrays[j] = dst;
  521. } break;
  522. case ARRAY_COLOR: {
  523. Vector<Color> dst = arrays[j];
  524. Vector<Color> src = a[j];
  525. if (dst.is_empty() || src.is_empty()) {
  526. arrays[j] = Variant();
  527. continue;
  528. }
  529. dst.append_array(src);
  530. arrays[j] = dst;
  531. } break;
  532. case ARRAY_TEX_UV:
  533. case ARRAY_TEX_UV2: {
  534. Vector<Vector2> dst = arrays[j];
  535. Vector<Vector2> src = a[j];
  536. if (dst.is_empty() || src.is_empty()) {
  537. arrays[j] = Variant();
  538. continue;
  539. }
  540. dst.append_array(src);
  541. arrays[j] = dst;
  542. } break;
  543. case ARRAY_INDEX: {
  544. Vector<int> dst = arrays[j];
  545. Vector<int> src = a[j];
  546. if (dst.is_empty() || src.is_empty()) {
  547. arrays[j] = Variant();
  548. continue;
  549. }
  550. {
  551. int ss = src.size();
  552. int *w = src.ptrw();
  553. for (int k = 0; k < ss; k++) {
  554. w[k] += index_accum;
  555. }
  556. }
  557. dst.append_array(src);
  558. arrays[j] = dst;
  559. index_accum += vcount;
  560. } break;
  561. }
  562. }
  563. }
  564. }
  565. ERR_FAIL_COND_V(arrays.size() != ARRAY_MAX, Ref<ArrayMesh>());
  566. {
  567. int *ir = nullptr;
  568. Vector<int> indices = arrays[ARRAY_INDEX];
  569. bool has_indices = false;
  570. Vector<Vector3> vertices = arrays[ARRAY_VERTEX];
  571. int vc = vertices.size();
  572. ERR_FAIL_COND_V(!vc, Ref<ArrayMesh>());
  573. Vector3 *r = vertices.ptrw();
  574. if (indices.size()) {
  575. ERR_FAIL_COND_V(indices.size() % 3 != 0, Ref<ArrayMesh>());
  576. vc = indices.size();
  577. ir = indices.ptrw();
  578. has_indices = true;
  579. } else {
  580. // Ensure there are enough vertices to construct at least one triangle.
  581. ERR_FAIL_COND_V(vertices.size() % 3 != 0, Ref<ArrayMesh>());
  582. }
  583. HashMap<Vector3, Vector3> normal_accum;
  584. //fill normals with triangle normals
  585. for (int i = 0; i < vc; i += 3) {
  586. Vector3 t[3];
  587. if (has_indices) {
  588. t[0] = r[ir[i + 0]];
  589. t[1] = r[ir[i + 1]];
  590. t[2] = r[ir[i + 2]];
  591. } else {
  592. t[0] = r[i + 0];
  593. t[1] = r[i + 1];
  594. t[2] = r[i + 2];
  595. }
  596. Vector3 n = Plane(t[0], t[1], t[2]).normal;
  597. for (int j = 0; j < 3; j++) {
  598. HashMap<Vector3, Vector3>::Iterator E = normal_accum.find(t[j]);
  599. if (!E) {
  600. normal_accum[t[j]] = n;
  601. } else {
  602. float d = n.dot(E->value);
  603. if (d < 1.0) {
  604. E->value += n * (1.0 - d);
  605. }
  606. //E->get()+=n;
  607. }
  608. }
  609. }
  610. //normalize
  611. for (KeyValue<Vector3, Vector3> &E : normal_accum) {
  612. E.value.normalize();
  613. }
  614. //displace normals
  615. int vc2 = vertices.size();
  616. for (int i = 0; i < vc2; i++) {
  617. Vector3 t = r[i];
  618. HashMap<Vector3, Vector3>::Iterator E = normal_accum.find(t);
  619. ERR_CONTINUE(!E);
  620. t += E->value * p_margin;
  621. r[i] = t;
  622. }
  623. arrays[ARRAY_VERTEX] = vertices;
  624. if (!has_indices) {
  625. Vector<int> new_indices;
  626. new_indices.resize(vertices.size());
  627. int *iw = new_indices.ptrw();
  628. for (int j = 0; j < vc2; j += 3) {
  629. iw[j] = j;
  630. iw[j + 1] = j + 2;
  631. iw[j + 2] = j + 1;
  632. }
  633. arrays[ARRAY_INDEX] = new_indices;
  634. } else {
  635. for (int j = 0; j < vc; j += 3) {
  636. SWAP(ir[j + 1], ir[j + 2]);
  637. }
  638. arrays[ARRAY_INDEX] = indices;
  639. }
  640. }
  641. Ref<ArrayMesh> newmesh = memnew(ArrayMesh);
  642. newmesh->add_surface_from_arrays(PRIMITIVE_TRIANGLES, arrays);
  643. return newmesh;
  644. }
  645. void Mesh::set_lightmap_size_hint(const Size2i &p_size) {
  646. lightmap_size_hint = p_size;
  647. }
  648. Size2i Mesh::get_lightmap_size_hint() const {
  649. return lightmap_size_hint;
  650. }
  651. Ref<Resource> Mesh::create_placeholder() const {
  652. Ref<PlaceholderMesh> placeholder;
  653. placeholder.instantiate();
  654. placeholder->set_aabb(get_aabb());
  655. return placeholder;
  656. }
  657. void Mesh::_bind_methods() {
  658. ClassDB::bind_method(D_METHOD("set_lightmap_size_hint", "size"), &Mesh::set_lightmap_size_hint);
  659. ClassDB::bind_method(D_METHOD("get_lightmap_size_hint"), &Mesh::get_lightmap_size_hint);
  660. ClassDB::bind_method(D_METHOD("get_aabb"), &Mesh::get_aabb);
  661. ClassDB::bind_method(D_METHOD("get_faces"), &Mesh::_get_faces);
  662. ADD_PROPERTY(PropertyInfo(Variant::VECTOR2I, "lightmap_size_hint"), "set_lightmap_size_hint", "get_lightmap_size_hint");
  663. ClassDB::bind_method(D_METHOD("get_surface_count"), &Mesh::get_surface_count);
  664. ClassDB::bind_method(D_METHOD("surface_get_arrays", "surf_idx"), &Mesh::surface_get_arrays);
  665. ClassDB::bind_method(D_METHOD("surface_get_blend_shape_arrays", "surf_idx"), &Mesh::surface_get_blend_shape_arrays);
  666. ClassDB::bind_method(D_METHOD("surface_set_material", "surf_idx", "material"), &Mesh::surface_set_material);
  667. ClassDB::bind_method(D_METHOD("surface_get_material", "surf_idx"), &Mesh::surface_get_material);
  668. ClassDB::bind_method(D_METHOD("create_placeholder"), &Mesh::create_placeholder);
  669. BIND_ENUM_CONSTANT(PRIMITIVE_POINTS);
  670. BIND_ENUM_CONSTANT(PRIMITIVE_LINES);
  671. BIND_ENUM_CONSTANT(PRIMITIVE_LINE_STRIP);
  672. BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLES);
  673. BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLE_STRIP);
  674. BIND_ENUM_CONSTANT(ARRAY_VERTEX);
  675. BIND_ENUM_CONSTANT(ARRAY_NORMAL);
  676. BIND_ENUM_CONSTANT(ARRAY_TANGENT);
  677. BIND_ENUM_CONSTANT(ARRAY_COLOR);
  678. BIND_ENUM_CONSTANT(ARRAY_TEX_UV);
  679. BIND_ENUM_CONSTANT(ARRAY_TEX_UV2);
  680. BIND_ENUM_CONSTANT(ARRAY_CUSTOM0);
  681. BIND_ENUM_CONSTANT(ARRAY_CUSTOM1);
  682. BIND_ENUM_CONSTANT(ARRAY_CUSTOM2);
  683. BIND_ENUM_CONSTANT(ARRAY_CUSTOM3);
  684. BIND_ENUM_CONSTANT(ARRAY_BONES);
  685. BIND_ENUM_CONSTANT(ARRAY_WEIGHTS);
  686. BIND_ENUM_CONSTANT(ARRAY_INDEX);
  687. BIND_ENUM_CONSTANT(ARRAY_MAX);
  688. BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGBA8_UNORM);
  689. BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGBA8_SNORM);
  690. BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RG_HALF);
  691. BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGBA_HALF);
  692. BIND_ENUM_CONSTANT(ARRAY_CUSTOM_R_FLOAT);
  693. BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RG_FLOAT);
  694. BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGB_FLOAT);
  695. BIND_ENUM_CONSTANT(ARRAY_CUSTOM_RGBA_FLOAT);
  696. BIND_ENUM_CONSTANT(ARRAY_CUSTOM_MAX);
  697. BIND_BITFIELD_FLAG(ARRAY_FORMAT_VERTEX);
  698. BIND_BITFIELD_FLAG(ARRAY_FORMAT_NORMAL);
  699. BIND_BITFIELD_FLAG(ARRAY_FORMAT_TANGENT);
  700. BIND_BITFIELD_FLAG(ARRAY_FORMAT_COLOR);
  701. BIND_BITFIELD_FLAG(ARRAY_FORMAT_TEX_UV);
  702. BIND_BITFIELD_FLAG(ARRAY_FORMAT_TEX_UV2);
  703. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM0);
  704. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM1);
  705. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM2);
  706. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM3);
  707. BIND_BITFIELD_FLAG(ARRAY_FORMAT_BONES);
  708. BIND_BITFIELD_FLAG(ARRAY_FORMAT_WEIGHTS);
  709. BIND_BITFIELD_FLAG(ARRAY_FORMAT_INDEX);
  710. BIND_BITFIELD_FLAG(ARRAY_FORMAT_BLEND_SHAPE_MASK);
  711. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM_BASE);
  712. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM_BITS);
  713. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM0_SHIFT);
  714. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM1_SHIFT);
  715. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM2_SHIFT);
  716. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM3_SHIFT);
  717. BIND_BITFIELD_FLAG(ARRAY_FORMAT_CUSTOM_MASK);
  718. BIND_BITFIELD_FLAG(ARRAY_COMPRESS_FLAGS_BASE);
  719. BIND_BITFIELD_FLAG(ARRAY_FLAG_USE_2D_VERTICES);
  720. BIND_BITFIELD_FLAG(ARRAY_FLAG_USE_DYNAMIC_UPDATE);
  721. BIND_BITFIELD_FLAG(ARRAY_FLAG_USE_8_BONE_WEIGHTS);
  722. BIND_BITFIELD_FLAG(ARRAY_FLAG_USES_EMPTY_VERTEX_ARRAY);
  723. BIND_BITFIELD_FLAG(ARRAY_FLAG_COMPRESS_ATTRIBUTES);
  724. BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_NORMALIZED);
  725. BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_RELATIVE);
  726. GDVIRTUAL_BIND(_get_surface_count)
  727. GDVIRTUAL_BIND(_surface_get_array_len, "index")
  728. GDVIRTUAL_BIND(_surface_get_array_index_len, "index")
  729. GDVIRTUAL_BIND(_surface_get_arrays, "index")
  730. GDVIRTUAL_BIND(_surface_get_blend_shape_arrays, "index")
  731. GDVIRTUAL_BIND(_surface_get_lods, "index")
  732. GDVIRTUAL_BIND(_surface_get_format, "index")
  733. GDVIRTUAL_BIND(_surface_get_primitive_type, "index")
  734. GDVIRTUAL_BIND(_surface_set_material, "index", "material")
  735. GDVIRTUAL_BIND(_surface_get_material, "index")
  736. GDVIRTUAL_BIND(_get_blend_shape_count)
  737. GDVIRTUAL_BIND(_get_blend_shape_name, "index")
  738. GDVIRTUAL_BIND(_set_blend_shape_name, "index", "name")
  739. GDVIRTUAL_BIND(_get_aabb)
  740. }
  741. void Mesh::clear_cache() const {
  742. triangle_mesh.unref();
  743. debug_lines.clear();
  744. }
  745. #ifndef PHYSICS_3D_DISABLED
  746. Vector<Ref<Shape3D>> Mesh::convex_decompose(const Ref<MeshConvexDecompositionSettings> &p_settings) const {
  747. ERR_FAIL_NULL_V(convex_decomposition_function, Vector<Ref<Shape3D>>());
  748. Ref<TriangleMesh> tm = generate_triangle_mesh();
  749. ERR_FAIL_COND_V(tm.is_null(), Vector<Ref<Shape3D>>());
  750. const Vector<TriangleMesh::Triangle> &triangles = tm->get_triangles();
  751. int triangle_count = triangles.size();
  752. Vector<uint32_t> indices;
  753. {
  754. indices.resize(triangle_count * 3);
  755. uint32_t *w = indices.ptrw();
  756. for (int i = 0; i < triangle_count; i++) {
  757. for (int j = 0; j < 3; j++) {
  758. w[i * 3 + j] = triangles[i].indices[j];
  759. }
  760. }
  761. }
  762. const Vector<Vector3> &vertices = tm->get_vertices();
  763. int vertex_count = vertices.size();
  764. Vector<Vector<Vector3>> decomposed = convex_decomposition_function((real_t *)vertices.ptr(), vertex_count, indices.ptr(), triangle_count, p_settings, nullptr);
  765. Vector<Ref<Shape3D>> ret;
  766. for (int i = 0; i < decomposed.size(); i++) {
  767. Ref<ConvexPolygonShape3D> shape;
  768. shape.instantiate();
  769. shape->set_points(decomposed[i]);
  770. ret.push_back(shape);
  771. }
  772. return ret;
  773. }
  774. #endif // PHYSICS_3D_DISABLED
  775. int Mesh::get_builtin_bind_pose_count() const {
  776. return 0;
  777. }
  778. Transform3D Mesh::get_builtin_bind_pose(int p_index) const {
  779. return Transform3D();
  780. }
  781. Mesh::Mesh() {
  782. }
  783. enum OldArrayType {
  784. OLD_ARRAY_VERTEX,
  785. OLD_ARRAY_NORMAL,
  786. OLD_ARRAY_TANGENT,
  787. OLD_ARRAY_COLOR,
  788. OLD_ARRAY_TEX_UV,
  789. OLD_ARRAY_TEX_UV2,
  790. OLD_ARRAY_BONES,
  791. OLD_ARRAY_WEIGHTS,
  792. OLD_ARRAY_INDEX,
  793. OLD_ARRAY_MAX,
  794. };
  795. enum OldArrayFormat {
  796. /* OLD_ARRAY FORMAT FLAGS */
  797. OLD_ARRAY_FORMAT_VERTEX = 1 << OLD_ARRAY_VERTEX, // mandatory
  798. OLD_ARRAY_FORMAT_NORMAL = 1 << OLD_ARRAY_NORMAL,
  799. OLD_ARRAY_FORMAT_TANGENT = 1 << OLD_ARRAY_TANGENT,
  800. OLD_ARRAY_FORMAT_COLOR = 1 << OLD_ARRAY_COLOR,
  801. OLD_ARRAY_FORMAT_TEX_UV = 1 << OLD_ARRAY_TEX_UV,
  802. OLD_ARRAY_FORMAT_TEX_UV2 = 1 << OLD_ARRAY_TEX_UV2,
  803. OLD_ARRAY_FORMAT_BONES = 1 << OLD_ARRAY_BONES,
  804. OLD_ARRAY_FORMAT_WEIGHTS = 1 << OLD_ARRAY_WEIGHTS,
  805. OLD_ARRAY_FORMAT_INDEX = 1 << OLD_ARRAY_INDEX,
  806. OLD_ARRAY_COMPRESS_BASE = (OLD_ARRAY_INDEX + 1),
  807. OLD_ARRAY_COMPRESS_VERTEX = 1 << (OLD_ARRAY_VERTEX + (int32_t)OLD_ARRAY_COMPRESS_BASE), // mandatory
  808. OLD_ARRAY_COMPRESS_NORMAL = 1 << (OLD_ARRAY_NORMAL + (int32_t)OLD_ARRAY_COMPRESS_BASE),
  809. OLD_ARRAY_COMPRESS_TANGENT = 1 << (OLD_ARRAY_TANGENT + (int32_t)OLD_ARRAY_COMPRESS_BASE),
  810. OLD_ARRAY_COMPRESS_COLOR = 1 << (OLD_ARRAY_COLOR + (int32_t)OLD_ARRAY_COMPRESS_BASE),
  811. OLD_ARRAY_COMPRESS_TEX_UV = 1 << (OLD_ARRAY_TEX_UV + (int32_t)OLD_ARRAY_COMPRESS_BASE),
  812. OLD_ARRAY_COMPRESS_TEX_UV2 = 1 << (OLD_ARRAY_TEX_UV2 + (int32_t)OLD_ARRAY_COMPRESS_BASE),
  813. OLD_ARRAY_COMPRESS_BONES = 1 << (OLD_ARRAY_BONES + (int32_t)OLD_ARRAY_COMPRESS_BASE),
  814. OLD_ARRAY_COMPRESS_WEIGHTS = 1 << (OLD_ARRAY_WEIGHTS + (int32_t)OLD_ARRAY_COMPRESS_BASE),
  815. OLD_ARRAY_COMPRESS_INDEX = 1 << (OLD_ARRAY_INDEX + (int32_t)OLD_ARRAY_COMPRESS_BASE),
  816. OLD_ARRAY_FLAG_USE_2D_VERTICES = OLD_ARRAY_COMPRESS_INDEX << 1,
  817. OLD_ARRAY_FLAG_USE_16_BIT_BONES = OLD_ARRAY_COMPRESS_INDEX << 2,
  818. OLD_ARRAY_FLAG_USE_DYNAMIC_UPDATE = OLD_ARRAY_COMPRESS_INDEX << 3,
  819. OLD_ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION = OLD_ARRAY_COMPRESS_INDEX << 4,
  820. };
  821. #ifndef DISABLE_DEPRECATED
  822. static Array _convert_old_array(const Array &p_old) {
  823. Array new_array;
  824. new_array.resize(Mesh::ARRAY_MAX);
  825. new_array[Mesh::ARRAY_VERTEX] = p_old[OLD_ARRAY_VERTEX];
  826. new_array[Mesh::ARRAY_NORMAL] = p_old[OLD_ARRAY_NORMAL];
  827. new_array[Mesh::ARRAY_TANGENT] = p_old[OLD_ARRAY_TANGENT];
  828. new_array[Mesh::ARRAY_COLOR] = p_old[OLD_ARRAY_COLOR];
  829. new_array[Mesh::ARRAY_TEX_UV] = p_old[OLD_ARRAY_TEX_UV];
  830. new_array[Mesh::ARRAY_TEX_UV2] = p_old[OLD_ARRAY_TEX_UV2];
  831. new_array[Mesh::ARRAY_BONES] = p_old[OLD_ARRAY_BONES];
  832. new_array[Mesh::ARRAY_WEIGHTS] = p_old[OLD_ARRAY_WEIGHTS];
  833. new_array[Mesh::ARRAY_INDEX] = p_old[OLD_ARRAY_INDEX];
  834. return new_array;
  835. }
  836. static Mesh::PrimitiveType _old_primitives[7] = {
  837. Mesh::PRIMITIVE_POINTS,
  838. Mesh::PRIMITIVE_LINES,
  839. Mesh::PRIMITIVE_LINE_STRIP,
  840. Mesh::PRIMITIVE_LINES,
  841. Mesh::PRIMITIVE_TRIANGLES,
  842. Mesh::PRIMITIVE_TRIANGLE_STRIP,
  843. Mesh::PRIMITIVE_TRIANGLE_STRIP
  844. };
  845. #endif // DISABLE_DEPRECATED
  846. void _fix_array_compatibility(const Vector<uint8_t> &p_src, uint64_t p_old_format, uint64_t p_new_format, uint32_t p_elements, Vector<uint8_t> &vertex_data, Vector<uint8_t> &attribute_data, Vector<uint8_t> &skin_data) {
  847. uint32_t dst_vertex_stride;
  848. uint32_t dst_normal_tangent_stride;
  849. uint32_t dst_attribute_stride;
  850. uint32_t dst_skin_stride;
  851. uint32_t dst_offsets[Mesh::ARRAY_MAX];
  852. RenderingServer::get_singleton()->mesh_surface_make_offsets_from_format(p_new_format & (~RS::ARRAY_FORMAT_INDEX), p_elements, 0, dst_offsets, dst_vertex_stride, dst_normal_tangent_stride, dst_attribute_stride, dst_skin_stride);
  853. vertex_data.resize((dst_vertex_stride + dst_normal_tangent_stride) * p_elements);
  854. attribute_data.resize(dst_attribute_stride * p_elements);
  855. skin_data.resize(dst_skin_stride * p_elements);
  856. uint8_t *dst_vertex_ptr = vertex_data.ptrw();
  857. uint8_t *dst_attribute_ptr = attribute_data.ptrw();
  858. uint8_t *dst_skin_ptr = skin_data.ptrw();
  859. const uint8_t *src_vertex_ptr = p_src.ptr();
  860. uint32_t src_vertex_stride = p_src.size() / p_elements;
  861. uint32_t src_offset = 0;
  862. for (uint32_t j = 0; j < OLD_ARRAY_INDEX; j++) {
  863. if (!(p_old_format & (1ULL << j))) {
  864. continue;
  865. }
  866. switch (j) {
  867. case OLD_ARRAY_VERTEX: {
  868. if (p_old_format & OLD_ARRAY_FLAG_USE_2D_VERTICES) {
  869. if (p_old_format & OLD_ARRAY_COMPRESS_VERTEX) {
  870. for (uint32_t i = 0; i < p_elements; i++) {
  871. const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride];
  872. float *dst = (float *)&dst_vertex_ptr[i * dst_vertex_stride];
  873. dst[0] = Math::half_to_float(src[0]);
  874. dst[1] = Math::half_to_float(src[1]);
  875. }
  876. src_offset += sizeof(uint16_t) * 2;
  877. } else {
  878. for (uint32_t i = 0; i < p_elements; i++) {
  879. const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride];
  880. float *dst = (float *)&dst_vertex_ptr[i * dst_vertex_stride];
  881. dst[0] = src[0];
  882. dst[1] = src[1];
  883. }
  884. src_offset += sizeof(float) * 2;
  885. }
  886. } else {
  887. if (p_old_format & OLD_ARRAY_COMPRESS_VERTEX) {
  888. for (uint32_t i = 0; i < p_elements; i++) {
  889. const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride];
  890. float *dst = (float *)&dst_vertex_ptr[i * dst_vertex_stride];
  891. dst[0] = Math::half_to_float(src[0]);
  892. dst[1] = Math::half_to_float(src[1]);
  893. dst[2] = Math::half_to_float(src[2]);
  894. }
  895. src_offset += sizeof(uint16_t) * 4; //+pad
  896. } else {
  897. for (uint32_t i = 0; i < p_elements; i++) {
  898. const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride];
  899. float *dst = (float *)&dst_vertex_ptr[i * dst_vertex_stride];
  900. dst[0] = src[0];
  901. dst[1] = src[1];
  902. dst[2] = src[2];
  903. }
  904. src_offset += sizeof(float) * 3;
  905. }
  906. }
  907. } break;
  908. case OLD_ARRAY_NORMAL: {
  909. if (p_old_format & OLD_ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) {
  910. if ((p_old_format & OLD_ARRAY_COMPRESS_NORMAL) && (p_old_format & OLD_ARRAY_FORMAT_TANGENT) && (p_old_format & OLD_ARRAY_COMPRESS_TANGENT)) {
  911. for (uint32_t i = 0; i < p_elements; i++) {
  912. const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  913. int16_t *dst = (int16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
  914. dst[0] = (int16_t)CLAMP(src[0] / 127.0f * 32767, -32768, 32767);
  915. dst[1] = (int16_t)CLAMP(src[1] / 127.0f * 32767, -32768, 32767);
  916. }
  917. src_offset += sizeof(int8_t) * 2;
  918. } else {
  919. for (uint32_t i = 0; i < p_elements; i++) {
  920. const int16_t *src = (const int16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  921. int16_t *dst = (int16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
  922. dst[0] = src[0];
  923. dst[1] = src[1];
  924. }
  925. src_offset += sizeof(int16_t) * 2;
  926. }
  927. } else { // No Octahedral compression
  928. if (p_old_format & OLD_ARRAY_COMPRESS_NORMAL) {
  929. for (uint32_t i = 0; i < p_elements; i++) {
  930. const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  931. const Vector3 original_normal(src[0], src[1], src[2]);
  932. Vector2 res = original_normal.octahedron_encode();
  933. uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
  934. dst[0] = (uint16_t)CLAMP(res.x * 65535, 0, 65535);
  935. dst[1] = (uint16_t)CLAMP(res.y * 65535, 0, 65535);
  936. }
  937. src_offset += sizeof(uint8_t) * 4; // 1 byte padding
  938. } else {
  939. for (uint32_t i = 0; i < p_elements; i++) {
  940. const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  941. const Vector3 original_normal(src[0], src[1], src[2]);
  942. Vector2 res = original_normal.octahedron_encode();
  943. uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
  944. dst[0] = (uint16_t)CLAMP(res.x * 65535, 0, 65535);
  945. dst[1] = (uint16_t)CLAMP(res.y * 65535, 0, 65535);
  946. }
  947. src_offset += sizeof(float) * 3;
  948. }
  949. }
  950. } break;
  951. case OLD_ARRAY_TANGENT: {
  952. if (p_old_format & OLD_ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION) {
  953. if (p_old_format & OLD_ARRAY_COMPRESS_TANGENT) { // int8 SNORM -> uint16 UNORM
  954. for (uint32_t i = 0; i < p_elements; i++) {
  955. const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  956. uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_TANGENT]];
  957. dst[0] = (uint16_t)CLAMP((src[0] / 127.0f * .5f + .5f) * 65535, 0, 65535);
  958. dst[1] = (uint16_t)CLAMP((src[1] / 127.0f * .5f + .5f) * 65535, 0, 65535);
  959. }
  960. src_offset += sizeof(uint8_t) * 2;
  961. } else { // int16 SNORM -> uint16 UNORM
  962. for (uint32_t i = 0; i < p_elements; i++) {
  963. const int16_t *src = (const int16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  964. uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_TANGENT]];
  965. dst[0] = (uint16_t)CLAMP((src[0] / 32767.0f * .5f + .5f) * 65535, 0, 65535);
  966. dst[1] = (uint16_t)CLAMP((src[1] / 32767.0f * .5f + .5f) * 65535, 0, 65535);
  967. }
  968. src_offset += sizeof(uint16_t) * 2;
  969. }
  970. } else { // No Octahedral compression
  971. if (p_old_format & OLD_ARRAY_COMPRESS_TANGENT) {
  972. for (uint32_t i = 0; i < p_elements; i++) {
  973. const int8_t *src = (const int8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  974. const Vector3 original_tangent(src[0], src[1], src[2]);
  975. Vector2 res = original_tangent.octahedron_tangent_encode(src[3]);
  976. uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
  977. dst[0] = (uint16_t)CLAMP(res.x * 65535, 0, 65535);
  978. dst[1] = (uint16_t)CLAMP(res.y * 65535, 0, 65535);
  979. if (dst[0] == 0 && dst[1] == 65535) {
  980. // (1, 1) and (0, 1) decode to the same value, but (0, 1) messes with our compression detection.
  981. // So we sanitize here.
  982. dst[0] = 65535;
  983. }
  984. }
  985. src_offset += sizeof(uint8_t) * 4;
  986. } else {
  987. for (uint32_t i = 0; i < p_elements; i++) {
  988. const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  989. const Vector3 original_tangent(src[0], src[1], src[2]);
  990. Vector2 res = original_tangent.octahedron_tangent_encode(src[3]);
  991. uint16_t *dst = (uint16_t *)&dst_vertex_ptr[i * dst_normal_tangent_stride + dst_offsets[Mesh::ARRAY_NORMAL]];
  992. dst[0] = (uint16_t)CLAMP(res.x * 65535, 0, 65535);
  993. dst[1] = (uint16_t)CLAMP(res.y * 65535, 0, 65535);
  994. if (dst[0] == 0 && dst[1] == 65535) {
  995. // (1, 1) and (0, 1) decode to the same value, but (0, 1) messes with our compression detection.
  996. // So we sanitize here.
  997. dst[0] = 65535;
  998. }
  999. }
  1000. src_offset += sizeof(float) * 4;
  1001. }
  1002. }
  1003. } break;
  1004. case OLD_ARRAY_COLOR: {
  1005. if (p_old_format & OLD_ARRAY_COMPRESS_COLOR) {
  1006. for (uint32_t i = 0; i < p_elements; i++) {
  1007. const uint32_t *src = (const uint32_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1008. uint32_t *dst = (uint32_t *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_COLOR]];
  1009. *dst = *src;
  1010. }
  1011. src_offset += sizeof(uint32_t);
  1012. } else {
  1013. for (uint32_t i = 0; i < p_elements; i++) {
  1014. const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1015. uint8_t *dst = (uint8_t *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_COLOR]];
  1016. dst[0] = uint8_t(CLAMP(src[0] * 255.0, 0.0, 255.0));
  1017. dst[1] = uint8_t(CLAMP(src[1] * 255.0, 0.0, 255.0));
  1018. dst[2] = uint8_t(CLAMP(src[2] * 255.0, 0.0, 255.0));
  1019. dst[3] = uint8_t(CLAMP(src[3] * 255.0, 0.0, 255.0));
  1020. }
  1021. src_offset += sizeof(float) * 4;
  1022. }
  1023. } break;
  1024. case OLD_ARRAY_TEX_UV: {
  1025. if (p_old_format & OLD_ARRAY_COMPRESS_TEX_UV) {
  1026. for (uint32_t i = 0; i < p_elements; i++) {
  1027. const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1028. float *dst = (float *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_TEX_UV]];
  1029. dst[0] = Math::half_to_float(src[0]);
  1030. dst[1] = Math::half_to_float(src[1]);
  1031. }
  1032. src_offset += sizeof(uint16_t) * 2;
  1033. } else {
  1034. for (uint32_t i = 0; i < p_elements; i++) {
  1035. const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1036. float *dst = (float *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_TEX_UV]];
  1037. dst[0] = src[0];
  1038. dst[1] = src[1];
  1039. }
  1040. src_offset += sizeof(float) * 2;
  1041. }
  1042. } break;
  1043. case OLD_ARRAY_TEX_UV2: {
  1044. if (p_old_format & OLD_ARRAY_COMPRESS_TEX_UV2) {
  1045. for (uint32_t i = 0; i < p_elements; i++) {
  1046. const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1047. float *dst = (float *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_TEX_UV2]];
  1048. dst[0] = Math::half_to_float(src[0]);
  1049. dst[1] = Math::half_to_float(src[1]);
  1050. }
  1051. src_offset += sizeof(uint16_t) * 2;
  1052. } else {
  1053. for (uint32_t i = 0; i < p_elements; i++) {
  1054. const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1055. float *dst = (float *)&dst_attribute_ptr[i * dst_attribute_stride + dst_offsets[Mesh::ARRAY_TEX_UV2]];
  1056. dst[0] = src[0];
  1057. dst[1] = src[1];
  1058. }
  1059. src_offset += sizeof(float) * 2;
  1060. }
  1061. } break;
  1062. case OLD_ARRAY_BONES: {
  1063. if (p_old_format & OLD_ARRAY_FLAG_USE_16_BIT_BONES) {
  1064. for (uint32_t i = 0; i < p_elements; i++) {
  1065. const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1066. uint16_t *dst = (uint16_t *)&dst_skin_ptr[i * dst_skin_stride + dst_offsets[Mesh::ARRAY_BONES]];
  1067. dst[0] = src[0];
  1068. dst[1] = src[1];
  1069. dst[2] = src[2];
  1070. dst[3] = src[3];
  1071. }
  1072. src_offset += sizeof(uint16_t) * 4;
  1073. } else {
  1074. for (uint32_t i = 0; i < p_elements; i++) {
  1075. const uint8_t *src = (const uint8_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1076. uint16_t *dst = (uint16_t *)&dst_skin_ptr[i * dst_skin_stride + dst_offsets[Mesh::ARRAY_BONES]];
  1077. dst[0] = src[0];
  1078. dst[1] = src[1];
  1079. dst[2] = src[2];
  1080. dst[3] = src[3];
  1081. }
  1082. src_offset += sizeof(uint8_t) * 4;
  1083. }
  1084. } break;
  1085. case OLD_ARRAY_WEIGHTS: {
  1086. if (p_old_format & OLD_ARRAY_COMPRESS_WEIGHTS) {
  1087. for (uint32_t i = 0; i < p_elements; i++) {
  1088. const uint16_t *src = (const uint16_t *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1089. uint16_t *dst = (uint16_t *)&dst_skin_ptr[i * dst_skin_stride + dst_offsets[Mesh::ARRAY_WEIGHTS]];
  1090. dst[0] = src[0];
  1091. dst[1] = src[1];
  1092. dst[2] = src[2];
  1093. dst[3] = src[3];
  1094. }
  1095. src_offset += sizeof(uint16_t) * 4;
  1096. } else {
  1097. for (uint32_t i = 0; i < p_elements; i++) {
  1098. const float *src = (const float *)&src_vertex_ptr[i * src_vertex_stride + src_offset];
  1099. uint16_t *dst = (uint16_t *)&dst_skin_ptr[i * dst_skin_stride + dst_offsets[Mesh::ARRAY_WEIGHTS]];
  1100. dst[0] = uint16_t(CLAMP(src[0] * 65535.0, 0, 65535.0));
  1101. dst[1] = uint16_t(CLAMP(src[1] * 65535.0, 0, 65535.0));
  1102. dst[2] = uint16_t(CLAMP(src[2] * 65535.0, 0, 65535.0));
  1103. dst[3] = uint16_t(CLAMP(src[3] * 65535.0, 0, 65535.0));
  1104. }
  1105. src_offset += sizeof(float) * 4;
  1106. }
  1107. } break;
  1108. default: {
  1109. }
  1110. }
  1111. }
  1112. }
  1113. bool ArrayMesh::_set(const StringName &p_name, const Variant &p_value) {
  1114. String sname = p_name;
  1115. if (sname.begins_with("surface_")) {
  1116. int sl = sname.find_char('/');
  1117. if (sl == -1) {
  1118. return false;
  1119. }
  1120. int idx = sname.substr(8, sl - 8).to_int();
  1121. String what = sname.get_slicec('/', 1);
  1122. if (what == "material") {
  1123. surface_set_material(idx, p_value);
  1124. } else if (what == "name") {
  1125. surface_set_name(idx, p_value);
  1126. }
  1127. return true;
  1128. }
  1129. #ifndef DISABLE_DEPRECATED
  1130. // Kept for compatibility from 3.x to 4.0.
  1131. if (!sname.begins_with("surfaces")) {
  1132. return false;
  1133. }
  1134. WARN_DEPRECATED_MSG(vformat(
  1135. "Mesh uses old surface format, which is deprecated (and loads slower). Consider re-importing or re-saving the scene. Path: \"%s\"",
  1136. get_path()));
  1137. int idx = sname.get_slicec('/', 1).to_int();
  1138. String what = sname.get_slicec('/', 2);
  1139. if (idx == surfaces.size()) {
  1140. //create
  1141. Dictionary d = p_value;
  1142. ERR_FAIL_COND_V(!d.has("primitive"), false);
  1143. if (d.has("arrays")) {
  1144. //oldest format (2.x)
  1145. ERR_FAIL_COND_V(!d.has("morph_arrays"), false);
  1146. Array morph_arrays = d["morph_arrays"];
  1147. for (int i = 0; i < morph_arrays.size(); i++) {
  1148. morph_arrays[i] = _convert_old_array(morph_arrays[i]);
  1149. }
  1150. add_surface_from_arrays(_old_primitives[int(d["primitive"])], _convert_old_array(d["arrays"]), morph_arrays);
  1151. } else if (d.has("array_data")) {
  1152. //print_line("array data (old style");
  1153. //older format (3.x)
  1154. Vector<uint8_t> array_data = d["array_data"];
  1155. Vector<uint8_t> array_index_data;
  1156. if (d.has("array_index_data")) {
  1157. array_index_data = d["array_index_data"];
  1158. }
  1159. ERR_FAIL_COND_V(!d.has("format"), false);
  1160. uint64_t old_format = d["format"];
  1161. uint32_t primitive = d["primitive"];
  1162. primitive = _old_primitives[primitive]; //compatibility
  1163. ERR_FAIL_COND_V(!d.has("vertex_count"), false);
  1164. int vertex_count = d["vertex_count"];
  1165. uint64_t new_format = ARRAY_FORMAT_VERTEX | ARRAY_FLAG_FORMAT_CURRENT_VERSION;
  1166. if (old_format & OLD_ARRAY_FORMAT_NORMAL) {
  1167. new_format |= ARRAY_FORMAT_NORMAL;
  1168. }
  1169. if (old_format & OLD_ARRAY_FORMAT_TANGENT) {
  1170. new_format |= ARRAY_FORMAT_TANGENT;
  1171. }
  1172. if (old_format & OLD_ARRAY_FORMAT_COLOR) {
  1173. new_format |= ARRAY_FORMAT_COLOR;
  1174. }
  1175. if (old_format & OLD_ARRAY_FORMAT_TEX_UV) {
  1176. new_format |= ARRAY_FORMAT_TEX_UV;
  1177. }
  1178. if (old_format & OLD_ARRAY_FORMAT_TEX_UV2) {
  1179. new_format |= ARRAY_FORMAT_TEX_UV2;
  1180. }
  1181. if (old_format & OLD_ARRAY_FORMAT_BONES) {
  1182. new_format |= ARRAY_FORMAT_BONES;
  1183. }
  1184. if (old_format & OLD_ARRAY_FORMAT_WEIGHTS) {
  1185. new_format |= ARRAY_FORMAT_WEIGHTS;
  1186. }
  1187. if (old_format & OLD_ARRAY_FORMAT_INDEX) {
  1188. new_format |= ARRAY_FORMAT_INDEX;
  1189. }
  1190. if (old_format & OLD_ARRAY_FLAG_USE_2D_VERTICES) {
  1191. new_format |= OLD_ARRAY_FLAG_USE_2D_VERTICES;
  1192. }
  1193. Vector<uint8_t> vertex_array;
  1194. Vector<uint8_t> attribute_array;
  1195. Vector<uint8_t> skin_array;
  1196. _fix_array_compatibility(array_data, old_format, new_format, vertex_count, vertex_array, attribute_array, skin_array);
  1197. int index_count = 0;
  1198. if (d.has("index_count")) {
  1199. index_count = d["index_count"];
  1200. }
  1201. Vector<uint8_t> blend_shapes_new;
  1202. if (d.has("blend_shape_data")) {
  1203. Array blend_shape_data = d["blend_shape_data"];
  1204. for (int i = 0; i < blend_shape_data.size(); i++) {
  1205. Vector<uint8_t> blend_vertex_array;
  1206. Vector<uint8_t> blend_attribute_array;
  1207. Vector<uint8_t> blend_skin_array;
  1208. Vector<uint8_t> shape = blend_shape_data[i];
  1209. _fix_array_compatibility(shape, old_format, new_format, vertex_count, blend_vertex_array, blend_attribute_array, blend_skin_array);
  1210. blend_shapes_new.append_array(blend_vertex_array);
  1211. }
  1212. }
  1213. //clear unused flags
  1214. print_verbose("Mesh format pre-conversion: " + itos(old_format));
  1215. print_verbose("Mesh format post-conversion: " + itos(new_format));
  1216. ERR_FAIL_COND_V(!d.has("aabb"), false);
  1217. AABB aabb_new = d["aabb"];
  1218. Vector<AABB> bone_aabb;
  1219. if (d.has("skeleton_aabb")) {
  1220. Array baabb = d["skeleton_aabb"];
  1221. bone_aabb.resize(baabb.size());
  1222. for (int i = 0; i < baabb.size(); i++) {
  1223. bone_aabb.write[i] = baabb[i];
  1224. }
  1225. }
  1226. add_surface(new_format, PrimitiveType(primitive), vertex_array, attribute_array, skin_array, vertex_count, array_index_data, index_count, aabb_new, blend_shapes_new, bone_aabb);
  1227. } else {
  1228. ERR_FAIL_V(false);
  1229. }
  1230. if (d.has("material")) {
  1231. surface_set_material(idx, d["material"]);
  1232. }
  1233. if (d.has("name")) {
  1234. surface_set_name(idx, d["name"]);
  1235. }
  1236. return true;
  1237. }
  1238. #endif // DISABLE_DEPRECATED
  1239. return false;
  1240. }
  1241. void ArrayMesh::_set_blend_shape_names(const PackedStringArray &p_names) {
  1242. ERR_FAIL_COND(surfaces.size() > 0);
  1243. blend_shapes.resize(p_names.size());
  1244. for (int i = 0; i < p_names.size(); i++) {
  1245. blend_shapes.write[i] = p_names[i];
  1246. }
  1247. if (mesh.is_valid()) {
  1248. RS::get_singleton()->mesh_set_blend_shape_count(mesh, blend_shapes.size());
  1249. }
  1250. }
  1251. PackedStringArray ArrayMesh::_get_blend_shape_names() const {
  1252. PackedStringArray sarr;
  1253. sarr.resize(blend_shapes.size());
  1254. for (int i = 0; i < blend_shapes.size(); i++) {
  1255. sarr.write[i] = blend_shapes[i];
  1256. }
  1257. return sarr;
  1258. }
  1259. Array ArrayMesh::_get_surfaces() const {
  1260. if (mesh.is_null()) {
  1261. return Array();
  1262. }
  1263. Array ret;
  1264. for (int i = 0; i < surfaces.size(); i++) {
  1265. RenderingServer::SurfaceData surface = RS::get_singleton()->mesh_get_surface(mesh, i);
  1266. Dictionary data;
  1267. data["format"] = surface.format;
  1268. data["primitive"] = surface.primitive;
  1269. data["vertex_data"] = surface.vertex_data;
  1270. data["vertex_count"] = surface.vertex_count;
  1271. if (surface.skin_data.size()) {
  1272. data["skin_data"] = surface.skin_data;
  1273. }
  1274. if (surface.attribute_data.size()) {
  1275. data["attribute_data"] = surface.attribute_data;
  1276. }
  1277. data["aabb"] = surface.aabb;
  1278. data["uv_scale"] = surface.uv_scale;
  1279. if (surface.index_count) {
  1280. data["index_data"] = surface.index_data;
  1281. data["index_count"] = surface.index_count;
  1282. };
  1283. Array lods;
  1284. for (int j = 0; j < surface.lods.size(); j++) {
  1285. lods.push_back(surface.lods[j].edge_length);
  1286. lods.push_back(surface.lods[j].index_data);
  1287. }
  1288. if (lods.size()) {
  1289. data["lods"] = lods;
  1290. }
  1291. Array bone_aabbs;
  1292. for (int j = 0; j < surface.bone_aabbs.size(); j++) {
  1293. bone_aabbs.push_back(surface.bone_aabbs[j]);
  1294. }
  1295. if (bone_aabbs.size()) {
  1296. data["bone_aabbs"] = bone_aabbs;
  1297. }
  1298. if (surface.blend_shape_data.size()) {
  1299. data["blend_shapes"] = surface.blend_shape_data;
  1300. }
  1301. if (surfaces[i].material.is_valid()) {
  1302. data["material"] = surfaces[i].material;
  1303. }
  1304. if (!surfaces[i].name.is_empty()) {
  1305. data["name"] = surfaces[i].name;
  1306. }
  1307. if (surfaces[i].is_2d) {
  1308. data["2d"] = true;
  1309. }
  1310. ret.push_back(data);
  1311. }
  1312. return ret;
  1313. }
  1314. void ArrayMesh::_create_if_empty() const {
  1315. if (!mesh.is_valid()) {
  1316. mesh = RS::get_singleton()->mesh_create();
  1317. RS::get_singleton()->mesh_set_blend_shape_mode(mesh, (RS::BlendShapeMode)blend_shape_mode);
  1318. RS::get_singleton()->mesh_set_blend_shape_count(mesh, blend_shapes.size());
  1319. RS::get_singleton()->mesh_set_path(mesh, get_path());
  1320. }
  1321. }
  1322. void ArrayMesh::_set_surfaces(const Array &p_surfaces) {
  1323. Vector<RS::SurfaceData> surface_data;
  1324. Vector<Ref<Material>> surface_materials;
  1325. Vector<String> surface_names;
  1326. Vector<bool> surface_2d;
  1327. for (int i = 0; i < p_surfaces.size(); i++) {
  1328. RS::SurfaceData surface;
  1329. Dictionary d = p_surfaces[i];
  1330. ERR_FAIL_COND(!d.has("format"));
  1331. ERR_FAIL_COND(!d.has("primitive"));
  1332. ERR_FAIL_COND(!d.has("vertex_data"));
  1333. ERR_FAIL_COND(!d.has("vertex_count"));
  1334. ERR_FAIL_COND(!d.has("aabb"));
  1335. surface.format = d["format"];
  1336. surface.primitive = RS::PrimitiveType(int(d["primitive"]));
  1337. surface.vertex_data = d["vertex_data"];
  1338. surface.vertex_count = d["vertex_count"];
  1339. if (d.has("attribute_data")) {
  1340. surface.attribute_data = d["attribute_data"];
  1341. }
  1342. if (d.has("skin_data")) {
  1343. surface.skin_data = d["skin_data"];
  1344. }
  1345. surface.aabb = d["aabb"];
  1346. if (d.has("uv_scale")) {
  1347. surface.uv_scale = d["uv_scale"];
  1348. }
  1349. if (d.has("index_data")) {
  1350. ERR_FAIL_COND(!d.has("index_count"));
  1351. surface.index_data = d["index_data"];
  1352. surface.index_count = d["index_count"];
  1353. }
  1354. if (d.has("lods")) {
  1355. Array lods = d["lods"];
  1356. ERR_FAIL_COND(lods.size() & 1); //must be even
  1357. for (int j = 0; j < lods.size(); j += 2) {
  1358. RS::SurfaceData::LOD lod;
  1359. lod.edge_length = lods[j + 0];
  1360. lod.index_data = lods[j + 1];
  1361. surface.lods.push_back(lod);
  1362. }
  1363. }
  1364. if (d.has("bone_aabbs")) {
  1365. Array bone_aabbs = d["bone_aabbs"];
  1366. for (int j = 0; j < bone_aabbs.size(); j++) {
  1367. surface.bone_aabbs.push_back(bone_aabbs[j]);
  1368. }
  1369. }
  1370. if (d.has("blend_shapes")) {
  1371. surface.blend_shape_data = d["blend_shapes"];
  1372. }
  1373. Ref<Material> material;
  1374. if (d.has("material")) {
  1375. material = d["material"];
  1376. if (material.is_valid()) {
  1377. surface.material = material->get_rid();
  1378. }
  1379. }
  1380. String surf_name;
  1381. if (d.has("name")) {
  1382. surf_name = d["name"];
  1383. }
  1384. bool _2d = false;
  1385. if (d.has("2d")) {
  1386. _2d = d["2d"];
  1387. }
  1388. #ifndef DISABLE_DEPRECATED
  1389. uint64_t surface_version = surface.format & (ARRAY_FLAG_FORMAT_VERSION_MASK << ARRAY_FLAG_FORMAT_VERSION_SHIFT);
  1390. if (surface_version != ARRAY_FLAG_FORMAT_CURRENT_VERSION) {
  1391. RS::get_singleton()->fix_surface_compatibility(surface, get_path());
  1392. surface_version = surface.format & (RS::ARRAY_FLAG_FORMAT_VERSION_MASK << RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT);
  1393. ERR_FAIL_COND_MSG(surface_version != RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION,
  1394. vformat("Surface version provided (%d) does not match current version (%d).",
  1395. (surface_version >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK,
  1396. (RS::ARRAY_FLAG_FORMAT_CURRENT_VERSION >> RS::ARRAY_FLAG_FORMAT_VERSION_SHIFT) & RS::ARRAY_FLAG_FORMAT_VERSION_MASK));
  1397. }
  1398. #endif
  1399. surface_data.push_back(surface);
  1400. surface_materials.push_back(material);
  1401. surface_names.push_back(surf_name);
  1402. surface_2d.push_back(_2d);
  1403. }
  1404. if (mesh.is_valid()) {
  1405. //if mesh exists, it needs to be updated
  1406. RS::get_singleton()->mesh_clear(mesh);
  1407. for (int i = 0; i < surface_data.size(); i++) {
  1408. RS::get_singleton()->mesh_add_surface(mesh, surface_data[i]);
  1409. }
  1410. } else {
  1411. // if mesh does not exist (first time this is loaded, most likely),
  1412. // we can create it with a single call, which is a lot more efficient and thread friendly
  1413. mesh = RS::get_singleton()->mesh_create_from_surfaces(surface_data, blend_shapes.size());
  1414. RS::get_singleton()->mesh_set_blend_shape_mode(mesh, (RS::BlendShapeMode)blend_shape_mode);
  1415. RS::get_singleton()->mesh_set_path(mesh, get_path());
  1416. }
  1417. surfaces.clear();
  1418. clear_cache();
  1419. aabb = AABB();
  1420. for (int i = 0; i < surface_data.size(); i++) {
  1421. Surface s;
  1422. s.aabb = surface_data[i].aabb;
  1423. if (i == 0) {
  1424. aabb = s.aabb;
  1425. } else {
  1426. aabb.merge_with(s.aabb);
  1427. }
  1428. s.material = surface_materials[i];
  1429. s.is_2d = surface_2d[i];
  1430. s.name = surface_names[i];
  1431. s.format = surface_data[i].format;
  1432. s.primitive = PrimitiveType(surface_data[i].primitive);
  1433. s.array_length = surface_data[i].vertex_count;
  1434. s.index_array_length = surface_data[i].index_count;
  1435. surfaces.push_back(s);
  1436. }
  1437. }
  1438. bool ArrayMesh::_get(const StringName &p_name, Variant &r_ret) const {
  1439. if (_is_generated()) {
  1440. return false;
  1441. }
  1442. String sname = p_name;
  1443. if (sname.begins_with("surface_")) {
  1444. int sl = sname.find_char('/');
  1445. if (sl == -1) {
  1446. return false;
  1447. }
  1448. int idx = sname.substr(8, sl - 8).to_int();
  1449. String what = sname.get_slicec('/', 1);
  1450. if (what == "material") {
  1451. r_ret = surface_get_material(idx);
  1452. } else if (what == "name") {
  1453. r_ret = surface_get_name(idx);
  1454. }
  1455. return true;
  1456. }
  1457. return false;
  1458. }
  1459. void ArrayMesh::reset_state() {
  1460. clear_surfaces();
  1461. clear_blend_shapes();
  1462. aabb = AABB();
  1463. blend_shape_mode = BLEND_SHAPE_MODE_RELATIVE;
  1464. custom_aabb = AABB();
  1465. }
  1466. void ArrayMesh::_get_property_list(List<PropertyInfo> *p_list) const {
  1467. if (_is_generated()) {
  1468. return;
  1469. }
  1470. for (int i = 0; i < surfaces.size(); i++) {
  1471. p_list->push_back(PropertyInfo(Variant::STRING, "surface_" + itos(i) + "/name", PROPERTY_HINT_NO_NODEPATH, "", PROPERTY_USAGE_EDITOR));
  1472. if (surfaces[i].is_2d) {
  1473. p_list->push_back(PropertyInfo(Variant::OBJECT, "surface_" + itos(i) + "/material", PROPERTY_HINT_RESOURCE_TYPE, "CanvasItemMaterial,ShaderMaterial", PROPERTY_USAGE_EDITOR));
  1474. } else {
  1475. p_list->push_back(PropertyInfo(Variant::OBJECT, "surface_" + itos(i) + "/material", PROPERTY_HINT_RESOURCE_TYPE, "BaseMaterial3D,ShaderMaterial", PROPERTY_USAGE_EDITOR));
  1476. }
  1477. }
  1478. }
  1479. void ArrayMesh::_recompute_aabb() {
  1480. // regenerate AABB
  1481. aabb = AABB();
  1482. for (int i = 0; i < surfaces.size(); i++) {
  1483. if (i == 0) {
  1484. aabb = surfaces[i].aabb;
  1485. } else {
  1486. aabb.merge_with(surfaces[i].aabb);
  1487. }
  1488. }
  1489. }
  1490. // TODO: Need to add binding to add_surface using future MeshSurfaceData object.
  1491. void ArrayMesh::add_surface(BitField<ArrayFormat> p_format, PrimitiveType p_primitive, const Vector<uint8_t> &p_array, const Vector<uint8_t> &p_attribute_array, const Vector<uint8_t> &p_skin_array, int p_vertex_count, const Vector<uint8_t> &p_index_array, int p_index_count, const AABB &p_aabb, const Vector<uint8_t> &p_blend_shape_data, const Vector<AABB> &p_bone_aabbs, const Vector<RS::SurfaceData::LOD> &p_lods, const Vector4 p_uv_scale) {
  1492. ERR_FAIL_COND(surfaces.size() == RS::MAX_MESH_SURFACES);
  1493. _create_if_empty();
  1494. Surface s;
  1495. s.aabb = p_aabb;
  1496. s.is_2d = p_format & ARRAY_FLAG_USE_2D_VERTICES;
  1497. s.primitive = p_primitive;
  1498. s.array_length = p_vertex_count;
  1499. s.index_array_length = p_index_count;
  1500. s.format = p_format;
  1501. surfaces.push_back(s);
  1502. _recompute_aabb();
  1503. RS::SurfaceData sd;
  1504. sd.format = p_format;
  1505. sd.primitive = RS::PrimitiveType(p_primitive);
  1506. sd.aabb = p_aabb;
  1507. sd.vertex_count = p_vertex_count;
  1508. sd.vertex_data = p_array;
  1509. sd.attribute_data = p_attribute_array;
  1510. sd.skin_data = p_skin_array;
  1511. sd.index_count = p_index_count;
  1512. sd.index_data = p_index_array;
  1513. sd.blend_shape_data = p_blend_shape_data;
  1514. sd.bone_aabbs = p_bone_aabbs;
  1515. sd.lods = p_lods;
  1516. sd.uv_scale = p_uv_scale;
  1517. RenderingServer::get_singleton()->mesh_add_surface(mesh, sd);
  1518. clear_cache();
  1519. notify_property_list_changed();
  1520. emit_changed();
  1521. }
  1522. void ArrayMesh::add_surface_from_arrays(PrimitiveType p_primitive, const Array &p_arrays, const TypedArray<Array> &p_blend_shapes, const Dictionary &p_lods, BitField<ArrayFormat> p_flags) {
  1523. ERR_FAIL_COND(p_blend_shapes.size() != blend_shapes.size());
  1524. ERR_FAIL_COND(p_arrays.size() != ARRAY_MAX);
  1525. RS::SurfaceData surface;
  1526. Error err = RS::get_singleton()->mesh_create_surface_data_from_arrays(&surface, (RenderingServer::PrimitiveType)p_primitive, p_arrays, p_blend_shapes, p_lods, p_flags);
  1527. ERR_FAIL_COND(err != OK);
  1528. /* Debug code.
  1529. print_line("format: " + itos(surface.format));
  1530. print_line("aabb: " + surface.aabb);
  1531. print_line("array size: " + itos(surface.vertex_data.size()));
  1532. print_line("vertex count: " + itos(surface.vertex_count));
  1533. print_line("index size: " + itos(surface.index_data.size()));
  1534. print_line("index count: " + itos(surface.index_count));
  1535. print_line("primitive: " + itos(surface.primitive));
  1536. */
  1537. add_surface(surface.format, PrimitiveType(surface.primitive), surface.vertex_data, surface.attribute_data, surface.skin_data, surface.vertex_count, surface.index_data, surface.index_count, surface.aabb, surface.blend_shape_data, surface.bone_aabbs, surface.lods, surface.uv_scale);
  1538. }
  1539. Array ArrayMesh::surface_get_arrays(int p_surface) const {
  1540. ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
  1541. return RenderingServer::get_singleton()->mesh_surface_get_arrays(mesh, p_surface);
  1542. }
  1543. TypedArray<Array> ArrayMesh::surface_get_blend_shape_arrays(int p_surface) const {
  1544. ERR_FAIL_INDEX_V(p_surface, surfaces.size(), TypedArray<Array>());
  1545. return RenderingServer::get_singleton()->mesh_surface_get_blend_shape_arrays(mesh, p_surface);
  1546. }
  1547. Dictionary ArrayMesh::surface_get_lods(int p_surface) const {
  1548. ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Dictionary());
  1549. return RenderingServer::get_singleton()->mesh_surface_get_lods(mesh, p_surface);
  1550. }
  1551. int ArrayMesh::get_surface_count() const {
  1552. return surfaces.size();
  1553. }
  1554. void ArrayMesh::add_blend_shape(const StringName &p_name) {
  1555. ERR_FAIL_COND_MSG(surfaces.size(), "Can't add a shape key count if surfaces are already created.");
  1556. StringName shape_name = p_name;
  1557. if (blend_shapes.has(shape_name)) {
  1558. int count = 2;
  1559. do {
  1560. shape_name = String(p_name) + " " + itos(count);
  1561. count++;
  1562. } while (blend_shapes.has(shape_name));
  1563. }
  1564. blend_shapes.push_back(shape_name);
  1565. if (mesh.is_valid()) {
  1566. RS::get_singleton()->mesh_set_blend_shape_count(mesh, blend_shapes.size());
  1567. }
  1568. }
  1569. int ArrayMesh::get_blend_shape_count() const {
  1570. return blend_shapes.size();
  1571. }
  1572. StringName ArrayMesh::get_blend_shape_name(int p_index) const {
  1573. ERR_FAIL_INDEX_V(p_index, blend_shapes.size(), StringName());
  1574. return blend_shapes[p_index];
  1575. }
  1576. void ArrayMesh::set_blend_shape_name(int p_index, const StringName &p_name) {
  1577. ERR_FAIL_INDEX(p_index, blend_shapes.size());
  1578. StringName shape_name = p_name;
  1579. int found = blend_shapes.find(shape_name);
  1580. if (found != -1 && found != p_index) {
  1581. int count = 2;
  1582. do {
  1583. shape_name = String(p_name) + " " + itos(count);
  1584. count++;
  1585. } while (blend_shapes.has(shape_name));
  1586. }
  1587. blend_shapes.write[p_index] = shape_name;
  1588. }
  1589. void ArrayMesh::clear_blend_shapes() {
  1590. ERR_FAIL_COND_MSG(surfaces.size(), "Can't set shape key count if surfaces are already created.");
  1591. blend_shapes.clear();
  1592. if (mesh.is_valid()) {
  1593. RS::get_singleton()->mesh_set_blend_shape_count(mesh, 0);
  1594. }
  1595. }
  1596. void ArrayMesh::set_blend_shape_mode(BlendShapeMode p_mode) {
  1597. blend_shape_mode = p_mode;
  1598. if (mesh.is_valid()) {
  1599. RS::get_singleton()->mesh_set_blend_shape_mode(mesh, (RS::BlendShapeMode)p_mode);
  1600. }
  1601. }
  1602. ArrayMesh::BlendShapeMode ArrayMesh::get_blend_shape_mode() const {
  1603. return blend_shape_mode;
  1604. }
  1605. int ArrayMesh::surface_get_array_len(int p_idx) const {
  1606. ERR_FAIL_INDEX_V(p_idx, surfaces.size(), -1);
  1607. return surfaces[p_idx].array_length;
  1608. }
  1609. int ArrayMesh::surface_get_array_index_len(int p_idx) const {
  1610. ERR_FAIL_INDEX_V(p_idx, surfaces.size(), -1);
  1611. return surfaces[p_idx].index_array_length;
  1612. }
  1613. BitField<Mesh::ArrayFormat> ArrayMesh::surface_get_format(int p_idx) const {
  1614. ERR_FAIL_INDEX_V(p_idx, surfaces.size(), 0);
  1615. return surfaces[p_idx].format;
  1616. }
  1617. ArrayMesh::PrimitiveType ArrayMesh::surface_get_primitive_type(int p_idx) const {
  1618. ERR_FAIL_INDEX_V(p_idx, surfaces.size(), PRIMITIVE_LINES);
  1619. return surfaces[p_idx].primitive;
  1620. }
  1621. void ArrayMesh::surface_set_material(int p_idx, const Ref<Material> &p_material) {
  1622. ERR_FAIL_INDEX(p_idx, surfaces.size());
  1623. if (surfaces[p_idx].material == p_material) {
  1624. return;
  1625. }
  1626. surfaces.write[p_idx].material = p_material;
  1627. RenderingServer::get_singleton()->mesh_surface_set_material(mesh, p_idx, p_material.is_null() ? RID() : p_material->get_rid());
  1628. emit_changed();
  1629. }
  1630. int ArrayMesh::surface_find_by_name(const String &p_name) const {
  1631. for (int i = 0; i < surfaces.size(); i++) {
  1632. if (surfaces[i].name == p_name) {
  1633. return i;
  1634. }
  1635. }
  1636. return -1;
  1637. }
  1638. void ArrayMesh::surface_set_name(int p_idx, const String &p_name) {
  1639. ERR_FAIL_INDEX(p_idx, surfaces.size());
  1640. surfaces.write[p_idx].name = p_name;
  1641. emit_changed();
  1642. }
  1643. String ArrayMesh::surface_get_name(int p_idx) const {
  1644. ERR_FAIL_INDEX_V(p_idx, surfaces.size(), String());
  1645. return surfaces[p_idx].name;
  1646. }
  1647. void ArrayMesh::surface_update_vertex_region(int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  1648. ERR_FAIL_INDEX(p_surface, surfaces.size());
  1649. RS::get_singleton()->mesh_surface_update_vertex_region(mesh, p_surface, p_offset, p_data);
  1650. emit_changed();
  1651. }
  1652. void ArrayMesh::surface_update_attribute_region(int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  1653. ERR_FAIL_INDEX(p_surface, surfaces.size());
  1654. RS::get_singleton()->mesh_surface_update_attribute_region(mesh, p_surface, p_offset, p_data);
  1655. emit_changed();
  1656. }
  1657. void ArrayMesh::surface_update_skin_region(int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  1658. ERR_FAIL_INDEX(p_surface, surfaces.size());
  1659. RS::get_singleton()->mesh_surface_update_skin_region(mesh, p_surface, p_offset, p_data);
  1660. emit_changed();
  1661. }
  1662. void ArrayMesh::surface_set_custom_aabb(int p_idx, const AABB &p_aabb) {
  1663. ERR_FAIL_INDEX(p_idx, surfaces.size());
  1664. surfaces.write[p_idx].aabb = p_aabb;
  1665. // set custom aabb too?
  1666. emit_changed();
  1667. }
  1668. Ref<Material> ArrayMesh::surface_get_material(int p_idx) const {
  1669. ERR_FAIL_INDEX_V(p_idx, surfaces.size(), Ref<Material>());
  1670. return surfaces[p_idx].material;
  1671. }
  1672. RID ArrayMesh::get_rid() const {
  1673. _create_if_empty();
  1674. return mesh;
  1675. }
  1676. AABB ArrayMesh::get_aabb() const {
  1677. return aabb;
  1678. }
  1679. void ArrayMesh::clear_surfaces() {
  1680. if (!mesh.is_valid()) {
  1681. return;
  1682. }
  1683. RS::get_singleton()->mesh_clear(mesh);
  1684. surfaces.clear();
  1685. aabb = AABB();
  1686. }
  1687. void ArrayMesh::surface_remove(int p_surface) {
  1688. ERR_FAIL_INDEX(p_surface, surfaces.size());
  1689. RS::get_singleton()->mesh_surface_remove(mesh, p_surface);
  1690. surfaces.remove_at(p_surface);
  1691. clear_cache();
  1692. _recompute_aabb();
  1693. notify_property_list_changed();
  1694. emit_changed();
  1695. }
  1696. void ArrayMesh::set_custom_aabb(const AABB &p_custom) {
  1697. _create_if_empty();
  1698. custom_aabb = p_custom;
  1699. RS::get_singleton()->mesh_set_custom_aabb(mesh, custom_aabb);
  1700. emit_changed();
  1701. }
  1702. AABB ArrayMesh::get_custom_aabb() const {
  1703. return custom_aabb;
  1704. }
  1705. void ArrayMesh::regen_normal_maps() {
  1706. if (surfaces.is_empty()) {
  1707. return;
  1708. }
  1709. Vector<Ref<SurfaceTool>> surfs;
  1710. Vector<uint64_t> formats;
  1711. for (int i = 0; i < get_surface_count(); i++) {
  1712. Ref<SurfaceTool> st = memnew(SurfaceTool);
  1713. st->create_from(Ref<ArrayMesh>(this), i);
  1714. surfs.push_back(st);
  1715. formats.push_back(surface_get_format(i));
  1716. }
  1717. clear_surfaces();
  1718. for (int i = 0; i < surfs.size(); i++) {
  1719. surfs.write[i]->generate_tangents();
  1720. surfs.write[i]->commit(Ref<ArrayMesh>(this), formats[i]);
  1721. }
  1722. }
  1723. //dirty hack
  1724. bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, int p_index_count, const uint8_t *p_cache_data, bool *r_use_cache, uint8_t **r_mesh_cache, int *r_mesh_cache_size, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y) = nullptr;
  1725. struct ArrayMeshLightmapSurface {
  1726. Ref<Material> material;
  1727. LocalVector<SurfaceTool::Vertex> vertices;
  1728. Mesh::PrimitiveType primitive = Mesh::PrimitiveType::PRIMITIVE_MAX;
  1729. uint64_t format = 0;
  1730. };
  1731. Error ArrayMesh::lightmap_unwrap(const Transform3D &p_base_transform, float p_texel_size) {
  1732. Vector<uint8_t> null_cache;
  1733. return lightmap_unwrap_cached(p_base_transform, p_texel_size, null_cache, null_cache, false);
  1734. }
  1735. Error ArrayMesh::lightmap_unwrap_cached(const Transform3D &p_base_transform, float p_texel_size, const Vector<uint8_t> &p_src_cache, Vector<uint8_t> &r_dst_cache, bool p_generate_cache) {
  1736. ERR_FAIL_NULL_V(array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED);
  1737. ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes.");
  1738. ERR_FAIL_COND_V_MSG(p_texel_size <= 0.0f, ERR_PARAMETER_RANGE_ERROR, "Texel size must be greater than 0.");
  1739. LocalVector<float> vertices;
  1740. LocalVector<float> normals;
  1741. LocalVector<int> indices;
  1742. LocalVector<float> uv;
  1743. LocalVector<Pair<int, int>> uv_indices;
  1744. Vector<ArrayMeshLightmapSurface> lightmap_surfaces;
  1745. // Keep only the scale
  1746. Basis basis = p_base_transform.get_basis();
  1747. Vector3 scale = Vector3(basis.get_column(0).length(), basis.get_column(1).length(), basis.get_column(2).length());
  1748. Transform3D transform;
  1749. transform.scale(scale);
  1750. Basis normal_basis = transform.basis.inverse().transposed();
  1751. for (int i = 0; i < get_surface_count(); i++) {
  1752. ArrayMeshLightmapSurface s;
  1753. s.primitive = surface_get_primitive_type(i);
  1754. ERR_FAIL_COND_V_MSG(s.primitive != Mesh::PRIMITIVE_TRIANGLES, ERR_UNAVAILABLE, "Only triangles are supported for lightmap unwrap.");
  1755. s.format = surface_get_format(i);
  1756. ERR_FAIL_COND_V_MSG(!(s.format & ARRAY_FORMAT_NORMAL), ERR_UNAVAILABLE, "Normals are required for lightmap unwrap.");
  1757. Array arrays = surface_get_arrays(i);
  1758. s.material = surface_get_material(i);
  1759. SurfaceTool::create_vertex_array_from_arrays(arrays, s.vertices, &s.format);
  1760. PackedVector3Array rvertices = arrays[Mesh::ARRAY_VERTEX];
  1761. int vc = rvertices.size();
  1762. PackedVector3Array rnormals = arrays[Mesh::ARRAY_NORMAL];
  1763. int vertex_ofs = vertices.size() / 3;
  1764. vertices.resize((vertex_ofs + vc) * 3);
  1765. normals.resize((vertex_ofs + vc) * 3);
  1766. uv_indices.resize(vertex_ofs + vc);
  1767. for (int j = 0; j < vc; j++) {
  1768. Vector3 v = transform.xform(rvertices[j]);
  1769. Vector3 n = normal_basis.xform(rnormals[j]).normalized();
  1770. vertices[(j + vertex_ofs) * 3 + 0] = v.x;
  1771. vertices[(j + vertex_ofs) * 3 + 1] = v.y;
  1772. vertices[(j + vertex_ofs) * 3 + 2] = v.z;
  1773. normals[(j + vertex_ofs) * 3 + 0] = n.x;
  1774. normals[(j + vertex_ofs) * 3 + 1] = n.y;
  1775. normals[(j + vertex_ofs) * 3 + 2] = n.z;
  1776. uv_indices[j + vertex_ofs] = Pair<int, int>(i, j);
  1777. }
  1778. PackedInt32Array rindices = arrays[Mesh::ARRAY_INDEX];
  1779. int ic = rindices.size();
  1780. float eps = 1.19209290e-7F; // Taken from xatlas.h
  1781. if (ic == 0) {
  1782. for (int j = 0; j < vc / 3; j++) {
  1783. Vector3 p0 = transform.xform(rvertices[j * 3 + 0]);
  1784. Vector3 p1 = transform.xform(rvertices[j * 3 + 1]);
  1785. Vector3 p2 = transform.xform(rvertices[j * 3 + 2]);
  1786. if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) {
  1787. continue;
  1788. }
  1789. indices.push_back(vertex_ofs + j * 3 + 0);
  1790. indices.push_back(vertex_ofs + j * 3 + 1);
  1791. indices.push_back(vertex_ofs + j * 3 + 2);
  1792. }
  1793. } else {
  1794. for (int j = 0; j < ic / 3; j++) {
  1795. Vector3 p0 = transform.xform(rvertices[rindices[j * 3 + 0]]);
  1796. Vector3 p1 = transform.xform(rvertices[rindices[j * 3 + 1]]);
  1797. Vector3 p2 = transform.xform(rvertices[rindices[j * 3 + 2]]);
  1798. if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) {
  1799. continue;
  1800. }
  1801. indices.push_back(vertex_ofs + rindices[j * 3 + 0]);
  1802. indices.push_back(vertex_ofs + rindices[j * 3 + 1]);
  1803. indices.push_back(vertex_ofs + rindices[j * 3 + 2]);
  1804. }
  1805. }
  1806. lightmap_surfaces.push_back(s);
  1807. }
  1808. //unwrap
  1809. bool use_cache = p_generate_cache; // Used to request cache generation and to know if cache was used
  1810. uint8_t *gen_cache;
  1811. int gen_cache_size;
  1812. float *gen_uvs;
  1813. int *gen_vertices;
  1814. int *gen_indices;
  1815. int gen_vertex_count;
  1816. int gen_index_count;
  1817. int size_x;
  1818. int size_y;
  1819. bool ok = array_mesh_lightmap_unwrap_callback(p_texel_size, vertices.ptr(), normals.ptr(), vertices.size() / 3, indices.ptr(), indices.size(), p_src_cache.ptr(), &use_cache, &gen_cache, &gen_cache_size, &gen_uvs, &gen_vertices, &gen_vertex_count, &gen_indices, &gen_index_count, &size_x, &size_y);
  1820. if (!ok) {
  1821. return ERR_CANT_CREATE;
  1822. }
  1823. clear_surfaces();
  1824. //create surfacetools for each surface..
  1825. LocalVector<Ref<SurfaceTool>> surfaces_tools;
  1826. for (int i = 0; i < lightmap_surfaces.size(); i++) {
  1827. Ref<SurfaceTool> st;
  1828. st.instantiate();
  1829. st->begin(Mesh::PRIMITIVE_TRIANGLES);
  1830. st->set_material(lightmap_surfaces[i].material);
  1831. surfaces_tools.push_back(st); //stay there
  1832. }
  1833. print_verbose("Mesh: Gen indices: " + itos(gen_index_count));
  1834. //go through all indices
  1835. for (int i = 0; i < gen_index_count; i += 3) {
  1836. ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 0]], (int)uv_indices.size(), ERR_BUG);
  1837. ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 1]], (int)uv_indices.size(), ERR_BUG);
  1838. ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 2]], (int)uv_indices.size(), ERR_BUG);
  1839. ERR_FAIL_COND_V(uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 1]]].first || uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 2]]].first, ERR_BUG);
  1840. int surface = uv_indices[gen_vertices[gen_indices[i + 0]]].first;
  1841. for (int j = 0; j < 3; j++) {
  1842. SurfaceTool::Vertex v = lightmap_surfaces[surface].vertices[uv_indices[gen_vertices[gen_indices[i + j]]].second];
  1843. if (lightmap_surfaces[surface].format & ARRAY_FORMAT_COLOR) {
  1844. surfaces_tools[surface]->set_color(v.color);
  1845. }
  1846. if (lightmap_surfaces[surface].format & ARRAY_FORMAT_TEX_UV) {
  1847. surfaces_tools[surface]->set_uv(v.uv);
  1848. }
  1849. if (lightmap_surfaces[surface].format & ARRAY_FORMAT_NORMAL) {
  1850. surfaces_tools[surface]->set_normal(v.normal);
  1851. }
  1852. if (lightmap_surfaces[surface].format & ARRAY_FORMAT_TANGENT) {
  1853. Plane t;
  1854. t.normal = v.tangent;
  1855. t.d = v.binormal.dot(v.normal.cross(v.tangent)) < 0 ? -1 : 1;
  1856. surfaces_tools[surface]->set_tangent(t);
  1857. }
  1858. if (lightmap_surfaces[surface].format & ARRAY_FORMAT_BONES) {
  1859. surfaces_tools[surface]->set_bones(v.bones);
  1860. }
  1861. if (lightmap_surfaces[surface].format & ARRAY_FORMAT_WEIGHTS) {
  1862. surfaces_tools[surface]->set_weights(v.weights);
  1863. }
  1864. Vector2 uv2(gen_uvs[gen_indices[i + j] * 2 + 0], gen_uvs[gen_indices[i + j] * 2 + 1]);
  1865. surfaces_tools[surface]->set_uv2(uv2);
  1866. surfaces_tools[surface]->add_vertex(v.vertex);
  1867. }
  1868. }
  1869. //generate surfaces
  1870. for (unsigned int i = 0; i < surfaces_tools.size(); i++) {
  1871. surfaces_tools[i]->index();
  1872. surfaces_tools[i]->commit(Ref<ArrayMesh>((ArrayMesh *)this), lightmap_surfaces[i].format);
  1873. }
  1874. set_lightmap_size_hint(Size2(size_x, size_y));
  1875. if (gen_cache_size > 0) {
  1876. r_dst_cache.resize(gen_cache_size);
  1877. memcpy(r_dst_cache.ptrw(), gen_cache, gen_cache_size);
  1878. memfree(gen_cache);
  1879. }
  1880. if (!use_cache) {
  1881. // Cache was not used, free the buffers
  1882. memfree(gen_vertices);
  1883. memfree(gen_indices);
  1884. memfree(gen_uvs);
  1885. }
  1886. return OK;
  1887. }
  1888. void ArrayMesh::set_shadow_mesh(const Ref<ArrayMesh> &p_mesh) {
  1889. ERR_FAIL_COND_MSG(p_mesh == this, "Cannot set a mesh as its own shadow mesh.");
  1890. shadow_mesh = p_mesh;
  1891. if (shadow_mesh.is_valid()) {
  1892. RS::get_singleton()->mesh_set_shadow_mesh(mesh, shadow_mesh->get_rid());
  1893. } else {
  1894. RS::get_singleton()->mesh_set_shadow_mesh(mesh, RID());
  1895. }
  1896. }
  1897. Ref<ArrayMesh> ArrayMesh::get_shadow_mesh() const {
  1898. return shadow_mesh;
  1899. }
  1900. void ArrayMesh::_bind_methods() {
  1901. ClassDB::bind_method(D_METHOD("add_blend_shape", "name"), &ArrayMesh::add_blend_shape);
  1902. ClassDB::bind_method(D_METHOD("get_blend_shape_count"), &ArrayMesh::get_blend_shape_count);
  1903. ClassDB::bind_method(D_METHOD("get_blend_shape_name", "index"), &ArrayMesh::get_blend_shape_name);
  1904. ClassDB::bind_method(D_METHOD("set_blend_shape_name", "index", "name"), &ArrayMesh::set_blend_shape_name);
  1905. ClassDB::bind_method(D_METHOD("clear_blend_shapes"), &ArrayMesh::clear_blend_shapes);
  1906. ClassDB::bind_method(D_METHOD("set_blend_shape_mode", "mode"), &ArrayMesh::set_blend_shape_mode);
  1907. ClassDB::bind_method(D_METHOD("get_blend_shape_mode"), &ArrayMesh::get_blend_shape_mode);
  1908. ClassDB::bind_method(D_METHOD("add_surface_from_arrays", "primitive", "arrays", "blend_shapes", "lods", "flags"), &ArrayMesh::add_surface_from_arrays, DEFVAL(Array()), DEFVAL(Dictionary()), DEFVAL(0));
  1909. ClassDB::bind_method(D_METHOD("clear_surfaces"), &ArrayMesh::clear_surfaces);
  1910. ClassDB::bind_method(D_METHOD("surface_remove", "surf_idx"), &ArrayMesh::surface_remove);
  1911. ClassDB::bind_method(D_METHOD("surface_update_vertex_region", "surf_idx", "offset", "data"), &ArrayMesh::surface_update_vertex_region);
  1912. ClassDB::bind_method(D_METHOD("surface_update_attribute_region", "surf_idx", "offset", "data"), &ArrayMesh::surface_update_attribute_region);
  1913. ClassDB::bind_method(D_METHOD("surface_update_skin_region", "surf_idx", "offset", "data"), &ArrayMesh::surface_update_skin_region);
  1914. ClassDB::bind_method(D_METHOD("surface_get_array_len", "surf_idx"), &ArrayMesh::surface_get_array_len);
  1915. ClassDB::bind_method(D_METHOD("surface_get_array_index_len", "surf_idx"), &ArrayMesh::surface_get_array_index_len);
  1916. ClassDB::bind_method(D_METHOD("surface_get_format", "surf_idx"), &ArrayMesh::surface_get_format);
  1917. ClassDB::bind_method(D_METHOD("surface_get_primitive_type", "surf_idx"), &ArrayMesh::surface_get_primitive_type);
  1918. ClassDB::bind_method(D_METHOD("surface_find_by_name", "name"), &ArrayMesh::surface_find_by_name);
  1919. ClassDB::bind_method(D_METHOD("surface_set_name", "surf_idx", "name"), &ArrayMesh::surface_set_name);
  1920. ClassDB::bind_method(D_METHOD("surface_get_name", "surf_idx"), &ArrayMesh::surface_get_name);
  1921. #ifndef PHYSICS_3D_DISABLED
  1922. ClassDB::bind_method(D_METHOD("create_trimesh_shape"), &ArrayMesh::create_trimesh_shape);
  1923. ClassDB::bind_method(D_METHOD("create_convex_shape", "clean", "simplify"), &ArrayMesh::create_convex_shape, DEFVAL(true), DEFVAL(false));
  1924. #endif // PHYSICS_3D_DISABLED
  1925. ClassDB::bind_method(D_METHOD("create_outline", "margin"), &ArrayMesh::create_outline);
  1926. ClassDB::bind_method(D_METHOD("regen_normal_maps"), &ArrayMesh::regen_normal_maps);
  1927. ClassDB::set_method_flags(get_class_static(), StringName("regen_normal_maps"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR);
  1928. ClassDB::bind_method(D_METHOD("lightmap_unwrap", "transform", "texel_size"), &ArrayMesh::lightmap_unwrap);
  1929. ClassDB::set_method_flags(get_class_static(), StringName("lightmap_unwrap"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR);
  1930. ClassDB::bind_method(D_METHOD("generate_triangle_mesh"), &ArrayMesh::generate_triangle_mesh);
  1931. ClassDB::bind_method(D_METHOD("set_custom_aabb", "aabb"), &ArrayMesh::set_custom_aabb);
  1932. ClassDB::bind_method(D_METHOD("get_custom_aabb"), &ArrayMesh::get_custom_aabb);
  1933. ClassDB::bind_method(D_METHOD("set_shadow_mesh", "mesh"), &ArrayMesh::set_shadow_mesh);
  1934. ClassDB::bind_method(D_METHOD("get_shadow_mesh"), &ArrayMesh::get_shadow_mesh);
  1935. ClassDB::bind_method(D_METHOD("_set_blend_shape_names", "blend_shape_names"), &ArrayMesh::_set_blend_shape_names);
  1936. ClassDB::bind_method(D_METHOD("_get_blend_shape_names"), &ArrayMesh::_get_blend_shape_names);
  1937. ClassDB::bind_method(D_METHOD("_set_surfaces", "surfaces"), &ArrayMesh::_set_surfaces);
  1938. ClassDB::bind_method(D_METHOD("_get_surfaces"), &ArrayMesh::_get_surfaces);
  1939. ADD_PROPERTY(PropertyInfo(Variant::PACKED_STRING_ARRAY, "_blend_shape_names", PROPERTY_HINT_NO_NODEPATH, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_blend_shape_names", "_get_blend_shape_names");
  1940. ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "_surfaces", PROPERTY_HINT_NO_NODEPATH, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL), "_set_surfaces", "_get_surfaces");
  1941. ADD_PROPERTY(PropertyInfo(Variant::INT, "blend_shape_mode", PROPERTY_HINT_ENUM, "Normalized,Relative"), "set_blend_shape_mode", "get_blend_shape_mode");
  1942. ADD_PROPERTY(PropertyInfo(Variant::AABB, "custom_aabb", PROPERTY_HINT_NO_NODEPATH, "suffix:m"), "set_custom_aabb", "get_custom_aabb");
  1943. ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "shadow_mesh", PROPERTY_HINT_RESOURCE_TYPE, "ArrayMesh"), "set_shadow_mesh", "get_shadow_mesh");
  1944. }
  1945. void ArrayMesh::reload_from_file() {
  1946. RenderingServer::get_singleton()->mesh_clear(mesh);
  1947. surfaces.clear();
  1948. clear_blend_shapes();
  1949. clear_cache();
  1950. Resource::reload_from_file();
  1951. notify_property_list_changed();
  1952. }
  1953. ArrayMesh::ArrayMesh() {
  1954. //mesh is now created on demand
  1955. //mesh = RenderingServer::get_singleton()->mesh_create();
  1956. }
  1957. ArrayMesh::~ArrayMesh() {
  1958. if (mesh.is_valid()) {
  1959. ERR_FAIL_NULL(RenderingServer::get_singleton());
  1960. RenderingServer::get_singleton()->free(mesh);
  1961. }
  1962. }
  1963. ///////////////
  1964. void PlaceholderMesh::_bind_methods() {
  1965. ClassDB::bind_method(D_METHOD("set_aabb", "aabb"), &PlaceholderMesh::set_aabb);
  1966. ADD_PROPERTY(PropertyInfo(Variant::AABB, "aabb", PROPERTY_HINT_NONE, "suffix:m"), "set_aabb", "get_aabb");
  1967. }
  1968. PlaceholderMesh::PlaceholderMesh() {
  1969. rid = RS::get_singleton()->mesh_create();
  1970. }
  1971. PlaceholderMesh::~PlaceholderMesh() {
  1972. ERR_FAIL_NULL(RenderingServer::get_singleton());
  1973. RS::get_singleton()->free(rid);
  1974. }