mesh_storage.cpp 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107
  1. /*************************************************************************/
  2. /* mesh_storage.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #ifdef GLES3_ENABLED
  31. #include "mesh_storage.h"
  32. #include "material_storage.h"
  33. #include "utilities.h"
  34. using namespace GLES3;
  35. MeshStorage *MeshStorage::singleton = nullptr;
  36. MeshStorage *MeshStorage::get_singleton() {
  37. return singleton;
  38. }
  39. MeshStorage::MeshStorage() {
  40. singleton = this;
  41. {
  42. skeleton_shader.shader.initialize();
  43. skeleton_shader.shader_version = skeleton_shader.shader.version_create();
  44. }
  45. }
  46. MeshStorage::~MeshStorage() {
  47. singleton = nullptr;
  48. skeleton_shader.shader.version_free(skeleton_shader.shader_version);
  49. }
  50. /* MESH API */
  51. RID MeshStorage::mesh_allocate() {
  52. return mesh_owner.allocate_rid();
  53. }
  54. void MeshStorage::mesh_initialize(RID p_rid) {
  55. mesh_owner.initialize_rid(p_rid, Mesh());
  56. }
  57. void MeshStorage::mesh_free(RID p_rid) {
  58. mesh_clear(p_rid);
  59. mesh_set_shadow_mesh(p_rid, RID());
  60. Mesh *mesh = mesh_owner.get_or_null(p_rid);
  61. ERR_FAIL_COND(!mesh);
  62. mesh->dependency.deleted_notify(p_rid);
  63. if (mesh->instances.size()) {
  64. ERR_PRINT("deleting mesh with active instances");
  65. }
  66. if (mesh->shadow_owners.size()) {
  67. for (Mesh *E : mesh->shadow_owners) {
  68. Mesh *shadow_owner = E;
  69. shadow_owner->shadow_mesh = RID();
  70. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  71. }
  72. }
  73. mesh_owner.free(p_rid);
  74. }
  75. void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
  76. ERR_FAIL_COND(p_blend_shape_count < 0);
  77. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  78. ERR_FAIL_COND(!mesh);
  79. ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
  80. mesh->blend_shape_count = p_blend_shape_count;
  81. }
  82. bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
  83. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  84. ERR_FAIL_COND_V(!mesh, false);
  85. return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
  86. }
  87. void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
  88. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  89. ERR_FAIL_COND(!mesh);
  90. ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
  91. #ifdef DEBUG_ENABLED
  92. //do a validation, to catch errors first
  93. {
  94. uint32_t stride = 0;
  95. uint32_t attrib_stride = 0;
  96. uint32_t skin_stride = 0;
  97. for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
  98. if ((p_surface.format & (1 << i))) {
  99. switch (i) {
  100. case RS::ARRAY_VERTEX: {
  101. if (p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  102. stride += sizeof(float) * 2;
  103. } else {
  104. stride += sizeof(float) * 3;
  105. }
  106. } break;
  107. case RS::ARRAY_NORMAL: {
  108. stride += sizeof(uint16_t) * 2;
  109. } break;
  110. case RS::ARRAY_TANGENT: {
  111. stride += sizeof(uint16_t) * 2;
  112. } break;
  113. case RS::ARRAY_COLOR: {
  114. attrib_stride += sizeof(uint32_t);
  115. } break;
  116. case RS::ARRAY_TEX_UV: {
  117. attrib_stride += sizeof(float) * 2;
  118. } break;
  119. case RS::ARRAY_TEX_UV2: {
  120. attrib_stride += sizeof(float) * 2;
  121. } break;
  122. case RS::ARRAY_CUSTOM0:
  123. case RS::ARRAY_CUSTOM1:
  124. case RS::ARRAY_CUSTOM2:
  125. case RS::ARRAY_CUSTOM3: {
  126. int idx = i - RS::ARRAY_CUSTOM0;
  127. uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  128. uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  129. uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  130. attrib_stride += fmtsize[fmt];
  131. } break;
  132. case RS::ARRAY_WEIGHTS:
  133. case RS::ARRAY_BONES: {
  134. //uses a separate array
  135. bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  136. skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
  137. } break;
  138. }
  139. }
  140. }
  141. int expected_size = stride * p_surface.vertex_count;
  142. ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  143. int bs_expected_size = expected_size * mesh->blend_shape_count;
  144. ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
  145. int expected_attrib_size = attrib_stride * p_surface.vertex_count;
  146. ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
  147. if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
  148. expected_size = skin_stride * p_surface.vertex_count;
  149. ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  150. }
  151. }
  152. #endif
  153. Mesh::Surface *s = memnew(Mesh::Surface);
  154. s->format = p_surface.format;
  155. s->primitive = p_surface.primitive;
  156. if (p_surface.vertex_data.size()) {
  157. glGenBuffers(1, &s->vertex_buffer);
  158. glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer);
  159. glBufferData(GL_ARRAY_BUFFER, p_surface.vertex_data.size(), p_surface.vertex_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW);
  160. glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
  161. s->vertex_buffer_size = p_surface.vertex_data.size();
  162. }
  163. if (p_surface.attribute_data.size()) {
  164. glGenBuffers(1, &s->attribute_buffer);
  165. glBindBuffer(GL_ARRAY_BUFFER, s->attribute_buffer);
  166. glBufferData(GL_ARRAY_BUFFER, p_surface.attribute_data.size(), p_surface.attribute_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW);
  167. glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
  168. s->attribute_buffer_size = p_surface.attribute_data.size();
  169. }
  170. if (p_surface.skin_data.size()) {
  171. glGenBuffers(1, &s->skin_buffer);
  172. glBindBuffer(GL_ARRAY_BUFFER, s->skin_buffer);
  173. glBufferData(GL_ARRAY_BUFFER, p_surface.skin_data.size(), p_surface.skin_data.ptr(), (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW);
  174. glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
  175. s->skin_buffer_size = p_surface.skin_data.size();
  176. }
  177. s->vertex_count = p_surface.vertex_count;
  178. if (p_surface.format & RS::ARRAY_FORMAT_BONES) {
  179. mesh->has_bone_weights = true;
  180. }
  181. if (p_surface.index_count) {
  182. bool is_index_16 = p_surface.vertex_count <= 65536 && p_surface.vertex_count > 0;
  183. glGenBuffers(1, &s->index_buffer);
  184. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_buffer);
  185. glBufferData(GL_ELEMENT_ARRAY_BUFFER, p_surface.index_data.size(), p_surface.index_data.ptr(), GL_STATIC_DRAW);
  186. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
  187. s->index_count = p_surface.index_count;
  188. s->index_buffer_size = p_surface.index_data.size();
  189. if (p_surface.lods.size()) {
  190. s->lods = memnew_arr(Mesh::Surface::LOD, p_surface.lods.size());
  191. s->lod_count = p_surface.lods.size();
  192. for (int i = 0; i < p_surface.lods.size(); i++) {
  193. glGenBuffers(1, &s->lods[i].index_buffer);
  194. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->lods[i].index_buffer);
  195. glBufferData(GL_ELEMENT_ARRAY_BUFFER, p_surface.lods[i].index_data.size(), p_surface.lods[i].index_data.ptr(), GL_STATIC_DRAW);
  196. glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
  197. s->lods[i].edge_length = p_surface.lods[i].edge_length;
  198. s->lods[i].index_count = p_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
  199. s->lods[i].index_buffer_size = p_surface.lods[i].index_data.size();
  200. }
  201. }
  202. }
  203. ERR_FAIL_COND_MSG(!p_surface.index_count && !p_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
  204. s->aabb = p_surface.aabb;
  205. s->bone_aabbs = p_surface.bone_aabbs; //only really useful for returning them.
  206. if (p_surface.skin_data.size() || mesh->blend_shape_count > 0) {
  207. // Size must match the size of the vertex array.
  208. int size = p_surface.vertex_data.size();
  209. int vertex_size = 0;
  210. int stride = 0;
  211. int normal_offset = 0;
  212. int tangent_offset = 0;
  213. if ((p_surface.format & (1 << RS::ARRAY_VERTEX))) {
  214. if (p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  215. vertex_size = 2;
  216. } else {
  217. vertex_size = 3;
  218. }
  219. stride = sizeof(float) * vertex_size;
  220. }
  221. if ((p_surface.format & (1 << RS::ARRAY_NORMAL))) {
  222. normal_offset = stride;
  223. stride += sizeof(uint16_t) * 2;
  224. }
  225. if ((p_surface.format & (1 << RS::ARRAY_TANGENT))) {
  226. tangent_offset = stride;
  227. stride += sizeof(uint16_t) * 2;
  228. }
  229. if (mesh->blend_shape_count > 0) {
  230. // Blend shapes are passed as one large array, for OpenGL, we need to split each of them into their own buffer
  231. s->blend_shapes = memnew_arr(Mesh::Surface::BlendShape, mesh->blend_shape_count);
  232. for (uint32_t i = 0; i < mesh->blend_shape_count; i++) {
  233. glGenVertexArrays(1, &s->blend_shapes[i].vertex_array);
  234. glBindVertexArray(s->blend_shapes[i].vertex_array);
  235. glGenBuffers(1, &s->blend_shapes[i].vertex_buffer);
  236. glBindBuffer(GL_ARRAY_BUFFER, s->blend_shapes[i].vertex_buffer);
  237. glBufferData(GL_ARRAY_BUFFER, size, p_surface.blend_shape_data.ptr() + i * size, (s->format & RS::ARRAY_FLAG_USE_DYNAMIC_UPDATE) ? GL_DYNAMIC_DRAW : GL_STATIC_DRAW);
  238. if ((p_surface.format & (1 << RS::ARRAY_VERTEX))) {
  239. glEnableVertexAttribArray(RS::ARRAY_VERTEX + 3);
  240. glVertexAttribPointer(RS::ARRAY_VERTEX + 3, vertex_size, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(0));
  241. }
  242. if ((p_surface.format & (1 << RS::ARRAY_NORMAL))) {
  243. glEnableVertexAttribArray(RS::ARRAY_NORMAL + 3);
  244. glVertexAttribPointer(RS::ARRAY_NORMAL + 3, 2, GL_UNSIGNED_SHORT, GL_TRUE, stride, CAST_INT_TO_UCHAR_PTR(normal_offset));
  245. }
  246. if ((p_surface.format & (1 << RS::ARRAY_TANGENT))) {
  247. glEnableVertexAttribArray(RS::ARRAY_TANGENT + 3);
  248. glVertexAttribPointer(RS::ARRAY_TANGENT + 3, 2, GL_UNSIGNED_SHORT, GL_TRUE, stride, CAST_INT_TO_UCHAR_PTR(tangent_offset));
  249. }
  250. }
  251. glBindVertexArray(0);
  252. glBindBuffer(GL_ARRAY_BUFFER, 0);
  253. }
  254. // Create a vertex array to use for skeleton/blend shapes.
  255. glGenVertexArrays(1, &s->skeleton_vertex_array);
  256. glBindVertexArray(s->skeleton_vertex_array);
  257. glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer);
  258. if ((p_surface.format & (1 << RS::ARRAY_VERTEX))) {
  259. glEnableVertexAttribArray(RS::ARRAY_VERTEX);
  260. glVertexAttribPointer(RS::ARRAY_VERTEX, vertex_size, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(0));
  261. }
  262. if ((p_surface.format & (1 << RS::ARRAY_NORMAL))) {
  263. glEnableVertexAttribArray(RS::ARRAY_NORMAL);
  264. glVertexAttribPointer(RS::ARRAY_NORMAL, 2, GL_UNSIGNED_SHORT, GL_TRUE, stride, CAST_INT_TO_UCHAR_PTR(normal_offset));
  265. }
  266. if ((p_surface.format & (1 << RS::ARRAY_TANGENT))) {
  267. glEnableVertexAttribArray(RS::ARRAY_TANGENT);
  268. glVertexAttribPointer(RS::ARRAY_TANGENT, 2, GL_UNSIGNED_SHORT, GL_TRUE, stride, CAST_INT_TO_UCHAR_PTR(tangent_offset));
  269. }
  270. glBindVertexArray(0);
  271. glBindBuffer(GL_ARRAY_BUFFER, 0);
  272. }
  273. if (mesh->surface_count == 0) {
  274. mesh->bone_aabbs = p_surface.bone_aabbs;
  275. mesh->aabb = p_surface.aabb;
  276. } else {
  277. if (mesh->bone_aabbs.size() < p_surface.bone_aabbs.size()) {
  278. // ArrayMesh::_surface_set_data only allocates bone_aabbs up to max_bone
  279. // Each surface may affect different numbers of bones.
  280. mesh->bone_aabbs.resize(p_surface.bone_aabbs.size());
  281. }
  282. for (int i = 0; i < p_surface.bone_aabbs.size(); i++) {
  283. const AABB &bone = p_surface.bone_aabbs[i];
  284. if (bone.has_volume()) {
  285. AABB &mesh_bone = mesh->bone_aabbs.write[i];
  286. if (mesh_bone != AABB()) {
  287. // Already initialized, merge AABBs.
  288. mesh_bone.merge_with(bone);
  289. } else {
  290. // Not yet initialized, copy the bone AABB.
  291. mesh_bone = bone;
  292. }
  293. }
  294. }
  295. mesh->aabb.merge_with(p_surface.aabb);
  296. }
  297. s->material = p_surface.material;
  298. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
  299. mesh->surfaces[mesh->surface_count] = s;
  300. mesh->surface_count++;
  301. for (MeshInstance *mi : mesh->instances) {
  302. _mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
  303. }
  304. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  305. for (Mesh *E : mesh->shadow_owners) {
  306. Mesh *shadow_owner = E;
  307. shadow_owner->shadow_mesh = RID();
  308. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  309. }
  310. mesh->material_cache.clear();
  311. }
  312. int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
  313. const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  314. ERR_FAIL_COND_V(!mesh, -1);
  315. return mesh->blend_shape_count;
  316. }
  317. void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
  318. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  319. ERR_FAIL_COND(!mesh);
  320. ERR_FAIL_INDEX((int)p_mode, 2);
  321. mesh->blend_shape_mode = p_mode;
  322. }
  323. RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
  324. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  325. ERR_FAIL_COND_V(!mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
  326. return mesh->blend_shape_mode;
  327. }
  328. void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  329. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  330. ERR_FAIL_COND(!mesh);
  331. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  332. ERR_FAIL_COND(p_data.size() == 0);
  333. uint64_t data_size = p_data.size();
  334. ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->vertex_buffer_size);
  335. const uint8_t *r = p_data.ptr();
  336. glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->vertex_buffer);
  337. glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r);
  338. glBindBuffer(GL_ARRAY_BUFFER, 0);
  339. }
  340. void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  341. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  342. ERR_FAIL_COND(!mesh);
  343. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  344. ERR_FAIL_COND(p_data.size() == 0);
  345. uint64_t data_size = p_data.size();
  346. ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->attribute_buffer_size);
  347. const uint8_t *r = p_data.ptr();
  348. glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->attribute_buffer);
  349. glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r);
  350. glBindBuffer(GL_ARRAY_BUFFER, 0);
  351. }
  352. void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  353. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  354. ERR_FAIL_COND(!mesh);
  355. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  356. ERR_FAIL_COND(p_data.size() == 0);
  357. uint64_t data_size = p_data.size();
  358. ERR_FAIL_COND(p_offset + data_size > mesh->surfaces[p_surface]->skin_buffer_size);
  359. const uint8_t *r = p_data.ptr();
  360. glBindBuffer(GL_ARRAY_BUFFER, mesh->surfaces[p_surface]->skin_buffer);
  361. glBufferSubData(GL_ARRAY_BUFFER, p_offset, data_size, r);
  362. glBindBuffer(GL_ARRAY_BUFFER, 0);
  363. }
  364. void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
  365. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  366. ERR_FAIL_COND(!mesh);
  367. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  368. mesh->surfaces[p_surface]->material = p_material;
  369. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
  370. mesh->material_cache.clear();
  371. }
  372. RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
  373. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  374. ERR_FAIL_COND_V(!mesh, RID());
  375. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
  376. return mesh->surfaces[p_surface]->material;
  377. }
  378. RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
  379. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  380. ERR_FAIL_COND_V(!mesh, RS::SurfaceData());
  381. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
  382. Mesh::Surface &s = *mesh->surfaces[p_surface];
  383. RS::SurfaceData sd;
  384. sd.format = s.format;
  385. if (s.vertex_buffer != 0) {
  386. sd.vertex_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.vertex_buffer, s.vertex_buffer_size);
  387. }
  388. if (s.attribute_buffer != 0) {
  389. sd.attribute_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.attribute_buffer, s.attribute_buffer_size);
  390. }
  391. if (s.skin_buffer != 0) {
  392. sd.skin_data = Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.skin_buffer, s.skin_buffer_size);
  393. }
  394. sd.vertex_count = s.vertex_count;
  395. sd.index_count = s.index_count;
  396. sd.primitive = s.primitive;
  397. if (sd.index_count) {
  398. sd.index_data = Utilities::buffer_get_data(GL_ELEMENT_ARRAY_BUFFER, s.index_buffer, s.index_buffer_size);
  399. }
  400. sd.aabb = s.aabb;
  401. for (uint32_t i = 0; i < s.lod_count; i++) {
  402. RS::SurfaceData::LOD lod;
  403. lod.edge_length = s.lods[i].edge_length;
  404. lod.index_data = Utilities::buffer_get_data(GL_ELEMENT_ARRAY_BUFFER, s.lods[i].index_buffer, s.lods[i].index_buffer_size);
  405. sd.lods.push_back(lod);
  406. }
  407. sd.bone_aabbs = s.bone_aabbs;
  408. if (mesh->blend_shape_count) {
  409. sd.blend_shape_data = Vector<uint8_t>();
  410. for (uint32_t i = 0; i < mesh->blend_shape_count; i++) {
  411. sd.blend_shape_data.append_array(Utilities::buffer_get_data(GL_ARRAY_BUFFER, s.blend_shapes[i].vertex_buffer, s.vertex_buffer_size));
  412. }
  413. }
  414. return sd;
  415. }
  416. int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
  417. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  418. ERR_FAIL_COND_V(!mesh, 0);
  419. return mesh->surface_count;
  420. }
  421. void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
  422. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  423. ERR_FAIL_COND(!mesh);
  424. mesh->custom_aabb = p_aabb;
  425. }
  426. AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
  427. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  428. ERR_FAIL_COND_V(!mesh, AABB());
  429. return mesh->custom_aabb;
  430. }
  431. AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
  432. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  433. ERR_FAIL_COND_V(!mesh, AABB());
  434. if (mesh->custom_aabb != AABB()) {
  435. return mesh->custom_aabb;
  436. }
  437. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  438. if (!skeleton || skeleton->size == 0) {
  439. return mesh->aabb;
  440. }
  441. // Calculate AABB based on Skeleton
  442. AABB aabb;
  443. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  444. AABB laabb;
  445. if ((mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->bone_aabbs.size()) {
  446. int bs = mesh->surfaces[i]->bone_aabbs.size();
  447. const AABB *skbones = mesh->surfaces[i]->bone_aabbs.ptr();
  448. int sbs = skeleton->size;
  449. ERR_CONTINUE(bs > sbs);
  450. const float *baseptr = skeleton->data.ptr();
  451. bool first = true;
  452. if (skeleton->use_2d) {
  453. for (int j = 0; j < bs; j++) {
  454. if (skbones[0].size == Vector3()) {
  455. continue; //bone is unused
  456. }
  457. const float *dataptr = baseptr + j * 8;
  458. Transform3D mtx;
  459. mtx.basis.rows[0].x = dataptr[0];
  460. mtx.basis.rows[1].x = dataptr[1];
  461. mtx.origin.x = dataptr[3];
  462. mtx.basis.rows[0].y = dataptr[4];
  463. mtx.basis.rows[1].y = dataptr[5];
  464. mtx.origin.y = dataptr[7];
  465. AABB baabb = mtx.xform(skbones[j]);
  466. if (first) {
  467. laabb = baabb;
  468. first = false;
  469. } else {
  470. laabb.merge_with(baabb);
  471. }
  472. }
  473. } else {
  474. for (int j = 0; j < bs; j++) {
  475. if (skbones[0].size == Vector3()) {
  476. continue; //bone is unused
  477. }
  478. const float *dataptr = baseptr + j * 12;
  479. Transform3D mtx;
  480. mtx.basis.rows[0][0] = dataptr[0];
  481. mtx.basis.rows[0][1] = dataptr[1];
  482. mtx.basis.rows[0][2] = dataptr[2];
  483. mtx.origin.x = dataptr[3];
  484. mtx.basis.rows[1][0] = dataptr[4];
  485. mtx.basis.rows[1][1] = dataptr[5];
  486. mtx.basis.rows[1][2] = dataptr[6];
  487. mtx.origin.y = dataptr[7];
  488. mtx.basis.rows[2][0] = dataptr[8];
  489. mtx.basis.rows[2][1] = dataptr[9];
  490. mtx.basis.rows[2][2] = dataptr[10];
  491. mtx.origin.z = dataptr[11];
  492. AABB baabb = mtx.xform(skbones[j]);
  493. if (first) {
  494. laabb = baabb;
  495. first = false;
  496. } else {
  497. laabb.merge_with(baabb);
  498. }
  499. }
  500. }
  501. if (laabb.size == Vector3()) {
  502. laabb = mesh->surfaces[i]->aabb;
  503. }
  504. } else {
  505. laabb = mesh->surfaces[i]->aabb;
  506. }
  507. if (i == 0) {
  508. aabb = laabb;
  509. } else {
  510. aabb.merge_with(laabb);
  511. }
  512. }
  513. return aabb;
  514. }
  515. void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
  516. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  517. ERR_FAIL_COND(!mesh);
  518. Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  519. if (shadow_mesh) {
  520. shadow_mesh->shadow_owners.erase(mesh);
  521. }
  522. mesh->shadow_mesh = p_shadow_mesh;
  523. shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  524. if (shadow_mesh) {
  525. shadow_mesh->shadow_owners.insert(mesh);
  526. }
  527. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  528. }
  529. void MeshStorage::mesh_clear(RID p_mesh) {
  530. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  531. ERR_FAIL_COND(!mesh);
  532. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  533. Mesh::Surface &s = *mesh->surfaces[i];
  534. if (s.vertex_buffer != 0) {
  535. glDeleteBuffers(1, &s.vertex_buffer);
  536. s.vertex_buffer = 0;
  537. }
  538. if (s.version_count != 0) {
  539. for (uint32_t j = 0; j < s.version_count; j++) {
  540. glDeleteVertexArrays(1, &s.versions[j].vertex_array);
  541. s.versions[j].vertex_array = 0;
  542. }
  543. }
  544. if (s.attribute_buffer != 0) {
  545. glDeleteBuffers(1, &s.attribute_buffer);
  546. s.attribute_buffer = 0;
  547. }
  548. if (s.skin_buffer != 0) {
  549. glDeleteBuffers(1, &s.skin_buffer);
  550. s.skin_buffer = 0;
  551. }
  552. if (s.index_buffer != 0) {
  553. glDeleteBuffers(1, &s.index_buffer);
  554. s.index_buffer = 0;
  555. }
  556. if (s.versions) {
  557. memfree(s.versions); //reallocs, so free with memfree.
  558. }
  559. if (s.lod_count) {
  560. for (uint32_t j = 0; j < s.lod_count; j++) {
  561. if (s.lods[j].index_buffer != 0) {
  562. glDeleteBuffers(1, &s.lods[j].index_buffer);
  563. s.lods[j].index_buffer = 0;
  564. }
  565. }
  566. memdelete_arr(s.lods);
  567. }
  568. if (mesh->blend_shape_count) {
  569. for (uint32_t j = 0; j < mesh->blend_shape_count; j++) {
  570. if (s.blend_shapes[j].vertex_buffer != 0) {
  571. glDeleteBuffers(1, &s.blend_shapes[j].vertex_buffer);
  572. s.blend_shapes[j].vertex_buffer = 0;
  573. }
  574. if (s.blend_shapes[j].vertex_array != 0) {
  575. glDeleteVertexArrays(1, &s.blend_shapes[j].vertex_array);
  576. s.blend_shapes[j].vertex_array = 0;
  577. }
  578. }
  579. memdelete_arr(s.blend_shapes);
  580. }
  581. if (s.skeleton_vertex_array != 0) {
  582. glDeleteVertexArrays(1, &s.skeleton_vertex_array);
  583. s.skeleton_vertex_array = 0;
  584. }
  585. memdelete(mesh->surfaces[i]);
  586. }
  587. if (mesh->surfaces) {
  588. memfree(mesh->surfaces);
  589. }
  590. mesh->surfaces = nullptr;
  591. mesh->surface_count = 0;
  592. mesh->material_cache.clear();
  593. //clear instance data
  594. for (MeshInstance *mi : mesh->instances) {
  595. _mesh_instance_clear(mi);
  596. }
  597. mesh->has_bone_weights = false;
  598. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  599. for (Mesh *E : mesh->shadow_owners) {
  600. Mesh *shadow_owner = E;
  601. shadow_owner->shadow_mesh = RID();
  602. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  603. }
  604. }
  605. void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint32_t p_input_mask, MeshInstance::Surface *mis) {
  606. Mesh::Surface::Attrib attribs[RS::ARRAY_MAX];
  607. int attributes_stride = 0;
  608. int vertex_stride = 0;
  609. int skin_stride = 0;
  610. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  611. if (!(s->format & (1 << i))) {
  612. attribs[i].enabled = false;
  613. attribs[i].integer = false;
  614. continue;
  615. }
  616. attribs[i].enabled = true;
  617. attribs[i].integer = false;
  618. switch (i) {
  619. case RS::ARRAY_VERTEX: {
  620. attribs[i].offset = vertex_stride;
  621. if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  622. attribs[i].size = 2;
  623. } else {
  624. attribs[i].size = 3;
  625. }
  626. attribs[i].type = GL_FLOAT;
  627. vertex_stride += attribs[i].size * sizeof(float);
  628. attribs[i].normalized = GL_FALSE;
  629. } break;
  630. case RS::ARRAY_NORMAL: {
  631. attribs[i].offset = vertex_stride;
  632. attribs[i].size = 2;
  633. attribs[i].type = (mis ? GL_FLOAT : GL_UNSIGNED_SHORT);
  634. vertex_stride += sizeof(uint16_t) * 2 * (mis ? 2 : 1);
  635. attribs[i].normalized = GL_TRUE;
  636. } break;
  637. case RS::ARRAY_TANGENT: {
  638. attribs[i].offset = vertex_stride;
  639. attribs[i].size = 2;
  640. attribs[i].type = (mis ? GL_FLOAT : GL_UNSIGNED_SHORT);
  641. vertex_stride += sizeof(uint16_t) * 2 * (mis ? 2 : 1);
  642. attribs[i].normalized = GL_TRUE;
  643. } break;
  644. case RS::ARRAY_COLOR: {
  645. attribs[i].offset = attributes_stride;
  646. attribs[i].size = 4;
  647. attribs[i].type = GL_UNSIGNED_BYTE;
  648. attributes_stride += 4;
  649. attribs[i].normalized = GL_TRUE;
  650. } break;
  651. case RS::ARRAY_TEX_UV: {
  652. attribs[i].offset = attributes_stride;
  653. attribs[i].size = 2;
  654. attribs[i].type = GL_FLOAT;
  655. attributes_stride += 2 * sizeof(float);
  656. attribs[i].normalized = GL_FALSE;
  657. } break;
  658. case RS::ARRAY_TEX_UV2: {
  659. attribs[i].offset = attributes_stride;
  660. attribs[i].size = 2;
  661. attribs[i].type = GL_FLOAT;
  662. attributes_stride += 2 * sizeof(float);
  663. attribs[i].normalized = GL_FALSE;
  664. } break;
  665. case RS::ARRAY_CUSTOM0:
  666. case RS::ARRAY_CUSTOM1:
  667. case RS::ARRAY_CUSTOM2:
  668. case RS::ARRAY_CUSTOM3: {
  669. attribs[i].offset = attributes_stride;
  670. int idx = i - RS::ARRAY_CUSTOM0;
  671. uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  672. uint32_t fmt = (s->format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  673. uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  674. GLenum gl_type[RS::ARRAY_CUSTOM_MAX] = { GL_UNSIGNED_BYTE, GL_BYTE, GL_HALF_FLOAT, GL_HALF_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT, GL_FLOAT };
  675. GLboolean norm[RS::ARRAY_CUSTOM_MAX] = { GL_TRUE, GL_TRUE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE };
  676. attribs[i].type = gl_type[fmt];
  677. attributes_stride += fmtsize[fmt];
  678. attribs[i].size = fmtsize[fmt] / sizeof(float);
  679. attribs[i].normalized = norm[fmt];
  680. } break;
  681. case RS::ARRAY_BONES: {
  682. attribs[i].offset = skin_stride;
  683. attribs[i].size = 4;
  684. attribs[i].type = GL_UNSIGNED_SHORT;
  685. skin_stride += 4 * sizeof(uint16_t);
  686. attribs[i].normalized = GL_FALSE;
  687. attribs[i].integer = true;
  688. } break;
  689. case RS::ARRAY_WEIGHTS: {
  690. attribs[i].offset = skin_stride;
  691. attribs[i].size = 4;
  692. attribs[i].type = GL_UNSIGNED_SHORT;
  693. skin_stride += 4 * sizeof(uint16_t);
  694. attribs[i].normalized = GL_TRUE;
  695. } break;
  696. }
  697. }
  698. glGenVertexArrays(1, &v.vertex_array);
  699. glBindVertexArray(v.vertex_array);
  700. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  701. if (!attribs[i].enabled) {
  702. glDisableVertexAttribArray(i);
  703. continue;
  704. }
  705. if (i <= RS::ARRAY_TANGENT) {
  706. attribs[i].stride = vertex_stride;
  707. if (mis) {
  708. glBindBuffer(GL_ARRAY_BUFFER, mis->vertex_buffer);
  709. } else {
  710. glBindBuffer(GL_ARRAY_BUFFER, s->vertex_buffer);
  711. }
  712. } else if (i <= RS::ARRAY_CUSTOM3) {
  713. attribs[i].stride = attributes_stride;
  714. glBindBuffer(GL_ARRAY_BUFFER, s->attribute_buffer);
  715. } else {
  716. attribs[i].stride = skin_stride;
  717. glBindBuffer(GL_ARRAY_BUFFER, s->skin_buffer);
  718. }
  719. if (attribs[i].integer) {
  720. glVertexAttribIPointer(i, attribs[i].size, attribs[i].type, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset));
  721. } else {
  722. glVertexAttribPointer(i, attribs[i].size, attribs[i].type, attribs[i].normalized, attribs[i].stride, CAST_INT_TO_UCHAR_PTR(attribs[i].offset));
  723. }
  724. glEnableVertexAttribArray(i);
  725. }
  726. // Do not bind index here as we want to switch between index buffers for LOD
  727. glBindVertexArray(0);
  728. glBindBuffer(GL_ARRAY_BUFFER, 0);
  729. v.input_mask = p_input_mask;
  730. }
  731. /* MESH INSTANCE API */
  732. RID MeshStorage::mesh_instance_create(RID p_base) {
  733. Mesh *mesh = mesh_owner.get_or_null(p_base);
  734. ERR_FAIL_COND_V(!mesh, RID());
  735. RID rid = mesh_instance_owner.make_rid();
  736. MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
  737. mi->mesh = mesh;
  738. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  739. _mesh_instance_add_surface(mi, mesh, i);
  740. }
  741. mi->I = mesh->instances.push_back(mi);
  742. mi->dirty = true;
  743. return rid;
  744. }
  745. void MeshStorage::mesh_instance_free(RID p_rid) {
  746. MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
  747. _mesh_instance_clear(mi);
  748. mi->mesh->instances.erase(mi->I);
  749. mi->I = nullptr;
  750. mesh_instance_owner.free(p_rid);
  751. }
  752. void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
  753. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  754. if (mi->skeleton == p_skeleton) {
  755. return;
  756. }
  757. mi->skeleton = p_skeleton;
  758. mi->skeleton_version = 0;
  759. mi->dirty = true;
  760. }
  761. void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
  762. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  763. ERR_FAIL_COND(!mi);
  764. ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
  765. mi->blend_weights[p_shape] = p_weight;
  766. mi->dirty = true;
  767. }
  768. void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
  769. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  770. if (mi->surfaces[i].version_count != 0) {
  771. for (uint32_t j = 0; j < mi->surfaces[i].version_count; j++) {
  772. glDeleteVertexArrays(1, &mi->surfaces[i].versions[j].vertex_array);
  773. mi->surfaces[i].versions[j].vertex_array = 0;
  774. }
  775. memfree(mi->surfaces[i].versions);
  776. }
  777. if (mi->surfaces[i].vertex_buffers[0] != 0) {
  778. glDeleteBuffers(2, mi->surfaces[i].vertex_buffers);
  779. mi->surfaces[i].vertex_buffers[0] = 0;
  780. mi->surfaces[i].vertex_buffers[1] = 0;
  781. }
  782. if (mi->surfaces[i].vertex_buffer != 0) {
  783. glDeleteBuffers(1, &mi->surfaces[i].vertex_buffer);
  784. mi->surfaces[i].vertex_buffer = 0;
  785. }
  786. }
  787. mi->surfaces.clear();
  788. mi->blend_weights.clear();
  789. mi->skeleton_version = 0;
  790. }
  791. void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
  792. if (mesh->blend_shape_count > 0) {
  793. mi->blend_weights.resize(mesh->blend_shape_count);
  794. for (uint32_t i = 0; i < mi->blend_weights.size(); i++) {
  795. mi->blend_weights[i] = 0.0;
  796. }
  797. }
  798. MeshInstance::Surface s;
  799. if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) {
  800. // Cache surface properties
  801. s.format_cache = mesh->surfaces[p_surface]->format;
  802. if ((s.format_cache & (1 << RS::ARRAY_VERTEX))) {
  803. if (s.format_cache & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  804. s.vertex_size_cache = 2;
  805. } else {
  806. s.vertex_size_cache = 3;
  807. }
  808. s.vertex_stride_cache = sizeof(float) * s.vertex_size_cache;
  809. }
  810. if ((s.format_cache & (1 << RS::ARRAY_NORMAL))) {
  811. s.vertex_normal_offset_cache = s.vertex_stride_cache;
  812. s.vertex_stride_cache += sizeof(uint32_t) * 2;
  813. }
  814. if ((s.format_cache & (1 << RS::ARRAY_TANGENT))) {
  815. s.vertex_tangent_offset_cache = s.vertex_stride_cache;
  816. s.vertex_stride_cache += sizeof(uint32_t) * 2;
  817. }
  818. // Buffer to be used for rendering. Final output of skeleton and blend shapes.
  819. glGenBuffers(1, &s.vertex_buffer);
  820. glBindBuffer(GL_ARRAY_BUFFER, s.vertex_buffer);
  821. glBufferData(GL_ARRAY_BUFFER, s.vertex_stride_cache * mesh->surfaces[p_surface]->vertex_count, nullptr, GL_DYNAMIC_DRAW);
  822. if (mesh->blend_shape_count > 0) {
  823. // Ping-Pong buffers for processing blendshapes.
  824. glGenBuffers(2, s.vertex_buffers);
  825. for (uint32_t i = 0; i < 2; i++) {
  826. glBindBuffer(GL_ARRAY_BUFFER, s.vertex_buffers[i]);
  827. glBufferData(GL_ARRAY_BUFFER, s.vertex_stride_cache * mesh->surfaces[p_surface]->vertex_count, nullptr, GL_DYNAMIC_DRAW);
  828. }
  829. }
  830. glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
  831. }
  832. mi->surfaces.push_back(s);
  833. mi->dirty = true;
  834. }
  835. void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
  836. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  837. bool needs_update = mi->dirty;
  838. if (mi->array_update_list.in_list()) {
  839. return;
  840. }
  841. if (!needs_update && mi->skeleton.is_valid()) {
  842. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  843. if (sk && sk->version != mi->skeleton_version) {
  844. needs_update = true;
  845. }
  846. }
  847. if (needs_update) {
  848. dirty_mesh_instance_arrays.add(&mi->array_update_list);
  849. }
  850. }
  851. void MeshStorage::_blend_shape_bind_mesh_instance_buffer(MeshInstance *p_mi, uint32_t p_surface) {
  852. glBindBuffer(GL_ARRAY_BUFFER, p_mi->surfaces[p_surface].vertex_buffers[0]);
  853. if ((p_mi->surfaces[p_surface].format_cache & (1 << RS::ARRAY_VERTEX))) {
  854. glEnableVertexAttribArray(RS::ARRAY_VERTEX);
  855. glVertexAttribPointer(RS::ARRAY_VERTEX, p_mi->surfaces[p_surface].vertex_size_cache, GL_FLOAT, GL_FALSE, p_mi->surfaces[p_surface].vertex_stride_cache, CAST_INT_TO_UCHAR_PTR(0));
  856. } else {
  857. glDisableVertexAttribArray(RS::ARRAY_VERTEX);
  858. }
  859. if ((p_mi->surfaces[p_surface].format_cache & (1 << RS::ARRAY_NORMAL))) {
  860. glEnableVertexAttribArray(RS::ARRAY_NORMAL);
  861. glVertexAttribIPointer(RS::ARRAY_NORMAL, 2, GL_UNSIGNED_INT, p_mi->surfaces[p_surface].vertex_stride_cache, CAST_INT_TO_UCHAR_PTR(p_mi->surfaces[p_surface].vertex_normal_offset_cache));
  862. } else {
  863. glDisableVertexAttribArray(RS::ARRAY_NORMAL);
  864. }
  865. if ((p_mi->surfaces[p_surface].format_cache & (1 << RS::ARRAY_TANGENT))) {
  866. glEnableVertexAttribArray(RS::ARRAY_TANGENT);
  867. glVertexAttribIPointer(RS::ARRAY_TANGENT, 2, GL_UNSIGNED_INT, p_mi->surfaces[p_surface].vertex_stride_cache, CAST_INT_TO_UCHAR_PTR(p_mi->surfaces[p_surface].vertex_tangent_offset_cache));
  868. } else {
  869. glDisableVertexAttribArray(RS::ARRAY_TANGENT);
  870. }
  871. }
  872. void MeshStorage::_compute_skeleton(MeshInstance *p_mi, Skeleton *p_sk, uint32_t p_surface) {
  873. glBindBuffer(GL_ARRAY_BUFFER, 0);
  874. // Add in the bones and weights.
  875. glBindBuffer(GL_ARRAY_BUFFER, p_mi->mesh->surfaces[p_surface]->skin_buffer);
  876. bool use_8_weights = p_mi->surfaces[p_surface].format_cache & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  877. int skin_stride = sizeof(int16_t) * (use_8_weights ? 16 : 8);
  878. glEnableVertexAttribArray(RS::ARRAY_BONES);
  879. glVertexAttribIPointer(RS::ARRAY_BONES, 4, GL_UNSIGNED_SHORT, skin_stride, CAST_INT_TO_UCHAR_PTR(0));
  880. if (use_8_weights) {
  881. glEnableVertexAttribArray(11);
  882. glVertexAttribIPointer(11, 4, GL_UNSIGNED_SHORT, skin_stride, CAST_INT_TO_UCHAR_PTR(4 * sizeof(uint16_t)));
  883. glEnableVertexAttribArray(12);
  884. glVertexAttribPointer(12, 4, GL_UNSIGNED_SHORT, GL_TRUE, skin_stride, CAST_INT_TO_UCHAR_PTR(8 * sizeof(uint16_t)));
  885. glEnableVertexAttribArray(13);
  886. glVertexAttribPointer(13, 4, GL_UNSIGNED_SHORT, GL_TRUE, skin_stride, CAST_INT_TO_UCHAR_PTR(12 * sizeof(uint16_t)));
  887. } else {
  888. glEnableVertexAttribArray(RS::ARRAY_WEIGHTS);
  889. glVertexAttribPointer(RS::ARRAY_WEIGHTS, 4, GL_UNSIGNED_SHORT, GL_TRUE, skin_stride, CAST_INT_TO_UCHAR_PTR(4 * sizeof(uint16_t)));
  890. }
  891. glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, p_mi->surfaces[p_surface].vertex_buffer);
  892. glActiveTexture(GL_TEXTURE0);
  893. glBindTexture(GL_TEXTURE_2D, p_sk->transforms_texture);
  894. glBeginTransformFeedback(GL_POINTS);
  895. glDrawArrays(GL_POINTS, 0, p_mi->mesh->surfaces[p_surface]->vertex_count);
  896. glEndTransformFeedback();
  897. glDisableVertexAttribArray(RS::ARRAY_BONES);
  898. glDisableVertexAttribArray(RS::ARRAY_WEIGHTS);
  899. glDisableVertexAttribArray(RS::ARRAY_BONES + 2);
  900. glDisableVertexAttribArray(RS::ARRAY_WEIGHTS + 2);
  901. glBindVertexArray(0);
  902. glBindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, 0);
  903. }
  904. void MeshStorage::update_mesh_instances() {
  905. if (dirty_mesh_instance_arrays.first() == nullptr) {
  906. return; //nothing to do
  907. }
  908. glEnable(GL_RASTERIZER_DISCARD);
  909. // Process skeletons and blend shapes using transform feedback
  910. while (dirty_mesh_instance_arrays.first()) {
  911. MeshInstance *mi = dirty_mesh_instance_arrays.first()->self();
  912. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  913. // Precompute base weight if using blend shapes.
  914. float base_weight = 1.0;
  915. if (mi->mesh->blend_shape_count && mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED) {
  916. for (uint32_t i = 0; i < mi->mesh->blend_shape_count; i++) {
  917. base_weight -= mi->blend_weights[i];
  918. }
  919. }
  920. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  921. if (mi->surfaces[i].vertex_buffer == 0 || mi->mesh->surfaces[i]->skeleton_vertex_array == 0) {
  922. continue;
  923. }
  924. bool array_is_2d = mi->surfaces[i].format_cache & RS::ARRAY_FLAG_USE_2D_VERTICES;
  925. bool can_use_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->surfaces[i].format_cache & RS::ARRAY_FORMAT_BONES);
  926. bool use_8_weights = mi->surfaces[i].format_cache & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  927. // Always process blend shapes first.
  928. if (mi->mesh->blend_shape_count) {
  929. SkeletonShaderGLES3::ShaderVariant variant = SkeletonShaderGLES3::MODE_BASE_PASS;
  930. uint64_t specialization = 0;
  931. specialization |= array_is_2d ? SkeletonShaderGLES3::MODE_2D : 0;
  932. specialization |= SkeletonShaderGLES3::USE_BLEND_SHAPES;
  933. if (!array_is_2d) {
  934. if ((mi->surfaces[i].format_cache & (1 << RS::ARRAY_NORMAL))) {
  935. specialization |= SkeletonShaderGLES3::USE_NORMAL;
  936. }
  937. if ((mi->surfaces[i].format_cache & (1 << RS::ARRAY_TANGENT))) {
  938. specialization |= SkeletonShaderGLES3::USE_TANGENT;
  939. }
  940. }
  941. bool success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
  942. if (!success) {
  943. continue;
  944. }
  945. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_WEIGHT, base_weight, skeleton_shader.shader_version, variant, specialization);
  946. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_SHAPE_COUNT, float(mi->mesh->blend_shape_count), skeleton_shader.shader_version, variant, specialization);
  947. glBindBuffer(GL_ARRAY_BUFFER, 0);
  948. glBindVertexArray(mi->mesh->surfaces[i]->skeleton_vertex_array);
  949. glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, mi->surfaces[i].vertex_buffers[0]);
  950. glBeginTransformFeedback(GL_POINTS);
  951. glDrawArrays(GL_POINTS, 0, mi->mesh->surfaces[i]->vertex_count);
  952. glEndTransformFeedback();
  953. variant = SkeletonShaderGLES3::MODE_BLEND_PASS;
  954. success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
  955. if (!success) {
  956. continue;
  957. }
  958. //Do the last blend shape separately, as it can be combined with the skeleton pass.
  959. for (uint32_t bs = 0; bs < mi->mesh->blend_shape_count - 1; bs++) {
  960. float weight = mi->blend_weights[bs];
  961. if (Math::is_zero_approx(weight)) {
  962. //not bother with this one
  963. continue;
  964. }
  965. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_WEIGHT, weight, skeleton_shader.shader_version, variant, specialization);
  966. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_SHAPE_COUNT, float(mi->mesh->blend_shape_count), skeleton_shader.shader_version, variant, specialization);
  967. glBindVertexArray(mi->mesh->surfaces[i]->blend_shapes[bs].vertex_array);
  968. _blend_shape_bind_mesh_instance_buffer(mi, i);
  969. glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, mi->surfaces[i].vertex_buffers[1]);
  970. glBeginTransformFeedback(GL_POINTS);
  971. glDrawArrays(GL_POINTS, 0, mi->mesh->surfaces[i]->vertex_count);
  972. glEndTransformFeedback();
  973. SWAP(mi->surfaces[i].vertex_buffers[0], mi->surfaces[i].vertex_buffers[1]);
  974. }
  975. uint32_t bs = mi->mesh->blend_shape_count - 1;
  976. float weight = mi->blend_weights[bs];
  977. glBindVertexArray(mi->mesh->surfaces[i]->blend_shapes[bs].vertex_array);
  978. _blend_shape_bind_mesh_instance_buffer(mi, i);
  979. specialization |= can_use_skeleton ? SkeletonShaderGLES3::USE_SKELETON : 0;
  980. specialization |= (can_use_skeleton && use_8_weights) ? SkeletonShaderGLES3::USE_EIGHT_WEIGHTS : 0;
  981. specialization |= SkeletonShaderGLES3::FINAL_PASS;
  982. success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
  983. if (!success) {
  984. continue;
  985. }
  986. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_WEIGHT, weight, skeleton_shader.shader_version, variant, specialization);
  987. skeleton_shader.shader.version_set_uniform(SkeletonShaderGLES3::BLEND_SHAPE_COUNT, float(mi->mesh->blend_shape_count), skeleton_shader.shader_version, variant, specialization);
  988. if (can_use_skeleton) {
  989. // Do last blendshape in the same pass as the Skeleton.
  990. _compute_skeleton(mi, sk, i);
  991. can_use_skeleton = false;
  992. } else {
  993. // Do last blendshape by itself and prepare vertex data for use by the renderer.
  994. glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, mi->surfaces[i].vertex_buffer);
  995. glBeginTransformFeedback(GL_POINTS);
  996. glDrawArrays(GL_POINTS, 0, mi->mesh->surfaces[i]->vertex_count);
  997. glEndTransformFeedback();
  998. }
  999. glBindVertexArray(0);
  1000. glBindBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, 0);
  1001. }
  1002. // This branch should only execute when Skeleton is run by itself.
  1003. if (can_use_skeleton) {
  1004. SkeletonShaderGLES3::ShaderVariant variant = SkeletonShaderGLES3::MODE_BASE_PASS;
  1005. uint64_t specialization = 0;
  1006. specialization |= array_is_2d ? SkeletonShaderGLES3::MODE_2D : 0;
  1007. specialization |= SkeletonShaderGLES3::USE_SKELETON;
  1008. specialization |= SkeletonShaderGLES3::FINAL_PASS;
  1009. specialization |= use_8_weights ? SkeletonShaderGLES3::USE_EIGHT_WEIGHTS : 0;
  1010. if (!array_is_2d) {
  1011. if ((mi->surfaces[i].format_cache & (1 << RS::ARRAY_NORMAL))) {
  1012. specialization |= SkeletonShaderGLES3::USE_NORMAL;
  1013. }
  1014. if ((mi->surfaces[i].format_cache & (1 << RS::ARRAY_TANGENT))) {
  1015. specialization |= SkeletonShaderGLES3::USE_TANGENT;
  1016. }
  1017. }
  1018. bool success = skeleton_shader.shader.version_bind_shader(skeleton_shader.shader_version, variant, specialization);
  1019. if (!success) {
  1020. continue;
  1021. }
  1022. glBindVertexArray(mi->mesh->surfaces[i]->skeleton_vertex_array);
  1023. _compute_skeleton(mi, sk, i);
  1024. }
  1025. }
  1026. mi->dirty = false;
  1027. if (sk) {
  1028. mi->skeleton_version = sk->version;
  1029. }
  1030. dirty_mesh_instance_arrays.remove(&mi->array_update_list);
  1031. }
  1032. glDisable(GL_RASTERIZER_DISCARD);
  1033. glBindBuffer(GL_ARRAY_BUFFER, 0);
  1034. glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, 0);
  1035. }
  1036. /* MULTIMESH API */
  1037. RID MeshStorage::multimesh_allocate() {
  1038. return multimesh_owner.allocate_rid();
  1039. }
  1040. void MeshStorage::multimesh_initialize(RID p_rid) {
  1041. multimesh_owner.initialize_rid(p_rid, MultiMesh());
  1042. }
  1043. void MeshStorage::multimesh_free(RID p_rid) {
  1044. _update_dirty_multimeshes();
  1045. multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
  1046. MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
  1047. multimesh->dependency.deleted_notify(p_rid);
  1048. multimesh_owner.free(p_rid);
  1049. }
  1050. void MeshStorage::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) {
  1051. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1052. ERR_FAIL_COND(!multimesh);
  1053. if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
  1054. return;
  1055. }
  1056. if (multimesh->buffer) {
  1057. glDeleteBuffers(1, &multimesh->buffer);
  1058. multimesh->buffer = 0;
  1059. }
  1060. if (multimesh->data_cache_dirty_regions) {
  1061. memdelete_arr(multimesh->data_cache_dirty_regions);
  1062. multimesh->data_cache_dirty_regions = nullptr;
  1063. multimesh->data_cache_used_dirty_regions = 0;
  1064. }
  1065. multimesh->instances = p_instances;
  1066. multimesh->xform_format = p_transform_format;
  1067. multimesh->uses_colors = p_use_colors;
  1068. multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1069. multimesh->uses_custom_data = p_use_custom_data;
  1070. multimesh->custom_data_offset_cache = multimesh->color_offset_cache + (p_use_colors ? 2 : 0);
  1071. multimesh->stride_cache = multimesh->custom_data_offset_cache + (p_use_custom_data ? 2 : 0);
  1072. multimesh->buffer_set = false;
  1073. multimesh->data_cache = Vector<float>();
  1074. multimesh->aabb = AABB();
  1075. multimesh->aabb_dirty = false;
  1076. multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
  1077. if (multimesh->instances) {
  1078. glGenBuffers(1, &multimesh->buffer);
  1079. glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
  1080. glBufferData(GL_ARRAY_BUFFER, multimesh->instances * multimesh->stride_cache * sizeof(float), nullptr, GL_STATIC_DRAW);
  1081. glBindBuffer(GL_ARRAY_BUFFER, 0);
  1082. }
  1083. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1084. }
  1085. int MeshStorage::multimesh_get_instance_count(RID p_multimesh) const {
  1086. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1087. ERR_FAIL_COND_V(!multimesh, 0);
  1088. return multimesh->instances;
  1089. }
  1090. void MeshStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
  1091. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1092. ERR_FAIL_COND(!multimesh);
  1093. if (multimesh->mesh == p_mesh || p_mesh.is_null()) {
  1094. return;
  1095. }
  1096. multimesh->mesh = p_mesh;
  1097. if (multimesh->instances == 0) {
  1098. return;
  1099. }
  1100. if (multimesh->data_cache.size()) {
  1101. //we have a data cache, just mark it dirty
  1102. _multimesh_mark_all_dirty(multimesh, false, true);
  1103. } else if (multimesh->instances) {
  1104. // Need to re-create AABB. Unfortunately, calling this has a penalty.
  1105. if (multimesh->buffer_set) {
  1106. Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float));
  1107. const uint8_t *r = buffer.ptr();
  1108. const float *data = (const float *)r;
  1109. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1110. }
  1111. }
  1112. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  1113. }
  1114. #define MULTIMESH_DIRTY_REGION_SIZE 512
  1115. void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
  1116. if (multimesh->data_cache.size() > 0 || multimesh->instances == 0) {
  1117. return; //already local
  1118. }
  1119. ERR_FAIL_COND(multimesh->data_cache.size() > 0);
  1120. // this means that the user wants to load/save individual elements,
  1121. // for this, the data must reside on CPU, so just copy it there.
  1122. multimesh->data_cache.resize(multimesh->instances * multimesh->stride_cache);
  1123. {
  1124. float *w = multimesh->data_cache.ptrw();
  1125. if (multimesh->buffer_set) {
  1126. Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float));
  1127. {
  1128. const uint8_t *r = buffer.ptr();
  1129. memcpy(w, r, buffer.size());
  1130. }
  1131. } else {
  1132. memset(w, 0, (size_t)multimesh->instances * multimesh->stride_cache * sizeof(float));
  1133. }
  1134. }
  1135. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1136. multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1137. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1138. multimesh->data_cache_dirty_regions[i] = false;
  1139. }
  1140. multimesh->data_cache_used_dirty_regions = 0;
  1141. }
  1142. void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
  1143. uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
  1144. #ifdef DEBUG_ENABLED
  1145. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1146. ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
  1147. #endif
  1148. if (!multimesh->data_cache_dirty_regions[region_index]) {
  1149. multimesh->data_cache_dirty_regions[region_index] = true;
  1150. multimesh->data_cache_used_dirty_regions++;
  1151. }
  1152. if (p_aabb) {
  1153. multimesh->aabb_dirty = true;
  1154. }
  1155. if (!multimesh->dirty) {
  1156. multimesh->dirty_list = multimesh_dirty_list;
  1157. multimesh_dirty_list = multimesh;
  1158. multimesh->dirty = true;
  1159. }
  1160. }
  1161. void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
  1162. if (p_data) {
  1163. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1164. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1165. if (!multimesh->data_cache_dirty_regions[i]) {
  1166. multimesh->data_cache_dirty_regions[i] = true;
  1167. multimesh->data_cache_used_dirty_regions++;
  1168. }
  1169. }
  1170. }
  1171. if (p_aabb) {
  1172. multimesh->aabb_dirty = true;
  1173. }
  1174. if (!multimesh->dirty) {
  1175. multimesh->dirty_list = multimesh_dirty_list;
  1176. multimesh_dirty_list = multimesh;
  1177. multimesh->dirty = true;
  1178. }
  1179. }
  1180. void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
  1181. ERR_FAIL_COND(multimesh->mesh.is_null());
  1182. AABB aabb;
  1183. AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
  1184. for (int i = 0; i < p_instances; i++) {
  1185. const float *data = p_data + multimesh->stride_cache * i;
  1186. Transform3D t;
  1187. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1188. t.basis.rows[0][0] = data[0];
  1189. t.basis.rows[0][1] = data[1];
  1190. t.basis.rows[0][2] = data[2];
  1191. t.origin.x = data[3];
  1192. t.basis.rows[1][0] = data[4];
  1193. t.basis.rows[1][1] = data[5];
  1194. t.basis.rows[1][2] = data[6];
  1195. t.origin.y = data[7];
  1196. t.basis.rows[2][0] = data[8];
  1197. t.basis.rows[2][1] = data[9];
  1198. t.basis.rows[2][2] = data[10];
  1199. t.origin.z = data[11];
  1200. } else {
  1201. t.basis.rows[0].x = data[0];
  1202. t.basis.rows[1].x = data[1];
  1203. t.origin.x = data[3];
  1204. t.basis.rows[0].y = data[4];
  1205. t.basis.rows[1].y = data[5];
  1206. t.origin.y = data[7];
  1207. }
  1208. if (i == 0) {
  1209. aabb = t.xform(mesh_aabb);
  1210. } else {
  1211. aabb.merge_with(t.xform(mesh_aabb));
  1212. }
  1213. }
  1214. multimesh->aabb = aabb;
  1215. }
  1216. void MeshStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
  1217. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1218. ERR_FAIL_COND(!multimesh);
  1219. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1220. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
  1221. _multimesh_make_local(multimesh);
  1222. {
  1223. float *w = multimesh->data_cache.ptrw();
  1224. float *dataptr = w + p_index * multimesh->stride_cache;
  1225. dataptr[0] = p_transform.basis.rows[0][0];
  1226. dataptr[1] = p_transform.basis.rows[0][1];
  1227. dataptr[2] = p_transform.basis.rows[0][2];
  1228. dataptr[3] = p_transform.origin.x;
  1229. dataptr[4] = p_transform.basis.rows[1][0];
  1230. dataptr[5] = p_transform.basis.rows[1][1];
  1231. dataptr[6] = p_transform.basis.rows[1][2];
  1232. dataptr[7] = p_transform.origin.y;
  1233. dataptr[8] = p_transform.basis.rows[2][0];
  1234. dataptr[9] = p_transform.basis.rows[2][1];
  1235. dataptr[10] = p_transform.basis.rows[2][2];
  1236. dataptr[11] = p_transform.origin.z;
  1237. }
  1238. _multimesh_mark_dirty(multimesh, p_index, true);
  1239. }
  1240. void MeshStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
  1241. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1242. ERR_FAIL_COND(!multimesh);
  1243. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1244. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
  1245. _multimesh_make_local(multimesh);
  1246. {
  1247. float *w = multimesh->data_cache.ptrw();
  1248. float *dataptr = w + p_index * multimesh->stride_cache;
  1249. dataptr[0] = p_transform.columns[0][0];
  1250. dataptr[1] = p_transform.columns[1][0];
  1251. dataptr[2] = 0;
  1252. dataptr[3] = p_transform.columns[2][0];
  1253. dataptr[4] = p_transform.columns[0][1];
  1254. dataptr[5] = p_transform.columns[1][1];
  1255. dataptr[6] = 0;
  1256. dataptr[7] = p_transform.columns[2][1];
  1257. }
  1258. _multimesh_mark_dirty(multimesh, p_index, true);
  1259. }
  1260. void MeshStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
  1261. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1262. ERR_FAIL_COND(!multimesh);
  1263. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1264. ERR_FAIL_COND(!multimesh->uses_colors);
  1265. _multimesh_make_local(multimesh);
  1266. {
  1267. // Colors are packed into 2 floats.
  1268. float *w = multimesh->data_cache.ptrw();
  1269. float *dataptr = w + p_index * multimesh->stride_cache + multimesh->color_offset_cache;
  1270. uint16_t val[4] = { Math::make_half_float(p_color.r), Math::make_half_float(p_color.g), Math::make_half_float(p_color.b), Math::make_half_float(p_color.a) };
  1271. memcpy(dataptr, val, 2 * 4);
  1272. }
  1273. _multimesh_mark_dirty(multimesh, p_index, false);
  1274. }
  1275. void MeshStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
  1276. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1277. ERR_FAIL_COND(!multimesh);
  1278. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1279. ERR_FAIL_COND(!multimesh->uses_custom_data);
  1280. _multimesh_make_local(multimesh);
  1281. {
  1282. float *w = multimesh->data_cache.ptrw();
  1283. float *dataptr = w + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1284. uint16_t val[4] = { Math::make_half_float(p_color.r), Math::make_half_float(p_color.g), Math::make_half_float(p_color.b), Math::make_half_float(p_color.a) };
  1285. memcpy(dataptr, val, 2 * 4);
  1286. }
  1287. _multimesh_mark_dirty(multimesh, p_index, false);
  1288. }
  1289. RID MeshStorage::multimesh_get_mesh(RID p_multimesh) const {
  1290. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1291. ERR_FAIL_COND_V(!multimesh, RID());
  1292. return multimesh->mesh;
  1293. }
  1294. AABB MeshStorage::multimesh_get_aabb(RID p_multimesh) const {
  1295. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1296. ERR_FAIL_COND_V(!multimesh, AABB());
  1297. if (multimesh->aabb_dirty) {
  1298. const_cast<MeshStorage *>(this)->_update_dirty_multimeshes();
  1299. }
  1300. return multimesh->aabb;
  1301. }
  1302. Transform3D MeshStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
  1303. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1304. ERR_FAIL_COND_V(!multimesh, Transform3D());
  1305. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
  1306. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
  1307. _multimesh_make_local(multimesh);
  1308. Transform3D t;
  1309. {
  1310. const float *r = multimesh->data_cache.ptr();
  1311. const float *dataptr = r + p_index * multimesh->stride_cache;
  1312. t.basis.rows[0][0] = dataptr[0];
  1313. t.basis.rows[0][1] = dataptr[1];
  1314. t.basis.rows[0][2] = dataptr[2];
  1315. t.origin.x = dataptr[3];
  1316. t.basis.rows[1][0] = dataptr[4];
  1317. t.basis.rows[1][1] = dataptr[5];
  1318. t.basis.rows[1][2] = dataptr[6];
  1319. t.origin.y = dataptr[7];
  1320. t.basis.rows[2][0] = dataptr[8];
  1321. t.basis.rows[2][1] = dataptr[9];
  1322. t.basis.rows[2][2] = dataptr[10];
  1323. t.origin.z = dataptr[11];
  1324. }
  1325. return t;
  1326. }
  1327. Transform2D MeshStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
  1328. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1329. ERR_FAIL_COND_V(!multimesh, Transform2D());
  1330. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
  1331. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
  1332. _multimesh_make_local(multimesh);
  1333. Transform2D t;
  1334. {
  1335. const float *r = multimesh->data_cache.ptr();
  1336. const float *dataptr = r + p_index * multimesh->stride_cache;
  1337. t.columns[0][0] = dataptr[0];
  1338. t.columns[1][0] = dataptr[1];
  1339. t.columns[2][0] = dataptr[3];
  1340. t.columns[0][1] = dataptr[4];
  1341. t.columns[1][1] = dataptr[5];
  1342. t.columns[2][1] = dataptr[7];
  1343. }
  1344. return t;
  1345. }
  1346. Color MeshStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
  1347. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1348. ERR_FAIL_COND_V(!multimesh, Color());
  1349. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1350. ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
  1351. _multimesh_make_local(multimesh);
  1352. Color c;
  1353. {
  1354. const float *r = multimesh->data_cache.ptr();
  1355. const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->color_offset_cache;
  1356. uint16_t raw_data[4];
  1357. memcpy(raw_data, dataptr, 2 * 4);
  1358. c.r = Math::half_to_float(raw_data[0]);
  1359. c.g = Math::half_to_float(raw_data[1]);
  1360. c.b = Math::half_to_float(raw_data[2]);
  1361. c.a = Math::half_to_float(raw_data[3]);
  1362. }
  1363. return c;
  1364. }
  1365. Color MeshStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
  1366. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1367. ERR_FAIL_COND_V(!multimesh, Color());
  1368. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1369. ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
  1370. _multimesh_make_local(multimesh);
  1371. Color c;
  1372. {
  1373. const float *r = multimesh->data_cache.ptr();
  1374. const float *dataptr = r + p_index * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1375. uint16_t raw_data[4];
  1376. memcpy(raw_data, dataptr, 2 * 4);
  1377. c.r = Math::half_to_float(raw_data[0]);
  1378. c.g = Math::half_to_float(raw_data[1]);
  1379. c.b = Math::half_to_float(raw_data[2]);
  1380. c.a = Math::half_to_float(raw_data[3]);
  1381. }
  1382. return c;
  1383. }
  1384. void MeshStorage::multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
  1385. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1386. ERR_FAIL_COND(!multimesh);
  1387. if (multimesh->uses_colors || multimesh->uses_custom_data) {
  1388. // Color and custom need to be packed so copy buffer to data_cache and pack.
  1389. _multimesh_make_local(multimesh);
  1390. multimesh->data_cache = p_buffer;
  1391. float *w = multimesh->data_cache.ptrw();
  1392. uint32_t old_stride = multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1393. old_stride += multimesh->uses_colors ? 4 : 0;
  1394. old_stride += multimesh->uses_custom_data ? 4 : 0;
  1395. for (int i = 0; i < multimesh->instances; i++) {
  1396. {
  1397. float *dataptr = w + i * old_stride;
  1398. float *newptr = w + i * multimesh->stride_cache;
  1399. float vals[8] = { dataptr[0], dataptr[1], dataptr[2], dataptr[3], dataptr[4], dataptr[5], dataptr[6], dataptr[7] };
  1400. memcpy(newptr, vals, 8 * 4);
  1401. }
  1402. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1403. float *dataptr = w + i * old_stride + 8;
  1404. float *newptr = w + i * multimesh->stride_cache + 8;
  1405. float vals[8] = { dataptr[0], dataptr[1], dataptr[2], dataptr[3] };
  1406. memcpy(newptr, vals, 4 * 4);
  1407. }
  1408. if (multimesh->uses_colors) {
  1409. float *dataptr = w + i * old_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12);
  1410. float *newptr = w + i * multimesh->stride_cache + multimesh->color_offset_cache;
  1411. uint16_t val[4] = { Math::make_half_float(dataptr[0]), Math::make_half_float(dataptr[1]), Math::make_half_float(dataptr[2]), Math::make_half_float(dataptr[3]) };
  1412. memcpy(newptr, val, 2 * 4);
  1413. }
  1414. if (multimesh->uses_custom_data) {
  1415. float *dataptr = w + i * old_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12) + (multimesh->uses_colors ? 4 : 0);
  1416. float *newptr = w + i * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1417. uint16_t val[4] = { Math::make_half_float(dataptr[0]), Math::make_half_float(dataptr[1]), Math::make_half_float(dataptr[2]), Math::make_half_float(dataptr[3]) };
  1418. memcpy(newptr, val, 2 * 4);
  1419. }
  1420. }
  1421. multimesh->data_cache.resize(multimesh->instances * (int)multimesh->stride_cache);
  1422. const float *r = multimesh->data_cache.ptr();
  1423. glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
  1424. glBufferData(GL_ARRAY_BUFFER, multimesh->data_cache.size() * sizeof(float), r, GL_STATIC_DRAW);
  1425. glBindBuffer(GL_ARRAY_BUFFER, 0);
  1426. } else {
  1427. // Only Transform is being used, so we can upload directly.
  1428. ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
  1429. const float *r = p_buffer.ptr();
  1430. glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
  1431. glBufferData(GL_ARRAY_BUFFER, p_buffer.size() * sizeof(float), r, GL_STATIC_DRAW);
  1432. glBindBuffer(GL_ARRAY_BUFFER, 0);
  1433. }
  1434. multimesh->buffer_set = true;
  1435. if (multimesh->data_cache.size() || multimesh->uses_colors || multimesh->uses_custom_data) {
  1436. //if we have a data cache, just update it
  1437. multimesh->data_cache = multimesh->data_cache;
  1438. {
  1439. //clear dirty since nothing will be dirty anymore
  1440. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1441. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1442. multimesh->data_cache_dirty_regions[i] = false;
  1443. }
  1444. multimesh->data_cache_used_dirty_regions = 0;
  1445. }
  1446. _multimesh_mark_all_dirty(multimesh, false, true); //update AABB
  1447. } else if (multimesh->mesh.is_valid()) {
  1448. //if we have a mesh set, we need to re-generate the AABB from the new data
  1449. const float *data = p_buffer.ptr();
  1450. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1451. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1452. }
  1453. }
  1454. Vector<float> MeshStorage::multimesh_get_buffer(RID p_multimesh) const {
  1455. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1456. ERR_FAIL_COND_V(!multimesh, Vector<float>());
  1457. Vector<float> ret;
  1458. if (multimesh->buffer == 0 || multimesh->instances == 0) {
  1459. return Vector<float>();
  1460. } else if (multimesh->data_cache.size()) {
  1461. ret = multimesh->data_cache;
  1462. } else {
  1463. // Buffer not cached, so fetch from GPU memory. This can be a stalling operation, avoid whenever possible.
  1464. Vector<uint8_t> buffer = Utilities::buffer_get_data(GL_ARRAY_BUFFER, multimesh->buffer, multimesh->instances * multimesh->stride_cache * sizeof(float));
  1465. ret.resize(multimesh->instances * multimesh->stride_cache);
  1466. {
  1467. float *w = ret.ptrw();
  1468. const uint8_t *r = buffer.ptr();
  1469. memcpy(w, r, buffer.size());
  1470. }
  1471. }
  1472. if (multimesh->uses_colors || multimesh->uses_custom_data) {
  1473. // Need to decompress buffer.
  1474. uint32_t new_stride = multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1475. new_stride += multimesh->uses_colors ? 4 : 0;
  1476. new_stride += multimesh->uses_custom_data ? 4 : 0;
  1477. Vector<float> decompressed;
  1478. decompressed.resize(multimesh->instances * (int)new_stride);
  1479. float *w = decompressed.ptrw();
  1480. const float *r = ret.ptr();
  1481. for (int i = 0; i < multimesh->instances; i++) {
  1482. {
  1483. float *newptr = w + i * new_stride;
  1484. const float *oldptr = r + i * multimesh->stride_cache;
  1485. float vals[8] = { oldptr[0], oldptr[1], oldptr[2], oldptr[3], oldptr[4], oldptr[5], oldptr[6], oldptr[7] };
  1486. memcpy(newptr, vals, 8 * 4);
  1487. }
  1488. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1489. float *newptr = w + i * new_stride + 8;
  1490. const float *oldptr = r + i * multimesh->stride_cache + 8;
  1491. float vals[8] = { oldptr[0], oldptr[1], oldptr[2], oldptr[3] };
  1492. memcpy(newptr, vals, 4 * 4);
  1493. }
  1494. if (multimesh->uses_colors) {
  1495. float *newptr = w + i * new_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12);
  1496. const float *oldptr = r + i * multimesh->stride_cache + multimesh->color_offset_cache;
  1497. uint16_t raw_data[4];
  1498. memcpy(raw_data, oldptr, 2 * 4);
  1499. newptr[0] = Math::half_to_float(raw_data[0]);
  1500. newptr[1] = Math::half_to_float(raw_data[1]);
  1501. newptr[2] = Math::half_to_float(raw_data[2]);
  1502. newptr[3] = Math::half_to_float(raw_data[3]);
  1503. }
  1504. if (multimesh->uses_custom_data) {
  1505. float *newptr = w + i * new_stride + (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12) + (multimesh->uses_colors ? 4 : 0);
  1506. const float *oldptr = r + i * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1507. uint16_t raw_data[4];
  1508. memcpy(raw_data, oldptr, 2 * 4);
  1509. newptr[0] = Math::half_to_float(raw_data[0]);
  1510. newptr[1] = Math::half_to_float(raw_data[1]);
  1511. newptr[2] = Math::half_to_float(raw_data[2]);
  1512. newptr[3] = Math::half_to_float(raw_data[3]);
  1513. }
  1514. }
  1515. return decompressed;
  1516. } else {
  1517. return ret;
  1518. }
  1519. }
  1520. void MeshStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
  1521. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1522. ERR_FAIL_COND(!multimesh);
  1523. ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
  1524. if (multimesh->visible_instances == p_visible) {
  1525. return;
  1526. }
  1527. if (multimesh->data_cache.size()) {
  1528. //there is a data cache..
  1529. _multimesh_mark_all_dirty(multimesh, false, true);
  1530. }
  1531. multimesh->visible_instances = p_visible;
  1532. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
  1533. }
  1534. int MeshStorage::multimesh_get_visible_instances(RID p_multimesh) const {
  1535. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1536. ERR_FAIL_COND_V(!multimesh, 0);
  1537. return multimesh->visible_instances;
  1538. }
  1539. void MeshStorage::_update_dirty_multimeshes() {
  1540. while (multimesh_dirty_list) {
  1541. MultiMesh *multimesh = multimesh_dirty_list;
  1542. if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
  1543. const float *data = multimesh->data_cache.ptr();
  1544. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1545. if (multimesh->data_cache_used_dirty_regions) {
  1546. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1547. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1548. GLint region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1549. if (multimesh->data_cache_used_dirty_regions > 32 || multimesh->data_cache_used_dirty_regions > visible_region_count / 2) {
  1550. // If there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
  1551. glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
  1552. glBufferData(GL_ARRAY_BUFFER, MIN(visible_region_count * region_size, multimesh->instances * multimesh->stride_cache * sizeof(float)), data, GL_STATIC_DRAW);
  1553. glBindBuffer(GL_ARRAY_BUFFER, 0);
  1554. } else {
  1555. // Not that many regions? update them all
  1556. // TODO: profile the performance cost on low end
  1557. glBindBuffer(GL_ARRAY_BUFFER, multimesh->buffer);
  1558. for (uint32_t i = 0; i < visible_region_count; i++) {
  1559. if (multimesh->data_cache_dirty_regions[i]) {
  1560. GLint offset = i * region_size;
  1561. GLint size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1562. uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
  1563. glBufferSubData(GL_ARRAY_BUFFER, offset, MIN(region_size, size - offset), &data[region_start_index]);
  1564. }
  1565. }
  1566. glBindBuffer(GL_ARRAY_BUFFER, 0);
  1567. }
  1568. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1569. multimesh->data_cache_dirty_regions[i] = false;
  1570. }
  1571. multimesh->data_cache_used_dirty_regions = 0;
  1572. }
  1573. if (multimesh->aabb_dirty && multimesh->mesh.is_valid()) {
  1574. _multimesh_re_create_aabb(multimesh, data, visible_instances);
  1575. multimesh->aabb_dirty = false;
  1576. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1577. }
  1578. }
  1579. multimesh_dirty_list = multimesh->dirty_list;
  1580. multimesh->dirty_list = nullptr;
  1581. multimesh->dirty = false;
  1582. }
  1583. multimesh_dirty_list = nullptr;
  1584. }
  1585. /* SKELETON API */
  1586. RID MeshStorage::skeleton_allocate() {
  1587. return skeleton_owner.allocate_rid();
  1588. }
  1589. void MeshStorage::skeleton_initialize(RID p_rid) {
  1590. skeleton_owner.initialize_rid(p_rid, Skeleton());
  1591. }
  1592. void MeshStorage::skeleton_free(RID p_rid) {
  1593. _update_dirty_skeletons();
  1594. skeleton_allocate_data(p_rid, 0);
  1595. Skeleton *skeleton = skeleton_owner.get_or_null(p_rid);
  1596. skeleton->dependency.deleted_notify(p_rid);
  1597. skeleton_owner.free(p_rid);
  1598. }
  1599. void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) {
  1600. if (!skeleton->dirty) {
  1601. skeleton->dirty = true;
  1602. skeleton->dirty_list = skeleton_dirty_list;
  1603. skeleton_dirty_list = skeleton;
  1604. }
  1605. }
  1606. void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
  1607. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1608. ERR_FAIL_COND(!skeleton);
  1609. ERR_FAIL_COND(p_bones < 0);
  1610. if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
  1611. return;
  1612. }
  1613. skeleton->size = p_bones;
  1614. skeleton->use_2d = p_2d_skeleton;
  1615. skeleton->height = (p_bones * (p_2d_skeleton ? 2 : 3)) / 256;
  1616. if ((p_bones * (p_2d_skeleton ? 2 : 3)) % 256) {
  1617. skeleton->height++;
  1618. }
  1619. if (skeleton->transforms_texture != 0) {
  1620. glDeleteTextures(1, &skeleton->transforms_texture);
  1621. skeleton->transforms_texture = 0;
  1622. skeleton->data.clear();
  1623. }
  1624. if (skeleton->size) {
  1625. skeleton->data.resize(256 * skeleton->height * 4);
  1626. glGenTextures(1, &skeleton->transforms_texture);
  1627. glBindTexture(GL_TEXTURE_2D, skeleton->transforms_texture);
  1628. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, 256, skeleton->height, 0, GL_RGBA, GL_FLOAT, nullptr);
  1629. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
  1630. glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
  1631. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
  1632. glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
  1633. glBindTexture(GL_TEXTURE_2D, 0);
  1634. memset(skeleton->data.ptrw(), 0, skeleton->data.size() * sizeof(float));
  1635. _skeleton_make_dirty(skeleton);
  1636. }
  1637. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA);
  1638. }
  1639. void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
  1640. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1641. ERR_FAIL_NULL(skeleton);
  1642. ERR_FAIL_COND(!skeleton->use_2d);
  1643. skeleton->base_transform_2d = p_base_transform;
  1644. }
  1645. int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
  1646. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1647. ERR_FAIL_COND_V(!skeleton, 0);
  1648. return skeleton->size;
  1649. }
  1650. void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
  1651. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1652. ERR_FAIL_COND(!skeleton);
  1653. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1654. ERR_FAIL_COND(skeleton->use_2d);
  1655. float *dataptr = skeleton->data.ptrw() + p_bone * 12;
  1656. dataptr[0] = p_transform.basis.rows[0][0];
  1657. dataptr[1] = p_transform.basis.rows[0][1];
  1658. dataptr[2] = p_transform.basis.rows[0][2];
  1659. dataptr[3] = p_transform.origin.x;
  1660. dataptr[4] = p_transform.basis.rows[1][0];
  1661. dataptr[5] = p_transform.basis.rows[1][1];
  1662. dataptr[6] = p_transform.basis.rows[1][2];
  1663. dataptr[7] = p_transform.origin.y;
  1664. dataptr[8] = p_transform.basis.rows[2][0];
  1665. dataptr[9] = p_transform.basis.rows[2][1];
  1666. dataptr[10] = p_transform.basis.rows[2][2];
  1667. dataptr[11] = p_transform.origin.z;
  1668. _skeleton_make_dirty(skeleton);
  1669. }
  1670. Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
  1671. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1672. ERR_FAIL_COND_V(!skeleton, Transform3D());
  1673. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D());
  1674. ERR_FAIL_COND_V(skeleton->use_2d, Transform3D());
  1675. const float *dataptr = skeleton->data.ptr() + p_bone * 12;
  1676. Transform3D t;
  1677. t.basis.rows[0][0] = dataptr[0];
  1678. t.basis.rows[0][1] = dataptr[1];
  1679. t.basis.rows[0][2] = dataptr[2];
  1680. t.origin.x = dataptr[3];
  1681. t.basis.rows[1][0] = dataptr[4];
  1682. t.basis.rows[1][1] = dataptr[5];
  1683. t.basis.rows[1][2] = dataptr[6];
  1684. t.origin.y = dataptr[7];
  1685. t.basis.rows[2][0] = dataptr[8];
  1686. t.basis.rows[2][1] = dataptr[9];
  1687. t.basis.rows[2][2] = dataptr[10];
  1688. t.origin.z = dataptr[11];
  1689. return t;
  1690. }
  1691. void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
  1692. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1693. ERR_FAIL_COND(!skeleton);
  1694. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1695. ERR_FAIL_COND(!skeleton->use_2d);
  1696. float *dataptr = skeleton->data.ptrw() + p_bone * 8;
  1697. dataptr[0] = p_transform.columns[0][0];
  1698. dataptr[1] = p_transform.columns[1][0];
  1699. dataptr[2] = 0;
  1700. dataptr[3] = p_transform.columns[2][0];
  1701. dataptr[4] = p_transform.columns[0][1];
  1702. dataptr[5] = p_transform.columns[1][1];
  1703. dataptr[6] = 0;
  1704. dataptr[7] = p_transform.columns[2][1];
  1705. _skeleton_make_dirty(skeleton);
  1706. }
  1707. Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
  1708. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1709. ERR_FAIL_COND_V(!skeleton, Transform2D());
  1710. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
  1711. ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
  1712. const float *dataptr = skeleton->data.ptr() + p_bone * 8;
  1713. Transform2D t;
  1714. t.columns[0][0] = dataptr[0];
  1715. t.columns[1][0] = dataptr[1];
  1716. t.columns[2][0] = dataptr[3];
  1717. t.columns[0][1] = dataptr[4];
  1718. t.columns[1][1] = dataptr[5];
  1719. t.columns[2][1] = dataptr[7];
  1720. return t;
  1721. }
  1722. void MeshStorage::_update_dirty_skeletons() {
  1723. while (skeleton_dirty_list) {
  1724. Skeleton *skeleton = skeleton_dirty_list;
  1725. if (skeleton->size) {
  1726. glBindTexture(GL_TEXTURE_2D, skeleton->transforms_texture);
  1727. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, 256, skeleton->height, 0, GL_RGBA, GL_FLOAT, skeleton->data.ptr());
  1728. glBindTexture(GL_TEXTURE_2D, 0);
  1729. }
  1730. skeleton_dirty_list = skeleton->dirty_list;
  1731. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES);
  1732. skeleton->version++;
  1733. skeleton->dirty = false;
  1734. skeleton->dirty_list = nullptr;
  1735. }
  1736. skeleton_dirty_list = nullptr;
  1737. }
  1738. void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) {
  1739. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1740. ERR_FAIL_COND(!skeleton);
  1741. p_instance->update_dependency(&skeleton->dependency);
  1742. }
  1743. #endif // GLES3_ENABLED