ecp_curves.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486
  1. /*
  2. * Elliptic curves over GF(p): curve-specific data and functions
  3. *
  4. * Copyright The Mbed TLS Contributors
  5. * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
  6. */
  7. #include "common.h"
  8. #if defined(MBEDTLS_ECP_C)
  9. #include "mbedtls/ecp.h"
  10. #include "mbedtls/platform_util.h"
  11. #include "mbedtls/error.h"
  12. #include "mbedtls/bn_mul.h"
  13. #include "ecp_invasive.h"
  14. #include <string.h>
  15. #if !defined(MBEDTLS_ECP_ALT)
  16. /* Parameter validation macros based on platform_util.h */
  17. #define ECP_VALIDATE_RET(cond) \
  18. MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA)
  19. #define ECP_VALIDATE(cond) \
  20. MBEDTLS_INTERNAL_VALIDATE(cond)
  21. #define ECP_MPI_INIT(s, n, p) { s, (n), (mbedtls_mpi_uint *) (p) }
  22. #define ECP_MPI_INIT_ARRAY(x) \
  23. ECP_MPI_INIT(1, sizeof(x) / sizeof(mbedtls_mpi_uint), x)
  24. /*
  25. * Note: the constants are in little-endian order
  26. * to be directly usable in MPIs
  27. */
  28. /*
  29. * Domain parameters for secp192r1
  30. */
  31. #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
  32. static const mbedtls_mpi_uint secp192r1_p[] = {
  33. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  34. MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  35. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  36. };
  37. static const mbedtls_mpi_uint secp192r1_b[] = {
  38. MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE),
  39. MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F),
  40. MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64),
  41. };
  42. static const mbedtls_mpi_uint secp192r1_gx[] = {
  43. MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4),
  44. MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C),
  45. MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18),
  46. };
  47. static const mbedtls_mpi_uint secp192r1_gy[] = {
  48. MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73),
  49. MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63),
  50. MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07),
  51. };
  52. static const mbedtls_mpi_uint secp192r1_n[] = {
  53. MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14),
  54. MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF),
  55. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  56. };
  57. #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
  58. /*
  59. * Domain parameters for secp224r1
  60. */
  61. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
  62. static const mbedtls_mpi_uint secp224r1_p[] = {
  63. MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
  64. MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
  65. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  66. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
  67. };
  68. static const mbedtls_mpi_uint secp224r1_b[] = {
  69. MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27),
  70. MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50),
  71. MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C),
  72. MBEDTLS_BYTES_TO_T_UINT_4(0x85, 0x0A, 0x05, 0xB4),
  73. };
  74. static const mbedtls_mpi_uint secp224r1_gx[] = {
  75. MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34),
  76. MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A),
  77. MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B),
  78. MBEDTLS_BYTES_TO_T_UINT_4(0xBD, 0x0C, 0x0E, 0xB7),
  79. };
  80. static const mbedtls_mpi_uint secp224r1_gy[] = {
  81. MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44),
  82. MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD),
  83. MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5),
  84. MBEDTLS_BYTES_TO_T_UINT_4(0x88, 0x63, 0x37, 0xBD),
  85. };
  86. static const mbedtls_mpi_uint secp224r1_n[] = {
  87. MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13),
  88. MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF),
  89. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  90. MBEDTLS_BYTES_TO_T_UINT_4(0xFF, 0xFF, 0xFF, 0xFF),
  91. };
  92. #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
  93. /*
  94. * Domain parameters for secp256r1
  95. */
  96. #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
  97. static const mbedtls_mpi_uint secp256r1_p[] = {
  98. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  99. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
  100. MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
  101. MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
  102. };
  103. static const mbedtls_mpi_uint secp256r1_b[] = {
  104. MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B),
  105. MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65),
  106. MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3),
  107. MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A),
  108. };
  109. static const mbedtls_mpi_uint secp256r1_gx[] = {
  110. MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4),
  111. MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77),
  112. MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8),
  113. MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B),
  114. };
  115. static const mbedtls_mpi_uint secp256r1_gy[] = {
  116. MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB),
  117. MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B),
  118. MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E),
  119. MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F),
  120. };
  121. static const mbedtls_mpi_uint secp256r1_n[] = {
  122. MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3),
  123. MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC),
  124. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  125. MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
  126. };
  127. #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
  128. /*
  129. * Domain parameters for secp384r1
  130. */
  131. #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  132. static const mbedtls_mpi_uint secp384r1_p[] = {
  133. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
  134. MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
  135. MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  136. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  137. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  138. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  139. };
  140. static const mbedtls_mpi_uint secp384r1_b[] = {
  141. MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A),
  142. MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6),
  143. MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03),
  144. MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18),
  145. MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98),
  146. MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3),
  147. };
  148. static const mbedtls_mpi_uint secp384r1_gx[] = {
  149. MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A),
  150. MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55),
  151. MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59),
  152. MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E),
  153. MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E),
  154. MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA),
  155. };
  156. static const mbedtls_mpi_uint secp384r1_gy[] = {
  157. MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A),
  158. MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A),
  159. MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9),
  160. MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8),
  161. MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D),
  162. MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36),
  163. };
  164. static const mbedtls_mpi_uint secp384r1_n[] = {
  165. MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC),
  166. MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58),
  167. MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7),
  168. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  169. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  170. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  171. };
  172. #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
  173. /*
  174. * Domain parameters for secp521r1
  175. */
  176. #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
  177. static const mbedtls_mpi_uint secp521r1_p[] = {
  178. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  179. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  180. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  181. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  182. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  183. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  184. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  185. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  186. MBEDTLS_BYTES_TO_T_UINT_2(0xFF, 0x01),
  187. };
  188. static const mbedtls_mpi_uint secp521r1_b[] = {
  189. MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF),
  190. MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35),
  191. MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16),
  192. MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56),
  193. MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8),
  194. MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2),
  195. MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92),
  196. MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95),
  197. MBEDTLS_BYTES_TO_T_UINT_2(0x51, 0x00),
  198. };
  199. static const mbedtls_mpi_uint secp521r1_gx[] = {
  200. MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9),
  201. MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33),
  202. MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE),
  203. MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1),
  204. MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8),
  205. MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C),
  206. MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E),
  207. MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85),
  208. MBEDTLS_BYTES_TO_T_UINT_2(0xC6, 0x00),
  209. };
  210. static const mbedtls_mpi_uint secp521r1_gy[] = {
  211. MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88),
  212. MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35),
  213. MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5),
  214. MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97),
  215. MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17),
  216. MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98),
  217. MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C),
  218. MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39),
  219. MBEDTLS_BYTES_TO_T_UINT_2(0x18, 0x01),
  220. };
  221. static const mbedtls_mpi_uint secp521r1_n[] = {
  222. MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB),
  223. MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B),
  224. MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F),
  225. MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51),
  226. MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  227. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  228. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  229. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  230. MBEDTLS_BYTES_TO_T_UINT_2(0xFF, 0x01),
  231. };
  232. #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
  233. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
  234. static const mbedtls_mpi_uint secp192k1_p[] = {
  235. MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
  236. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  237. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  238. };
  239. static const mbedtls_mpi_uint secp192k1_a[] = {
  240. MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
  241. };
  242. static const mbedtls_mpi_uint secp192k1_b[] = {
  243. MBEDTLS_BYTES_TO_T_UINT_2(0x03, 0x00),
  244. };
  245. static const mbedtls_mpi_uint secp192k1_gx[] = {
  246. MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D),
  247. MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26),
  248. MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB),
  249. };
  250. static const mbedtls_mpi_uint secp192k1_gy[] = {
  251. MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40),
  252. MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84),
  253. MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B),
  254. };
  255. static const mbedtls_mpi_uint secp192k1_n[] = {
  256. MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F),
  257. MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF),
  258. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  259. };
  260. #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
  261. #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
  262. static const mbedtls_mpi_uint secp224k1_p[] = {
  263. MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
  264. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  265. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  266. MBEDTLS_BYTES_TO_T_UINT_4(0xFF, 0xFF, 0xFF, 0xFF),
  267. };
  268. static const mbedtls_mpi_uint secp224k1_a[] = {
  269. MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
  270. };
  271. static const mbedtls_mpi_uint secp224k1_b[] = {
  272. MBEDTLS_BYTES_TO_T_UINT_2(0x05, 0x00),
  273. };
  274. static const mbedtls_mpi_uint secp224k1_gx[] = {
  275. MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F),
  276. MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69),
  277. MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D),
  278. MBEDTLS_BYTES_TO_T_UINT_4(0x33, 0x5B, 0x45, 0xA1),
  279. };
  280. static const mbedtls_mpi_uint secp224k1_gy[] = {
  281. MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2),
  282. MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7),
  283. MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F),
  284. MBEDTLS_BYTES_TO_T_UINT_4(0xED, 0x9F, 0x08, 0x7E),
  285. };
  286. static const mbedtls_mpi_uint secp224k1_n[] = {
  287. MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA),
  288. MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00),
  289. MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
  290. MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00),
  291. };
  292. #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
  293. #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  294. static const mbedtls_mpi_uint secp256k1_p[] = {
  295. MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
  296. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  297. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  298. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  299. };
  300. static const mbedtls_mpi_uint secp256k1_a[] = {
  301. MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
  302. };
  303. static const mbedtls_mpi_uint secp256k1_b[] = {
  304. MBEDTLS_BYTES_TO_T_UINT_2(0x07, 0x00),
  305. };
  306. static const mbedtls_mpi_uint secp256k1_gx[] = {
  307. MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59),
  308. MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02),
  309. MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55),
  310. MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79),
  311. };
  312. static const mbedtls_mpi_uint secp256k1_gy[] = {
  313. MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C),
  314. MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD),
  315. MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D),
  316. MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48),
  317. };
  318. static const mbedtls_mpi_uint secp256k1_n[] = {
  319. MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF),
  320. MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA),
  321. MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  322. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
  323. };
  324. #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
  325. /*
  326. * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
  327. */
  328. #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
  329. static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
  330. MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20),
  331. MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E),
  332. MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E),
  333. MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9),
  334. };
  335. static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
  336. MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9),
  337. MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB),
  338. MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE),
  339. MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D),
  340. };
  341. static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
  342. MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B),
  343. MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95),
  344. MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3),
  345. MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26),
  346. };
  347. static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
  348. MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A),
  349. MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9),
  350. MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C),
  351. MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B),
  352. };
  353. static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
  354. MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C),
  355. MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2),
  356. MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97),
  357. MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54),
  358. };
  359. static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
  360. MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90),
  361. MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C),
  362. MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E),
  363. MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9),
  364. };
  365. #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
  366. /*
  367. * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
  368. */
  369. #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
  370. static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
  371. MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87),
  372. MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC),
  373. MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12),
  374. MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15),
  375. MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F),
  376. MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C),
  377. };
  378. static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
  379. MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04),
  380. MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A),
  381. MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13),
  382. MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2),
  383. MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C),
  384. MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B),
  385. };
  386. static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
  387. MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A),
  388. MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C),
  389. MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E),
  390. MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F),
  391. MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B),
  392. MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04),
  393. };
  394. static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
  395. MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF),
  396. MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8),
  397. MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB),
  398. MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88),
  399. MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2),
  400. MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D),
  401. };
  402. static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
  403. MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42),
  404. MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E),
  405. MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1),
  406. MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62),
  407. MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C),
  408. MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A),
  409. };
  410. static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
  411. MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B),
  412. MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF),
  413. MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F),
  414. MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15),
  415. MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F),
  416. MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C),
  417. };
  418. #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
  419. /*
  420. * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
  421. */
  422. #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
  423. static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
  424. MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28),
  425. MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28),
  426. MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE),
  427. MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D),
  428. MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6),
  429. MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB),
  430. MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F),
  431. MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA),
  432. };
  433. static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
  434. MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7),
  435. MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F),
  436. MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A),
  437. MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D),
  438. MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8),
  439. MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94),
  440. MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2),
  441. MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78),
  442. };
  443. static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
  444. MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28),
  445. MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98),
  446. MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77),
  447. MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B),
  448. MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B),
  449. MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8),
  450. MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA),
  451. MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D),
  452. };
  453. static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
  454. MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B),
  455. MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C),
  456. MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50),
  457. MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF),
  458. MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4),
  459. MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85),
  460. MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A),
  461. MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81),
  462. };
  463. static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
  464. MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78),
  465. MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1),
  466. MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B),
  467. MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2),
  468. MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0),
  469. MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2),
  470. MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0),
  471. MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D),
  472. };
  473. static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
  474. MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5),
  475. MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D),
  476. MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41),
  477. MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55),
  478. MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6),
  479. MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB),
  480. MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F),
  481. MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA),
  482. };
  483. #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
  484. #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) || \
  485. defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
  486. defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
  487. defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) || \
  488. defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) || \
  489. defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) || \
  490. defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) || \
  491. defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) || \
  492. defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
  493. defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
  494. defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  495. /* For these curves, we build the group parameters dynamically. */
  496. #define ECP_LOAD_GROUP
  497. #endif
  498. #if defined(ECP_LOAD_GROUP)
  499. /*
  500. * Create an MPI from embedded constants
  501. * (assumes len is an exact multiple of sizeof(mbedtls_mpi_uint))
  502. */
  503. static inline void ecp_mpi_load(mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len)
  504. {
  505. X->s = 1;
  506. X->n = len / sizeof(mbedtls_mpi_uint);
  507. X->p = (mbedtls_mpi_uint *) p;
  508. }
  509. /*
  510. * Set an MPI to static value 1
  511. */
  512. static inline void ecp_mpi_set1(mbedtls_mpi *X)
  513. {
  514. static const mbedtls_mpi_uint one[] = { 1 };
  515. X->s = 1;
  516. X->n = 1;
  517. X->p = (mbedtls_mpi_uint *) one; /* X->p will not be modified so the cast is safe */
  518. }
  519. /*
  520. * Make group available from embedded constants
  521. */
  522. static int ecp_group_load(mbedtls_ecp_group *grp,
  523. const mbedtls_mpi_uint *p, size_t plen,
  524. const mbedtls_mpi_uint *a, size_t alen,
  525. const mbedtls_mpi_uint *b, size_t blen,
  526. const mbedtls_mpi_uint *gx, size_t gxlen,
  527. const mbedtls_mpi_uint *gy, size_t gylen,
  528. const mbedtls_mpi_uint *n, size_t nlen)
  529. {
  530. ecp_mpi_load(&grp->P, p, plen);
  531. if (a != NULL) {
  532. ecp_mpi_load(&grp->A, a, alen);
  533. }
  534. ecp_mpi_load(&grp->B, b, blen);
  535. ecp_mpi_load(&grp->N, n, nlen);
  536. ecp_mpi_load(&grp->G.X, gx, gxlen);
  537. ecp_mpi_load(&grp->G.Y, gy, gylen);
  538. ecp_mpi_set1(&grp->G.Z);
  539. grp->pbits = mbedtls_mpi_bitlen(&grp->P);
  540. grp->nbits = mbedtls_mpi_bitlen(&grp->N);
  541. grp->h = 1;
  542. return 0;
  543. }
  544. #endif /* ECP_LOAD_GROUP */
  545. #if defined(MBEDTLS_ECP_NIST_OPTIM)
  546. /* Forward declarations */
  547. #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
  548. static int ecp_mod_p192(mbedtls_mpi *);
  549. #endif
  550. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
  551. static int ecp_mod_p224(mbedtls_mpi *);
  552. #endif
  553. #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
  554. static int ecp_mod_p256(mbedtls_mpi *);
  555. #endif
  556. #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  557. static int ecp_mod_p384(mbedtls_mpi *);
  558. #endif
  559. #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
  560. static int ecp_mod_p521(mbedtls_mpi *);
  561. #endif
  562. #define NIST_MODP(P) grp->modp = ecp_mod_ ## P;
  563. #else
  564. #define NIST_MODP(P)
  565. #endif /* MBEDTLS_ECP_NIST_OPTIM */
  566. /* Additional forward declarations */
  567. #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
  568. static int ecp_mod_p255(mbedtls_mpi *);
  569. #endif
  570. #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
  571. static int ecp_mod_p448(mbedtls_mpi *);
  572. #endif
  573. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
  574. static int ecp_mod_p192k1(mbedtls_mpi *);
  575. #endif
  576. #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
  577. static int ecp_mod_p224k1(mbedtls_mpi *);
  578. #endif
  579. #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  580. static int ecp_mod_p256k1(mbedtls_mpi *);
  581. #endif
  582. #if defined(ECP_LOAD_GROUP)
  583. #define LOAD_GROUP_A(G) ecp_group_load(grp, \
  584. G ## _p, sizeof(G ## _p), \
  585. G ## _a, sizeof(G ## _a), \
  586. G ## _b, sizeof(G ## _b), \
  587. G ## _gx, sizeof(G ## _gx), \
  588. G ## _gy, sizeof(G ## _gy), \
  589. G ## _n, sizeof(G ## _n))
  590. #define LOAD_GROUP(G) ecp_group_load(grp, \
  591. G ## _p, sizeof(G ## _p), \
  592. NULL, 0, \
  593. G ## _b, sizeof(G ## _b), \
  594. G ## _gx, sizeof(G ## _gx), \
  595. G ## _gy, sizeof(G ## _gy), \
  596. G ## _n, sizeof(G ## _n))
  597. #endif /* ECP_LOAD_GROUP */
  598. #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
  599. /* Constants used by ecp_use_curve25519() */
  600. static const mbedtls_mpi_sint curve25519_a24 = 0x01DB42;
  601. static const unsigned char curve25519_part_of_n[] = {
  602. 0x14, 0xDE, 0xF9, 0xDE, 0xA2, 0xF7, 0x9C, 0xD6,
  603. 0x58, 0x12, 0x63, 0x1A, 0x5C, 0xF5, 0xD3, 0xED,
  604. };
  605. /*
  606. * Specialized function for creating the Curve25519 group
  607. */
  608. static int ecp_use_curve25519(mbedtls_ecp_group *grp)
  609. {
  610. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  611. /* Actually ( A + 2 ) / 4 */
  612. MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->A, curve25519_a24));
  613. /* P = 2^255 - 19 */
  614. MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->P, 1));
  615. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&grp->P, 255));
  616. MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&grp->P, &grp->P, 19));
  617. grp->pbits = mbedtls_mpi_bitlen(&grp->P);
  618. /* N = 2^252 + 27742317777372353535851937790883648493 */
  619. MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&grp->N,
  620. curve25519_part_of_n, sizeof(curve25519_part_of_n)));
  621. MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&grp->N, 252, 1));
  622. /* Y intentionally not set, since we use x/z coordinates.
  623. * This is used as a marker to identify Montgomery curves! */
  624. MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.X, 9));
  625. MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.Z, 1));
  626. mbedtls_mpi_free(&grp->G.Y);
  627. /* Actually, the required msb for private keys */
  628. grp->nbits = 254;
  629. cleanup:
  630. if (ret != 0) {
  631. mbedtls_ecp_group_free(grp);
  632. }
  633. return ret;
  634. }
  635. #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
  636. #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
  637. /* Constants used by ecp_use_curve448() */
  638. static const mbedtls_mpi_sint curve448_a24 = 0x98AA;
  639. static const unsigned char curve448_part_of_n[] = {
  640. 0x83, 0x35, 0xDC, 0x16, 0x3B, 0xB1, 0x24,
  641. 0xB6, 0x51, 0x29, 0xC9, 0x6F, 0xDE, 0x93,
  642. 0x3D, 0x8D, 0x72, 0x3A, 0x70, 0xAA, 0xDC,
  643. 0x87, 0x3D, 0x6D, 0x54, 0xA7, 0xBB, 0x0D,
  644. };
  645. /*
  646. * Specialized function for creating the Curve448 group
  647. */
  648. static int ecp_use_curve448(mbedtls_ecp_group *grp)
  649. {
  650. mbedtls_mpi Ns;
  651. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  652. mbedtls_mpi_init(&Ns);
  653. /* Actually ( A + 2 ) / 4 */
  654. MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->A, curve448_a24));
  655. /* P = 2^448 - 2^224 - 1 */
  656. MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->P, 1));
  657. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&grp->P, 224));
  658. MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&grp->P, &grp->P, 1));
  659. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&grp->P, 224));
  660. MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&grp->P, &grp->P, 1));
  661. grp->pbits = mbedtls_mpi_bitlen(&grp->P);
  662. /* Y intentionally not set, since we use x/z coordinates.
  663. * This is used as a marker to identify Montgomery curves! */
  664. MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.X, 5));
  665. MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.Z, 1));
  666. mbedtls_mpi_free(&grp->G.Y);
  667. /* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */
  668. MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&grp->N, 446, 1));
  669. MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&Ns,
  670. curve448_part_of_n, sizeof(curve448_part_of_n)));
  671. MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&grp->N, &grp->N, &Ns));
  672. /* Actually, the required msb for private keys */
  673. grp->nbits = 447;
  674. cleanup:
  675. mbedtls_mpi_free(&Ns);
  676. if (ret != 0) {
  677. mbedtls_ecp_group_free(grp);
  678. }
  679. return ret;
  680. }
  681. #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
  682. /*
  683. * Set a group using well-known domain parameters
  684. */
  685. int mbedtls_ecp_group_load(mbedtls_ecp_group *grp, mbedtls_ecp_group_id id)
  686. {
  687. ECP_VALIDATE_RET(grp != NULL);
  688. mbedtls_ecp_group_free(grp);
  689. mbedtls_ecp_group_init(grp);
  690. grp->id = id;
  691. switch (id) {
  692. #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
  693. case MBEDTLS_ECP_DP_SECP192R1:
  694. NIST_MODP(p192);
  695. return LOAD_GROUP(secp192r1);
  696. #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
  697. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
  698. case MBEDTLS_ECP_DP_SECP224R1:
  699. NIST_MODP(p224);
  700. return LOAD_GROUP(secp224r1);
  701. #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
  702. #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
  703. case MBEDTLS_ECP_DP_SECP256R1:
  704. NIST_MODP(p256);
  705. return LOAD_GROUP(secp256r1);
  706. #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
  707. #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  708. case MBEDTLS_ECP_DP_SECP384R1:
  709. NIST_MODP(p384);
  710. return LOAD_GROUP(secp384r1);
  711. #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
  712. #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
  713. case MBEDTLS_ECP_DP_SECP521R1:
  714. NIST_MODP(p521);
  715. return LOAD_GROUP(secp521r1);
  716. #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
  717. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
  718. case MBEDTLS_ECP_DP_SECP192K1:
  719. grp->modp = ecp_mod_p192k1;
  720. return LOAD_GROUP_A(secp192k1);
  721. #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
  722. #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
  723. case MBEDTLS_ECP_DP_SECP224K1:
  724. grp->modp = ecp_mod_p224k1;
  725. return LOAD_GROUP_A(secp224k1);
  726. #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
  727. #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  728. case MBEDTLS_ECP_DP_SECP256K1:
  729. grp->modp = ecp_mod_p256k1;
  730. return LOAD_GROUP_A(secp256k1);
  731. #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
  732. #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
  733. case MBEDTLS_ECP_DP_BP256R1:
  734. return LOAD_GROUP_A(brainpoolP256r1);
  735. #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
  736. #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
  737. case MBEDTLS_ECP_DP_BP384R1:
  738. return LOAD_GROUP_A(brainpoolP384r1);
  739. #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
  740. #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
  741. case MBEDTLS_ECP_DP_BP512R1:
  742. return LOAD_GROUP_A(brainpoolP512r1);
  743. #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
  744. #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
  745. case MBEDTLS_ECP_DP_CURVE25519:
  746. grp->modp = ecp_mod_p255;
  747. return ecp_use_curve25519(grp);
  748. #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
  749. #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
  750. case MBEDTLS_ECP_DP_CURVE448:
  751. grp->modp = ecp_mod_p448;
  752. return ecp_use_curve448(grp);
  753. #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
  754. default:
  755. grp->id = MBEDTLS_ECP_DP_NONE;
  756. return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
  757. }
  758. }
  759. #if defined(MBEDTLS_ECP_NIST_OPTIM)
  760. /*
  761. * Fast reduction modulo the primes used by the NIST curves.
  762. *
  763. * These functions are critical for speed, but not needed for correct
  764. * operations. So, we make the choice to heavily rely on the internals of our
  765. * bignum library, which creates a tight coupling between these functions and
  766. * our MPI implementation. However, the coupling between the ECP module and
  767. * MPI remains loose, since these functions can be deactivated at will.
  768. */
  769. #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
  770. /*
  771. * Compared to the way things are presented in FIPS 186-3 D.2,
  772. * we proceed in columns, from right (least significant chunk) to left,
  773. * adding chunks to N in place, and keeping a carry for the next chunk.
  774. * This avoids moving things around in memory, and uselessly adding zeros,
  775. * compared to the more straightforward, line-oriented approach.
  776. *
  777. * For this prime we need to handle data in chunks of 64 bits.
  778. * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
  779. * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
  780. */
  781. /* Add 64-bit chunks (dst += src) and update carry */
  782. static inline void add64(mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry)
  783. {
  784. unsigned char i;
  785. mbedtls_mpi_uint c = 0;
  786. for (i = 0; i < 8 / sizeof(mbedtls_mpi_uint); i++, dst++, src++) {
  787. *dst += c; c = (*dst < c);
  788. *dst += *src; c += (*dst < *src);
  789. }
  790. *carry += c;
  791. }
  792. /* Add carry to a 64-bit chunk and update carry */
  793. static inline void carry64(mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry)
  794. {
  795. unsigned char i;
  796. for (i = 0; i < 8 / sizeof(mbedtls_mpi_uint); i++, dst++) {
  797. *dst += *carry;
  798. *carry = (*dst < *carry);
  799. }
  800. }
  801. #define WIDTH 8 / sizeof(mbedtls_mpi_uint)
  802. #define A(i) N->p + (i) * WIDTH
  803. #define ADD(i) add64(p, A(i), &c)
  804. #define NEXT p += WIDTH; carry64(p, &c)
  805. #define LAST p += WIDTH; *p = c; while (++p < end) *p = 0
  806. /*
  807. * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
  808. */
  809. static int ecp_mod_p192(mbedtls_mpi *N)
  810. {
  811. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  812. mbedtls_mpi_uint c = 0;
  813. mbedtls_mpi_uint *p, *end;
  814. /* Make sure we have enough blocks so that A(5) is legal */
  815. MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, 6 * WIDTH));
  816. p = N->p;
  817. end = p + N->n;
  818. ADD(3); ADD(5); NEXT; // A0 += A3 + A5
  819. ADD(3); ADD(4); ADD(5); NEXT; // A1 += A3 + A4 + A5
  820. ADD(4); ADD(5); LAST; // A2 += A4 + A5
  821. cleanup:
  822. return ret;
  823. }
  824. #undef WIDTH
  825. #undef A
  826. #undef ADD
  827. #undef NEXT
  828. #undef LAST
  829. #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
  830. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
  831. defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
  832. defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  833. /*
  834. * The reader is advised to first understand ecp_mod_p192() since the same
  835. * general structure is used here, but with additional complications:
  836. * (1) chunks of 32 bits, and (2) subtractions.
  837. */
  838. /*
  839. * For these primes, we need to handle data in chunks of 32 bits.
  840. * This makes it more complicated if we use 64 bits limbs in MPI,
  841. * which prevents us from using a uniform access method as for p192.
  842. *
  843. * So, we define a mini abstraction layer to access 32 bit chunks,
  844. * load them in 'cur' for work, and store them back from 'cur' when done.
  845. *
  846. * While at it, also define the size of N in terms of 32-bit chunks.
  847. */
  848. #define LOAD32 cur = A(i);
  849. #if defined(MBEDTLS_HAVE_INT32) /* 32 bit */
  850. #define MAX32 N->n
  851. #define A(j) N->p[j]
  852. #define STORE32 N->p[i] = cur;
  853. #else /* 64-bit */
  854. #define MAX32 N->n * 2
  855. #define A(j) (j) % 2 ? (uint32_t) (N->p[(j)/2] >> 32) : \
  856. (uint32_t) (N->p[(j)/2])
  857. #define STORE32 \
  858. if (i % 2) { \
  859. N->p[i/2] &= 0x00000000FFFFFFFF; \
  860. N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32; \
  861. } else { \
  862. N->p[i/2] &= 0xFFFFFFFF00000000; \
  863. N->p[i/2] |= (mbedtls_mpi_uint) cur; \
  864. }
  865. #endif /* sizeof( mbedtls_mpi_uint ) */
  866. /*
  867. * Helpers for addition and subtraction of chunks, with signed carry.
  868. */
  869. static inline void add32(uint32_t *dst, uint32_t src, signed char *carry)
  870. {
  871. *dst += src;
  872. *carry += (*dst < src);
  873. }
  874. static inline void sub32(uint32_t *dst, uint32_t src, signed char *carry)
  875. {
  876. *carry -= (*dst < src);
  877. *dst -= src;
  878. }
  879. #define ADD(j) add32(&cur, A(j), &c);
  880. #define SUB(j) sub32(&cur, A(j), &c);
  881. #define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
  882. #define biL (ciL << 3) /* bits in limb */
  883. /*
  884. * Helpers for the main 'loop'
  885. */
  886. #define INIT(b) \
  887. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; \
  888. signed char c = 0, cc; \
  889. uint32_t cur; \
  890. size_t i = 0, bits = (b); \
  891. /* N is the size of the product of two b-bit numbers, plus one */ \
  892. /* limb for fix_negative */ \
  893. MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, (b) * 2 / biL + 1)); \
  894. LOAD32;
  895. #define NEXT \
  896. STORE32; i++; LOAD32; \
  897. cc = c; c = 0; \
  898. if (cc < 0) \
  899. sub32(&cur, -cc, &c); \
  900. else \
  901. add32(&cur, cc, &c); \
  902. #define LAST \
  903. STORE32; i++; \
  904. cur = c > 0 ? c : 0; STORE32; \
  905. cur = 0; while (++i < MAX32) { STORE32; } \
  906. if (c < 0) mbedtls_ecp_fix_negative(N, c, bits);
  907. /*
  908. * If the result is negative, we get it in the form
  909. * c * 2^bits + N, with c negative and N positive shorter than 'bits'
  910. */
  911. MBEDTLS_STATIC_TESTABLE
  912. void mbedtls_ecp_fix_negative(mbedtls_mpi *N, signed char c, size_t bits)
  913. {
  914. size_t i;
  915. /* Set N := 2^bits - 1 - N. We know that 0 <= N < 2^bits, so
  916. * set the absolute value to 0xfff...fff - N. There is no carry
  917. * since we're subtracting from all-bits-one. */
  918. for (i = 0; i <= bits / 8 / sizeof(mbedtls_mpi_uint); i++) {
  919. N->p[i] = ~(mbedtls_mpi_uint) 0 - N->p[i];
  920. }
  921. /* Add 1, taking care of the carry. */
  922. i = 0;
  923. do {
  924. ++N->p[i];
  925. } while (N->p[i++] == 0 && i <= bits / 8 / sizeof(mbedtls_mpi_uint));
  926. /* Invert the sign.
  927. * Now N = N0 - 2^bits where N0 is the initial value of N. */
  928. N->s = -1;
  929. /* Add |c| * 2^bits to the absolute value. Since c and N are
  930. * negative, this adds c * 2^bits. */
  931. mbedtls_mpi_uint msw = (mbedtls_mpi_uint) -c;
  932. #if defined(MBEDTLS_HAVE_INT64)
  933. if (bits == 224) {
  934. msw <<= 32;
  935. }
  936. #endif
  937. N->p[bits / 8 / sizeof(mbedtls_mpi_uint)] += msw;
  938. }
  939. #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
  940. /*
  941. * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
  942. */
  943. static int ecp_mod_p224(mbedtls_mpi *N)
  944. {
  945. INIT(224);
  946. SUB(7); SUB(11); NEXT; // A0 += -A7 - A11
  947. SUB(8); SUB(12); NEXT; // A1 += -A8 - A12
  948. SUB(9); SUB(13); NEXT; // A2 += -A9 - A13
  949. SUB(10); ADD(7); ADD(11); NEXT; // A3 += -A10 + A7 + A11
  950. SUB(11); ADD(8); ADD(12); NEXT; // A4 += -A11 + A8 + A12
  951. SUB(12); ADD(9); ADD(13); NEXT; // A5 += -A12 + A9 + A13
  952. SUB(13); ADD(10); LAST; // A6 += -A13 + A10
  953. cleanup:
  954. return ret;
  955. }
  956. #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
  957. #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
  958. /*
  959. * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
  960. */
  961. static int ecp_mod_p256(mbedtls_mpi *N)
  962. {
  963. INIT(256);
  964. ADD(8); ADD(9);
  965. SUB(11); SUB(12); SUB(13); SUB(14); NEXT; // A0
  966. ADD(9); ADD(10);
  967. SUB(12); SUB(13); SUB(14); SUB(15); NEXT; // A1
  968. ADD(10); ADD(11);
  969. SUB(13); SUB(14); SUB(15); NEXT; // A2
  970. ADD(11); ADD(11); ADD(12); ADD(12); ADD(13);
  971. SUB(15); SUB(8); SUB(9); NEXT; // A3
  972. ADD(12); ADD(12); ADD(13); ADD(13); ADD(14);
  973. SUB(9); SUB(10); NEXT; // A4
  974. ADD(13); ADD(13); ADD(14); ADD(14); ADD(15);
  975. SUB(10); SUB(11); NEXT; // A5
  976. ADD(14); ADD(14); ADD(15); ADD(15); ADD(14); ADD(13);
  977. SUB(8); SUB(9); NEXT; // A6
  978. ADD(15); ADD(15); ADD(15); ADD(8);
  979. SUB(10); SUB(11); SUB(12); SUB(13); LAST; // A7
  980. cleanup:
  981. return ret;
  982. }
  983. #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
  984. #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
  985. /*
  986. * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
  987. */
  988. static int ecp_mod_p384(mbedtls_mpi *N)
  989. {
  990. INIT(384);
  991. ADD(12); ADD(21); ADD(20);
  992. SUB(23); NEXT; // A0
  993. ADD(13); ADD(22); ADD(23);
  994. SUB(12); SUB(20); NEXT; // A2
  995. ADD(14); ADD(23);
  996. SUB(13); SUB(21); NEXT; // A2
  997. ADD(15); ADD(12); ADD(20); ADD(21);
  998. SUB(14); SUB(22); SUB(23); NEXT; // A3
  999. ADD(21); ADD(21); ADD(16); ADD(13); ADD(12); ADD(20); ADD(22);
  1000. SUB(15); SUB(23); SUB(23); NEXT; // A4
  1001. ADD(22); ADD(22); ADD(17); ADD(14); ADD(13); ADD(21); ADD(23);
  1002. SUB(16); NEXT; // A5
  1003. ADD(23); ADD(23); ADD(18); ADD(15); ADD(14); ADD(22);
  1004. SUB(17); NEXT; // A6
  1005. ADD(19); ADD(16); ADD(15); ADD(23);
  1006. SUB(18); NEXT; // A7
  1007. ADD(20); ADD(17); ADD(16);
  1008. SUB(19); NEXT; // A8
  1009. ADD(21); ADD(18); ADD(17);
  1010. SUB(20); NEXT; // A9
  1011. ADD(22); ADD(19); ADD(18);
  1012. SUB(21); NEXT; // A10
  1013. ADD(23); ADD(20); ADD(19);
  1014. SUB(22); LAST; // A11
  1015. cleanup:
  1016. return ret;
  1017. }
  1018. #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
  1019. #undef A
  1020. #undef LOAD32
  1021. #undef STORE32
  1022. #undef MAX32
  1023. #undef INIT
  1024. #undef NEXT
  1025. #undef LAST
  1026. #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
  1027. MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
  1028. MBEDTLS_ECP_DP_SECP384R1_ENABLED */
  1029. #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
  1030. /*
  1031. * Here we have an actual Mersenne prime, so things are more straightforward.
  1032. * However, chunks are aligned on a 'weird' boundary (521 bits).
  1033. */
  1034. /* Size of p521 in terms of mbedtls_mpi_uint */
  1035. #define P521_WIDTH (521 / 8 / sizeof(mbedtls_mpi_uint) + 1)
  1036. /* Bits to keep in the most significant mbedtls_mpi_uint */
  1037. #define P521_MASK 0x01FF
  1038. /*
  1039. * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
  1040. * Write N as A1 + 2^521 A0, return A0 + A1
  1041. */
  1042. static int ecp_mod_p521(mbedtls_mpi *N)
  1043. {
  1044. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  1045. size_t i;
  1046. mbedtls_mpi M;
  1047. mbedtls_mpi_uint Mp[P521_WIDTH + 1];
  1048. /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
  1049. * we need to hold bits 513 to 1056, which is 34 limbs, that is
  1050. * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
  1051. if (N->n < P521_WIDTH) {
  1052. return 0;
  1053. }
  1054. /* M = A1 */
  1055. M.s = 1;
  1056. M.n = N->n - (P521_WIDTH - 1);
  1057. if (M.n > P521_WIDTH + 1) {
  1058. M.n = P521_WIDTH + 1;
  1059. }
  1060. M.p = Mp;
  1061. memcpy(Mp, N->p + P521_WIDTH - 1, M.n * sizeof(mbedtls_mpi_uint));
  1062. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, 521 % (8 * sizeof(mbedtls_mpi_uint))));
  1063. /* N = A0 */
  1064. N->p[P521_WIDTH - 1] &= P521_MASK;
  1065. for (i = P521_WIDTH; i < N->n; i++) {
  1066. N->p[i] = 0;
  1067. }
  1068. /* N = A0 + A1 */
  1069. MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M));
  1070. cleanup:
  1071. return ret;
  1072. }
  1073. #undef P521_WIDTH
  1074. #undef P521_MASK
  1075. #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
  1076. #endif /* MBEDTLS_ECP_NIST_OPTIM */
  1077. #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
  1078. /* Size of p255 in terms of mbedtls_mpi_uint */
  1079. #define P255_WIDTH (255 / 8 / sizeof(mbedtls_mpi_uint) + 1)
  1080. /*
  1081. * Fast quasi-reduction modulo p255 = 2^255 - 19
  1082. * Write N as A0 + 2^255 A1, return A0 + 19 * A1
  1083. */
  1084. static int ecp_mod_p255(mbedtls_mpi *N)
  1085. {
  1086. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  1087. size_t i;
  1088. mbedtls_mpi M;
  1089. mbedtls_mpi_uint Mp[P255_WIDTH + 2];
  1090. if (N->n < P255_WIDTH) {
  1091. return 0;
  1092. }
  1093. /* M = A1 */
  1094. M.s = 1;
  1095. M.n = N->n - (P255_WIDTH - 1);
  1096. if (M.n > P255_WIDTH + 1) {
  1097. return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
  1098. }
  1099. M.p = Mp;
  1100. memset(Mp, 0, sizeof(Mp));
  1101. memcpy(Mp, N->p + P255_WIDTH - 1, M.n * sizeof(mbedtls_mpi_uint));
  1102. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, 255 % (8 * sizeof(mbedtls_mpi_uint))));
  1103. M.n++; /* Make room for multiplication by 19 */
  1104. /* N = A0 */
  1105. MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(N, 255, 0));
  1106. for (i = P255_WIDTH; i < N->n; i++) {
  1107. N->p[i] = 0;
  1108. }
  1109. /* N = A0 + 19 * A1 */
  1110. MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&M, &M, 19));
  1111. MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M));
  1112. cleanup:
  1113. return ret;
  1114. }
  1115. #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
  1116. #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
  1117. /* Size of p448 in terms of mbedtls_mpi_uint */
  1118. #define P448_WIDTH (448 / 8 / sizeof(mbedtls_mpi_uint))
  1119. /* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */
  1120. #define DIV_ROUND_UP(X, Y) (((X) + (Y) -1) / (Y))
  1121. #define P224_WIDTH_MIN (28 / sizeof(mbedtls_mpi_uint))
  1122. #define P224_WIDTH_MAX DIV_ROUND_UP(28, sizeof(mbedtls_mpi_uint))
  1123. #define P224_UNUSED_BITS ((P224_WIDTH_MAX * sizeof(mbedtls_mpi_uint) * 8) - 224)
  1124. /*
  1125. * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1
  1126. * Write N as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return
  1127. * A0 + A1 + B1 + (B0 + B1) * 2^224. This is different to the reference
  1128. * implementation of Curve448, which uses its own special 56-bit limbs rather
  1129. * than a generic bignum library. We could squeeze some extra speed out on
  1130. * 32-bit machines by splitting N up into 32-bit limbs and doing the
  1131. * arithmetic using the limbs directly as we do for the NIST primes above,
  1132. * but for 64-bit targets it should use half the number of operations if we do
  1133. * the reduction with 224-bit limbs, since mpi_add_mpi will then use 64-bit adds.
  1134. */
  1135. static int ecp_mod_p448(mbedtls_mpi *N)
  1136. {
  1137. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  1138. size_t i;
  1139. mbedtls_mpi M, Q;
  1140. mbedtls_mpi_uint Mp[P448_WIDTH + 1], Qp[P448_WIDTH];
  1141. if (N->n <= P448_WIDTH) {
  1142. return 0;
  1143. }
  1144. /* M = A1 */
  1145. M.s = 1;
  1146. M.n = N->n - (P448_WIDTH);
  1147. if (M.n > P448_WIDTH) {
  1148. /* Shouldn't be called with N larger than 2^896! */
  1149. return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
  1150. }
  1151. M.p = Mp;
  1152. memset(Mp, 0, sizeof(Mp));
  1153. memcpy(Mp, N->p + P448_WIDTH, M.n * sizeof(mbedtls_mpi_uint));
  1154. /* N = A0 */
  1155. for (i = P448_WIDTH; i < N->n; i++) {
  1156. N->p[i] = 0;
  1157. }
  1158. /* N += A1 */
  1159. MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &M));
  1160. /* Q = B1, N += B1 */
  1161. Q = M;
  1162. Q.p = Qp;
  1163. memcpy(Qp, Mp, sizeof(Qp));
  1164. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Q, 224));
  1165. MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &Q));
  1166. /* M = (B0 + B1) * 2^224, N += M */
  1167. if (sizeof(mbedtls_mpi_uint) > 4) {
  1168. Mp[P224_WIDTH_MIN] &= ((mbedtls_mpi_uint)-1) >> (P224_UNUSED_BITS);
  1169. }
  1170. for (i = P224_WIDTH_MAX; i < M.n; ++i) {
  1171. Mp[i] = 0;
  1172. }
  1173. MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&M, &M, &Q));
  1174. M.n = P448_WIDTH + 1; /* Make room for shifted carry bit from the addition */
  1175. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&M, 224));
  1176. MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &M));
  1177. cleanup:
  1178. return ret;
  1179. }
  1180. #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
  1181. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
  1182. defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
  1183. defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  1184. /*
  1185. * Fast quasi-reduction modulo P = 2^s - R,
  1186. * with R about 33 bits, used by the Koblitz curves.
  1187. *
  1188. * Write N as A0 + 2^224 A1, return A0 + R * A1.
  1189. * Actually do two passes, since R is big.
  1190. */
  1191. #define P_KOBLITZ_MAX (256 / 8 / sizeof(mbedtls_mpi_uint)) // Max limbs in P
  1192. #define P_KOBLITZ_R (8 / sizeof(mbedtls_mpi_uint)) // Limbs in R
  1193. static inline int ecp_mod_koblitz(mbedtls_mpi *N, const mbedtls_mpi_uint *Rp, size_t p_limbs,
  1194. size_t adjust, size_t shift, mbedtls_mpi_uint mask)
  1195. {
  1196. int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
  1197. size_t i;
  1198. mbedtls_mpi M, R;
  1199. mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
  1200. if (N->n < p_limbs) {
  1201. return 0;
  1202. }
  1203. /* Init R */
  1204. R.s = 1;
  1205. R.p = (mbedtls_mpi_uint *) Rp; /* R.p will not be modified so the cast is safe */
  1206. R.n = P_KOBLITZ_R;
  1207. /* Common setup for M */
  1208. M.s = 1;
  1209. M.p = Mp;
  1210. /* M = A1 */
  1211. M.n = N->n - (p_limbs - adjust);
  1212. if (M.n > p_limbs + adjust) {
  1213. M.n = p_limbs + adjust;
  1214. }
  1215. memset(Mp, 0, sizeof(Mp));
  1216. memcpy(Mp, N->p + p_limbs - adjust, M.n * sizeof(mbedtls_mpi_uint));
  1217. if (shift != 0) {
  1218. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, shift));
  1219. }
  1220. M.n += R.n; /* Make room for multiplication by R */
  1221. /* N = A0 */
  1222. if (mask != 0) {
  1223. N->p[p_limbs - 1] &= mask;
  1224. }
  1225. for (i = p_limbs; i < N->n; i++) {
  1226. N->p[i] = 0;
  1227. }
  1228. /* N = A0 + R * A1 */
  1229. MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&M, &M, &R));
  1230. MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M));
  1231. /* Second pass */
  1232. /* M = A1 */
  1233. M.n = N->n - (p_limbs - adjust);
  1234. if (M.n > p_limbs + adjust) {
  1235. M.n = p_limbs + adjust;
  1236. }
  1237. memset(Mp, 0, sizeof(Mp));
  1238. memcpy(Mp, N->p + p_limbs - adjust, M.n * sizeof(mbedtls_mpi_uint));
  1239. if (shift != 0) {
  1240. MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, shift));
  1241. }
  1242. M.n += R.n; /* Make room for multiplication by R */
  1243. /* N = A0 */
  1244. if (mask != 0) {
  1245. N->p[p_limbs - 1] &= mask;
  1246. }
  1247. for (i = p_limbs; i < N->n; i++) {
  1248. N->p[i] = 0;
  1249. }
  1250. /* N = A0 + R * A1 */
  1251. MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&M, &M, &R));
  1252. MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M));
  1253. cleanup:
  1254. return ret;
  1255. }
  1256. #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
  1257. MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
  1258. MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
  1259. #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
  1260. /*
  1261. * Fast quasi-reduction modulo p192k1 = 2^192 - R,
  1262. * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
  1263. */
  1264. static int ecp_mod_p192k1(mbedtls_mpi *N)
  1265. {
  1266. static const mbedtls_mpi_uint Rp[] = {
  1267. MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00,
  1268. 0x00)
  1269. };
  1270. return ecp_mod_koblitz(N, Rp, 192 / 8 / sizeof(mbedtls_mpi_uint), 0, 0,
  1271. 0);
  1272. }
  1273. #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
  1274. #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
  1275. /*
  1276. * Fast quasi-reduction modulo p224k1 = 2^224 - R,
  1277. * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
  1278. */
  1279. static int ecp_mod_p224k1(mbedtls_mpi *N)
  1280. {
  1281. static const mbedtls_mpi_uint Rp[] = {
  1282. MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00,
  1283. 0x00)
  1284. };
  1285. #if defined(MBEDTLS_HAVE_INT64)
  1286. return ecp_mod_koblitz(N, Rp, 4, 1, 32, 0xFFFFFFFF);
  1287. #else
  1288. return ecp_mod_koblitz(N, Rp, 224 / 8 / sizeof(mbedtls_mpi_uint), 0, 0,
  1289. 0);
  1290. #endif
  1291. }
  1292. #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
  1293. #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
  1294. /*
  1295. * Fast quasi-reduction modulo p256k1 = 2^256 - R,
  1296. * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
  1297. */
  1298. static int ecp_mod_p256k1(mbedtls_mpi *N)
  1299. {
  1300. static const mbedtls_mpi_uint Rp[] = {
  1301. MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00,
  1302. 0x00)
  1303. };
  1304. return ecp_mod_koblitz(N, Rp, 256 / 8 / sizeof(mbedtls_mpi_uint), 0, 0,
  1305. 0);
  1306. }
  1307. #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
  1308. #endif /* !MBEDTLS_ECP_ALT */
  1309. #endif /* MBEDTLS_ECP_C */