mesh_storage.cpp 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084
  1. /*************************************************************************/
  2. /* mesh_storage.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "mesh_storage.h"
  31. #include "../../rendering_server_globals.h"
  32. using namespace RendererRD;
  33. MeshStorage *MeshStorage::singleton = nullptr;
  34. MeshStorage *MeshStorage::get_singleton() {
  35. return singleton;
  36. }
  37. MeshStorage::MeshStorage() {
  38. singleton = this;
  39. default_rd_storage_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4);
  40. //default rd buffers
  41. {
  42. Vector<uint8_t> buffer;
  43. {
  44. buffer.resize(sizeof(float) * 3);
  45. {
  46. uint8_t *w = buffer.ptrw();
  47. float *fptr = reinterpret_cast<float *>(w);
  48. fptr[0] = 0.0;
  49. fptr[1] = 0.0;
  50. fptr[2] = 0.0;
  51. }
  52. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_VERTEX] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  53. }
  54. { //normal
  55. buffer.resize(sizeof(float) * 3);
  56. {
  57. uint8_t *w = buffer.ptrw();
  58. float *fptr = reinterpret_cast<float *>(w);
  59. fptr[0] = 1.0;
  60. fptr[1] = 0.0;
  61. fptr[2] = 0.0;
  62. }
  63. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_NORMAL] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  64. }
  65. { //tangent
  66. buffer.resize(sizeof(float) * 4);
  67. {
  68. uint8_t *w = buffer.ptrw();
  69. float *fptr = reinterpret_cast<float *>(w);
  70. fptr[0] = 1.0;
  71. fptr[1] = 0.0;
  72. fptr[2] = 0.0;
  73. fptr[3] = 0.0;
  74. }
  75. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TANGENT] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  76. }
  77. { //color
  78. buffer.resize(sizeof(float) * 4);
  79. {
  80. uint8_t *w = buffer.ptrw();
  81. float *fptr = reinterpret_cast<float *>(w);
  82. fptr[0] = 1.0;
  83. fptr[1] = 1.0;
  84. fptr[2] = 1.0;
  85. fptr[3] = 1.0;
  86. }
  87. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_COLOR] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  88. }
  89. { //tex uv 1
  90. buffer.resize(sizeof(float) * 2);
  91. {
  92. uint8_t *w = buffer.ptrw();
  93. float *fptr = reinterpret_cast<float *>(w);
  94. fptr[0] = 0.0;
  95. fptr[1] = 0.0;
  96. }
  97. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  98. }
  99. { //tex uv 2
  100. buffer.resize(sizeof(float) * 2);
  101. {
  102. uint8_t *w = buffer.ptrw();
  103. float *fptr = reinterpret_cast<float *>(w);
  104. fptr[0] = 0.0;
  105. fptr[1] = 0.0;
  106. }
  107. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV2] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  108. }
  109. for (int i = 0; i < RS::ARRAY_CUSTOM_COUNT; i++) {
  110. buffer.resize(sizeof(float) * 4);
  111. {
  112. uint8_t *w = buffer.ptrw();
  113. float *fptr = reinterpret_cast<float *>(w);
  114. fptr[0] = 0.0;
  115. fptr[1] = 0.0;
  116. fptr[2] = 0.0;
  117. fptr[3] = 0.0;
  118. }
  119. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_CUSTOM0 + i] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  120. }
  121. { //bones
  122. buffer.resize(sizeof(uint32_t) * 4);
  123. {
  124. uint8_t *w = buffer.ptrw();
  125. uint32_t *fptr = reinterpret_cast<uint32_t *>(w);
  126. fptr[0] = 0;
  127. fptr[1] = 0;
  128. fptr[2] = 0;
  129. fptr[3] = 0;
  130. }
  131. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_BONES] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  132. }
  133. { //weights
  134. buffer.resize(sizeof(float) * 4);
  135. {
  136. uint8_t *w = buffer.ptrw();
  137. float *fptr = reinterpret_cast<float *>(w);
  138. fptr[0] = 0.0;
  139. fptr[1] = 0.0;
  140. fptr[2] = 0.0;
  141. fptr[3] = 0.0;
  142. }
  143. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_WEIGHTS] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  144. }
  145. }
  146. {
  147. Vector<String> skeleton_modes;
  148. skeleton_modes.push_back("\n#define MODE_2D\n");
  149. skeleton_modes.push_back("");
  150. skeleton_shader.shader.initialize(skeleton_modes);
  151. skeleton_shader.version = skeleton_shader.shader.version_create();
  152. for (int i = 0; i < SkeletonShader::SHADER_MODE_MAX; i++) {
  153. skeleton_shader.version_shader[i] = skeleton_shader.shader.version_get_shader(skeleton_shader.version, i);
  154. skeleton_shader.pipeline[i] = RD::get_singleton()->compute_pipeline_create(skeleton_shader.version_shader[i]);
  155. }
  156. {
  157. Vector<RD::Uniform> uniforms;
  158. {
  159. RD::Uniform u;
  160. u.binding = 0;
  161. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  162. u.append_id(default_rd_storage_buffer);
  163. uniforms.push_back(u);
  164. }
  165. skeleton_shader.default_skeleton_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  166. }
  167. }
  168. }
  169. MeshStorage::~MeshStorage() {
  170. //def buffers
  171. for (int i = 0; i < DEFAULT_RD_BUFFER_MAX; i++) {
  172. RD::get_singleton()->free(mesh_default_rd_buffers[i]);
  173. }
  174. skeleton_shader.shader.version_free(skeleton_shader.version);
  175. RD::get_singleton()->free(default_rd_storage_buffer);
  176. singleton = nullptr;
  177. }
  178. bool MeshStorage::free(RID p_rid) {
  179. if (owns_mesh(p_rid)) {
  180. mesh_free(p_rid);
  181. return true;
  182. } else if (owns_mesh_instance(p_rid)) {
  183. mesh_instance_free(p_rid);
  184. return true;
  185. } else if (owns_multimesh(p_rid)) {
  186. multimesh_free(p_rid);
  187. return true;
  188. } else if (owns_skeleton(p_rid)) {
  189. skeleton_free(p_rid);
  190. return true;
  191. }
  192. return false;
  193. }
  194. /* MESH API */
  195. RID MeshStorage::mesh_allocate() {
  196. return mesh_owner.allocate_rid();
  197. }
  198. void MeshStorage::mesh_initialize(RID p_rid) {
  199. mesh_owner.initialize_rid(p_rid, Mesh());
  200. }
  201. void MeshStorage::mesh_free(RID p_rid) {
  202. mesh_clear(p_rid);
  203. mesh_set_shadow_mesh(p_rid, RID());
  204. Mesh *mesh = mesh_owner.get_or_null(p_rid);
  205. ERR_FAIL_COND(!mesh);
  206. mesh->dependency.deleted_notify(p_rid);
  207. if (mesh->instances.size()) {
  208. ERR_PRINT("deleting mesh with active instances");
  209. }
  210. if (mesh->shadow_owners.size()) {
  211. for (Mesh *E : mesh->shadow_owners) {
  212. Mesh *shadow_owner = E;
  213. shadow_owner->shadow_mesh = RID();
  214. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  215. }
  216. }
  217. mesh_owner.free(p_rid);
  218. }
  219. void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
  220. ERR_FAIL_COND(p_blend_shape_count < 0);
  221. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  222. ERR_FAIL_COND(!mesh);
  223. ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
  224. mesh->blend_shape_count = p_blend_shape_count;
  225. }
  226. /// Returns stride
  227. void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
  228. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  229. ERR_FAIL_COND(!mesh);
  230. ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
  231. #ifdef DEBUG_ENABLED
  232. //do a validation, to catch errors first
  233. {
  234. uint32_t stride = 0;
  235. uint32_t attrib_stride = 0;
  236. uint32_t skin_stride = 0;
  237. for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
  238. if ((p_surface.format & (1 << i))) {
  239. switch (i) {
  240. case RS::ARRAY_VERTEX: {
  241. if (p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  242. stride += sizeof(float) * 2;
  243. } else {
  244. stride += sizeof(float) * 3;
  245. }
  246. } break;
  247. case RS::ARRAY_NORMAL: {
  248. stride += sizeof(int32_t);
  249. } break;
  250. case RS::ARRAY_TANGENT: {
  251. stride += sizeof(int32_t);
  252. } break;
  253. case RS::ARRAY_COLOR: {
  254. attrib_stride += sizeof(uint32_t);
  255. } break;
  256. case RS::ARRAY_TEX_UV: {
  257. attrib_stride += sizeof(float) * 2;
  258. } break;
  259. case RS::ARRAY_TEX_UV2: {
  260. attrib_stride += sizeof(float) * 2;
  261. } break;
  262. case RS::ARRAY_CUSTOM0:
  263. case RS::ARRAY_CUSTOM1:
  264. case RS::ARRAY_CUSTOM2:
  265. case RS::ARRAY_CUSTOM3: {
  266. int idx = i - RS::ARRAY_CUSTOM0;
  267. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  268. uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  269. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  270. attrib_stride += fmtsize[fmt];
  271. } break;
  272. case RS::ARRAY_WEIGHTS:
  273. case RS::ARRAY_BONES: {
  274. //uses a separate array
  275. bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  276. skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
  277. } break;
  278. }
  279. }
  280. }
  281. int expected_size = stride * p_surface.vertex_count;
  282. ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  283. int bs_expected_size = expected_size * mesh->blend_shape_count;
  284. ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
  285. int expected_attrib_size = attrib_stride * p_surface.vertex_count;
  286. ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
  287. if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
  288. expected_size = skin_stride * p_surface.vertex_count;
  289. ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  290. }
  291. }
  292. #endif
  293. Mesh::Surface *s = memnew(Mesh::Surface);
  294. s->format = p_surface.format;
  295. s->primitive = p_surface.primitive;
  296. bool use_as_storage = (p_surface.skin_data.size() || mesh->blend_shape_count > 0);
  297. if (p_surface.vertex_data.size()) {
  298. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.vertex_data.size(), p_surface.vertex_data, use_as_storage);
  299. s->vertex_buffer_size = p_surface.vertex_data.size();
  300. }
  301. if (p_surface.attribute_data.size()) {
  302. s->attribute_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.attribute_data.size(), p_surface.attribute_data);
  303. }
  304. if (p_surface.skin_data.size()) {
  305. s->skin_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.skin_data.size(), p_surface.skin_data, use_as_storage);
  306. s->skin_buffer_size = p_surface.skin_data.size();
  307. }
  308. s->vertex_count = p_surface.vertex_count;
  309. if (p_surface.format & RS::ARRAY_FORMAT_BONES) {
  310. mesh->has_bone_weights = true;
  311. }
  312. if (p_surface.index_count) {
  313. bool is_index_16 = p_surface.vertex_count <= 65536 && p_surface.vertex_count > 0;
  314. s->index_buffer = RD::get_singleton()->index_buffer_create(p_surface.index_count, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, p_surface.index_data, false);
  315. s->index_count = p_surface.index_count;
  316. s->index_array = RD::get_singleton()->index_array_create(s->index_buffer, 0, s->index_count);
  317. if (p_surface.lods.size()) {
  318. s->lods = memnew_arr(Mesh::Surface::LOD, p_surface.lods.size());
  319. s->lod_count = p_surface.lods.size();
  320. for (int i = 0; i < p_surface.lods.size(); i++) {
  321. uint32_t indices = p_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
  322. s->lods[i].index_buffer = RD::get_singleton()->index_buffer_create(indices, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, p_surface.lods[i].index_data);
  323. s->lods[i].index_array = RD::get_singleton()->index_array_create(s->lods[i].index_buffer, 0, indices);
  324. s->lods[i].edge_length = p_surface.lods[i].edge_length;
  325. s->lods[i].index_count = indices;
  326. }
  327. }
  328. }
  329. ERR_FAIL_COND_MSG(!p_surface.index_count && !p_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
  330. s->aabb = p_surface.aabb;
  331. s->bone_aabbs = p_surface.bone_aabbs; //only really useful for returning them.
  332. if (mesh->blend_shape_count > 0) {
  333. s->blend_shape_buffer = RD::get_singleton()->storage_buffer_create(p_surface.blend_shape_data.size(), p_surface.blend_shape_data);
  334. }
  335. if (use_as_storage) {
  336. Vector<RD::Uniform> uniforms;
  337. {
  338. RD::Uniform u;
  339. u.binding = 0;
  340. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  341. if (s->vertex_buffer.is_valid()) {
  342. u.append_id(s->vertex_buffer);
  343. } else {
  344. u.append_id(default_rd_storage_buffer);
  345. }
  346. uniforms.push_back(u);
  347. }
  348. {
  349. RD::Uniform u;
  350. u.binding = 1;
  351. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  352. if (s->skin_buffer.is_valid()) {
  353. u.append_id(s->skin_buffer);
  354. } else {
  355. u.append_id(default_rd_storage_buffer);
  356. }
  357. uniforms.push_back(u);
  358. }
  359. {
  360. RD::Uniform u;
  361. u.binding = 2;
  362. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  363. if (s->blend_shape_buffer.is_valid()) {
  364. u.append_id(s->blend_shape_buffer);
  365. } else {
  366. u.append_id(default_rd_storage_buffer);
  367. }
  368. uniforms.push_back(u);
  369. }
  370. s->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SURFACE);
  371. }
  372. if (mesh->surface_count == 0) {
  373. mesh->bone_aabbs = p_surface.bone_aabbs;
  374. mesh->aabb = p_surface.aabb;
  375. } else {
  376. if (mesh->bone_aabbs.size() < p_surface.bone_aabbs.size()) {
  377. // ArrayMesh::_surface_set_data only allocates bone_aabbs up to max_bone
  378. // Each surface may affect different numbers of bones.
  379. mesh->bone_aabbs.resize(p_surface.bone_aabbs.size());
  380. }
  381. for (int i = 0; i < p_surface.bone_aabbs.size(); i++) {
  382. const AABB &bone = p_surface.bone_aabbs[i];
  383. if (bone.has_volume()) {
  384. AABB &mesh_bone = mesh->bone_aabbs.write[i];
  385. if (mesh_bone != AABB()) {
  386. // Already initialized, merge AABBs.
  387. mesh_bone.merge_with(bone);
  388. } else {
  389. // Not yet initialized, copy the bone AABB.
  390. mesh_bone = bone;
  391. }
  392. }
  393. }
  394. mesh->aabb.merge_with(p_surface.aabb);
  395. }
  396. s->material = p_surface.material;
  397. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
  398. mesh->surfaces[mesh->surface_count] = s;
  399. mesh->surface_count++;
  400. for (MeshInstance *mi : mesh->instances) {
  401. _mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
  402. }
  403. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  404. for (Mesh *E : mesh->shadow_owners) {
  405. Mesh *shadow_owner = E;
  406. shadow_owner->shadow_mesh = RID();
  407. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  408. }
  409. mesh->material_cache.clear();
  410. }
  411. int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
  412. const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  413. ERR_FAIL_COND_V(!mesh, -1);
  414. return mesh->blend_shape_count;
  415. }
  416. void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
  417. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  418. ERR_FAIL_COND(!mesh);
  419. ERR_FAIL_INDEX((int)p_mode, 2);
  420. mesh->blend_shape_mode = p_mode;
  421. }
  422. RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
  423. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  424. ERR_FAIL_COND_V(!mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
  425. return mesh->blend_shape_mode;
  426. }
  427. void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  428. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  429. ERR_FAIL_COND(!mesh);
  430. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  431. ERR_FAIL_COND(p_data.size() == 0);
  432. ERR_FAIL_COND(mesh->surfaces[p_surface]->vertex_buffer.is_null());
  433. uint64_t data_size = p_data.size();
  434. const uint8_t *r = p_data.ptr();
  435. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->vertex_buffer, p_offset, data_size, r);
  436. }
  437. void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  438. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  439. ERR_FAIL_COND(!mesh);
  440. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  441. ERR_FAIL_COND(p_data.size() == 0);
  442. ERR_FAIL_COND(mesh->surfaces[p_surface]->attribute_buffer.is_null());
  443. uint64_t data_size = p_data.size();
  444. const uint8_t *r = p_data.ptr();
  445. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->attribute_buffer, p_offset, data_size, r);
  446. }
  447. void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  448. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  449. ERR_FAIL_COND(!mesh);
  450. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  451. ERR_FAIL_COND(p_data.size() == 0);
  452. ERR_FAIL_COND(mesh->surfaces[p_surface]->skin_buffer.is_null());
  453. uint64_t data_size = p_data.size();
  454. const uint8_t *r = p_data.ptr();
  455. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->skin_buffer, p_offset, data_size, r);
  456. }
  457. void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
  458. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  459. ERR_FAIL_COND(!mesh);
  460. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  461. mesh->surfaces[p_surface]->material = p_material;
  462. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
  463. mesh->material_cache.clear();
  464. }
  465. RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
  466. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  467. ERR_FAIL_COND_V(!mesh, RID());
  468. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
  469. return mesh->surfaces[p_surface]->material;
  470. }
  471. RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
  472. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  473. ERR_FAIL_COND_V(!mesh, RS::SurfaceData());
  474. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
  475. Mesh::Surface &s = *mesh->surfaces[p_surface];
  476. RS::SurfaceData sd;
  477. sd.format = s.format;
  478. if (s.vertex_buffer.is_valid()) {
  479. sd.vertex_data = RD::get_singleton()->buffer_get_data(s.vertex_buffer);
  480. }
  481. if (s.attribute_buffer.is_valid()) {
  482. sd.attribute_data = RD::get_singleton()->buffer_get_data(s.attribute_buffer);
  483. }
  484. if (s.skin_buffer.is_valid()) {
  485. sd.skin_data = RD::get_singleton()->buffer_get_data(s.skin_buffer);
  486. }
  487. sd.vertex_count = s.vertex_count;
  488. sd.index_count = s.index_count;
  489. sd.primitive = s.primitive;
  490. if (sd.index_count) {
  491. sd.index_data = RD::get_singleton()->buffer_get_data(s.index_buffer);
  492. }
  493. sd.aabb = s.aabb;
  494. for (uint32_t i = 0; i < s.lod_count; i++) {
  495. RS::SurfaceData::LOD lod;
  496. lod.edge_length = s.lods[i].edge_length;
  497. lod.index_data = RD::get_singleton()->buffer_get_data(s.lods[i].index_buffer);
  498. sd.lods.push_back(lod);
  499. }
  500. sd.bone_aabbs = s.bone_aabbs;
  501. if (s.blend_shape_buffer.is_valid()) {
  502. sd.blend_shape_data = RD::get_singleton()->buffer_get_data(s.blend_shape_buffer);
  503. }
  504. return sd;
  505. }
  506. int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
  507. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  508. ERR_FAIL_COND_V(!mesh, 0);
  509. return mesh->surface_count;
  510. }
  511. void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
  512. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  513. ERR_FAIL_COND(!mesh);
  514. mesh->custom_aabb = p_aabb;
  515. }
  516. AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
  517. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  518. ERR_FAIL_COND_V(!mesh, AABB());
  519. return mesh->custom_aabb;
  520. }
  521. AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
  522. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  523. ERR_FAIL_COND_V(!mesh, AABB());
  524. if (mesh->custom_aabb != AABB()) {
  525. return mesh->custom_aabb;
  526. }
  527. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  528. if (!skeleton || skeleton->size == 0 || mesh->skeleton_aabb_version == skeleton->version) {
  529. return mesh->aabb;
  530. }
  531. AABB aabb;
  532. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  533. AABB laabb;
  534. if ((mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->bone_aabbs.size()) {
  535. int bs = mesh->surfaces[i]->bone_aabbs.size();
  536. const AABB *skbones = mesh->surfaces[i]->bone_aabbs.ptr();
  537. int sbs = skeleton->size;
  538. ERR_CONTINUE(bs > sbs);
  539. const float *baseptr = skeleton->data.ptr();
  540. bool first = true;
  541. if (skeleton->use_2d) {
  542. for (int j = 0; j < bs; j++) {
  543. if (skbones[0].size == Vector3()) {
  544. continue; //bone is unused
  545. }
  546. const float *dataptr = baseptr + j * 8;
  547. Transform3D mtx;
  548. mtx.basis.rows[0].x = dataptr[0];
  549. mtx.basis.rows[1].x = dataptr[1];
  550. mtx.origin.x = dataptr[3];
  551. mtx.basis.rows[0].y = dataptr[4];
  552. mtx.basis.rows[1].y = dataptr[5];
  553. mtx.origin.y = dataptr[7];
  554. AABB baabb = mtx.xform(skbones[j]);
  555. if (first) {
  556. laabb = baabb;
  557. first = false;
  558. } else {
  559. laabb.merge_with(baabb);
  560. }
  561. }
  562. } else {
  563. for (int j = 0; j < bs; j++) {
  564. if (skbones[0].size == Vector3()) {
  565. continue; //bone is unused
  566. }
  567. const float *dataptr = baseptr + j * 12;
  568. Transform3D mtx;
  569. mtx.basis.rows[0][0] = dataptr[0];
  570. mtx.basis.rows[0][1] = dataptr[1];
  571. mtx.basis.rows[0][2] = dataptr[2];
  572. mtx.origin.x = dataptr[3];
  573. mtx.basis.rows[1][0] = dataptr[4];
  574. mtx.basis.rows[1][1] = dataptr[5];
  575. mtx.basis.rows[1][2] = dataptr[6];
  576. mtx.origin.y = dataptr[7];
  577. mtx.basis.rows[2][0] = dataptr[8];
  578. mtx.basis.rows[2][1] = dataptr[9];
  579. mtx.basis.rows[2][2] = dataptr[10];
  580. mtx.origin.z = dataptr[11];
  581. AABB baabb = mtx.xform(skbones[j]);
  582. if (first) {
  583. laabb = baabb;
  584. first = false;
  585. } else {
  586. laabb.merge_with(baabb);
  587. }
  588. }
  589. }
  590. if (laabb.size == Vector3()) {
  591. laabb = mesh->surfaces[i]->aabb;
  592. }
  593. } else {
  594. laabb = mesh->surfaces[i]->aabb;
  595. }
  596. if (i == 0) {
  597. aabb = laabb;
  598. } else {
  599. aabb.merge_with(laabb);
  600. }
  601. }
  602. mesh->aabb = aabb;
  603. mesh->skeleton_aabb_version = skeleton->version;
  604. return aabb;
  605. }
  606. void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
  607. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  608. ERR_FAIL_COND(!mesh);
  609. Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  610. if (shadow_mesh) {
  611. shadow_mesh->shadow_owners.erase(mesh);
  612. }
  613. mesh->shadow_mesh = p_shadow_mesh;
  614. shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  615. if (shadow_mesh) {
  616. shadow_mesh->shadow_owners.insert(mesh);
  617. }
  618. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  619. }
  620. void MeshStorage::mesh_clear(RID p_mesh) {
  621. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  622. ERR_FAIL_COND(!mesh);
  623. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  624. Mesh::Surface &s = *mesh->surfaces[i];
  625. if (s.vertex_buffer.is_valid()) {
  626. RD::get_singleton()->free(s.vertex_buffer); //clears arrays as dependency automatically, including all versions
  627. }
  628. if (s.attribute_buffer.is_valid()) {
  629. RD::get_singleton()->free(s.attribute_buffer);
  630. }
  631. if (s.skin_buffer.is_valid()) {
  632. RD::get_singleton()->free(s.skin_buffer);
  633. }
  634. if (s.versions) {
  635. memfree(s.versions); //reallocs, so free with memfree.
  636. }
  637. if (s.index_buffer.is_valid()) {
  638. RD::get_singleton()->free(s.index_buffer);
  639. }
  640. if (s.lod_count) {
  641. for (uint32_t j = 0; j < s.lod_count; j++) {
  642. RD::get_singleton()->free(s.lods[j].index_buffer);
  643. }
  644. memdelete_arr(s.lods);
  645. }
  646. if (s.blend_shape_buffer.is_valid()) {
  647. RD::get_singleton()->free(s.blend_shape_buffer);
  648. }
  649. memdelete(mesh->surfaces[i]);
  650. }
  651. if (mesh->surfaces) {
  652. memfree(mesh->surfaces);
  653. }
  654. mesh->surfaces = nullptr;
  655. mesh->surface_count = 0;
  656. mesh->material_cache.clear();
  657. //clear instance data
  658. for (MeshInstance *mi : mesh->instances) {
  659. _mesh_instance_clear(mi);
  660. }
  661. mesh->has_bone_weights = false;
  662. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  663. for (Mesh *E : mesh->shadow_owners) {
  664. Mesh *shadow_owner = E;
  665. shadow_owner->shadow_mesh = RID();
  666. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  667. }
  668. }
  669. bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
  670. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  671. ERR_FAIL_COND_V(!mesh, false);
  672. return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
  673. }
  674. Dependency *MeshStorage::mesh_get_dependency(RID p_mesh) const {
  675. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  676. ERR_FAIL_COND_V(!mesh, nullptr);
  677. return &mesh->dependency;
  678. }
  679. /* MESH INSTANCE */
  680. RID MeshStorage::mesh_instance_create(RID p_base) {
  681. Mesh *mesh = mesh_owner.get_or_null(p_base);
  682. ERR_FAIL_COND_V(!mesh, RID());
  683. RID rid = mesh_instance_owner.make_rid();
  684. MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
  685. mi->mesh = mesh;
  686. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  687. _mesh_instance_add_surface(mi, mesh, i);
  688. }
  689. mi->I = mesh->instances.push_back(mi);
  690. mi->dirty = true;
  691. return rid;
  692. }
  693. void MeshStorage::mesh_instance_free(RID p_rid) {
  694. MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
  695. _mesh_instance_clear(mi);
  696. mi->mesh->instances.erase(mi->I);
  697. mi->I = nullptr;
  698. mesh_instance_owner.free(p_rid);
  699. }
  700. void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
  701. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  702. if (mi->skeleton == p_skeleton) {
  703. return;
  704. }
  705. mi->skeleton = p_skeleton;
  706. mi->skeleton_version = 0;
  707. mi->dirty = true;
  708. }
  709. void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
  710. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  711. ERR_FAIL_COND(!mi);
  712. ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
  713. mi->blend_weights[p_shape] = p_weight;
  714. mi->weights_dirty = true;
  715. //will be eventually updated
  716. }
  717. void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
  718. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  719. if (mi->surfaces[i].versions) {
  720. for (uint32_t j = 0; j < mi->surfaces[i].version_count; j++) {
  721. RD::get_singleton()->free(mi->surfaces[i].versions[j].vertex_array);
  722. }
  723. memfree(mi->surfaces[i].versions);
  724. }
  725. if (mi->surfaces[i].vertex_buffer.is_valid()) {
  726. RD::get_singleton()->free(mi->surfaces[i].vertex_buffer);
  727. }
  728. }
  729. mi->surfaces.clear();
  730. if (mi->blend_weights_buffer.is_valid()) {
  731. RD::get_singleton()->free(mi->blend_weights_buffer);
  732. }
  733. mi->blend_weights.clear();
  734. mi->weights_dirty = false;
  735. mi->skeleton_version = 0;
  736. }
  737. void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
  738. if (mesh->blend_shape_count > 0 && mi->blend_weights_buffer.is_null()) {
  739. mi->blend_weights.resize(mesh->blend_shape_count);
  740. for (uint32_t i = 0; i < mi->blend_weights.size(); i++) {
  741. mi->blend_weights[i] = 0;
  742. }
  743. mi->blend_weights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(float) * mi->blend_weights.size(), mi->blend_weights.to_byte_array());
  744. mi->weights_dirty = true;
  745. }
  746. MeshInstance::Surface s;
  747. if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) {
  748. //surface warrants transform
  749. s.vertex_buffer = RD::get_singleton()->vertex_buffer_create(mesh->surfaces[p_surface]->vertex_buffer_size, Vector<uint8_t>(), true);
  750. Vector<RD::Uniform> uniforms;
  751. {
  752. RD::Uniform u;
  753. u.binding = 1;
  754. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  755. u.append_id(s.vertex_buffer);
  756. uniforms.push_back(u);
  757. }
  758. {
  759. RD::Uniform u;
  760. u.binding = 2;
  761. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  762. if (mi->blend_weights_buffer.is_valid()) {
  763. u.append_id(mi->blend_weights_buffer);
  764. } else {
  765. u.append_id(default_rd_storage_buffer);
  766. }
  767. uniforms.push_back(u);
  768. }
  769. s.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_INSTANCE);
  770. }
  771. mi->surfaces.push_back(s);
  772. mi->dirty = true;
  773. }
  774. void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
  775. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  776. bool needs_update = mi->dirty;
  777. if (mi->weights_dirty && !mi->weight_update_list.in_list()) {
  778. dirty_mesh_instance_weights.add(&mi->weight_update_list);
  779. needs_update = true;
  780. }
  781. if (mi->array_update_list.in_list()) {
  782. return;
  783. }
  784. if (!needs_update && mi->skeleton.is_valid()) {
  785. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  786. if (sk && sk->version != mi->skeleton_version) {
  787. needs_update = true;
  788. }
  789. }
  790. if (needs_update) {
  791. dirty_mesh_instance_arrays.add(&mi->array_update_list);
  792. }
  793. }
  794. void MeshStorage::update_mesh_instances() {
  795. while (dirty_mesh_instance_weights.first()) {
  796. MeshInstance *mi = dirty_mesh_instance_weights.first()->self();
  797. if (mi->blend_weights_buffer.is_valid()) {
  798. RD::get_singleton()->buffer_update(mi->blend_weights_buffer, 0, mi->blend_weights.size() * sizeof(float), mi->blend_weights.ptr());
  799. }
  800. dirty_mesh_instance_weights.remove(&mi->weight_update_list);
  801. mi->weights_dirty = false;
  802. }
  803. if (dirty_mesh_instance_arrays.first() == nullptr) {
  804. return; //nothing to do
  805. }
  806. //process skeletons and blend shapes
  807. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  808. while (dirty_mesh_instance_arrays.first()) {
  809. MeshInstance *mi = dirty_mesh_instance_arrays.first()->self();
  810. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  811. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  812. if (mi->surfaces[i].uniform_set == RID() || mi->mesh->surfaces[i]->uniform_set == RID()) {
  813. continue;
  814. }
  815. bool array_is_2d = mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_2D_VERTICES;
  816. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, skeleton_shader.pipeline[array_is_2d ? SkeletonShader::SHADER_MODE_2D : SkeletonShader::SHADER_MODE_3D]);
  817. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->surfaces[i].uniform_set, SkeletonShader::UNIFORM_SET_INSTANCE);
  818. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->mesh->surfaces[i]->uniform_set, SkeletonShader::UNIFORM_SET_SURFACE);
  819. if (sk && sk->uniform_set_mi.is_valid()) {
  820. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sk->uniform_set_mi, SkeletonShader::UNIFORM_SET_SKELETON);
  821. } else {
  822. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, skeleton_shader.default_skeleton_uniform_set, SkeletonShader::UNIFORM_SET_SKELETON);
  823. }
  824. SkeletonShader::PushConstant push_constant;
  825. push_constant.has_normal = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_NORMAL;
  826. push_constant.has_tangent = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_TANGENT;
  827. push_constant.has_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES);
  828. push_constant.has_blend_shape = mi->mesh->blend_shape_count > 0;
  829. push_constant.vertex_count = mi->mesh->surfaces[i]->vertex_count;
  830. push_constant.vertex_stride = (mi->mesh->surfaces[i]->vertex_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  831. push_constant.skin_stride = (mi->mesh->surfaces[i]->skin_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  832. push_constant.skin_weight_offset = (mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS) ? 4 : 2;
  833. push_constant.blend_shape_count = mi->mesh->blend_shape_count;
  834. push_constant.normalized_blend_shapes = mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED;
  835. push_constant.pad0 = 0;
  836. push_constant.pad1 = 0;
  837. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SkeletonShader::PushConstant));
  838. //dispatch without barrier, so all is done at the same time
  839. RD::get_singleton()->compute_list_dispatch_threads(compute_list, push_constant.vertex_count, 1, 1);
  840. }
  841. mi->dirty = false;
  842. if (sk) {
  843. mi->skeleton_version = sk->version;
  844. }
  845. dirty_mesh_instance_arrays.remove(&mi->array_update_list);
  846. }
  847. RD::get_singleton()->compute_list_end();
  848. }
  849. void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint32_t p_input_mask, MeshInstance::Surface *mis) {
  850. Vector<RD::VertexAttribute> attributes;
  851. Vector<RID> buffers;
  852. uint32_t stride = 0;
  853. uint32_t attribute_stride = 0;
  854. uint32_t skin_stride = 0;
  855. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  856. RD::VertexAttribute vd;
  857. RID buffer;
  858. vd.location = i;
  859. if (!(s->format & (1 << i))) {
  860. // Not supplied by surface, use default value
  861. buffer = mesh_default_rd_buffers[i];
  862. vd.stride = 0;
  863. switch (i) {
  864. case RS::ARRAY_VERTEX: {
  865. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  866. } break;
  867. case RS::ARRAY_NORMAL: {
  868. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  869. } break;
  870. case RS::ARRAY_TANGENT: {
  871. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  872. } break;
  873. case RS::ARRAY_COLOR: {
  874. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  875. } break;
  876. case RS::ARRAY_TEX_UV: {
  877. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  878. } break;
  879. case RS::ARRAY_TEX_UV2: {
  880. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  881. } break;
  882. case RS::ARRAY_CUSTOM0:
  883. case RS::ARRAY_CUSTOM1:
  884. case RS::ARRAY_CUSTOM2:
  885. case RS::ARRAY_CUSTOM3: {
  886. //assumed weights too
  887. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  888. } break;
  889. case RS::ARRAY_BONES: {
  890. //assumed weights too
  891. vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
  892. } break;
  893. case RS::ARRAY_WEIGHTS: {
  894. //assumed weights too
  895. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  896. } break;
  897. }
  898. } else {
  899. //Supplied, use it
  900. vd.stride = 1; //mark that it needs a stride set (default uses 0)
  901. switch (i) {
  902. case RS::ARRAY_VERTEX: {
  903. vd.offset = stride;
  904. if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  905. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  906. stride += sizeof(float) * 2;
  907. } else {
  908. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  909. stride += sizeof(float) * 3;
  910. }
  911. if (mis) {
  912. buffer = mis->vertex_buffer;
  913. } else {
  914. buffer = s->vertex_buffer;
  915. }
  916. } break;
  917. case RS::ARRAY_NORMAL: {
  918. vd.offset = stride;
  919. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  920. stride += sizeof(uint16_t) * 2;
  921. if (mis) {
  922. buffer = mis->vertex_buffer;
  923. } else {
  924. buffer = s->vertex_buffer;
  925. }
  926. } break;
  927. case RS::ARRAY_TANGENT: {
  928. vd.offset = stride;
  929. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  930. stride += sizeof(uint16_t) * 2;
  931. if (mis) {
  932. buffer = mis->vertex_buffer;
  933. } else {
  934. buffer = s->vertex_buffer;
  935. }
  936. } break;
  937. case RS::ARRAY_COLOR: {
  938. vd.offset = attribute_stride;
  939. vd.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  940. attribute_stride += sizeof(int8_t) * 4;
  941. buffer = s->attribute_buffer;
  942. } break;
  943. case RS::ARRAY_TEX_UV: {
  944. vd.offset = attribute_stride;
  945. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  946. attribute_stride += sizeof(float) * 2;
  947. buffer = s->attribute_buffer;
  948. } break;
  949. case RS::ARRAY_TEX_UV2: {
  950. vd.offset = attribute_stride;
  951. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  952. attribute_stride += sizeof(float) * 2;
  953. buffer = s->attribute_buffer;
  954. } break;
  955. case RS::ARRAY_CUSTOM0:
  956. case RS::ARRAY_CUSTOM1:
  957. case RS::ARRAY_CUSTOM2:
  958. case RS::ARRAY_CUSTOM3: {
  959. vd.offset = attribute_stride;
  960. int idx = i - RS::ARRAY_CUSTOM0;
  961. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  962. uint32_t fmt = (s->format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  963. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  964. const RD::DataFormat fmtrd[RS::ARRAY_CUSTOM_MAX] = { RD::DATA_FORMAT_R8G8B8A8_UNORM, RD::DATA_FORMAT_R8G8B8A8_SNORM, RD::DATA_FORMAT_R16G16_SFLOAT, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, RD::DATA_FORMAT_R32_SFLOAT, RD::DATA_FORMAT_R32G32_SFLOAT, RD::DATA_FORMAT_R32G32B32_SFLOAT, RD::DATA_FORMAT_R32G32B32A32_SFLOAT };
  965. vd.format = fmtrd[fmt];
  966. attribute_stride += fmtsize[fmt];
  967. buffer = s->attribute_buffer;
  968. } break;
  969. case RS::ARRAY_BONES: {
  970. vd.offset = skin_stride;
  971. vd.format = RD::DATA_FORMAT_R16G16B16A16_UINT;
  972. skin_stride += sizeof(int16_t) * 4;
  973. buffer = s->skin_buffer;
  974. } break;
  975. case RS::ARRAY_WEIGHTS: {
  976. vd.offset = skin_stride;
  977. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  978. skin_stride += sizeof(int16_t) * 4;
  979. buffer = s->skin_buffer;
  980. } break;
  981. }
  982. }
  983. if (!(p_input_mask & (1 << i))) {
  984. continue; // Shader does not need this, skip it (but computing stride was important anyway)
  985. }
  986. attributes.push_back(vd);
  987. buffers.push_back(buffer);
  988. }
  989. //update final stride
  990. for (int i = 0; i < attributes.size(); i++) {
  991. if (attributes[i].stride == 0) {
  992. continue; //default location
  993. }
  994. int loc = attributes[i].location;
  995. if (loc < RS::ARRAY_COLOR) {
  996. attributes.write[i].stride = stride;
  997. } else if (loc < RS::ARRAY_BONES) {
  998. attributes.write[i].stride = attribute_stride;
  999. } else {
  1000. attributes.write[i].stride = skin_stride;
  1001. }
  1002. }
  1003. v.input_mask = p_input_mask;
  1004. v.vertex_format = RD::get_singleton()->vertex_format_create(attributes);
  1005. v.vertex_array = RD::get_singleton()->vertex_array_create(s->vertex_count, v.vertex_format, buffers);
  1006. }
  1007. ////////////////// MULTIMESH
  1008. RID MeshStorage::multimesh_allocate() {
  1009. return multimesh_owner.allocate_rid();
  1010. }
  1011. void MeshStorage::multimesh_initialize(RID p_rid) {
  1012. multimesh_owner.initialize_rid(p_rid, MultiMesh());
  1013. }
  1014. void MeshStorage::multimesh_free(RID p_rid) {
  1015. _update_dirty_multimeshes();
  1016. multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
  1017. MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
  1018. multimesh->dependency.deleted_notify(p_rid);
  1019. multimesh_owner.free(p_rid);
  1020. }
  1021. void MeshStorage::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) {
  1022. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1023. ERR_FAIL_COND(!multimesh);
  1024. if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
  1025. return;
  1026. }
  1027. if (multimesh->buffer.is_valid()) {
  1028. RD::get_singleton()->free(multimesh->buffer);
  1029. multimesh->buffer = RID();
  1030. multimesh->uniform_set_2d = RID(); //cleared by dependency
  1031. multimesh->uniform_set_3d = RID(); //cleared by dependency
  1032. }
  1033. if (multimesh->data_cache_dirty_regions) {
  1034. memdelete_arr(multimesh->data_cache_dirty_regions);
  1035. multimesh->data_cache_dirty_regions = nullptr;
  1036. multimesh->data_cache_dirty_region_count = 0;
  1037. }
  1038. if (multimesh->previous_data_cache_dirty_regions) {
  1039. memdelete_arr(multimesh->previous_data_cache_dirty_regions);
  1040. multimesh->previous_data_cache_dirty_regions = nullptr;
  1041. multimesh->previous_data_cache_dirty_region_count = 0;
  1042. }
  1043. multimesh->instances = p_instances;
  1044. multimesh->xform_format = p_transform_format;
  1045. multimesh->uses_colors = p_use_colors;
  1046. multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1047. multimesh->uses_custom_data = p_use_custom_data;
  1048. multimesh->custom_data_offset_cache = multimesh->color_offset_cache + (p_use_colors ? 4 : 0);
  1049. multimesh->stride_cache = multimesh->custom_data_offset_cache + (p_use_custom_data ? 4 : 0);
  1050. multimesh->buffer_set = false;
  1051. //print_line("allocate, elements: " + itos(p_instances) + " 2D: " + itos(p_transform_format == RS::MULTIMESH_TRANSFORM_2D) + " colors " + itos(multimesh->uses_colors) + " data " + itos(multimesh->uses_custom_data) + " stride " + itos(multimesh->stride_cache) + " total size " + itos(multimesh->stride_cache * multimesh->instances));
  1052. multimesh->data_cache = Vector<float>();
  1053. multimesh->aabb = AABB();
  1054. multimesh->aabb_dirty = false;
  1055. multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
  1056. multimesh->motion_vectors_current_offset = 0;
  1057. multimesh->motion_vectors_previous_offset = 0;
  1058. multimesh->motion_vectors_last_change = -1;
  1059. if (multimesh->instances) {
  1060. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1061. if (multimesh->motion_vectors_enabled) {
  1062. buffer_size *= 2;
  1063. }
  1064. multimesh->buffer = RD::get_singleton()->storage_buffer_create(buffer_size);
  1065. }
  1066. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1067. }
  1068. bool MeshStorage::_multimesh_enable_motion_vectors(RID p_multimesh) {
  1069. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1070. ERR_FAIL_COND_V(!multimesh, false);
  1071. if (multimesh->motion_vectors_enabled) {
  1072. return false;
  1073. }
  1074. multimesh->motion_vectors_enabled = true;
  1075. multimesh->motion_vectors_current_offset = 0;
  1076. multimesh->motion_vectors_previous_offset = 0;
  1077. multimesh->motion_vectors_last_change = -1;
  1078. if (!multimesh->data_cache.is_empty()) {
  1079. multimesh->data_cache.append_array(multimesh->data_cache);
  1080. }
  1081. if (multimesh->buffer_set) {
  1082. RD::get_singleton()->barrier();
  1083. Vector<uint8_t> buffer_data = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1084. if (!multimesh->data_cache.is_empty()) {
  1085. memcpy(buffer_data.ptrw(), multimesh->data_cache.ptr(), buffer_data.size());
  1086. }
  1087. RD::get_singleton()->free(multimesh->buffer);
  1088. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float) * 2;
  1089. multimesh->buffer = RD::get_singleton()->storage_buffer_create(buffer_size);
  1090. RD::get_singleton()->buffer_update(multimesh->buffer, 0, buffer_data.size(), buffer_data.ptr(), RD::BARRIER_MASK_NO_BARRIER);
  1091. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_data.size(), buffer_data.size(), buffer_data.ptr());
  1092. multimesh->uniform_set_3d = RID(); // Cleared by dependency
  1093. return true;
  1094. }
  1095. return false; // Update the transforms uniform set cache
  1096. }
  1097. void MeshStorage::_multimesh_get_motion_vectors_offsets(RID p_multimesh, uint32_t &r_current_offset, uint32_t &r_prev_offset) {
  1098. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1099. ERR_FAIL_COND(!multimesh);
  1100. r_current_offset = multimesh->motion_vectors_current_offset;
  1101. if (RSG::rasterizer->get_frame_number() - multimesh->motion_vectors_last_change >= 2) {
  1102. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1103. }
  1104. r_prev_offset = multimesh->motion_vectors_previous_offset;
  1105. }
  1106. int MeshStorage::multimesh_get_instance_count(RID p_multimesh) const {
  1107. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1108. ERR_FAIL_COND_V(!multimesh, 0);
  1109. return multimesh->instances;
  1110. }
  1111. void MeshStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
  1112. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1113. ERR_FAIL_COND(!multimesh);
  1114. if (multimesh->mesh == p_mesh) {
  1115. return;
  1116. }
  1117. multimesh->mesh = p_mesh;
  1118. if (multimesh->instances == 0) {
  1119. return;
  1120. }
  1121. if (multimesh->data_cache.size()) {
  1122. //we have a data cache, just mark it dirt
  1123. _multimesh_mark_all_dirty(multimesh, false, true);
  1124. } else if (multimesh->instances) {
  1125. //need to re-create AABB unfortunately, calling this has a penalty
  1126. if (multimesh->buffer_set) {
  1127. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1128. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1129. const float *data = reinterpret_cast<const float *>(r);
  1130. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1131. }
  1132. }
  1133. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  1134. }
  1135. #define MULTIMESH_DIRTY_REGION_SIZE 512
  1136. void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
  1137. if (multimesh->data_cache.size() > 0) {
  1138. return; //already local
  1139. }
  1140. // this means that the user wants to load/save individual elements,
  1141. // for this, the data must reside on CPU, so just copy it there.
  1142. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache;
  1143. if (multimesh->motion_vectors_enabled) {
  1144. buffer_size *= 2;
  1145. }
  1146. multimesh->data_cache.resize(buffer_size);
  1147. {
  1148. float *w = multimesh->data_cache.ptrw();
  1149. if (multimesh->buffer_set) {
  1150. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1151. {
  1152. const uint8_t *r = buffer.ptr();
  1153. memcpy(w, r, buffer.size());
  1154. }
  1155. } else {
  1156. memset(w, 0, buffer_size * sizeof(float));
  1157. }
  1158. }
  1159. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1160. multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1161. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1162. multimesh->data_cache_dirty_region_count = 0;
  1163. multimesh->previous_data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1164. memset(multimesh->previous_data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1165. multimesh->previous_data_cache_dirty_region_count = 0;
  1166. }
  1167. void MeshStorage::_multimesh_update_motion_vectors_data_cache(MultiMesh *multimesh) {
  1168. ERR_FAIL_COND(multimesh->data_cache.is_empty());
  1169. if (!multimesh->motion_vectors_enabled) {
  1170. return;
  1171. }
  1172. uint32_t frame = RSG::rasterizer->get_frame_number();
  1173. if (multimesh->motion_vectors_last_change != frame) {
  1174. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1175. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1176. multimesh->motion_vectors_last_change = frame;
  1177. if (multimesh->previous_data_cache_dirty_region_count > 0) {
  1178. uint8_t *data = (uint8_t *)multimesh->data_cache.ptrw();
  1179. uint32_t current_ofs = multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1180. uint32_t previous_ofs = multimesh->motion_vectors_previous_offset * multimesh->stride_cache * sizeof(float);
  1181. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1182. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1183. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1184. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1185. for (uint32_t i = 0; i < visible_region_count; i++) {
  1186. if (multimesh->previous_data_cache_dirty_regions[i]) {
  1187. uint32_t offset = i * region_size;
  1188. memcpy(data + current_ofs + offset, data + previous_ofs + offset, MIN(region_size, size - offset));
  1189. }
  1190. }
  1191. }
  1192. }
  1193. }
  1194. void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
  1195. uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
  1196. #ifdef DEBUG_ENABLED
  1197. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1198. ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
  1199. #endif
  1200. if (!multimesh->data_cache_dirty_regions[region_index]) {
  1201. multimesh->data_cache_dirty_regions[region_index] = true;
  1202. multimesh->data_cache_dirty_region_count++;
  1203. }
  1204. if (p_aabb) {
  1205. multimesh->aabb_dirty = true;
  1206. }
  1207. if (!multimesh->dirty) {
  1208. multimesh->dirty_list = multimesh_dirty_list;
  1209. multimesh_dirty_list = multimesh;
  1210. multimesh->dirty = true;
  1211. }
  1212. }
  1213. void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
  1214. if (p_data) {
  1215. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1216. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1217. if (!multimesh->data_cache_dirty_regions[i]) {
  1218. multimesh->data_cache_dirty_regions[i] = true;
  1219. multimesh->data_cache_dirty_region_count++;
  1220. }
  1221. }
  1222. }
  1223. if (p_aabb) {
  1224. multimesh->aabb_dirty = true;
  1225. }
  1226. if (!multimesh->dirty) {
  1227. multimesh->dirty_list = multimesh_dirty_list;
  1228. multimesh_dirty_list = multimesh;
  1229. multimesh->dirty = true;
  1230. }
  1231. }
  1232. void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
  1233. ERR_FAIL_COND(multimesh->mesh.is_null());
  1234. AABB aabb;
  1235. AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
  1236. for (int i = 0; i < p_instances; i++) {
  1237. const float *data = p_data + multimesh->stride_cache * i;
  1238. Transform3D t;
  1239. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1240. t.basis.rows[0][0] = data[0];
  1241. t.basis.rows[0][1] = data[1];
  1242. t.basis.rows[0][2] = data[2];
  1243. t.origin.x = data[3];
  1244. t.basis.rows[1][0] = data[4];
  1245. t.basis.rows[1][1] = data[5];
  1246. t.basis.rows[1][2] = data[6];
  1247. t.origin.y = data[7];
  1248. t.basis.rows[2][0] = data[8];
  1249. t.basis.rows[2][1] = data[9];
  1250. t.basis.rows[2][2] = data[10];
  1251. t.origin.z = data[11];
  1252. } else {
  1253. t.basis.rows[0].x = data[0];
  1254. t.basis.rows[1].x = data[1];
  1255. t.origin.x = data[3];
  1256. t.basis.rows[0].y = data[4];
  1257. t.basis.rows[1].y = data[5];
  1258. t.origin.y = data[7];
  1259. }
  1260. if (i == 0) {
  1261. aabb = t.xform(mesh_aabb);
  1262. } else {
  1263. aabb.merge_with(t.xform(mesh_aabb));
  1264. }
  1265. }
  1266. multimesh->aabb = aabb;
  1267. }
  1268. void MeshStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
  1269. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1270. ERR_FAIL_COND(!multimesh);
  1271. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1272. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
  1273. _multimesh_make_local(multimesh);
  1274. _multimesh_update_motion_vectors_data_cache(multimesh);
  1275. {
  1276. float *w = multimesh->data_cache.ptrw();
  1277. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1278. dataptr[0] = p_transform.basis.rows[0][0];
  1279. dataptr[1] = p_transform.basis.rows[0][1];
  1280. dataptr[2] = p_transform.basis.rows[0][2];
  1281. dataptr[3] = p_transform.origin.x;
  1282. dataptr[4] = p_transform.basis.rows[1][0];
  1283. dataptr[5] = p_transform.basis.rows[1][1];
  1284. dataptr[6] = p_transform.basis.rows[1][2];
  1285. dataptr[7] = p_transform.origin.y;
  1286. dataptr[8] = p_transform.basis.rows[2][0];
  1287. dataptr[9] = p_transform.basis.rows[2][1];
  1288. dataptr[10] = p_transform.basis.rows[2][2];
  1289. dataptr[11] = p_transform.origin.z;
  1290. }
  1291. _multimesh_mark_dirty(multimesh, p_index, true);
  1292. }
  1293. void MeshStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
  1294. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1295. ERR_FAIL_COND(!multimesh);
  1296. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1297. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
  1298. _multimesh_make_local(multimesh);
  1299. _multimesh_update_motion_vectors_data_cache(multimesh);
  1300. {
  1301. float *w = multimesh->data_cache.ptrw();
  1302. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1303. dataptr[0] = p_transform.columns[0][0];
  1304. dataptr[1] = p_transform.columns[1][0];
  1305. dataptr[2] = 0;
  1306. dataptr[3] = p_transform.columns[2][0];
  1307. dataptr[4] = p_transform.columns[0][1];
  1308. dataptr[5] = p_transform.columns[1][1];
  1309. dataptr[6] = 0;
  1310. dataptr[7] = p_transform.columns[2][1];
  1311. }
  1312. _multimesh_mark_dirty(multimesh, p_index, true);
  1313. }
  1314. void MeshStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
  1315. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1316. ERR_FAIL_COND(!multimesh);
  1317. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1318. ERR_FAIL_COND(!multimesh->uses_colors);
  1319. _multimesh_make_local(multimesh);
  1320. _multimesh_update_motion_vectors_data_cache(multimesh);
  1321. {
  1322. float *w = multimesh->data_cache.ptrw();
  1323. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1324. dataptr[0] = p_color.r;
  1325. dataptr[1] = p_color.g;
  1326. dataptr[2] = p_color.b;
  1327. dataptr[3] = p_color.a;
  1328. }
  1329. _multimesh_mark_dirty(multimesh, p_index, false);
  1330. }
  1331. void MeshStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
  1332. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1333. ERR_FAIL_COND(!multimesh);
  1334. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1335. ERR_FAIL_COND(!multimesh->uses_custom_data);
  1336. _multimesh_make_local(multimesh);
  1337. _multimesh_update_motion_vectors_data_cache(multimesh);
  1338. {
  1339. float *w = multimesh->data_cache.ptrw();
  1340. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1341. dataptr[0] = p_color.r;
  1342. dataptr[1] = p_color.g;
  1343. dataptr[2] = p_color.b;
  1344. dataptr[3] = p_color.a;
  1345. }
  1346. _multimesh_mark_dirty(multimesh, p_index, false);
  1347. }
  1348. RID MeshStorage::multimesh_get_mesh(RID p_multimesh) const {
  1349. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1350. ERR_FAIL_COND_V(!multimesh, RID());
  1351. return multimesh->mesh;
  1352. }
  1353. Dependency *MeshStorage::multimesh_get_dependency(RID p_multimesh) const {
  1354. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1355. ERR_FAIL_COND_V(!multimesh, nullptr);
  1356. return &multimesh->dependency;
  1357. }
  1358. Transform3D MeshStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
  1359. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1360. ERR_FAIL_COND_V(!multimesh, Transform3D());
  1361. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
  1362. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
  1363. _multimesh_make_local(multimesh);
  1364. Transform3D t;
  1365. {
  1366. const float *r = multimesh->data_cache.ptr();
  1367. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1368. t.basis.rows[0][0] = dataptr[0];
  1369. t.basis.rows[0][1] = dataptr[1];
  1370. t.basis.rows[0][2] = dataptr[2];
  1371. t.origin.x = dataptr[3];
  1372. t.basis.rows[1][0] = dataptr[4];
  1373. t.basis.rows[1][1] = dataptr[5];
  1374. t.basis.rows[1][2] = dataptr[6];
  1375. t.origin.y = dataptr[7];
  1376. t.basis.rows[2][0] = dataptr[8];
  1377. t.basis.rows[2][1] = dataptr[9];
  1378. t.basis.rows[2][2] = dataptr[10];
  1379. t.origin.z = dataptr[11];
  1380. }
  1381. return t;
  1382. }
  1383. Transform2D MeshStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
  1384. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1385. ERR_FAIL_COND_V(!multimesh, Transform2D());
  1386. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
  1387. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
  1388. _multimesh_make_local(multimesh);
  1389. Transform2D t;
  1390. {
  1391. const float *r = multimesh->data_cache.ptr();
  1392. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1393. t.columns[0][0] = dataptr[0];
  1394. t.columns[1][0] = dataptr[1];
  1395. t.columns[2][0] = dataptr[3];
  1396. t.columns[0][1] = dataptr[4];
  1397. t.columns[1][1] = dataptr[5];
  1398. t.columns[2][1] = dataptr[7];
  1399. }
  1400. return t;
  1401. }
  1402. Color MeshStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
  1403. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1404. ERR_FAIL_COND_V(!multimesh, Color());
  1405. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1406. ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
  1407. _multimesh_make_local(multimesh);
  1408. Color c;
  1409. {
  1410. const float *r = multimesh->data_cache.ptr();
  1411. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1412. c.r = dataptr[0];
  1413. c.g = dataptr[1];
  1414. c.b = dataptr[2];
  1415. c.a = dataptr[3];
  1416. }
  1417. return c;
  1418. }
  1419. Color MeshStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
  1420. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1421. ERR_FAIL_COND_V(!multimesh, Color());
  1422. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1423. ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
  1424. _multimesh_make_local(multimesh);
  1425. Color c;
  1426. {
  1427. const float *r = multimesh->data_cache.ptr();
  1428. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1429. c.r = dataptr[0];
  1430. c.g = dataptr[1];
  1431. c.b = dataptr[2];
  1432. c.a = dataptr[3];
  1433. }
  1434. return c;
  1435. }
  1436. void MeshStorage::multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
  1437. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1438. ERR_FAIL_COND(!multimesh);
  1439. ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
  1440. if (multimesh->motion_vectors_enabled) {
  1441. uint32_t frame = RSG::rasterizer->get_frame_number();
  1442. if (multimesh->motion_vectors_last_change != frame) {
  1443. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1444. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1445. multimesh->motion_vectors_last_change = frame;
  1446. }
  1447. }
  1448. {
  1449. const float *r = p_buffer.ptr();
  1450. RD::get_singleton()->buffer_update(multimesh->buffer, multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float), p_buffer.size() * sizeof(float), r);
  1451. multimesh->buffer_set = true;
  1452. }
  1453. if (multimesh->data_cache.size()) {
  1454. float *cache_data = multimesh->data_cache.ptrw();
  1455. memcpy(cache_data + (multimesh->motion_vectors_current_offset * multimesh->stride_cache), p_buffer.ptr(), p_buffer.size() * sizeof(float));
  1456. _multimesh_mark_all_dirty(multimesh, true, true); //update AABB
  1457. } else if (multimesh->mesh.is_valid()) {
  1458. //if we have a mesh set, we need to re-generate the AABB from the new data
  1459. const float *data = p_buffer.ptr();
  1460. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1461. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1462. }
  1463. }
  1464. Vector<float> MeshStorage::multimesh_get_buffer(RID p_multimesh) const {
  1465. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1466. ERR_FAIL_COND_V(!multimesh, Vector<float>());
  1467. if (multimesh->buffer.is_null()) {
  1468. return Vector<float>();
  1469. } else {
  1470. Vector<float> ret;
  1471. ret.resize(multimesh->instances * multimesh->stride_cache);
  1472. float *w = ret.ptrw();
  1473. if (multimesh->data_cache.size()) {
  1474. const uint8_t *r = (uint8_t *)multimesh->data_cache.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1475. memcpy(w, r, ret.size() * sizeof(float));
  1476. } else {
  1477. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1478. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1479. memcpy(w, r, ret.size() * sizeof(float));
  1480. }
  1481. return ret;
  1482. }
  1483. }
  1484. void MeshStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
  1485. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1486. ERR_FAIL_COND(!multimesh);
  1487. ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
  1488. if (multimesh->visible_instances == p_visible) {
  1489. return;
  1490. }
  1491. if (multimesh->data_cache.size()) {
  1492. //there is a data cache..
  1493. _multimesh_mark_all_dirty(multimesh, false, true);
  1494. }
  1495. multimesh->visible_instances = p_visible;
  1496. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
  1497. }
  1498. int MeshStorage::multimesh_get_visible_instances(RID p_multimesh) const {
  1499. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1500. ERR_FAIL_COND_V(!multimesh, 0);
  1501. return multimesh->visible_instances;
  1502. }
  1503. AABB MeshStorage::multimesh_get_aabb(RID p_multimesh) const {
  1504. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1505. ERR_FAIL_COND_V(!multimesh, AABB());
  1506. if (multimesh->aabb_dirty) {
  1507. const_cast<MeshStorage *>(this)->_update_dirty_multimeshes();
  1508. }
  1509. return multimesh->aabb;
  1510. }
  1511. void MeshStorage::_update_dirty_multimeshes() {
  1512. while (multimesh_dirty_list) {
  1513. MultiMesh *multimesh = multimesh_dirty_list;
  1514. if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
  1515. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1516. uint32_t buffer_offset = multimesh->motion_vectors_current_offset * multimesh->stride_cache;
  1517. const float *data = multimesh->data_cache.ptr() + buffer_offset;
  1518. uint32_t total_dirty_regions = multimesh->data_cache_dirty_region_count + multimesh->previous_data_cache_dirty_region_count;
  1519. if (total_dirty_regions != 0) {
  1520. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1521. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1522. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1523. if (total_dirty_regions > 32 || total_dirty_regions > visible_region_count / 2) {
  1524. //if there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
  1525. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float), MIN(visible_region_count * region_size, multimesh->instances * (uint32_t)multimesh->stride_cache * (uint32_t)sizeof(float)), data);
  1526. } else {
  1527. //not that many regions? update them all
  1528. for (uint32_t i = 0; i < visible_region_count; i++) {
  1529. if (multimesh->data_cache_dirty_regions[i] || multimesh->previous_data_cache_dirty_regions[i]) {
  1530. uint32_t offset = i * region_size;
  1531. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1532. uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
  1533. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float) + offset, MIN(region_size, size - offset), &data[region_start_index], RD::BARRIER_MASK_NO_BARRIER);
  1534. }
  1535. }
  1536. RD::get_singleton()->barrier(RD::BARRIER_MASK_NO_BARRIER, RD::BARRIER_MASK_ALL_BARRIERS);
  1537. }
  1538. memcpy(multimesh->previous_data_cache_dirty_regions, multimesh->data_cache_dirty_regions, data_cache_dirty_region_count * sizeof(bool));
  1539. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1540. multimesh->previous_data_cache_dirty_region_count = multimesh->data_cache_dirty_region_count;
  1541. multimesh->data_cache_dirty_region_count = 0;
  1542. }
  1543. if (multimesh->aabb_dirty) {
  1544. //aabb is dirty..
  1545. _multimesh_re_create_aabb(multimesh, data, visible_instances);
  1546. multimesh->aabb_dirty = false;
  1547. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1548. }
  1549. }
  1550. multimesh_dirty_list = multimesh->dirty_list;
  1551. multimesh->dirty_list = nullptr;
  1552. multimesh->dirty = false;
  1553. }
  1554. multimesh_dirty_list = nullptr;
  1555. }
  1556. /* SKELETON API */
  1557. RID MeshStorage::skeleton_allocate() {
  1558. return skeleton_owner.allocate_rid();
  1559. }
  1560. void MeshStorage::skeleton_initialize(RID p_rid) {
  1561. skeleton_owner.initialize_rid(p_rid, Skeleton());
  1562. }
  1563. void MeshStorage::skeleton_free(RID p_rid) {
  1564. _update_dirty_skeletons();
  1565. skeleton_allocate_data(p_rid, 0);
  1566. Skeleton *skeleton = skeleton_owner.get_or_null(p_rid);
  1567. skeleton->dependency.deleted_notify(p_rid);
  1568. skeleton_owner.free(p_rid);
  1569. }
  1570. void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) {
  1571. if (!skeleton->dirty) {
  1572. skeleton->dirty = true;
  1573. skeleton->dirty_list = skeleton_dirty_list;
  1574. skeleton_dirty_list = skeleton;
  1575. }
  1576. }
  1577. void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
  1578. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1579. ERR_FAIL_COND(!skeleton);
  1580. ERR_FAIL_COND(p_bones < 0);
  1581. if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
  1582. return;
  1583. }
  1584. skeleton->size = p_bones;
  1585. skeleton->use_2d = p_2d_skeleton;
  1586. skeleton->uniform_set_3d = RID();
  1587. if (skeleton->buffer.is_valid()) {
  1588. RD::get_singleton()->free(skeleton->buffer);
  1589. skeleton->buffer = RID();
  1590. skeleton->data.clear();
  1591. skeleton->uniform_set_mi = RID();
  1592. }
  1593. if (skeleton->size) {
  1594. skeleton->data.resize(skeleton->size * (skeleton->use_2d ? 8 : 12));
  1595. skeleton->buffer = RD::get_singleton()->storage_buffer_create(skeleton->data.size() * sizeof(float));
  1596. memset(skeleton->data.ptrw(), 0, skeleton->data.size() * sizeof(float));
  1597. _skeleton_make_dirty(skeleton);
  1598. {
  1599. Vector<RD::Uniform> uniforms;
  1600. {
  1601. RD::Uniform u;
  1602. u.binding = 0;
  1603. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1604. u.append_id(skeleton->buffer);
  1605. uniforms.push_back(u);
  1606. }
  1607. skeleton->uniform_set_mi = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  1608. }
  1609. }
  1610. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA);
  1611. }
  1612. int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
  1613. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1614. ERR_FAIL_COND_V(!skeleton, 0);
  1615. return skeleton->size;
  1616. }
  1617. void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
  1618. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1619. ERR_FAIL_COND(!skeleton);
  1620. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1621. ERR_FAIL_COND(skeleton->use_2d);
  1622. float *dataptr = skeleton->data.ptrw() + p_bone * 12;
  1623. dataptr[0] = p_transform.basis.rows[0][0];
  1624. dataptr[1] = p_transform.basis.rows[0][1];
  1625. dataptr[2] = p_transform.basis.rows[0][2];
  1626. dataptr[3] = p_transform.origin.x;
  1627. dataptr[4] = p_transform.basis.rows[1][0];
  1628. dataptr[5] = p_transform.basis.rows[1][1];
  1629. dataptr[6] = p_transform.basis.rows[1][2];
  1630. dataptr[7] = p_transform.origin.y;
  1631. dataptr[8] = p_transform.basis.rows[2][0];
  1632. dataptr[9] = p_transform.basis.rows[2][1];
  1633. dataptr[10] = p_transform.basis.rows[2][2];
  1634. dataptr[11] = p_transform.origin.z;
  1635. _skeleton_make_dirty(skeleton);
  1636. }
  1637. Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
  1638. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1639. ERR_FAIL_COND_V(!skeleton, Transform3D());
  1640. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D());
  1641. ERR_FAIL_COND_V(skeleton->use_2d, Transform3D());
  1642. const float *dataptr = skeleton->data.ptr() + p_bone * 12;
  1643. Transform3D t;
  1644. t.basis.rows[0][0] = dataptr[0];
  1645. t.basis.rows[0][1] = dataptr[1];
  1646. t.basis.rows[0][2] = dataptr[2];
  1647. t.origin.x = dataptr[3];
  1648. t.basis.rows[1][0] = dataptr[4];
  1649. t.basis.rows[1][1] = dataptr[5];
  1650. t.basis.rows[1][2] = dataptr[6];
  1651. t.origin.y = dataptr[7];
  1652. t.basis.rows[2][0] = dataptr[8];
  1653. t.basis.rows[2][1] = dataptr[9];
  1654. t.basis.rows[2][2] = dataptr[10];
  1655. t.origin.z = dataptr[11];
  1656. return t;
  1657. }
  1658. void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
  1659. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1660. ERR_FAIL_COND(!skeleton);
  1661. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1662. ERR_FAIL_COND(!skeleton->use_2d);
  1663. float *dataptr = skeleton->data.ptrw() + p_bone * 8;
  1664. dataptr[0] = p_transform.columns[0][0];
  1665. dataptr[1] = p_transform.columns[1][0];
  1666. dataptr[2] = 0;
  1667. dataptr[3] = p_transform.columns[2][0];
  1668. dataptr[4] = p_transform.columns[0][1];
  1669. dataptr[5] = p_transform.columns[1][1];
  1670. dataptr[6] = 0;
  1671. dataptr[7] = p_transform.columns[2][1];
  1672. _skeleton_make_dirty(skeleton);
  1673. }
  1674. Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
  1675. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1676. ERR_FAIL_COND_V(!skeleton, Transform2D());
  1677. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
  1678. ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
  1679. const float *dataptr = skeleton->data.ptr() + p_bone * 8;
  1680. Transform2D t;
  1681. t.columns[0][0] = dataptr[0];
  1682. t.columns[1][0] = dataptr[1];
  1683. t.columns[2][0] = dataptr[3];
  1684. t.columns[0][1] = dataptr[4];
  1685. t.columns[1][1] = dataptr[5];
  1686. t.columns[2][1] = dataptr[7];
  1687. return t;
  1688. }
  1689. void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
  1690. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1691. ERR_FAIL_NULL(skeleton);
  1692. ERR_FAIL_COND(!skeleton->use_2d);
  1693. skeleton->base_transform_2d = p_base_transform;
  1694. }
  1695. void MeshStorage::_update_dirty_skeletons() {
  1696. while (skeleton_dirty_list) {
  1697. Skeleton *skeleton = skeleton_dirty_list;
  1698. if (skeleton->size) {
  1699. RD::get_singleton()->buffer_update(skeleton->buffer, 0, skeleton->data.size() * sizeof(float), skeleton->data.ptr());
  1700. }
  1701. skeleton_dirty_list = skeleton->dirty_list;
  1702. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES);
  1703. skeleton->version++;
  1704. skeleton->dirty = false;
  1705. skeleton->dirty_list = nullptr;
  1706. }
  1707. skeleton_dirty_list = nullptr;
  1708. }
  1709. void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) {
  1710. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1711. ERR_FAIL_COND(!skeleton);
  1712. p_instance->update_dependency(&skeleton->dependency);
  1713. }