marshalls.cpp 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680
  1. /*************************************************************************/
  2. /* marshalls.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "marshalls.h"
  31. #include "core/object/ref_counted.h"
  32. #include "core/os/keyboard.h"
  33. #include "core/string/print_string.h"
  34. #include <limits.h>
  35. #include <stdio.h>
  36. void EncodedObjectAsID::_bind_methods() {
  37. ClassDB::bind_method(D_METHOD("set_object_id", "id"), &EncodedObjectAsID::set_object_id);
  38. ClassDB::bind_method(D_METHOD("get_object_id"), &EncodedObjectAsID::get_object_id);
  39. ADD_PROPERTY(PropertyInfo(Variant::INT, "object_id"), "set_object_id", "get_object_id");
  40. }
  41. void EncodedObjectAsID::set_object_id(ObjectID p_id) {
  42. id = p_id;
  43. }
  44. ObjectID EncodedObjectAsID::get_object_id() const {
  45. return id;
  46. }
  47. #define ERR_FAIL_ADD_OF(a, b, err) ERR_FAIL_COND_V(((int32_t)(b)) < 0 || ((int32_t)(a)) < 0 || ((int32_t)(a)) > INT_MAX - ((int32_t)(b)), err)
  48. #define ERR_FAIL_MUL_OF(a, b, err) ERR_FAIL_COND_V(((int32_t)(a)) < 0 || ((int32_t)(b)) <= 0 || ((int32_t)(a)) > INT_MAX / ((int32_t)(b)), err)
  49. #define ENCODE_MASK 0xFF
  50. #define ENCODE_FLAG_64 1 << 16
  51. #define ENCODE_FLAG_OBJECT_AS_ID 1 << 16
  52. static Error _decode_string(const uint8_t *&buf, int &len, int *r_len, String &r_string) {
  53. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  54. int32_t strlen = decode_uint32(buf);
  55. int32_t pad = 0;
  56. // Handle padding
  57. if (strlen % 4) {
  58. pad = 4 - strlen % 4;
  59. }
  60. buf += 4;
  61. len -= 4;
  62. // Ensure buffer is big enough
  63. ERR_FAIL_ADD_OF(strlen, pad, ERR_FILE_EOF);
  64. ERR_FAIL_COND_V(strlen < 0 || strlen + pad > len, ERR_FILE_EOF);
  65. String str;
  66. ERR_FAIL_COND_V(str.parse_utf8((const char *)buf, strlen), ERR_INVALID_DATA);
  67. r_string = str;
  68. // Add padding
  69. strlen += pad;
  70. // Update buffer pos, left data count, and return size
  71. buf += strlen;
  72. len -= strlen;
  73. if (r_len) {
  74. (*r_len) += 4 + strlen;
  75. }
  76. return OK;
  77. }
  78. Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int *r_len, bool p_allow_objects, int p_depth) {
  79. ERR_FAIL_COND_V_MSG(p_depth > Variant::MAX_RECURSION_DEPTH, ERR_OUT_OF_MEMORY, "Variant is too deep. Bailing.");
  80. const uint8_t *buf = p_buffer;
  81. int len = p_len;
  82. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  83. uint32_t type = decode_uint32(buf);
  84. ERR_FAIL_COND_V((type & ENCODE_MASK) >= Variant::VARIANT_MAX, ERR_INVALID_DATA);
  85. buf += 4;
  86. len -= 4;
  87. if (r_len) {
  88. *r_len = 4;
  89. }
  90. // Note: We cannot use sizeof(real_t) for decoding, in case a different size is encoded.
  91. // Decoding math types always checks for the encoded size, while encoding always uses compilation setting.
  92. // This does lead to some code duplication for decoding, but compatibility is the priority.
  93. switch (type & ENCODE_MASK) {
  94. case Variant::NIL: {
  95. r_variant = Variant();
  96. } break;
  97. case Variant::BOOL: {
  98. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  99. bool val = decode_uint32(buf);
  100. r_variant = val;
  101. if (r_len) {
  102. (*r_len) += 4;
  103. }
  104. } break;
  105. case Variant::INT: {
  106. if (type & ENCODE_FLAG_64) {
  107. ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
  108. int64_t val = decode_uint64(buf);
  109. r_variant = val;
  110. if (r_len) {
  111. (*r_len) += 8;
  112. }
  113. } else {
  114. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  115. int32_t val = decode_uint32(buf);
  116. r_variant = val;
  117. if (r_len) {
  118. (*r_len) += 4;
  119. }
  120. }
  121. } break;
  122. case Variant::FLOAT: {
  123. if (type & ENCODE_FLAG_64) {
  124. ERR_FAIL_COND_V((size_t)len < sizeof(double), ERR_INVALID_DATA);
  125. double val = decode_double(buf);
  126. r_variant = val;
  127. if (r_len) {
  128. (*r_len) += sizeof(double);
  129. }
  130. } else {
  131. ERR_FAIL_COND_V((size_t)len < sizeof(float), ERR_INVALID_DATA);
  132. float val = decode_float(buf);
  133. r_variant = val;
  134. if (r_len) {
  135. (*r_len) += sizeof(float);
  136. }
  137. }
  138. } break;
  139. case Variant::STRING: {
  140. String str;
  141. Error err = _decode_string(buf, len, r_len, str);
  142. if (err) {
  143. return err;
  144. }
  145. r_variant = str;
  146. } break;
  147. // math types
  148. case Variant::VECTOR2: {
  149. Vector2 val;
  150. if (type & ENCODE_FLAG_64) {
  151. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 2, ERR_INVALID_DATA);
  152. val.x = decode_double(&buf[0]);
  153. val.y = decode_double(&buf[sizeof(double)]);
  154. if (r_len) {
  155. (*r_len) += sizeof(double) * 2;
  156. }
  157. } else {
  158. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 2, ERR_INVALID_DATA);
  159. val.x = decode_float(&buf[0]);
  160. val.y = decode_float(&buf[sizeof(float)]);
  161. if (r_len) {
  162. (*r_len) += sizeof(float) * 2;
  163. }
  164. }
  165. r_variant = val;
  166. } break;
  167. case Variant::VECTOR2I: {
  168. ERR_FAIL_COND_V(len < 4 * 2, ERR_INVALID_DATA);
  169. Vector2i val;
  170. val.x = decode_uint32(&buf[0]);
  171. val.y = decode_uint32(&buf[4]);
  172. r_variant = val;
  173. if (r_len) {
  174. (*r_len) += 4 * 2;
  175. }
  176. } break;
  177. case Variant::RECT2: {
  178. Rect2 val;
  179. if (type & ENCODE_FLAG_64) {
  180. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
  181. val.position.x = decode_double(&buf[0]);
  182. val.position.y = decode_double(&buf[sizeof(double)]);
  183. val.size.x = decode_double(&buf[sizeof(double) * 2]);
  184. val.size.y = decode_double(&buf[sizeof(double) * 3]);
  185. if (r_len) {
  186. (*r_len) += sizeof(double) * 4;
  187. }
  188. } else {
  189. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
  190. val.position.x = decode_float(&buf[0]);
  191. val.position.y = decode_float(&buf[sizeof(float)]);
  192. val.size.x = decode_float(&buf[sizeof(float) * 2]);
  193. val.size.y = decode_float(&buf[sizeof(float) * 3]);
  194. if (r_len) {
  195. (*r_len) += sizeof(float) * 4;
  196. }
  197. }
  198. r_variant = val;
  199. } break;
  200. case Variant::RECT2I: {
  201. ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
  202. Rect2i val;
  203. val.position.x = decode_uint32(&buf[0]);
  204. val.position.y = decode_uint32(&buf[4]);
  205. val.size.x = decode_uint32(&buf[8]);
  206. val.size.y = decode_uint32(&buf[12]);
  207. r_variant = val;
  208. if (r_len) {
  209. (*r_len) += 4 * 4;
  210. }
  211. } break;
  212. case Variant::VECTOR3: {
  213. Vector3 val;
  214. if (type & ENCODE_FLAG_64) {
  215. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 3, ERR_INVALID_DATA);
  216. val.x = decode_double(&buf[0]);
  217. val.y = decode_double(&buf[sizeof(double)]);
  218. val.z = decode_double(&buf[sizeof(double) * 2]);
  219. if (r_len) {
  220. (*r_len) += sizeof(double) * 3;
  221. }
  222. } else {
  223. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 3, ERR_INVALID_DATA);
  224. val.x = decode_float(&buf[0]);
  225. val.y = decode_float(&buf[sizeof(float)]);
  226. val.z = decode_float(&buf[sizeof(float) * 2]);
  227. if (r_len) {
  228. (*r_len) += sizeof(float) * 3;
  229. }
  230. }
  231. r_variant = val;
  232. } break;
  233. case Variant::VECTOR3I: {
  234. ERR_FAIL_COND_V(len < 4 * 3, ERR_INVALID_DATA);
  235. Vector3i val;
  236. val.x = decode_uint32(&buf[0]);
  237. val.y = decode_uint32(&buf[4]);
  238. val.z = decode_uint32(&buf[8]);
  239. r_variant = val;
  240. if (r_len) {
  241. (*r_len) += 4 * 3;
  242. }
  243. } break;
  244. case Variant::TRANSFORM2D: {
  245. Transform2D val;
  246. if (type & ENCODE_FLAG_64) {
  247. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 6, ERR_INVALID_DATA);
  248. for (int i = 0; i < 3; i++) {
  249. for (int j = 0; j < 2; j++) {
  250. val.columns[i][j] = decode_double(&buf[(i * 2 + j) * sizeof(double)]);
  251. }
  252. }
  253. if (r_len) {
  254. (*r_len) += sizeof(double) * 6;
  255. }
  256. } else {
  257. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 6, ERR_INVALID_DATA);
  258. for (int i = 0; i < 3; i++) {
  259. for (int j = 0; j < 2; j++) {
  260. val.columns[i][j] = decode_float(&buf[(i * 2 + j) * sizeof(float)]);
  261. }
  262. }
  263. if (r_len) {
  264. (*r_len) += sizeof(float) * 6;
  265. }
  266. }
  267. r_variant = val;
  268. } break;
  269. case Variant::PLANE: {
  270. Plane val;
  271. if (type & ENCODE_FLAG_64) {
  272. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
  273. val.normal.x = decode_double(&buf[0]);
  274. val.normal.y = decode_double(&buf[sizeof(double)]);
  275. val.normal.z = decode_double(&buf[sizeof(double) * 2]);
  276. val.d = decode_double(&buf[sizeof(double) * 3]);
  277. if (r_len) {
  278. (*r_len) += sizeof(double) * 4;
  279. }
  280. } else {
  281. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
  282. val.normal.x = decode_float(&buf[0]);
  283. val.normal.y = decode_float(&buf[sizeof(float)]);
  284. val.normal.z = decode_float(&buf[sizeof(float) * 2]);
  285. val.d = decode_float(&buf[sizeof(float) * 3]);
  286. if (r_len) {
  287. (*r_len) += sizeof(float) * 4;
  288. }
  289. }
  290. r_variant = val;
  291. } break;
  292. case Variant::QUATERNION: {
  293. Quaternion val;
  294. if (type & ENCODE_FLAG_64) {
  295. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
  296. val.x = decode_double(&buf[0]);
  297. val.y = decode_double(&buf[sizeof(double)]);
  298. val.z = decode_double(&buf[sizeof(double) * 2]);
  299. val.w = decode_double(&buf[sizeof(double) * 3]);
  300. if (r_len) {
  301. (*r_len) += sizeof(double) * 4;
  302. }
  303. } else {
  304. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
  305. val.x = decode_float(&buf[0]);
  306. val.y = decode_float(&buf[sizeof(float)]);
  307. val.z = decode_float(&buf[sizeof(float) * 2]);
  308. val.w = decode_float(&buf[sizeof(float) * 3]);
  309. if (r_len) {
  310. (*r_len) += sizeof(float) * 4;
  311. }
  312. }
  313. r_variant = val;
  314. } break;
  315. case Variant::AABB: {
  316. AABB val;
  317. if (type & ENCODE_FLAG_64) {
  318. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 6, ERR_INVALID_DATA);
  319. val.position.x = decode_double(&buf[0]);
  320. val.position.y = decode_double(&buf[sizeof(double)]);
  321. val.position.z = decode_double(&buf[sizeof(double) * 2]);
  322. val.size.x = decode_double(&buf[sizeof(double) * 3]);
  323. val.size.y = decode_double(&buf[sizeof(double) * 4]);
  324. val.size.z = decode_double(&buf[sizeof(double) * 5]);
  325. if (r_len) {
  326. (*r_len) += sizeof(double) * 6;
  327. }
  328. } else {
  329. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 6, ERR_INVALID_DATA);
  330. val.position.x = decode_float(&buf[0]);
  331. val.position.y = decode_float(&buf[sizeof(float)]);
  332. val.position.z = decode_float(&buf[sizeof(float) * 2]);
  333. val.size.x = decode_float(&buf[sizeof(float) * 3]);
  334. val.size.y = decode_float(&buf[sizeof(float) * 4]);
  335. val.size.z = decode_float(&buf[sizeof(float) * 5]);
  336. if (r_len) {
  337. (*r_len) += sizeof(float) * 6;
  338. }
  339. }
  340. r_variant = val;
  341. } break;
  342. case Variant::BASIS: {
  343. Basis val;
  344. if (type & ENCODE_FLAG_64) {
  345. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 9, ERR_INVALID_DATA);
  346. for (int i = 0; i < 3; i++) {
  347. for (int j = 0; j < 3; j++) {
  348. val.elements[i][j] = decode_double(&buf[(i * 3 + j) * sizeof(double)]);
  349. }
  350. }
  351. if (r_len) {
  352. (*r_len) += sizeof(double) * 9;
  353. }
  354. } else {
  355. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 9, ERR_INVALID_DATA);
  356. for (int i = 0; i < 3; i++) {
  357. for (int j = 0; j < 3; j++) {
  358. val.elements[i][j] = decode_float(&buf[(i * 3 + j) * sizeof(float)]);
  359. }
  360. }
  361. if (r_len) {
  362. (*r_len) += sizeof(float) * 9;
  363. }
  364. }
  365. r_variant = val;
  366. } break;
  367. case Variant::TRANSFORM3D: {
  368. Transform3D val;
  369. if (type & ENCODE_FLAG_64) {
  370. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 12, ERR_INVALID_DATA);
  371. for (int i = 0; i < 3; i++) {
  372. for (int j = 0; j < 3; j++) {
  373. val.basis.elements[i][j] = decode_double(&buf[(i * 3 + j) * sizeof(double)]);
  374. }
  375. }
  376. val.origin[0] = decode_double(&buf[sizeof(double) * 9]);
  377. val.origin[1] = decode_double(&buf[sizeof(double) * 10]);
  378. val.origin[2] = decode_double(&buf[sizeof(double) * 11]);
  379. if (r_len) {
  380. (*r_len) += sizeof(double) * 12;
  381. }
  382. } else {
  383. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 12, ERR_INVALID_DATA);
  384. for (int i = 0; i < 3; i++) {
  385. for (int j = 0; j < 3; j++) {
  386. val.basis.elements[i][j] = decode_float(&buf[(i * 3 + j) * sizeof(float)]);
  387. }
  388. }
  389. val.origin[0] = decode_float(&buf[sizeof(float) * 9]);
  390. val.origin[1] = decode_float(&buf[sizeof(float) * 10]);
  391. val.origin[2] = decode_float(&buf[sizeof(float) * 11]);
  392. if (r_len) {
  393. (*r_len) += sizeof(float) * 12;
  394. }
  395. }
  396. r_variant = val;
  397. } break;
  398. // misc types
  399. case Variant::COLOR: {
  400. ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
  401. Color val;
  402. val.r = decode_float(&buf[0]);
  403. val.g = decode_float(&buf[4]);
  404. val.b = decode_float(&buf[8]);
  405. val.a = decode_float(&buf[12]);
  406. r_variant = val;
  407. if (r_len) {
  408. (*r_len) += 4 * 4; // Colors should always be in single-precision.
  409. }
  410. } break;
  411. case Variant::STRING_NAME: {
  412. String str;
  413. Error err = _decode_string(buf, len, r_len, str);
  414. if (err) {
  415. return err;
  416. }
  417. r_variant = StringName(str);
  418. } break;
  419. case Variant::NODE_PATH: {
  420. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  421. int32_t strlen = decode_uint32(buf);
  422. if (strlen & 0x80000000) {
  423. //new format
  424. ERR_FAIL_COND_V(len < 12, ERR_INVALID_DATA);
  425. Vector<StringName> names;
  426. Vector<StringName> subnames;
  427. uint32_t namecount = strlen &= 0x7FFFFFFF;
  428. uint32_t subnamecount = decode_uint32(buf + 4);
  429. uint32_t flags = decode_uint32(buf + 8);
  430. len -= 12;
  431. buf += 12;
  432. if (flags & 2) { // Obsolete format with property separate from subpath
  433. subnamecount++;
  434. }
  435. uint32_t total = namecount + subnamecount;
  436. if (r_len) {
  437. (*r_len) += 12;
  438. }
  439. for (uint32_t i = 0; i < total; i++) {
  440. String str;
  441. Error err = _decode_string(buf, len, r_len, str);
  442. if (err) {
  443. return err;
  444. }
  445. if (i < namecount) {
  446. names.push_back(str);
  447. } else {
  448. subnames.push_back(str);
  449. }
  450. }
  451. r_variant = NodePath(names, subnames, flags & 1);
  452. } else {
  453. //old format, just a string
  454. ERR_FAIL_V(ERR_INVALID_DATA);
  455. }
  456. } break;
  457. case Variant::RID: {
  458. r_variant = RID();
  459. } break;
  460. case Variant::OBJECT: {
  461. if (type & ENCODE_FLAG_OBJECT_AS_ID) {
  462. //this _is_ allowed
  463. ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
  464. ObjectID val = ObjectID(decode_uint64(buf));
  465. if (r_len) {
  466. (*r_len) += 8;
  467. }
  468. if (val.is_null()) {
  469. r_variant = (Object *)nullptr;
  470. } else {
  471. Ref<EncodedObjectAsID> obj_as_id;
  472. obj_as_id.instantiate();
  473. obj_as_id->set_object_id(val);
  474. r_variant = obj_as_id;
  475. }
  476. } else {
  477. ERR_FAIL_COND_V(!p_allow_objects, ERR_UNAUTHORIZED);
  478. String str;
  479. Error err = _decode_string(buf, len, r_len, str);
  480. if (err) {
  481. return err;
  482. }
  483. if (str.is_empty()) {
  484. r_variant = (Object *)nullptr;
  485. } else {
  486. Object *obj = ClassDB::instantiate(str);
  487. ERR_FAIL_COND_V(!obj, ERR_UNAVAILABLE);
  488. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  489. int32_t count = decode_uint32(buf);
  490. buf += 4;
  491. len -= 4;
  492. if (r_len) {
  493. (*r_len) += 4; // Size of count number.
  494. }
  495. for (int i = 0; i < count; i++) {
  496. str = String();
  497. err = _decode_string(buf, len, r_len, str);
  498. if (err) {
  499. return err;
  500. }
  501. Variant value;
  502. int used;
  503. err = decode_variant(value, buf, len, &used, p_allow_objects, p_depth + 1);
  504. if (err) {
  505. return err;
  506. }
  507. buf += used;
  508. len -= used;
  509. if (r_len) {
  510. (*r_len) += used;
  511. }
  512. obj->set(str, value);
  513. }
  514. if (Object::cast_to<RefCounted>(obj)) {
  515. REF ref = REF(Object::cast_to<RefCounted>(obj));
  516. r_variant = ref;
  517. } else {
  518. r_variant = obj;
  519. }
  520. }
  521. }
  522. } break;
  523. case Variant::CALLABLE: {
  524. r_variant = Callable();
  525. } break;
  526. case Variant::SIGNAL: {
  527. r_variant = Signal();
  528. } break;
  529. case Variant::DICTIONARY: {
  530. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  531. int32_t count = decode_uint32(buf);
  532. // bool shared = count&0x80000000;
  533. count &= 0x7FFFFFFF;
  534. buf += 4;
  535. len -= 4;
  536. if (r_len) {
  537. (*r_len) += 4; // Size of count number.
  538. }
  539. Dictionary d;
  540. for (int i = 0; i < count; i++) {
  541. Variant key, value;
  542. int used;
  543. Error err = decode_variant(key, buf, len, &used, p_allow_objects, p_depth + 1);
  544. ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
  545. buf += used;
  546. len -= used;
  547. if (r_len) {
  548. (*r_len) += used;
  549. }
  550. err = decode_variant(value, buf, len, &used, p_allow_objects, p_depth + 1);
  551. ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
  552. buf += used;
  553. len -= used;
  554. if (r_len) {
  555. (*r_len) += used;
  556. }
  557. d[key] = value;
  558. }
  559. r_variant = d;
  560. } break;
  561. case Variant::ARRAY: {
  562. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  563. int32_t count = decode_uint32(buf);
  564. // bool shared = count&0x80000000;
  565. count &= 0x7FFFFFFF;
  566. buf += 4;
  567. len -= 4;
  568. if (r_len) {
  569. (*r_len) += 4; // Size of count number.
  570. }
  571. Array varr;
  572. for (int i = 0; i < count; i++) {
  573. int used = 0;
  574. Variant v;
  575. Error err = decode_variant(v, buf, len, &used, p_allow_objects, p_depth + 1);
  576. ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
  577. buf += used;
  578. len -= used;
  579. varr.push_back(v);
  580. if (r_len) {
  581. (*r_len) += used;
  582. }
  583. }
  584. r_variant = varr;
  585. } break;
  586. // arrays
  587. case Variant::PACKED_BYTE_ARRAY: {
  588. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  589. int32_t count = decode_uint32(buf);
  590. buf += 4;
  591. len -= 4;
  592. ERR_FAIL_COND_V(count < 0 || count > len, ERR_INVALID_DATA);
  593. Vector<uint8_t> data;
  594. if (count) {
  595. data.resize(count);
  596. uint8_t *w = data.ptrw();
  597. for (int32_t i = 0; i < count; i++) {
  598. w[i] = buf[i];
  599. }
  600. }
  601. r_variant = data;
  602. if (r_len) {
  603. if (count % 4) {
  604. (*r_len) += 4 - count % 4;
  605. }
  606. (*r_len) += 4 + count;
  607. }
  608. } break;
  609. case Variant::PACKED_INT32_ARRAY: {
  610. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  611. int32_t count = decode_uint32(buf);
  612. buf += 4;
  613. len -= 4;
  614. ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA);
  615. ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA);
  616. Vector<int32_t> data;
  617. if (count) {
  618. //const int*rbuf=(const int*)buf;
  619. data.resize(count);
  620. int32_t *w = data.ptrw();
  621. for (int32_t i = 0; i < count; i++) {
  622. w[i] = decode_uint32(&buf[i * 4]);
  623. }
  624. }
  625. r_variant = Variant(data);
  626. if (r_len) {
  627. (*r_len) += 4 + count * sizeof(int32_t);
  628. }
  629. } break;
  630. case Variant::PACKED_INT64_ARRAY: {
  631. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  632. int32_t count = decode_uint32(buf);
  633. buf += 4;
  634. len -= 4;
  635. ERR_FAIL_MUL_OF(count, 8, ERR_INVALID_DATA);
  636. ERR_FAIL_COND_V(count < 0 || count * 8 > len, ERR_INVALID_DATA);
  637. Vector<int64_t> data;
  638. if (count) {
  639. //const int*rbuf=(const int*)buf;
  640. data.resize(count);
  641. int64_t *w = data.ptrw();
  642. for (int64_t i = 0; i < count; i++) {
  643. w[i] = decode_uint64(&buf[i * 8]);
  644. }
  645. }
  646. r_variant = Variant(data);
  647. if (r_len) {
  648. (*r_len) += 4 + count * sizeof(int64_t);
  649. }
  650. } break;
  651. case Variant::PACKED_FLOAT32_ARRAY: {
  652. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  653. int32_t count = decode_uint32(buf);
  654. buf += 4;
  655. len -= 4;
  656. ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA);
  657. ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA);
  658. Vector<float> data;
  659. if (count) {
  660. //const float*rbuf=(const float*)buf;
  661. data.resize(count);
  662. float *w = data.ptrw();
  663. for (int32_t i = 0; i < count; i++) {
  664. w[i] = decode_float(&buf[i * 4]);
  665. }
  666. }
  667. r_variant = data;
  668. if (r_len) {
  669. (*r_len) += 4 + count * sizeof(float);
  670. }
  671. } break;
  672. case Variant::PACKED_FLOAT64_ARRAY: {
  673. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  674. int32_t count = decode_uint32(buf);
  675. buf += 4;
  676. len -= 4;
  677. ERR_FAIL_MUL_OF(count, 8, ERR_INVALID_DATA);
  678. ERR_FAIL_COND_V(count < 0 || count * 8 > len, ERR_INVALID_DATA);
  679. Vector<double> data;
  680. if (count) {
  681. data.resize(count);
  682. double *w = data.ptrw();
  683. for (int64_t i = 0; i < count; i++) {
  684. w[i] = decode_double(&buf[i * 8]);
  685. }
  686. }
  687. r_variant = data;
  688. if (r_len) {
  689. (*r_len) += 4 + count * sizeof(double);
  690. }
  691. } break;
  692. case Variant::PACKED_STRING_ARRAY: {
  693. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  694. int32_t count = decode_uint32(buf);
  695. Vector<String> strings;
  696. buf += 4;
  697. len -= 4;
  698. if (r_len) {
  699. (*r_len) += 4; // Size of count number.
  700. }
  701. for (int32_t i = 0; i < count; i++) {
  702. String str;
  703. Error err = _decode_string(buf, len, r_len, str);
  704. if (err) {
  705. return err;
  706. }
  707. strings.push_back(str);
  708. }
  709. r_variant = strings;
  710. } break;
  711. case Variant::PACKED_VECTOR2_ARRAY: {
  712. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  713. int32_t count = decode_uint32(buf);
  714. buf += 4;
  715. len -= 4;
  716. Vector<Vector2> varray;
  717. if (type & ENCODE_FLAG_64) {
  718. ERR_FAIL_MUL_OF(count, sizeof(double) * 2, ERR_INVALID_DATA);
  719. ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 2 > (size_t)len, ERR_INVALID_DATA);
  720. if (r_len) {
  721. (*r_len) += 4; // Size of count number.
  722. }
  723. if (count) {
  724. varray.resize(count);
  725. Vector2 *w = varray.ptrw();
  726. for (int32_t i = 0; i < count; i++) {
  727. w[i].x = decode_double(buf + i * sizeof(double) * 2 + sizeof(double) * 0);
  728. w[i].y = decode_double(buf + i * sizeof(double) * 2 + sizeof(double) * 1);
  729. }
  730. int adv = sizeof(double) * 2 * count;
  731. if (r_len) {
  732. (*r_len) += adv;
  733. }
  734. len -= adv;
  735. buf += adv;
  736. }
  737. } else {
  738. ERR_FAIL_MUL_OF(count, sizeof(float) * 2, ERR_INVALID_DATA);
  739. ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 2 > (size_t)len, ERR_INVALID_DATA);
  740. if (r_len) {
  741. (*r_len) += 4; // Size of count number.
  742. }
  743. if (count) {
  744. varray.resize(count);
  745. Vector2 *w = varray.ptrw();
  746. for (int32_t i = 0; i < count; i++) {
  747. w[i].x = decode_float(buf + i * sizeof(float) * 2 + sizeof(float) * 0);
  748. w[i].y = decode_float(buf + i * sizeof(float) * 2 + sizeof(float) * 1);
  749. }
  750. int adv = sizeof(float) * 2 * count;
  751. if (r_len) {
  752. (*r_len) += adv;
  753. }
  754. }
  755. }
  756. r_variant = varray;
  757. } break;
  758. case Variant::PACKED_VECTOR3_ARRAY: {
  759. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  760. int32_t count = decode_uint32(buf);
  761. buf += 4;
  762. len -= 4;
  763. Vector<Vector3> varray;
  764. if (type & ENCODE_FLAG_64) {
  765. ERR_FAIL_MUL_OF(count, sizeof(double) * 3, ERR_INVALID_DATA);
  766. ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 3 > (size_t)len, ERR_INVALID_DATA);
  767. if (r_len) {
  768. (*r_len) += 4; // Size of count number.
  769. }
  770. if (count) {
  771. varray.resize(count);
  772. Vector3 *w = varray.ptrw();
  773. for (int32_t i = 0; i < count; i++) {
  774. w[i].x = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 0);
  775. w[i].y = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 1);
  776. w[i].z = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 2);
  777. }
  778. int adv = sizeof(double) * 3 * count;
  779. if (r_len) {
  780. (*r_len) += adv;
  781. }
  782. len -= adv;
  783. buf += adv;
  784. }
  785. } else {
  786. ERR_FAIL_MUL_OF(count, sizeof(float) * 3, ERR_INVALID_DATA);
  787. ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 3 > (size_t)len, ERR_INVALID_DATA);
  788. if (r_len) {
  789. (*r_len) += 4; // Size of count number.
  790. }
  791. if (count) {
  792. varray.resize(count);
  793. Vector3 *w = varray.ptrw();
  794. for (int32_t i = 0; i < count; i++) {
  795. w[i].x = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 0);
  796. w[i].y = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 1);
  797. w[i].z = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 2);
  798. }
  799. int adv = sizeof(float) * 3 * count;
  800. if (r_len) {
  801. (*r_len) += adv;
  802. }
  803. len -= adv;
  804. buf += adv;
  805. }
  806. }
  807. r_variant = varray;
  808. } break;
  809. case Variant::PACKED_COLOR_ARRAY: {
  810. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  811. int32_t count = decode_uint32(buf);
  812. buf += 4;
  813. len -= 4;
  814. ERR_FAIL_MUL_OF(count, 4 * 4, ERR_INVALID_DATA);
  815. ERR_FAIL_COND_V(count < 0 || count * 4 * 4 > len, ERR_INVALID_DATA);
  816. Vector<Color> carray;
  817. if (r_len) {
  818. (*r_len) += 4; // Size of count number.
  819. }
  820. if (count) {
  821. carray.resize(count);
  822. Color *w = carray.ptrw();
  823. for (int32_t i = 0; i < count; i++) {
  824. // Colors should always be in single-precision.
  825. w[i].r = decode_float(buf + i * 4 * 4 + 4 * 0);
  826. w[i].g = decode_float(buf + i * 4 * 4 + 4 * 1);
  827. w[i].b = decode_float(buf + i * 4 * 4 + 4 * 2);
  828. w[i].a = decode_float(buf + i * 4 * 4 + 4 * 3);
  829. }
  830. int adv = 4 * 4 * count;
  831. if (r_len) {
  832. (*r_len) += adv;
  833. }
  834. }
  835. r_variant = carray;
  836. } break;
  837. default: {
  838. ERR_FAIL_V(ERR_BUG);
  839. }
  840. }
  841. return OK;
  842. }
  843. static void _encode_string(const String &p_string, uint8_t *&buf, int &r_len) {
  844. CharString utf8 = p_string.utf8();
  845. if (buf) {
  846. encode_uint32(utf8.length(), buf);
  847. buf += 4;
  848. memcpy(buf, utf8.get_data(), utf8.length());
  849. buf += utf8.length();
  850. }
  851. r_len += 4 + utf8.length();
  852. while (r_len % 4) {
  853. r_len++; //pad
  854. if (buf) {
  855. *(buf++) = 0;
  856. }
  857. }
  858. }
  859. Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bool p_full_objects, int p_depth) {
  860. ERR_FAIL_COND_V_MSG(p_depth > Variant::MAX_RECURSION_DEPTH, ERR_OUT_OF_MEMORY, "Potential infinite recursion detected. Bailing.");
  861. uint8_t *buf = r_buffer;
  862. r_len = 0;
  863. uint32_t flags = 0;
  864. switch (p_variant.get_type()) {
  865. case Variant::INT: {
  866. int64_t val = p_variant;
  867. if (val > (int64_t)INT_MAX || val < (int64_t)INT_MIN) {
  868. flags |= ENCODE_FLAG_64;
  869. }
  870. } break;
  871. case Variant::FLOAT: {
  872. double d = p_variant;
  873. float f = d;
  874. if (double(f) != d) {
  875. flags |= ENCODE_FLAG_64;
  876. }
  877. } break;
  878. case Variant::OBJECT: {
  879. // Test for potential wrong values sent by the debugger when it breaks.
  880. Object *obj = p_variant.get_validated_object();
  881. if (!obj) {
  882. // Object is invalid, send a nullptr instead.
  883. if (buf) {
  884. encode_uint32(Variant::NIL, buf);
  885. }
  886. r_len += 4;
  887. return OK;
  888. }
  889. if (!p_full_objects) {
  890. flags |= ENCODE_FLAG_OBJECT_AS_ID;
  891. }
  892. } break;
  893. #ifdef REAL_T_IS_DOUBLE
  894. case Variant::VECTOR2:
  895. case Variant::VECTOR3:
  896. case Variant::PACKED_VECTOR2_ARRAY:
  897. case Variant::PACKED_VECTOR3_ARRAY:
  898. case Variant::TRANSFORM2D:
  899. case Variant::TRANSFORM3D:
  900. case Variant::QUATERNION:
  901. case Variant::PLANE:
  902. case Variant::BASIS:
  903. case Variant::RECT2:
  904. case Variant::AABB: {
  905. flags |= ENCODE_FLAG_64;
  906. } break;
  907. #endif // REAL_T_IS_DOUBLE
  908. default: {
  909. } // nothing to do at this stage
  910. }
  911. if (buf) {
  912. encode_uint32(p_variant.get_type() | flags, buf);
  913. buf += 4;
  914. }
  915. r_len += 4;
  916. switch (p_variant.get_type()) {
  917. case Variant::NIL: {
  918. //nothing to do
  919. } break;
  920. case Variant::BOOL: {
  921. if (buf) {
  922. encode_uint32(p_variant.operator bool(), buf);
  923. }
  924. r_len += 4;
  925. } break;
  926. case Variant::INT: {
  927. if (flags & ENCODE_FLAG_64) {
  928. //64 bits
  929. if (buf) {
  930. encode_uint64(p_variant.operator int64_t(), buf);
  931. }
  932. r_len += 8;
  933. } else {
  934. if (buf) {
  935. encode_uint32(p_variant.operator int32_t(), buf);
  936. }
  937. r_len += 4;
  938. }
  939. } break;
  940. case Variant::FLOAT: {
  941. if (flags & ENCODE_FLAG_64) {
  942. if (buf) {
  943. encode_double(p_variant.operator double(), buf);
  944. }
  945. r_len += 8;
  946. } else {
  947. if (buf) {
  948. encode_float(p_variant.operator float(), buf);
  949. }
  950. r_len += 4;
  951. }
  952. } break;
  953. case Variant::NODE_PATH: {
  954. NodePath np = p_variant;
  955. if (buf) {
  956. encode_uint32(uint32_t(np.get_name_count()) | 0x80000000, buf); //for compatibility with the old format
  957. encode_uint32(np.get_subname_count(), buf + 4);
  958. uint32_t np_flags = 0;
  959. if (np.is_absolute()) {
  960. np_flags |= 1;
  961. }
  962. encode_uint32(np_flags, buf + 8);
  963. buf += 12;
  964. }
  965. r_len += 12;
  966. int total = np.get_name_count() + np.get_subname_count();
  967. for (int i = 0; i < total; i++) {
  968. String str;
  969. if (i < np.get_name_count()) {
  970. str = np.get_name(i);
  971. } else {
  972. str = np.get_subname(i - np.get_name_count());
  973. }
  974. CharString utf8 = str.utf8();
  975. int pad = 0;
  976. if (utf8.length() % 4) {
  977. pad = 4 - utf8.length() % 4;
  978. }
  979. if (buf) {
  980. encode_uint32(utf8.length(), buf);
  981. buf += 4;
  982. memcpy(buf, utf8.get_data(), utf8.length());
  983. buf += pad + utf8.length();
  984. }
  985. r_len += 4 + utf8.length() + pad;
  986. }
  987. } break;
  988. case Variant::STRING:
  989. case Variant::STRING_NAME: {
  990. _encode_string(p_variant, buf, r_len);
  991. } break;
  992. // math types
  993. case Variant::VECTOR2: {
  994. if (buf) {
  995. Vector2 v2 = p_variant;
  996. encode_real(v2.x, &buf[0]);
  997. encode_real(v2.y, &buf[sizeof(real_t)]);
  998. }
  999. r_len += 2 * sizeof(real_t);
  1000. } break;
  1001. case Variant::VECTOR2I: {
  1002. if (buf) {
  1003. Vector2i v2 = p_variant;
  1004. encode_uint32(v2.x, &buf[0]);
  1005. encode_uint32(v2.y, &buf[4]);
  1006. }
  1007. r_len += 2 * 4;
  1008. } break;
  1009. case Variant::RECT2: {
  1010. if (buf) {
  1011. Rect2 r2 = p_variant;
  1012. encode_real(r2.position.x, &buf[0]);
  1013. encode_real(r2.position.y, &buf[sizeof(real_t)]);
  1014. encode_real(r2.size.x, &buf[sizeof(real_t) * 2]);
  1015. encode_real(r2.size.y, &buf[sizeof(real_t) * 3]);
  1016. }
  1017. r_len += 4 * sizeof(real_t);
  1018. } break;
  1019. case Variant::RECT2I: {
  1020. if (buf) {
  1021. Rect2i r2 = p_variant;
  1022. encode_uint32(r2.position.x, &buf[0]);
  1023. encode_uint32(r2.position.y, &buf[4]);
  1024. encode_uint32(r2.size.x, &buf[8]);
  1025. encode_uint32(r2.size.y, &buf[12]);
  1026. }
  1027. r_len += 4 * 4;
  1028. } break;
  1029. case Variant::VECTOR3: {
  1030. if (buf) {
  1031. Vector3 v3 = p_variant;
  1032. encode_real(v3.x, &buf[0]);
  1033. encode_real(v3.y, &buf[sizeof(real_t)]);
  1034. encode_real(v3.z, &buf[sizeof(real_t) * 2]);
  1035. }
  1036. r_len += 3 * sizeof(real_t);
  1037. } break;
  1038. case Variant::VECTOR3I: {
  1039. if (buf) {
  1040. Vector3i v3 = p_variant;
  1041. encode_uint32(v3.x, &buf[0]);
  1042. encode_uint32(v3.y, &buf[4]);
  1043. encode_uint32(v3.z, &buf[8]);
  1044. }
  1045. r_len += 3 * 4;
  1046. } break;
  1047. case Variant::TRANSFORM2D: {
  1048. if (buf) {
  1049. Transform2D val = p_variant;
  1050. for (int i = 0; i < 3; i++) {
  1051. for (int j = 0; j < 2; j++) {
  1052. memcpy(&buf[(i * 2 + j) * sizeof(real_t)], &val.columns[i][j], sizeof(real_t));
  1053. }
  1054. }
  1055. }
  1056. r_len += 6 * sizeof(real_t);
  1057. } break;
  1058. case Variant::PLANE: {
  1059. if (buf) {
  1060. Plane p = p_variant;
  1061. encode_real(p.normal.x, &buf[0]);
  1062. encode_real(p.normal.y, &buf[sizeof(real_t)]);
  1063. encode_real(p.normal.z, &buf[sizeof(real_t) * 2]);
  1064. encode_real(p.d, &buf[sizeof(real_t) * 3]);
  1065. }
  1066. r_len += 4 * sizeof(real_t);
  1067. } break;
  1068. case Variant::QUATERNION: {
  1069. if (buf) {
  1070. Quaternion q = p_variant;
  1071. encode_real(q.x, &buf[0]);
  1072. encode_real(q.y, &buf[sizeof(real_t)]);
  1073. encode_real(q.z, &buf[sizeof(real_t) * 2]);
  1074. encode_real(q.w, &buf[sizeof(real_t) * 3]);
  1075. }
  1076. r_len += 4 * sizeof(real_t);
  1077. } break;
  1078. case Variant::AABB: {
  1079. if (buf) {
  1080. AABB aabb = p_variant;
  1081. encode_real(aabb.position.x, &buf[0]);
  1082. encode_real(aabb.position.y, &buf[sizeof(real_t)]);
  1083. encode_real(aabb.position.z, &buf[sizeof(real_t) * 2]);
  1084. encode_real(aabb.size.x, &buf[sizeof(real_t) * 3]);
  1085. encode_real(aabb.size.y, &buf[sizeof(real_t) * 4]);
  1086. encode_real(aabb.size.z, &buf[sizeof(real_t) * 5]);
  1087. }
  1088. r_len += 6 * sizeof(real_t);
  1089. } break;
  1090. case Variant::BASIS: {
  1091. if (buf) {
  1092. Basis val = p_variant;
  1093. for (int i = 0; i < 3; i++) {
  1094. for (int j = 0; j < 3; j++) {
  1095. memcpy(&buf[(i * 3 + j) * sizeof(real_t)], &val.elements[i][j], sizeof(real_t));
  1096. }
  1097. }
  1098. }
  1099. r_len += 9 * sizeof(real_t);
  1100. } break;
  1101. case Variant::TRANSFORM3D: {
  1102. if (buf) {
  1103. Transform3D val = p_variant;
  1104. for (int i = 0; i < 3; i++) {
  1105. for (int j = 0; j < 3; j++) {
  1106. memcpy(&buf[(i * 3 + j) * sizeof(real_t)], &val.basis.elements[i][j], sizeof(real_t));
  1107. }
  1108. }
  1109. encode_real(val.origin.x, &buf[sizeof(real_t) * 9]);
  1110. encode_real(val.origin.y, &buf[sizeof(real_t) * 10]);
  1111. encode_real(val.origin.z, &buf[sizeof(real_t) * 11]);
  1112. }
  1113. r_len += 12 * sizeof(real_t);
  1114. } break;
  1115. // misc types
  1116. case Variant::COLOR: {
  1117. if (buf) {
  1118. Color c = p_variant;
  1119. encode_float(c.r, &buf[0]);
  1120. encode_float(c.g, &buf[4]);
  1121. encode_float(c.b, &buf[8]);
  1122. encode_float(c.a, &buf[12]);
  1123. }
  1124. r_len += 4 * 4; // Colors should always be in single-precision.
  1125. } break;
  1126. case Variant::RID: {
  1127. } break;
  1128. case Variant::CALLABLE: {
  1129. } break;
  1130. case Variant::SIGNAL: {
  1131. } break;
  1132. case Variant::OBJECT: {
  1133. if (p_full_objects) {
  1134. Object *obj = p_variant;
  1135. if (!obj) {
  1136. if (buf) {
  1137. encode_uint32(0, buf);
  1138. }
  1139. r_len += 4;
  1140. } else {
  1141. _encode_string(obj->get_class(), buf, r_len);
  1142. List<PropertyInfo> props;
  1143. obj->get_property_list(&props);
  1144. int pc = 0;
  1145. for (const PropertyInfo &E : props) {
  1146. if (!(E.usage & PROPERTY_USAGE_STORAGE)) {
  1147. continue;
  1148. }
  1149. pc++;
  1150. }
  1151. if (buf) {
  1152. encode_uint32(pc, buf);
  1153. buf += 4;
  1154. }
  1155. r_len += 4;
  1156. for (const PropertyInfo &E : props) {
  1157. if (!(E.usage & PROPERTY_USAGE_STORAGE)) {
  1158. continue;
  1159. }
  1160. _encode_string(E.name, buf, r_len);
  1161. int len;
  1162. Error err = encode_variant(obj->get(E.name), buf, len, p_full_objects, p_depth + 1);
  1163. ERR_FAIL_COND_V(err, err);
  1164. ERR_FAIL_COND_V(len % 4, ERR_BUG);
  1165. r_len += len;
  1166. if (buf) {
  1167. buf += len;
  1168. }
  1169. }
  1170. }
  1171. } else {
  1172. if (buf) {
  1173. Object *obj = p_variant.get_validated_object();
  1174. ObjectID id;
  1175. if (obj) {
  1176. id = obj->get_instance_id();
  1177. }
  1178. encode_uint64(id, buf);
  1179. }
  1180. r_len += 8;
  1181. }
  1182. } break;
  1183. case Variant::DICTIONARY: {
  1184. Dictionary d = p_variant;
  1185. if (buf) {
  1186. encode_uint32(uint32_t(d.size()), buf);
  1187. buf += 4;
  1188. }
  1189. r_len += 4;
  1190. List<Variant> keys;
  1191. d.get_key_list(&keys);
  1192. for (const Variant &E : keys) {
  1193. int len;
  1194. Error err = encode_variant(E, buf, len, p_full_objects, p_depth + 1);
  1195. ERR_FAIL_COND_V(err, err);
  1196. ERR_FAIL_COND_V(len % 4, ERR_BUG);
  1197. r_len += len;
  1198. if (buf) {
  1199. buf += len;
  1200. }
  1201. Variant *v = d.getptr(E);
  1202. ERR_FAIL_COND_V(!v, ERR_BUG);
  1203. err = encode_variant(*v, buf, len, p_full_objects, p_depth + 1);
  1204. ERR_FAIL_COND_V(err, err);
  1205. ERR_FAIL_COND_V(len % 4, ERR_BUG);
  1206. r_len += len;
  1207. if (buf) {
  1208. buf += len;
  1209. }
  1210. }
  1211. } break;
  1212. case Variant::ARRAY: {
  1213. Array v = p_variant;
  1214. if (buf) {
  1215. encode_uint32(uint32_t(v.size()), buf);
  1216. buf += 4;
  1217. }
  1218. r_len += 4;
  1219. for (int i = 0; i < v.size(); i++) {
  1220. int len;
  1221. Error err = encode_variant(v.get(i), buf, len, p_full_objects, p_depth + 1);
  1222. ERR_FAIL_COND_V(err, err);
  1223. ERR_FAIL_COND_V(len % 4, ERR_BUG);
  1224. r_len += len;
  1225. if (buf) {
  1226. buf += len;
  1227. }
  1228. }
  1229. } break;
  1230. // arrays
  1231. case Variant::PACKED_BYTE_ARRAY: {
  1232. Vector<uint8_t> data = p_variant;
  1233. int datalen = data.size();
  1234. int datasize = sizeof(uint8_t);
  1235. if (buf) {
  1236. encode_uint32(datalen, buf);
  1237. buf += 4;
  1238. const uint8_t *r = data.ptr();
  1239. memcpy(buf, &r[0], datalen * datasize);
  1240. buf += datalen * datasize;
  1241. }
  1242. r_len += 4 + datalen * datasize;
  1243. while (r_len % 4) {
  1244. r_len++;
  1245. if (buf) {
  1246. *(buf++) = 0;
  1247. }
  1248. }
  1249. } break;
  1250. case Variant::PACKED_INT32_ARRAY: {
  1251. Vector<int32_t> data = p_variant;
  1252. int datalen = data.size();
  1253. int datasize = sizeof(int32_t);
  1254. if (buf) {
  1255. encode_uint32(datalen, buf);
  1256. buf += 4;
  1257. const int32_t *r = data.ptr();
  1258. for (int32_t i = 0; i < datalen; i++) {
  1259. encode_uint32(r[i], &buf[i * datasize]);
  1260. }
  1261. }
  1262. r_len += 4 + datalen * datasize;
  1263. } break;
  1264. case Variant::PACKED_INT64_ARRAY: {
  1265. Vector<int64_t> data = p_variant;
  1266. int datalen = data.size();
  1267. int datasize = sizeof(int64_t);
  1268. if (buf) {
  1269. encode_uint32(datalen, buf);
  1270. buf += 4;
  1271. const int64_t *r = data.ptr();
  1272. for (int64_t i = 0; i < datalen; i++) {
  1273. encode_uint64(r[i], &buf[i * datasize]);
  1274. }
  1275. }
  1276. r_len += 4 + datalen * datasize;
  1277. } break;
  1278. case Variant::PACKED_FLOAT32_ARRAY: {
  1279. Vector<float> data = p_variant;
  1280. int datalen = data.size();
  1281. int datasize = sizeof(float);
  1282. if (buf) {
  1283. encode_uint32(datalen, buf);
  1284. buf += 4;
  1285. const float *r = data.ptr();
  1286. for (int i = 0; i < datalen; i++) {
  1287. encode_float(r[i], &buf[i * datasize]);
  1288. }
  1289. }
  1290. r_len += 4 + datalen * datasize;
  1291. } break;
  1292. case Variant::PACKED_FLOAT64_ARRAY: {
  1293. Vector<double> data = p_variant;
  1294. int datalen = data.size();
  1295. int datasize = sizeof(double);
  1296. if (buf) {
  1297. encode_uint32(datalen, buf);
  1298. buf += 4;
  1299. const double *r = data.ptr();
  1300. for (int i = 0; i < datalen; i++) {
  1301. encode_double(r[i], &buf[i * datasize]);
  1302. }
  1303. }
  1304. r_len += 4 + datalen * datasize;
  1305. } break;
  1306. case Variant::PACKED_STRING_ARRAY: {
  1307. Vector<String> data = p_variant;
  1308. int len = data.size();
  1309. if (buf) {
  1310. encode_uint32(len, buf);
  1311. buf += 4;
  1312. }
  1313. r_len += 4;
  1314. for (int i = 0; i < len; i++) {
  1315. CharString utf8 = data.get(i).utf8();
  1316. if (buf) {
  1317. encode_uint32(utf8.length() + 1, buf);
  1318. buf += 4;
  1319. memcpy(buf, utf8.get_data(), utf8.length() + 1);
  1320. buf += utf8.length() + 1;
  1321. }
  1322. r_len += 4 + utf8.length() + 1;
  1323. while (r_len % 4) {
  1324. r_len++; //pad
  1325. if (buf) {
  1326. *(buf++) = 0;
  1327. }
  1328. }
  1329. }
  1330. } break;
  1331. case Variant::PACKED_VECTOR2_ARRAY: {
  1332. Vector<Vector2> data = p_variant;
  1333. int len = data.size();
  1334. if (buf) {
  1335. encode_uint32(len, buf);
  1336. buf += 4;
  1337. }
  1338. r_len += 4;
  1339. if (buf) {
  1340. for (int i = 0; i < len; i++) {
  1341. Vector2 v = data.get(i);
  1342. encode_real(v.x, &buf[0]);
  1343. encode_real(v.y, &buf[sizeof(real_t)]);
  1344. buf += sizeof(real_t) * 2;
  1345. }
  1346. }
  1347. r_len += sizeof(real_t) * 2 * len;
  1348. } break;
  1349. case Variant::PACKED_VECTOR3_ARRAY: {
  1350. Vector<Vector3> data = p_variant;
  1351. int len = data.size();
  1352. if (buf) {
  1353. encode_uint32(len, buf);
  1354. buf += 4;
  1355. }
  1356. r_len += 4;
  1357. if (buf) {
  1358. for (int i = 0; i < len; i++) {
  1359. Vector3 v = data.get(i);
  1360. encode_real(v.x, &buf[0]);
  1361. encode_real(v.y, &buf[sizeof(real_t)]);
  1362. encode_real(v.z, &buf[sizeof(real_t) * 2]);
  1363. buf += sizeof(real_t) * 3;
  1364. }
  1365. }
  1366. r_len += sizeof(real_t) * 3 * len;
  1367. } break;
  1368. case Variant::PACKED_COLOR_ARRAY: {
  1369. Vector<Color> data = p_variant;
  1370. int len = data.size();
  1371. if (buf) {
  1372. encode_uint32(len, buf);
  1373. buf += 4;
  1374. }
  1375. r_len += 4;
  1376. if (buf) {
  1377. for (int i = 0; i < len; i++) {
  1378. Color c = data.get(i);
  1379. encode_float(c.r, &buf[0]);
  1380. encode_float(c.g, &buf[4]);
  1381. encode_float(c.b, &buf[8]);
  1382. encode_float(c.a, &buf[12]);
  1383. buf += 4 * 4; // Colors should always be in single-precision.
  1384. }
  1385. }
  1386. r_len += 4 * 4 * len;
  1387. } break;
  1388. default: {
  1389. ERR_FAIL_V(ERR_BUG);
  1390. }
  1391. }
  1392. return OK;
  1393. }