variant.cpp 93 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666
  1. /**************************************************************************/
  2. /* variant.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "variant.h"
  31. #include "core/core_string_names.h"
  32. #include "core/debugger/engine_debugger.h"
  33. #include "core/io/json.h"
  34. #include "core/io/marshalls.h"
  35. #include "core/io/resource.h"
  36. #include "core/math/math_funcs.h"
  37. #include "core/string/print_string.h"
  38. #include "core/variant/variant_parser.h"
  39. PagedAllocator<Variant::Pools::BucketSmall, true> Variant::Pools::_bucket_small;
  40. PagedAllocator<Variant::Pools::BucketMedium, true> Variant::Pools::_bucket_medium;
  41. PagedAllocator<Variant::Pools::BucketLarge, true> Variant::Pools::_bucket_large;
  42. String Variant::get_type_name(Variant::Type p_type) {
  43. switch (p_type) {
  44. case NIL: {
  45. return "Nil";
  46. }
  47. // Atomic types.
  48. case BOOL: {
  49. return "bool";
  50. }
  51. case INT: {
  52. return "int";
  53. }
  54. case FLOAT: {
  55. return "float";
  56. }
  57. case STRING: {
  58. return "String";
  59. }
  60. // Math types.
  61. case VECTOR2: {
  62. return "Vector2";
  63. }
  64. case VECTOR2I: {
  65. return "Vector2i";
  66. }
  67. case RECT2: {
  68. return "Rect2";
  69. }
  70. case RECT2I: {
  71. return "Rect2i";
  72. }
  73. case TRANSFORM2D: {
  74. return "Transform2D";
  75. }
  76. case VECTOR3: {
  77. return "Vector3";
  78. }
  79. case VECTOR3I: {
  80. return "Vector3i";
  81. }
  82. case VECTOR4: {
  83. return "Vector4";
  84. }
  85. case VECTOR4I: {
  86. return "Vector4i";
  87. }
  88. case PLANE: {
  89. return "Plane";
  90. }
  91. case AABB: {
  92. return "AABB";
  93. }
  94. case QUATERNION: {
  95. return "Quaternion";
  96. }
  97. case BASIS: {
  98. return "Basis";
  99. }
  100. case TRANSFORM3D: {
  101. return "Transform3D";
  102. }
  103. case PROJECTION: {
  104. return "Projection";
  105. }
  106. // Miscellaneous types.
  107. case COLOR: {
  108. return "Color";
  109. }
  110. case RID: {
  111. return "RID";
  112. }
  113. case OBJECT: {
  114. return "Object";
  115. }
  116. case CALLABLE: {
  117. return "Callable";
  118. }
  119. case SIGNAL: {
  120. return "Signal";
  121. }
  122. case STRING_NAME: {
  123. return "StringName";
  124. }
  125. case NODE_PATH: {
  126. return "NodePath";
  127. }
  128. case DICTIONARY: {
  129. return "Dictionary";
  130. }
  131. case ARRAY: {
  132. return "Array";
  133. }
  134. // Arrays.
  135. case PACKED_BYTE_ARRAY: {
  136. return "PackedByteArray";
  137. }
  138. case PACKED_INT32_ARRAY: {
  139. return "PackedInt32Array";
  140. }
  141. case PACKED_INT64_ARRAY: {
  142. return "PackedInt64Array";
  143. }
  144. case PACKED_FLOAT32_ARRAY: {
  145. return "PackedFloat32Array";
  146. }
  147. case PACKED_FLOAT64_ARRAY: {
  148. return "PackedFloat64Array";
  149. }
  150. case PACKED_STRING_ARRAY: {
  151. return "PackedStringArray";
  152. }
  153. case PACKED_VECTOR2_ARRAY: {
  154. return "PackedVector2Array";
  155. }
  156. case PACKED_VECTOR3_ARRAY: {
  157. return "PackedVector3Array";
  158. }
  159. case PACKED_COLOR_ARRAY: {
  160. return "PackedColorArray";
  161. }
  162. default: {
  163. }
  164. }
  165. return "";
  166. }
  167. bool Variant::can_convert(Variant::Type p_type_from, Variant::Type p_type_to) {
  168. if (p_type_from == p_type_to) {
  169. return true;
  170. }
  171. if (p_type_to == NIL) { //nil can convert to anything
  172. return true;
  173. }
  174. if (p_type_from == NIL) {
  175. return (p_type_to == OBJECT);
  176. }
  177. const Type *valid_types = nullptr;
  178. const Type *invalid_types = nullptr;
  179. switch (p_type_to) {
  180. case BOOL: {
  181. static const Type valid[] = {
  182. INT,
  183. FLOAT,
  184. STRING,
  185. NIL,
  186. };
  187. valid_types = valid;
  188. } break;
  189. case INT: {
  190. static const Type valid[] = {
  191. BOOL,
  192. FLOAT,
  193. STRING,
  194. NIL,
  195. };
  196. valid_types = valid;
  197. } break;
  198. case FLOAT: {
  199. static const Type valid[] = {
  200. BOOL,
  201. INT,
  202. STRING,
  203. NIL,
  204. };
  205. valid_types = valid;
  206. } break;
  207. case STRING: {
  208. static const Type invalid[] = {
  209. OBJECT,
  210. NIL
  211. };
  212. invalid_types = invalid;
  213. } break;
  214. case VECTOR2: {
  215. static const Type valid[] = {
  216. VECTOR2I,
  217. NIL,
  218. };
  219. valid_types = valid;
  220. } break;
  221. case VECTOR2I: {
  222. static const Type valid[] = {
  223. VECTOR2,
  224. NIL,
  225. };
  226. valid_types = valid;
  227. } break;
  228. case RECT2: {
  229. static const Type valid[] = {
  230. RECT2I,
  231. NIL,
  232. };
  233. valid_types = valid;
  234. } break;
  235. case RECT2I: {
  236. static const Type valid[] = {
  237. RECT2,
  238. NIL,
  239. };
  240. valid_types = valid;
  241. } break;
  242. case TRANSFORM2D: {
  243. static const Type valid[] = {
  244. TRANSFORM3D,
  245. NIL
  246. };
  247. valid_types = valid;
  248. } break;
  249. case VECTOR3: {
  250. static const Type valid[] = {
  251. VECTOR3I,
  252. NIL,
  253. };
  254. valid_types = valid;
  255. } break;
  256. case VECTOR3I: {
  257. static const Type valid[] = {
  258. VECTOR3,
  259. NIL,
  260. };
  261. valid_types = valid;
  262. } break;
  263. case VECTOR4: {
  264. static const Type valid[] = {
  265. VECTOR4I,
  266. NIL,
  267. };
  268. valid_types = valid;
  269. } break;
  270. case VECTOR4I: {
  271. static const Type valid[] = {
  272. VECTOR4,
  273. NIL,
  274. };
  275. valid_types = valid;
  276. } break;
  277. case QUATERNION: {
  278. static const Type valid[] = {
  279. BASIS,
  280. NIL
  281. };
  282. valid_types = valid;
  283. } break;
  284. case BASIS: {
  285. static const Type valid[] = {
  286. QUATERNION,
  287. NIL
  288. };
  289. valid_types = valid;
  290. } break;
  291. case TRANSFORM3D: {
  292. static const Type valid[] = {
  293. TRANSFORM2D,
  294. QUATERNION,
  295. BASIS,
  296. PROJECTION,
  297. NIL
  298. };
  299. valid_types = valid;
  300. } break;
  301. case PROJECTION: {
  302. static const Type valid[] = {
  303. TRANSFORM3D,
  304. NIL
  305. };
  306. valid_types = valid;
  307. } break;
  308. case COLOR: {
  309. static const Type valid[] = {
  310. STRING,
  311. INT,
  312. NIL,
  313. };
  314. valid_types = valid;
  315. } break;
  316. case RID: {
  317. static const Type valid[] = {
  318. OBJECT,
  319. NIL
  320. };
  321. valid_types = valid;
  322. } break;
  323. case OBJECT: {
  324. static const Type valid[] = {
  325. NIL
  326. };
  327. valid_types = valid;
  328. } break;
  329. case STRING_NAME: {
  330. static const Type valid[] = {
  331. STRING,
  332. NIL
  333. };
  334. valid_types = valid;
  335. } break;
  336. case NODE_PATH: {
  337. static const Type valid[] = {
  338. STRING,
  339. NIL
  340. };
  341. valid_types = valid;
  342. } break;
  343. case ARRAY: {
  344. static const Type valid[] = {
  345. PACKED_BYTE_ARRAY,
  346. PACKED_INT32_ARRAY,
  347. PACKED_INT64_ARRAY,
  348. PACKED_FLOAT32_ARRAY,
  349. PACKED_FLOAT64_ARRAY,
  350. PACKED_STRING_ARRAY,
  351. PACKED_COLOR_ARRAY,
  352. PACKED_VECTOR2_ARRAY,
  353. PACKED_VECTOR3_ARRAY,
  354. NIL
  355. };
  356. valid_types = valid;
  357. } break;
  358. // arrays
  359. case PACKED_BYTE_ARRAY: {
  360. static const Type valid[] = {
  361. ARRAY,
  362. NIL
  363. };
  364. valid_types = valid;
  365. } break;
  366. case PACKED_INT32_ARRAY: {
  367. static const Type valid[] = {
  368. ARRAY,
  369. NIL
  370. };
  371. valid_types = valid;
  372. } break;
  373. case PACKED_INT64_ARRAY: {
  374. static const Type valid[] = {
  375. ARRAY,
  376. NIL
  377. };
  378. valid_types = valid;
  379. } break;
  380. case PACKED_FLOAT32_ARRAY: {
  381. static const Type valid[] = {
  382. ARRAY,
  383. NIL
  384. };
  385. valid_types = valid;
  386. } break;
  387. case PACKED_FLOAT64_ARRAY: {
  388. static const Type valid[] = {
  389. ARRAY,
  390. NIL
  391. };
  392. valid_types = valid;
  393. } break;
  394. case PACKED_STRING_ARRAY: {
  395. static const Type valid[] = {
  396. ARRAY,
  397. NIL
  398. };
  399. valid_types = valid;
  400. } break;
  401. case PACKED_VECTOR2_ARRAY: {
  402. static const Type valid[] = {
  403. ARRAY,
  404. NIL
  405. };
  406. valid_types = valid;
  407. } break;
  408. case PACKED_VECTOR3_ARRAY: {
  409. static const Type valid[] = {
  410. ARRAY,
  411. NIL
  412. };
  413. valid_types = valid;
  414. } break;
  415. case PACKED_COLOR_ARRAY: {
  416. static const Type valid[] = {
  417. ARRAY,
  418. NIL
  419. };
  420. valid_types = valid;
  421. } break;
  422. default: {
  423. }
  424. }
  425. if (valid_types) {
  426. int i = 0;
  427. while (valid_types[i] != NIL) {
  428. if (p_type_from == valid_types[i]) {
  429. return true;
  430. }
  431. i++;
  432. }
  433. } else if (invalid_types) {
  434. int i = 0;
  435. while (invalid_types[i] != NIL) {
  436. if (p_type_from == invalid_types[i]) {
  437. return false;
  438. }
  439. i++;
  440. }
  441. return true;
  442. }
  443. return false;
  444. }
  445. bool Variant::can_convert_strict(Variant::Type p_type_from, Variant::Type p_type_to) {
  446. if (p_type_from == p_type_to) {
  447. return true;
  448. }
  449. if (p_type_to == NIL) { //nil can convert to anything
  450. return true;
  451. }
  452. if (p_type_from == NIL) {
  453. return (p_type_to == OBJECT);
  454. }
  455. const Type *valid_types = nullptr;
  456. switch (p_type_to) {
  457. case BOOL: {
  458. static const Type valid[] = {
  459. INT,
  460. FLOAT,
  461. //STRING,
  462. NIL,
  463. };
  464. valid_types = valid;
  465. } break;
  466. case INT: {
  467. static const Type valid[] = {
  468. BOOL,
  469. FLOAT,
  470. //STRING,
  471. NIL,
  472. };
  473. valid_types = valid;
  474. } break;
  475. case FLOAT: {
  476. static const Type valid[] = {
  477. BOOL,
  478. INT,
  479. //STRING,
  480. NIL,
  481. };
  482. valid_types = valid;
  483. } break;
  484. case STRING: {
  485. static const Type valid[] = {
  486. NODE_PATH,
  487. STRING_NAME,
  488. NIL
  489. };
  490. valid_types = valid;
  491. } break;
  492. case VECTOR2: {
  493. static const Type valid[] = {
  494. VECTOR2I,
  495. NIL,
  496. };
  497. valid_types = valid;
  498. } break;
  499. case VECTOR2I: {
  500. static const Type valid[] = {
  501. VECTOR2,
  502. NIL,
  503. };
  504. valid_types = valid;
  505. } break;
  506. case RECT2: {
  507. static const Type valid[] = {
  508. RECT2I,
  509. NIL,
  510. };
  511. valid_types = valid;
  512. } break;
  513. case RECT2I: {
  514. static const Type valid[] = {
  515. RECT2,
  516. NIL,
  517. };
  518. valid_types = valid;
  519. } break;
  520. case TRANSFORM2D: {
  521. static const Type valid[] = {
  522. TRANSFORM3D,
  523. NIL
  524. };
  525. valid_types = valid;
  526. } break;
  527. case VECTOR3: {
  528. static const Type valid[] = {
  529. VECTOR3I,
  530. NIL,
  531. };
  532. valid_types = valid;
  533. } break;
  534. case VECTOR3I: {
  535. static const Type valid[] = {
  536. VECTOR3,
  537. NIL,
  538. };
  539. valid_types = valid;
  540. } break;
  541. case VECTOR4: {
  542. static const Type valid[] = {
  543. VECTOR4I,
  544. NIL,
  545. };
  546. valid_types = valid;
  547. } break;
  548. case VECTOR4I: {
  549. static const Type valid[] = {
  550. VECTOR4,
  551. NIL,
  552. };
  553. valid_types = valid;
  554. } break;
  555. case QUATERNION: {
  556. static const Type valid[] = {
  557. BASIS,
  558. NIL
  559. };
  560. valid_types = valid;
  561. } break;
  562. case BASIS: {
  563. static const Type valid[] = {
  564. QUATERNION,
  565. NIL
  566. };
  567. valid_types = valid;
  568. } break;
  569. case TRANSFORM3D: {
  570. static const Type valid[] = {
  571. TRANSFORM2D,
  572. QUATERNION,
  573. BASIS,
  574. PROJECTION,
  575. NIL
  576. };
  577. valid_types = valid;
  578. } break;
  579. case PROJECTION: {
  580. static const Type valid[] = {
  581. TRANSFORM3D,
  582. NIL
  583. };
  584. valid_types = valid;
  585. } break;
  586. case COLOR: {
  587. static const Type valid[] = {
  588. STRING,
  589. INT,
  590. NIL,
  591. };
  592. valid_types = valid;
  593. } break;
  594. case RID: {
  595. static const Type valid[] = {
  596. OBJECT,
  597. NIL
  598. };
  599. valid_types = valid;
  600. } break;
  601. case OBJECT: {
  602. static const Type valid[] = {
  603. NIL
  604. };
  605. valid_types = valid;
  606. } break;
  607. case STRING_NAME: {
  608. static const Type valid[] = {
  609. STRING,
  610. NIL
  611. };
  612. valid_types = valid;
  613. } break;
  614. case NODE_PATH: {
  615. static const Type valid[] = {
  616. STRING,
  617. NIL
  618. };
  619. valid_types = valid;
  620. } break;
  621. case ARRAY: {
  622. static const Type valid[] = {
  623. PACKED_BYTE_ARRAY,
  624. PACKED_INT32_ARRAY,
  625. PACKED_INT64_ARRAY,
  626. PACKED_FLOAT32_ARRAY,
  627. PACKED_FLOAT64_ARRAY,
  628. PACKED_STRING_ARRAY,
  629. PACKED_COLOR_ARRAY,
  630. PACKED_VECTOR2_ARRAY,
  631. PACKED_VECTOR3_ARRAY,
  632. NIL
  633. };
  634. valid_types = valid;
  635. } break;
  636. // arrays
  637. case PACKED_BYTE_ARRAY: {
  638. static const Type valid[] = {
  639. ARRAY,
  640. NIL
  641. };
  642. valid_types = valid;
  643. } break;
  644. case PACKED_INT32_ARRAY: {
  645. static const Type valid[] = {
  646. ARRAY,
  647. NIL
  648. };
  649. valid_types = valid;
  650. } break;
  651. case PACKED_INT64_ARRAY: {
  652. static const Type valid[] = {
  653. ARRAY,
  654. NIL
  655. };
  656. valid_types = valid;
  657. } break;
  658. case PACKED_FLOAT32_ARRAY: {
  659. static const Type valid[] = {
  660. ARRAY,
  661. NIL
  662. };
  663. valid_types = valid;
  664. } break;
  665. case PACKED_FLOAT64_ARRAY: {
  666. static const Type valid[] = {
  667. ARRAY,
  668. NIL
  669. };
  670. valid_types = valid;
  671. } break;
  672. case PACKED_STRING_ARRAY: {
  673. static const Type valid[] = {
  674. ARRAY,
  675. NIL
  676. };
  677. valid_types = valid;
  678. } break;
  679. case PACKED_VECTOR2_ARRAY: {
  680. static const Type valid[] = {
  681. ARRAY,
  682. NIL
  683. };
  684. valid_types = valid;
  685. } break;
  686. case PACKED_VECTOR3_ARRAY: {
  687. static const Type valid[] = {
  688. ARRAY,
  689. NIL
  690. };
  691. valid_types = valid;
  692. } break;
  693. case PACKED_COLOR_ARRAY: {
  694. static const Type valid[] = {
  695. ARRAY,
  696. NIL
  697. };
  698. valid_types = valid;
  699. } break;
  700. default: {
  701. }
  702. }
  703. if (valid_types) {
  704. int i = 0;
  705. while (valid_types[i] != NIL) {
  706. if (p_type_from == valid_types[i]) {
  707. return true;
  708. }
  709. i++;
  710. }
  711. }
  712. return false;
  713. }
  714. bool Variant::operator==(const Variant &p_variant) const {
  715. return hash_compare(p_variant);
  716. }
  717. bool Variant::operator!=(const Variant &p_variant) const {
  718. // Don't use `!hash_compare(p_variant)` given it makes use of OP_EQUAL
  719. if (type != p_variant.type) { //evaluation of operator== needs to be more strict
  720. return true;
  721. }
  722. bool v;
  723. Variant r;
  724. evaluate(OP_NOT_EQUAL, *this, p_variant, r, v);
  725. return r;
  726. }
  727. bool Variant::operator<(const Variant &p_variant) const {
  728. if (type != p_variant.type) { //if types differ, then order by type first
  729. return type < p_variant.type;
  730. }
  731. bool v;
  732. Variant r;
  733. evaluate(OP_LESS, *this, p_variant, r, v);
  734. return r;
  735. }
  736. bool Variant::is_zero() const {
  737. switch (type) {
  738. case NIL: {
  739. return true;
  740. }
  741. // Atomic types.
  742. case BOOL: {
  743. return !(_data._bool);
  744. }
  745. case INT: {
  746. return _data._int == 0;
  747. }
  748. case FLOAT: {
  749. return _data._float == 0;
  750. }
  751. case STRING: {
  752. return *reinterpret_cast<const String *>(_data._mem) == String();
  753. }
  754. // Math types.
  755. case VECTOR2: {
  756. return *reinterpret_cast<const Vector2 *>(_data._mem) == Vector2();
  757. }
  758. case VECTOR2I: {
  759. return *reinterpret_cast<const Vector2i *>(_data._mem) == Vector2i();
  760. }
  761. case RECT2: {
  762. return *reinterpret_cast<const Rect2 *>(_data._mem) == Rect2();
  763. }
  764. case RECT2I: {
  765. return *reinterpret_cast<const Rect2i *>(_data._mem) == Rect2i();
  766. }
  767. case TRANSFORM2D: {
  768. return *_data._transform2d == Transform2D();
  769. }
  770. case VECTOR3: {
  771. return *reinterpret_cast<const Vector3 *>(_data._mem) == Vector3();
  772. }
  773. case VECTOR3I: {
  774. return *reinterpret_cast<const Vector3i *>(_data._mem) == Vector3i();
  775. }
  776. case VECTOR4: {
  777. return *reinterpret_cast<const Vector4 *>(_data._mem) == Vector4();
  778. }
  779. case VECTOR4I: {
  780. return *reinterpret_cast<const Vector4i *>(_data._mem) == Vector4i();
  781. }
  782. case PLANE: {
  783. return *reinterpret_cast<const Plane *>(_data._mem) == Plane();
  784. }
  785. case AABB: {
  786. return *_data._aabb == ::AABB();
  787. }
  788. case QUATERNION: {
  789. return *reinterpret_cast<const Quaternion *>(_data._mem) == Quaternion();
  790. }
  791. case BASIS: {
  792. return *_data._basis == Basis();
  793. }
  794. case TRANSFORM3D: {
  795. return *_data._transform3d == Transform3D();
  796. }
  797. case PROJECTION: {
  798. return *_data._projection == Projection();
  799. }
  800. // Miscellaneous types.
  801. case COLOR: {
  802. return *reinterpret_cast<const Color *>(_data._mem) == Color();
  803. }
  804. case RID: {
  805. return *reinterpret_cast<const ::RID *>(_data._mem) == ::RID();
  806. }
  807. case OBJECT: {
  808. return get_validated_object() == nullptr;
  809. }
  810. case CALLABLE: {
  811. return reinterpret_cast<const Callable *>(_data._mem)->is_null();
  812. }
  813. case SIGNAL: {
  814. return reinterpret_cast<const Signal *>(_data._mem)->is_null();
  815. }
  816. case STRING_NAME: {
  817. return *reinterpret_cast<const StringName *>(_data._mem) == StringName();
  818. }
  819. case NODE_PATH: {
  820. return reinterpret_cast<const NodePath *>(_data._mem)->is_empty();
  821. }
  822. case DICTIONARY: {
  823. return reinterpret_cast<const Dictionary *>(_data._mem)->is_empty();
  824. }
  825. case ARRAY: {
  826. return reinterpret_cast<const Array *>(_data._mem)->is_empty();
  827. }
  828. // Arrays.
  829. case PACKED_BYTE_ARRAY: {
  830. return PackedArrayRef<uint8_t>::get_array(_data.packed_array).size() == 0;
  831. }
  832. case PACKED_INT32_ARRAY: {
  833. return PackedArrayRef<int32_t>::get_array(_data.packed_array).size() == 0;
  834. }
  835. case PACKED_INT64_ARRAY: {
  836. return PackedArrayRef<int64_t>::get_array(_data.packed_array).size() == 0;
  837. }
  838. case PACKED_FLOAT32_ARRAY: {
  839. return PackedArrayRef<float>::get_array(_data.packed_array).size() == 0;
  840. }
  841. case PACKED_FLOAT64_ARRAY: {
  842. return PackedArrayRef<double>::get_array(_data.packed_array).size() == 0;
  843. }
  844. case PACKED_STRING_ARRAY: {
  845. return PackedArrayRef<String>::get_array(_data.packed_array).size() == 0;
  846. }
  847. case PACKED_VECTOR2_ARRAY: {
  848. return PackedArrayRef<Vector2>::get_array(_data.packed_array).size() == 0;
  849. }
  850. case PACKED_VECTOR3_ARRAY: {
  851. return PackedArrayRef<Vector3>::get_array(_data.packed_array).size() == 0;
  852. }
  853. case PACKED_COLOR_ARRAY: {
  854. return PackedArrayRef<Color>::get_array(_data.packed_array).size() == 0;
  855. }
  856. default: {
  857. }
  858. }
  859. return false;
  860. }
  861. bool Variant::is_one() const {
  862. switch (type) {
  863. case NIL: {
  864. return true;
  865. }
  866. case BOOL: {
  867. return _data._bool;
  868. }
  869. case INT: {
  870. return _data._int == 1;
  871. }
  872. case FLOAT: {
  873. return _data._float == 1;
  874. }
  875. case VECTOR2: {
  876. return *reinterpret_cast<const Vector2 *>(_data._mem) == Vector2(1, 1);
  877. }
  878. case VECTOR2I: {
  879. return *reinterpret_cast<const Vector2i *>(_data._mem) == Vector2i(1, 1);
  880. }
  881. case RECT2: {
  882. return *reinterpret_cast<const Rect2 *>(_data._mem) == Rect2(1, 1, 1, 1);
  883. }
  884. case RECT2I: {
  885. return *reinterpret_cast<const Rect2i *>(_data._mem) == Rect2i(1, 1, 1, 1);
  886. }
  887. case VECTOR3: {
  888. return *reinterpret_cast<const Vector3 *>(_data._mem) == Vector3(1, 1, 1);
  889. }
  890. case VECTOR3I: {
  891. return *reinterpret_cast<const Vector3i *>(_data._mem) == Vector3i(1, 1, 1);
  892. }
  893. case VECTOR4: {
  894. return *reinterpret_cast<const Vector4 *>(_data._mem) == Vector4(1, 1, 1, 1);
  895. }
  896. case VECTOR4I: {
  897. return *reinterpret_cast<const Vector4i *>(_data._mem) == Vector4i(1, 1, 1, 1);
  898. }
  899. case PLANE: {
  900. return *reinterpret_cast<const Plane *>(_data._mem) == Plane(1, 1, 1, 1);
  901. }
  902. case COLOR: {
  903. return *reinterpret_cast<const Color *>(_data._mem) == Color(1, 1, 1, 1);
  904. }
  905. default: {
  906. return !is_zero();
  907. }
  908. }
  909. }
  910. bool Variant::is_null() const {
  911. if (type == OBJECT && _get_obj().obj) {
  912. return false;
  913. } else {
  914. return true;
  915. }
  916. }
  917. bool Variant::initialize_ref(Object *p_object) {
  918. RefCounted *ref_counted = const_cast<RefCounted *>(static_cast<const RefCounted *>(p_object));
  919. if (!ref_counted->init_ref()) {
  920. return false;
  921. }
  922. return true;
  923. }
  924. void Variant::reference(const Variant &p_variant) {
  925. switch (type) {
  926. case NIL:
  927. case BOOL:
  928. case INT:
  929. case FLOAT:
  930. break;
  931. default:
  932. clear();
  933. }
  934. type = p_variant.type;
  935. switch (p_variant.type) {
  936. case NIL: {
  937. // None.
  938. } break;
  939. // Atomic types.
  940. case BOOL: {
  941. _data._bool = p_variant._data._bool;
  942. } break;
  943. case INT: {
  944. _data._int = p_variant._data._int;
  945. } break;
  946. case FLOAT: {
  947. _data._float = p_variant._data._float;
  948. } break;
  949. case STRING: {
  950. memnew_placement(_data._mem, String(*reinterpret_cast<const String *>(p_variant._data._mem)));
  951. } break;
  952. // Math types.
  953. case VECTOR2: {
  954. memnew_placement(_data._mem, Vector2(*reinterpret_cast<const Vector2 *>(p_variant._data._mem)));
  955. } break;
  956. case VECTOR2I: {
  957. memnew_placement(_data._mem, Vector2i(*reinterpret_cast<const Vector2i *>(p_variant._data._mem)));
  958. } break;
  959. case RECT2: {
  960. memnew_placement(_data._mem, Rect2(*reinterpret_cast<const Rect2 *>(p_variant._data._mem)));
  961. } break;
  962. case RECT2I: {
  963. memnew_placement(_data._mem, Rect2i(*reinterpret_cast<const Rect2i *>(p_variant._data._mem)));
  964. } break;
  965. case TRANSFORM2D: {
  966. _data._transform2d = (Transform2D *)Pools::_bucket_small.alloc();
  967. memnew_placement(_data._transform2d, Transform2D(*p_variant._data._transform2d));
  968. } break;
  969. case VECTOR3: {
  970. memnew_placement(_data._mem, Vector3(*reinterpret_cast<const Vector3 *>(p_variant._data._mem)));
  971. } break;
  972. case VECTOR3I: {
  973. memnew_placement(_data._mem, Vector3i(*reinterpret_cast<const Vector3i *>(p_variant._data._mem)));
  974. } break;
  975. case VECTOR4: {
  976. memnew_placement(_data._mem, Vector4(*reinterpret_cast<const Vector4 *>(p_variant._data._mem)));
  977. } break;
  978. case VECTOR4I: {
  979. memnew_placement(_data._mem, Vector4i(*reinterpret_cast<const Vector4i *>(p_variant._data._mem)));
  980. } break;
  981. case PLANE: {
  982. memnew_placement(_data._mem, Plane(*reinterpret_cast<const Plane *>(p_variant._data._mem)));
  983. } break;
  984. case AABB: {
  985. _data._aabb = (::AABB *)Pools::_bucket_small.alloc();
  986. memnew_placement(_data._aabb, ::AABB(*p_variant._data._aabb));
  987. } break;
  988. case QUATERNION: {
  989. memnew_placement(_data._mem, Quaternion(*reinterpret_cast<const Quaternion *>(p_variant._data._mem)));
  990. } break;
  991. case BASIS: {
  992. _data._basis = (Basis *)Pools::_bucket_medium.alloc();
  993. memnew_placement(_data._basis, Basis(*p_variant._data._basis));
  994. } break;
  995. case TRANSFORM3D: {
  996. _data._transform3d = (Transform3D *)Pools::_bucket_medium.alloc();
  997. memnew_placement(_data._transform3d, Transform3D(*p_variant._data._transform3d));
  998. } break;
  999. case PROJECTION: {
  1000. _data._projection = (Projection *)Pools::_bucket_large.alloc();
  1001. memnew_placement(_data._projection, Projection(*p_variant._data._projection));
  1002. } break;
  1003. // Miscellaneous types.
  1004. case COLOR: {
  1005. memnew_placement(_data._mem, Color(*reinterpret_cast<const Color *>(p_variant._data._mem)));
  1006. } break;
  1007. case RID: {
  1008. memnew_placement(_data._mem, ::RID(*reinterpret_cast<const ::RID *>(p_variant._data._mem)));
  1009. } break;
  1010. case OBJECT: {
  1011. memnew_placement(_data._mem, ObjData);
  1012. if (p_variant._get_obj().obj && p_variant._get_obj().id.is_ref_counted()) {
  1013. RefCounted *ref_counted = static_cast<RefCounted *>(p_variant._get_obj().obj);
  1014. if (!ref_counted->reference()) {
  1015. _get_obj().obj = nullptr;
  1016. _get_obj().id = ObjectID();
  1017. break;
  1018. }
  1019. }
  1020. _get_obj().obj = const_cast<Object *>(p_variant._get_obj().obj);
  1021. _get_obj().id = p_variant._get_obj().id;
  1022. } break;
  1023. case CALLABLE: {
  1024. memnew_placement(_data._mem, Callable(*reinterpret_cast<const Callable *>(p_variant._data._mem)));
  1025. } break;
  1026. case SIGNAL: {
  1027. memnew_placement(_data._mem, Signal(*reinterpret_cast<const Signal *>(p_variant._data._mem)));
  1028. } break;
  1029. case STRING_NAME: {
  1030. memnew_placement(_data._mem, StringName(*reinterpret_cast<const StringName *>(p_variant._data._mem)));
  1031. } break;
  1032. case NODE_PATH: {
  1033. memnew_placement(_data._mem, NodePath(*reinterpret_cast<const NodePath *>(p_variant._data._mem)));
  1034. } break;
  1035. case DICTIONARY: {
  1036. memnew_placement(_data._mem, Dictionary(*reinterpret_cast<const Dictionary *>(p_variant._data._mem)));
  1037. } break;
  1038. case ARRAY: {
  1039. memnew_placement(_data._mem, Array(*reinterpret_cast<const Array *>(p_variant._data._mem)));
  1040. } break;
  1041. // Arrays.
  1042. case PACKED_BYTE_ARRAY: {
  1043. _data.packed_array = static_cast<PackedArrayRef<uint8_t> *>(p_variant._data.packed_array)->reference();
  1044. if (!_data.packed_array) {
  1045. _data.packed_array = PackedArrayRef<uint8_t>::create();
  1046. }
  1047. } break;
  1048. case PACKED_INT32_ARRAY: {
  1049. _data.packed_array = static_cast<PackedArrayRef<int32_t> *>(p_variant._data.packed_array)->reference();
  1050. if (!_data.packed_array) {
  1051. _data.packed_array = PackedArrayRef<int32_t>::create();
  1052. }
  1053. } break;
  1054. case PACKED_INT64_ARRAY: {
  1055. _data.packed_array = static_cast<PackedArrayRef<int64_t> *>(p_variant._data.packed_array)->reference();
  1056. if (!_data.packed_array) {
  1057. _data.packed_array = PackedArrayRef<int64_t>::create();
  1058. }
  1059. } break;
  1060. case PACKED_FLOAT32_ARRAY: {
  1061. _data.packed_array = static_cast<PackedArrayRef<float> *>(p_variant._data.packed_array)->reference();
  1062. if (!_data.packed_array) {
  1063. _data.packed_array = PackedArrayRef<float>::create();
  1064. }
  1065. } break;
  1066. case PACKED_FLOAT64_ARRAY: {
  1067. _data.packed_array = static_cast<PackedArrayRef<double> *>(p_variant._data.packed_array)->reference();
  1068. if (!_data.packed_array) {
  1069. _data.packed_array = PackedArrayRef<double>::create();
  1070. }
  1071. } break;
  1072. case PACKED_STRING_ARRAY: {
  1073. _data.packed_array = static_cast<PackedArrayRef<String> *>(p_variant._data.packed_array)->reference();
  1074. if (!_data.packed_array) {
  1075. _data.packed_array = PackedArrayRef<String>::create();
  1076. }
  1077. } break;
  1078. case PACKED_VECTOR2_ARRAY: {
  1079. _data.packed_array = static_cast<PackedArrayRef<Vector2> *>(p_variant._data.packed_array)->reference();
  1080. if (!_data.packed_array) {
  1081. _data.packed_array = PackedArrayRef<Vector2>::create();
  1082. }
  1083. } break;
  1084. case PACKED_VECTOR3_ARRAY: {
  1085. _data.packed_array = static_cast<PackedArrayRef<Vector3> *>(p_variant._data.packed_array)->reference();
  1086. if (!_data.packed_array) {
  1087. _data.packed_array = PackedArrayRef<Vector3>::create();
  1088. }
  1089. } break;
  1090. case PACKED_COLOR_ARRAY: {
  1091. _data.packed_array = static_cast<PackedArrayRef<Color> *>(p_variant._data.packed_array)->reference();
  1092. if (!_data.packed_array) {
  1093. _data.packed_array = PackedArrayRef<Color>::create();
  1094. }
  1095. } break;
  1096. default: {
  1097. }
  1098. }
  1099. }
  1100. void Variant::zero() {
  1101. switch (type) {
  1102. case NIL:
  1103. break;
  1104. case BOOL:
  1105. _data._bool = false;
  1106. break;
  1107. case INT:
  1108. _data._int = 0;
  1109. break;
  1110. case FLOAT:
  1111. _data._float = 0;
  1112. break;
  1113. case VECTOR2:
  1114. *reinterpret_cast<Vector2 *>(_data._mem) = Vector2();
  1115. break;
  1116. case VECTOR2I:
  1117. *reinterpret_cast<Vector2i *>(_data._mem) = Vector2i();
  1118. break;
  1119. case RECT2:
  1120. *reinterpret_cast<Rect2 *>(_data._mem) = Rect2();
  1121. break;
  1122. case RECT2I:
  1123. *reinterpret_cast<Rect2i *>(_data._mem) = Rect2i();
  1124. break;
  1125. case VECTOR3:
  1126. *reinterpret_cast<Vector3 *>(_data._mem) = Vector3();
  1127. break;
  1128. case VECTOR3I:
  1129. *reinterpret_cast<Vector3i *>(_data._mem) = Vector3i();
  1130. break;
  1131. case VECTOR4:
  1132. *reinterpret_cast<Vector4 *>(_data._mem) = Vector4();
  1133. break;
  1134. case VECTOR4I:
  1135. *reinterpret_cast<Vector4i *>(_data._mem) = Vector4i();
  1136. break;
  1137. case PLANE:
  1138. *reinterpret_cast<Plane *>(_data._mem) = Plane();
  1139. break;
  1140. case QUATERNION:
  1141. *reinterpret_cast<Quaternion *>(_data._mem) = Quaternion();
  1142. break;
  1143. case COLOR:
  1144. *reinterpret_cast<Color *>(_data._mem) = Color();
  1145. break;
  1146. default:
  1147. Type prev_type = type;
  1148. clear();
  1149. if (type != prev_type) {
  1150. // clear() changes type to NIL, so it needs to be restored.
  1151. Callable::CallError ce;
  1152. Variant::construct(prev_type, *this, nullptr, 0, ce);
  1153. }
  1154. break;
  1155. }
  1156. }
  1157. void Variant::_clear_internal() {
  1158. switch (type) {
  1159. case STRING: {
  1160. reinterpret_cast<String *>(_data._mem)->~String();
  1161. } break;
  1162. // Math types.
  1163. case TRANSFORM2D: {
  1164. if (_data._transform2d) {
  1165. _data._transform2d->~Transform2D();
  1166. Pools::_bucket_small.free((Pools::BucketSmall *)_data._transform2d);
  1167. _data._transform2d = nullptr;
  1168. }
  1169. } break;
  1170. case AABB: {
  1171. if (_data._aabb) {
  1172. _data._aabb->~AABB();
  1173. Pools::_bucket_small.free((Pools::BucketSmall *)_data._aabb);
  1174. _data._aabb = nullptr;
  1175. }
  1176. } break;
  1177. case BASIS: {
  1178. if (_data._basis) {
  1179. _data._basis->~Basis();
  1180. Pools::_bucket_medium.free((Pools::BucketMedium *)_data._basis);
  1181. _data._basis = nullptr;
  1182. }
  1183. } break;
  1184. case TRANSFORM3D: {
  1185. if (_data._transform3d) {
  1186. _data._transform3d->~Transform3D();
  1187. Pools::_bucket_medium.free((Pools::BucketMedium *)_data._transform3d);
  1188. _data._transform3d = nullptr;
  1189. }
  1190. } break;
  1191. case PROJECTION: {
  1192. if (_data._projection) {
  1193. _data._projection->~Projection();
  1194. Pools::_bucket_large.free((Pools::BucketLarge *)_data._projection);
  1195. _data._projection = nullptr;
  1196. }
  1197. } break;
  1198. // Miscellaneous types.
  1199. case STRING_NAME: {
  1200. reinterpret_cast<StringName *>(_data._mem)->~StringName();
  1201. } break;
  1202. case NODE_PATH: {
  1203. reinterpret_cast<NodePath *>(_data._mem)->~NodePath();
  1204. } break;
  1205. case OBJECT: {
  1206. if (_get_obj().id.is_ref_counted()) {
  1207. // We are safe that there is a reference here.
  1208. RefCounted *ref_counted = static_cast<RefCounted *>(_get_obj().obj);
  1209. if (ref_counted->unreference()) {
  1210. memdelete(ref_counted);
  1211. }
  1212. }
  1213. _get_obj().obj = nullptr;
  1214. _get_obj().id = ObjectID();
  1215. } break;
  1216. case RID: {
  1217. // Not much need probably.
  1218. // HACK: Can't seem to use destructor + scoping operator, so hack.
  1219. typedef ::RID RID_Class;
  1220. reinterpret_cast<RID_Class *>(_data._mem)->~RID_Class();
  1221. } break;
  1222. case CALLABLE: {
  1223. reinterpret_cast<Callable *>(_data._mem)->~Callable();
  1224. } break;
  1225. case SIGNAL: {
  1226. reinterpret_cast<Signal *>(_data._mem)->~Signal();
  1227. } break;
  1228. case DICTIONARY: {
  1229. reinterpret_cast<Dictionary *>(_data._mem)->~Dictionary();
  1230. } break;
  1231. case ARRAY: {
  1232. reinterpret_cast<Array *>(_data._mem)->~Array();
  1233. } break;
  1234. // Arrays.
  1235. case PACKED_BYTE_ARRAY: {
  1236. PackedArrayRefBase::destroy(_data.packed_array);
  1237. } break;
  1238. case PACKED_INT32_ARRAY: {
  1239. PackedArrayRefBase::destroy(_data.packed_array);
  1240. } break;
  1241. case PACKED_INT64_ARRAY: {
  1242. PackedArrayRefBase::destroy(_data.packed_array);
  1243. } break;
  1244. case PACKED_FLOAT32_ARRAY: {
  1245. PackedArrayRefBase::destroy(_data.packed_array);
  1246. } break;
  1247. case PACKED_FLOAT64_ARRAY: {
  1248. PackedArrayRefBase::destroy(_data.packed_array);
  1249. } break;
  1250. case PACKED_STRING_ARRAY: {
  1251. PackedArrayRefBase::destroy(_data.packed_array);
  1252. } break;
  1253. case PACKED_VECTOR2_ARRAY: {
  1254. PackedArrayRefBase::destroy(_data.packed_array);
  1255. } break;
  1256. case PACKED_VECTOR3_ARRAY: {
  1257. PackedArrayRefBase::destroy(_data.packed_array);
  1258. } break;
  1259. case PACKED_COLOR_ARRAY: {
  1260. PackedArrayRefBase::destroy(_data.packed_array);
  1261. } break;
  1262. default: {
  1263. // Not needed, there is no point. The following do not allocate memory:
  1264. // VECTOR2, VECTOR3, RECT2, PLANE, QUATERNION, COLOR.
  1265. }
  1266. }
  1267. }
  1268. Variant::operator int64_t() const {
  1269. switch (type) {
  1270. case NIL:
  1271. return 0;
  1272. case BOOL:
  1273. return _data._bool ? 1 : 0;
  1274. case INT:
  1275. return _data._int;
  1276. case FLOAT:
  1277. return _data._float;
  1278. case STRING:
  1279. return operator String().to_int();
  1280. default: {
  1281. return 0;
  1282. }
  1283. }
  1284. }
  1285. Variant::operator int32_t() const {
  1286. switch (type) {
  1287. case NIL:
  1288. return 0;
  1289. case BOOL:
  1290. return _data._bool ? 1 : 0;
  1291. case INT:
  1292. return _data._int;
  1293. case FLOAT:
  1294. return _data._float;
  1295. case STRING:
  1296. return operator String().to_int();
  1297. default: {
  1298. return 0;
  1299. }
  1300. }
  1301. }
  1302. Variant::operator int16_t() const {
  1303. switch (type) {
  1304. case NIL:
  1305. return 0;
  1306. case BOOL:
  1307. return _data._bool ? 1 : 0;
  1308. case INT:
  1309. return _data._int;
  1310. case FLOAT:
  1311. return _data._float;
  1312. case STRING:
  1313. return operator String().to_int();
  1314. default: {
  1315. return 0;
  1316. }
  1317. }
  1318. }
  1319. Variant::operator int8_t() const {
  1320. switch (type) {
  1321. case NIL:
  1322. return 0;
  1323. case BOOL:
  1324. return _data._bool ? 1 : 0;
  1325. case INT:
  1326. return _data._int;
  1327. case FLOAT:
  1328. return _data._float;
  1329. case STRING:
  1330. return operator String().to_int();
  1331. default: {
  1332. return 0;
  1333. }
  1334. }
  1335. }
  1336. Variant::operator uint64_t() const {
  1337. switch (type) {
  1338. case NIL:
  1339. return 0;
  1340. case BOOL:
  1341. return _data._bool ? 1 : 0;
  1342. case INT:
  1343. return _data._int;
  1344. case FLOAT:
  1345. return _data._float;
  1346. case STRING:
  1347. return operator String().to_int();
  1348. default: {
  1349. return 0;
  1350. }
  1351. }
  1352. }
  1353. Variant::operator uint32_t() const {
  1354. switch (type) {
  1355. case NIL:
  1356. return 0;
  1357. case BOOL:
  1358. return _data._bool ? 1 : 0;
  1359. case INT:
  1360. return _data._int;
  1361. case FLOAT:
  1362. return _data._float;
  1363. case STRING:
  1364. return operator String().to_int();
  1365. default: {
  1366. return 0;
  1367. }
  1368. }
  1369. }
  1370. Variant::operator uint16_t() const {
  1371. switch (type) {
  1372. case NIL:
  1373. return 0;
  1374. case BOOL:
  1375. return _data._bool ? 1 : 0;
  1376. case INT:
  1377. return _data._int;
  1378. case FLOAT:
  1379. return _data._float;
  1380. case STRING:
  1381. return operator String().to_int();
  1382. default: {
  1383. return 0;
  1384. }
  1385. }
  1386. }
  1387. Variant::operator uint8_t() const {
  1388. switch (type) {
  1389. case NIL:
  1390. return 0;
  1391. case BOOL:
  1392. return _data._bool ? 1 : 0;
  1393. case INT:
  1394. return _data._int;
  1395. case FLOAT:
  1396. return _data._float;
  1397. case STRING:
  1398. return operator String().to_int();
  1399. default: {
  1400. return 0;
  1401. }
  1402. }
  1403. }
  1404. Variant::operator ObjectID() const {
  1405. if (type == INT) {
  1406. return ObjectID(_data._int);
  1407. } else if (type == OBJECT) {
  1408. return _get_obj().id;
  1409. } else {
  1410. return ObjectID();
  1411. }
  1412. }
  1413. Variant::operator char32_t() const {
  1414. return operator uint32_t();
  1415. }
  1416. Variant::operator float() const {
  1417. switch (type) {
  1418. case NIL:
  1419. return 0;
  1420. case BOOL:
  1421. return _data._bool ? 1.0 : 0.0;
  1422. case INT:
  1423. return (float)_data._int;
  1424. case FLOAT:
  1425. return _data._float;
  1426. case STRING:
  1427. return operator String().to_float();
  1428. default: {
  1429. return 0;
  1430. }
  1431. }
  1432. }
  1433. Variant::operator double() const {
  1434. switch (type) {
  1435. case NIL:
  1436. return 0;
  1437. case BOOL:
  1438. return _data._bool ? 1.0 : 0.0;
  1439. case INT:
  1440. return (double)_data._int;
  1441. case FLOAT:
  1442. return _data._float;
  1443. case STRING:
  1444. return operator String().to_float();
  1445. default: {
  1446. return 0;
  1447. }
  1448. }
  1449. }
  1450. Variant::operator StringName() const {
  1451. if (type == STRING_NAME) {
  1452. return *reinterpret_cast<const StringName *>(_data._mem);
  1453. } else if (type == STRING) {
  1454. return *reinterpret_cast<const String *>(_data._mem);
  1455. }
  1456. return StringName();
  1457. }
  1458. struct _VariantStrPair {
  1459. String key;
  1460. String value;
  1461. bool operator<(const _VariantStrPair &p) const {
  1462. return key < p.key;
  1463. }
  1464. };
  1465. Variant::operator String() const {
  1466. return stringify(0);
  1467. }
  1468. String stringify_variant_clean(const Variant &p_variant, int recursion_count) {
  1469. String s = p_variant.stringify(recursion_count);
  1470. // Wrap strings in quotes to avoid ambiguity.
  1471. switch (p_variant.get_type()) {
  1472. case Variant::STRING: {
  1473. s = s.c_escape().quote();
  1474. } break;
  1475. case Variant::STRING_NAME: {
  1476. s = "&" + s.c_escape().quote();
  1477. } break;
  1478. case Variant::NODE_PATH: {
  1479. s = "^" + s.c_escape().quote();
  1480. } break;
  1481. default: {
  1482. } break;
  1483. }
  1484. return s;
  1485. }
  1486. template <typename T>
  1487. String stringify_vector(const T &vec, int recursion_count) {
  1488. String str("[");
  1489. for (int i = 0; i < vec.size(); i++) {
  1490. if (i > 0) {
  1491. str += ", ";
  1492. }
  1493. str += stringify_variant_clean(vec[i], recursion_count);
  1494. }
  1495. str += "]";
  1496. return str;
  1497. }
  1498. String Variant::stringify(int recursion_count) const {
  1499. switch (type) {
  1500. case NIL:
  1501. return "<null>";
  1502. case BOOL:
  1503. return _data._bool ? "true" : "false";
  1504. case INT:
  1505. return itos(_data._int);
  1506. case FLOAT:
  1507. return rtos(_data._float);
  1508. case STRING:
  1509. return *reinterpret_cast<const String *>(_data._mem);
  1510. case VECTOR2:
  1511. return operator Vector2();
  1512. case VECTOR2I:
  1513. return operator Vector2i();
  1514. case RECT2:
  1515. return operator Rect2();
  1516. case RECT2I:
  1517. return operator Rect2i();
  1518. case TRANSFORM2D:
  1519. return operator Transform2D();
  1520. case VECTOR3:
  1521. return operator Vector3();
  1522. case VECTOR3I:
  1523. return operator Vector3i();
  1524. case VECTOR4:
  1525. return operator Vector4();
  1526. case VECTOR4I:
  1527. return operator Vector4i();
  1528. case PLANE:
  1529. return operator Plane();
  1530. case AABB:
  1531. return operator ::AABB();
  1532. case QUATERNION:
  1533. return operator Quaternion();
  1534. case BASIS:
  1535. return operator Basis();
  1536. case TRANSFORM3D:
  1537. return operator Transform3D();
  1538. case PROJECTION:
  1539. return operator Projection();
  1540. case STRING_NAME:
  1541. return operator StringName();
  1542. case NODE_PATH:
  1543. return operator NodePath();
  1544. case COLOR:
  1545. return operator Color();
  1546. case DICTIONARY: {
  1547. ERR_FAIL_COND_V_MSG(recursion_count > MAX_RECURSION, "{ ... }", "Maximum dictionary recursion reached!");
  1548. recursion_count++;
  1549. const Dictionary &d = *reinterpret_cast<const Dictionary *>(_data._mem);
  1550. // Add leading and trailing space to Dictionary printing. This distinguishes it
  1551. // from array printing on fonts that have similar-looking {} and [] characters.
  1552. String str("{ ");
  1553. List<Variant> keys;
  1554. d.get_key_list(&keys);
  1555. Vector<_VariantStrPair> pairs;
  1556. for (List<Variant>::Element *E = keys.front(); E; E = E->next()) {
  1557. _VariantStrPair sp;
  1558. sp.key = stringify_variant_clean(E->get(), recursion_count);
  1559. sp.value = stringify_variant_clean(d[E->get()], recursion_count);
  1560. pairs.push_back(sp);
  1561. }
  1562. for (int i = 0; i < pairs.size(); i++) {
  1563. if (i > 0) {
  1564. str += ", ";
  1565. }
  1566. str += pairs[i].key + ": " + pairs[i].value;
  1567. }
  1568. str += " }";
  1569. return str;
  1570. }
  1571. // Packed arrays cannot contain recursive structures, the recursion_count increment is not needed.
  1572. case PACKED_VECTOR2_ARRAY: {
  1573. return stringify_vector(operator PackedVector2Array(), recursion_count);
  1574. }
  1575. case PACKED_VECTOR3_ARRAY: {
  1576. return stringify_vector(operator PackedVector3Array(), recursion_count);
  1577. }
  1578. case PACKED_COLOR_ARRAY: {
  1579. return stringify_vector(operator PackedColorArray(), recursion_count);
  1580. }
  1581. case PACKED_STRING_ARRAY: {
  1582. return stringify_vector(operator PackedStringArray(), recursion_count);
  1583. }
  1584. case PACKED_BYTE_ARRAY: {
  1585. return stringify_vector(operator PackedByteArray(), recursion_count);
  1586. }
  1587. case PACKED_INT32_ARRAY: {
  1588. return stringify_vector(operator PackedInt32Array(), recursion_count);
  1589. }
  1590. case PACKED_INT64_ARRAY: {
  1591. return stringify_vector(operator PackedInt64Array(), recursion_count);
  1592. }
  1593. case PACKED_FLOAT32_ARRAY: {
  1594. return stringify_vector(operator PackedFloat32Array(), recursion_count);
  1595. }
  1596. case PACKED_FLOAT64_ARRAY: {
  1597. return stringify_vector(operator PackedFloat64Array(), recursion_count);
  1598. }
  1599. case ARRAY: {
  1600. ERR_FAIL_COND_V_MSG(recursion_count > MAX_RECURSION, "[...]", "Maximum array recursion reached!");
  1601. recursion_count++;
  1602. return stringify_vector(operator Array(), recursion_count);
  1603. }
  1604. case OBJECT: {
  1605. if (_get_obj().obj) {
  1606. if (!_get_obj().id.is_ref_counted() && ObjectDB::get_instance(_get_obj().id) == nullptr) {
  1607. return "<Freed Object>";
  1608. }
  1609. return _get_obj().obj->to_string();
  1610. } else {
  1611. return "<Object#null>";
  1612. }
  1613. }
  1614. case CALLABLE: {
  1615. const Callable &c = *reinterpret_cast<const Callable *>(_data._mem);
  1616. return c;
  1617. }
  1618. case SIGNAL: {
  1619. const Signal &s = *reinterpret_cast<const Signal *>(_data._mem);
  1620. return s;
  1621. }
  1622. case RID: {
  1623. const ::RID &s = *reinterpret_cast<const ::RID *>(_data._mem);
  1624. return "RID(" + itos(s.get_id()) + ")";
  1625. }
  1626. default: {
  1627. return "<" + get_type_name(type) + ">";
  1628. }
  1629. }
  1630. }
  1631. String Variant::to_json_string() const {
  1632. return JSON::stringify(*this);
  1633. }
  1634. Variant::operator Vector2() const {
  1635. if (type == VECTOR2) {
  1636. return *reinterpret_cast<const Vector2 *>(_data._mem);
  1637. } else if (type == VECTOR2I) {
  1638. return *reinterpret_cast<const Vector2i *>(_data._mem);
  1639. } else if (type == VECTOR3) {
  1640. return Vector2(reinterpret_cast<const Vector3 *>(_data._mem)->x, reinterpret_cast<const Vector3 *>(_data._mem)->y);
  1641. } else if (type == VECTOR3I) {
  1642. return Vector2(reinterpret_cast<const Vector3i *>(_data._mem)->x, reinterpret_cast<const Vector3i *>(_data._mem)->y);
  1643. } else if (type == VECTOR4) {
  1644. return Vector2(reinterpret_cast<const Vector4 *>(_data._mem)->x, reinterpret_cast<const Vector4 *>(_data._mem)->y);
  1645. } else if (type == VECTOR4I) {
  1646. return Vector2(reinterpret_cast<const Vector4i *>(_data._mem)->x, reinterpret_cast<const Vector4i *>(_data._mem)->y);
  1647. } else {
  1648. return Vector2();
  1649. }
  1650. }
  1651. Variant::operator Vector2i() const {
  1652. if (type == VECTOR2I) {
  1653. return *reinterpret_cast<const Vector2i *>(_data._mem);
  1654. } else if (type == VECTOR2) {
  1655. return *reinterpret_cast<const Vector2 *>(_data._mem);
  1656. } else if (type == VECTOR3) {
  1657. return Vector2(reinterpret_cast<const Vector3 *>(_data._mem)->x, reinterpret_cast<const Vector3 *>(_data._mem)->y);
  1658. } else if (type == VECTOR3I) {
  1659. return Vector2(reinterpret_cast<const Vector3i *>(_data._mem)->x, reinterpret_cast<const Vector3i *>(_data._mem)->y);
  1660. } else if (type == VECTOR4) {
  1661. return Vector2(reinterpret_cast<const Vector4 *>(_data._mem)->x, reinterpret_cast<const Vector4 *>(_data._mem)->y);
  1662. } else if (type == VECTOR4I) {
  1663. return Vector2(reinterpret_cast<const Vector4i *>(_data._mem)->x, reinterpret_cast<const Vector4i *>(_data._mem)->y);
  1664. } else {
  1665. return Vector2i();
  1666. }
  1667. }
  1668. Variant::operator Rect2() const {
  1669. if (type == RECT2) {
  1670. return *reinterpret_cast<const Rect2 *>(_data._mem);
  1671. } else if (type == RECT2I) {
  1672. return *reinterpret_cast<const Rect2i *>(_data._mem);
  1673. } else {
  1674. return Rect2();
  1675. }
  1676. }
  1677. Variant::operator Rect2i() const {
  1678. if (type == RECT2I) {
  1679. return *reinterpret_cast<const Rect2i *>(_data._mem);
  1680. } else if (type == RECT2) {
  1681. return *reinterpret_cast<const Rect2 *>(_data._mem);
  1682. } else {
  1683. return Rect2i();
  1684. }
  1685. }
  1686. Variant::operator Vector3() const {
  1687. if (type == VECTOR3) {
  1688. return *reinterpret_cast<const Vector3 *>(_data._mem);
  1689. } else if (type == VECTOR3I) {
  1690. return *reinterpret_cast<const Vector3i *>(_data._mem);
  1691. } else if (type == VECTOR2) {
  1692. return Vector3(reinterpret_cast<const Vector2 *>(_data._mem)->x, reinterpret_cast<const Vector2 *>(_data._mem)->y, 0.0);
  1693. } else if (type == VECTOR2I) {
  1694. return Vector3(reinterpret_cast<const Vector2i *>(_data._mem)->x, reinterpret_cast<const Vector2i *>(_data._mem)->y, 0.0);
  1695. } else if (type == VECTOR4) {
  1696. return Vector3(reinterpret_cast<const Vector4 *>(_data._mem)->x, reinterpret_cast<const Vector4 *>(_data._mem)->y, reinterpret_cast<const Vector4 *>(_data._mem)->z);
  1697. } else if (type == VECTOR4I) {
  1698. return Vector3(reinterpret_cast<const Vector4i *>(_data._mem)->x, reinterpret_cast<const Vector4i *>(_data._mem)->y, reinterpret_cast<const Vector4i *>(_data._mem)->z);
  1699. } else {
  1700. return Vector3();
  1701. }
  1702. }
  1703. Variant::operator Vector3i() const {
  1704. if (type == VECTOR3I) {
  1705. return *reinterpret_cast<const Vector3i *>(_data._mem);
  1706. } else if (type == VECTOR3) {
  1707. return *reinterpret_cast<const Vector3 *>(_data._mem);
  1708. } else if (type == VECTOR2) {
  1709. return Vector3i(reinterpret_cast<const Vector2 *>(_data._mem)->x, reinterpret_cast<const Vector2 *>(_data._mem)->y, 0.0);
  1710. } else if (type == VECTOR2I) {
  1711. return Vector3i(reinterpret_cast<const Vector2i *>(_data._mem)->x, reinterpret_cast<const Vector2i *>(_data._mem)->y, 0.0);
  1712. } else if (type == VECTOR4) {
  1713. return Vector3i(reinterpret_cast<const Vector4 *>(_data._mem)->x, reinterpret_cast<const Vector4 *>(_data._mem)->y, reinterpret_cast<const Vector4 *>(_data._mem)->z);
  1714. } else if (type == VECTOR4I) {
  1715. return Vector3i(reinterpret_cast<const Vector4i *>(_data._mem)->x, reinterpret_cast<const Vector4i *>(_data._mem)->y, reinterpret_cast<const Vector4i *>(_data._mem)->z);
  1716. } else {
  1717. return Vector3i();
  1718. }
  1719. }
  1720. Variant::operator Vector4() const {
  1721. if (type == VECTOR4) {
  1722. return *reinterpret_cast<const Vector4 *>(_data._mem);
  1723. } else if (type == VECTOR4I) {
  1724. return *reinterpret_cast<const Vector4i *>(_data._mem);
  1725. } else if (type == VECTOR2) {
  1726. return Vector4(reinterpret_cast<const Vector2 *>(_data._mem)->x, reinterpret_cast<const Vector2 *>(_data._mem)->y, 0.0, 0.0);
  1727. } else if (type == VECTOR2I) {
  1728. return Vector4(reinterpret_cast<const Vector2i *>(_data._mem)->x, reinterpret_cast<const Vector2i *>(_data._mem)->y, 0.0, 0.0);
  1729. } else if (type == VECTOR3) {
  1730. return Vector4(reinterpret_cast<const Vector3 *>(_data._mem)->x, reinterpret_cast<const Vector3 *>(_data._mem)->y, reinterpret_cast<const Vector3 *>(_data._mem)->z, 0.0);
  1731. } else if (type == VECTOR3I) {
  1732. return Vector4(reinterpret_cast<const Vector3i *>(_data._mem)->x, reinterpret_cast<const Vector3i *>(_data._mem)->y, reinterpret_cast<const Vector3i *>(_data._mem)->z, 0.0);
  1733. } else {
  1734. return Vector4();
  1735. }
  1736. }
  1737. Variant::operator Vector4i() const {
  1738. if (type == VECTOR4I) {
  1739. return *reinterpret_cast<const Vector4i *>(_data._mem);
  1740. } else if (type == VECTOR4) {
  1741. const Vector4 &v4 = *reinterpret_cast<const Vector4 *>(_data._mem);
  1742. return Vector4i(v4.x, v4.y, v4.z, v4.w);
  1743. } else if (type == VECTOR2) {
  1744. return Vector4i(reinterpret_cast<const Vector2 *>(_data._mem)->x, reinterpret_cast<const Vector2 *>(_data._mem)->y, 0.0, 0.0);
  1745. } else if (type == VECTOR2I) {
  1746. return Vector4i(reinterpret_cast<const Vector2i *>(_data._mem)->x, reinterpret_cast<const Vector2i *>(_data._mem)->y, 0.0, 0.0);
  1747. } else if (type == VECTOR3) {
  1748. return Vector4i(reinterpret_cast<const Vector3 *>(_data._mem)->x, reinterpret_cast<const Vector3 *>(_data._mem)->y, reinterpret_cast<const Vector3 *>(_data._mem)->z, 0.0);
  1749. } else if (type == VECTOR3I) {
  1750. return Vector4i(reinterpret_cast<const Vector3i *>(_data._mem)->x, reinterpret_cast<const Vector3i *>(_data._mem)->y, reinterpret_cast<const Vector3i *>(_data._mem)->z, 0.0);
  1751. } else {
  1752. return Vector4i();
  1753. }
  1754. }
  1755. Variant::operator Plane() const {
  1756. if (type == PLANE) {
  1757. return *reinterpret_cast<const Plane *>(_data._mem);
  1758. } else {
  1759. return Plane();
  1760. }
  1761. }
  1762. Variant::operator ::AABB() const {
  1763. if (type == AABB) {
  1764. return *_data._aabb;
  1765. } else {
  1766. return ::AABB();
  1767. }
  1768. }
  1769. Variant::operator Basis() const {
  1770. if (type == BASIS) {
  1771. return *_data._basis;
  1772. } else if (type == QUATERNION) {
  1773. return *reinterpret_cast<const Quaternion *>(_data._mem);
  1774. } else if (type == TRANSFORM3D) { // unexposed in Variant::can_convert?
  1775. return _data._transform3d->basis;
  1776. } else {
  1777. return Basis();
  1778. }
  1779. }
  1780. Variant::operator Quaternion() const {
  1781. if (type == QUATERNION) {
  1782. return *reinterpret_cast<const Quaternion *>(_data._mem);
  1783. } else if (type == BASIS) {
  1784. return *_data._basis;
  1785. } else if (type == TRANSFORM3D) {
  1786. return _data._transform3d->basis;
  1787. } else {
  1788. return Quaternion();
  1789. }
  1790. }
  1791. Variant::operator Transform3D() const {
  1792. if (type == TRANSFORM3D) {
  1793. return *_data._transform3d;
  1794. } else if (type == BASIS) {
  1795. return Transform3D(*_data._basis, Vector3());
  1796. } else if (type == QUATERNION) {
  1797. return Transform3D(Basis(*reinterpret_cast<const Quaternion *>(_data._mem)), Vector3());
  1798. } else if (type == TRANSFORM2D) {
  1799. const Transform2D &t = *_data._transform2d;
  1800. Transform3D m;
  1801. m.basis.rows[0][0] = t.columns[0][0];
  1802. m.basis.rows[1][0] = t.columns[0][1];
  1803. m.basis.rows[0][1] = t.columns[1][0];
  1804. m.basis.rows[1][1] = t.columns[1][1];
  1805. m.origin[0] = t.columns[2][0];
  1806. m.origin[1] = t.columns[2][1];
  1807. return m;
  1808. } else if (type == PROJECTION) {
  1809. return *_data._projection;
  1810. } else {
  1811. return Transform3D();
  1812. }
  1813. }
  1814. Variant::operator Projection() const {
  1815. if (type == TRANSFORM3D) {
  1816. return *_data._transform3d;
  1817. } else if (type == BASIS) {
  1818. return Transform3D(*_data._basis, Vector3());
  1819. } else if (type == QUATERNION) {
  1820. return Transform3D(Basis(*reinterpret_cast<const Quaternion *>(_data._mem)), Vector3());
  1821. } else if (type == TRANSFORM2D) {
  1822. const Transform2D &t = *_data._transform2d;
  1823. Transform3D m;
  1824. m.basis.rows[0][0] = t.columns[0][0];
  1825. m.basis.rows[1][0] = t.columns[0][1];
  1826. m.basis.rows[0][1] = t.columns[1][0];
  1827. m.basis.rows[1][1] = t.columns[1][1];
  1828. m.origin[0] = t.columns[2][0];
  1829. m.origin[1] = t.columns[2][1];
  1830. return m;
  1831. } else if (type == PROJECTION) {
  1832. return *_data._projection;
  1833. } else {
  1834. return Projection();
  1835. }
  1836. }
  1837. Variant::operator Transform2D() const {
  1838. if (type == TRANSFORM2D) {
  1839. return *_data._transform2d;
  1840. } else if (type == TRANSFORM3D) {
  1841. const Transform3D &t = *_data._transform3d;
  1842. Transform2D m;
  1843. m.columns[0][0] = t.basis.rows[0][0];
  1844. m.columns[0][1] = t.basis.rows[1][0];
  1845. m.columns[1][0] = t.basis.rows[0][1];
  1846. m.columns[1][1] = t.basis.rows[1][1];
  1847. m.columns[2][0] = t.origin[0];
  1848. m.columns[2][1] = t.origin[1];
  1849. return m;
  1850. } else {
  1851. return Transform2D();
  1852. }
  1853. }
  1854. Variant::operator Color() const {
  1855. if (type == COLOR) {
  1856. return *reinterpret_cast<const Color *>(_data._mem);
  1857. } else if (type == STRING) {
  1858. return Color(operator String());
  1859. } else if (type == INT) {
  1860. return Color::hex(operator int());
  1861. } else {
  1862. return Color();
  1863. }
  1864. }
  1865. Variant::operator NodePath() const {
  1866. if (type == NODE_PATH) {
  1867. return *reinterpret_cast<const NodePath *>(_data._mem);
  1868. } else if (type == STRING) {
  1869. return NodePath(operator String());
  1870. } else {
  1871. return NodePath();
  1872. }
  1873. }
  1874. Variant::operator ::RID() const {
  1875. if (type == RID) {
  1876. return *reinterpret_cast<const ::RID *>(_data._mem);
  1877. } else if (type == OBJECT && _get_obj().obj == nullptr) {
  1878. return ::RID();
  1879. } else if (type == OBJECT && _get_obj().obj) {
  1880. #ifdef DEBUG_ENABLED
  1881. if (EngineDebugger::is_active()) {
  1882. ERR_FAIL_NULL_V_MSG(ObjectDB::get_instance(_get_obj().id), ::RID(), "Invalid pointer (object was freed).");
  1883. }
  1884. #endif
  1885. Callable::CallError ce;
  1886. Variant ret = _get_obj().obj->callp(CoreStringNames::get_singleton()->get_rid, nullptr, 0, ce);
  1887. if (ce.error == Callable::CallError::CALL_OK && ret.get_type() == Variant::RID) {
  1888. return ret;
  1889. }
  1890. return ::RID();
  1891. } else {
  1892. return ::RID();
  1893. }
  1894. }
  1895. Variant::operator Object *() const {
  1896. if (type == OBJECT) {
  1897. return _get_obj().obj;
  1898. } else {
  1899. return nullptr;
  1900. }
  1901. }
  1902. Object *Variant::get_validated_object_with_check(bool &r_previously_freed) const {
  1903. if (type == OBJECT) {
  1904. Object *instance = ObjectDB::get_instance(_get_obj().id);
  1905. r_previously_freed = !instance && _get_obj().id != ObjectID();
  1906. return instance;
  1907. } else {
  1908. r_previously_freed = false;
  1909. return nullptr;
  1910. }
  1911. }
  1912. Object *Variant::get_validated_object() const {
  1913. if (type == OBJECT) {
  1914. return ObjectDB::get_instance(_get_obj().id);
  1915. } else {
  1916. return nullptr;
  1917. }
  1918. }
  1919. Variant::operator Dictionary() const {
  1920. if (type == DICTIONARY) {
  1921. return *reinterpret_cast<const Dictionary *>(_data._mem);
  1922. } else {
  1923. return Dictionary();
  1924. }
  1925. }
  1926. Variant::operator Callable() const {
  1927. if (type == CALLABLE) {
  1928. return *reinterpret_cast<const Callable *>(_data._mem);
  1929. } else {
  1930. return Callable();
  1931. }
  1932. }
  1933. Variant::operator Signal() const {
  1934. if (type == SIGNAL) {
  1935. return *reinterpret_cast<const Signal *>(_data._mem);
  1936. } else {
  1937. return Signal();
  1938. }
  1939. }
  1940. template <typename DA, typename SA>
  1941. inline DA _convert_array(const SA &p_array) {
  1942. DA da;
  1943. da.resize(p_array.size());
  1944. for (int i = 0; i < p_array.size(); i++) {
  1945. da.set(i, Variant(p_array.get(i)));
  1946. }
  1947. return da;
  1948. }
  1949. template <typename DA>
  1950. inline DA _convert_array_from_variant(const Variant &p_variant) {
  1951. switch (p_variant.get_type()) {
  1952. case Variant::ARRAY: {
  1953. return _convert_array<DA, Array>(p_variant.operator Array());
  1954. }
  1955. case Variant::PACKED_BYTE_ARRAY: {
  1956. return _convert_array<DA, PackedByteArray>(p_variant.operator PackedByteArray());
  1957. }
  1958. case Variant::PACKED_INT32_ARRAY: {
  1959. return _convert_array<DA, PackedInt32Array>(p_variant.operator PackedInt32Array());
  1960. }
  1961. case Variant::PACKED_INT64_ARRAY: {
  1962. return _convert_array<DA, PackedInt64Array>(p_variant.operator PackedInt64Array());
  1963. }
  1964. case Variant::PACKED_FLOAT32_ARRAY: {
  1965. return _convert_array<DA, PackedFloat32Array>(p_variant.operator PackedFloat32Array());
  1966. }
  1967. case Variant::PACKED_FLOAT64_ARRAY: {
  1968. return _convert_array<DA, PackedFloat64Array>(p_variant.operator PackedFloat64Array());
  1969. }
  1970. case Variant::PACKED_STRING_ARRAY: {
  1971. return _convert_array<DA, PackedStringArray>(p_variant.operator PackedStringArray());
  1972. }
  1973. case Variant::PACKED_VECTOR2_ARRAY: {
  1974. return _convert_array<DA, PackedVector2Array>(p_variant.operator PackedVector2Array());
  1975. }
  1976. case Variant::PACKED_VECTOR3_ARRAY: {
  1977. return _convert_array<DA, PackedVector3Array>(p_variant.operator PackedVector3Array());
  1978. }
  1979. case Variant::PACKED_COLOR_ARRAY: {
  1980. return _convert_array<DA, PackedColorArray>(p_variant.operator PackedColorArray());
  1981. }
  1982. default: {
  1983. return DA();
  1984. }
  1985. }
  1986. }
  1987. Variant::operator Array() const {
  1988. if (type == ARRAY) {
  1989. return *reinterpret_cast<const Array *>(_data._mem);
  1990. } else {
  1991. return _convert_array_from_variant<Array>(*this);
  1992. }
  1993. }
  1994. Variant::operator PackedByteArray() const {
  1995. if (type == PACKED_BYTE_ARRAY) {
  1996. return static_cast<PackedArrayRef<uint8_t> *>(_data.packed_array)->array;
  1997. } else {
  1998. return _convert_array_from_variant<PackedByteArray>(*this);
  1999. }
  2000. }
  2001. Variant::operator PackedInt32Array() const {
  2002. if (type == PACKED_INT32_ARRAY) {
  2003. return static_cast<PackedArrayRef<int32_t> *>(_data.packed_array)->array;
  2004. } else {
  2005. return _convert_array_from_variant<PackedInt32Array>(*this);
  2006. }
  2007. }
  2008. Variant::operator PackedInt64Array() const {
  2009. if (type == PACKED_INT64_ARRAY) {
  2010. return static_cast<PackedArrayRef<int64_t> *>(_data.packed_array)->array;
  2011. } else {
  2012. return _convert_array_from_variant<PackedInt64Array>(*this);
  2013. }
  2014. }
  2015. Variant::operator PackedFloat32Array() const {
  2016. if (type == PACKED_FLOAT32_ARRAY) {
  2017. return static_cast<PackedArrayRef<float> *>(_data.packed_array)->array;
  2018. } else {
  2019. return _convert_array_from_variant<PackedFloat32Array>(*this);
  2020. }
  2021. }
  2022. Variant::operator PackedFloat64Array() const {
  2023. if (type == PACKED_FLOAT64_ARRAY) {
  2024. return static_cast<PackedArrayRef<double> *>(_data.packed_array)->array;
  2025. } else {
  2026. return _convert_array_from_variant<PackedFloat64Array>(*this);
  2027. }
  2028. }
  2029. Variant::operator PackedStringArray() const {
  2030. if (type == PACKED_STRING_ARRAY) {
  2031. return static_cast<PackedArrayRef<String> *>(_data.packed_array)->array;
  2032. } else {
  2033. return _convert_array_from_variant<PackedStringArray>(*this);
  2034. }
  2035. }
  2036. Variant::operator PackedVector2Array() const {
  2037. if (type == PACKED_VECTOR2_ARRAY) {
  2038. return static_cast<PackedArrayRef<Vector2> *>(_data.packed_array)->array;
  2039. } else {
  2040. return _convert_array_from_variant<PackedVector2Array>(*this);
  2041. }
  2042. }
  2043. Variant::operator PackedVector3Array() const {
  2044. if (type == PACKED_VECTOR3_ARRAY) {
  2045. return static_cast<PackedArrayRef<Vector3> *>(_data.packed_array)->array;
  2046. } else {
  2047. return _convert_array_from_variant<PackedVector3Array>(*this);
  2048. }
  2049. }
  2050. Variant::operator PackedColorArray() const {
  2051. if (type == PACKED_COLOR_ARRAY) {
  2052. return static_cast<PackedArrayRef<Color> *>(_data.packed_array)->array;
  2053. } else {
  2054. return _convert_array_from_variant<PackedColorArray>(*this);
  2055. }
  2056. }
  2057. /* helpers */
  2058. Variant::operator Vector<::RID>() const {
  2059. Array va = operator Array();
  2060. Vector<::RID> rids;
  2061. rids.resize(va.size());
  2062. for (int i = 0; i < rids.size(); i++) {
  2063. rids.write[i] = va[i];
  2064. }
  2065. return rids;
  2066. }
  2067. Variant::operator Vector<Plane>() const {
  2068. Array va = operator Array();
  2069. Vector<Plane> planes;
  2070. int va_size = va.size();
  2071. if (va_size == 0) {
  2072. return planes;
  2073. }
  2074. planes.resize(va_size);
  2075. Plane *w = planes.ptrw();
  2076. for (int i = 0; i < va_size; i++) {
  2077. w[i] = va[i];
  2078. }
  2079. return planes;
  2080. }
  2081. Variant::operator Vector<Face3>() const {
  2082. PackedVector3Array va = operator PackedVector3Array();
  2083. Vector<Face3> faces;
  2084. int va_size = va.size();
  2085. if (va_size == 0) {
  2086. return faces;
  2087. }
  2088. faces.resize(va_size / 3);
  2089. Face3 *w = faces.ptrw();
  2090. const Vector3 *r = va.ptr();
  2091. for (int i = 0; i < va_size; i++) {
  2092. w[i / 3].vertex[i % 3] = r[i];
  2093. }
  2094. return faces;
  2095. }
  2096. Variant::operator Vector<Variant>() const {
  2097. Array va = operator Array();
  2098. Vector<Variant> variants;
  2099. int va_size = va.size();
  2100. if (va_size == 0) {
  2101. return variants;
  2102. }
  2103. variants.resize(va_size);
  2104. Variant *w = variants.ptrw();
  2105. for (int i = 0; i < va_size; i++) {
  2106. w[i] = va[i];
  2107. }
  2108. return variants;
  2109. }
  2110. Variant::operator Vector<StringName>() const {
  2111. PackedStringArray from = operator PackedStringArray();
  2112. Vector<StringName> to;
  2113. int len = from.size();
  2114. to.resize(len);
  2115. for (int i = 0; i < len; i++) {
  2116. to.write[i] = from[i];
  2117. }
  2118. return to;
  2119. }
  2120. Variant::operator Side() const {
  2121. return (Side) operator int();
  2122. }
  2123. Variant::operator Orientation() const {
  2124. return (Orientation) operator int();
  2125. }
  2126. Variant::operator IPAddress() const {
  2127. if (type == PACKED_FLOAT32_ARRAY || type == PACKED_INT32_ARRAY || type == PACKED_FLOAT64_ARRAY || type == PACKED_INT64_ARRAY || type == PACKED_BYTE_ARRAY) {
  2128. Vector<int> addr = operator Vector<int>();
  2129. if (addr.size() == 4) {
  2130. return IPAddress(addr.get(0), addr.get(1), addr.get(2), addr.get(3));
  2131. }
  2132. }
  2133. return IPAddress(operator String());
  2134. }
  2135. Variant::Variant(bool p_bool) :
  2136. type(BOOL) {
  2137. _data._bool = p_bool;
  2138. }
  2139. Variant::Variant(int64_t p_int64) :
  2140. type(INT) {
  2141. _data._int = p_int64;
  2142. }
  2143. Variant::Variant(int32_t p_int32) :
  2144. type(INT) {
  2145. _data._int = p_int32;
  2146. }
  2147. Variant::Variant(int16_t p_int16) :
  2148. type(INT) {
  2149. _data._int = p_int16;
  2150. }
  2151. Variant::Variant(int8_t p_int8) :
  2152. type(INT) {
  2153. _data._int = p_int8;
  2154. }
  2155. Variant::Variant(uint64_t p_uint64) :
  2156. type(INT) {
  2157. _data._int = p_uint64;
  2158. }
  2159. Variant::Variant(uint32_t p_uint32) :
  2160. type(INT) {
  2161. _data._int = p_uint32;
  2162. }
  2163. Variant::Variant(uint16_t p_uint16) :
  2164. type(INT) {
  2165. _data._int = p_uint16;
  2166. }
  2167. Variant::Variant(uint8_t p_uint8) :
  2168. type(INT) {
  2169. _data._int = p_uint8;
  2170. }
  2171. Variant::Variant(float p_float) :
  2172. type(FLOAT) {
  2173. _data._float = p_float;
  2174. }
  2175. Variant::Variant(double p_double) :
  2176. type(FLOAT) {
  2177. _data._float = p_double;
  2178. }
  2179. Variant::Variant(const ObjectID &p_id) :
  2180. type(INT) {
  2181. _data._int = p_id;
  2182. }
  2183. Variant::Variant(const StringName &p_string) :
  2184. type(STRING_NAME) {
  2185. memnew_placement(_data._mem, StringName(p_string));
  2186. }
  2187. Variant::Variant(const String &p_string) :
  2188. type(STRING) {
  2189. memnew_placement(_data._mem, String(p_string));
  2190. }
  2191. Variant::Variant(const char *const p_cstring) :
  2192. type(STRING) {
  2193. memnew_placement(_data._mem, String((const char *)p_cstring));
  2194. }
  2195. Variant::Variant(const char32_t *p_wstring) :
  2196. type(STRING) {
  2197. memnew_placement(_data._mem, String(p_wstring));
  2198. }
  2199. Variant::Variant(const Vector3 &p_vector3) :
  2200. type(VECTOR3) {
  2201. memnew_placement(_data._mem, Vector3(p_vector3));
  2202. }
  2203. Variant::Variant(const Vector3i &p_vector3i) :
  2204. type(VECTOR3I) {
  2205. memnew_placement(_data._mem, Vector3i(p_vector3i));
  2206. }
  2207. Variant::Variant(const Vector4 &p_vector4) :
  2208. type(VECTOR4) {
  2209. memnew_placement(_data._mem, Vector4(p_vector4));
  2210. }
  2211. Variant::Variant(const Vector4i &p_vector4i) :
  2212. type(VECTOR4I) {
  2213. memnew_placement(_data._mem, Vector4i(p_vector4i));
  2214. }
  2215. Variant::Variant(const Vector2 &p_vector2) :
  2216. type(VECTOR2) {
  2217. memnew_placement(_data._mem, Vector2(p_vector2));
  2218. }
  2219. Variant::Variant(const Vector2i &p_vector2i) :
  2220. type(VECTOR2I) {
  2221. memnew_placement(_data._mem, Vector2i(p_vector2i));
  2222. }
  2223. Variant::Variant(const Rect2 &p_rect2) :
  2224. type(RECT2) {
  2225. memnew_placement(_data._mem, Rect2(p_rect2));
  2226. }
  2227. Variant::Variant(const Rect2i &p_rect2i) :
  2228. type(RECT2I) {
  2229. memnew_placement(_data._mem, Rect2i(p_rect2i));
  2230. }
  2231. Variant::Variant(const Plane &p_plane) :
  2232. type(PLANE) {
  2233. memnew_placement(_data._mem, Plane(p_plane));
  2234. }
  2235. Variant::Variant(const ::AABB &p_aabb) :
  2236. type(AABB) {
  2237. _data._aabb = (::AABB *)Pools::_bucket_small.alloc();
  2238. memnew_placement(_data._aabb, ::AABB(p_aabb));
  2239. }
  2240. Variant::Variant(const Basis &p_matrix) :
  2241. type(BASIS) {
  2242. _data._basis = (Basis *)Pools::_bucket_medium.alloc();
  2243. memnew_placement(_data._basis, Basis(p_matrix));
  2244. }
  2245. Variant::Variant(const Quaternion &p_quaternion) :
  2246. type(QUATERNION) {
  2247. memnew_placement(_data._mem, Quaternion(p_quaternion));
  2248. }
  2249. Variant::Variant(const Transform3D &p_transform) :
  2250. type(TRANSFORM3D) {
  2251. _data._transform3d = (Transform3D *)Pools::_bucket_medium.alloc();
  2252. memnew_placement(_data._transform3d, Transform3D(p_transform));
  2253. }
  2254. Variant::Variant(const Projection &pp_projection) :
  2255. type(PROJECTION) {
  2256. _data._projection = (Projection *)Pools::_bucket_large.alloc();
  2257. memnew_placement(_data._projection, Projection(pp_projection));
  2258. }
  2259. Variant::Variant(const Transform2D &p_transform) :
  2260. type(TRANSFORM2D) {
  2261. _data._transform2d = (Transform2D *)Pools::_bucket_small.alloc();
  2262. memnew_placement(_data._transform2d, Transform2D(p_transform));
  2263. }
  2264. Variant::Variant(const Color &p_color) :
  2265. type(COLOR) {
  2266. memnew_placement(_data._mem, Color(p_color));
  2267. }
  2268. Variant::Variant(const NodePath &p_node_path) :
  2269. type(NODE_PATH) {
  2270. memnew_placement(_data._mem, NodePath(p_node_path));
  2271. }
  2272. Variant::Variant(const ::RID &p_rid) :
  2273. type(RID) {
  2274. memnew_placement(_data._mem, ::RID(p_rid));
  2275. }
  2276. Variant::Variant(const Object *p_object) :
  2277. type(OBJECT) {
  2278. memnew_placement(_data._mem, ObjData);
  2279. if (p_object) {
  2280. if (p_object->is_ref_counted()) {
  2281. RefCounted *ref_counted = const_cast<RefCounted *>(static_cast<const RefCounted *>(p_object));
  2282. if (!ref_counted->init_ref()) {
  2283. _get_obj().obj = nullptr;
  2284. _get_obj().id = ObjectID();
  2285. return;
  2286. }
  2287. }
  2288. _get_obj().obj = const_cast<Object *>(p_object);
  2289. _get_obj().id = p_object->get_instance_id();
  2290. } else {
  2291. _get_obj().obj = nullptr;
  2292. _get_obj().id = ObjectID();
  2293. }
  2294. }
  2295. Variant::Variant(const Callable &p_callable) :
  2296. type(CALLABLE) {
  2297. memnew_placement(_data._mem, Callable(p_callable));
  2298. }
  2299. Variant::Variant(const Signal &p_callable) :
  2300. type(SIGNAL) {
  2301. memnew_placement(_data._mem, Signal(p_callable));
  2302. }
  2303. Variant::Variant(const Dictionary &p_dictionary) :
  2304. type(DICTIONARY) {
  2305. memnew_placement(_data._mem, Dictionary(p_dictionary));
  2306. }
  2307. Variant::Variant(const Array &p_array) :
  2308. type(ARRAY) {
  2309. memnew_placement(_data._mem, Array(p_array));
  2310. }
  2311. Variant::Variant(const PackedByteArray &p_byte_array) :
  2312. type(PACKED_BYTE_ARRAY) {
  2313. _data.packed_array = PackedArrayRef<uint8_t>::create(p_byte_array);
  2314. }
  2315. Variant::Variant(const PackedInt32Array &p_int32_array) :
  2316. type(PACKED_INT32_ARRAY) {
  2317. _data.packed_array = PackedArrayRef<int32_t>::create(p_int32_array);
  2318. }
  2319. Variant::Variant(const PackedInt64Array &p_int64_array) :
  2320. type(PACKED_INT64_ARRAY) {
  2321. _data.packed_array = PackedArrayRef<int64_t>::create(p_int64_array);
  2322. }
  2323. Variant::Variant(const PackedFloat32Array &p_float32_array) :
  2324. type(PACKED_FLOAT32_ARRAY) {
  2325. _data.packed_array = PackedArrayRef<float>::create(p_float32_array);
  2326. }
  2327. Variant::Variant(const PackedFloat64Array &p_float64_array) :
  2328. type(PACKED_FLOAT64_ARRAY) {
  2329. _data.packed_array = PackedArrayRef<double>::create(p_float64_array);
  2330. }
  2331. Variant::Variant(const PackedStringArray &p_string_array) :
  2332. type(PACKED_STRING_ARRAY) {
  2333. _data.packed_array = PackedArrayRef<String>::create(p_string_array);
  2334. }
  2335. Variant::Variant(const PackedVector2Array &p_vector2_array) :
  2336. type(PACKED_VECTOR2_ARRAY) {
  2337. _data.packed_array = PackedArrayRef<Vector2>::create(p_vector2_array);
  2338. }
  2339. Variant::Variant(const PackedVector3Array &p_vector3_array) :
  2340. type(PACKED_VECTOR3_ARRAY) {
  2341. _data.packed_array = PackedArrayRef<Vector3>::create(p_vector3_array);
  2342. }
  2343. Variant::Variant(const PackedColorArray &p_color_array) :
  2344. type(PACKED_COLOR_ARRAY) {
  2345. _data.packed_array = PackedArrayRef<Color>::create(p_color_array);
  2346. }
  2347. /* helpers */
  2348. Variant::Variant(const Vector<::RID> &p_array) :
  2349. type(ARRAY) {
  2350. Array *rid_array = memnew_placement(_data._mem, Array);
  2351. rid_array->resize(p_array.size());
  2352. for (int i = 0; i < p_array.size(); i++) {
  2353. rid_array->set(i, Variant(p_array[i]));
  2354. }
  2355. }
  2356. Variant::Variant(const Vector<Plane> &p_array) :
  2357. type(ARRAY) {
  2358. Array *plane_array = memnew_placement(_data._mem, Array);
  2359. plane_array->resize(p_array.size());
  2360. for (int i = 0; i < p_array.size(); i++) {
  2361. plane_array->operator[](i) = Variant(p_array[i]);
  2362. }
  2363. }
  2364. Variant::Variant(const Vector<Face3> &p_face_array) :
  2365. type(NIL) {
  2366. PackedVector3Array vertices;
  2367. int face_count = p_face_array.size();
  2368. vertices.resize(face_count * 3);
  2369. if (face_count) {
  2370. const Face3 *r = p_face_array.ptr();
  2371. Vector3 *w = vertices.ptrw();
  2372. for (int i = 0; i < face_count; i++) {
  2373. for (int j = 0; j < 3; j++) {
  2374. w[i * 3 + j] = r[i].vertex[j];
  2375. }
  2376. }
  2377. }
  2378. *this = vertices;
  2379. }
  2380. Variant::Variant(const Vector<Variant> &p_array) :
  2381. type(NIL) {
  2382. Array arr;
  2383. arr.resize(p_array.size());
  2384. for (int i = 0; i < p_array.size(); i++) {
  2385. arr[i] = p_array[i];
  2386. }
  2387. *this = arr;
  2388. }
  2389. Variant::Variant(const Vector<StringName> &p_array) :
  2390. type(NIL) {
  2391. PackedStringArray v;
  2392. int len = p_array.size();
  2393. v.resize(len);
  2394. for (int i = 0; i < len; i++) {
  2395. v.set(i, p_array[i]);
  2396. }
  2397. *this = v;
  2398. }
  2399. void Variant::operator=(const Variant &p_variant) {
  2400. if (unlikely(this == &p_variant)) {
  2401. return;
  2402. }
  2403. if (unlikely(type != p_variant.type)) {
  2404. reference(p_variant);
  2405. return;
  2406. }
  2407. switch (p_variant.type) {
  2408. case NIL: {
  2409. // none
  2410. } break;
  2411. // atomic types
  2412. case BOOL: {
  2413. _data._bool = p_variant._data._bool;
  2414. } break;
  2415. case INT: {
  2416. _data._int = p_variant._data._int;
  2417. } break;
  2418. case FLOAT: {
  2419. _data._float = p_variant._data._float;
  2420. } break;
  2421. case STRING: {
  2422. *reinterpret_cast<String *>(_data._mem) = *reinterpret_cast<const String *>(p_variant._data._mem);
  2423. } break;
  2424. // math types
  2425. case VECTOR2: {
  2426. *reinterpret_cast<Vector2 *>(_data._mem) = *reinterpret_cast<const Vector2 *>(p_variant._data._mem);
  2427. } break;
  2428. case VECTOR2I: {
  2429. *reinterpret_cast<Vector2i *>(_data._mem) = *reinterpret_cast<const Vector2i *>(p_variant._data._mem);
  2430. } break;
  2431. case RECT2: {
  2432. *reinterpret_cast<Rect2 *>(_data._mem) = *reinterpret_cast<const Rect2 *>(p_variant._data._mem);
  2433. } break;
  2434. case RECT2I: {
  2435. *reinterpret_cast<Rect2i *>(_data._mem) = *reinterpret_cast<const Rect2i *>(p_variant._data._mem);
  2436. } break;
  2437. case TRANSFORM2D: {
  2438. *_data._transform2d = *(p_variant._data._transform2d);
  2439. } break;
  2440. case VECTOR3: {
  2441. *reinterpret_cast<Vector3 *>(_data._mem) = *reinterpret_cast<const Vector3 *>(p_variant._data._mem);
  2442. } break;
  2443. case VECTOR3I: {
  2444. *reinterpret_cast<Vector3i *>(_data._mem) = *reinterpret_cast<const Vector3i *>(p_variant._data._mem);
  2445. } break;
  2446. case VECTOR4: {
  2447. *reinterpret_cast<Vector4 *>(_data._mem) = *reinterpret_cast<const Vector4 *>(p_variant._data._mem);
  2448. } break;
  2449. case VECTOR4I: {
  2450. *reinterpret_cast<Vector4i *>(_data._mem) = *reinterpret_cast<const Vector4i *>(p_variant._data._mem);
  2451. } break;
  2452. case PLANE: {
  2453. *reinterpret_cast<Plane *>(_data._mem) = *reinterpret_cast<const Plane *>(p_variant._data._mem);
  2454. } break;
  2455. case AABB: {
  2456. *_data._aabb = *(p_variant._data._aabb);
  2457. } break;
  2458. case QUATERNION: {
  2459. *reinterpret_cast<Quaternion *>(_data._mem) = *reinterpret_cast<const Quaternion *>(p_variant._data._mem);
  2460. } break;
  2461. case BASIS: {
  2462. *_data._basis = *(p_variant._data._basis);
  2463. } break;
  2464. case TRANSFORM3D: {
  2465. *_data._transform3d = *(p_variant._data._transform3d);
  2466. } break;
  2467. case PROJECTION: {
  2468. *_data._projection = *(p_variant._data._projection);
  2469. } break;
  2470. // misc types
  2471. case COLOR: {
  2472. *reinterpret_cast<Color *>(_data._mem) = *reinterpret_cast<const Color *>(p_variant._data._mem);
  2473. } break;
  2474. case RID: {
  2475. *reinterpret_cast<::RID *>(_data._mem) = *reinterpret_cast<const ::RID *>(p_variant._data._mem);
  2476. } break;
  2477. case OBJECT: {
  2478. if (_get_obj().id.is_ref_counted()) {
  2479. //we are safe that there is a reference here
  2480. RefCounted *ref_counted = static_cast<RefCounted *>(_get_obj().obj);
  2481. if (ref_counted->unreference()) {
  2482. memdelete(ref_counted);
  2483. }
  2484. }
  2485. if (p_variant._get_obj().obj && p_variant._get_obj().id.is_ref_counted()) {
  2486. RefCounted *ref_counted = static_cast<RefCounted *>(p_variant._get_obj().obj);
  2487. if (!ref_counted->reference()) {
  2488. _get_obj().obj = nullptr;
  2489. _get_obj().id = ObjectID();
  2490. break;
  2491. }
  2492. }
  2493. _get_obj().obj = const_cast<Object *>(p_variant._get_obj().obj);
  2494. _get_obj().id = p_variant._get_obj().id;
  2495. } break;
  2496. case CALLABLE: {
  2497. *reinterpret_cast<Callable *>(_data._mem) = *reinterpret_cast<const Callable *>(p_variant._data._mem);
  2498. } break;
  2499. case SIGNAL: {
  2500. *reinterpret_cast<Signal *>(_data._mem) = *reinterpret_cast<const Signal *>(p_variant._data._mem);
  2501. } break;
  2502. case STRING_NAME: {
  2503. *reinterpret_cast<StringName *>(_data._mem) = *reinterpret_cast<const StringName *>(p_variant._data._mem);
  2504. } break;
  2505. case NODE_PATH: {
  2506. *reinterpret_cast<NodePath *>(_data._mem) = *reinterpret_cast<const NodePath *>(p_variant._data._mem);
  2507. } break;
  2508. case DICTIONARY: {
  2509. *reinterpret_cast<Dictionary *>(_data._mem) = *reinterpret_cast<const Dictionary *>(p_variant._data._mem);
  2510. } break;
  2511. case ARRAY: {
  2512. *reinterpret_cast<Array *>(_data._mem) = *reinterpret_cast<const Array *>(p_variant._data._mem);
  2513. } break;
  2514. // arrays
  2515. case PACKED_BYTE_ARRAY: {
  2516. _data.packed_array = PackedArrayRef<uint8_t>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2517. } break;
  2518. case PACKED_INT32_ARRAY: {
  2519. _data.packed_array = PackedArrayRef<int32_t>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2520. } break;
  2521. case PACKED_INT64_ARRAY: {
  2522. _data.packed_array = PackedArrayRef<int64_t>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2523. } break;
  2524. case PACKED_FLOAT32_ARRAY: {
  2525. _data.packed_array = PackedArrayRef<float>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2526. } break;
  2527. case PACKED_FLOAT64_ARRAY: {
  2528. _data.packed_array = PackedArrayRef<double>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2529. } break;
  2530. case PACKED_STRING_ARRAY: {
  2531. _data.packed_array = PackedArrayRef<String>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2532. } break;
  2533. case PACKED_VECTOR2_ARRAY: {
  2534. _data.packed_array = PackedArrayRef<Vector2>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2535. } break;
  2536. case PACKED_VECTOR3_ARRAY: {
  2537. _data.packed_array = PackedArrayRef<Vector3>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2538. } break;
  2539. case PACKED_COLOR_ARRAY: {
  2540. _data.packed_array = PackedArrayRef<Color>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2541. } break;
  2542. default: {
  2543. }
  2544. }
  2545. }
  2546. Variant::Variant(const IPAddress &p_address) :
  2547. type(STRING) {
  2548. memnew_placement(_data._mem, String(p_address));
  2549. }
  2550. Variant::Variant(const Variant &p_variant) :
  2551. type(NIL) {
  2552. reference(p_variant);
  2553. }
  2554. uint32_t Variant::hash() const {
  2555. return recursive_hash(0);
  2556. }
  2557. uint32_t Variant::recursive_hash(int recursion_count) const {
  2558. switch (type) {
  2559. case NIL: {
  2560. return 0;
  2561. } break;
  2562. case BOOL: {
  2563. return _data._bool ? 1 : 0;
  2564. } break;
  2565. case INT: {
  2566. return hash_one_uint64((uint64_t)_data._int);
  2567. } break;
  2568. case FLOAT: {
  2569. return hash_murmur3_one_double(_data._float);
  2570. } break;
  2571. case STRING: {
  2572. return reinterpret_cast<const String *>(_data._mem)->hash();
  2573. } break;
  2574. // math types
  2575. case VECTOR2: {
  2576. return HashMapHasherDefault::hash(*reinterpret_cast<const Vector2 *>(_data._mem));
  2577. } break;
  2578. case VECTOR2I: {
  2579. return HashMapHasherDefault::hash(*reinterpret_cast<const Vector2i *>(_data._mem));
  2580. } break;
  2581. case RECT2: {
  2582. return HashMapHasherDefault::hash(*reinterpret_cast<const Rect2 *>(_data._mem));
  2583. } break;
  2584. case RECT2I: {
  2585. return HashMapHasherDefault::hash(*reinterpret_cast<const Rect2i *>(_data._mem));
  2586. } break;
  2587. case TRANSFORM2D: {
  2588. uint32_t h = HASH_MURMUR3_SEED;
  2589. const Transform2D &t = *_data._transform2d;
  2590. h = hash_murmur3_one_real(t[0].x, h);
  2591. h = hash_murmur3_one_real(t[0].y, h);
  2592. h = hash_murmur3_one_real(t[1].x, h);
  2593. h = hash_murmur3_one_real(t[1].y, h);
  2594. h = hash_murmur3_one_real(t[2].x, h);
  2595. h = hash_murmur3_one_real(t[2].y, h);
  2596. return hash_fmix32(h);
  2597. } break;
  2598. case VECTOR3: {
  2599. return HashMapHasherDefault::hash(*reinterpret_cast<const Vector3 *>(_data._mem));
  2600. } break;
  2601. case VECTOR3I: {
  2602. return HashMapHasherDefault::hash(*reinterpret_cast<const Vector3i *>(_data._mem));
  2603. } break;
  2604. case VECTOR4: {
  2605. return HashMapHasherDefault::hash(*reinterpret_cast<const Vector4 *>(_data._mem));
  2606. } break;
  2607. case VECTOR4I: {
  2608. return HashMapHasherDefault::hash(*reinterpret_cast<const Vector4i *>(_data._mem));
  2609. } break;
  2610. case PLANE: {
  2611. uint32_t h = HASH_MURMUR3_SEED;
  2612. const Plane &p = *reinterpret_cast<const Plane *>(_data._mem);
  2613. h = hash_murmur3_one_real(p.normal.x, h);
  2614. h = hash_murmur3_one_real(p.normal.y, h);
  2615. h = hash_murmur3_one_real(p.normal.z, h);
  2616. h = hash_murmur3_one_real(p.d, h);
  2617. return hash_fmix32(h);
  2618. } break;
  2619. case AABB: {
  2620. return HashMapHasherDefault::hash(*_data._aabb);
  2621. } break;
  2622. case QUATERNION: {
  2623. uint32_t h = HASH_MURMUR3_SEED;
  2624. const Quaternion &q = *reinterpret_cast<const Quaternion *>(_data._mem);
  2625. h = hash_murmur3_one_real(q.x, h);
  2626. h = hash_murmur3_one_real(q.y, h);
  2627. h = hash_murmur3_one_real(q.z, h);
  2628. h = hash_murmur3_one_real(q.w, h);
  2629. return hash_fmix32(h);
  2630. } break;
  2631. case BASIS: {
  2632. uint32_t h = HASH_MURMUR3_SEED;
  2633. const Basis &b = *_data._basis;
  2634. h = hash_murmur3_one_real(b[0].x, h);
  2635. h = hash_murmur3_one_real(b[0].y, h);
  2636. h = hash_murmur3_one_real(b[0].z, h);
  2637. h = hash_murmur3_one_real(b[1].x, h);
  2638. h = hash_murmur3_one_real(b[1].y, h);
  2639. h = hash_murmur3_one_real(b[1].z, h);
  2640. h = hash_murmur3_one_real(b[2].x, h);
  2641. h = hash_murmur3_one_real(b[2].y, h);
  2642. h = hash_murmur3_one_real(b[2].z, h);
  2643. return hash_fmix32(h);
  2644. } break;
  2645. case TRANSFORM3D: {
  2646. uint32_t h = HASH_MURMUR3_SEED;
  2647. const Transform3D &t = *_data._transform3d;
  2648. h = hash_murmur3_one_real(t.basis[0].x, h);
  2649. h = hash_murmur3_one_real(t.basis[0].y, h);
  2650. h = hash_murmur3_one_real(t.basis[0].z, h);
  2651. h = hash_murmur3_one_real(t.basis[1].x, h);
  2652. h = hash_murmur3_one_real(t.basis[1].y, h);
  2653. h = hash_murmur3_one_real(t.basis[1].z, h);
  2654. h = hash_murmur3_one_real(t.basis[2].x, h);
  2655. h = hash_murmur3_one_real(t.basis[2].y, h);
  2656. h = hash_murmur3_one_real(t.basis[2].z, h);
  2657. h = hash_murmur3_one_real(t.origin.x, h);
  2658. h = hash_murmur3_one_real(t.origin.y, h);
  2659. h = hash_murmur3_one_real(t.origin.z, h);
  2660. return hash_fmix32(h);
  2661. } break;
  2662. case PROJECTION: {
  2663. uint32_t h = HASH_MURMUR3_SEED;
  2664. const Projection &t = *_data._projection;
  2665. h = hash_murmur3_one_real(t.columns[0].x, h);
  2666. h = hash_murmur3_one_real(t.columns[0].y, h);
  2667. h = hash_murmur3_one_real(t.columns[0].z, h);
  2668. h = hash_murmur3_one_real(t.columns[0].w, h);
  2669. h = hash_murmur3_one_real(t.columns[1].x, h);
  2670. h = hash_murmur3_one_real(t.columns[1].y, h);
  2671. h = hash_murmur3_one_real(t.columns[1].z, h);
  2672. h = hash_murmur3_one_real(t.columns[1].w, h);
  2673. h = hash_murmur3_one_real(t.columns[2].x, h);
  2674. h = hash_murmur3_one_real(t.columns[2].y, h);
  2675. h = hash_murmur3_one_real(t.columns[2].z, h);
  2676. h = hash_murmur3_one_real(t.columns[2].w, h);
  2677. h = hash_murmur3_one_real(t.columns[3].x, h);
  2678. h = hash_murmur3_one_real(t.columns[3].y, h);
  2679. h = hash_murmur3_one_real(t.columns[3].z, h);
  2680. h = hash_murmur3_one_real(t.columns[3].w, h);
  2681. return hash_fmix32(h);
  2682. } break;
  2683. // misc types
  2684. case COLOR: {
  2685. uint32_t h = HASH_MURMUR3_SEED;
  2686. const Color &c = *reinterpret_cast<const Color *>(_data._mem);
  2687. h = hash_murmur3_one_float(c.r, h);
  2688. h = hash_murmur3_one_float(c.g, h);
  2689. h = hash_murmur3_one_float(c.b, h);
  2690. h = hash_murmur3_one_float(c.a, h);
  2691. return hash_fmix32(h);
  2692. } break;
  2693. case RID: {
  2694. return hash_one_uint64(reinterpret_cast<const ::RID *>(_data._mem)->get_id());
  2695. } break;
  2696. case OBJECT: {
  2697. return hash_one_uint64(hash_make_uint64_t(_get_obj().obj));
  2698. } break;
  2699. case STRING_NAME: {
  2700. return reinterpret_cast<const StringName *>(_data._mem)->hash();
  2701. } break;
  2702. case NODE_PATH: {
  2703. return reinterpret_cast<const NodePath *>(_data._mem)->hash();
  2704. } break;
  2705. case DICTIONARY: {
  2706. return reinterpret_cast<const Dictionary *>(_data._mem)->recursive_hash(recursion_count);
  2707. } break;
  2708. case CALLABLE: {
  2709. return reinterpret_cast<const Callable *>(_data._mem)->hash();
  2710. } break;
  2711. case SIGNAL: {
  2712. const Signal &s = *reinterpret_cast<const Signal *>(_data._mem);
  2713. uint32_t hash = s.get_name().hash();
  2714. return hash_murmur3_one_64(s.get_object_id(), hash);
  2715. } break;
  2716. case ARRAY: {
  2717. const Array &arr = *reinterpret_cast<const Array *>(_data._mem);
  2718. return arr.recursive_hash(recursion_count);
  2719. } break;
  2720. case PACKED_BYTE_ARRAY: {
  2721. const PackedByteArray &arr = PackedArrayRef<uint8_t>::get_array(_data.packed_array);
  2722. int len = arr.size();
  2723. if (likely(len)) {
  2724. const uint8_t *r = arr.ptr();
  2725. return hash_murmur3_buffer((uint8_t *)&r[0], len);
  2726. } else {
  2727. return hash_murmur3_one_64(0);
  2728. }
  2729. } break;
  2730. case PACKED_INT32_ARRAY: {
  2731. const PackedInt32Array &arr = PackedArrayRef<int32_t>::get_array(_data.packed_array);
  2732. int len = arr.size();
  2733. if (likely(len)) {
  2734. const int32_t *r = arr.ptr();
  2735. return hash_murmur3_buffer((uint8_t *)&r[0], len * sizeof(int32_t));
  2736. } else {
  2737. return hash_murmur3_one_64(0);
  2738. }
  2739. } break;
  2740. case PACKED_INT64_ARRAY: {
  2741. const PackedInt64Array &arr = PackedArrayRef<int64_t>::get_array(_data.packed_array);
  2742. int len = arr.size();
  2743. if (likely(len)) {
  2744. const int64_t *r = arr.ptr();
  2745. return hash_murmur3_buffer((uint8_t *)&r[0], len * sizeof(int64_t));
  2746. } else {
  2747. return hash_murmur3_one_64(0);
  2748. }
  2749. } break;
  2750. case PACKED_FLOAT32_ARRAY: {
  2751. const PackedFloat32Array &arr = PackedArrayRef<float>::get_array(_data.packed_array);
  2752. int len = arr.size();
  2753. if (likely(len)) {
  2754. const float *r = arr.ptr();
  2755. uint32_t h = HASH_MURMUR3_SEED;
  2756. for (int32_t i = 0; i < len; i++) {
  2757. h = hash_murmur3_one_float(r[i], h);
  2758. }
  2759. return hash_fmix32(h);
  2760. } else {
  2761. return hash_murmur3_one_float(0.0);
  2762. }
  2763. } break;
  2764. case PACKED_FLOAT64_ARRAY: {
  2765. const PackedFloat64Array &arr = PackedArrayRef<double>::get_array(_data.packed_array);
  2766. int len = arr.size();
  2767. if (likely(len)) {
  2768. const double *r = arr.ptr();
  2769. uint32_t h = HASH_MURMUR3_SEED;
  2770. for (int32_t i = 0; i < len; i++) {
  2771. h = hash_murmur3_one_double(r[i], h);
  2772. }
  2773. return hash_fmix32(h);
  2774. } else {
  2775. return hash_murmur3_one_double(0.0);
  2776. }
  2777. } break;
  2778. case PACKED_STRING_ARRAY: {
  2779. uint32_t hash = HASH_MURMUR3_SEED;
  2780. const PackedStringArray &arr = PackedArrayRef<String>::get_array(_data.packed_array);
  2781. int len = arr.size();
  2782. if (likely(len)) {
  2783. const String *r = arr.ptr();
  2784. for (int i = 0; i < len; i++) {
  2785. hash = hash_murmur3_one_32(r[i].hash(), hash);
  2786. }
  2787. hash = hash_fmix32(hash);
  2788. }
  2789. return hash;
  2790. } break;
  2791. case PACKED_VECTOR2_ARRAY: {
  2792. uint32_t hash = HASH_MURMUR3_SEED;
  2793. const PackedVector2Array &arr = PackedArrayRef<Vector2>::get_array(_data.packed_array);
  2794. int len = arr.size();
  2795. if (likely(len)) {
  2796. const Vector2 *r = arr.ptr();
  2797. for (int i = 0; i < len; i++) {
  2798. hash = hash_murmur3_one_real(r[i].x, hash);
  2799. hash = hash_murmur3_one_real(r[i].y, hash);
  2800. }
  2801. hash = hash_fmix32(hash);
  2802. }
  2803. return hash;
  2804. } break;
  2805. case PACKED_VECTOR3_ARRAY: {
  2806. uint32_t hash = HASH_MURMUR3_SEED;
  2807. const PackedVector3Array &arr = PackedArrayRef<Vector3>::get_array(_data.packed_array);
  2808. int len = arr.size();
  2809. if (likely(len)) {
  2810. const Vector3 *r = arr.ptr();
  2811. for (int i = 0; i < len; i++) {
  2812. hash = hash_murmur3_one_real(r[i].x, hash);
  2813. hash = hash_murmur3_one_real(r[i].y, hash);
  2814. hash = hash_murmur3_one_real(r[i].z, hash);
  2815. }
  2816. hash = hash_fmix32(hash);
  2817. }
  2818. return hash;
  2819. } break;
  2820. case PACKED_COLOR_ARRAY: {
  2821. uint32_t hash = HASH_MURMUR3_SEED;
  2822. const PackedColorArray &arr = PackedArrayRef<Color>::get_array(_data.packed_array);
  2823. int len = arr.size();
  2824. if (likely(len)) {
  2825. const Color *r = arr.ptr();
  2826. for (int i = 0; i < len; i++) {
  2827. hash = hash_murmur3_one_float(r[i].r, hash);
  2828. hash = hash_murmur3_one_float(r[i].g, hash);
  2829. hash = hash_murmur3_one_float(r[i].b, hash);
  2830. hash = hash_murmur3_one_float(r[i].a, hash);
  2831. }
  2832. hash = hash_fmix32(hash);
  2833. }
  2834. return hash;
  2835. } break;
  2836. default: {
  2837. }
  2838. }
  2839. return 0;
  2840. }
  2841. #define hash_compare_scalar_base(p_lhs, p_rhs, semantic_comparison) \
  2842. (((p_lhs) == (p_rhs)) || (semantic_comparison && Math::is_nan(p_lhs) && Math::is_nan(p_rhs)))
  2843. #define hash_compare_scalar(p_lhs, p_rhs) \
  2844. (hash_compare_scalar_base(p_lhs, p_rhs, true))
  2845. #define hash_compare_vector2(p_lhs, p_rhs) \
  2846. (hash_compare_scalar((p_lhs).x, (p_rhs).x) && \
  2847. hash_compare_scalar((p_lhs).y, (p_rhs).y))
  2848. #define hash_compare_vector3(p_lhs, p_rhs) \
  2849. (hash_compare_scalar((p_lhs).x, (p_rhs).x) && \
  2850. hash_compare_scalar((p_lhs).y, (p_rhs).y) && \
  2851. hash_compare_scalar((p_lhs).z, (p_rhs).z))
  2852. #define hash_compare_vector4(p_lhs, p_rhs) \
  2853. (hash_compare_scalar((p_lhs).x, (p_rhs).x) && \
  2854. hash_compare_scalar((p_lhs).y, (p_rhs).y) && \
  2855. hash_compare_scalar((p_lhs).z, (p_rhs).z) && \
  2856. hash_compare_scalar((p_lhs).w, (p_rhs).w))
  2857. #define hash_compare_quaternion(p_lhs, p_rhs) \
  2858. (hash_compare_scalar((p_lhs).x, (p_rhs).x) && \
  2859. hash_compare_scalar((p_lhs).y, (p_rhs).y) && \
  2860. hash_compare_scalar((p_lhs).z, (p_rhs).z) && \
  2861. hash_compare_scalar((p_lhs).w, (p_rhs).w))
  2862. #define hash_compare_color(p_lhs, p_rhs) \
  2863. (hash_compare_scalar((p_lhs).r, (p_rhs).r) && \
  2864. hash_compare_scalar((p_lhs).g, (p_rhs).g) && \
  2865. hash_compare_scalar((p_lhs).b, (p_rhs).b) && \
  2866. hash_compare_scalar((p_lhs).a, (p_rhs).a))
  2867. #define hash_compare_packed_array(p_lhs, p_rhs, p_type, p_compare_func) \
  2868. const Vector<p_type> &l = PackedArrayRef<p_type>::get_array(p_lhs); \
  2869. const Vector<p_type> &r = PackedArrayRef<p_type>::get_array(p_rhs); \
  2870. \
  2871. if (l.size() != r.size()) \
  2872. return false; \
  2873. \
  2874. const p_type *lr = l.ptr(); \
  2875. const p_type *rr = r.ptr(); \
  2876. \
  2877. for (int i = 0; i < l.size(); ++i) { \
  2878. if (!p_compare_func((lr[i]), (rr[i]))) \
  2879. return false; \
  2880. } \
  2881. \
  2882. return true
  2883. bool Variant::hash_compare(const Variant &p_variant, int recursion_count, bool semantic_comparison) const {
  2884. if (type != p_variant.type) {
  2885. return false;
  2886. }
  2887. switch (type) {
  2888. case INT: {
  2889. return _data._int == p_variant._data._int;
  2890. } break;
  2891. case FLOAT: {
  2892. return hash_compare_scalar_base(_data._float, p_variant._data._float, semantic_comparison);
  2893. } break;
  2894. case STRING: {
  2895. return *reinterpret_cast<const String *>(_data._mem) == *reinterpret_cast<const String *>(p_variant._data._mem);
  2896. } break;
  2897. case STRING_NAME: {
  2898. return *reinterpret_cast<const StringName *>(_data._mem) == *reinterpret_cast<const StringName *>(p_variant._data._mem);
  2899. } break;
  2900. case VECTOR2: {
  2901. const Vector2 *l = reinterpret_cast<const Vector2 *>(_data._mem);
  2902. const Vector2 *r = reinterpret_cast<const Vector2 *>(p_variant._data._mem);
  2903. return hash_compare_vector2(*l, *r);
  2904. } break;
  2905. case VECTOR2I: {
  2906. const Vector2i *l = reinterpret_cast<const Vector2i *>(_data._mem);
  2907. const Vector2i *r = reinterpret_cast<const Vector2i *>(p_variant._data._mem);
  2908. return *l == *r;
  2909. } break;
  2910. case RECT2: {
  2911. const Rect2 *l = reinterpret_cast<const Rect2 *>(_data._mem);
  2912. const Rect2 *r = reinterpret_cast<const Rect2 *>(p_variant._data._mem);
  2913. return hash_compare_vector2(l->position, r->position) &&
  2914. hash_compare_vector2(l->size, r->size);
  2915. } break;
  2916. case RECT2I: {
  2917. const Rect2i *l = reinterpret_cast<const Rect2i *>(_data._mem);
  2918. const Rect2i *r = reinterpret_cast<const Rect2i *>(p_variant._data._mem);
  2919. return *l == *r;
  2920. } break;
  2921. case TRANSFORM2D: {
  2922. Transform2D *l = _data._transform2d;
  2923. Transform2D *r = p_variant._data._transform2d;
  2924. for (int i = 0; i < 3; i++) {
  2925. if (!hash_compare_vector2(l->columns[i], r->columns[i])) {
  2926. return false;
  2927. }
  2928. }
  2929. return true;
  2930. } break;
  2931. case VECTOR3: {
  2932. const Vector3 *l = reinterpret_cast<const Vector3 *>(_data._mem);
  2933. const Vector3 *r = reinterpret_cast<const Vector3 *>(p_variant._data._mem);
  2934. return hash_compare_vector3(*l, *r);
  2935. } break;
  2936. case VECTOR3I: {
  2937. const Vector3i *l = reinterpret_cast<const Vector3i *>(_data._mem);
  2938. const Vector3i *r = reinterpret_cast<const Vector3i *>(p_variant._data._mem);
  2939. return *l == *r;
  2940. } break;
  2941. case VECTOR4: {
  2942. const Vector4 *l = reinterpret_cast<const Vector4 *>(_data._mem);
  2943. const Vector4 *r = reinterpret_cast<const Vector4 *>(p_variant._data._mem);
  2944. return hash_compare_vector4(*l, *r);
  2945. } break;
  2946. case VECTOR4I: {
  2947. const Vector4i *l = reinterpret_cast<const Vector4i *>(_data._mem);
  2948. const Vector4i *r = reinterpret_cast<const Vector4i *>(p_variant._data._mem);
  2949. return *l == *r;
  2950. } break;
  2951. case PLANE: {
  2952. const Plane *l = reinterpret_cast<const Plane *>(_data._mem);
  2953. const Plane *r = reinterpret_cast<const Plane *>(p_variant._data._mem);
  2954. return hash_compare_vector3(l->normal, r->normal) &&
  2955. hash_compare_scalar(l->d, r->d);
  2956. } break;
  2957. case AABB: {
  2958. const ::AABB *l = _data._aabb;
  2959. const ::AABB *r = p_variant._data._aabb;
  2960. return hash_compare_vector3(l->position, r->position) &&
  2961. hash_compare_vector3(l->size, r->size);
  2962. } break;
  2963. case QUATERNION: {
  2964. const Quaternion *l = reinterpret_cast<const Quaternion *>(_data._mem);
  2965. const Quaternion *r = reinterpret_cast<const Quaternion *>(p_variant._data._mem);
  2966. return hash_compare_quaternion(*l, *r);
  2967. } break;
  2968. case BASIS: {
  2969. const Basis *l = _data._basis;
  2970. const Basis *r = p_variant._data._basis;
  2971. for (int i = 0; i < 3; i++) {
  2972. if (!hash_compare_vector3(l->rows[i], r->rows[i])) {
  2973. return false;
  2974. }
  2975. }
  2976. return true;
  2977. } break;
  2978. case TRANSFORM3D: {
  2979. const Transform3D *l = _data._transform3d;
  2980. const Transform3D *r = p_variant._data._transform3d;
  2981. for (int i = 0; i < 3; i++) {
  2982. if (!hash_compare_vector3(l->basis.rows[i], r->basis.rows[i])) {
  2983. return false;
  2984. }
  2985. }
  2986. return hash_compare_vector3(l->origin, r->origin);
  2987. } break;
  2988. case PROJECTION: {
  2989. const Projection *l = _data._projection;
  2990. const Projection *r = p_variant._data._projection;
  2991. for (int i = 0; i < 4; i++) {
  2992. if (!hash_compare_vector4(l->columns[i], r->columns[i])) {
  2993. return false;
  2994. }
  2995. }
  2996. return true;
  2997. } break;
  2998. case COLOR: {
  2999. const Color *l = reinterpret_cast<const Color *>(_data._mem);
  3000. const Color *r = reinterpret_cast<const Color *>(p_variant._data._mem);
  3001. return hash_compare_color(*l, *r);
  3002. } break;
  3003. case ARRAY: {
  3004. const Array &l = *(reinterpret_cast<const Array *>(_data._mem));
  3005. const Array &r = *(reinterpret_cast<const Array *>(p_variant._data._mem));
  3006. if (!l.recursive_equal(r, recursion_count + 1)) {
  3007. return false;
  3008. }
  3009. return true;
  3010. } break;
  3011. case DICTIONARY: {
  3012. const Dictionary &l = *(reinterpret_cast<const Dictionary *>(_data._mem));
  3013. const Dictionary &r = *(reinterpret_cast<const Dictionary *>(p_variant._data._mem));
  3014. if (!l.recursive_equal(r, recursion_count + 1)) {
  3015. return false;
  3016. }
  3017. return true;
  3018. } break;
  3019. // This is for floating point comparisons only.
  3020. case PACKED_FLOAT32_ARRAY: {
  3021. hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, float, hash_compare_scalar);
  3022. } break;
  3023. case PACKED_FLOAT64_ARRAY: {
  3024. hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, double, hash_compare_scalar);
  3025. } break;
  3026. case PACKED_VECTOR2_ARRAY: {
  3027. hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, Vector2, hash_compare_vector2);
  3028. } break;
  3029. case PACKED_VECTOR3_ARRAY: {
  3030. hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, Vector3, hash_compare_vector3);
  3031. } break;
  3032. case PACKED_COLOR_ARRAY: {
  3033. hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, Color, hash_compare_color);
  3034. } break;
  3035. default:
  3036. bool v;
  3037. Variant r;
  3038. evaluate(OP_EQUAL, *this, p_variant, r, v);
  3039. return r;
  3040. }
  3041. }
  3042. bool Variant::identity_compare(const Variant &p_variant) const {
  3043. if (type != p_variant.type) {
  3044. return false;
  3045. }
  3046. switch (type) {
  3047. case OBJECT: {
  3048. return _get_obj().id == p_variant._get_obj().id;
  3049. } break;
  3050. case DICTIONARY: {
  3051. const Dictionary &l = *(reinterpret_cast<const Dictionary *>(_data._mem));
  3052. const Dictionary &r = *(reinterpret_cast<const Dictionary *>(p_variant._data._mem));
  3053. return l.id() == r.id();
  3054. } break;
  3055. case ARRAY: {
  3056. const Array &l = *(reinterpret_cast<const Array *>(_data._mem));
  3057. const Array &r = *(reinterpret_cast<const Array *>(p_variant._data._mem));
  3058. return l.id() == r.id();
  3059. } break;
  3060. case PACKED_BYTE_ARRAY:
  3061. case PACKED_INT32_ARRAY:
  3062. case PACKED_INT64_ARRAY:
  3063. case PACKED_FLOAT32_ARRAY:
  3064. case PACKED_FLOAT64_ARRAY:
  3065. case PACKED_STRING_ARRAY:
  3066. case PACKED_VECTOR2_ARRAY:
  3067. case PACKED_VECTOR3_ARRAY:
  3068. case PACKED_COLOR_ARRAY: {
  3069. return _data.packed_array == p_variant._data.packed_array;
  3070. } break;
  3071. default: {
  3072. return hash_compare(p_variant);
  3073. }
  3074. }
  3075. }
  3076. bool StringLikeVariantComparator::compare(const Variant &p_lhs, const Variant &p_rhs) {
  3077. if (p_lhs.hash_compare(p_rhs)) {
  3078. return true;
  3079. }
  3080. if (p_lhs.get_type() == Variant::STRING && p_rhs.get_type() == Variant::STRING_NAME) {
  3081. return *VariantInternal::get_string(&p_lhs) == *VariantInternal::get_string_name(&p_rhs);
  3082. }
  3083. if (p_lhs.get_type() == Variant::STRING_NAME && p_rhs.get_type() == Variant::STRING) {
  3084. return *VariantInternal::get_string_name(&p_lhs) == *VariantInternal::get_string(&p_rhs);
  3085. }
  3086. return false;
  3087. }
  3088. bool Variant::is_ref_counted() const {
  3089. return type == OBJECT && _get_obj().id.is_ref_counted();
  3090. }
  3091. Vector<Variant> varray() {
  3092. return Vector<Variant>();
  3093. }
  3094. Vector<Variant> varray(const Variant &p_arg1) {
  3095. Vector<Variant> v;
  3096. v.push_back(p_arg1);
  3097. return v;
  3098. }
  3099. Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2) {
  3100. Vector<Variant> v;
  3101. v.push_back(p_arg1);
  3102. v.push_back(p_arg2);
  3103. return v;
  3104. }
  3105. Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3) {
  3106. Vector<Variant> v;
  3107. v.push_back(p_arg1);
  3108. v.push_back(p_arg2);
  3109. v.push_back(p_arg3);
  3110. return v;
  3111. }
  3112. Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3, const Variant &p_arg4) {
  3113. Vector<Variant> v;
  3114. v.push_back(p_arg1);
  3115. v.push_back(p_arg2);
  3116. v.push_back(p_arg3);
  3117. v.push_back(p_arg4);
  3118. return v;
  3119. }
  3120. Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3, const Variant &p_arg4, const Variant &p_arg5) {
  3121. Vector<Variant> v;
  3122. v.push_back(p_arg1);
  3123. v.push_back(p_arg2);
  3124. v.push_back(p_arg3);
  3125. v.push_back(p_arg4);
  3126. v.push_back(p_arg5);
  3127. return v;
  3128. }
  3129. void Variant::static_assign(const Variant &p_variant) {
  3130. }
  3131. bool Variant::is_type_shared(Variant::Type p_type) {
  3132. switch (p_type) {
  3133. case OBJECT:
  3134. case ARRAY:
  3135. case DICTIONARY:
  3136. return true;
  3137. default: {
  3138. }
  3139. }
  3140. return false;
  3141. }
  3142. bool Variant::is_shared() const {
  3143. return is_type_shared(type);
  3144. }
  3145. void Variant::_variant_call_error(const String &p_method, Callable::CallError &error) {
  3146. switch (error.error) {
  3147. case Callable::CallError::CALL_ERROR_INVALID_ARGUMENT: {
  3148. String err = "Invalid type for argument #" + itos(error.argument) + ", expected '" + Variant::get_type_name(Variant::Type(error.expected)) + "'.";
  3149. ERR_PRINT(err.utf8().get_data());
  3150. } break;
  3151. case Callable::CallError::CALL_ERROR_INVALID_METHOD: {
  3152. String err = "Invalid method '" + p_method + "' for type '" + Variant::get_type_name(type) + "'.";
  3153. ERR_PRINT(err.utf8().get_data());
  3154. } break;
  3155. case Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS: {
  3156. String err = "Too many arguments for method '" + p_method + "'";
  3157. ERR_PRINT(err.utf8().get_data());
  3158. } break;
  3159. default: {
  3160. }
  3161. }
  3162. }
  3163. void Variant::construct_from_string(const String &p_string, Variant &r_value, ObjectConstruct p_obj_construct, void *p_construct_ud) {
  3164. r_value = Variant();
  3165. }
  3166. String Variant::get_construct_string() const {
  3167. String vars;
  3168. VariantWriter::write_to_string(*this, vars);
  3169. return vars;
  3170. }
  3171. String Variant::get_call_error_text(const StringName &p_method, const Variant **p_argptrs, int p_argcount, const Callable::CallError &ce) {
  3172. return get_call_error_text(nullptr, p_method, p_argptrs, p_argcount, ce);
  3173. }
  3174. String Variant::get_call_error_text(Object *p_base, const StringName &p_method, const Variant **p_argptrs, int p_argcount, const Callable::CallError &ce) {
  3175. String err_text;
  3176. if (ce.error == Callable::CallError::CALL_ERROR_INVALID_ARGUMENT) {
  3177. int errorarg = ce.argument;
  3178. if (p_argptrs) {
  3179. err_text = "Cannot convert argument " + itos(errorarg + 1) + " from " + Variant::get_type_name(p_argptrs[errorarg]->get_type()) + " to " + Variant::get_type_name(Variant::Type(ce.expected));
  3180. } else {
  3181. err_text = "Cannot convert argument " + itos(errorarg + 1) + " from [missing argptr, type unknown] to " + Variant::get_type_name(Variant::Type(ce.expected));
  3182. }
  3183. } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS) {
  3184. err_text = "Method expected " + itos(ce.expected) + " arguments, but called with " + itos(p_argcount);
  3185. } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS) {
  3186. err_text = "Method expected " + itos(ce.expected) + " arguments, but called with " + itos(p_argcount);
  3187. } else if (ce.error == Callable::CallError::CALL_ERROR_INVALID_METHOD) {
  3188. err_text = "Method not found";
  3189. } else if (ce.error == Callable::CallError::CALL_ERROR_INSTANCE_IS_NULL) {
  3190. err_text = "Instance is null";
  3191. } else if (ce.error == Callable::CallError::CALL_ERROR_METHOD_NOT_CONST) {
  3192. err_text = "Method not const in const instance";
  3193. } else if (ce.error == Callable::CallError::CALL_OK) {
  3194. return "Call OK";
  3195. }
  3196. String base_text;
  3197. if (p_base) {
  3198. base_text = p_base->get_class();
  3199. Ref<Resource> script = p_base->get_script();
  3200. if (script.is_valid() && script->get_path().is_resource_file()) {
  3201. base_text += "(" + script->get_path().get_file() + ")";
  3202. }
  3203. base_text += "::";
  3204. }
  3205. return "'" + base_text + String(p_method) + "': " + err_text;
  3206. }
  3207. String Variant::get_callable_error_text(const Callable &p_callable, const Variant **p_argptrs, int p_argcount, const Callable::CallError &ce) {
  3208. Vector<Variant> binds;
  3209. int args_bound;
  3210. p_callable.get_bound_arguments_ref(binds, args_bound);
  3211. if (args_bound <= 0) {
  3212. return get_call_error_text(p_callable.get_object(), p_callable.get_method(), p_argptrs, MAX(0, p_argcount + args_bound), ce);
  3213. } else {
  3214. Vector<const Variant *> argptrs;
  3215. argptrs.resize(p_argcount + binds.size());
  3216. for (int i = 0; i < p_argcount; i++) {
  3217. argptrs.write[i] = p_argptrs[i];
  3218. }
  3219. for (int i = 0; i < binds.size(); i++) {
  3220. argptrs.write[i + p_argcount] = &binds[i];
  3221. }
  3222. return get_call_error_text(p_callable.get_object(), p_callable.get_method(), (const Variant **)argptrs.ptr(), argptrs.size(), ce);
  3223. }
  3224. }
  3225. void Variant::register_types() {
  3226. _register_variant_operators();
  3227. _register_variant_methods();
  3228. _register_variant_setters_getters();
  3229. _register_variant_constructors();
  3230. _register_variant_destructors();
  3231. _register_variant_utility_functions();
  3232. }
  3233. void Variant::unregister_types() {
  3234. _unregister_variant_operators();
  3235. _unregister_variant_methods();
  3236. _unregister_variant_setters_getters();
  3237. _unregister_variant_destructors();
  3238. _unregister_variant_utility_functions();
  3239. }