mesh_storage.cpp 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065
  1. /**************************************************************************/
  2. /* mesh_storage.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "mesh_storage.h"
  31. #include "../../rendering_server_globals.h"
  32. using namespace RendererRD;
  33. MeshStorage *MeshStorage::singleton = nullptr;
  34. MeshStorage *MeshStorage::get_singleton() {
  35. return singleton;
  36. }
  37. MeshStorage::MeshStorage() {
  38. singleton = this;
  39. default_rd_storage_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4);
  40. //default rd buffers
  41. {
  42. Vector<uint8_t> buffer;
  43. {
  44. buffer.resize(sizeof(float) * 3);
  45. {
  46. uint8_t *w = buffer.ptrw();
  47. float *fptr = reinterpret_cast<float *>(w);
  48. fptr[0] = 0.0;
  49. fptr[1] = 0.0;
  50. fptr[2] = 0.0;
  51. }
  52. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_VERTEX] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  53. }
  54. { //normal
  55. buffer.resize(sizeof(float) * 3);
  56. {
  57. uint8_t *w = buffer.ptrw();
  58. float *fptr = reinterpret_cast<float *>(w);
  59. fptr[0] = 1.0;
  60. fptr[1] = 0.0;
  61. fptr[2] = 0.0;
  62. }
  63. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_NORMAL] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  64. }
  65. { //tangent
  66. buffer.resize(sizeof(float) * 4);
  67. {
  68. uint8_t *w = buffer.ptrw();
  69. float *fptr = reinterpret_cast<float *>(w);
  70. fptr[0] = 1.0;
  71. fptr[1] = 0.0;
  72. fptr[2] = 0.0;
  73. fptr[3] = 0.0;
  74. }
  75. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TANGENT] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  76. }
  77. { //color
  78. buffer.resize(sizeof(float) * 4);
  79. {
  80. uint8_t *w = buffer.ptrw();
  81. float *fptr = reinterpret_cast<float *>(w);
  82. fptr[0] = 1.0;
  83. fptr[1] = 1.0;
  84. fptr[2] = 1.0;
  85. fptr[3] = 1.0;
  86. }
  87. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_COLOR] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  88. }
  89. { //tex uv 1
  90. buffer.resize(sizeof(float) * 2);
  91. {
  92. uint8_t *w = buffer.ptrw();
  93. float *fptr = reinterpret_cast<float *>(w);
  94. fptr[0] = 0.0;
  95. fptr[1] = 0.0;
  96. }
  97. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  98. }
  99. { //tex uv 2
  100. buffer.resize(sizeof(float) * 2);
  101. {
  102. uint8_t *w = buffer.ptrw();
  103. float *fptr = reinterpret_cast<float *>(w);
  104. fptr[0] = 0.0;
  105. fptr[1] = 0.0;
  106. }
  107. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV2] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  108. }
  109. for (int i = 0; i < RS::ARRAY_CUSTOM_COUNT; i++) {
  110. buffer.resize(sizeof(float) * 4);
  111. {
  112. uint8_t *w = buffer.ptrw();
  113. float *fptr = reinterpret_cast<float *>(w);
  114. fptr[0] = 0.0;
  115. fptr[1] = 0.0;
  116. fptr[2] = 0.0;
  117. fptr[3] = 0.0;
  118. }
  119. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_CUSTOM0 + i] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  120. }
  121. { //bones
  122. buffer.resize(sizeof(uint32_t) * 4);
  123. {
  124. uint8_t *w = buffer.ptrw();
  125. uint32_t *fptr = reinterpret_cast<uint32_t *>(w);
  126. fptr[0] = 0;
  127. fptr[1] = 0;
  128. fptr[2] = 0;
  129. fptr[3] = 0;
  130. }
  131. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_BONES] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  132. }
  133. { //weights
  134. buffer.resize(sizeof(float) * 4);
  135. {
  136. uint8_t *w = buffer.ptrw();
  137. float *fptr = reinterpret_cast<float *>(w);
  138. fptr[0] = 0.0;
  139. fptr[1] = 0.0;
  140. fptr[2] = 0.0;
  141. fptr[3] = 0.0;
  142. }
  143. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_WEIGHTS] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  144. }
  145. }
  146. {
  147. Vector<String> skeleton_modes;
  148. skeleton_modes.push_back("\n#define MODE_2D\n");
  149. skeleton_modes.push_back("");
  150. skeleton_shader.shader.initialize(skeleton_modes);
  151. skeleton_shader.version = skeleton_shader.shader.version_create();
  152. for (int i = 0; i < SkeletonShader::SHADER_MODE_MAX; i++) {
  153. skeleton_shader.version_shader[i] = skeleton_shader.shader.version_get_shader(skeleton_shader.version, i);
  154. skeleton_shader.pipeline[i] = RD::get_singleton()->compute_pipeline_create(skeleton_shader.version_shader[i]);
  155. }
  156. {
  157. Vector<RD::Uniform> uniforms;
  158. {
  159. RD::Uniform u;
  160. u.binding = 0;
  161. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  162. u.append_id(default_rd_storage_buffer);
  163. uniforms.push_back(u);
  164. }
  165. skeleton_shader.default_skeleton_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  166. }
  167. }
  168. }
  169. MeshStorage::~MeshStorage() {
  170. //def buffers
  171. for (int i = 0; i < DEFAULT_RD_BUFFER_MAX; i++) {
  172. RD::get_singleton()->free(mesh_default_rd_buffers[i]);
  173. }
  174. skeleton_shader.shader.version_free(skeleton_shader.version);
  175. RD::get_singleton()->free(default_rd_storage_buffer);
  176. singleton = nullptr;
  177. }
  178. bool MeshStorage::free(RID p_rid) {
  179. if (owns_mesh(p_rid)) {
  180. mesh_free(p_rid);
  181. return true;
  182. } else if (owns_mesh_instance(p_rid)) {
  183. mesh_instance_free(p_rid);
  184. return true;
  185. } else if (owns_multimesh(p_rid)) {
  186. multimesh_free(p_rid);
  187. return true;
  188. } else if (owns_skeleton(p_rid)) {
  189. skeleton_free(p_rid);
  190. return true;
  191. }
  192. return false;
  193. }
  194. /* MESH API */
  195. RID MeshStorage::mesh_allocate() {
  196. return mesh_owner.allocate_rid();
  197. }
  198. void MeshStorage::mesh_initialize(RID p_rid) {
  199. mesh_owner.initialize_rid(p_rid, Mesh());
  200. }
  201. void MeshStorage::mesh_free(RID p_rid) {
  202. mesh_clear(p_rid);
  203. mesh_set_shadow_mesh(p_rid, RID());
  204. Mesh *mesh = mesh_owner.get_or_null(p_rid);
  205. ERR_FAIL_COND(!mesh);
  206. mesh->dependency.deleted_notify(p_rid);
  207. if (mesh->instances.size()) {
  208. ERR_PRINT("deleting mesh with active instances");
  209. }
  210. if (mesh->shadow_owners.size()) {
  211. for (Mesh *E : mesh->shadow_owners) {
  212. Mesh *shadow_owner = E;
  213. shadow_owner->shadow_mesh = RID();
  214. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  215. }
  216. }
  217. mesh_owner.free(p_rid);
  218. }
  219. void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
  220. ERR_FAIL_COND(p_blend_shape_count < 0);
  221. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  222. ERR_FAIL_COND(!mesh);
  223. ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
  224. mesh->blend_shape_count = p_blend_shape_count;
  225. }
  226. /// Returns stride
  227. void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
  228. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  229. ERR_FAIL_COND(!mesh);
  230. ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
  231. #ifdef DEBUG_ENABLED
  232. //do a validation, to catch errors first
  233. {
  234. uint32_t stride = 0;
  235. uint32_t attrib_stride = 0;
  236. uint32_t skin_stride = 0;
  237. for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
  238. if ((p_surface.format & (1 << i))) {
  239. switch (i) {
  240. case RS::ARRAY_VERTEX: {
  241. if (p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  242. stride += sizeof(float) * 2;
  243. } else {
  244. stride += sizeof(float) * 3;
  245. }
  246. } break;
  247. case RS::ARRAY_NORMAL: {
  248. stride += sizeof(int32_t);
  249. } break;
  250. case RS::ARRAY_TANGENT: {
  251. stride += sizeof(int32_t);
  252. } break;
  253. case RS::ARRAY_COLOR: {
  254. attrib_stride += sizeof(uint32_t);
  255. } break;
  256. case RS::ARRAY_TEX_UV: {
  257. attrib_stride += sizeof(float) * 2;
  258. } break;
  259. case RS::ARRAY_TEX_UV2: {
  260. attrib_stride += sizeof(float) * 2;
  261. } break;
  262. case RS::ARRAY_CUSTOM0:
  263. case RS::ARRAY_CUSTOM1:
  264. case RS::ARRAY_CUSTOM2:
  265. case RS::ARRAY_CUSTOM3: {
  266. int idx = i - RS::ARRAY_CUSTOM0;
  267. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  268. uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  269. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  270. attrib_stride += fmtsize[fmt];
  271. } break;
  272. case RS::ARRAY_WEIGHTS:
  273. case RS::ARRAY_BONES: {
  274. //uses a separate array
  275. bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  276. skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
  277. } break;
  278. }
  279. }
  280. }
  281. int expected_size = stride * p_surface.vertex_count;
  282. ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  283. int bs_expected_size = expected_size * mesh->blend_shape_count;
  284. ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
  285. int expected_attrib_size = attrib_stride * p_surface.vertex_count;
  286. ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
  287. if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
  288. expected_size = skin_stride * p_surface.vertex_count;
  289. ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  290. }
  291. }
  292. #endif
  293. Mesh::Surface *s = memnew(Mesh::Surface);
  294. s->format = p_surface.format;
  295. s->primitive = p_surface.primitive;
  296. bool use_as_storage = (p_surface.skin_data.size() || mesh->blend_shape_count > 0);
  297. if (p_surface.vertex_data.size()) {
  298. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.vertex_data.size(), p_surface.vertex_data, use_as_storage);
  299. s->vertex_buffer_size = p_surface.vertex_data.size();
  300. }
  301. if (p_surface.attribute_data.size()) {
  302. s->attribute_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.attribute_data.size(), p_surface.attribute_data);
  303. }
  304. if (p_surface.skin_data.size()) {
  305. s->skin_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.skin_data.size(), p_surface.skin_data, use_as_storage);
  306. s->skin_buffer_size = p_surface.skin_data.size();
  307. }
  308. s->vertex_count = p_surface.vertex_count;
  309. if (p_surface.format & RS::ARRAY_FORMAT_BONES) {
  310. mesh->has_bone_weights = true;
  311. }
  312. if (p_surface.index_count) {
  313. bool is_index_16 = p_surface.vertex_count <= 65536 && p_surface.vertex_count > 0;
  314. s->index_buffer = RD::get_singleton()->index_buffer_create(p_surface.index_count, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, p_surface.index_data, false);
  315. s->index_count = p_surface.index_count;
  316. s->index_array = RD::get_singleton()->index_array_create(s->index_buffer, 0, s->index_count);
  317. if (p_surface.lods.size()) {
  318. s->lods = memnew_arr(Mesh::Surface::LOD, p_surface.lods.size());
  319. s->lod_count = p_surface.lods.size();
  320. for (int i = 0; i < p_surface.lods.size(); i++) {
  321. uint32_t indices = p_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
  322. s->lods[i].index_buffer = RD::get_singleton()->index_buffer_create(indices, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, p_surface.lods[i].index_data);
  323. s->lods[i].index_array = RD::get_singleton()->index_array_create(s->lods[i].index_buffer, 0, indices);
  324. s->lods[i].edge_length = p_surface.lods[i].edge_length;
  325. s->lods[i].index_count = indices;
  326. }
  327. }
  328. }
  329. ERR_FAIL_COND_MSG(!p_surface.index_count && !p_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
  330. s->aabb = p_surface.aabb;
  331. s->bone_aabbs = p_surface.bone_aabbs; //only really useful for returning them.
  332. if (mesh->blend_shape_count > 0) {
  333. s->blend_shape_buffer = RD::get_singleton()->storage_buffer_create(p_surface.blend_shape_data.size(), p_surface.blend_shape_data);
  334. }
  335. if (use_as_storage) {
  336. Vector<RD::Uniform> uniforms;
  337. {
  338. RD::Uniform u;
  339. u.binding = 0;
  340. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  341. if (s->vertex_buffer.is_valid()) {
  342. u.append_id(s->vertex_buffer);
  343. } else {
  344. u.append_id(default_rd_storage_buffer);
  345. }
  346. uniforms.push_back(u);
  347. }
  348. {
  349. RD::Uniform u;
  350. u.binding = 1;
  351. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  352. if (s->skin_buffer.is_valid()) {
  353. u.append_id(s->skin_buffer);
  354. } else {
  355. u.append_id(default_rd_storage_buffer);
  356. }
  357. uniforms.push_back(u);
  358. }
  359. {
  360. RD::Uniform u;
  361. u.binding = 2;
  362. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  363. if (s->blend_shape_buffer.is_valid()) {
  364. u.append_id(s->blend_shape_buffer);
  365. } else {
  366. u.append_id(default_rd_storage_buffer);
  367. }
  368. uniforms.push_back(u);
  369. }
  370. s->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SURFACE);
  371. }
  372. if (mesh->surface_count == 0) {
  373. mesh->aabb = p_surface.aabb;
  374. } else {
  375. mesh->aabb.merge_with(p_surface.aabb);
  376. }
  377. s->material = p_surface.material;
  378. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
  379. mesh->surfaces[mesh->surface_count] = s;
  380. mesh->surface_count++;
  381. for (MeshInstance *mi : mesh->instances) {
  382. _mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
  383. }
  384. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  385. for (Mesh *E : mesh->shadow_owners) {
  386. Mesh *shadow_owner = E;
  387. shadow_owner->shadow_mesh = RID();
  388. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  389. }
  390. mesh->material_cache.clear();
  391. }
  392. int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
  393. const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  394. ERR_FAIL_COND_V(!mesh, -1);
  395. return mesh->blend_shape_count;
  396. }
  397. void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
  398. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  399. ERR_FAIL_COND(!mesh);
  400. ERR_FAIL_INDEX((int)p_mode, 2);
  401. mesh->blend_shape_mode = p_mode;
  402. }
  403. RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
  404. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  405. ERR_FAIL_COND_V(!mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
  406. return mesh->blend_shape_mode;
  407. }
  408. void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  409. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  410. ERR_FAIL_COND(!mesh);
  411. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  412. ERR_FAIL_COND(p_data.size() == 0);
  413. ERR_FAIL_COND(mesh->surfaces[p_surface]->vertex_buffer.is_null());
  414. uint64_t data_size = p_data.size();
  415. const uint8_t *r = p_data.ptr();
  416. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->vertex_buffer, p_offset, data_size, r);
  417. }
  418. void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  419. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  420. ERR_FAIL_COND(!mesh);
  421. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  422. ERR_FAIL_COND(p_data.size() == 0);
  423. ERR_FAIL_COND(mesh->surfaces[p_surface]->attribute_buffer.is_null());
  424. uint64_t data_size = p_data.size();
  425. const uint8_t *r = p_data.ptr();
  426. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->attribute_buffer, p_offset, data_size, r);
  427. }
  428. void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  429. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  430. ERR_FAIL_COND(!mesh);
  431. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  432. ERR_FAIL_COND(p_data.size() == 0);
  433. ERR_FAIL_COND(mesh->surfaces[p_surface]->skin_buffer.is_null());
  434. uint64_t data_size = p_data.size();
  435. const uint8_t *r = p_data.ptr();
  436. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->skin_buffer, p_offset, data_size, r);
  437. }
  438. void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
  439. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  440. ERR_FAIL_COND(!mesh);
  441. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  442. mesh->surfaces[p_surface]->material = p_material;
  443. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
  444. mesh->material_cache.clear();
  445. }
  446. RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
  447. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  448. ERR_FAIL_COND_V(!mesh, RID());
  449. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
  450. return mesh->surfaces[p_surface]->material;
  451. }
  452. RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
  453. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  454. ERR_FAIL_COND_V(!mesh, RS::SurfaceData());
  455. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
  456. Mesh::Surface &s = *mesh->surfaces[p_surface];
  457. RS::SurfaceData sd;
  458. sd.format = s.format;
  459. if (s.vertex_buffer.is_valid()) {
  460. sd.vertex_data = RD::get_singleton()->buffer_get_data(s.vertex_buffer);
  461. }
  462. if (s.attribute_buffer.is_valid()) {
  463. sd.attribute_data = RD::get_singleton()->buffer_get_data(s.attribute_buffer);
  464. }
  465. if (s.skin_buffer.is_valid()) {
  466. sd.skin_data = RD::get_singleton()->buffer_get_data(s.skin_buffer);
  467. }
  468. sd.vertex_count = s.vertex_count;
  469. sd.index_count = s.index_count;
  470. sd.primitive = s.primitive;
  471. if (sd.index_count) {
  472. sd.index_data = RD::get_singleton()->buffer_get_data(s.index_buffer);
  473. }
  474. sd.aabb = s.aabb;
  475. for (uint32_t i = 0; i < s.lod_count; i++) {
  476. RS::SurfaceData::LOD lod;
  477. lod.edge_length = s.lods[i].edge_length;
  478. lod.index_data = RD::get_singleton()->buffer_get_data(s.lods[i].index_buffer);
  479. sd.lods.push_back(lod);
  480. }
  481. sd.bone_aabbs = s.bone_aabbs;
  482. if (s.blend_shape_buffer.is_valid()) {
  483. sd.blend_shape_data = RD::get_singleton()->buffer_get_data(s.blend_shape_buffer);
  484. }
  485. return sd;
  486. }
  487. int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
  488. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  489. ERR_FAIL_COND_V(!mesh, 0);
  490. return mesh->surface_count;
  491. }
  492. void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
  493. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  494. ERR_FAIL_COND(!mesh);
  495. mesh->custom_aabb = p_aabb;
  496. }
  497. AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
  498. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  499. ERR_FAIL_COND_V(!mesh, AABB());
  500. return mesh->custom_aabb;
  501. }
  502. AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
  503. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  504. ERR_FAIL_COND_V(!mesh, AABB());
  505. if (mesh->custom_aabb != AABB()) {
  506. return mesh->custom_aabb;
  507. }
  508. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  509. if (!skeleton || skeleton->size == 0 || mesh->skeleton_aabb_version == skeleton->version) {
  510. return mesh->aabb;
  511. }
  512. AABB aabb;
  513. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  514. AABB laabb;
  515. if ((mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->bone_aabbs.size()) {
  516. int bs = mesh->surfaces[i]->bone_aabbs.size();
  517. const AABB *skbones = mesh->surfaces[i]->bone_aabbs.ptr();
  518. int sbs = skeleton->size;
  519. ERR_CONTINUE(bs > sbs);
  520. const float *baseptr = skeleton->data.ptr();
  521. bool first = true;
  522. if (skeleton->use_2d) {
  523. for (int j = 0; j < bs; j++) {
  524. if (skbones[0].size == Vector3()) {
  525. continue; //bone is unused
  526. }
  527. const float *dataptr = baseptr + j * 8;
  528. Transform3D mtx;
  529. mtx.basis.rows[0].x = dataptr[0];
  530. mtx.basis.rows[1].x = dataptr[1];
  531. mtx.origin.x = dataptr[3];
  532. mtx.basis.rows[0].y = dataptr[4];
  533. mtx.basis.rows[1].y = dataptr[5];
  534. mtx.origin.y = dataptr[7];
  535. AABB baabb = mtx.xform(skbones[j]);
  536. if (first) {
  537. laabb = baabb;
  538. first = false;
  539. } else {
  540. laabb.merge_with(baabb);
  541. }
  542. }
  543. } else {
  544. for (int j = 0; j < bs; j++) {
  545. if (skbones[0].size == Vector3()) {
  546. continue; //bone is unused
  547. }
  548. const float *dataptr = baseptr + j * 12;
  549. Transform3D mtx;
  550. mtx.basis.rows[0][0] = dataptr[0];
  551. mtx.basis.rows[0][1] = dataptr[1];
  552. mtx.basis.rows[0][2] = dataptr[2];
  553. mtx.origin.x = dataptr[3];
  554. mtx.basis.rows[1][0] = dataptr[4];
  555. mtx.basis.rows[1][1] = dataptr[5];
  556. mtx.basis.rows[1][2] = dataptr[6];
  557. mtx.origin.y = dataptr[7];
  558. mtx.basis.rows[2][0] = dataptr[8];
  559. mtx.basis.rows[2][1] = dataptr[9];
  560. mtx.basis.rows[2][2] = dataptr[10];
  561. mtx.origin.z = dataptr[11];
  562. AABB baabb = mtx.xform(skbones[j]);
  563. if (first) {
  564. laabb = baabb;
  565. first = false;
  566. } else {
  567. laabb.merge_with(baabb);
  568. }
  569. }
  570. }
  571. if (laabb.size == Vector3()) {
  572. laabb = mesh->surfaces[i]->aabb;
  573. }
  574. } else {
  575. laabb = mesh->surfaces[i]->aabb;
  576. }
  577. if (i == 0) {
  578. aabb = laabb;
  579. } else {
  580. aabb.merge_with(laabb);
  581. }
  582. }
  583. mesh->aabb = aabb;
  584. mesh->skeleton_aabb_version = skeleton->version;
  585. return aabb;
  586. }
  587. void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
  588. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  589. ERR_FAIL_COND(!mesh);
  590. Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  591. if (shadow_mesh) {
  592. shadow_mesh->shadow_owners.erase(mesh);
  593. }
  594. mesh->shadow_mesh = p_shadow_mesh;
  595. shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  596. if (shadow_mesh) {
  597. shadow_mesh->shadow_owners.insert(mesh);
  598. }
  599. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  600. }
  601. void MeshStorage::mesh_clear(RID p_mesh) {
  602. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  603. ERR_FAIL_COND(!mesh);
  604. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  605. Mesh::Surface &s = *mesh->surfaces[i];
  606. if (s.vertex_buffer.is_valid()) {
  607. RD::get_singleton()->free(s.vertex_buffer); //clears arrays as dependency automatically, including all versions
  608. }
  609. if (s.attribute_buffer.is_valid()) {
  610. RD::get_singleton()->free(s.attribute_buffer);
  611. }
  612. if (s.skin_buffer.is_valid()) {
  613. RD::get_singleton()->free(s.skin_buffer);
  614. }
  615. if (s.versions) {
  616. memfree(s.versions); //reallocs, so free with memfree.
  617. }
  618. if (s.index_buffer.is_valid()) {
  619. RD::get_singleton()->free(s.index_buffer);
  620. }
  621. if (s.lod_count) {
  622. for (uint32_t j = 0; j < s.lod_count; j++) {
  623. RD::get_singleton()->free(s.lods[j].index_buffer);
  624. }
  625. memdelete_arr(s.lods);
  626. }
  627. if (s.blend_shape_buffer.is_valid()) {
  628. RD::get_singleton()->free(s.blend_shape_buffer);
  629. }
  630. memdelete(mesh->surfaces[i]);
  631. }
  632. if (mesh->surfaces) {
  633. memfree(mesh->surfaces);
  634. }
  635. mesh->surfaces = nullptr;
  636. mesh->surface_count = 0;
  637. mesh->material_cache.clear();
  638. //clear instance data
  639. for (MeshInstance *mi : mesh->instances) {
  640. _mesh_instance_clear(mi);
  641. }
  642. mesh->has_bone_weights = false;
  643. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  644. for (Mesh *E : mesh->shadow_owners) {
  645. Mesh *shadow_owner = E;
  646. shadow_owner->shadow_mesh = RID();
  647. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  648. }
  649. }
  650. bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
  651. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  652. ERR_FAIL_COND_V(!mesh, false);
  653. return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
  654. }
  655. Dependency *MeshStorage::mesh_get_dependency(RID p_mesh) const {
  656. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  657. ERR_FAIL_COND_V(!mesh, nullptr);
  658. return &mesh->dependency;
  659. }
  660. /* MESH INSTANCE */
  661. RID MeshStorage::mesh_instance_create(RID p_base) {
  662. Mesh *mesh = mesh_owner.get_or_null(p_base);
  663. ERR_FAIL_COND_V(!mesh, RID());
  664. RID rid = mesh_instance_owner.make_rid();
  665. MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
  666. mi->mesh = mesh;
  667. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  668. _mesh_instance_add_surface(mi, mesh, i);
  669. }
  670. mi->I = mesh->instances.push_back(mi);
  671. mi->dirty = true;
  672. return rid;
  673. }
  674. void MeshStorage::mesh_instance_free(RID p_rid) {
  675. MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
  676. _mesh_instance_clear(mi);
  677. mi->mesh->instances.erase(mi->I);
  678. mi->I = nullptr;
  679. mesh_instance_owner.free(p_rid);
  680. }
  681. void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
  682. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  683. if (mi->skeleton == p_skeleton) {
  684. return;
  685. }
  686. mi->skeleton = p_skeleton;
  687. mi->skeleton_version = 0;
  688. mi->dirty = true;
  689. }
  690. void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
  691. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  692. ERR_FAIL_COND(!mi);
  693. ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
  694. mi->blend_weights[p_shape] = p_weight;
  695. mi->weights_dirty = true;
  696. //will be eventually updated
  697. }
  698. void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
  699. for (const RendererRD::MeshStorage::MeshInstance::Surface surface : mi->surfaces) {
  700. if (surface.versions) {
  701. for (uint32_t j = 0; j < surface.version_count; j++) {
  702. RD::get_singleton()->free(surface.versions[j].vertex_array);
  703. }
  704. memfree(surface.versions);
  705. }
  706. if (surface.vertex_buffer.is_valid()) {
  707. RD::get_singleton()->free(surface.vertex_buffer);
  708. }
  709. }
  710. mi->surfaces.clear();
  711. if (mi->blend_weights_buffer.is_valid()) {
  712. RD::get_singleton()->free(mi->blend_weights_buffer);
  713. }
  714. mi->blend_weights.clear();
  715. mi->weights_dirty = false;
  716. mi->skeleton_version = 0;
  717. }
  718. void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
  719. if (mesh->blend_shape_count > 0 && mi->blend_weights_buffer.is_null()) {
  720. mi->blend_weights.resize(mesh->blend_shape_count);
  721. for (float &weight : mi->blend_weights) {
  722. weight = 0;
  723. }
  724. mi->blend_weights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(float) * mi->blend_weights.size(), mi->blend_weights.to_byte_array());
  725. mi->weights_dirty = true;
  726. }
  727. MeshInstance::Surface s;
  728. if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) {
  729. //surface warrants transform
  730. s.vertex_buffer = RD::get_singleton()->vertex_buffer_create(mesh->surfaces[p_surface]->vertex_buffer_size, Vector<uint8_t>(), true);
  731. Vector<RD::Uniform> uniforms;
  732. {
  733. RD::Uniform u;
  734. u.binding = 1;
  735. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  736. u.append_id(s.vertex_buffer);
  737. uniforms.push_back(u);
  738. }
  739. {
  740. RD::Uniform u;
  741. u.binding = 2;
  742. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  743. if (mi->blend_weights_buffer.is_valid()) {
  744. u.append_id(mi->blend_weights_buffer);
  745. } else {
  746. u.append_id(default_rd_storage_buffer);
  747. }
  748. uniforms.push_back(u);
  749. }
  750. s.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_INSTANCE);
  751. }
  752. mi->surfaces.push_back(s);
  753. mi->dirty = true;
  754. }
  755. void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
  756. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  757. bool needs_update = mi->dirty;
  758. if (mi->weights_dirty && !mi->weight_update_list.in_list()) {
  759. dirty_mesh_instance_weights.add(&mi->weight_update_list);
  760. needs_update = true;
  761. }
  762. if (mi->array_update_list.in_list()) {
  763. return;
  764. }
  765. if (!needs_update && mi->skeleton.is_valid()) {
  766. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  767. if (sk && sk->version != mi->skeleton_version) {
  768. needs_update = true;
  769. }
  770. }
  771. if (needs_update) {
  772. dirty_mesh_instance_arrays.add(&mi->array_update_list);
  773. }
  774. }
  775. void MeshStorage::update_mesh_instances() {
  776. while (dirty_mesh_instance_weights.first()) {
  777. MeshInstance *mi = dirty_mesh_instance_weights.first()->self();
  778. if (mi->blend_weights_buffer.is_valid()) {
  779. RD::get_singleton()->buffer_update(mi->blend_weights_buffer, 0, mi->blend_weights.size() * sizeof(float), mi->blend_weights.ptr());
  780. }
  781. dirty_mesh_instance_weights.remove(&mi->weight_update_list);
  782. mi->weights_dirty = false;
  783. }
  784. if (dirty_mesh_instance_arrays.first() == nullptr) {
  785. return; //nothing to do
  786. }
  787. //process skeletons and blend shapes
  788. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  789. while (dirty_mesh_instance_arrays.first()) {
  790. MeshInstance *mi = dirty_mesh_instance_arrays.first()->self();
  791. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  792. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  793. if (mi->surfaces[i].uniform_set == RID() || mi->mesh->surfaces[i]->uniform_set == RID()) {
  794. continue;
  795. }
  796. bool array_is_2d = mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_2D_VERTICES;
  797. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, skeleton_shader.pipeline[array_is_2d ? SkeletonShader::SHADER_MODE_2D : SkeletonShader::SHADER_MODE_3D]);
  798. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->surfaces[i].uniform_set, SkeletonShader::UNIFORM_SET_INSTANCE);
  799. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->mesh->surfaces[i]->uniform_set, SkeletonShader::UNIFORM_SET_SURFACE);
  800. if (sk && sk->uniform_set_mi.is_valid()) {
  801. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sk->uniform_set_mi, SkeletonShader::UNIFORM_SET_SKELETON);
  802. } else {
  803. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, skeleton_shader.default_skeleton_uniform_set, SkeletonShader::UNIFORM_SET_SKELETON);
  804. }
  805. SkeletonShader::PushConstant push_constant;
  806. push_constant.has_normal = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_NORMAL;
  807. push_constant.has_tangent = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_TANGENT;
  808. push_constant.has_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES);
  809. push_constant.has_blend_shape = mi->mesh->blend_shape_count > 0;
  810. push_constant.vertex_count = mi->mesh->surfaces[i]->vertex_count;
  811. push_constant.vertex_stride = (mi->mesh->surfaces[i]->vertex_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  812. push_constant.skin_stride = (mi->mesh->surfaces[i]->skin_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  813. push_constant.skin_weight_offset = (mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS) ? 4 : 2;
  814. push_constant.blend_shape_count = mi->mesh->blend_shape_count;
  815. push_constant.normalized_blend_shapes = mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED;
  816. push_constant.pad0 = 0;
  817. push_constant.pad1 = 0;
  818. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SkeletonShader::PushConstant));
  819. //dispatch without barrier, so all is done at the same time
  820. RD::get_singleton()->compute_list_dispatch_threads(compute_list, push_constant.vertex_count, 1, 1);
  821. }
  822. mi->dirty = false;
  823. if (sk) {
  824. mi->skeleton_version = sk->version;
  825. }
  826. dirty_mesh_instance_arrays.remove(&mi->array_update_list);
  827. }
  828. RD::get_singleton()->compute_list_end();
  829. }
  830. void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint32_t p_input_mask, MeshInstance::Surface *mis) {
  831. Vector<RD::VertexAttribute> attributes;
  832. Vector<RID> buffers;
  833. uint32_t stride = 0;
  834. uint32_t attribute_stride = 0;
  835. uint32_t skin_stride = 0;
  836. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  837. RD::VertexAttribute vd;
  838. RID buffer;
  839. vd.location = i;
  840. if (!(s->format & (1 << i))) {
  841. // Not supplied by surface, use default value
  842. buffer = mesh_default_rd_buffers[i];
  843. vd.stride = 0;
  844. switch (i) {
  845. case RS::ARRAY_VERTEX: {
  846. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  847. } break;
  848. case RS::ARRAY_NORMAL: {
  849. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  850. } break;
  851. case RS::ARRAY_TANGENT: {
  852. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  853. } break;
  854. case RS::ARRAY_COLOR: {
  855. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  856. } break;
  857. case RS::ARRAY_TEX_UV: {
  858. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  859. } break;
  860. case RS::ARRAY_TEX_UV2: {
  861. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  862. } break;
  863. case RS::ARRAY_CUSTOM0:
  864. case RS::ARRAY_CUSTOM1:
  865. case RS::ARRAY_CUSTOM2:
  866. case RS::ARRAY_CUSTOM3: {
  867. //assumed weights too
  868. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  869. } break;
  870. case RS::ARRAY_BONES: {
  871. //assumed weights too
  872. vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
  873. } break;
  874. case RS::ARRAY_WEIGHTS: {
  875. //assumed weights too
  876. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  877. } break;
  878. }
  879. } else {
  880. //Supplied, use it
  881. vd.stride = 1; //mark that it needs a stride set (default uses 0)
  882. switch (i) {
  883. case RS::ARRAY_VERTEX: {
  884. vd.offset = stride;
  885. if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  886. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  887. stride += sizeof(float) * 2;
  888. } else {
  889. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  890. stride += sizeof(float) * 3;
  891. }
  892. if (mis) {
  893. buffer = mis->vertex_buffer;
  894. } else {
  895. buffer = s->vertex_buffer;
  896. }
  897. } break;
  898. case RS::ARRAY_NORMAL: {
  899. vd.offset = stride;
  900. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  901. stride += sizeof(uint16_t) * 2;
  902. if (mis) {
  903. buffer = mis->vertex_buffer;
  904. } else {
  905. buffer = s->vertex_buffer;
  906. }
  907. } break;
  908. case RS::ARRAY_TANGENT: {
  909. vd.offset = stride;
  910. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  911. stride += sizeof(uint16_t) * 2;
  912. if (mis) {
  913. buffer = mis->vertex_buffer;
  914. } else {
  915. buffer = s->vertex_buffer;
  916. }
  917. } break;
  918. case RS::ARRAY_COLOR: {
  919. vd.offset = attribute_stride;
  920. vd.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  921. attribute_stride += sizeof(int8_t) * 4;
  922. buffer = s->attribute_buffer;
  923. } break;
  924. case RS::ARRAY_TEX_UV: {
  925. vd.offset = attribute_stride;
  926. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  927. attribute_stride += sizeof(float) * 2;
  928. buffer = s->attribute_buffer;
  929. } break;
  930. case RS::ARRAY_TEX_UV2: {
  931. vd.offset = attribute_stride;
  932. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  933. attribute_stride += sizeof(float) * 2;
  934. buffer = s->attribute_buffer;
  935. } break;
  936. case RS::ARRAY_CUSTOM0:
  937. case RS::ARRAY_CUSTOM1:
  938. case RS::ARRAY_CUSTOM2:
  939. case RS::ARRAY_CUSTOM3: {
  940. vd.offset = attribute_stride;
  941. int idx = i - RS::ARRAY_CUSTOM0;
  942. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  943. uint32_t fmt = (s->format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  944. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  945. const RD::DataFormat fmtrd[RS::ARRAY_CUSTOM_MAX] = { RD::DATA_FORMAT_R8G8B8A8_UNORM, RD::DATA_FORMAT_R8G8B8A8_SNORM, RD::DATA_FORMAT_R16G16_SFLOAT, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, RD::DATA_FORMAT_R32_SFLOAT, RD::DATA_FORMAT_R32G32_SFLOAT, RD::DATA_FORMAT_R32G32B32_SFLOAT, RD::DATA_FORMAT_R32G32B32A32_SFLOAT };
  946. vd.format = fmtrd[fmt];
  947. attribute_stride += fmtsize[fmt];
  948. buffer = s->attribute_buffer;
  949. } break;
  950. case RS::ARRAY_BONES: {
  951. vd.offset = skin_stride;
  952. vd.format = RD::DATA_FORMAT_R16G16B16A16_UINT;
  953. skin_stride += sizeof(int16_t) * 4;
  954. buffer = s->skin_buffer;
  955. } break;
  956. case RS::ARRAY_WEIGHTS: {
  957. vd.offset = skin_stride;
  958. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  959. skin_stride += sizeof(int16_t) * 4;
  960. buffer = s->skin_buffer;
  961. } break;
  962. }
  963. }
  964. if (!(p_input_mask & (1 << i))) {
  965. continue; // Shader does not need this, skip it (but computing stride was important anyway)
  966. }
  967. attributes.push_back(vd);
  968. buffers.push_back(buffer);
  969. }
  970. //update final stride
  971. for (int i = 0; i < attributes.size(); i++) {
  972. if (attributes[i].stride == 0) {
  973. continue; //default location
  974. }
  975. int loc = attributes[i].location;
  976. if (loc < RS::ARRAY_COLOR) {
  977. attributes.write[i].stride = stride;
  978. } else if (loc < RS::ARRAY_BONES) {
  979. attributes.write[i].stride = attribute_stride;
  980. } else {
  981. attributes.write[i].stride = skin_stride;
  982. }
  983. }
  984. v.input_mask = p_input_mask;
  985. v.vertex_format = RD::get_singleton()->vertex_format_create(attributes);
  986. v.vertex_array = RD::get_singleton()->vertex_array_create(s->vertex_count, v.vertex_format, buffers);
  987. }
  988. ////////////////// MULTIMESH
  989. RID MeshStorage::multimesh_allocate() {
  990. return multimesh_owner.allocate_rid();
  991. }
  992. void MeshStorage::multimesh_initialize(RID p_rid) {
  993. multimesh_owner.initialize_rid(p_rid, MultiMesh());
  994. }
  995. void MeshStorage::multimesh_free(RID p_rid) {
  996. _update_dirty_multimeshes();
  997. multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
  998. MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
  999. multimesh->dependency.deleted_notify(p_rid);
  1000. multimesh_owner.free(p_rid);
  1001. }
  1002. void MeshStorage::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) {
  1003. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1004. ERR_FAIL_COND(!multimesh);
  1005. if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
  1006. return;
  1007. }
  1008. if (multimesh->buffer.is_valid()) {
  1009. RD::get_singleton()->free(multimesh->buffer);
  1010. multimesh->buffer = RID();
  1011. multimesh->uniform_set_2d = RID(); //cleared by dependency
  1012. multimesh->uniform_set_3d = RID(); //cleared by dependency
  1013. }
  1014. if (multimesh->data_cache_dirty_regions) {
  1015. memdelete_arr(multimesh->data_cache_dirty_regions);
  1016. multimesh->data_cache_dirty_regions = nullptr;
  1017. multimesh->data_cache_dirty_region_count = 0;
  1018. }
  1019. if (multimesh->previous_data_cache_dirty_regions) {
  1020. memdelete_arr(multimesh->previous_data_cache_dirty_regions);
  1021. multimesh->previous_data_cache_dirty_regions = nullptr;
  1022. multimesh->previous_data_cache_dirty_region_count = 0;
  1023. }
  1024. multimesh->instances = p_instances;
  1025. multimesh->xform_format = p_transform_format;
  1026. multimesh->uses_colors = p_use_colors;
  1027. multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1028. multimesh->uses_custom_data = p_use_custom_data;
  1029. multimesh->custom_data_offset_cache = multimesh->color_offset_cache + (p_use_colors ? 4 : 0);
  1030. multimesh->stride_cache = multimesh->custom_data_offset_cache + (p_use_custom_data ? 4 : 0);
  1031. multimesh->buffer_set = false;
  1032. //print_line("allocate, elements: " + itos(p_instances) + " 2D: " + itos(p_transform_format == RS::MULTIMESH_TRANSFORM_2D) + " colors " + itos(multimesh->uses_colors) + " data " + itos(multimesh->uses_custom_data) + " stride " + itos(multimesh->stride_cache) + " total size " + itos(multimesh->stride_cache * multimesh->instances));
  1033. multimesh->data_cache = Vector<float>();
  1034. multimesh->aabb = AABB();
  1035. multimesh->aabb_dirty = false;
  1036. multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
  1037. multimesh->motion_vectors_current_offset = 0;
  1038. multimesh->motion_vectors_previous_offset = 0;
  1039. multimesh->motion_vectors_last_change = -1;
  1040. if (multimesh->instances) {
  1041. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1042. if (multimesh->motion_vectors_enabled) {
  1043. buffer_size *= 2;
  1044. }
  1045. multimesh->buffer = RD::get_singleton()->storage_buffer_create(buffer_size);
  1046. }
  1047. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1048. }
  1049. bool MeshStorage::_multimesh_enable_motion_vectors(RID p_multimesh) {
  1050. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1051. ERR_FAIL_COND_V(!multimesh, false);
  1052. if (multimesh->motion_vectors_enabled) {
  1053. return false;
  1054. }
  1055. multimesh->motion_vectors_enabled = true;
  1056. multimesh->motion_vectors_current_offset = 0;
  1057. multimesh->motion_vectors_previous_offset = 0;
  1058. multimesh->motion_vectors_last_change = -1;
  1059. if (!multimesh->data_cache.is_empty()) {
  1060. multimesh->data_cache.append_array(multimesh->data_cache);
  1061. }
  1062. if (multimesh->buffer_set) {
  1063. RD::get_singleton()->barrier();
  1064. Vector<uint8_t> buffer_data = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1065. if (!multimesh->data_cache.is_empty()) {
  1066. memcpy(buffer_data.ptrw(), multimesh->data_cache.ptr(), buffer_data.size());
  1067. }
  1068. RD::get_singleton()->free(multimesh->buffer);
  1069. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float) * 2;
  1070. multimesh->buffer = RD::get_singleton()->storage_buffer_create(buffer_size);
  1071. RD::get_singleton()->buffer_update(multimesh->buffer, 0, buffer_data.size(), buffer_data.ptr(), RD::BARRIER_MASK_NO_BARRIER);
  1072. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_data.size(), buffer_data.size(), buffer_data.ptr());
  1073. multimesh->uniform_set_3d = RID(); // Cleared by dependency
  1074. return true;
  1075. }
  1076. return false; // Update the transforms uniform set cache
  1077. }
  1078. void MeshStorage::_multimesh_get_motion_vectors_offsets(RID p_multimesh, uint32_t &r_current_offset, uint32_t &r_prev_offset) {
  1079. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1080. ERR_FAIL_COND(!multimesh);
  1081. r_current_offset = multimesh->motion_vectors_current_offset;
  1082. if (RSG::rasterizer->get_frame_number() - multimesh->motion_vectors_last_change >= 2) {
  1083. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1084. }
  1085. r_prev_offset = multimesh->motion_vectors_previous_offset;
  1086. }
  1087. int MeshStorage::multimesh_get_instance_count(RID p_multimesh) const {
  1088. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1089. ERR_FAIL_COND_V(!multimesh, 0);
  1090. return multimesh->instances;
  1091. }
  1092. void MeshStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
  1093. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1094. ERR_FAIL_COND(!multimesh);
  1095. if (multimesh->mesh == p_mesh) {
  1096. return;
  1097. }
  1098. multimesh->mesh = p_mesh;
  1099. if (multimesh->instances == 0) {
  1100. return;
  1101. }
  1102. if (multimesh->data_cache.size()) {
  1103. //we have a data cache, just mark it dirt
  1104. _multimesh_mark_all_dirty(multimesh, false, true);
  1105. } else if (multimesh->instances) {
  1106. //need to re-create AABB unfortunately, calling this has a penalty
  1107. if (multimesh->buffer_set) {
  1108. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1109. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1110. const float *data = reinterpret_cast<const float *>(r);
  1111. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1112. }
  1113. }
  1114. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  1115. }
  1116. #define MULTIMESH_DIRTY_REGION_SIZE 512
  1117. void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
  1118. if (multimesh->data_cache.size() > 0) {
  1119. return; //already local
  1120. }
  1121. // this means that the user wants to load/save individual elements,
  1122. // for this, the data must reside on CPU, so just copy it there.
  1123. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache;
  1124. if (multimesh->motion_vectors_enabled) {
  1125. buffer_size *= 2;
  1126. }
  1127. multimesh->data_cache.resize(buffer_size);
  1128. {
  1129. float *w = multimesh->data_cache.ptrw();
  1130. if (multimesh->buffer_set) {
  1131. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1132. {
  1133. const uint8_t *r = buffer.ptr();
  1134. memcpy(w, r, buffer.size());
  1135. }
  1136. } else {
  1137. memset(w, 0, buffer_size * sizeof(float));
  1138. }
  1139. }
  1140. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1141. multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1142. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1143. multimesh->data_cache_dirty_region_count = 0;
  1144. multimesh->previous_data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1145. memset(multimesh->previous_data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1146. multimesh->previous_data_cache_dirty_region_count = 0;
  1147. }
  1148. void MeshStorage::_multimesh_update_motion_vectors_data_cache(MultiMesh *multimesh) {
  1149. ERR_FAIL_COND(multimesh->data_cache.is_empty());
  1150. if (!multimesh->motion_vectors_enabled) {
  1151. return;
  1152. }
  1153. uint32_t frame = RSG::rasterizer->get_frame_number();
  1154. if (multimesh->motion_vectors_last_change != frame) {
  1155. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1156. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1157. multimesh->motion_vectors_last_change = frame;
  1158. if (multimesh->previous_data_cache_dirty_region_count > 0) {
  1159. uint8_t *data = (uint8_t *)multimesh->data_cache.ptrw();
  1160. uint32_t current_ofs = multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1161. uint32_t previous_ofs = multimesh->motion_vectors_previous_offset * multimesh->stride_cache * sizeof(float);
  1162. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1163. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1164. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1165. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1166. for (uint32_t i = 0; i < visible_region_count; i++) {
  1167. if (multimesh->previous_data_cache_dirty_regions[i]) {
  1168. uint32_t offset = i * region_size;
  1169. memcpy(data + current_ofs + offset, data + previous_ofs + offset, MIN(region_size, size - offset));
  1170. }
  1171. }
  1172. }
  1173. }
  1174. }
  1175. void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
  1176. uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
  1177. #ifdef DEBUG_ENABLED
  1178. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1179. ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
  1180. #endif
  1181. if (!multimesh->data_cache_dirty_regions[region_index]) {
  1182. multimesh->data_cache_dirty_regions[region_index] = true;
  1183. multimesh->data_cache_dirty_region_count++;
  1184. }
  1185. if (p_aabb) {
  1186. multimesh->aabb_dirty = true;
  1187. }
  1188. if (!multimesh->dirty) {
  1189. multimesh->dirty_list = multimesh_dirty_list;
  1190. multimesh_dirty_list = multimesh;
  1191. multimesh->dirty = true;
  1192. }
  1193. }
  1194. void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
  1195. if (p_data) {
  1196. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1197. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1198. if (!multimesh->data_cache_dirty_regions[i]) {
  1199. multimesh->data_cache_dirty_regions[i] = true;
  1200. multimesh->data_cache_dirty_region_count++;
  1201. }
  1202. }
  1203. }
  1204. if (p_aabb) {
  1205. multimesh->aabb_dirty = true;
  1206. }
  1207. if (!multimesh->dirty) {
  1208. multimesh->dirty_list = multimesh_dirty_list;
  1209. multimesh_dirty_list = multimesh;
  1210. multimesh->dirty = true;
  1211. }
  1212. }
  1213. void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
  1214. ERR_FAIL_COND(multimesh->mesh.is_null());
  1215. AABB aabb;
  1216. AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
  1217. for (int i = 0; i < p_instances; i++) {
  1218. const float *data = p_data + multimesh->stride_cache * i;
  1219. Transform3D t;
  1220. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1221. t.basis.rows[0][0] = data[0];
  1222. t.basis.rows[0][1] = data[1];
  1223. t.basis.rows[0][2] = data[2];
  1224. t.origin.x = data[3];
  1225. t.basis.rows[1][0] = data[4];
  1226. t.basis.rows[1][1] = data[5];
  1227. t.basis.rows[1][2] = data[6];
  1228. t.origin.y = data[7];
  1229. t.basis.rows[2][0] = data[8];
  1230. t.basis.rows[2][1] = data[9];
  1231. t.basis.rows[2][2] = data[10];
  1232. t.origin.z = data[11];
  1233. } else {
  1234. t.basis.rows[0].x = data[0];
  1235. t.basis.rows[1].x = data[1];
  1236. t.origin.x = data[3];
  1237. t.basis.rows[0].y = data[4];
  1238. t.basis.rows[1].y = data[5];
  1239. t.origin.y = data[7];
  1240. }
  1241. if (i == 0) {
  1242. aabb = t.xform(mesh_aabb);
  1243. } else {
  1244. aabb.merge_with(t.xform(mesh_aabb));
  1245. }
  1246. }
  1247. multimesh->aabb = aabb;
  1248. }
  1249. void MeshStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
  1250. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1251. ERR_FAIL_COND(!multimesh);
  1252. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1253. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
  1254. _multimesh_make_local(multimesh);
  1255. _multimesh_update_motion_vectors_data_cache(multimesh);
  1256. {
  1257. float *w = multimesh->data_cache.ptrw();
  1258. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1259. dataptr[0] = p_transform.basis.rows[0][0];
  1260. dataptr[1] = p_transform.basis.rows[0][1];
  1261. dataptr[2] = p_transform.basis.rows[0][2];
  1262. dataptr[3] = p_transform.origin.x;
  1263. dataptr[4] = p_transform.basis.rows[1][0];
  1264. dataptr[5] = p_transform.basis.rows[1][1];
  1265. dataptr[6] = p_transform.basis.rows[1][2];
  1266. dataptr[7] = p_transform.origin.y;
  1267. dataptr[8] = p_transform.basis.rows[2][0];
  1268. dataptr[9] = p_transform.basis.rows[2][1];
  1269. dataptr[10] = p_transform.basis.rows[2][2];
  1270. dataptr[11] = p_transform.origin.z;
  1271. }
  1272. _multimesh_mark_dirty(multimesh, p_index, true);
  1273. }
  1274. void MeshStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
  1275. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1276. ERR_FAIL_COND(!multimesh);
  1277. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1278. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
  1279. _multimesh_make_local(multimesh);
  1280. _multimesh_update_motion_vectors_data_cache(multimesh);
  1281. {
  1282. float *w = multimesh->data_cache.ptrw();
  1283. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1284. dataptr[0] = p_transform.columns[0][0];
  1285. dataptr[1] = p_transform.columns[1][0];
  1286. dataptr[2] = 0;
  1287. dataptr[3] = p_transform.columns[2][0];
  1288. dataptr[4] = p_transform.columns[0][1];
  1289. dataptr[5] = p_transform.columns[1][1];
  1290. dataptr[6] = 0;
  1291. dataptr[7] = p_transform.columns[2][1];
  1292. }
  1293. _multimesh_mark_dirty(multimesh, p_index, true);
  1294. }
  1295. void MeshStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
  1296. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1297. ERR_FAIL_COND(!multimesh);
  1298. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1299. ERR_FAIL_COND(!multimesh->uses_colors);
  1300. _multimesh_make_local(multimesh);
  1301. _multimesh_update_motion_vectors_data_cache(multimesh);
  1302. {
  1303. float *w = multimesh->data_cache.ptrw();
  1304. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1305. dataptr[0] = p_color.r;
  1306. dataptr[1] = p_color.g;
  1307. dataptr[2] = p_color.b;
  1308. dataptr[3] = p_color.a;
  1309. }
  1310. _multimesh_mark_dirty(multimesh, p_index, false);
  1311. }
  1312. void MeshStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
  1313. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1314. ERR_FAIL_COND(!multimesh);
  1315. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1316. ERR_FAIL_COND(!multimesh->uses_custom_data);
  1317. _multimesh_make_local(multimesh);
  1318. _multimesh_update_motion_vectors_data_cache(multimesh);
  1319. {
  1320. float *w = multimesh->data_cache.ptrw();
  1321. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1322. dataptr[0] = p_color.r;
  1323. dataptr[1] = p_color.g;
  1324. dataptr[2] = p_color.b;
  1325. dataptr[3] = p_color.a;
  1326. }
  1327. _multimesh_mark_dirty(multimesh, p_index, false);
  1328. }
  1329. RID MeshStorage::multimesh_get_mesh(RID p_multimesh) const {
  1330. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1331. ERR_FAIL_COND_V(!multimesh, RID());
  1332. return multimesh->mesh;
  1333. }
  1334. Dependency *MeshStorage::multimesh_get_dependency(RID p_multimesh) const {
  1335. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1336. ERR_FAIL_COND_V(!multimesh, nullptr);
  1337. return &multimesh->dependency;
  1338. }
  1339. Transform3D MeshStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
  1340. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1341. ERR_FAIL_COND_V(!multimesh, Transform3D());
  1342. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
  1343. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
  1344. _multimesh_make_local(multimesh);
  1345. Transform3D t;
  1346. {
  1347. const float *r = multimesh->data_cache.ptr();
  1348. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1349. t.basis.rows[0][0] = dataptr[0];
  1350. t.basis.rows[0][1] = dataptr[1];
  1351. t.basis.rows[0][2] = dataptr[2];
  1352. t.origin.x = dataptr[3];
  1353. t.basis.rows[1][0] = dataptr[4];
  1354. t.basis.rows[1][1] = dataptr[5];
  1355. t.basis.rows[1][2] = dataptr[6];
  1356. t.origin.y = dataptr[7];
  1357. t.basis.rows[2][0] = dataptr[8];
  1358. t.basis.rows[2][1] = dataptr[9];
  1359. t.basis.rows[2][2] = dataptr[10];
  1360. t.origin.z = dataptr[11];
  1361. }
  1362. return t;
  1363. }
  1364. Transform2D MeshStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
  1365. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1366. ERR_FAIL_COND_V(!multimesh, Transform2D());
  1367. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
  1368. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
  1369. _multimesh_make_local(multimesh);
  1370. Transform2D t;
  1371. {
  1372. const float *r = multimesh->data_cache.ptr();
  1373. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1374. t.columns[0][0] = dataptr[0];
  1375. t.columns[1][0] = dataptr[1];
  1376. t.columns[2][0] = dataptr[3];
  1377. t.columns[0][1] = dataptr[4];
  1378. t.columns[1][1] = dataptr[5];
  1379. t.columns[2][1] = dataptr[7];
  1380. }
  1381. return t;
  1382. }
  1383. Color MeshStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
  1384. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1385. ERR_FAIL_COND_V(!multimesh, Color());
  1386. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1387. ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
  1388. _multimesh_make_local(multimesh);
  1389. Color c;
  1390. {
  1391. const float *r = multimesh->data_cache.ptr();
  1392. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1393. c.r = dataptr[0];
  1394. c.g = dataptr[1];
  1395. c.b = dataptr[2];
  1396. c.a = dataptr[3];
  1397. }
  1398. return c;
  1399. }
  1400. Color MeshStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
  1401. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1402. ERR_FAIL_COND_V(!multimesh, Color());
  1403. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1404. ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
  1405. _multimesh_make_local(multimesh);
  1406. Color c;
  1407. {
  1408. const float *r = multimesh->data_cache.ptr();
  1409. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1410. c.r = dataptr[0];
  1411. c.g = dataptr[1];
  1412. c.b = dataptr[2];
  1413. c.a = dataptr[3];
  1414. }
  1415. return c;
  1416. }
  1417. void MeshStorage::multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
  1418. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1419. ERR_FAIL_COND(!multimesh);
  1420. ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
  1421. if (multimesh->motion_vectors_enabled) {
  1422. uint32_t frame = RSG::rasterizer->get_frame_number();
  1423. if (multimesh->motion_vectors_last_change != frame) {
  1424. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1425. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1426. multimesh->motion_vectors_last_change = frame;
  1427. }
  1428. }
  1429. {
  1430. const float *r = p_buffer.ptr();
  1431. RD::get_singleton()->buffer_update(multimesh->buffer, multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float), p_buffer.size() * sizeof(float), r);
  1432. multimesh->buffer_set = true;
  1433. }
  1434. if (multimesh->data_cache.size()) {
  1435. float *cache_data = multimesh->data_cache.ptrw();
  1436. memcpy(cache_data + (multimesh->motion_vectors_current_offset * multimesh->stride_cache), p_buffer.ptr(), p_buffer.size() * sizeof(float));
  1437. _multimesh_mark_all_dirty(multimesh, true, true); //update AABB
  1438. } else if (multimesh->mesh.is_valid()) {
  1439. //if we have a mesh set, we need to re-generate the AABB from the new data
  1440. const float *data = p_buffer.ptr();
  1441. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1442. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1443. }
  1444. }
  1445. Vector<float> MeshStorage::multimesh_get_buffer(RID p_multimesh) const {
  1446. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1447. ERR_FAIL_COND_V(!multimesh, Vector<float>());
  1448. if (multimesh->buffer.is_null()) {
  1449. return Vector<float>();
  1450. } else {
  1451. Vector<float> ret;
  1452. ret.resize(multimesh->instances * multimesh->stride_cache);
  1453. float *w = ret.ptrw();
  1454. if (multimesh->data_cache.size()) {
  1455. const uint8_t *r = (uint8_t *)multimesh->data_cache.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1456. memcpy(w, r, ret.size() * sizeof(float));
  1457. } else {
  1458. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1459. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1460. memcpy(w, r, ret.size() * sizeof(float));
  1461. }
  1462. return ret;
  1463. }
  1464. }
  1465. void MeshStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
  1466. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1467. ERR_FAIL_COND(!multimesh);
  1468. ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
  1469. if (multimesh->visible_instances == p_visible) {
  1470. return;
  1471. }
  1472. if (multimesh->data_cache.size()) {
  1473. //there is a data cache..
  1474. _multimesh_mark_all_dirty(multimesh, false, true);
  1475. }
  1476. multimesh->visible_instances = p_visible;
  1477. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
  1478. }
  1479. int MeshStorage::multimesh_get_visible_instances(RID p_multimesh) const {
  1480. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1481. ERR_FAIL_COND_V(!multimesh, 0);
  1482. return multimesh->visible_instances;
  1483. }
  1484. AABB MeshStorage::multimesh_get_aabb(RID p_multimesh) const {
  1485. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1486. ERR_FAIL_COND_V(!multimesh, AABB());
  1487. if (multimesh->aabb_dirty) {
  1488. const_cast<MeshStorage *>(this)->_update_dirty_multimeshes();
  1489. }
  1490. return multimesh->aabb;
  1491. }
  1492. void MeshStorage::_update_dirty_multimeshes() {
  1493. while (multimesh_dirty_list) {
  1494. MultiMesh *multimesh = multimesh_dirty_list;
  1495. if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
  1496. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1497. uint32_t buffer_offset = multimesh->motion_vectors_current_offset * multimesh->stride_cache;
  1498. const float *data = multimesh->data_cache.ptr() + buffer_offset;
  1499. uint32_t total_dirty_regions = multimesh->data_cache_dirty_region_count + multimesh->previous_data_cache_dirty_region_count;
  1500. if (total_dirty_regions != 0) {
  1501. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1502. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1503. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1504. if (total_dirty_regions > 32 || total_dirty_regions > visible_region_count / 2) {
  1505. //if there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
  1506. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float), MIN(visible_region_count * region_size, multimesh->instances * (uint32_t)multimesh->stride_cache * (uint32_t)sizeof(float)), data);
  1507. } else {
  1508. //not that many regions? update them all
  1509. for (uint32_t i = 0; i < visible_region_count; i++) {
  1510. if (multimesh->data_cache_dirty_regions[i] || multimesh->previous_data_cache_dirty_regions[i]) {
  1511. uint32_t offset = i * region_size;
  1512. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1513. uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
  1514. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float) + offset, MIN(region_size, size - offset), &data[region_start_index], RD::BARRIER_MASK_NO_BARRIER);
  1515. }
  1516. }
  1517. RD::get_singleton()->barrier(RD::BARRIER_MASK_NO_BARRIER, RD::BARRIER_MASK_ALL_BARRIERS);
  1518. }
  1519. memcpy(multimesh->previous_data_cache_dirty_regions, multimesh->data_cache_dirty_regions, data_cache_dirty_region_count * sizeof(bool));
  1520. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1521. multimesh->previous_data_cache_dirty_region_count = multimesh->data_cache_dirty_region_count;
  1522. multimesh->data_cache_dirty_region_count = 0;
  1523. }
  1524. if (multimesh->aabb_dirty) {
  1525. //aabb is dirty..
  1526. _multimesh_re_create_aabb(multimesh, data, visible_instances);
  1527. multimesh->aabb_dirty = false;
  1528. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1529. }
  1530. }
  1531. multimesh_dirty_list = multimesh->dirty_list;
  1532. multimesh->dirty_list = nullptr;
  1533. multimesh->dirty = false;
  1534. }
  1535. multimesh_dirty_list = nullptr;
  1536. }
  1537. /* SKELETON API */
  1538. RID MeshStorage::skeleton_allocate() {
  1539. return skeleton_owner.allocate_rid();
  1540. }
  1541. void MeshStorage::skeleton_initialize(RID p_rid) {
  1542. skeleton_owner.initialize_rid(p_rid, Skeleton());
  1543. }
  1544. void MeshStorage::skeleton_free(RID p_rid) {
  1545. _update_dirty_skeletons();
  1546. skeleton_allocate_data(p_rid, 0);
  1547. Skeleton *skeleton = skeleton_owner.get_or_null(p_rid);
  1548. skeleton->dependency.deleted_notify(p_rid);
  1549. skeleton_owner.free(p_rid);
  1550. }
  1551. void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) {
  1552. if (!skeleton->dirty) {
  1553. skeleton->dirty = true;
  1554. skeleton->dirty_list = skeleton_dirty_list;
  1555. skeleton_dirty_list = skeleton;
  1556. }
  1557. }
  1558. void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
  1559. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1560. ERR_FAIL_COND(!skeleton);
  1561. ERR_FAIL_COND(p_bones < 0);
  1562. if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
  1563. return;
  1564. }
  1565. skeleton->size = p_bones;
  1566. skeleton->use_2d = p_2d_skeleton;
  1567. skeleton->uniform_set_3d = RID();
  1568. if (skeleton->buffer.is_valid()) {
  1569. RD::get_singleton()->free(skeleton->buffer);
  1570. skeleton->buffer = RID();
  1571. skeleton->data.clear();
  1572. skeleton->uniform_set_mi = RID();
  1573. }
  1574. if (skeleton->size) {
  1575. skeleton->data.resize(skeleton->size * (skeleton->use_2d ? 8 : 12));
  1576. skeleton->buffer = RD::get_singleton()->storage_buffer_create(skeleton->data.size() * sizeof(float));
  1577. memset(skeleton->data.ptrw(), 0, skeleton->data.size() * sizeof(float));
  1578. _skeleton_make_dirty(skeleton);
  1579. {
  1580. Vector<RD::Uniform> uniforms;
  1581. {
  1582. RD::Uniform u;
  1583. u.binding = 0;
  1584. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1585. u.append_id(skeleton->buffer);
  1586. uniforms.push_back(u);
  1587. }
  1588. skeleton->uniform_set_mi = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  1589. }
  1590. }
  1591. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA);
  1592. }
  1593. int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
  1594. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1595. ERR_FAIL_COND_V(!skeleton, 0);
  1596. return skeleton->size;
  1597. }
  1598. void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
  1599. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1600. ERR_FAIL_COND(!skeleton);
  1601. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1602. ERR_FAIL_COND(skeleton->use_2d);
  1603. float *dataptr = skeleton->data.ptrw() + p_bone * 12;
  1604. dataptr[0] = p_transform.basis.rows[0][0];
  1605. dataptr[1] = p_transform.basis.rows[0][1];
  1606. dataptr[2] = p_transform.basis.rows[0][2];
  1607. dataptr[3] = p_transform.origin.x;
  1608. dataptr[4] = p_transform.basis.rows[1][0];
  1609. dataptr[5] = p_transform.basis.rows[1][1];
  1610. dataptr[6] = p_transform.basis.rows[1][2];
  1611. dataptr[7] = p_transform.origin.y;
  1612. dataptr[8] = p_transform.basis.rows[2][0];
  1613. dataptr[9] = p_transform.basis.rows[2][1];
  1614. dataptr[10] = p_transform.basis.rows[2][2];
  1615. dataptr[11] = p_transform.origin.z;
  1616. _skeleton_make_dirty(skeleton);
  1617. }
  1618. Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
  1619. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1620. ERR_FAIL_COND_V(!skeleton, Transform3D());
  1621. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D());
  1622. ERR_FAIL_COND_V(skeleton->use_2d, Transform3D());
  1623. const float *dataptr = skeleton->data.ptr() + p_bone * 12;
  1624. Transform3D t;
  1625. t.basis.rows[0][0] = dataptr[0];
  1626. t.basis.rows[0][1] = dataptr[1];
  1627. t.basis.rows[0][2] = dataptr[2];
  1628. t.origin.x = dataptr[3];
  1629. t.basis.rows[1][0] = dataptr[4];
  1630. t.basis.rows[1][1] = dataptr[5];
  1631. t.basis.rows[1][2] = dataptr[6];
  1632. t.origin.y = dataptr[7];
  1633. t.basis.rows[2][0] = dataptr[8];
  1634. t.basis.rows[2][1] = dataptr[9];
  1635. t.basis.rows[2][2] = dataptr[10];
  1636. t.origin.z = dataptr[11];
  1637. return t;
  1638. }
  1639. void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
  1640. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1641. ERR_FAIL_COND(!skeleton);
  1642. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1643. ERR_FAIL_COND(!skeleton->use_2d);
  1644. float *dataptr = skeleton->data.ptrw() + p_bone * 8;
  1645. dataptr[0] = p_transform.columns[0][0];
  1646. dataptr[1] = p_transform.columns[1][0];
  1647. dataptr[2] = 0;
  1648. dataptr[3] = p_transform.columns[2][0];
  1649. dataptr[4] = p_transform.columns[0][1];
  1650. dataptr[5] = p_transform.columns[1][1];
  1651. dataptr[6] = 0;
  1652. dataptr[7] = p_transform.columns[2][1];
  1653. _skeleton_make_dirty(skeleton);
  1654. }
  1655. Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
  1656. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1657. ERR_FAIL_COND_V(!skeleton, Transform2D());
  1658. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
  1659. ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
  1660. const float *dataptr = skeleton->data.ptr() + p_bone * 8;
  1661. Transform2D t;
  1662. t.columns[0][0] = dataptr[0];
  1663. t.columns[1][0] = dataptr[1];
  1664. t.columns[2][0] = dataptr[3];
  1665. t.columns[0][1] = dataptr[4];
  1666. t.columns[1][1] = dataptr[5];
  1667. t.columns[2][1] = dataptr[7];
  1668. return t;
  1669. }
  1670. void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
  1671. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1672. ERR_FAIL_NULL(skeleton);
  1673. ERR_FAIL_COND(!skeleton->use_2d);
  1674. skeleton->base_transform_2d = p_base_transform;
  1675. }
  1676. void MeshStorage::_update_dirty_skeletons() {
  1677. while (skeleton_dirty_list) {
  1678. Skeleton *skeleton = skeleton_dirty_list;
  1679. if (skeleton->size) {
  1680. RD::get_singleton()->buffer_update(skeleton->buffer, 0, skeleton->data.size() * sizeof(float), skeleton->data.ptr());
  1681. }
  1682. skeleton_dirty_list = skeleton->dirty_list;
  1683. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES);
  1684. skeleton->version++;
  1685. skeleton->dirty = false;
  1686. skeleton->dirty_list = nullptr;
  1687. }
  1688. skeleton_dirty_list = nullptr;
  1689. }
  1690. void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) {
  1691. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1692. ERR_FAIL_COND(!skeleton);
  1693. p_instance->update_dependency(&skeleton->dependency);
  1694. }