renderer_scene_render_rd.cpp 159 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914
  1. /*************************************************************************/
  2. /* renderer_scene_render_rd.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "renderer_scene_render_rd.h"
  31. #include "core/config/project_settings.h"
  32. #include "core/os/os.h"
  33. #include "renderer_compositor_rd.h"
  34. #include "servers/rendering/renderer_rd/environment/fog.h"
  35. #include "servers/rendering/renderer_rd/storage_rd/material_storage.h"
  36. #include "servers/rendering/renderer_rd/storage_rd/texture_storage.h"
  37. #include "servers/rendering/rendering_server_default.h"
  38. #include "servers/rendering/storage/camera_attributes_storage.h"
  39. void get_vogel_disk(float *r_kernel, int p_sample_count) {
  40. const float golden_angle = 2.4;
  41. for (int i = 0; i < p_sample_count; i++) {
  42. float r = Math::sqrt(float(i) + 0.5) / Math::sqrt(float(p_sample_count));
  43. float theta = float(i) * golden_angle;
  44. r_kernel[i * 4] = Math::cos(theta) * r;
  45. r_kernel[i * 4 + 1] = Math::sin(theta) * r;
  46. }
  47. }
  48. void RendererSceneRenderRD::sdfgi_update(const Ref<RenderSceneBuffers> &p_render_buffers, RID p_environment, const Vector3 &p_world_position) {
  49. Ref<RenderSceneBuffersRD> rb = p_render_buffers;
  50. ERR_FAIL_COND(rb.is_null());
  51. Ref<RendererRD::GI::SDFGI> sdfgi;
  52. if (rb->has_custom_data(RB_SCOPE_SDFGI)) {
  53. sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
  54. }
  55. bool needs_sdfgi = p_environment.is_valid() && environment_get_sdfgi_enabled(p_environment);
  56. if (!needs_sdfgi) {
  57. if (sdfgi.is_valid()) {
  58. // delete it
  59. sdfgi.unref();
  60. rb->set_custom_data(RB_SCOPE_SDFGI, sdfgi);
  61. }
  62. return;
  63. }
  64. static const uint32_t history_frames_to_converge[RS::ENV_SDFGI_CONVERGE_MAX] = { 5, 10, 15, 20, 25, 30 };
  65. uint32_t requested_history_size = history_frames_to_converge[gi.sdfgi_frames_to_converge];
  66. if (sdfgi.is_valid() && (sdfgi->num_cascades != environment_get_sdfgi_cascades(p_environment) || sdfgi->min_cell_size != environment_get_sdfgi_min_cell_size(p_environment) || requested_history_size != sdfgi->history_size || sdfgi->uses_occlusion != environment_get_sdfgi_use_occlusion(p_environment) || sdfgi->y_scale_mode != environment_get_sdfgi_y_scale(p_environment))) {
  67. //configuration changed, erase
  68. sdfgi.unref();
  69. rb->set_custom_data(RB_SCOPE_SDFGI, sdfgi);
  70. }
  71. if (sdfgi.is_null()) {
  72. // re-create
  73. sdfgi = gi.create_sdfgi(p_environment, p_world_position, requested_history_size);
  74. rb->set_custom_data(RB_SCOPE_SDFGI, sdfgi);
  75. } else {
  76. //check for updates
  77. sdfgi->update(p_environment, p_world_position);
  78. }
  79. }
  80. int RendererSceneRenderRD::sdfgi_get_pending_region_count(const Ref<RenderSceneBuffers> &p_render_buffers) const {
  81. Ref<RenderSceneBuffersRD> rb = p_render_buffers;
  82. ERR_FAIL_COND_V(rb.is_null(), 0);
  83. if (!rb->has_custom_data(RB_SCOPE_SDFGI)) {
  84. return 0;
  85. }
  86. Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
  87. int dirty_count = 0;
  88. for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) {
  89. const RendererRD::GI::SDFGI::Cascade &c = sdfgi->cascades[i];
  90. if (c.dirty_regions == RendererRD::GI::SDFGI::Cascade::DIRTY_ALL) {
  91. dirty_count++;
  92. } else {
  93. for (int j = 0; j < 3; j++) {
  94. if (c.dirty_regions[j] != 0) {
  95. dirty_count++;
  96. }
  97. }
  98. }
  99. }
  100. return dirty_count;
  101. }
  102. AABB RendererSceneRenderRD::sdfgi_get_pending_region_bounds(const Ref<RenderSceneBuffers> &p_render_buffers, int p_region) const {
  103. AABB bounds;
  104. Vector3i from;
  105. Vector3i size;
  106. Ref<RenderSceneBuffersRD> rb = p_render_buffers;
  107. ERR_FAIL_COND_V(rb.is_null(), AABB());
  108. Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
  109. ERR_FAIL_COND_V(sdfgi.is_null(), AABB());
  110. int c = sdfgi->get_pending_region_data(p_region, from, size, bounds);
  111. ERR_FAIL_COND_V(c == -1, AABB());
  112. return bounds;
  113. }
  114. uint32_t RendererSceneRenderRD::sdfgi_get_pending_region_cascade(const Ref<RenderSceneBuffers> &p_render_buffers, int p_region) const {
  115. AABB bounds;
  116. Vector3i from;
  117. Vector3i size;
  118. Ref<RenderSceneBuffersRD> rb = p_render_buffers;
  119. ERR_FAIL_COND_V(rb.is_null(), -1);
  120. Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
  121. ERR_FAIL_COND_V(sdfgi.is_null(), -1);
  122. return sdfgi->get_pending_region_data(p_region, from, size, bounds);
  123. }
  124. RID RendererSceneRenderRD::sky_allocate() {
  125. return sky.allocate_sky_rid();
  126. }
  127. void RendererSceneRenderRD::sky_initialize(RID p_rid) {
  128. sky.initialize_sky_rid(p_rid);
  129. }
  130. void RendererSceneRenderRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) {
  131. sky.sky_set_radiance_size(p_sky, p_radiance_size);
  132. }
  133. void RendererSceneRenderRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) {
  134. sky.sky_set_mode(p_sky, p_mode);
  135. }
  136. void RendererSceneRenderRD::sky_set_material(RID p_sky, RID p_material) {
  137. sky.sky_set_material(p_sky, p_material);
  138. }
  139. Ref<Image> RendererSceneRenderRD::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) {
  140. return sky.sky_bake_panorama(p_sky, p_energy, p_bake_irradiance, p_size);
  141. }
  142. void RendererSceneRenderRD::environment_glow_set_use_bicubic_upscale(bool p_enable) {
  143. glow_bicubic_upscale = p_enable;
  144. }
  145. void RendererSceneRenderRD::environment_glow_set_use_high_quality(bool p_enable) {
  146. glow_high_quality = p_enable;
  147. }
  148. void RendererSceneRenderRD::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) {
  149. volumetric_fog_size = p_size;
  150. volumetric_fog_depth = p_depth;
  151. }
  152. void RendererSceneRenderRD::environment_set_volumetric_fog_filter_active(bool p_enable) {
  153. volumetric_fog_filter_active = p_enable;
  154. }
  155. void RendererSceneRenderRD::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) {
  156. gi.sdfgi_ray_count = p_ray_count;
  157. }
  158. void RendererSceneRenderRD::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) {
  159. gi.sdfgi_frames_to_converge = p_frames;
  160. }
  161. void RendererSceneRenderRD::environment_set_sdfgi_frames_to_update_light(RS::EnvironmentSDFGIFramesToUpdateLight p_update) {
  162. gi.sdfgi_frames_to_update_light = p_update;
  163. }
  164. void RendererSceneRenderRD::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) {
  165. ssr_roughness_quality = p_quality;
  166. }
  167. RS::EnvironmentSSRRoughnessQuality RendererSceneRenderRD::environment_get_ssr_roughness_quality() const {
  168. return ssr_roughness_quality;
  169. }
  170. void RendererSceneRenderRD::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) {
  171. ssao_quality = p_quality;
  172. ssao_half_size = p_half_size;
  173. ssao_adaptive_target = p_adaptive_target;
  174. ssao_blur_passes = p_blur_passes;
  175. ssao_fadeout_from = p_fadeout_from;
  176. ssao_fadeout_to = p_fadeout_to;
  177. }
  178. void RendererSceneRenderRD::environment_set_ssil_quality(RS::EnvironmentSSILQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) {
  179. ssil_quality = p_quality;
  180. ssil_half_size = p_half_size;
  181. ssil_adaptive_target = p_adaptive_target;
  182. ssil_blur_passes = p_blur_passes;
  183. ssil_fadeout_from = p_fadeout_from;
  184. ssil_fadeout_to = p_fadeout_to;
  185. }
  186. Ref<Image> RendererSceneRenderRD::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) {
  187. ERR_FAIL_COND_V(p_env.is_null(), Ref<Image>());
  188. RS::EnvironmentBG environment_background = environment_get_background(p_env);
  189. if (environment_background == RS::ENV_BG_CAMERA_FEED || environment_background == RS::ENV_BG_CANVAS || environment_background == RS::ENV_BG_KEEP) {
  190. return Ref<Image>(); //nothing to bake
  191. }
  192. RS::EnvironmentAmbientSource ambient_source = environment_get_ambient_source(p_env);
  193. bool use_ambient_light = false;
  194. bool use_cube_map = false;
  195. if (ambient_source == RS::ENV_AMBIENT_SOURCE_BG && (environment_background == RS::ENV_BG_CLEAR_COLOR || environment_background == RS::ENV_BG_COLOR)) {
  196. use_ambient_light = true;
  197. } else {
  198. use_cube_map = (ambient_source == RS::ENV_AMBIENT_SOURCE_BG && environment_background == RS::ENV_BG_SKY) || ambient_source == RS::ENV_AMBIENT_SOURCE_SKY;
  199. use_ambient_light = use_cube_map || ambient_source == RS::ENV_AMBIENT_SOURCE_COLOR;
  200. }
  201. use_cube_map = use_cube_map || (environment_background == RS::ENV_BG_SKY && environment_get_sky(p_env).is_valid());
  202. Color ambient_color;
  203. float ambient_color_sky_mix = 0.0;
  204. if (use_ambient_light) {
  205. ambient_color_sky_mix = environment_get_ambient_sky_contribution(p_env);
  206. const float ambient_energy = environment_get_ambient_light_energy(p_env);
  207. ambient_color = environment_get_ambient_light(p_env);
  208. ambient_color = ambient_color.srgb_to_linear();
  209. ambient_color.r *= ambient_energy;
  210. ambient_color.g *= ambient_energy;
  211. ambient_color.b *= ambient_energy;
  212. }
  213. if (use_cube_map) {
  214. Ref<Image> panorama = sky_bake_panorama(environment_get_sky(p_env), environment_get_bg_energy_multiplier(p_env), p_bake_irradiance, p_size);
  215. if (use_ambient_light) {
  216. for (int x = 0; x < p_size.width; x++) {
  217. for (int y = 0; y < p_size.height; y++) {
  218. panorama->set_pixel(x, y, ambient_color.lerp(panorama->get_pixel(x, y), ambient_color_sky_mix));
  219. }
  220. }
  221. }
  222. return panorama;
  223. } else {
  224. const float bg_energy_multiplier = environment_get_bg_energy_multiplier(p_env);
  225. Color panorama_color = ((environment_background == RS::ENV_BG_CLEAR_COLOR) ? RSG::texture_storage->get_default_clear_color() : environment_get_bg_color(p_env));
  226. panorama_color = panorama_color.srgb_to_linear();
  227. panorama_color.r *= bg_energy_multiplier;
  228. panorama_color.g *= bg_energy_multiplier;
  229. panorama_color.b *= bg_energy_multiplier;
  230. if (use_ambient_light) {
  231. panorama_color = ambient_color.lerp(panorama_color, ambient_color_sky_mix);
  232. }
  233. Ref<Image> panorama;
  234. panorama.instantiate();
  235. panorama->create(p_size.width, p_size.height, false, Image::FORMAT_RGBAF);
  236. panorama->fill(panorama_color);
  237. return panorama;
  238. }
  239. return Ref<Image>();
  240. }
  241. ////////////////////////////////////////////////////////////
  242. RID RendererSceneRenderRD::fog_volume_instance_create(RID p_fog_volume) {
  243. return RendererRD::Fog::get_singleton()->fog_volume_instance_create(p_fog_volume);
  244. }
  245. void RendererSceneRenderRD::fog_volume_instance_set_transform(RID p_fog_volume_instance, const Transform3D &p_transform) {
  246. RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance);
  247. ERR_FAIL_COND(!fvi);
  248. fvi->transform = p_transform;
  249. }
  250. void RendererSceneRenderRD::fog_volume_instance_set_active(RID p_fog_volume_instance, bool p_active) {
  251. RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance);
  252. ERR_FAIL_COND(!fvi);
  253. fvi->active = p_active;
  254. }
  255. RID RendererSceneRenderRD::fog_volume_instance_get_volume(RID p_fog_volume_instance) const {
  256. RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance);
  257. ERR_FAIL_COND_V(!fvi, RID());
  258. return fvi->volume;
  259. }
  260. Vector3 RendererSceneRenderRD::fog_volume_instance_get_position(RID p_fog_volume_instance) const {
  261. RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance);
  262. ERR_FAIL_COND_V(!fvi, Vector3());
  263. return fvi->transform.get_origin();
  264. }
  265. ////////////////////////////////////////////////////////////
  266. RID RendererSceneRenderRD::reflection_atlas_create() {
  267. ReflectionAtlas ra;
  268. ra.count = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_count");
  269. ra.size = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_size");
  270. if (is_clustered_enabled()) {
  271. ra.cluster_builder = memnew(ClusterBuilderRD);
  272. ra.cluster_builder->set_shared(&cluster_builder_shared);
  273. ra.cluster_builder->setup(Size2i(ra.size, ra.size), max_cluster_elements, RID(), RID(), RID());
  274. } else {
  275. ra.cluster_builder = nullptr;
  276. }
  277. return reflection_atlas_owner.make_rid(ra);
  278. }
  279. void RendererSceneRenderRD::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) {
  280. ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_ref_atlas);
  281. ERR_FAIL_COND(!ra);
  282. if (ra->size == p_reflection_size && ra->count == p_reflection_count) {
  283. return; //no changes
  284. }
  285. if (ra->cluster_builder) {
  286. // only if we're using our cluster
  287. ra->cluster_builder->setup(Size2i(ra->size, ra->size), max_cluster_elements, RID(), RID(), RID());
  288. }
  289. ra->size = p_reflection_size;
  290. ra->count = p_reflection_count;
  291. if (ra->reflection.is_valid()) {
  292. //clear and invalidate everything
  293. RD::get_singleton()->free(ra->reflection);
  294. ra->reflection = RID();
  295. RD::get_singleton()->free(ra->depth_buffer);
  296. ra->depth_buffer = RID();
  297. for (int i = 0; i < ra->reflections.size(); i++) {
  298. ra->reflections.write[i].data.clear_reflection_data();
  299. if (ra->reflections[i].owner.is_null()) {
  300. continue;
  301. }
  302. reflection_probe_release_atlas_index(ra->reflections[i].owner);
  303. //rp->atlasindex clear
  304. }
  305. ra->reflections.clear();
  306. }
  307. }
  308. int RendererSceneRenderRD::reflection_atlas_get_size(RID p_ref_atlas) const {
  309. ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_ref_atlas);
  310. ERR_FAIL_COND_V(!ra, 0);
  311. return ra->size;
  312. }
  313. ////////////////////////
  314. RID RendererSceneRenderRD::reflection_probe_instance_create(RID p_probe) {
  315. ReflectionProbeInstance rpi;
  316. rpi.probe = p_probe;
  317. rpi.forward_id = _allocate_forward_id(FORWARD_ID_TYPE_REFLECTION_PROBE);
  318. return reflection_probe_instance_owner.make_rid(rpi);
  319. }
  320. void RendererSceneRenderRD::reflection_probe_instance_set_transform(RID p_instance, const Transform3D &p_transform) {
  321. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
  322. ERR_FAIL_COND(!rpi);
  323. rpi->transform = p_transform;
  324. rpi->dirty = true;
  325. }
  326. void RendererSceneRenderRD::reflection_probe_release_atlas_index(RID p_instance) {
  327. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
  328. ERR_FAIL_COND(!rpi);
  329. if (rpi->atlas.is_null()) {
  330. return; //nothing to release
  331. }
  332. ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
  333. ERR_FAIL_COND(!atlas);
  334. ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size());
  335. atlas->reflections.write[rpi->atlas_index].owner = RID();
  336. rpi->atlas_index = -1;
  337. rpi->atlas = RID();
  338. }
  339. bool RendererSceneRenderRD::reflection_probe_instance_needs_redraw(RID p_instance) {
  340. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
  341. ERR_FAIL_COND_V(!rpi, false);
  342. if (rpi->rendering) {
  343. return false;
  344. }
  345. if (rpi->dirty) {
  346. return true;
  347. }
  348. if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
  349. return true;
  350. }
  351. return rpi->atlas_index == -1;
  352. }
  353. bool RendererSceneRenderRD::reflection_probe_instance_has_reflection(RID p_instance) {
  354. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
  355. ERR_FAIL_COND_V(!rpi, false);
  356. return rpi->atlas.is_valid();
  357. }
  358. bool RendererSceneRenderRD::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
  359. ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(p_reflection_atlas);
  360. ERR_FAIL_COND_V(!atlas, false);
  361. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
  362. ERR_FAIL_COND_V(!rpi, false);
  363. RD::get_singleton()->draw_command_begin_label("Reflection probe render");
  364. if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->size != 256) {
  365. WARN_PRINT("ReflectionProbes set to UPDATE_ALWAYS must have an atlas size of 256. Please update the atlas size in the ProjectSettings.");
  366. reflection_atlas_set_size(p_reflection_atlas, 256, atlas->count);
  367. }
  368. if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->reflections[0].data.layers[0].mipmaps.size() != 8) {
  369. // Invalidate reflection atlas, need to regenerate
  370. RD::get_singleton()->free(atlas->reflection);
  371. atlas->reflection = RID();
  372. for (int i = 0; i < atlas->reflections.size(); i++) {
  373. if (atlas->reflections[i].owner.is_null()) {
  374. continue;
  375. }
  376. reflection_probe_release_atlas_index(atlas->reflections[i].owner);
  377. }
  378. atlas->reflections.clear();
  379. }
  380. if (atlas->reflection.is_null()) {
  381. int mipmaps = MIN(sky.roughness_layers, Image::get_image_required_mipmaps(atlas->size, atlas->size, Image::FORMAT_RGBAH) + 1);
  382. mipmaps = RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS ? 8 : mipmaps; // always use 8 mipmaps with real time filtering
  383. {
  384. //reflection atlas was unused, create:
  385. RD::TextureFormat tf;
  386. tf.array_layers = 6 * atlas->count;
  387. tf.format = _render_buffers_get_color_format();
  388. tf.texture_type = RD::TEXTURE_TYPE_CUBE_ARRAY;
  389. tf.mipmaps = mipmaps;
  390. tf.width = atlas->size;
  391. tf.height = atlas->size;
  392. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | (_render_buffers_can_be_storage() ? RD::TEXTURE_USAGE_STORAGE_BIT : 0);
  393. atlas->reflection = RD::get_singleton()->texture_create(tf, RD::TextureView());
  394. }
  395. {
  396. RD::TextureFormat tf;
  397. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  398. tf.width = atlas->size;
  399. tf.height = atlas->size;
  400. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  401. atlas->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView());
  402. }
  403. atlas->reflections.resize(atlas->count);
  404. for (int i = 0; i < atlas->count; i++) {
  405. atlas->reflections.write[i].data.update_reflection_data(atlas->size, mipmaps, false, atlas->reflection, i * 6, RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS, sky.roughness_layers, _render_buffers_get_color_format());
  406. for (int j = 0; j < 6; j++) {
  407. atlas->reflections.write[i].fbs[j] = reflection_probe_create_framebuffer(atlas->reflections.write[i].data.layers[0].mipmaps[0].views[j], atlas->depth_buffer);
  408. }
  409. }
  410. Vector<RID> fb;
  411. fb.push_back(atlas->depth_buffer);
  412. atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb);
  413. }
  414. if (rpi->atlas_index == -1) {
  415. for (int i = 0; i < atlas->reflections.size(); i++) {
  416. if (atlas->reflections[i].owner.is_null()) {
  417. rpi->atlas_index = i;
  418. break;
  419. }
  420. }
  421. //find the one used last
  422. if (rpi->atlas_index == -1) {
  423. //everything is in use, find the one least used via LRU
  424. uint64_t pass_min = 0;
  425. for (int i = 0; i < atlas->reflections.size(); i++) {
  426. ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.get_or_null(atlas->reflections[i].owner);
  427. if (rpi2->last_pass < pass_min) {
  428. pass_min = rpi2->last_pass;
  429. rpi->atlas_index = i;
  430. }
  431. }
  432. }
  433. }
  434. if (rpi->atlas_index != -1) { // should we fail if this is still -1 ?
  435. atlas->reflections.write[rpi->atlas_index].owner = p_instance;
  436. }
  437. rpi->atlas = p_reflection_atlas;
  438. rpi->rendering = true;
  439. rpi->dirty = false;
  440. rpi->processing_layer = 1;
  441. rpi->processing_side = 0;
  442. RD::get_singleton()->draw_command_end_label();
  443. return true;
  444. }
  445. RID RendererSceneRenderRD::reflection_probe_create_framebuffer(RID p_color, RID p_depth) {
  446. Vector<RID> fb;
  447. fb.push_back(p_color);
  448. fb.push_back(p_depth);
  449. return RD::get_singleton()->framebuffer_create(fb);
  450. }
  451. bool RendererSceneRenderRD::reflection_probe_instance_postprocess_step(RID p_instance) {
  452. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
  453. ERR_FAIL_COND_V(!rpi, false);
  454. ERR_FAIL_COND_V(!rpi->rendering, false);
  455. ERR_FAIL_COND_V(rpi->atlas.is_null(), false);
  456. ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
  457. if (!atlas || rpi->atlas_index == -1) {
  458. //does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering)
  459. rpi->rendering = false;
  460. return false;
  461. }
  462. if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
  463. // Using real time reflections, all roughness is done in one step
  464. atlas->reflections.write[rpi->atlas_index].data.create_reflection_fast_filter(false);
  465. rpi->rendering = false;
  466. rpi->processing_side = 0;
  467. rpi->processing_layer = 1;
  468. return true;
  469. }
  470. if (rpi->processing_layer > 1) {
  471. atlas->reflections.write[rpi->atlas_index].data.create_reflection_importance_sample(false, 10, rpi->processing_layer, sky.sky_ggx_samples_quality);
  472. rpi->processing_layer++;
  473. if (rpi->processing_layer == atlas->reflections[rpi->atlas_index].data.layers[0].mipmaps.size()) {
  474. rpi->rendering = false;
  475. rpi->processing_side = 0;
  476. rpi->processing_layer = 1;
  477. return true;
  478. }
  479. return false;
  480. } else {
  481. atlas->reflections.write[rpi->atlas_index].data.create_reflection_importance_sample(false, rpi->processing_side, rpi->processing_layer, sky.sky_ggx_samples_quality);
  482. }
  483. rpi->processing_side++;
  484. if (rpi->processing_side == 6) {
  485. rpi->processing_side = 0;
  486. rpi->processing_layer++;
  487. }
  488. return false;
  489. }
  490. uint32_t RendererSceneRenderRD::reflection_probe_instance_get_resolution(RID p_instance) {
  491. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
  492. ERR_FAIL_COND_V(!rpi, 0);
  493. ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
  494. ERR_FAIL_COND_V(!atlas, 0);
  495. return atlas->size;
  496. }
  497. RID RendererSceneRenderRD::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) {
  498. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
  499. ERR_FAIL_COND_V(!rpi, RID());
  500. ERR_FAIL_INDEX_V(p_index, 6, RID());
  501. ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
  502. ERR_FAIL_COND_V(!atlas, RID());
  503. return atlas->reflections[rpi->atlas_index].fbs[p_index];
  504. }
  505. RID RendererSceneRenderRD::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) {
  506. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
  507. ERR_FAIL_COND_V(!rpi, RID());
  508. ERR_FAIL_INDEX_V(p_index, 6, RID());
  509. ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
  510. ERR_FAIL_COND_V(!atlas, RID());
  511. return atlas->depth_fb;
  512. }
  513. ///////////////////////////////////////////////////////////
  514. RID RendererSceneRenderRD::shadow_atlas_create() {
  515. return shadow_atlas_owner.make_rid(ShadowAtlas());
  516. }
  517. void RendererSceneRenderRD::_update_shadow_atlas(ShadowAtlas *shadow_atlas) {
  518. if (shadow_atlas->size > 0 && shadow_atlas->depth.is_null()) {
  519. RD::TextureFormat tf;
  520. tf.format = shadow_atlas->use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT;
  521. tf.width = shadow_atlas->size;
  522. tf.height = shadow_atlas->size;
  523. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  524. shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  525. Vector<RID> fb_tex;
  526. fb_tex.push_back(shadow_atlas->depth);
  527. shadow_atlas->fb = RD::get_singleton()->framebuffer_create(fb_tex);
  528. }
  529. }
  530. void RendererSceneRenderRD::shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits) {
  531. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas);
  532. ERR_FAIL_COND(!shadow_atlas);
  533. ERR_FAIL_COND(p_size < 0);
  534. p_size = next_power_of_2(p_size);
  535. if (p_size == shadow_atlas->size && p_16_bits == shadow_atlas->use_16_bits) {
  536. return;
  537. }
  538. // erasing atlas
  539. if (shadow_atlas->depth.is_valid()) {
  540. RD::get_singleton()->free(shadow_atlas->depth);
  541. shadow_atlas->depth = RID();
  542. }
  543. for (int i = 0; i < 4; i++) {
  544. //clear subdivisions
  545. shadow_atlas->quadrants[i].shadows.clear();
  546. shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision);
  547. }
  548. //erase shadow atlas reference from lights
  549. for (const KeyValue<RID, uint32_t> &E : shadow_atlas->shadow_owners) {
  550. LightInstance *li = light_instance_owner.get_or_null(E.key);
  551. ERR_CONTINUE(!li);
  552. li->shadow_atlases.erase(p_atlas);
  553. }
  554. //clear owners
  555. shadow_atlas->shadow_owners.clear();
  556. shadow_atlas->size = p_size;
  557. shadow_atlas->use_16_bits = p_16_bits;
  558. }
  559. void RendererSceneRenderRD::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
  560. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas);
  561. ERR_FAIL_COND(!shadow_atlas);
  562. ERR_FAIL_INDEX(p_quadrant, 4);
  563. ERR_FAIL_INDEX(p_subdivision, 16384);
  564. uint32_t subdiv = next_power_of_2(p_subdivision);
  565. if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer
  566. subdiv <<= 1;
  567. }
  568. subdiv = int(Math::sqrt((float)subdiv));
  569. //obtain the number that will be x*x
  570. if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) {
  571. return;
  572. }
  573. //erase all data from quadrant
  574. for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
  575. if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
  576. shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  577. LightInstance *li = light_instance_owner.get_or_null(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  578. ERR_CONTINUE(!li);
  579. li->shadow_atlases.erase(p_atlas);
  580. }
  581. }
  582. shadow_atlas->quadrants[p_quadrant].shadows.clear();
  583. shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv);
  584. shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;
  585. //cache the smallest subdiv (for faster allocation in light update)
  586. shadow_atlas->smallest_subdiv = 1 << 30;
  587. for (int i = 0; i < 4; i++) {
  588. if (shadow_atlas->quadrants[i].subdivision) {
  589. shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
  590. }
  591. }
  592. if (shadow_atlas->smallest_subdiv == 1 << 30) {
  593. shadow_atlas->smallest_subdiv = 0;
  594. }
  595. //resort the size orders, simple bublesort for 4 elements..
  596. int swaps = 0;
  597. do {
  598. swaps = 0;
  599. for (int i = 0; i < 3; i++) {
  600. if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
  601. SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
  602. swaps++;
  603. }
  604. }
  605. } while (swaps > 0);
  606. }
  607. bool RendererSceneRenderRD::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
  608. for (int i = p_quadrant_count - 1; i >= 0; i--) {
  609. int qidx = p_in_quadrants[i];
  610. if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
  611. return false;
  612. }
  613. //look for an empty space
  614. int sc = shadow_atlas->quadrants[qidx].shadows.size();
  615. const ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptr();
  616. int found_free_idx = -1; //found a free one
  617. int found_used_idx = -1; //found existing one, must steal it
  618. uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion)
  619. for (int j = 0; j < sc; j++) {
  620. if (!sarr[j].owner.is_valid()) {
  621. found_free_idx = j;
  622. break;
  623. }
  624. LightInstance *sli = light_instance_owner.get_or_null(sarr[j].owner);
  625. ERR_CONTINUE(!sli);
  626. if (sli->last_scene_pass != scene_pass) {
  627. //was just allocated, don't kill it so soon, wait a bit..
  628. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
  629. continue;
  630. }
  631. if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
  632. found_used_idx = j;
  633. min_pass = sli->last_scene_pass;
  634. }
  635. }
  636. }
  637. if (found_free_idx == -1 && found_used_idx == -1) {
  638. continue; //nothing found
  639. }
  640. if (found_free_idx == -1 && found_used_idx != -1) {
  641. found_free_idx = found_used_idx;
  642. }
  643. r_quadrant = qidx;
  644. r_shadow = found_free_idx;
  645. return true;
  646. }
  647. return false;
  648. }
  649. bool RendererSceneRenderRD::_shadow_atlas_find_omni_shadows(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
  650. for (int i = p_quadrant_count - 1; i >= 0; i--) {
  651. int qidx = p_in_quadrants[i];
  652. if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
  653. return false;
  654. }
  655. //look for an empty space
  656. int sc = shadow_atlas->quadrants[qidx].shadows.size();
  657. const ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptr();
  658. int found_idx = -1;
  659. uint64_t min_pass = 0; // sum of currently selected spots, try to get the least recently used pair
  660. for (int j = 0; j < sc - 1; j++) {
  661. uint64_t pass = 0;
  662. if (sarr[j].owner.is_valid()) {
  663. LightInstance *sli = light_instance_owner.get_or_null(sarr[j].owner);
  664. ERR_CONTINUE(!sli);
  665. if (sli->last_scene_pass == scene_pass) {
  666. continue;
  667. }
  668. //was just allocated, don't kill it so soon, wait a bit..
  669. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
  670. continue;
  671. }
  672. pass += sli->last_scene_pass;
  673. }
  674. if (sarr[j + 1].owner.is_valid()) {
  675. LightInstance *sli = light_instance_owner.get_or_null(sarr[j + 1].owner);
  676. ERR_CONTINUE(!sli);
  677. if (sli->last_scene_pass == scene_pass) {
  678. continue;
  679. }
  680. //was just allocated, don't kill it so soon, wait a bit..
  681. if (p_tick - sarr[j + 1].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
  682. continue;
  683. }
  684. pass += sli->last_scene_pass;
  685. }
  686. if (found_idx == -1 || pass < min_pass) {
  687. found_idx = j;
  688. min_pass = pass;
  689. // we found two empty spots, no need to check the rest
  690. if (pass == 0) {
  691. break;
  692. }
  693. }
  694. }
  695. if (found_idx == -1) {
  696. continue; //nothing found
  697. }
  698. r_quadrant = qidx;
  699. r_shadow = found_idx;
  700. return true;
  701. }
  702. return false;
  703. }
  704. bool RendererSceneRenderRD::shadow_atlas_update_light(RID p_atlas, RID p_light_instance, float p_coverage, uint64_t p_light_version) {
  705. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas);
  706. ERR_FAIL_COND_V(!shadow_atlas, false);
  707. LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
  708. ERR_FAIL_COND_V(!li, false);
  709. if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
  710. return false;
  711. }
  712. uint32_t quad_size = shadow_atlas->size >> 1;
  713. int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));
  714. int valid_quadrants[4];
  715. int valid_quadrant_count = 0;
  716. int best_size = -1; //best size found
  717. int best_subdiv = -1; //subdiv for the best size
  718. //find the quadrants this fits into, and the best possible size it can fit into
  719. for (int i = 0; i < 4; i++) {
  720. int q = shadow_atlas->size_order[i];
  721. int sd = shadow_atlas->quadrants[q].subdivision;
  722. if (sd == 0) {
  723. continue; //unused
  724. }
  725. int max_fit = quad_size / sd;
  726. if (best_size != -1 && max_fit > best_size) {
  727. break; //too large
  728. }
  729. valid_quadrants[valid_quadrant_count++] = q;
  730. best_subdiv = sd;
  731. if (max_fit >= desired_fit) {
  732. best_size = max_fit;
  733. }
  734. }
  735. ERR_FAIL_COND_V(valid_quadrant_count == 0, false);
  736. uint64_t tick = OS::get_singleton()->get_ticks_msec();
  737. uint32_t old_key = ShadowAtlas::SHADOW_INVALID;
  738. uint32_t old_quadrant = ShadowAtlas::SHADOW_INVALID;
  739. uint32_t old_shadow = ShadowAtlas::SHADOW_INVALID;
  740. int old_subdivision = -1;
  741. bool should_realloc = false;
  742. bool should_redraw = false;
  743. if (shadow_atlas->shadow_owners.has(p_light_instance)) {
  744. old_key = shadow_atlas->shadow_owners[p_light_instance];
  745. old_quadrant = (old_key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  746. old_shadow = old_key & ShadowAtlas::SHADOW_INDEX_MASK;
  747. should_realloc = shadow_atlas->quadrants[old_quadrant].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[old_quadrant].shadows[old_shadow].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
  748. should_redraw = shadow_atlas->quadrants[old_quadrant].shadows[old_shadow].version != p_light_version;
  749. if (!should_realloc) {
  750. shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].version = p_light_version;
  751. //already existing, see if it should redraw or it's just OK
  752. return should_redraw;
  753. }
  754. old_subdivision = shadow_atlas->quadrants[old_quadrant].subdivision;
  755. }
  756. bool is_omni = li->light_type == RS::LIGHT_OMNI;
  757. bool found_shadow = false;
  758. int new_quadrant = -1;
  759. int new_shadow = -1;
  760. if (is_omni) {
  761. found_shadow = _shadow_atlas_find_omni_shadows(shadow_atlas, valid_quadrants, valid_quadrant_count, old_subdivision, tick, new_quadrant, new_shadow);
  762. } else {
  763. found_shadow = _shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, old_subdivision, tick, new_quadrant, new_shadow);
  764. }
  765. if (found_shadow) {
  766. if (old_quadrant != ShadowAtlas::SHADOW_INVALID) {
  767. shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].version = 0;
  768. shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].owner = RID();
  769. if (old_key & ShadowAtlas::OMNI_LIGHT_FLAG) {
  770. shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow + 1].version = 0;
  771. shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow + 1].owner = RID();
  772. }
  773. }
  774. uint32_t new_key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  775. new_key |= new_shadow;
  776. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  777. _shadow_atlas_invalidate_shadow(sh, p_atlas, shadow_atlas, new_quadrant, new_shadow);
  778. sh->owner = p_light_instance;
  779. sh->alloc_tick = tick;
  780. sh->version = p_light_version;
  781. if (is_omni) {
  782. new_key |= ShadowAtlas::OMNI_LIGHT_FLAG;
  783. int new_omni_shadow = new_shadow + 1;
  784. ShadowAtlas::Quadrant::Shadow *extra_sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_omni_shadow];
  785. _shadow_atlas_invalidate_shadow(extra_sh, p_atlas, shadow_atlas, new_quadrant, new_omni_shadow);
  786. extra_sh->owner = p_light_instance;
  787. extra_sh->alloc_tick = tick;
  788. extra_sh->version = p_light_version;
  789. }
  790. li->shadow_atlases.insert(p_atlas);
  791. //update it in map
  792. shadow_atlas->shadow_owners[p_light_instance] = new_key;
  793. //make it dirty, as it should redraw anyway
  794. return true;
  795. }
  796. return should_redraw;
  797. }
  798. void RendererSceneRenderRD::_shadow_atlas_invalidate_shadow(RendererSceneRenderRD::ShadowAtlas::Quadrant::Shadow *p_shadow, RID p_atlas, RendererSceneRenderRD::ShadowAtlas *p_shadow_atlas, uint32_t p_quadrant, uint32_t p_shadow_idx) {
  799. if (p_shadow->owner.is_valid()) {
  800. LightInstance *sli = light_instance_owner.get_or_null(p_shadow->owner);
  801. uint32_t old_key = p_shadow_atlas->shadow_owners[p_shadow->owner];
  802. if (old_key & ShadowAtlas::OMNI_LIGHT_FLAG) {
  803. uint32_t s = old_key & ShadowAtlas::SHADOW_INDEX_MASK;
  804. uint32_t omni_shadow_idx = p_shadow_idx + (s == (uint32_t)p_shadow_idx ? 1 : -1);
  805. RendererSceneRenderRD::ShadowAtlas::Quadrant::Shadow *omni_shadow = &p_shadow_atlas->quadrants[p_quadrant].shadows.write[omni_shadow_idx];
  806. omni_shadow->version = 0;
  807. omni_shadow->owner = RID();
  808. }
  809. p_shadow_atlas->shadow_owners.erase(p_shadow->owner);
  810. p_shadow->version = 0;
  811. p_shadow->owner = RID();
  812. sli->shadow_atlases.erase(p_atlas);
  813. }
  814. }
  815. void RendererSceneRenderRD::_update_directional_shadow_atlas() {
  816. if (directional_shadow.depth.is_null() && directional_shadow.size > 0) {
  817. RD::TextureFormat tf;
  818. tf.format = directional_shadow.use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT;
  819. tf.width = directional_shadow.size;
  820. tf.height = directional_shadow.size;
  821. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  822. directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  823. Vector<RID> fb_tex;
  824. fb_tex.push_back(directional_shadow.depth);
  825. directional_shadow.fb = RD::get_singleton()->framebuffer_create(fb_tex);
  826. }
  827. }
  828. void RendererSceneRenderRD::directional_shadow_atlas_set_size(int p_size, bool p_16_bits) {
  829. p_size = nearest_power_of_2_templated(p_size);
  830. if (directional_shadow.size == p_size && directional_shadow.use_16_bits == p_16_bits) {
  831. return;
  832. }
  833. directional_shadow.size = p_size;
  834. directional_shadow.use_16_bits = p_16_bits;
  835. if (directional_shadow.depth.is_valid()) {
  836. RD::get_singleton()->free(directional_shadow.depth);
  837. directional_shadow.depth = RID();
  838. _base_uniforms_changed();
  839. }
  840. }
  841. void RendererSceneRenderRD::set_directional_shadow_count(int p_count) {
  842. directional_shadow.light_count = p_count;
  843. directional_shadow.current_light = 0;
  844. }
  845. static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) {
  846. int split_h = 1;
  847. int split_v = 1;
  848. while (split_h * split_v < p_shadow_count) {
  849. if (split_h == split_v) {
  850. split_h <<= 1;
  851. } else {
  852. split_v <<= 1;
  853. }
  854. }
  855. Rect2i rect(0, 0, p_size, p_size);
  856. rect.size.width /= split_h;
  857. rect.size.height /= split_v;
  858. rect.position.x = rect.size.width * (p_shadow_index % split_h);
  859. rect.position.y = rect.size.height * (p_shadow_index / split_h);
  860. return rect;
  861. }
  862. int RendererSceneRenderRD::get_directional_light_shadow_size(RID p_light_intance) {
  863. ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);
  864. Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0);
  865. LightInstance *light_instance = light_instance_owner.get_or_null(p_light_intance);
  866. ERR_FAIL_COND_V(!light_instance, 0);
  867. switch (RSG::light_storage->light_directional_get_shadow_mode(light_instance->light)) {
  868. case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
  869. break; //none
  870. case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
  871. r.size.height /= 2;
  872. break;
  873. case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
  874. r.size /= 2;
  875. break;
  876. }
  877. return MAX(r.size.width, r.size.height);
  878. }
  879. //////////////////////////////////////////////////
  880. RID RendererSceneRenderRD::light_instance_create(RID p_light) {
  881. RID li = light_instance_owner.make_rid(LightInstance());
  882. LightInstance *light_instance = light_instance_owner.get_or_null(li);
  883. light_instance->self = li;
  884. light_instance->light = p_light;
  885. light_instance->light_type = RSG::light_storage->light_get_type(p_light);
  886. if (light_instance->light_type != RS::LIGHT_DIRECTIONAL) {
  887. light_instance->forward_id = _allocate_forward_id(light_instance->light_type == RS::LIGHT_OMNI ? FORWARD_ID_TYPE_OMNI_LIGHT : FORWARD_ID_TYPE_SPOT_LIGHT);
  888. }
  889. return li;
  890. }
  891. void RendererSceneRenderRD::light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) {
  892. LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
  893. ERR_FAIL_COND(!light_instance);
  894. light_instance->transform = p_transform;
  895. }
  896. void RendererSceneRenderRD::light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) {
  897. LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
  898. ERR_FAIL_COND(!light_instance);
  899. light_instance->aabb = p_aabb;
  900. }
  901. void RendererSceneRenderRD::light_instance_set_shadow_transform(RID p_light_instance, const Projection &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) {
  902. LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
  903. ERR_FAIL_COND(!light_instance);
  904. ERR_FAIL_INDEX(p_pass, 6);
  905. light_instance->shadow_transform[p_pass].camera = p_projection;
  906. light_instance->shadow_transform[p_pass].transform = p_transform;
  907. light_instance->shadow_transform[p_pass].farplane = p_far;
  908. light_instance->shadow_transform[p_pass].split = p_split;
  909. light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
  910. light_instance->shadow_transform[p_pass].range_begin = p_range_begin;
  911. light_instance->shadow_transform[p_pass].shadow_texel_size = p_shadow_texel_size;
  912. light_instance->shadow_transform[p_pass].uv_scale = p_uv_scale;
  913. }
  914. void RendererSceneRenderRD::light_instance_mark_visible(RID p_light_instance) {
  915. LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
  916. ERR_FAIL_COND(!light_instance);
  917. light_instance->last_scene_pass = scene_pass;
  918. }
  919. RendererSceneRenderRD::ShadowCubemap *RendererSceneRenderRD::_get_shadow_cubemap(int p_size) {
  920. if (!shadow_cubemaps.has(p_size)) {
  921. ShadowCubemap sc;
  922. {
  923. RD::TextureFormat tf;
  924. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  925. tf.width = p_size;
  926. tf.height = p_size;
  927. tf.texture_type = RD::TEXTURE_TYPE_CUBE;
  928. tf.array_layers = 6;
  929. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  930. sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView());
  931. }
  932. for (int i = 0; i < 6; i++) {
  933. RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0);
  934. Vector<RID> fbtex;
  935. fbtex.push_back(side_texture);
  936. sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex);
  937. }
  938. shadow_cubemaps[p_size] = sc;
  939. }
  940. return &shadow_cubemaps[p_size];
  941. }
  942. //////////////////////////
  943. RID RendererSceneRenderRD::decal_instance_create(RID p_decal) {
  944. DecalInstance di;
  945. di.decal = p_decal;
  946. di.forward_id = _allocate_forward_id(FORWARD_ID_TYPE_DECAL);
  947. return decal_instance_owner.make_rid(di);
  948. }
  949. void RendererSceneRenderRD::decal_instance_set_transform(RID p_decal, const Transform3D &p_transform) {
  950. DecalInstance *di = decal_instance_owner.get_or_null(p_decal);
  951. ERR_FAIL_COND(!di);
  952. di->transform = p_transform;
  953. }
  954. /////////////////////////////////
  955. RID RendererSceneRenderRD::lightmap_instance_create(RID p_lightmap) {
  956. LightmapInstance li;
  957. li.lightmap = p_lightmap;
  958. return lightmap_instance_owner.make_rid(li);
  959. }
  960. void RendererSceneRenderRD::lightmap_instance_set_transform(RID p_lightmap, const Transform3D &p_transform) {
  961. LightmapInstance *li = lightmap_instance_owner.get_or_null(p_lightmap);
  962. ERR_FAIL_COND(!li);
  963. li->transform = p_transform;
  964. }
  965. /////////////////////////////////
  966. RID RendererSceneRenderRD::voxel_gi_instance_create(RID p_base) {
  967. return gi.voxel_gi_instance_create(p_base);
  968. }
  969. void RendererSceneRenderRD::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) {
  970. gi.voxel_gi_instance_set_transform_to_data(p_probe, p_xform);
  971. }
  972. bool RendererSceneRenderRD::voxel_gi_needs_update(RID p_probe) const {
  973. if (!is_dynamic_gi_supported()) {
  974. return false;
  975. }
  976. return gi.voxel_gi_needs_update(p_probe);
  977. }
  978. void RendererSceneRenderRD::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<RenderGeometryInstance *> &p_dynamic_objects) {
  979. if (!is_dynamic_gi_supported()) {
  980. return;
  981. }
  982. gi.voxel_gi_update(p_probe, p_update_light_instances, p_light_instances, p_dynamic_objects, this);
  983. }
  984. void RendererSceneRenderRD::_debug_sdfgi_probes(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_framebuffer, const uint32_t p_view_count, const Projection *p_camera_with_transforms, bool p_will_continue_color, bool p_will_continue_depth) {
  985. ERR_FAIL_COND(p_render_buffers.is_null());
  986. if (!p_render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
  987. return; //nothing to debug
  988. }
  989. Ref<RendererRD::GI::SDFGI> sdfgi = p_render_buffers->get_custom_data(RB_SCOPE_SDFGI);
  990. sdfgi->debug_probes(p_framebuffer, p_view_count, p_camera_with_transforms, p_will_continue_color, p_will_continue_depth);
  991. }
  992. ////////////////////////////////
  993. Ref<RenderSceneBuffers> RendererSceneRenderRD::render_buffers_create() {
  994. Ref<RenderSceneBuffersRD> rb;
  995. rb.instantiate();
  996. rb->set_can_be_storage(_render_buffers_can_be_storage());
  997. rb->set_max_cluster_elements(max_cluster_elements);
  998. rb->set_base_data_format(_render_buffers_get_color_format());
  999. if (ss_effects) {
  1000. rb->set_sseffects(ss_effects);
  1001. }
  1002. if (vrs) {
  1003. rb->set_vrs(vrs);
  1004. }
  1005. setup_render_buffer_data(rb);
  1006. return rb;
  1007. }
  1008. void RendererSceneRenderRD::_allocate_luminance_textures(Ref<RenderSceneBuffersRD> rb) {
  1009. ERR_FAIL_COND(!rb->luminance.current.is_null());
  1010. Size2i internal_size = rb->get_internal_size();
  1011. int w = internal_size.x;
  1012. int h = internal_size.y;
  1013. while (true) {
  1014. w = MAX(w / 8, 1);
  1015. h = MAX(h / 8, 1);
  1016. RD::TextureFormat tf;
  1017. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  1018. tf.width = w;
  1019. tf.height = h;
  1020. bool final = w == 1 && h == 1;
  1021. if (_render_buffers_can_be_storage()) {
  1022. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  1023. if (final) {
  1024. tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT;
  1025. }
  1026. } else {
  1027. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  1028. }
  1029. RID texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1030. rb->luminance.reduce.push_back(texture);
  1031. if (!_render_buffers_can_be_storage()) {
  1032. Vector<RID> fb;
  1033. fb.push_back(texture);
  1034. rb->luminance.fb.push_back(RD::get_singleton()->framebuffer_create(fb));
  1035. }
  1036. if (final) {
  1037. rb->luminance.current = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1038. if (!_render_buffers_can_be_storage()) {
  1039. Vector<RID> fb;
  1040. fb.push_back(rb->luminance.current);
  1041. rb->luminance.current_fb = RD::get_singleton()->framebuffer_create(fb);
  1042. }
  1043. break;
  1044. }
  1045. }
  1046. }
  1047. void RendererSceneRenderRD::_process_sss(Ref<RenderSceneBuffersRD> p_render_buffers, const Projection &p_camera) {
  1048. ERR_FAIL_COND(p_render_buffers.is_null());
  1049. Size2i internal_size = p_render_buffers->get_internal_size();
  1050. bool can_use_effects = internal_size.x >= 8 && internal_size.y >= 8;
  1051. if (!can_use_effects) {
  1052. //just copy
  1053. return;
  1054. }
  1055. p_render_buffers->allocate_blur_textures();
  1056. for (uint32_t v = 0; v < p_render_buffers->get_view_count(); v++) {
  1057. RID internal_texture = p_render_buffers->get_internal_texture(v);
  1058. RID depth_texture = p_render_buffers->get_depth_texture(v);
  1059. ss_effects->sub_surface_scattering(p_render_buffers, internal_texture, depth_texture, p_camera, internal_size, sss_scale, sss_depth_scale, sss_quality);
  1060. }
  1061. }
  1062. void RendererSceneRenderRD::_process_ssr(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_dest_framebuffer, const RID *p_normal_slices, RID p_specular_buffer, const RID *p_metallic_slices, RID p_environment, const Projection *p_projections, const Vector3 *p_eye_offsets, bool p_use_additive) {
  1063. ERR_FAIL_NULL(ss_effects);
  1064. ERR_FAIL_COND(p_render_buffers.is_null());
  1065. Size2i internal_size = p_render_buffers->get_internal_size();
  1066. bool can_use_effects = internal_size.x >= 8 && internal_size.y >= 8;
  1067. uint32_t view_count = p_render_buffers->get_view_count();
  1068. if (!can_use_effects) {
  1069. //just copy
  1070. copy_effects->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : p_render_buffers->get_internal_texture(), RID(), view_count);
  1071. return;
  1072. }
  1073. ERR_FAIL_COND(p_environment.is_null());
  1074. ERR_FAIL_COND(!environment_get_ssr_enabled(p_environment));
  1075. Size2i half_size = Size2i(internal_size.x / 2, internal_size.y / 2);
  1076. if (p_render_buffers->ssr.output.is_null()) {
  1077. ss_effects->ssr_allocate_buffers(p_render_buffers->ssr, _render_buffers_get_color_format(), ssr_roughness_quality, half_size, view_count);
  1078. }
  1079. RID texture_slices[RendererSceneRender::MAX_RENDER_VIEWS];
  1080. RID depth_slices[RendererSceneRender::MAX_RENDER_VIEWS];
  1081. for (uint32_t v = 0; v < view_count; v++) {
  1082. texture_slices[v] = p_render_buffers->get_internal_texture(v);
  1083. depth_slices[v] = p_render_buffers->get_depth_texture(v);
  1084. }
  1085. ss_effects->screen_space_reflection(p_render_buffers->ssr, texture_slices, p_normal_slices, ssr_roughness_quality, p_metallic_slices, depth_slices, half_size, environment_get_ssr_max_steps(p_environment), environment_get_ssr_fade_in(p_environment), environment_get_ssr_fade_out(p_environment), environment_get_ssr_depth_tolerance(p_environment), view_count, p_projections, p_eye_offsets);
  1086. copy_effects->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : p_render_buffers->get_internal_texture(), p_render_buffers->ssr.output, view_count);
  1087. }
  1088. void RendererSceneRenderRD::_process_ssao(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_environment, RID p_normal_buffer, const Projection &p_projection) {
  1089. ERR_FAIL_NULL(ss_effects);
  1090. ERR_FAIL_COND(p_render_buffers.is_null());
  1091. ERR_FAIL_COND(p_environment.is_null());
  1092. RENDER_TIMESTAMP("Process SSAO");
  1093. RendererRD::SSEffects::SSAOSettings settings;
  1094. settings.radius = environment_get_ssao_radius(p_environment);
  1095. settings.intensity = environment_get_ssao_intensity(p_environment);
  1096. settings.power = environment_get_ssao_power(p_environment);
  1097. settings.detail = environment_get_ssao_detail(p_environment);
  1098. settings.horizon = environment_get_ssao_horizon(p_environment);
  1099. settings.sharpness = environment_get_ssao_sharpness(p_environment);
  1100. settings.quality = ssao_quality;
  1101. settings.half_size = ssao_half_size;
  1102. settings.adaptive_target = ssao_adaptive_target;
  1103. settings.blur_passes = ssao_blur_passes;
  1104. settings.fadeout_from = ssao_fadeout_from;
  1105. settings.fadeout_to = ssao_fadeout_to;
  1106. settings.full_screen_size = p_render_buffers->get_internal_size();
  1107. ss_effects->ssao_allocate_buffers(p_render_buffers->ss_effects.ssao, settings, p_render_buffers->ss_effects.linear_depth);
  1108. ss_effects->generate_ssao(p_render_buffers->ss_effects.ssao, p_normal_buffer, p_projection, settings);
  1109. }
  1110. void RendererSceneRenderRD::_process_ssil(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_environment, RID p_normal_buffer, const Projection &p_projection, const Transform3D &p_transform) {
  1111. ERR_FAIL_NULL(ss_effects);
  1112. ERR_FAIL_COND(p_render_buffers.is_null());
  1113. ERR_FAIL_COND(p_environment.is_null());
  1114. RENDER_TIMESTAMP("Process SSIL");
  1115. RendererRD::SSEffects::SSILSettings settings;
  1116. settings.radius = environment_get_ssil_radius(p_environment);
  1117. settings.intensity = environment_get_ssil_intensity(p_environment);
  1118. settings.sharpness = environment_get_ssil_sharpness(p_environment);
  1119. settings.normal_rejection = environment_get_ssil_normal_rejection(p_environment);
  1120. settings.quality = ssil_quality;
  1121. settings.half_size = ssil_half_size;
  1122. settings.adaptive_target = ssil_adaptive_target;
  1123. settings.blur_passes = ssil_blur_passes;
  1124. settings.fadeout_from = ssil_fadeout_from;
  1125. settings.fadeout_to = ssil_fadeout_to;
  1126. settings.full_screen_size = p_render_buffers->get_internal_size();
  1127. Projection correction;
  1128. correction.set_depth_correction(true);
  1129. Projection projection = correction * p_projection;
  1130. Transform3D transform = p_transform;
  1131. transform.set_origin(Vector3(0.0, 0.0, 0.0));
  1132. Projection last_frame_projection = p_render_buffers->ss_effects.last_frame_projection * Projection(p_render_buffers->ss_effects.last_frame_transform.affine_inverse()) * Projection(transform) * projection.inverse();
  1133. ss_effects->ssil_allocate_buffers(p_render_buffers->ss_effects.ssil, settings, p_render_buffers->ss_effects.linear_depth);
  1134. ss_effects->screen_space_indirect_lighting(p_render_buffers->ss_effects.ssil, p_normal_buffer, p_projection, last_frame_projection, settings);
  1135. p_render_buffers->ss_effects.last_frame_projection = projection;
  1136. p_render_buffers->ss_effects.last_frame_transform = transform;
  1137. }
  1138. void RendererSceneRenderRD::_copy_framebuffer_to_ssil(Ref<RenderSceneBuffersRD> p_render_buffers) {
  1139. ERR_FAIL_COND(p_render_buffers.is_null());
  1140. if (p_render_buffers->ss_effects.ssil.last_frame.is_valid()) {
  1141. Size2i size = p_render_buffers->get_internal_size();
  1142. RID texture = p_render_buffers->get_internal_texture();
  1143. copy_effects->copy_to_rect(texture, p_render_buffers->ss_effects.ssil.last_frame, Rect2i(0, 0, size.x, size.y));
  1144. int width = size.x;
  1145. int height = size.y;
  1146. for (int i = 0; i < p_render_buffers->ss_effects.ssil.last_frame_slices.size() - 1; i++) {
  1147. width = MAX(1, width >> 1);
  1148. height = MAX(1, height >> 1);
  1149. copy_effects->make_mipmap(p_render_buffers->ss_effects.ssil.last_frame_slices[i], p_render_buffers->ss_effects.ssil.last_frame_slices[i + 1], Size2i(width, height));
  1150. }
  1151. }
  1152. }
  1153. void RendererSceneRenderRD::_render_buffers_copy_screen_texture(const RenderDataRD *p_render_data) {
  1154. Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
  1155. ERR_FAIL_COND(rb.is_null());
  1156. RD::get_singleton()->draw_command_begin_label("Copy screen texture");
  1157. rb->allocate_blur_textures();
  1158. bool can_use_storage = _render_buffers_can_be_storage();
  1159. Size2i size = rb->get_internal_size();
  1160. for (uint32_t v = 0; v < rb->get_view_count(); v++) {
  1161. RID texture = rb->get_internal_texture(v);
  1162. int mipmaps = int(rb->get_texture_format(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0).mipmaps);
  1163. RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, v, 0);
  1164. if (can_use_storage) {
  1165. copy_effects->copy_to_rect(texture, dest, Rect2i(0, 0, size.x, size.y));
  1166. } else {
  1167. RID fb = FramebufferCacheRD::get_singleton()->get_cache(dest);
  1168. copy_effects->copy_to_fb_rect(texture, fb, Rect2i(0, 0, size.x, size.y));
  1169. }
  1170. for (int i = 1; i < mipmaps; i++) {
  1171. RID source = dest;
  1172. dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, v, i);
  1173. Size2i msize = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, v, i);
  1174. if (can_use_storage) {
  1175. copy_effects->make_mipmap(source, dest, msize);
  1176. } else {
  1177. copy_effects->make_mipmap_raster(source, dest, msize);
  1178. }
  1179. }
  1180. }
  1181. RD::get_singleton()->draw_command_end_label();
  1182. }
  1183. void RendererSceneRenderRD::_render_buffers_copy_depth_texture(const RenderDataRD *p_render_data) {
  1184. Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
  1185. ERR_FAIL_COND(rb.is_null());
  1186. RD::get_singleton()->draw_command_begin_label("Copy depth texture");
  1187. // note, this only creates our back depth texture if we haven't already created it.
  1188. uint32_t usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT;
  1189. usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1190. usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; // set this as color attachment because we're copying data into it, it's not actually used as a depth buffer
  1191. rb->create_texture(RB_SCOPE_BUFFERS, RB_TEX_BACK_DEPTH, RD::DATA_FORMAT_R32_SFLOAT, usage_bits, RD::TEXTURE_SAMPLES_1);
  1192. bool can_use_storage = _render_buffers_can_be_storage();
  1193. Size2i size = rb->get_internal_size();
  1194. for (uint32_t v = 0; v < p_render_data->scene_data->view_count; v++) {
  1195. RID depth_texture = rb->get_depth_texture(v);
  1196. RID depth_back_texture = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BACK_DEPTH, v, 0);
  1197. if (can_use_storage) {
  1198. copy_effects->copy_to_rect(depth_texture, depth_back_texture, Rect2i(0, 0, size.x, size.y));
  1199. } else {
  1200. RID depth_back_fb = FramebufferCacheRD::get_singleton()->get_cache(depth_back_texture);
  1201. copy_effects->copy_to_fb_rect(depth_texture, depth_back_fb, Rect2i(0, 0, size.x, size.y));
  1202. }
  1203. }
  1204. RD::get_singleton()->draw_command_end_label();
  1205. }
  1206. void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(const RenderDataRD *p_render_data) {
  1207. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  1208. Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
  1209. ERR_FAIL_COND(rb.is_null());
  1210. // Glow, auto exposure and DoF (if enabled).
  1211. Size2i internal_size = rb->get_internal_size();
  1212. Size2i target_size = rb->get_target_size();
  1213. bool can_use_effects = target_size.x >= 8 && target_size.y >= 8; // FIXME I think this should check internal size, we do all our post processing at this size...
  1214. bool can_use_storage = _render_buffers_can_be_storage();
  1215. RID render_target = rb->get_render_target();
  1216. RID internal_texture = rb->get_internal_texture();
  1217. if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_dof(p_render_data->camera_attributes)) {
  1218. RENDER_TIMESTAMP("Depth of Field");
  1219. RD::get_singleton()->draw_command_begin_label("DOF");
  1220. rb->allocate_blur_textures();
  1221. RendererRD::BokehDOF::BokehBuffers buffers;
  1222. // Textures we use
  1223. buffers.base_texture_size = rb->get_internal_size();
  1224. buffers.secondary_texture = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, 0, 0);
  1225. buffers.half_texture[0] = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, 0, 0);
  1226. buffers.half_texture[1] = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, 0, 1);
  1227. if (can_use_storage) {
  1228. for (uint32_t i = 0; i < rb->get_view_count(); i++) {
  1229. buffers.base_texture = rb->get_internal_texture(i);
  1230. buffers.depth_texture = rb->get_depth_texture(i);
  1231. // In stereo p_render_data->z_near and p_render_data->z_far can be offset for our combined frustrum
  1232. float z_near = p_render_data->scene_data->view_projection[i].get_z_near();
  1233. float z_far = p_render_data->scene_data->view_projection[i].get_z_far();
  1234. bokeh_dof->bokeh_dof_compute(buffers, p_render_data->camera_attributes, z_near, z_far, p_render_data->scene_data->cam_orthogonal);
  1235. };
  1236. } else {
  1237. // Set framebuffers.
  1238. buffers.secondary_fb = rb->weight_buffers[1].fb;
  1239. buffers.half_fb[0] = rb->weight_buffers[2].fb;
  1240. buffers.half_fb[1] = rb->weight_buffers[3].fb;
  1241. buffers.weight_texture[0] = rb->weight_buffers[0].weight;
  1242. buffers.weight_texture[1] = rb->weight_buffers[1].weight;
  1243. buffers.weight_texture[2] = rb->weight_buffers[2].weight;
  1244. buffers.weight_texture[3] = rb->weight_buffers[3].weight;
  1245. // Set weight buffers.
  1246. buffers.base_weight_fb = rb->weight_buffers[0].fb;
  1247. for (uint32_t i = 0; i < rb->get_view_count(); i++) {
  1248. buffers.base_texture = rb->get_internal_texture(i);
  1249. buffers.depth_texture = rb->get_depth_texture(i);
  1250. buffers.base_fb = FramebufferCacheRD::get_singleton()->get_cache(buffers.base_texture); // TODO move this into bokeh_dof_raster, we can do this internally
  1251. // In stereo p_render_data->z_near and p_render_data->z_far can be offset for our combined frustrum
  1252. float z_near = p_render_data->scene_data->view_projection[i].get_z_near();
  1253. float z_far = p_render_data->scene_data->view_projection[i].get_z_far();
  1254. bokeh_dof->bokeh_dof_raster(buffers, p_render_data->camera_attributes, z_near, z_far, p_render_data->scene_data->cam_orthogonal);
  1255. }
  1256. }
  1257. RD::get_singleton()->draw_command_end_label();
  1258. }
  1259. float auto_exposure_scale = 1.0;
  1260. if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes)) {
  1261. RENDER_TIMESTAMP("Auto exposure");
  1262. RD::get_singleton()->draw_command_begin_label("Auto exposure");
  1263. if (rb->luminance.current.is_null()) {
  1264. _allocate_luminance_textures(rb);
  1265. }
  1266. uint64_t auto_exposure_version = RSG::camera_attributes->camera_attributes_get_auto_exposure_version(p_render_data->camera_attributes);
  1267. bool set_immediate = auto_exposure_version != rb->get_auto_exposure_version();
  1268. rb->set_auto_exposure_version(auto_exposure_version);
  1269. double step = RSG::camera_attributes->camera_attributes_get_auto_exposure_adjust_speed(p_render_data->camera_attributes) * time_step;
  1270. float auto_exposure_min_sensitivity = RSG::camera_attributes->camera_attributes_get_auto_exposure_min_sensitivity(p_render_data->camera_attributes);
  1271. float auto_exposure_max_sensitivity = RSG::camera_attributes->camera_attributes_get_auto_exposure_max_sensitivity(p_render_data->camera_attributes);
  1272. if (can_use_storage) {
  1273. RendererCompositorRD::singleton->get_effects()->luminance_reduction(internal_texture, internal_size, rb->luminance.reduce, rb->luminance.current, auto_exposure_min_sensitivity, auto_exposure_max_sensitivity, step, set_immediate);
  1274. } else {
  1275. RendererCompositorRD::singleton->get_effects()->luminance_reduction_raster(internal_texture, internal_size, rb->luminance.reduce, rb->luminance.fb, rb->luminance.current, auto_exposure_min_sensitivity, auto_exposure_max_sensitivity, step, set_immediate);
  1276. }
  1277. // Swap final reduce with prev luminance.
  1278. SWAP(rb->luminance.current, rb->luminance.reduce.write[rb->luminance.reduce.size() - 1]);
  1279. if (!can_use_storage) {
  1280. SWAP(rb->luminance.current_fb, rb->luminance.fb.write[rb->luminance.fb.size() - 1]);
  1281. }
  1282. auto_exposure_scale = RSG::camera_attributes->camera_attributes_get_auto_exposure_scale(p_render_data->camera_attributes);
  1283. RenderingServerDefault::redraw_request(); // Redraw all the time if auto exposure rendering is on.
  1284. RD::get_singleton()->draw_command_end_label();
  1285. }
  1286. int max_glow_level = -1;
  1287. if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) {
  1288. RENDER_TIMESTAMP("Glow");
  1289. RD::get_singleton()->draw_command_begin_label("Gaussian Glow");
  1290. rb->allocate_blur_textures();
  1291. for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
  1292. if (environment_get_glow_levels(p_render_data->environment)[i] > 0.0) {
  1293. int mipmaps = int(rb->get_texture_format(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1).mipmaps);
  1294. if (i >= mipmaps) {
  1295. max_glow_level = mipmaps - 1;
  1296. } else {
  1297. max_glow_level = i;
  1298. }
  1299. }
  1300. }
  1301. float luminance_multiplier = _render_buffers_get_luminance_multiplier();
  1302. for (uint32_t l = 0; l < rb->get_view_count(); l++) {
  1303. for (int i = 0; i < (max_glow_level + 1); i++) {
  1304. Size2i vp_size = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i);
  1305. if (i == 0) {
  1306. RID luminance_texture;
  1307. if (RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes) && rb->luminance.current.is_valid()) {
  1308. luminance_texture = rb->luminance.current;
  1309. }
  1310. RID source = rb->get_internal_texture(l);
  1311. RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i);
  1312. if (can_use_storage) {
  1313. copy_effects->gaussian_glow(source, dest, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality, true, environment_get_glow_hdr_luminance_cap(p_render_data->environment), environment_get_exposure(p_render_data->environment), environment_get_glow_bloom(p_render_data->environment), environment_get_glow_hdr_bleed_threshold(p_render_data->environment), environment_get_glow_hdr_bleed_scale(p_render_data->environment), luminance_texture, auto_exposure_scale);
  1314. } else {
  1315. RID half = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_HALF_BLUR, 0, i); // we can reuse this for each view
  1316. copy_effects->gaussian_glow_raster(source, half, dest, luminance_multiplier, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality, true, environment_get_glow_hdr_luminance_cap(p_render_data->environment), environment_get_exposure(p_render_data->environment), environment_get_glow_bloom(p_render_data->environment), environment_get_glow_hdr_bleed_threshold(p_render_data->environment), environment_get_glow_hdr_bleed_scale(p_render_data->environment), luminance_texture, auto_exposure_scale);
  1317. }
  1318. } else {
  1319. RID source = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i - 1);
  1320. RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i);
  1321. if (can_use_storage) {
  1322. copy_effects->gaussian_glow(source, dest, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality);
  1323. } else {
  1324. RID half = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_HALF_BLUR, 0, i); // we can reuse this for each view
  1325. copy_effects->gaussian_glow_raster(source, half, dest, luminance_multiplier, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality);
  1326. }
  1327. }
  1328. }
  1329. }
  1330. RD::get_singleton()->draw_command_end_label();
  1331. }
  1332. {
  1333. RENDER_TIMESTAMP("Tonemap");
  1334. RD::get_singleton()->draw_command_begin_label("Tonemap");
  1335. RendererRD::ToneMapper::TonemapSettings tonemap;
  1336. if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes) && rb->luminance.current.is_valid()) {
  1337. tonemap.use_auto_exposure = true;
  1338. tonemap.exposure_texture = rb->luminance.current;
  1339. tonemap.auto_exposure_scale = auto_exposure_scale;
  1340. } else {
  1341. tonemap.exposure_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
  1342. }
  1343. if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) {
  1344. tonemap.use_glow = true;
  1345. tonemap.glow_mode = RendererRD::ToneMapper::TonemapSettings::GlowMode(environment_get_glow_blend_mode(p_render_data->environment));
  1346. tonemap.glow_intensity = environment_get_glow_blend_mode(p_render_data->environment) == RS::ENV_GLOW_BLEND_MODE_MIX ? environment_get_glow_mix(p_render_data->environment) : environment_get_glow_intensity(p_render_data->environment);
  1347. for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
  1348. tonemap.glow_levels[i] = environment_get_glow_levels(p_render_data->environment)[i];
  1349. }
  1350. Size2i msize = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, 0, 0);
  1351. tonemap.glow_texture_size.x = msize.width;
  1352. tonemap.glow_texture_size.y = msize.height;
  1353. tonemap.glow_use_bicubic_upscale = glow_bicubic_upscale;
  1354. tonemap.glow_texture = rb->get_texture(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1);
  1355. if (environment_get_glow_map(p_render_data->environment).is_valid()) {
  1356. tonemap.glow_map_strength = environment_get_glow_map_strength(p_render_data->environment);
  1357. tonemap.glow_map = texture_storage->texture_get_rd_texture(environment_get_glow_map(p_render_data->environment));
  1358. } else {
  1359. tonemap.glow_map_strength = 0.0f;
  1360. tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
  1361. }
  1362. } else {
  1363. tonemap.glow_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK);
  1364. tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
  1365. }
  1366. if (rb->get_screen_space_aa() == RS::VIEWPORT_SCREEN_SPACE_AA_FXAA) {
  1367. tonemap.use_fxaa = true;
  1368. }
  1369. tonemap.use_debanding = rb->get_use_debanding();
  1370. tonemap.texture_size = Vector2i(rb->get_internal_size().x, rb->get_internal_size().y);
  1371. if (p_render_data->environment.is_valid()) {
  1372. tonemap.tonemap_mode = environment_get_tone_mapper(p_render_data->environment);
  1373. tonemap.white = environment_get_white(p_render_data->environment);
  1374. tonemap.exposure = environment_get_exposure(p_render_data->environment);
  1375. }
  1376. tonemap.use_color_correction = false;
  1377. tonemap.use_1d_color_correction = false;
  1378. tonemap.color_correction_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE);
  1379. if (can_use_effects && p_render_data->environment.is_valid()) {
  1380. tonemap.use_bcs = environment_get_adjustments_enabled(p_render_data->environment);
  1381. tonemap.brightness = environment_get_adjustments_brightness(p_render_data->environment);
  1382. tonemap.contrast = environment_get_adjustments_contrast(p_render_data->environment);
  1383. tonemap.saturation = environment_get_adjustments_saturation(p_render_data->environment);
  1384. if (environment_get_adjustments_enabled(p_render_data->environment) && environment_get_color_correction(p_render_data->environment).is_valid()) {
  1385. tonemap.use_color_correction = true;
  1386. tonemap.use_1d_color_correction = environment_get_use_1d_color_correction(p_render_data->environment);
  1387. tonemap.color_correction_texture = texture_storage->texture_get_rd_texture(environment_get_color_correction(p_render_data->environment));
  1388. }
  1389. }
  1390. tonemap.luminance_multiplier = _render_buffers_get_luminance_multiplier();
  1391. tonemap.view_count = rb->get_view_count();
  1392. RID dest_fb;
  1393. if (fsr && can_use_effects && (internal_size.x != target_size.x || internal_size.y != target_size.y)) {
  1394. // If we use FSR to upscale we need to write our result into an intermediate buffer.
  1395. // Note that this is cached so we only create the texture the first time.
  1396. RID dest_texture = rb->create_texture(SNAME("Tonemapper"), SNAME("destination"), _render_buffers_get_color_format(), RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT);
  1397. dest_fb = FramebufferCacheRD::get_singleton()->get_cache(dest_texture);
  1398. } else {
  1399. // If we do a bilinear upscale we just render into our render target and our shader will upscale automatically.
  1400. // Target size in this case is lying as we never get our real target size communicated.
  1401. // Bit nasty but...
  1402. dest_fb = texture_storage->render_target_get_rd_framebuffer(render_target);
  1403. }
  1404. tone_mapper->tonemapper(internal_texture, dest_fb, tonemap);
  1405. RD::get_singleton()->draw_command_end_label();
  1406. }
  1407. if (fsr && can_use_effects && (internal_size.x != target_size.x || internal_size.y != target_size.y)) {
  1408. // TODO Investigate? Does this work? We never write into our render target and we've already done so up above in our tonemapper.
  1409. // I think FSR should either work before our tonemapper or as an alternative of our tonemapper.
  1410. RD::get_singleton()->draw_command_begin_label("FSR 1.0 Upscale");
  1411. for (uint32_t v = 0; v < rb->get_view_count(); v++) {
  1412. RID source_texture = rb->get_texture_slice(SNAME("Tonemapper"), SNAME("destination"), v, 0);
  1413. RID dest_texture = texture_storage->render_target_get_rd_texture_slice(render_target, v);
  1414. fsr->fsr_upscale(rb, source_texture, dest_texture);
  1415. }
  1416. RD::get_singleton()->draw_command_end_label();
  1417. }
  1418. texture_storage->render_target_disable_clear_request(render_target);
  1419. }
  1420. void RendererSceneRenderRD::_post_process_subpass(RID p_source_texture, RID p_framebuffer, const RenderDataRD *p_render_data) {
  1421. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  1422. RD::get_singleton()->draw_command_begin_label("Post Process Subpass");
  1423. Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
  1424. ERR_FAIL_COND(rb.is_null());
  1425. // FIXME: Our input it our internal_texture, shouldn't this be using internal_size ??
  1426. // Seeing we don't support FSR in our mobile renderer right now target_size = internal_size...
  1427. Size2i target_size = rb->get_target_size();
  1428. bool can_use_effects = target_size.x >= 8 && target_size.y >= 8;
  1429. RD::DrawListID draw_list = RD::get_singleton()->draw_list_switch_to_next_pass();
  1430. RendererRD::ToneMapper::TonemapSettings tonemap;
  1431. if (p_render_data->environment.is_valid()) {
  1432. tonemap.tonemap_mode = environment_get_tone_mapper(p_render_data->environment);
  1433. tonemap.exposure = environment_get_exposure(p_render_data->environment);
  1434. tonemap.white = environment_get_white(p_render_data->environment);
  1435. }
  1436. // We don't support glow or auto exposure here, if they are needed, don't use subpasses!
  1437. // The problem is that we need to use the result so far and process them before we can
  1438. // apply this to our results.
  1439. if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) {
  1440. ERR_FAIL_MSG("Glow is not supported when using subpasses.");
  1441. }
  1442. if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes)) {
  1443. ERR_FAIL_MSG("Auto Exposure is not supported when using subpasses.");
  1444. }
  1445. tonemap.use_glow = false;
  1446. tonemap.glow_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK);
  1447. tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
  1448. tonemap.use_auto_exposure = false;
  1449. tonemap.exposure_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
  1450. tonemap.use_color_correction = false;
  1451. tonemap.use_1d_color_correction = false;
  1452. tonemap.color_correction_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE);
  1453. if (can_use_effects && p_render_data->environment.is_valid()) {
  1454. tonemap.use_bcs = environment_get_adjustments_enabled(p_render_data->environment);
  1455. tonemap.brightness = environment_get_adjustments_brightness(p_render_data->environment);
  1456. tonemap.contrast = environment_get_adjustments_contrast(p_render_data->environment);
  1457. tonemap.saturation = environment_get_adjustments_saturation(p_render_data->environment);
  1458. if (environment_get_adjustments_enabled(p_render_data->environment) && environment_get_color_correction(p_render_data->environment).is_valid()) {
  1459. tonemap.use_color_correction = true;
  1460. tonemap.use_1d_color_correction = environment_get_use_1d_color_correction(p_render_data->environment);
  1461. tonemap.color_correction_texture = texture_storage->texture_get_rd_texture(environment_get_color_correction(p_render_data->environment));
  1462. }
  1463. }
  1464. tonemap.use_debanding = rb->get_use_debanding();
  1465. tonemap.texture_size = Vector2i(target_size.x, target_size.y);
  1466. tonemap.luminance_multiplier = _render_buffers_get_luminance_multiplier();
  1467. tonemap.view_count = rb->get_view_count();
  1468. tone_mapper->tonemapper(draw_list, p_source_texture, RD::get_singleton()->framebuffer_get_format(p_framebuffer), tonemap);
  1469. RD::get_singleton()->draw_command_end_label();
  1470. }
  1471. void RendererSceneRenderRD::_disable_clear_request(const RenderDataRD *p_render_data) {
  1472. ERR_FAIL_COND(p_render_data->render_buffers.is_null());
  1473. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  1474. texture_storage->render_target_disable_clear_request(p_render_data->render_buffers->get_render_target());
  1475. }
  1476. void RendererSceneRenderRD::_render_buffers_debug_draw(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_shadow_atlas, RID p_occlusion_buffer) {
  1477. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  1478. ERR_FAIL_COND(p_render_buffers.is_null());
  1479. RID render_target = p_render_buffers->get_render_target();
  1480. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) {
  1481. if (p_shadow_atlas.is_valid()) {
  1482. RID shadow_atlas_texture = shadow_atlas_get_texture(p_shadow_atlas);
  1483. if (shadow_atlas_texture.is_null()) {
  1484. shadow_atlas_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK);
  1485. }
  1486. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1487. copy_effects->copy_to_fb_rect(shadow_atlas_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, true);
  1488. }
  1489. }
  1490. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) {
  1491. if (directional_shadow_get_texture().is_valid()) {
  1492. RID shadow_atlas_texture = directional_shadow_get_texture();
  1493. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1494. copy_effects->copy_to_fb_rect(shadow_atlas_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, true);
  1495. }
  1496. }
  1497. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DECAL_ATLAS) {
  1498. RID decal_atlas = RendererRD::TextureStorage::get_singleton()->decal_atlas_get_texture();
  1499. if (decal_atlas.is_valid()) {
  1500. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1501. copy_effects->copy_to_fb_rect(decal_atlas, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, false, true);
  1502. }
  1503. }
  1504. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE) {
  1505. if (p_render_buffers->luminance.current.is_valid()) {
  1506. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1507. copy_effects->copy_to_fb_rect(p_render_buffers->luminance.current, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize / 8), false, true);
  1508. }
  1509. }
  1510. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSAO && p_render_buffers->ss_effects.ssao.ao_final.is_valid()) {
  1511. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1512. copy_effects->copy_to_fb_rect(p_render_buffers->ss_effects.ssao.ao_final, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, true);
  1513. }
  1514. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSIL && p_render_buffers->ss_effects.ssil.ssil_final.is_valid()) {
  1515. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1516. copy_effects->copy_to_fb_rect(p_render_buffers->ss_effects.ssil.ssil_final, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false);
  1517. }
  1518. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(p_render_buffers).is_valid()) {
  1519. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1520. copy_effects->copy_to_fb_rect(_render_buffers_get_normal_texture(p_render_buffers), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false);
  1521. }
  1522. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_GI_BUFFER && p_render_buffers->has_texture(RB_SCOPE_GI, RB_TEX_AMBIENT)) {
  1523. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1524. RID ambient_texture = p_render_buffers->get_texture(RB_SCOPE_GI, RB_TEX_AMBIENT);
  1525. RID reflection_texture = p_render_buffers->get_texture(RB_SCOPE_GI, RB_TEX_REFLECTION);
  1526. copy_effects->copy_to_fb_rect(ambient_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false, false, true, reflection_texture, p_render_buffers->get_view_count() > 1);
  1527. }
  1528. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_OCCLUDERS) {
  1529. if (p_occlusion_buffer.is_valid()) {
  1530. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1531. copy_effects->copy_to_fb_rect(texture_storage->texture_get_rd_texture(p_occlusion_buffer), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize), true, false);
  1532. }
  1533. }
  1534. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_MOTION_VECTORS && _render_buffers_get_velocity_texture(p_render_buffers).is_valid()) {
  1535. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1536. copy_effects->copy_to_fb_rect(_render_buffers_get_velocity_texture(p_render_buffers), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false);
  1537. }
  1538. }
  1539. RID RendererSceneRenderRD::render_buffers_get_default_voxel_gi_buffer() {
  1540. return gi.default_voxel_gi_buffer;
  1541. }
  1542. float RendererSceneRenderRD::_render_buffers_get_luminance_multiplier() {
  1543. return 1.0;
  1544. }
  1545. RD::DataFormat RendererSceneRenderRD::_render_buffers_get_color_format() {
  1546. return RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1547. }
  1548. bool RendererSceneRenderRD::_render_buffers_can_be_storage() {
  1549. return true;
  1550. }
  1551. void RendererSceneRenderRD::gi_set_use_half_resolution(bool p_enable) {
  1552. gi.half_resolution = p_enable;
  1553. }
  1554. void RendererSceneRenderRD::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) {
  1555. sss_quality = p_quality;
  1556. }
  1557. RS::SubSurfaceScatteringQuality RendererSceneRenderRD::sub_surface_scattering_get_quality() const {
  1558. return sss_quality;
  1559. }
  1560. void RendererSceneRenderRD::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) {
  1561. sss_scale = p_scale;
  1562. sss_depth_scale = p_depth_scale;
  1563. }
  1564. void RendererSceneRenderRD::positional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) {
  1565. ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");
  1566. if (shadows_quality != p_quality) {
  1567. shadows_quality = p_quality;
  1568. switch (shadows_quality) {
  1569. case RS::SHADOW_QUALITY_HARD: {
  1570. penumbra_shadow_samples = 4;
  1571. soft_shadow_samples = 0;
  1572. shadows_quality_radius = 1.0;
  1573. } break;
  1574. case RS::SHADOW_QUALITY_SOFT_VERY_LOW: {
  1575. penumbra_shadow_samples = 4;
  1576. soft_shadow_samples = 1;
  1577. shadows_quality_radius = 1.5;
  1578. } break;
  1579. case RS::SHADOW_QUALITY_SOFT_LOW: {
  1580. penumbra_shadow_samples = 8;
  1581. soft_shadow_samples = 4;
  1582. shadows_quality_radius = 2.0;
  1583. } break;
  1584. case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
  1585. penumbra_shadow_samples = 12;
  1586. soft_shadow_samples = 8;
  1587. shadows_quality_radius = 2.0;
  1588. } break;
  1589. case RS::SHADOW_QUALITY_SOFT_HIGH: {
  1590. penumbra_shadow_samples = 24;
  1591. soft_shadow_samples = 16;
  1592. shadows_quality_radius = 3.0;
  1593. } break;
  1594. case RS::SHADOW_QUALITY_SOFT_ULTRA: {
  1595. penumbra_shadow_samples = 32;
  1596. soft_shadow_samples = 32;
  1597. shadows_quality_radius = 4.0;
  1598. } break;
  1599. case RS::SHADOW_QUALITY_MAX:
  1600. break;
  1601. }
  1602. get_vogel_disk(penumbra_shadow_kernel, penumbra_shadow_samples);
  1603. get_vogel_disk(soft_shadow_kernel, soft_shadow_samples);
  1604. }
  1605. _update_shader_quality_settings();
  1606. }
  1607. void RendererSceneRenderRD::directional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) {
  1608. ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");
  1609. if (directional_shadow_quality != p_quality) {
  1610. directional_shadow_quality = p_quality;
  1611. switch (directional_shadow_quality) {
  1612. case RS::SHADOW_QUALITY_HARD: {
  1613. directional_penumbra_shadow_samples = 4;
  1614. directional_soft_shadow_samples = 0;
  1615. directional_shadow_quality_radius = 1.0;
  1616. } break;
  1617. case RS::SHADOW_QUALITY_SOFT_VERY_LOW: {
  1618. directional_penumbra_shadow_samples = 4;
  1619. directional_soft_shadow_samples = 1;
  1620. directional_shadow_quality_radius = 1.5;
  1621. } break;
  1622. case RS::SHADOW_QUALITY_SOFT_LOW: {
  1623. directional_penumbra_shadow_samples = 8;
  1624. directional_soft_shadow_samples = 4;
  1625. directional_shadow_quality_radius = 2.0;
  1626. } break;
  1627. case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
  1628. directional_penumbra_shadow_samples = 12;
  1629. directional_soft_shadow_samples = 8;
  1630. directional_shadow_quality_radius = 2.0;
  1631. } break;
  1632. case RS::SHADOW_QUALITY_SOFT_HIGH: {
  1633. directional_penumbra_shadow_samples = 24;
  1634. directional_soft_shadow_samples = 16;
  1635. directional_shadow_quality_radius = 3.0;
  1636. } break;
  1637. case RS::SHADOW_QUALITY_SOFT_ULTRA: {
  1638. directional_penumbra_shadow_samples = 32;
  1639. directional_soft_shadow_samples = 32;
  1640. directional_shadow_quality_radius = 4.0;
  1641. } break;
  1642. case RS::SHADOW_QUALITY_MAX:
  1643. break;
  1644. }
  1645. get_vogel_disk(directional_penumbra_shadow_kernel, directional_penumbra_shadow_samples);
  1646. get_vogel_disk(directional_soft_shadow_kernel, directional_soft_shadow_samples);
  1647. }
  1648. _update_shader_quality_settings();
  1649. }
  1650. void RendererSceneRenderRD::decals_set_filter(RenderingServer::DecalFilter p_filter) {
  1651. if (decals_filter == p_filter) {
  1652. return;
  1653. }
  1654. decals_filter = p_filter;
  1655. _update_shader_quality_settings();
  1656. }
  1657. void RendererSceneRenderRD::light_projectors_set_filter(RenderingServer::LightProjectorFilter p_filter) {
  1658. if (light_projectors_filter == p_filter) {
  1659. return;
  1660. }
  1661. light_projectors_filter = p_filter;
  1662. _update_shader_quality_settings();
  1663. }
  1664. int RendererSceneRenderRD::get_roughness_layers() const {
  1665. return sky.roughness_layers;
  1666. }
  1667. bool RendererSceneRenderRD::is_using_radiance_cubemap_array() const {
  1668. return sky.sky_use_cubemap_array;
  1669. }
  1670. void RendererSceneRenderRD::_setup_reflections(RenderDataRD *p_render_data, const PagedArray<RID> &p_reflections, const Transform3D &p_camera_inverse_transform, RID p_environment) {
  1671. RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
  1672. cluster.reflection_count = 0;
  1673. for (uint32_t i = 0; i < (uint32_t)p_reflections.size(); i++) {
  1674. if (cluster.reflection_count == cluster.max_reflections) {
  1675. break;
  1676. }
  1677. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_reflections[i]);
  1678. if (!rpi) {
  1679. continue;
  1680. }
  1681. cluster.reflection_sort[cluster.reflection_count].instance = rpi;
  1682. cluster.reflection_sort[cluster.reflection_count].depth = -p_camera_inverse_transform.xform(rpi->transform.origin).z;
  1683. cluster.reflection_count++;
  1684. }
  1685. if (cluster.reflection_count > 0) {
  1686. SortArray<Cluster::InstanceSort<ReflectionProbeInstance>> sort_array;
  1687. sort_array.sort(cluster.reflection_sort, cluster.reflection_count);
  1688. }
  1689. bool using_forward_ids = _uses_forward_ids();
  1690. for (uint32_t i = 0; i < cluster.reflection_count; i++) {
  1691. ReflectionProbeInstance *rpi = cluster.reflection_sort[i].instance;
  1692. if (using_forward_ids) {
  1693. _map_forward_id(FORWARD_ID_TYPE_REFLECTION_PROBE, rpi->forward_id, i);
  1694. }
  1695. RID base_probe = rpi->probe;
  1696. Cluster::ReflectionData &reflection_ubo = cluster.reflections[i];
  1697. Vector3 extents = light_storage->reflection_probe_get_extents(base_probe);
  1698. rpi->cull_mask = light_storage->reflection_probe_get_cull_mask(base_probe);
  1699. reflection_ubo.box_extents[0] = extents.x;
  1700. reflection_ubo.box_extents[1] = extents.y;
  1701. reflection_ubo.box_extents[2] = extents.z;
  1702. reflection_ubo.index = rpi->atlas_index;
  1703. Vector3 origin_offset = light_storage->reflection_probe_get_origin_offset(base_probe);
  1704. reflection_ubo.box_offset[0] = origin_offset.x;
  1705. reflection_ubo.box_offset[1] = origin_offset.y;
  1706. reflection_ubo.box_offset[2] = origin_offset.z;
  1707. reflection_ubo.mask = light_storage->reflection_probe_get_cull_mask(base_probe);
  1708. reflection_ubo.intensity = light_storage->reflection_probe_get_intensity(base_probe);
  1709. reflection_ubo.ambient_mode = light_storage->reflection_probe_get_ambient_mode(base_probe);
  1710. reflection_ubo.exterior = !light_storage->reflection_probe_is_interior(base_probe);
  1711. reflection_ubo.box_project = light_storage->reflection_probe_is_box_projection(base_probe);
  1712. reflection_ubo.exposure_normalization = 1.0;
  1713. if (p_render_data->camera_attributes.is_valid()) {
  1714. float exposure = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
  1715. reflection_ubo.exposure_normalization = exposure / light_storage->reflection_probe_get_baked_exposure(base_probe);
  1716. }
  1717. Color ambient_linear = light_storage->reflection_probe_get_ambient_color(base_probe).srgb_to_linear();
  1718. float interior_ambient_energy = light_storage->reflection_probe_get_ambient_color_energy(base_probe);
  1719. reflection_ubo.ambient[0] = ambient_linear.r * interior_ambient_energy;
  1720. reflection_ubo.ambient[1] = ambient_linear.g * interior_ambient_energy;
  1721. reflection_ubo.ambient[2] = ambient_linear.b * interior_ambient_energy;
  1722. Transform3D transform = rpi->transform;
  1723. Transform3D proj = (p_camera_inverse_transform * transform).inverse();
  1724. RendererRD::MaterialStorage::store_transform(proj, reflection_ubo.local_matrix);
  1725. if (current_cluster_builder != nullptr) {
  1726. current_cluster_builder->add_box(ClusterBuilderRD::BOX_TYPE_REFLECTION_PROBE, transform, extents);
  1727. }
  1728. rpi->last_pass = RSG::rasterizer->get_frame_number();
  1729. }
  1730. if (cluster.reflection_count) {
  1731. RD::get_singleton()->buffer_update(cluster.reflection_buffer, 0, cluster.reflection_count * sizeof(Cluster::ReflectionData), cluster.reflections, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  1732. }
  1733. }
  1734. void RendererSceneRenderRD::_setup_lights(RenderDataRD *p_render_data, const PagedArray<RID> &p_lights, const Transform3D &p_camera_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_positional_light_count, bool &r_directional_light_soft_shadows) {
  1735. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  1736. RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
  1737. Transform3D inverse_transform = p_camera_transform.affine_inverse();
  1738. r_directional_light_count = 0;
  1739. r_positional_light_count = 0;
  1740. Plane camera_plane(-p_camera_transform.basis.get_column(Vector3::AXIS_Z).normalized(), p_camera_transform.origin);
  1741. cluster.omni_light_count = 0;
  1742. cluster.spot_light_count = 0;
  1743. r_directional_light_soft_shadows = false;
  1744. for (int i = 0; i < (int)p_lights.size(); i++) {
  1745. LightInstance *li = light_instance_owner.get_or_null(p_lights[i]);
  1746. if (!li) {
  1747. continue;
  1748. }
  1749. RID base = li->light;
  1750. ERR_CONTINUE(base.is_null());
  1751. RS::LightType type = light_storage->light_get_type(base);
  1752. switch (type) {
  1753. case RS::LIGHT_DIRECTIONAL: {
  1754. if (r_directional_light_count >= cluster.max_directional_lights || light_storage->light_directional_get_sky_mode(base) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) {
  1755. continue;
  1756. }
  1757. Cluster::DirectionalLightData &light_data = cluster.directional_lights[r_directional_light_count];
  1758. Transform3D light_transform = li->transform;
  1759. Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized();
  1760. light_data.direction[0] = direction.x;
  1761. light_data.direction[1] = direction.y;
  1762. light_data.direction[2] = direction.z;
  1763. float sign = light_storage->light_is_negative(base) ? -1 : 1;
  1764. light_data.energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY);
  1765. if (is_using_physical_light_units()) {
  1766. light_data.energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY);
  1767. } else {
  1768. light_data.energy *= Math_PI;
  1769. }
  1770. if (p_render_data->camera_attributes.is_valid()) {
  1771. light_data.energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
  1772. }
  1773. Color linear_col = light_storage->light_get_color(base).srgb_to_linear();
  1774. light_data.color[0] = linear_col.r;
  1775. light_data.color[1] = linear_col.g;
  1776. light_data.color[2] = linear_col.b;
  1777. light_data.specular = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR);
  1778. light_data.volumetric_fog_energy = light_storage->light_get_param(base, RS::LIGHT_PARAM_VOLUMETRIC_FOG_ENERGY);
  1779. light_data.mask = light_storage->light_get_cull_mask(base);
  1780. float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  1781. light_data.size = 1.0 - Math::cos(Math::deg_to_rad(size)); //angle to cosine offset
  1782. if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_PSSM_SPLITS) {
  1783. WARN_PRINT_ONCE("The DirectionalLight3D PSSM splits debug draw mode is not reimplemented yet.");
  1784. }
  1785. light_data.shadow_opacity = (p_using_shadows && light_storage->light_has_shadow(base))
  1786. ? light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_OPACITY)
  1787. : 0.0;
  1788. float angular_diameter = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  1789. if (angular_diameter > 0.0) {
  1790. // I know tan(0) is 0, but let's not risk it with numerical precision.
  1791. // technically this will keep expanding until reaching the sun, but all we care
  1792. // is expand until we reach the radius of the near plane (there can't be more occluders than that)
  1793. angular_diameter = Math::tan(Math::deg_to_rad(angular_diameter));
  1794. if (light_storage->light_has_shadow(base) && light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR) > 0.0) {
  1795. // Only enable PCSS-like soft shadows if blurring is enabled.
  1796. // Otherwise, performance would decrease with no visual difference.
  1797. r_directional_light_soft_shadows = true;
  1798. }
  1799. } else {
  1800. angular_diameter = 0.0;
  1801. }
  1802. if (light_data.shadow_opacity > 0.001) {
  1803. RS::LightDirectionalShadowMode smode = light_storage->light_directional_get_shadow_mode(base);
  1804. int limit = smode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (smode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3);
  1805. light_data.blend_splits = (smode != RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL) && light_storage->light_directional_get_blend_splits(base);
  1806. for (int j = 0; j < 4; j++) {
  1807. Rect2 atlas_rect = li->shadow_transform[j].atlas_rect;
  1808. Projection matrix = li->shadow_transform[j].camera;
  1809. float split = li->shadow_transform[MIN(limit, j)].split;
  1810. Projection bias;
  1811. bias.set_light_bias();
  1812. Projection rectm;
  1813. rectm.set_light_atlas_rect(atlas_rect);
  1814. Transform3D modelview = (inverse_transform * li->shadow_transform[j].transform).inverse();
  1815. Projection shadow_mtx = rectm * bias * matrix * modelview;
  1816. light_data.shadow_split_offsets[j] = split;
  1817. float bias_scale = li->shadow_transform[j].bias_scale;
  1818. light_data.shadow_bias[j] = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) / 100.0 * bias_scale;
  1819. light_data.shadow_normal_bias[j] = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * li->shadow_transform[j].shadow_texel_size;
  1820. light_data.shadow_transmittance_bias[j] = light_storage->light_get_transmittance_bias(base) * bias_scale;
  1821. light_data.shadow_z_range[j] = li->shadow_transform[j].farplane;
  1822. light_data.shadow_range_begin[j] = li->shadow_transform[j].range_begin;
  1823. RendererRD::MaterialStorage::store_camera(shadow_mtx, light_data.shadow_matrices[j]);
  1824. Vector2 uv_scale = li->shadow_transform[j].uv_scale;
  1825. uv_scale *= atlas_rect.size; //adapt to atlas size
  1826. switch (j) {
  1827. case 0: {
  1828. light_data.uv_scale1[0] = uv_scale.x;
  1829. light_data.uv_scale1[1] = uv_scale.y;
  1830. } break;
  1831. case 1: {
  1832. light_data.uv_scale2[0] = uv_scale.x;
  1833. light_data.uv_scale2[1] = uv_scale.y;
  1834. } break;
  1835. case 2: {
  1836. light_data.uv_scale3[0] = uv_scale.x;
  1837. light_data.uv_scale3[1] = uv_scale.y;
  1838. } break;
  1839. case 3: {
  1840. light_data.uv_scale4[0] = uv_scale.x;
  1841. light_data.uv_scale4[1] = uv_scale.y;
  1842. } break;
  1843. }
  1844. }
  1845. float fade_start = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START);
  1846. light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep
  1847. light_data.fade_to = -light_data.shadow_split_offsets[3];
  1848. light_data.soft_shadow_scale = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
  1849. light_data.softshadow_angle = angular_diameter;
  1850. light_data.bake_mode = light_storage->light_get_bake_mode(base);
  1851. if (angular_diameter <= 0.0) {
  1852. light_data.soft_shadow_scale *= directional_shadow_quality_radius_get(); // Only use quality radius for PCF
  1853. }
  1854. }
  1855. r_directional_light_count++;
  1856. } break;
  1857. case RS::LIGHT_OMNI: {
  1858. if (cluster.omni_light_count >= cluster.max_lights) {
  1859. continue;
  1860. }
  1861. const real_t distance = camera_plane.distance_to(li->transform.origin);
  1862. if (light_storage->light_is_distance_fade_enabled(li->light)) {
  1863. const float fade_begin = light_storage->light_get_distance_fade_begin(li->light);
  1864. const float fade_length = light_storage->light_get_distance_fade_length(li->light);
  1865. if (distance > fade_begin) {
  1866. if (distance > fade_begin + fade_length) {
  1867. // Out of range, don't draw this light to improve performance.
  1868. continue;
  1869. }
  1870. }
  1871. }
  1872. cluster.omni_light_sort[cluster.omni_light_count].instance = li;
  1873. cluster.omni_light_sort[cluster.omni_light_count].depth = distance;
  1874. cluster.omni_light_count++;
  1875. } break;
  1876. case RS::LIGHT_SPOT: {
  1877. if (cluster.spot_light_count >= cluster.max_lights) {
  1878. continue;
  1879. }
  1880. const real_t distance = camera_plane.distance_to(li->transform.origin);
  1881. if (light_storage->light_is_distance_fade_enabled(li->light)) {
  1882. const float fade_begin = light_storage->light_get_distance_fade_begin(li->light);
  1883. const float fade_length = light_storage->light_get_distance_fade_length(li->light);
  1884. if (distance > fade_begin) {
  1885. if (distance > fade_begin + fade_length) {
  1886. // Out of range, don't draw this light to improve performance.
  1887. continue;
  1888. }
  1889. }
  1890. }
  1891. cluster.spot_light_sort[cluster.spot_light_count].instance = li;
  1892. cluster.spot_light_sort[cluster.spot_light_count].depth = distance;
  1893. cluster.spot_light_count++;
  1894. } break;
  1895. }
  1896. li->last_pass = RSG::rasterizer->get_frame_number();
  1897. }
  1898. if (cluster.omni_light_count) {
  1899. SortArray<Cluster::InstanceSort<LightInstance>> sorter;
  1900. sorter.sort(cluster.omni_light_sort, cluster.omni_light_count);
  1901. }
  1902. if (cluster.spot_light_count) {
  1903. SortArray<Cluster::InstanceSort<LightInstance>> sorter;
  1904. sorter.sort(cluster.spot_light_sort, cluster.spot_light_count);
  1905. }
  1906. ShadowAtlas *shadow_atlas = nullptr;
  1907. if (p_shadow_atlas.is_valid() && p_using_shadows) {
  1908. shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas);
  1909. }
  1910. bool using_forward_ids = _uses_forward_ids();
  1911. for (uint32_t i = 0; i < (cluster.omni_light_count + cluster.spot_light_count); i++) {
  1912. uint32_t index = (i < cluster.omni_light_count) ? i : i - (cluster.omni_light_count);
  1913. Cluster::LightData &light_data = (i < cluster.omni_light_count) ? cluster.omni_lights[index] : cluster.spot_lights[index];
  1914. RS::LightType type = (i < cluster.omni_light_count) ? RS::LIGHT_OMNI : RS::LIGHT_SPOT;
  1915. LightInstance *li = (i < cluster.omni_light_count) ? cluster.omni_light_sort[index].instance : cluster.spot_light_sort[index].instance;
  1916. RID base = li->light;
  1917. if (using_forward_ids) {
  1918. _map_forward_id(type == RS::LIGHT_OMNI ? FORWARD_ID_TYPE_OMNI_LIGHT : FORWARD_ID_TYPE_SPOT_LIGHT, li->forward_id, index);
  1919. }
  1920. Transform3D light_transform = li->transform;
  1921. float sign = light_storage->light_is_negative(base) ? -1 : 1;
  1922. Color linear_col = light_storage->light_get_color(base).srgb_to_linear();
  1923. light_data.attenuation = light_storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION);
  1924. // Reuse fade begin, fade length and distance for shadow LOD determination later.
  1925. float fade_begin = 0.0;
  1926. float fade_shadow = 0.0;
  1927. float fade_length = 0.0;
  1928. real_t distance = 0.0;
  1929. float fade = 1.0;
  1930. float shadow_opacity_fade = 1.0;
  1931. if (light_storage->light_is_distance_fade_enabled(li->light)) {
  1932. fade_begin = light_storage->light_get_distance_fade_begin(li->light);
  1933. fade_shadow = light_storage->light_get_distance_fade_shadow(li->light);
  1934. fade_length = light_storage->light_get_distance_fade_length(li->light);
  1935. distance = camera_plane.distance_to(li->transform.origin);
  1936. // Use `smoothstep()` to make opacity changes more gradual and less noticeable to the player.
  1937. if (distance > fade_begin) {
  1938. fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_begin) / fade_length);
  1939. }
  1940. if (distance > fade_shadow) {
  1941. shadow_opacity_fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_shadow) / fade_length);
  1942. }
  1943. }
  1944. float energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * fade;
  1945. if (is_using_physical_light_units()) {
  1946. energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY);
  1947. // Convert from Luminous Power to Luminous Intensity
  1948. if (type == RS::LIGHT_OMNI) {
  1949. energy *= 1.0 / (Math_PI * 4.0);
  1950. } else {
  1951. // Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle.
  1952. // We make this assumption to keep them easy to control.
  1953. energy *= 1.0 / Math_PI;
  1954. }
  1955. } else {
  1956. energy *= Math_PI;
  1957. }
  1958. if (p_render_data->camera_attributes.is_valid()) {
  1959. energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
  1960. }
  1961. light_data.color[0] = linear_col.r * energy;
  1962. light_data.color[1] = linear_col.g * energy;
  1963. light_data.color[2] = linear_col.b * energy;
  1964. light_data.specular_amount = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 2.0;
  1965. light_data.volumetric_fog_energy = light_storage->light_get_param(base, RS::LIGHT_PARAM_VOLUMETRIC_FOG_ENERGY);
  1966. light_data.bake_mode = light_storage->light_get_bake_mode(base);
  1967. float radius = MAX(0.001, light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE));
  1968. light_data.inv_radius = 1.0 / radius;
  1969. Vector3 pos = inverse_transform.xform(light_transform.origin);
  1970. light_data.position[0] = pos.x;
  1971. light_data.position[1] = pos.y;
  1972. light_data.position[2] = pos.z;
  1973. Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized();
  1974. light_data.direction[0] = direction.x;
  1975. light_data.direction[1] = direction.y;
  1976. light_data.direction[2] = direction.z;
  1977. float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  1978. light_data.size = size;
  1979. light_data.inv_spot_attenuation = 1.0f / light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  1980. float spot_angle = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE);
  1981. light_data.cos_spot_angle = Math::cos(Math::deg_to_rad(spot_angle));
  1982. light_data.mask = light_storage->light_get_cull_mask(base);
  1983. light_data.atlas_rect[0] = 0;
  1984. light_data.atlas_rect[1] = 0;
  1985. light_data.atlas_rect[2] = 0;
  1986. light_data.atlas_rect[3] = 0;
  1987. RID projector = light_storage->light_get_projector(base);
  1988. if (projector.is_valid()) {
  1989. Rect2 rect = texture_storage->decal_atlas_get_texture_rect(projector);
  1990. if (type == RS::LIGHT_SPOT) {
  1991. light_data.projector_rect[0] = rect.position.x;
  1992. light_data.projector_rect[1] = rect.position.y + rect.size.height; //flip because shadow is flipped
  1993. light_data.projector_rect[2] = rect.size.width;
  1994. light_data.projector_rect[3] = -rect.size.height;
  1995. } else {
  1996. light_data.projector_rect[0] = rect.position.x;
  1997. light_data.projector_rect[1] = rect.position.y;
  1998. light_data.projector_rect[2] = rect.size.width;
  1999. light_data.projector_rect[3] = rect.size.height * 0.5; //used by dp, so needs to be half
  2000. }
  2001. } else {
  2002. light_data.projector_rect[0] = 0;
  2003. light_data.projector_rect[1] = 0;
  2004. light_data.projector_rect[2] = 0;
  2005. light_data.projector_rect[3] = 0;
  2006. }
  2007. const bool needs_shadow =
  2008. shadow_atlas &&
  2009. shadow_atlas->shadow_owners.has(li->self) &&
  2010. p_using_shadows &&
  2011. light_storage->light_has_shadow(base);
  2012. bool in_shadow_range = true;
  2013. if (needs_shadow && light_storage->light_is_distance_fade_enabled(li->light)) {
  2014. if (distance > light_storage->light_get_distance_fade_shadow(li->light) + light_storage->light_get_distance_fade_length(li->light)) {
  2015. // Out of range, don't draw shadows to improve performance.
  2016. in_shadow_range = false;
  2017. }
  2018. }
  2019. if (needs_shadow && in_shadow_range) {
  2020. // fill in the shadow information
  2021. light_data.shadow_opacity = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_OPACITY) * shadow_opacity_fade;
  2022. float shadow_texel_size = light_instance_get_shadow_texel_size(li->self, p_shadow_atlas);
  2023. light_data.shadow_normal_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 10.0;
  2024. if (type == RS::LIGHT_SPOT) {
  2025. light_data.shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) / 100.0;
  2026. } else { //omni
  2027. light_data.shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS);
  2028. }
  2029. light_data.transmittance_bias = light_storage->light_get_transmittance_bias(base);
  2030. Vector2i omni_offset;
  2031. Rect2 rect = light_instance_get_shadow_atlas_rect(li->self, p_shadow_atlas, omni_offset);
  2032. light_data.atlas_rect[0] = rect.position.x;
  2033. light_data.atlas_rect[1] = rect.position.y;
  2034. light_data.atlas_rect[2] = rect.size.width;
  2035. light_data.atlas_rect[3] = rect.size.height;
  2036. light_data.soft_shadow_scale = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
  2037. if (type == RS::LIGHT_OMNI) {
  2038. Transform3D proj = (inverse_transform * light_transform).inverse();
  2039. RendererRD::MaterialStorage::store_transform(proj, light_data.shadow_matrix);
  2040. if (size > 0.0 && light_data.soft_shadow_scale > 0.0) {
  2041. // Only enable PCSS-like soft shadows if blurring is enabled.
  2042. // Otherwise, performance would decrease with no visual difference.
  2043. light_data.soft_shadow_size = size;
  2044. } else {
  2045. light_data.soft_shadow_size = 0.0;
  2046. light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
  2047. }
  2048. light_data.direction[0] = omni_offset.x * float(rect.size.width);
  2049. light_data.direction[1] = omni_offset.y * float(rect.size.height);
  2050. } else if (type == RS::LIGHT_SPOT) {
  2051. Transform3D modelview = (inverse_transform * light_transform).inverse();
  2052. Projection bias;
  2053. bias.set_light_bias();
  2054. Projection shadow_mtx = bias * li->shadow_transform[0].camera * modelview;
  2055. RendererRD::MaterialStorage::store_camera(shadow_mtx, light_data.shadow_matrix);
  2056. if (size > 0.0 && light_data.soft_shadow_scale > 0.0) {
  2057. // Only enable PCSS-like soft shadows if blurring is enabled.
  2058. // Otherwise, performance would decrease with no visual difference.
  2059. Projection cm = li->shadow_transform[0].camera;
  2060. float half_np = cm.get_z_near() * Math::tan(Math::deg_to_rad(spot_angle));
  2061. light_data.soft_shadow_size = (size * 0.5 / radius) / (half_np / cm.get_z_near()) * rect.size.width;
  2062. } else {
  2063. light_data.soft_shadow_size = 0.0;
  2064. light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
  2065. }
  2066. }
  2067. } else {
  2068. light_data.shadow_opacity = 0.0;
  2069. }
  2070. li->cull_mask = light_storage->light_get_cull_mask(base);
  2071. if (current_cluster_builder != nullptr) {
  2072. current_cluster_builder->add_light(type == RS::LIGHT_SPOT ? ClusterBuilderRD::LIGHT_TYPE_SPOT : ClusterBuilderRD::LIGHT_TYPE_OMNI, light_transform, radius, spot_angle);
  2073. }
  2074. r_positional_light_count++;
  2075. }
  2076. //update without barriers
  2077. if (cluster.omni_light_count) {
  2078. RD::get_singleton()->buffer_update(cluster.omni_light_buffer, 0, sizeof(Cluster::LightData) * cluster.omni_light_count, cluster.omni_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  2079. }
  2080. if (cluster.spot_light_count) {
  2081. RD::get_singleton()->buffer_update(cluster.spot_light_buffer, 0, sizeof(Cluster::LightData) * cluster.spot_light_count, cluster.spot_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  2082. }
  2083. if (r_directional_light_count) {
  2084. RD::get_singleton()->buffer_update(cluster.directional_light_buffer, 0, sizeof(Cluster::DirectionalLightData) * r_directional_light_count, cluster.directional_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  2085. }
  2086. }
  2087. void RendererSceneRenderRD::_setup_decals(const PagedArray<RID> &p_decals, const Transform3D &p_camera_inverse_xform) {
  2088. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  2089. Transform3D uv_xform;
  2090. uv_xform.basis.scale(Vector3(2.0, 1.0, 2.0));
  2091. uv_xform.origin = Vector3(-1.0, 0.0, -1.0);
  2092. uint32_t decal_count = p_decals.size();
  2093. cluster.decal_count = 0;
  2094. for (uint32_t i = 0; i < decal_count; i++) {
  2095. if (cluster.decal_count == cluster.max_decals) {
  2096. break;
  2097. }
  2098. DecalInstance *di = decal_instance_owner.get_or_null(p_decals[i]);
  2099. if (!di) {
  2100. continue;
  2101. }
  2102. RID decal = di->decal;
  2103. Transform3D xform = di->transform;
  2104. real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;
  2105. if (texture_storage->decal_is_distance_fade_enabled(decal)) {
  2106. float fade_begin = texture_storage->decal_get_distance_fade_begin(decal);
  2107. float fade_length = texture_storage->decal_get_distance_fade_length(decal);
  2108. if (distance > fade_begin) {
  2109. if (distance > fade_begin + fade_length) {
  2110. continue; // do not use this decal, its invisible
  2111. }
  2112. }
  2113. }
  2114. cluster.decal_sort[cluster.decal_count].instance = di;
  2115. cluster.decal_sort[cluster.decal_count].depth = distance;
  2116. cluster.decal_count++;
  2117. }
  2118. if (cluster.decal_count > 0) {
  2119. SortArray<Cluster::InstanceSort<DecalInstance>> sort_array;
  2120. sort_array.sort(cluster.decal_sort, cluster.decal_count);
  2121. }
  2122. bool using_forward_ids = _uses_forward_ids();
  2123. for (uint32_t i = 0; i < cluster.decal_count; i++) {
  2124. DecalInstance *di = cluster.decal_sort[i].instance;
  2125. RID decal = di->decal;
  2126. if (using_forward_ids) {
  2127. _map_forward_id(FORWARD_ID_TYPE_DECAL, di->forward_id, i);
  2128. }
  2129. di->cull_mask = texture_storage->decal_get_cull_mask(decal);
  2130. Transform3D xform = di->transform;
  2131. float fade = 1.0;
  2132. if (texture_storage->decal_is_distance_fade_enabled(decal)) {
  2133. const real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;
  2134. const float fade_begin = texture_storage->decal_get_distance_fade_begin(decal);
  2135. const float fade_length = texture_storage->decal_get_distance_fade_length(decal);
  2136. if (distance > fade_begin) {
  2137. // Use `smoothstep()` to make opacity changes more gradual and less noticeable to the player.
  2138. fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_begin) / fade_length);
  2139. }
  2140. }
  2141. Cluster::DecalData &dd = cluster.decals[i];
  2142. Vector3 decal_extents = texture_storage->decal_get_extents(decal);
  2143. Transform3D scale_xform;
  2144. scale_xform.basis.scale(decal_extents);
  2145. Transform3D to_decal_xform = (p_camera_inverse_xform * di->transform * scale_xform * uv_xform).affine_inverse();
  2146. RendererRD::MaterialStorage::store_transform(to_decal_xform, dd.xform);
  2147. Vector3 normal = xform.basis.get_column(Vector3::AXIS_Y).normalized();
  2148. normal = p_camera_inverse_xform.basis.xform(normal); //camera is normalized, so fine
  2149. dd.normal[0] = normal.x;
  2150. dd.normal[1] = normal.y;
  2151. dd.normal[2] = normal.z;
  2152. dd.normal_fade = texture_storage->decal_get_normal_fade(decal);
  2153. RID albedo_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ALBEDO);
  2154. RID emission_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_EMISSION);
  2155. if (albedo_tex.is_valid()) {
  2156. Rect2 rect = texture_storage->decal_atlas_get_texture_rect(albedo_tex);
  2157. dd.albedo_rect[0] = rect.position.x;
  2158. dd.albedo_rect[1] = rect.position.y;
  2159. dd.albedo_rect[2] = rect.size.x;
  2160. dd.albedo_rect[3] = rect.size.y;
  2161. } else {
  2162. if (!emission_tex.is_valid()) {
  2163. continue; //no albedo, no emission, no decal.
  2164. }
  2165. dd.albedo_rect[0] = 0;
  2166. dd.albedo_rect[1] = 0;
  2167. dd.albedo_rect[2] = 0;
  2168. dd.albedo_rect[3] = 0;
  2169. }
  2170. RID normal_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_NORMAL);
  2171. if (normal_tex.is_valid()) {
  2172. Rect2 rect = texture_storage->decal_atlas_get_texture_rect(normal_tex);
  2173. dd.normal_rect[0] = rect.position.x;
  2174. dd.normal_rect[1] = rect.position.y;
  2175. dd.normal_rect[2] = rect.size.x;
  2176. dd.normal_rect[3] = rect.size.y;
  2177. Basis normal_xform = p_camera_inverse_xform.basis * xform.basis.orthonormalized();
  2178. RendererRD::MaterialStorage::store_basis_3x4(normal_xform, dd.normal_xform);
  2179. } else {
  2180. dd.normal_rect[0] = 0;
  2181. dd.normal_rect[1] = 0;
  2182. dd.normal_rect[2] = 0;
  2183. dd.normal_rect[3] = 0;
  2184. }
  2185. RID orm_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ORM);
  2186. if (orm_tex.is_valid()) {
  2187. Rect2 rect = texture_storage->decal_atlas_get_texture_rect(orm_tex);
  2188. dd.orm_rect[0] = rect.position.x;
  2189. dd.orm_rect[1] = rect.position.y;
  2190. dd.orm_rect[2] = rect.size.x;
  2191. dd.orm_rect[3] = rect.size.y;
  2192. } else {
  2193. dd.orm_rect[0] = 0;
  2194. dd.orm_rect[1] = 0;
  2195. dd.orm_rect[2] = 0;
  2196. dd.orm_rect[3] = 0;
  2197. }
  2198. if (emission_tex.is_valid()) {
  2199. Rect2 rect = texture_storage->decal_atlas_get_texture_rect(emission_tex);
  2200. dd.emission_rect[0] = rect.position.x;
  2201. dd.emission_rect[1] = rect.position.y;
  2202. dd.emission_rect[2] = rect.size.x;
  2203. dd.emission_rect[3] = rect.size.y;
  2204. } else {
  2205. dd.emission_rect[0] = 0;
  2206. dd.emission_rect[1] = 0;
  2207. dd.emission_rect[2] = 0;
  2208. dd.emission_rect[3] = 0;
  2209. }
  2210. Color modulate = texture_storage->decal_get_modulate(decal);
  2211. dd.modulate[0] = modulate.r;
  2212. dd.modulate[1] = modulate.g;
  2213. dd.modulate[2] = modulate.b;
  2214. dd.modulate[3] = modulate.a * fade;
  2215. dd.emission_energy = texture_storage->decal_get_emission_energy(decal) * fade;
  2216. dd.albedo_mix = texture_storage->decal_get_albedo_mix(decal);
  2217. dd.mask = texture_storage->decal_get_cull_mask(decal);
  2218. dd.upper_fade = texture_storage->decal_get_upper_fade(decal);
  2219. dd.lower_fade = texture_storage->decal_get_lower_fade(decal);
  2220. if (current_cluster_builder != nullptr) {
  2221. current_cluster_builder->add_box(ClusterBuilderRD::BOX_TYPE_DECAL, xform, decal_extents);
  2222. }
  2223. }
  2224. if (cluster.decal_count > 0) {
  2225. RD::get_singleton()->buffer_update(cluster.decal_buffer, 0, sizeof(Cluster::DecalData) * cluster.decal_count, cluster.decals, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  2226. }
  2227. }
  2228. ////////////////////////////////////////////////////////////////////////////////
  2229. // FOG SHADER
  2230. void RendererSceneRenderRD::_update_volumetric_fog(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_environment, const Projection &p_cam_projection, const Transform3D &p_cam_transform, const Transform3D &p_prev_cam_inv_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_voxel_gi_count, const PagedArray<RID> &p_fog_volumes) {
  2231. ERR_FAIL_COND(!is_clustered_enabled()); // can't use volumetric fog without clustered
  2232. ERR_FAIL_COND(p_render_buffers.is_null());
  2233. // These should be available for our clustered renderer, at some point _update_volumetric_fog should be called by the renderer implemetentation itself
  2234. ERR_FAIL_COND(!p_render_buffers->has_custom_data(RB_SCOPE_GI));
  2235. Ref<RendererRD::GI::RenderBuffersGI> rbgi = p_render_buffers->get_custom_data(RB_SCOPE_GI);
  2236. Ref<RendererRD::GI::SDFGI> sdfgi;
  2237. if (p_render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
  2238. sdfgi = p_render_buffers->get_custom_data(RB_SCOPE_SDFGI);
  2239. }
  2240. Size2i size = p_render_buffers->get_internal_size();
  2241. float ratio = float(size.x) / float((size.x + size.y) / 2);
  2242. uint32_t target_width = uint32_t(float(volumetric_fog_size) * ratio);
  2243. uint32_t target_height = uint32_t(float(volumetric_fog_size) / ratio);
  2244. if (p_render_buffers->has_custom_data(RB_SCOPE_FOG)) {
  2245. Ref<RendererRD::Fog::VolumetricFog> fog = p_render_buffers->get_custom_data(RB_SCOPE_FOG);
  2246. //validate
  2247. if (p_environment.is_null() || !environment_get_volumetric_fog_enabled(p_environment) || fog->width != target_width || fog->height != target_height || fog->depth != volumetric_fog_depth) {
  2248. p_render_buffers->set_custom_data(RB_SCOPE_FOG, Ref<RenderBufferCustomDataRD>());
  2249. }
  2250. }
  2251. if (p_environment.is_null() || !environment_get_volumetric_fog_enabled(p_environment)) {
  2252. //no reason to enable or update, bye
  2253. return;
  2254. }
  2255. if (p_environment.is_valid() && environment_get_volumetric_fog_enabled(p_environment) && !p_render_buffers->has_custom_data(RB_SCOPE_FOG)) {
  2256. //required volumetric fog but not existing, create
  2257. Ref<RendererRD::Fog::VolumetricFog> fog;
  2258. fog.instantiate();
  2259. fog->init(Vector3i(target_width, target_height, volumetric_fog_depth), sky.sky_shader.default_shader_rd);
  2260. p_render_buffers->set_custom_data(RB_SCOPE_FOG, fog);
  2261. }
  2262. if (p_render_buffers->has_custom_data(RB_SCOPE_FOG)) {
  2263. Ref<RendererRD::Fog::VolumetricFog> fog = p_render_buffers->get_custom_data(RB_SCOPE_FOG);
  2264. RendererRD::Fog::VolumetricFogSettings settings;
  2265. settings.rb_size = size;
  2266. settings.time = time;
  2267. settings.is_using_radiance_cubemap_array = is_using_radiance_cubemap_array();
  2268. settings.max_cluster_elements = max_cluster_elements;
  2269. settings.volumetric_fog_filter_active = volumetric_fog_filter_active;
  2270. settings.shadow_sampler = shadow_sampler;
  2271. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas);
  2272. settings.shadow_atlas_depth = shadow_atlas ? shadow_atlas->depth : RID();
  2273. settings.voxel_gi_buffer = rbgi->get_voxel_gi_buffer();
  2274. settings.omni_light_buffer = get_omni_light_buffer();
  2275. settings.spot_light_buffer = get_spot_light_buffer();
  2276. settings.directional_shadow_depth = directional_shadow.depth;
  2277. settings.directional_light_buffer = get_directional_light_buffer();
  2278. settings.vfog = fog;
  2279. settings.cluster_builder = p_render_buffers->cluster_builder;
  2280. settings.rbgi = rbgi;
  2281. settings.sdfgi = sdfgi;
  2282. settings.env = p_environment;
  2283. settings.sky = &sky;
  2284. settings.gi = &gi;
  2285. RendererRD::Fog::get_singleton()->volumetric_fog_update(settings, p_cam_projection, p_cam_transform, p_prev_cam_inv_transform, p_shadow_atlas, p_directional_light_count, p_use_directional_shadows, p_positional_light_count, p_voxel_gi_count, p_fog_volumes);
  2286. }
  2287. }
  2288. bool RendererSceneRenderRD::_needs_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi) {
  2289. if (p_render_data->render_buffers.is_valid()) {
  2290. if (p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
  2291. return true;
  2292. }
  2293. }
  2294. return false;
  2295. }
  2296. void RendererSceneRenderRD::_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi) {
  2297. if (p_render_data->render_buffers.is_valid() && p_use_gi) {
  2298. if (!p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
  2299. return;
  2300. }
  2301. Ref<RendererRD::GI::SDFGI> sdfgi = p_render_data->render_buffers->get_custom_data(RB_SCOPE_SDFGI);
  2302. sdfgi->update_probes(p_render_data->environment, sky.sky_owner.get_or_null(environment_get_sky(p_render_data->environment)));
  2303. }
  2304. }
  2305. void RendererSceneRenderRD::_pre_resolve_render(RenderDataRD *p_render_data, bool p_use_gi) {
  2306. if (p_render_data->render_buffers.is_valid()) {
  2307. if (p_use_gi) {
  2308. RD::get_singleton()->compute_list_end();
  2309. }
  2310. }
  2311. }
  2312. void RendererSceneRenderRD::_pre_opaque_render(RenderDataRD *p_render_data, bool p_use_ssao, bool p_use_ssil, bool p_use_gi, const RID *p_normal_roughness_slices, RID p_voxel_gi_buffer) {
  2313. // Render shadows while GI is rendering, due to how barriers are handled, this should happen at the same time
  2314. RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
  2315. if (p_render_data->render_buffers.is_valid() && p_use_gi && p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
  2316. Ref<RendererRD::GI::SDFGI> sdfgi = p_render_data->render_buffers->get_custom_data(RB_SCOPE_SDFGI);
  2317. sdfgi->store_probes();
  2318. }
  2319. render_state.cube_shadows.clear();
  2320. render_state.shadows.clear();
  2321. render_state.directional_shadows.clear();
  2322. Plane camera_plane(-p_render_data->scene_data->cam_transform.basis.get_column(Vector3::AXIS_Z), p_render_data->scene_data->cam_transform.origin);
  2323. float lod_distance_multiplier = p_render_data->scene_data->cam_projection.get_lod_multiplier();
  2324. {
  2325. for (int i = 0; i < render_state.render_shadow_count; i++) {
  2326. LightInstance *li = light_instance_owner.get_or_null(render_state.render_shadows[i].light);
  2327. if (light_storage->light_get_type(li->light) == RS::LIGHT_DIRECTIONAL) {
  2328. render_state.directional_shadows.push_back(i);
  2329. } else if (light_storage->light_get_type(li->light) == RS::LIGHT_OMNI && light_storage->light_omni_get_shadow_mode(li->light) == RS::LIGHT_OMNI_SHADOW_CUBE) {
  2330. render_state.cube_shadows.push_back(i);
  2331. } else {
  2332. render_state.shadows.push_back(i);
  2333. }
  2334. }
  2335. //cube shadows are rendered in their own way
  2336. for (uint32_t i = 0; i < render_state.cube_shadows.size(); i++) {
  2337. _render_shadow_pass(render_state.render_shadows[render_state.cube_shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.cube_shadows[i]].pass, render_state.render_shadows[render_state.cube_shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->scene_data->screen_mesh_lod_threshold, true, true, true, p_render_data->render_info);
  2338. }
  2339. if (render_state.directional_shadows.size()) {
  2340. //open the pass for directional shadows
  2341. _update_directional_shadow_atlas();
  2342. RD::get_singleton()->draw_list_begin(directional_shadow.fb, RD::INITIAL_ACTION_DROP, RD::FINAL_ACTION_DISCARD, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_CONTINUE);
  2343. RD::get_singleton()->draw_list_end();
  2344. }
  2345. }
  2346. // Render GI
  2347. bool render_shadows = render_state.directional_shadows.size() || render_state.shadows.size();
  2348. bool render_gi = p_render_data->render_buffers.is_valid() && p_use_gi;
  2349. if (render_shadows && render_gi) {
  2350. RENDER_TIMESTAMP("Render GI + Render Shadows (Parallel)");
  2351. } else if (render_shadows) {
  2352. RENDER_TIMESTAMP("Render Shadows");
  2353. } else if (render_gi) {
  2354. RENDER_TIMESTAMP("Render GI");
  2355. }
  2356. //prepare shadow rendering
  2357. if (render_shadows) {
  2358. _render_shadow_begin();
  2359. //render directional shadows
  2360. for (uint32_t i = 0; i < render_state.directional_shadows.size(); i++) {
  2361. _render_shadow_pass(render_state.render_shadows[render_state.directional_shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.directional_shadows[i]].pass, render_state.render_shadows[render_state.directional_shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->scene_data->screen_mesh_lod_threshold, false, i == render_state.directional_shadows.size() - 1, false, p_render_data->render_info);
  2362. }
  2363. //render positional shadows
  2364. for (uint32_t i = 0; i < render_state.shadows.size(); i++) {
  2365. _render_shadow_pass(render_state.render_shadows[render_state.shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.shadows[i]].pass, render_state.render_shadows[render_state.shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->scene_data->screen_mesh_lod_threshold, i == 0, i == render_state.shadows.size() - 1, true, p_render_data->render_info);
  2366. }
  2367. _render_shadow_process();
  2368. }
  2369. //start GI
  2370. if (render_gi) {
  2371. gi.process_gi(p_render_data->render_buffers, p_normal_roughness_slices, p_voxel_gi_buffer, p_render_data->environment, p_render_data->scene_data->view_count, p_render_data->scene_data->view_projection, p_render_data->scene_data->view_eye_offset, p_render_data->scene_data->cam_transform, *p_render_data->voxel_gi_instances);
  2372. }
  2373. //Do shadow rendering (in parallel with GI)
  2374. if (render_shadows) {
  2375. _render_shadow_end(RD::BARRIER_MASK_NO_BARRIER);
  2376. }
  2377. if (render_gi) {
  2378. RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_NO_BARRIER); //use a later barrier
  2379. }
  2380. if (p_render_data->render_buffers.is_valid() && ss_effects) {
  2381. if (p_use_ssao || p_use_ssil) {
  2382. Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
  2383. ERR_FAIL_COND(rb.is_null());
  2384. Size2i size = rb->get_internal_size();
  2385. bool invalidate_uniform_set = false;
  2386. if (rb->ss_effects.linear_depth.is_null()) {
  2387. RD::TextureFormat tf;
  2388. tf.format = RD::DATA_FORMAT_R16_SFLOAT;
  2389. tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  2390. tf.width = (size.x + 1) / 2;
  2391. tf.height = (size.y + 1) / 2;
  2392. tf.mipmaps = 5;
  2393. tf.array_layers = 4;
  2394. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  2395. rb->ss_effects.linear_depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2396. RD::get_singleton()->set_resource_name(rb->ss_effects.linear_depth, "SS Effects Depth");
  2397. for (uint32_t i = 0; i < tf.mipmaps; i++) {
  2398. RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ss_effects.linear_depth, 0, i, 1, RD::TEXTURE_SLICE_2D_ARRAY);
  2399. rb->ss_effects.linear_depth_slices.push_back(slice);
  2400. RD::get_singleton()->set_resource_name(slice, "SS Effects Depth Mip " + itos(i) + " ");
  2401. }
  2402. invalidate_uniform_set = true;
  2403. }
  2404. RID depth_texture = rb->get_depth_texture();
  2405. ss_effects->downsample_depth(depth_texture, rb->ss_effects.linear_depth_slices, ssao_quality, ssil_quality, invalidate_uniform_set, ssao_half_size, ssil_half_size, size, p_render_data->scene_data->cam_projection);
  2406. }
  2407. if (p_use_ssao) {
  2408. // TODO make these proper stereo
  2409. _process_ssao(p_render_data->render_buffers, p_render_data->environment, p_normal_roughness_slices[0], p_render_data->scene_data->cam_projection);
  2410. }
  2411. if (p_use_ssil) {
  2412. // TODO make these proper stereo
  2413. _process_ssil(p_render_data->render_buffers, p_render_data->environment, p_normal_roughness_slices[0], p_render_data->scene_data->cam_projection, p_render_data->scene_data->cam_transform);
  2414. }
  2415. }
  2416. //full barrier here, we need raster, transfer and compute and it depends from the previous work
  2417. RD::get_singleton()->barrier(RD::BARRIER_MASK_ALL, RD::BARRIER_MASK_ALL);
  2418. if (current_cluster_builder) {
  2419. current_cluster_builder->begin(p_render_data->scene_data->cam_transform, p_render_data->scene_data->cam_projection, !p_render_data->reflection_probe.is_valid());
  2420. }
  2421. bool using_shadows = true;
  2422. if (p_render_data->reflection_probe.is_valid()) {
  2423. if (!RSG::light_storage->reflection_probe_renders_shadows(reflection_probe_instance_get_probe(p_render_data->reflection_probe))) {
  2424. using_shadows = false;
  2425. }
  2426. } else {
  2427. //do not render reflections when rendering a reflection probe
  2428. _setup_reflections(p_render_data, *p_render_data->reflection_probes, p_render_data->scene_data->cam_transform.affine_inverse(), p_render_data->environment);
  2429. }
  2430. uint32_t directional_light_count = 0;
  2431. uint32_t positional_light_count = 0;
  2432. _setup_lights(p_render_data, *p_render_data->lights, p_render_data->scene_data->cam_transform, p_render_data->shadow_atlas, using_shadows, directional_light_count, positional_light_count, p_render_data->directional_light_soft_shadows);
  2433. _setup_decals(*p_render_data->decals, p_render_data->scene_data->cam_transform.affine_inverse());
  2434. p_render_data->directional_light_count = directional_light_count;
  2435. if (current_cluster_builder) {
  2436. current_cluster_builder->bake_cluster();
  2437. }
  2438. if (p_render_data->render_buffers.is_valid()) {
  2439. bool directional_shadows = false;
  2440. for (uint32_t i = 0; i < directional_light_count; i++) {
  2441. if (cluster.directional_lights[i].shadow_opacity > 0.001) {
  2442. directional_shadows = true;
  2443. break;
  2444. }
  2445. }
  2446. if (is_volumetric_supported()) {
  2447. _update_volumetric_fog(p_render_data->render_buffers, p_render_data->environment, p_render_data->scene_data->cam_projection, p_render_data->scene_data->cam_transform, p_render_data->scene_data->prev_cam_transform.affine_inverse(), p_render_data->shadow_atlas, directional_light_count, directional_shadows, positional_light_count, render_state.voxel_gi_count, *p_render_data->fog_volumes);
  2448. }
  2449. }
  2450. }
  2451. void RendererSceneRenderRD::render_scene(const Ref<RenderSceneBuffers> &p_render_buffers, const CameraData *p_camera_data, const CameraData *p_prev_camera_data, const PagedArray<RenderGeometryInstance *> &p_instances, const PagedArray<RID> &p_lights, const PagedArray<RID> &p_reflection_probes, const PagedArray<RID> &p_voxel_gi_instances, const PagedArray<RID> &p_decals, const PagedArray<RID> &p_lightmaps, const PagedArray<RID> &p_fog_volumes, RID p_environment, RID p_camera_attributes, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data, RenderingMethod::RenderInfo *r_render_info) {
  2452. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  2453. // getting this here now so we can direct call a bunch of things more easily
  2454. Ref<RenderSceneBuffersRD> rb;
  2455. if (p_render_buffers.is_valid()) {
  2456. rb = p_render_buffers; // cast it...
  2457. ERR_FAIL_COND(rb.is_null());
  2458. }
  2459. // setup scene data
  2460. RenderSceneDataRD scene_data;
  2461. {
  2462. // Our first camera is used by default
  2463. scene_data.cam_transform = p_camera_data->main_transform;
  2464. scene_data.cam_projection = p_camera_data->main_projection;
  2465. scene_data.cam_orthogonal = p_camera_data->is_orthogonal;
  2466. scene_data.taa_jitter = p_camera_data->taa_jitter;
  2467. scene_data.view_count = p_camera_data->view_count;
  2468. for (uint32_t v = 0; v < p_camera_data->view_count; v++) {
  2469. scene_data.view_eye_offset[v] = p_camera_data->view_offset[v].origin;
  2470. scene_data.view_projection[v] = p_camera_data->view_projection[v];
  2471. }
  2472. scene_data.prev_cam_transform = p_prev_camera_data->main_transform;
  2473. scene_data.prev_cam_projection = p_prev_camera_data->main_projection;
  2474. scene_data.prev_taa_jitter = p_prev_camera_data->taa_jitter;
  2475. for (uint32_t v = 0; v < p_camera_data->view_count; v++) {
  2476. scene_data.prev_view_projection[v] = p_prev_camera_data->view_projection[v];
  2477. }
  2478. scene_data.z_near = p_camera_data->main_projection.get_z_near();
  2479. scene_data.z_far = p_camera_data->main_projection.get_z_far();
  2480. // this should be the same for all cameras..
  2481. scene_data.lod_distance_multiplier = p_camera_data->main_projection.get_lod_multiplier();
  2482. scene_data.lod_camera_plane = Plane(-p_camera_data->main_transform.basis.get_column(Vector3::AXIS_Z), p_camera_data->main_transform.get_origin());
  2483. if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) {
  2484. scene_data.screen_mesh_lod_threshold = 0.0;
  2485. } else {
  2486. scene_data.screen_mesh_lod_threshold = p_screen_mesh_lod_threshold;
  2487. }
  2488. if (p_shadow_atlas.is_valid()) {
  2489. Vector2 sas = shadow_atlas_get_size(p_shadow_atlas);
  2490. scene_data.shadow_atlas_pixel_size.x = 1.0 / sas.x;
  2491. scene_data.shadow_atlas_pixel_size.y = 1.0 / sas.y;
  2492. }
  2493. {
  2494. Vector2 dss = directional_shadow_get_size();
  2495. scene_data.directional_shadow_pixel_size.x = 1.0 / dss.x;
  2496. scene_data.directional_shadow_pixel_size.y = 1.0 / dss.y;
  2497. }
  2498. scene_data.time = time;
  2499. scene_data.time_step = time_step;
  2500. }
  2501. //assign render data
  2502. RenderDataRD render_data;
  2503. {
  2504. render_data.render_buffers = rb;
  2505. render_data.scene_data = &scene_data;
  2506. render_data.instances = &p_instances;
  2507. render_data.lights = &p_lights;
  2508. render_data.reflection_probes = &p_reflection_probes;
  2509. render_data.voxel_gi_instances = &p_voxel_gi_instances;
  2510. render_data.decals = &p_decals;
  2511. render_data.lightmaps = &p_lightmaps;
  2512. render_data.fog_volumes = &p_fog_volumes;
  2513. render_data.environment = p_environment;
  2514. render_data.camera_attributes = p_camera_attributes;
  2515. render_data.shadow_atlas = p_shadow_atlas;
  2516. render_data.reflection_atlas = p_reflection_atlas;
  2517. render_data.reflection_probe = p_reflection_probe;
  2518. render_data.reflection_probe_pass = p_reflection_probe_pass;
  2519. render_state.render_shadows = p_render_shadows;
  2520. render_state.render_shadow_count = p_render_shadow_count;
  2521. render_state.render_sdfgi_regions = p_render_sdfgi_regions;
  2522. render_state.render_sdfgi_region_count = p_render_sdfgi_region_count;
  2523. render_state.sdfgi_update_data = p_sdfgi_update_data;
  2524. render_data.render_info = r_render_info;
  2525. }
  2526. PagedArray<RID> empty;
  2527. if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) {
  2528. render_data.lights = &empty;
  2529. render_data.reflection_probes = &empty;
  2530. render_data.voxel_gi_instances = &empty;
  2531. }
  2532. // sdfgi first
  2533. if (rb.is_valid() && rb->has_custom_data(RB_SCOPE_SDFGI)) {
  2534. Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
  2535. float exposure_normalization = 1.0;
  2536. if (p_camera_attributes.is_valid()) {
  2537. exposure_normalization = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_camera_attributes);
  2538. }
  2539. for (int i = 0; i < render_state.render_sdfgi_region_count; i++) {
  2540. sdfgi->render_region(rb, render_state.render_sdfgi_regions[i].region, render_state.render_sdfgi_regions[i].instances, this, exposure_normalization);
  2541. }
  2542. if (render_state.sdfgi_update_data->update_static) {
  2543. sdfgi->render_static_lights(&render_data, rb, render_state.sdfgi_update_data->static_cascade_count, p_sdfgi_update_data->static_cascade_indices, render_state.sdfgi_update_data->static_positional_lights, this);
  2544. }
  2545. }
  2546. Color clear_color;
  2547. if (p_render_buffers.is_valid()) {
  2548. clear_color = texture_storage->render_target_get_clear_request_color(rb->get_render_target());
  2549. } else {
  2550. clear_color = RSG::texture_storage->get_default_clear_color();
  2551. }
  2552. //assign render indices to voxel_gi_instances
  2553. if (is_dynamic_gi_supported()) {
  2554. for (uint32_t i = 0; i < (uint32_t)p_voxel_gi_instances.size(); i++) {
  2555. gi.voxel_gi_instance_set_render_index(p_voxel_gi_instances[i], i);
  2556. }
  2557. }
  2558. if (rb.is_valid()) {
  2559. // render_data.render_buffers == p_render_buffers so we can use our already retrieved rb
  2560. current_cluster_builder = rb->cluster_builder;
  2561. } else if (reflection_probe_instance_owner.owns(render_data.reflection_probe)) {
  2562. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(render_data.reflection_probe);
  2563. ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(rpi->atlas);
  2564. if (!ra) {
  2565. ERR_PRINT("reflection probe has no reflection atlas! Bug?");
  2566. current_cluster_builder = nullptr;
  2567. } else {
  2568. current_cluster_builder = ra->cluster_builder;
  2569. }
  2570. if (p_camera_attributes.is_valid()) {
  2571. RendererRD::LightStorage::get_singleton()->reflection_probe_set_baked_exposure(rpi->probe, RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_camera_attributes));
  2572. }
  2573. } else {
  2574. ERR_PRINT("No render buffer nor reflection atlas, bug"); //should never happen, will crash
  2575. current_cluster_builder = nullptr;
  2576. }
  2577. render_state.voxel_gi_count = 0;
  2578. if (rb.is_valid() && is_dynamic_gi_supported()) {
  2579. if (rb->has_custom_data(RB_SCOPE_SDFGI)) {
  2580. Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
  2581. if (sdfgi.is_valid()) {
  2582. sdfgi->update_cascades();
  2583. sdfgi->pre_process_gi(scene_data.cam_transform, &render_data, this);
  2584. sdfgi->update_light();
  2585. }
  2586. }
  2587. gi.setup_voxel_gi_instances(&render_data, render_data.render_buffers, scene_data.cam_transform, *render_data.voxel_gi_instances, render_state.voxel_gi_count, this);
  2588. }
  2589. render_state.depth_prepass_used = false;
  2590. //calls _pre_opaque_render between depth pre-pass and opaque pass
  2591. if (current_cluster_builder != nullptr) {
  2592. render_data.cluster_buffer = current_cluster_builder->get_cluster_buffer();
  2593. render_data.cluster_size = current_cluster_builder->get_cluster_size();
  2594. render_data.cluster_max_elements = current_cluster_builder->get_max_cluster_elements();
  2595. }
  2596. if (rb.is_valid() && vrs) {
  2597. RS::ViewportVRSMode vrs_mode = texture_storage->render_target_get_vrs_mode(rb->get_render_target());
  2598. if (vrs_mode != RS::VIEWPORT_VRS_DISABLED) {
  2599. RID vrs_texture = rb->get_texture(RB_SCOPE_VRS, RB_TEXTURE);
  2600. // We use get_cache_multipass instead of get_cache_multiview because the default behavior is for
  2601. // our vrs_texture to be used as the VRS attachment. In this particular case we're writing to it
  2602. // so it needs to be set as our color attachment
  2603. Vector<RID> textures;
  2604. textures.push_back(vrs_texture);
  2605. Vector<RD::FramebufferPass> passes;
  2606. RD::FramebufferPass pass;
  2607. pass.color_attachments.push_back(0);
  2608. passes.push_back(pass);
  2609. RID vrs_fb = FramebufferCacheRD::get_singleton()->get_cache_multipass(textures, passes, rb->get_view_count());
  2610. vrs->update_vrs_texture(vrs_fb, rb->get_render_target());
  2611. }
  2612. }
  2613. _render_scene(&render_data, clear_color);
  2614. if (rb.is_valid()) {
  2615. _render_buffers_debug_draw(rb, p_shadow_atlas, p_occluder_debug_tex);
  2616. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SDFGI && rb->has_custom_data(RB_SCOPE_SDFGI)) {
  2617. Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
  2618. Vector<RID> view_rids;
  2619. // SDFGI renders at internal resolution, need to check if our debug correctly supports outputting upscaled.
  2620. Size2i size = rb->get_internal_size();
  2621. RID source_texture = rb->get_internal_texture();
  2622. for (uint32_t v = 0; v < rb->get_view_count(); v++) {
  2623. view_rids.push_back(rb->get_internal_texture(v));
  2624. }
  2625. sdfgi->debug_draw(scene_data.view_count, scene_data.view_projection, scene_data.cam_transform, size.x, size.y, rb->get_render_target(), source_texture, view_rids);
  2626. }
  2627. }
  2628. }
  2629. void RendererSceneRenderRD::_debug_draw_cluster(Ref<RenderSceneBuffersRD> p_render_buffers) {
  2630. if (p_render_buffers.is_valid() && current_cluster_builder != nullptr) {
  2631. RS::ViewportDebugDraw dd = get_debug_draw_mode();
  2632. if (dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS || dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS || dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS || dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES) {
  2633. ClusterBuilderRD::ElementType elem_type = ClusterBuilderRD::ELEMENT_TYPE_MAX;
  2634. switch (dd) {
  2635. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS:
  2636. elem_type = ClusterBuilderRD::ELEMENT_TYPE_OMNI_LIGHT;
  2637. break;
  2638. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS:
  2639. elem_type = ClusterBuilderRD::ELEMENT_TYPE_SPOT_LIGHT;
  2640. break;
  2641. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS:
  2642. elem_type = ClusterBuilderRD::ELEMENT_TYPE_DECAL;
  2643. break;
  2644. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES:
  2645. elem_type = ClusterBuilderRD::ELEMENT_TYPE_REFLECTION_PROBE;
  2646. break;
  2647. default: {
  2648. }
  2649. }
  2650. current_cluster_builder->debug(elem_type);
  2651. }
  2652. }
  2653. }
  2654. void RendererSceneRenderRD::_render_shadow_pass(RID p_light, RID p_shadow_atlas, int p_pass, const PagedArray<RenderGeometryInstance *> &p_instances, const Plane &p_camera_plane, float p_lod_distance_multiplier, float p_screen_mesh_lod_threshold, bool p_open_pass, bool p_close_pass, bool p_clear_region, RenderingMethod::RenderInfo *p_render_info) {
  2655. LightInstance *light_instance = light_instance_owner.get_or_null(p_light);
  2656. ERR_FAIL_COND(!light_instance);
  2657. Rect2i atlas_rect;
  2658. uint32_t atlas_size = 1;
  2659. RID atlas_fb;
  2660. bool using_dual_paraboloid = false;
  2661. bool using_dual_paraboloid_flip = false;
  2662. Vector2i dual_paraboloid_offset;
  2663. RID render_fb;
  2664. RID render_texture;
  2665. float zfar;
  2666. bool use_pancake = false;
  2667. bool render_cubemap = false;
  2668. bool finalize_cubemap = false;
  2669. bool flip_y = false;
  2670. Projection light_projection;
  2671. Transform3D light_transform;
  2672. if (RSG::light_storage->light_get_type(light_instance->light) == RS::LIGHT_DIRECTIONAL) {
  2673. //set pssm stuff
  2674. if (light_instance->last_scene_shadow_pass != scene_pass) {
  2675. light_instance->directional_rect = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light);
  2676. directional_shadow.current_light++;
  2677. light_instance->last_scene_shadow_pass = scene_pass;
  2678. }
  2679. use_pancake = RSG::light_storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE) > 0;
  2680. light_projection = light_instance->shadow_transform[p_pass].camera;
  2681. light_transform = light_instance->shadow_transform[p_pass].transform;
  2682. atlas_rect = light_instance->directional_rect;
  2683. if (RSG::light_storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  2684. atlas_rect.size.width /= 2;
  2685. atlas_rect.size.height /= 2;
  2686. if (p_pass == 1) {
  2687. atlas_rect.position.x += atlas_rect.size.width;
  2688. } else if (p_pass == 2) {
  2689. atlas_rect.position.y += atlas_rect.size.height;
  2690. } else if (p_pass == 3) {
  2691. atlas_rect.position += atlas_rect.size;
  2692. }
  2693. } else if (RSG::light_storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  2694. atlas_rect.size.height /= 2;
  2695. if (p_pass == 0) {
  2696. } else {
  2697. atlas_rect.position.y += atlas_rect.size.height;
  2698. }
  2699. }
  2700. light_instance->shadow_transform[p_pass].atlas_rect = atlas_rect;
  2701. light_instance->shadow_transform[p_pass].atlas_rect.position /= directional_shadow.size;
  2702. light_instance->shadow_transform[p_pass].atlas_rect.size /= directional_shadow.size;
  2703. zfar = RSG::light_storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
  2704. render_fb = directional_shadow.fb;
  2705. render_texture = RID();
  2706. flip_y = true;
  2707. } else {
  2708. //set from shadow atlas
  2709. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas);
  2710. ERR_FAIL_COND(!shadow_atlas);
  2711. ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
  2712. _update_shadow_atlas(shadow_atlas);
  2713. uint32_t key = shadow_atlas->shadow_owners[p_light];
  2714. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  2715. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  2716. ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size());
  2717. uint32_t quadrant_size = shadow_atlas->size >> 1;
  2718. atlas_rect.position.x = (quadrant & 1) * quadrant_size;
  2719. atlas_rect.position.y = (quadrant >> 1) * quadrant_size;
  2720. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  2721. atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  2722. atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  2723. atlas_rect.size.width = shadow_size;
  2724. atlas_rect.size.height = shadow_size;
  2725. zfar = RSG::light_storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
  2726. if (RSG::light_storage->light_get_type(light_instance->light) == RS::LIGHT_OMNI) {
  2727. bool wrap = (shadow + 1) % shadow_atlas->quadrants[quadrant].subdivision == 0;
  2728. dual_paraboloid_offset = wrap ? Vector2i(1 - shadow_atlas->quadrants[quadrant].subdivision, 1) : Vector2i(1, 0);
  2729. if (RSG::light_storage->light_omni_get_shadow_mode(light_instance->light) == RS::LIGHT_OMNI_SHADOW_CUBE) {
  2730. ShadowCubemap *cubemap = _get_shadow_cubemap(shadow_size / 2);
  2731. render_fb = cubemap->side_fb[p_pass];
  2732. render_texture = cubemap->cubemap;
  2733. light_projection = light_instance->shadow_transform[p_pass].camera;
  2734. light_transform = light_instance->shadow_transform[p_pass].transform;
  2735. render_cubemap = true;
  2736. finalize_cubemap = p_pass == 5;
  2737. atlas_fb = shadow_atlas->fb;
  2738. atlas_size = shadow_atlas->size;
  2739. if (p_pass == 0) {
  2740. _render_shadow_begin();
  2741. }
  2742. } else {
  2743. atlas_rect.position.x += 1;
  2744. atlas_rect.position.y += 1;
  2745. atlas_rect.size.x -= 2;
  2746. atlas_rect.size.y -= 2;
  2747. atlas_rect.position += p_pass * atlas_rect.size * dual_paraboloid_offset;
  2748. light_projection = light_instance->shadow_transform[0].camera;
  2749. light_transform = light_instance->shadow_transform[0].transform;
  2750. using_dual_paraboloid = true;
  2751. using_dual_paraboloid_flip = p_pass == 1;
  2752. render_fb = shadow_atlas->fb;
  2753. flip_y = true;
  2754. }
  2755. } else if (RSG::light_storage->light_get_type(light_instance->light) == RS::LIGHT_SPOT) {
  2756. light_projection = light_instance->shadow_transform[0].camera;
  2757. light_transform = light_instance->shadow_transform[0].transform;
  2758. render_fb = shadow_atlas->fb;
  2759. flip_y = true;
  2760. }
  2761. }
  2762. if (render_cubemap) {
  2763. //rendering to cubemap
  2764. _render_shadow_append(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, false, false, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_mesh_lod_threshold, Rect2(), false, true, true, true, p_render_info);
  2765. if (finalize_cubemap) {
  2766. _render_shadow_process();
  2767. _render_shadow_end();
  2768. //reblit
  2769. Rect2 atlas_rect_norm = atlas_rect;
  2770. atlas_rect_norm.position /= float(atlas_size);
  2771. atlas_rect_norm.size /= float(atlas_size);
  2772. copy_effects->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect_norm, atlas_rect.size, light_projection.get_z_near(), light_projection.get_z_far(), false);
  2773. atlas_rect_norm.position += Vector2(dual_paraboloid_offset) * atlas_rect_norm.size;
  2774. copy_effects->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect_norm, atlas_rect.size, light_projection.get_z_near(), light_projection.get_z_far(), true);
  2775. //restore transform so it can be properly used
  2776. light_instance_set_shadow_transform(p_light, Projection(), light_instance->transform, zfar, 0, 0, 0);
  2777. }
  2778. } else {
  2779. //render shadow
  2780. _render_shadow_append(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, using_dual_paraboloid, using_dual_paraboloid_flip, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_mesh_lod_threshold, atlas_rect, flip_y, p_clear_region, p_open_pass, p_close_pass, p_render_info);
  2781. }
  2782. }
  2783. void RendererSceneRenderRD::render_material(const Transform3D &p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, const PagedArray<RenderGeometryInstance *> &p_instances, RID p_framebuffer, const Rect2i &p_region) {
  2784. _render_material(p_cam_transform, p_cam_projection, p_cam_orthogonal, p_instances, p_framebuffer, p_region, 1.0);
  2785. }
  2786. void RendererSceneRenderRD::render_particle_collider_heightfield(RID p_collider, const Transform3D &p_transform, const PagedArray<RenderGeometryInstance *> &p_instances) {
  2787. RendererRD::ParticlesStorage *particles_storage = RendererRD::ParticlesStorage::get_singleton();
  2788. ERR_FAIL_COND(!particles_storage->particles_collision_is_heightfield(p_collider));
  2789. Vector3 extents = particles_storage->particles_collision_get_extents(p_collider) * p_transform.basis.get_scale();
  2790. Projection cm;
  2791. cm.set_orthogonal(-extents.x, extents.x, -extents.z, extents.z, 0, extents.y * 2.0);
  2792. Vector3 cam_pos = p_transform.origin;
  2793. cam_pos.y += extents.y;
  2794. Transform3D cam_xform;
  2795. cam_xform.set_look_at(cam_pos, cam_pos - p_transform.basis.get_column(Vector3::AXIS_Y), -p_transform.basis.get_column(Vector3::AXIS_Z).normalized());
  2796. RID fb = particles_storage->particles_collision_get_heightfield_framebuffer(p_collider);
  2797. _render_particle_collider_heightfield(fb, cam_xform, cm, p_instances);
  2798. }
  2799. bool RendererSceneRenderRD::free(RID p_rid) {
  2800. if (is_environment(p_rid)) {
  2801. environment_free(p_rid);
  2802. } else if (RSG::camera_attributes->owns_camera_attributes(p_rid)) {
  2803. RSG::camera_attributes->camera_attributes_free(p_rid);
  2804. } else if (reflection_atlas_owner.owns(p_rid)) {
  2805. reflection_atlas_set_size(p_rid, 0, 0);
  2806. ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_rid);
  2807. if (ra->cluster_builder) {
  2808. memdelete(ra->cluster_builder);
  2809. }
  2810. reflection_atlas_owner.free(p_rid);
  2811. } else if (reflection_probe_instance_owner.owns(p_rid)) {
  2812. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_rid);
  2813. _free_forward_id(FORWARD_ID_TYPE_REFLECTION_PROBE, rpi->forward_id);
  2814. reflection_probe_release_atlas_index(p_rid);
  2815. reflection_probe_instance_owner.free(p_rid);
  2816. } else if (decal_instance_owner.owns(p_rid)) {
  2817. DecalInstance *di = decal_instance_owner.get_or_null(p_rid);
  2818. _free_forward_id(FORWARD_ID_TYPE_DECAL, di->forward_id);
  2819. decal_instance_owner.free(p_rid);
  2820. } else if (lightmap_instance_owner.owns(p_rid)) {
  2821. lightmap_instance_owner.free(p_rid);
  2822. } else if (gi.voxel_gi_instance_owns(p_rid)) {
  2823. gi.voxel_gi_instance_free(p_rid);
  2824. } else if (sky.sky_owner.owns(p_rid)) {
  2825. sky.update_dirty_skys();
  2826. sky.free_sky(p_rid);
  2827. } else if (light_instance_owner.owns(p_rid)) {
  2828. LightInstance *light_instance = light_instance_owner.get_or_null(p_rid);
  2829. //remove from shadow atlases..
  2830. for (const RID &E : light_instance->shadow_atlases) {
  2831. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(E);
  2832. ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
  2833. uint32_t key = shadow_atlas->shadow_owners[p_rid];
  2834. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  2835. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  2836. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  2837. if (key & ShadowAtlas::OMNI_LIGHT_FLAG) {
  2838. // Omni lights use two atlas spots, make sure to clear the other as well
  2839. shadow_atlas->quadrants[q].shadows.write[s + 1].owner = RID();
  2840. }
  2841. shadow_atlas->shadow_owners.erase(p_rid);
  2842. }
  2843. if (light_instance->light_type != RS::LIGHT_DIRECTIONAL) {
  2844. _free_forward_id(light_instance->light_type == RS::LIGHT_OMNI ? FORWARD_ID_TYPE_OMNI_LIGHT : FORWARD_ID_TYPE_SPOT_LIGHT, light_instance->forward_id);
  2845. }
  2846. light_instance_owner.free(p_rid);
  2847. } else if (shadow_atlas_owner.owns(p_rid)) {
  2848. shadow_atlas_set_size(p_rid, 0);
  2849. shadow_atlas_owner.free(p_rid);
  2850. } else if (RendererRD::Fog::get_singleton()->owns_fog_volume_instance(p_rid)) {
  2851. RendererRD::Fog::get_singleton()->fog_instance_free(p_rid);
  2852. } else {
  2853. return false;
  2854. }
  2855. return true;
  2856. }
  2857. void RendererSceneRenderRD::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) {
  2858. debug_draw = p_debug_draw;
  2859. }
  2860. void RendererSceneRenderRD::update() {
  2861. sky.update_dirty_skys();
  2862. }
  2863. void RendererSceneRenderRD::set_time(double p_time, double p_step) {
  2864. time = p_time;
  2865. time_step = p_step;
  2866. }
  2867. void RendererSceneRenderRD::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_limit) {
  2868. screen_space_roughness_limiter = p_enable;
  2869. screen_space_roughness_limiter_amount = p_amount;
  2870. screen_space_roughness_limiter_limit = p_limit;
  2871. }
  2872. bool RendererSceneRenderRD::screen_space_roughness_limiter_is_active() const {
  2873. return screen_space_roughness_limiter;
  2874. }
  2875. float RendererSceneRenderRD::screen_space_roughness_limiter_get_amount() const {
  2876. return screen_space_roughness_limiter_amount;
  2877. }
  2878. float RendererSceneRenderRD::screen_space_roughness_limiter_get_limit() const {
  2879. return screen_space_roughness_limiter_limit;
  2880. }
  2881. TypedArray<Image> RendererSceneRenderRD::bake_render_uv2(RID p_base, const TypedArray<RID> &p_material_overrides, const Size2i &p_image_size) {
  2882. RD::TextureFormat tf;
  2883. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  2884. tf.width = p_image_size.width; // Always 64x64
  2885. tf.height = p_image_size.height;
  2886. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  2887. RID albedo_alpha_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2888. RID normal_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2889. RID orm_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2890. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  2891. RID emission_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2892. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  2893. RID depth_write_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2894. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  2895. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  2896. RID depth_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2897. Vector<RID> fb_tex;
  2898. fb_tex.push_back(albedo_alpha_tex);
  2899. fb_tex.push_back(normal_tex);
  2900. fb_tex.push_back(orm_tex);
  2901. fb_tex.push_back(emission_tex);
  2902. fb_tex.push_back(depth_write_tex);
  2903. fb_tex.push_back(depth_tex);
  2904. RID fb = RD::get_singleton()->framebuffer_create(fb_tex);
  2905. //RID sampled_light;
  2906. RenderGeometryInstance *gi = geometry_instance_create(p_base);
  2907. uint32_t sc = RSG::mesh_storage->mesh_get_surface_count(p_base);
  2908. Vector<RID> materials;
  2909. materials.resize(sc);
  2910. for (uint32_t i = 0; i < sc; i++) {
  2911. if (i < (uint32_t)p_material_overrides.size()) {
  2912. materials.write[i] = p_material_overrides[i];
  2913. }
  2914. }
  2915. gi->set_surface_materials(materials);
  2916. if (cull_argument.size() == 0) {
  2917. cull_argument.push_back(nullptr);
  2918. }
  2919. cull_argument[0] = gi;
  2920. _render_uv2(cull_argument, fb, Rect2i(0, 0, p_image_size.width, p_image_size.height));
  2921. geometry_instance_free(gi);
  2922. TypedArray<Image> ret;
  2923. {
  2924. PackedByteArray data = RD::get_singleton()->texture_get_data(albedo_alpha_tex, 0);
  2925. Ref<Image> img;
  2926. img.instantiate();
  2927. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  2928. RD::get_singleton()->free(albedo_alpha_tex);
  2929. ret.push_back(img);
  2930. }
  2931. {
  2932. PackedByteArray data = RD::get_singleton()->texture_get_data(normal_tex, 0);
  2933. Ref<Image> img;
  2934. img.instantiate();
  2935. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  2936. RD::get_singleton()->free(normal_tex);
  2937. ret.push_back(img);
  2938. }
  2939. {
  2940. PackedByteArray data = RD::get_singleton()->texture_get_data(orm_tex, 0);
  2941. Ref<Image> img;
  2942. img.instantiate();
  2943. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  2944. RD::get_singleton()->free(orm_tex);
  2945. ret.push_back(img);
  2946. }
  2947. {
  2948. PackedByteArray data = RD::get_singleton()->texture_get_data(emission_tex, 0);
  2949. Ref<Image> img;
  2950. img.instantiate();
  2951. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBAH, data);
  2952. RD::get_singleton()->free(emission_tex);
  2953. ret.push_back(img);
  2954. }
  2955. RD::get_singleton()->free(depth_write_tex);
  2956. RD::get_singleton()->free(depth_tex);
  2957. return ret;
  2958. }
  2959. void RendererSceneRenderRD::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) {
  2960. gi.sdfgi_debug_probe_pos = p_position;
  2961. gi.sdfgi_debug_probe_dir = p_dir;
  2962. }
  2963. RendererSceneRenderRD *RendererSceneRenderRD::singleton = nullptr;
  2964. RID RendererSceneRenderRD::get_reflection_probe_buffer() {
  2965. return cluster.reflection_buffer;
  2966. }
  2967. RID RendererSceneRenderRD::get_omni_light_buffer() {
  2968. return cluster.omni_light_buffer;
  2969. }
  2970. RID RendererSceneRenderRD::get_spot_light_buffer() {
  2971. return cluster.spot_light_buffer;
  2972. }
  2973. RID RendererSceneRenderRD::get_directional_light_buffer() {
  2974. return cluster.directional_light_buffer;
  2975. }
  2976. RID RendererSceneRenderRD::get_decal_buffer() {
  2977. return cluster.decal_buffer;
  2978. }
  2979. int RendererSceneRenderRD::get_max_directional_lights() const {
  2980. return cluster.max_directional_lights;
  2981. }
  2982. bool RendererSceneRenderRD::is_vrs_supported() const {
  2983. return RD::get_singleton()->has_feature(RD::SUPPORTS_ATTACHMENT_VRS);
  2984. }
  2985. bool RendererSceneRenderRD::is_dynamic_gi_supported() const {
  2986. // usable by default (unless low end = true)
  2987. return true;
  2988. }
  2989. bool RendererSceneRenderRD::is_clustered_enabled() const {
  2990. // used by default.
  2991. return true;
  2992. }
  2993. bool RendererSceneRenderRD::is_volumetric_supported() const {
  2994. // usable by default (unless low end = true)
  2995. return true;
  2996. }
  2997. uint32_t RendererSceneRenderRD::get_max_elements() const {
  2998. return GLOBAL_GET("rendering/limits/cluster_builder/max_clustered_elements");
  2999. }
  3000. RendererSceneRenderRD::RendererSceneRenderRD() {
  3001. singleton = this;
  3002. }
  3003. void RendererSceneRenderRD::init() {
  3004. max_cluster_elements = get_max_elements();
  3005. directional_shadow.size = GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/size");
  3006. directional_shadow.use_16_bits = GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/16_bits");
  3007. /* SKY SHADER */
  3008. sky.init();
  3009. /* GI */
  3010. if (is_dynamic_gi_supported()) {
  3011. gi.init(&sky);
  3012. }
  3013. { //decals
  3014. cluster.max_decals = max_cluster_elements;
  3015. uint32_t decal_buffer_size = cluster.max_decals * sizeof(Cluster::DecalData);
  3016. cluster.decals = memnew_arr(Cluster::DecalData, cluster.max_decals);
  3017. cluster.decal_sort = memnew_arr(Cluster::InstanceSort<DecalInstance>, cluster.max_decals);
  3018. cluster.decal_buffer = RD::get_singleton()->storage_buffer_create(decal_buffer_size);
  3019. }
  3020. { //reflections
  3021. cluster.max_reflections = max_cluster_elements;
  3022. cluster.reflections = memnew_arr(Cluster::ReflectionData, cluster.max_reflections);
  3023. cluster.reflection_sort = memnew_arr(Cluster::InstanceSort<ReflectionProbeInstance>, cluster.max_reflections);
  3024. cluster.reflection_buffer = RD::get_singleton()->storage_buffer_create(sizeof(Cluster::ReflectionData) * cluster.max_reflections);
  3025. }
  3026. { //lights
  3027. cluster.max_lights = max_cluster_elements;
  3028. uint32_t light_buffer_size = cluster.max_lights * sizeof(Cluster::LightData);
  3029. cluster.omni_lights = memnew_arr(Cluster::LightData, cluster.max_lights);
  3030. cluster.omni_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
  3031. cluster.omni_light_sort = memnew_arr(Cluster::InstanceSort<LightInstance>, cluster.max_lights);
  3032. cluster.spot_lights = memnew_arr(Cluster::LightData, cluster.max_lights);
  3033. cluster.spot_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
  3034. cluster.spot_light_sort = memnew_arr(Cluster::InstanceSort<LightInstance>, cluster.max_lights);
  3035. //defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(cluster.max_lights) + "\n";
  3036. cluster.max_directional_lights = MAX_DIRECTIONAL_LIGHTS;
  3037. uint32_t directional_light_buffer_size = cluster.max_directional_lights * sizeof(Cluster::DirectionalLightData);
  3038. cluster.directional_lights = memnew_arr(Cluster::DirectionalLightData, cluster.max_directional_lights);
  3039. cluster.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size);
  3040. }
  3041. if (is_volumetric_supported()) {
  3042. RendererRD::Fog::get_singleton()->init_fog_shader(cluster.max_directional_lights, get_roughness_layers(), is_using_radiance_cubemap_array());
  3043. }
  3044. {
  3045. RD::SamplerState sampler;
  3046. sampler.mag_filter = RD::SAMPLER_FILTER_NEAREST;
  3047. sampler.min_filter = RD::SAMPLER_FILTER_NEAREST;
  3048. sampler.enable_compare = true;
  3049. sampler.compare_op = RD::COMPARE_OP_LESS;
  3050. shadow_sampler = RD::get_singleton()->sampler_create(sampler);
  3051. }
  3052. RSG::camera_attributes->camera_attributes_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_shape"))));
  3053. RSG::camera_attributes->camera_attributes_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_use_jitter"));
  3054. use_physical_light_units = GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units");
  3055. environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/environment/ssao/quality"))), GLOBAL_GET("rendering/environment/ssao/half_size"), GLOBAL_GET("rendering/environment/ssao/adaptive_target"), GLOBAL_GET("rendering/environment/ssao/blur_passes"), GLOBAL_GET("rendering/environment/ssao/fadeout_from"), GLOBAL_GET("rendering/environment/ssao/fadeout_to"));
  3056. screen_space_roughness_limiter = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/enabled");
  3057. screen_space_roughness_limiter_amount = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/amount");
  3058. screen_space_roughness_limiter_limit = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/limit");
  3059. glow_bicubic_upscale = int(GLOBAL_GET("rendering/environment/glow/upscale_mode")) > 0;
  3060. glow_high_quality = GLOBAL_GET("rendering/environment/glow/use_high_quality");
  3061. ssr_roughness_quality = RS::EnvironmentSSRRoughnessQuality(int(GLOBAL_GET("rendering/environment/screen_space_reflection/roughness_quality")));
  3062. sss_quality = RS::SubSurfaceScatteringQuality(int(GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_quality")));
  3063. sss_scale = GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_scale");
  3064. sss_depth_scale = GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_depth_scale");
  3065. environment_set_ssil_quality(RS::EnvironmentSSILQuality(int(GLOBAL_GET("rendering/environment/ssil/quality"))), GLOBAL_GET("rendering/environment/ssil/half_size"), GLOBAL_GET("rendering/environment/ssil/adaptive_target"), GLOBAL_GET("rendering/environment/ssil/blur_passes"), GLOBAL_GET("rendering/environment/ssil/fadeout_from"), GLOBAL_GET("rendering/environment/ssil/fadeout_to"));
  3066. directional_penumbra_shadow_kernel = memnew_arr(float, 128);
  3067. directional_soft_shadow_kernel = memnew_arr(float, 128);
  3068. penumbra_shadow_kernel = memnew_arr(float, 128);
  3069. soft_shadow_kernel = memnew_arr(float, 128);
  3070. positional_soft_shadow_filter_set_quality(RS::ShadowQuality(int(GLOBAL_GET("rendering/lights_and_shadows/positional_shadow/soft_shadow_filter_quality"))));
  3071. directional_soft_shadow_filter_set_quality(RS::ShadowQuality(int(GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/soft_shadow_filter_quality"))));
  3072. environment_set_volumetric_fog_volume_size(GLOBAL_GET("rendering/environment/volumetric_fog/volume_size"), GLOBAL_GET("rendering/environment/volumetric_fog/volume_depth"));
  3073. environment_set_volumetric_fog_filter_active(GLOBAL_GET("rendering/environment/volumetric_fog/use_filter"));
  3074. decals_set_filter(RS::DecalFilter(int(GLOBAL_GET("rendering/textures/decals/filter"))));
  3075. light_projectors_set_filter(RS::LightProjectorFilter(int(GLOBAL_GET("rendering/textures/light_projectors/filter"))));
  3076. cull_argument.set_page_pool(&cull_argument_pool);
  3077. bool can_use_storage = _render_buffers_can_be_storage();
  3078. bokeh_dof = memnew(RendererRD::BokehDOF(!can_use_storage));
  3079. copy_effects = memnew(RendererRD::CopyEffects(!can_use_storage));
  3080. tone_mapper = memnew(RendererRD::ToneMapper);
  3081. vrs = memnew(RendererRD::VRS);
  3082. if (can_use_storage) {
  3083. fsr = memnew(RendererRD::FSR);
  3084. ss_effects = memnew(RendererRD::SSEffects);
  3085. }
  3086. }
  3087. RendererSceneRenderRD::~RendererSceneRenderRD() {
  3088. if (bokeh_dof) {
  3089. memdelete(bokeh_dof);
  3090. }
  3091. if (copy_effects) {
  3092. memdelete(copy_effects);
  3093. }
  3094. if (tone_mapper) {
  3095. memdelete(tone_mapper);
  3096. }
  3097. if (vrs) {
  3098. memdelete(vrs);
  3099. }
  3100. if (fsr) {
  3101. memdelete(fsr);
  3102. }
  3103. if (ss_effects) {
  3104. memdelete(ss_effects);
  3105. }
  3106. for (const KeyValue<int, ShadowCubemap> &E : shadow_cubemaps) {
  3107. RD::get_singleton()->free(E.value.cubemap);
  3108. }
  3109. if (sky.sky_scene_state.uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky.sky_scene_state.uniform_set)) {
  3110. RD::get_singleton()->free(sky.sky_scene_state.uniform_set);
  3111. }
  3112. if (is_dynamic_gi_supported()) {
  3113. gi.free();
  3114. }
  3115. if (is_volumetric_supported()) {
  3116. RendererRD::Fog::get_singleton()->free_fog_shader();
  3117. }
  3118. memdelete_arr(directional_penumbra_shadow_kernel);
  3119. memdelete_arr(directional_soft_shadow_kernel);
  3120. memdelete_arr(penumbra_shadow_kernel);
  3121. memdelete_arr(soft_shadow_kernel);
  3122. {
  3123. RD::get_singleton()->free(cluster.directional_light_buffer);
  3124. RD::get_singleton()->free(cluster.omni_light_buffer);
  3125. RD::get_singleton()->free(cluster.spot_light_buffer);
  3126. RD::get_singleton()->free(cluster.reflection_buffer);
  3127. RD::get_singleton()->free(cluster.decal_buffer);
  3128. memdelete_arr(cluster.directional_lights);
  3129. memdelete_arr(cluster.omni_lights);
  3130. memdelete_arr(cluster.spot_lights);
  3131. memdelete_arr(cluster.omni_light_sort);
  3132. memdelete_arr(cluster.spot_light_sort);
  3133. memdelete_arr(cluster.reflections);
  3134. memdelete_arr(cluster.reflection_sort);
  3135. memdelete_arr(cluster.decals);
  3136. memdelete_arr(cluster.decal_sort);
  3137. }
  3138. RD::get_singleton()->free(shadow_sampler);
  3139. directional_shadow_atlas_set_size(0);
  3140. cull_argument.reset(); //avoid exit error
  3141. }