collision_solver_2d_sw.cpp 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310
  1. /*************************************************************************/
  2. /* collision_solver_2d_sw.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* http://www.godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  9. /* */
  10. /* Permission is hereby granted, free of charge, to any person obtaining */
  11. /* a copy of this software and associated documentation files (the */
  12. /* "Software"), to deal in the Software without restriction, including */
  13. /* without limitation the rights to use, copy, modify, merge, publish, */
  14. /* distribute, sublicense, and/or sell copies of the Software, and to */
  15. /* permit persons to whom the Software is furnished to do so, subject to */
  16. /* the following conditions: */
  17. /* */
  18. /* The above copyright notice and this permission notice shall be */
  19. /* included in all copies or substantial portions of the Software. */
  20. /* */
  21. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  22. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  23. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  24. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  25. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  26. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  27. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  28. /*************************************************************************/
  29. #include "collision_solver_2d_sw.h"
  30. #include "collision_solver_2d_sat.h"
  31. #define collision_solver sat_2d_calculate_penetration
  32. //#define collision_solver gjk_epa_calculate_penetration
  33. bool CollisionSolver2DSW::solve_static_line(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result) {
  34. const LineShape2DSW *line = static_cast<const LineShape2DSW*>(p_shape_A);
  35. if (p_shape_B->get_type()==Physics2DServer::SHAPE_LINE)
  36. return false;
  37. Vector2 n = p_transform_A.basis_xform(line->get_normal()).normalized();
  38. Vector2 p = p_transform_A.xform(line->get_normal()*line->get_d());
  39. real_t d = n.dot(p);
  40. Vector2 supports[2];
  41. int support_count;
  42. p_shape_B->get_supports(p_transform_A.affine_inverse().basis_xform(-n).normalized(),supports,support_count);
  43. bool found=false;
  44. for(int i=0;i<support_count;i++) {
  45. supports[i] = p_transform_B.xform( supports[i] );
  46. real_t pd = n.dot(supports[i]);
  47. if (pd>=d)
  48. continue;
  49. found=true;
  50. Vector2 support_A = supports[i] - n*(pd-d);
  51. if (p_result_callback) {
  52. if (p_swap_result)
  53. p_result_callback(supports[i],support_A,p_userdata);
  54. else
  55. p_result_callback(support_A,supports[i],p_userdata);
  56. }
  57. }
  58. return found;
  59. }
  60. bool CollisionSolver2DSW::solve_raycast(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result,Vector2 *sep_axis) {
  61. const RayShape2DSW *ray = static_cast<const RayShape2DSW*>(p_shape_A);
  62. if (p_shape_B->get_type()==Physics2DServer::SHAPE_RAY)
  63. return false;
  64. Vector2 from = p_transform_A.get_origin();
  65. Vector2 to = from+p_transform_A[1]*ray->get_length();
  66. Vector2 support_A=to;
  67. Matrix32 invb = p_transform_B.affine_inverse();
  68. from = invb.xform(from);
  69. to = invb.xform(to);
  70. Vector2 p,n;
  71. if (!p_shape_B->intersect_segment(from,to,p,n)) {
  72. if (sep_axis)
  73. *sep_axis=p_transform_A[1].normalized();
  74. return false;
  75. }
  76. Vector2 support_B=p_transform_B.xform(p);
  77. if (p_result_callback) {
  78. if (p_swap_result)
  79. p_result_callback(support_B,support_A,p_userdata);
  80. else
  81. p_result_callback(support_A,support_B,p_userdata);
  82. }
  83. return true;
  84. }
  85. /*
  86. bool CollisionSolver2DSW::solve_ray(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,const Matrix32& p_inverse_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result) {
  87. const RayShape2DSW *ray = static_cast<const RayShape2DSW*>(p_shape_A);
  88. Vector2 from = p_transform_A.origin;
  89. Vector2 to = from+p_transform_A.basis.get_axis(2)*ray->get_length();
  90. Vector2 support_A=to;
  91. from = p_inverse_B.xform(from);
  92. to = p_inverse_B.xform(to);
  93. Vector2 p,n;
  94. if (!p_shape_B->intersect_segment(from,to,&p,&n))
  95. return false;
  96. Vector2 support_B=p_transform_B.xform(p);
  97. if (p_result_callback) {
  98. if (p_swap_result)
  99. p_result_callback(support_B,support_A,p_userdata);
  100. else
  101. p_result_callback(support_A,support_B,p_userdata);
  102. }
  103. return true;
  104. }
  105. */
  106. struct _ConcaveCollisionInfo2D {
  107. const Matrix32 *transform_A;
  108. const Shape2DSW *shape_A;
  109. const Matrix32 *transform_B;
  110. Vector2 motion_A;
  111. Vector2 motion_B;
  112. CollisionSolver2DSW::CallbackResult result_callback;
  113. void *userdata;
  114. bool swap_result;
  115. bool collided;
  116. int aabb_tests;
  117. int collisions;
  118. Vector2 *sep_axis;
  119. };
  120. void CollisionSolver2DSW::concave_callback(void *p_userdata, Shape2DSW *p_convex) {
  121. _ConcaveCollisionInfo2D &cinfo = *(_ConcaveCollisionInfo2D*)(p_userdata);
  122. cinfo.aabb_tests++;
  123. if (!cinfo.result_callback && cinfo.collided)
  124. return; //already collided and no contacts requested, don't test anymore
  125. bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, cinfo.motion_A, p_convex,*cinfo.transform_B, cinfo.motion_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result,cinfo.sep_axis );
  126. if (!collided)
  127. return;
  128. cinfo.collided=true;
  129. cinfo.collisions++;
  130. }
  131. bool CollisionSolver2DSW::solve_concave(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Vector2& p_motion_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,const Vector2& p_motion_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result,Vector2 *sep_axis) {
  132. const ConcaveShape2DSW *concave_B=static_cast<const ConcaveShape2DSW*>(p_shape_B);
  133. _ConcaveCollisionInfo2D cinfo;
  134. cinfo.transform_A=&p_transform_A;
  135. cinfo.shape_A=p_shape_A;
  136. cinfo.transform_B=&p_transform_B;
  137. cinfo.motion_A=p_motion_A;
  138. cinfo.result_callback=p_result_callback;
  139. cinfo.userdata=p_userdata;
  140. cinfo.swap_result=p_swap_result;
  141. cinfo.collided=false;
  142. cinfo.collisions=0;
  143. cinfo.sep_axis=sep_axis;
  144. cinfo.aabb_tests=0;
  145. Matrix32 rel_transform = p_transform_A;
  146. rel_transform.elements[2]-=p_transform_B.elements[2];
  147. //quickly compute a local Rect2
  148. Rect2 local_aabb;
  149. for(int i=0;i<2;i++) {
  150. Vector2 axis( p_transform_B.elements[i] );
  151. float axis_scale = 1.0/axis.length();
  152. axis*=axis_scale;
  153. float smin,smax;
  154. p_shape_A->project_rangev(axis,rel_transform,smin,smax);
  155. smin*=axis_scale;
  156. smax*=axis_scale;
  157. local_aabb.pos[i]=smin;
  158. local_aabb.size[i]=smax-smin;
  159. }
  160. concave_B->cull(local_aabb,concave_callback,&cinfo);
  161. // print_line("Rect2 TESTS: "+itos(cinfo.aabb_tests));
  162. return cinfo.collided;
  163. }
  164. bool CollisionSolver2DSW::solve(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Vector2& p_motion_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,const Vector2& p_motion_B,CallbackResult p_result_callback,void *p_userdata,Vector2 *sep_axis) {
  165. Physics2DServer::ShapeType type_A=p_shape_A->get_type();
  166. Physics2DServer::ShapeType type_B=p_shape_B->get_type();
  167. bool concave_A=p_shape_A->is_concave();
  168. bool concave_B=p_shape_B->is_concave();
  169. bool swap = false;
  170. if (type_A>type_B) {
  171. SWAP(type_A,type_B);
  172. SWAP(concave_A,concave_B);
  173. swap=true;
  174. }
  175. if (type_A==Physics2DServer::SHAPE_LINE) {
  176. if (type_B==Physics2DServer::SHAPE_LINE || type_B==Physics2DServer::SHAPE_RAY) {
  177. return false;
  178. //if (type_B==Physics2DServer::SHAPE_RAY) {
  179. // return false;
  180. }
  181. if (swap) {
  182. return solve_static_line(p_shape_B,p_transform_B,p_shape_A,p_transform_A,p_result_callback,p_userdata,true);
  183. } else {
  184. return solve_static_line(p_shape_A,p_transform_A,p_shape_B,p_transform_B,p_result_callback,p_userdata,false);
  185. }
  186. /*} else if (type_A==Physics2DServer::SHAPE_RAY) {
  187. if (type_B==Physics2DServer::SHAPE_RAY)
  188. return false;
  189. if (swap) {
  190. return solve_ray(p_shape_B,p_transform_B,p_shape_A,p_transform_A,p_inverse_A,p_result_callback,p_userdata,true);
  191. } else {
  192. return solve_ray(p_shape_A,p_transform_A,p_shape_B,p_transform_B,p_inverse_B,p_result_callback,p_userdata,false);
  193. }
  194. */
  195. } else if (type_A==Physics2DServer::SHAPE_RAY) {
  196. if (type_B==Physics2DServer::SHAPE_RAY) {
  197. return false; //no ray-ray
  198. }
  199. if (swap) {
  200. return solve_raycast(p_shape_B,p_transform_B,p_shape_A,p_transform_A,p_result_callback,p_userdata,true,sep_axis);
  201. } else {
  202. return solve_raycast(p_shape_A,p_transform_A,p_shape_B,p_transform_B,p_result_callback,p_userdata,false,sep_axis);
  203. }
  204. } else if (concave_B) {
  205. if (concave_A)
  206. return false;
  207. if (!swap)
  208. return solve_concave(p_shape_A,p_transform_A,p_motion_A,p_shape_B,p_transform_B,p_motion_B,p_result_callback,p_userdata,false,sep_axis);
  209. else
  210. return solve_concave(p_shape_B,p_transform_B,p_motion_B,p_shape_A,p_transform_A,p_motion_A,p_result_callback,p_userdata,true,sep_axis);
  211. } else {
  212. return collision_solver(p_shape_A, p_transform_A,p_motion_A, p_shape_B, p_transform_B, p_motion_B,p_result_callback,p_userdata,false,sep_axis);
  213. }
  214. return false;
  215. }