marshalls.cpp 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836
  1. /**************************************************************************/
  2. /* marshalls.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "marshalls.h"
  31. #include "core/object/ref_counted.h"
  32. #include "core/os/keyboard.h"
  33. #include "core/string/print_string.h"
  34. #include <limits.h>
  35. #include <stdio.h>
  36. void EncodedObjectAsID::_bind_methods() {
  37. ClassDB::bind_method(D_METHOD("set_object_id", "id"), &EncodedObjectAsID::set_object_id);
  38. ClassDB::bind_method(D_METHOD("get_object_id"), &EncodedObjectAsID::get_object_id);
  39. ADD_PROPERTY(PropertyInfo(Variant::INT, "object_id"), "set_object_id", "get_object_id");
  40. }
  41. void EncodedObjectAsID::set_object_id(ObjectID p_id) {
  42. id = p_id;
  43. }
  44. ObjectID EncodedObjectAsID::get_object_id() const {
  45. return id;
  46. }
  47. #define ERR_FAIL_ADD_OF(a, b, err) ERR_FAIL_COND_V(((int32_t)(b)) < 0 || ((int32_t)(a)) < 0 || ((int32_t)(a)) > INT_MAX - ((int32_t)(b)), err)
  48. #define ERR_FAIL_MUL_OF(a, b, err) ERR_FAIL_COND_V(((int32_t)(a)) < 0 || ((int32_t)(b)) <= 0 || ((int32_t)(a)) > INT_MAX / ((int32_t)(b)), err)
  49. #define ENCODE_MASK 0xFF
  50. #define ENCODE_FLAG_64 1 << 16
  51. #define ENCODE_FLAG_OBJECT_AS_ID 1 << 16
  52. static Error _decode_string(const uint8_t *&buf, int &len, int *r_len, String &r_string) {
  53. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  54. int32_t strlen = decode_uint32(buf);
  55. int32_t pad = 0;
  56. // Handle padding
  57. if (strlen % 4) {
  58. pad = 4 - strlen % 4;
  59. }
  60. buf += 4;
  61. len -= 4;
  62. // Ensure buffer is big enough
  63. ERR_FAIL_ADD_OF(strlen, pad, ERR_FILE_EOF);
  64. ERR_FAIL_COND_V(strlen < 0 || strlen + pad > len, ERR_FILE_EOF);
  65. String str;
  66. ERR_FAIL_COND_V(str.parse_utf8((const char *)buf, strlen) != OK, ERR_INVALID_DATA);
  67. r_string = str;
  68. // Add padding
  69. strlen += pad;
  70. // Update buffer pos, left data count, and return size
  71. buf += strlen;
  72. len -= strlen;
  73. if (r_len) {
  74. (*r_len) += 4 + strlen;
  75. }
  76. return OK;
  77. }
  78. Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int *r_len, bool p_allow_objects, int p_depth) {
  79. ERR_FAIL_COND_V_MSG(p_depth > Variant::MAX_RECURSION_DEPTH, ERR_OUT_OF_MEMORY, "Variant is too deep. Bailing.");
  80. const uint8_t *buf = p_buffer;
  81. int len = p_len;
  82. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  83. uint32_t type = decode_uint32(buf);
  84. ERR_FAIL_COND_V((type & ENCODE_MASK) >= Variant::VARIANT_MAX, ERR_INVALID_DATA);
  85. buf += 4;
  86. len -= 4;
  87. if (r_len) {
  88. *r_len = 4;
  89. }
  90. // Note: We cannot use sizeof(real_t) for decoding, in case a different size is encoded.
  91. // Decoding math types always checks for the encoded size, while encoding always uses compilation setting.
  92. // This does lead to some code duplication for decoding, but compatibility is the priority.
  93. switch (type & ENCODE_MASK) {
  94. case Variant::NIL: {
  95. r_variant = Variant();
  96. } break;
  97. case Variant::BOOL: {
  98. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  99. bool val = decode_uint32(buf);
  100. r_variant = val;
  101. if (r_len) {
  102. (*r_len) += 4;
  103. }
  104. } break;
  105. case Variant::INT: {
  106. if (type & ENCODE_FLAG_64) {
  107. ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
  108. int64_t val = decode_uint64(buf);
  109. r_variant = val;
  110. if (r_len) {
  111. (*r_len) += 8;
  112. }
  113. } else {
  114. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  115. int32_t val = decode_uint32(buf);
  116. r_variant = val;
  117. if (r_len) {
  118. (*r_len) += 4;
  119. }
  120. }
  121. } break;
  122. case Variant::FLOAT: {
  123. if (type & ENCODE_FLAG_64) {
  124. ERR_FAIL_COND_V((size_t)len < sizeof(double), ERR_INVALID_DATA);
  125. double val = decode_double(buf);
  126. r_variant = val;
  127. if (r_len) {
  128. (*r_len) += sizeof(double);
  129. }
  130. } else {
  131. ERR_FAIL_COND_V((size_t)len < sizeof(float), ERR_INVALID_DATA);
  132. float val = decode_float(buf);
  133. r_variant = val;
  134. if (r_len) {
  135. (*r_len) += sizeof(float);
  136. }
  137. }
  138. } break;
  139. case Variant::STRING: {
  140. String str;
  141. Error err = _decode_string(buf, len, r_len, str);
  142. if (err) {
  143. return err;
  144. }
  145. r_variant = str;
  146. } break;
  147. // math types
  148. case Variant::VECTOR2: {
  149. Vector2 val;
  150. if (type & ENCODE_FLAG_64) {
  151. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 2, ERR_INVALID_DATA);
  152. val.x = decode_double(&buf[0]);
  153. val.y = decode_double(&buf[sizeof(double)]);
  154. if (r_len) {
  155. (*r_len) += sizeof(double) * 2;
  156. }
  157. } else {
  158. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 2, ERR_INVALID_DATA);
  159. val.x = decode_float(&buf[0]);
  160. val.y = decode_float(&buf[sizeof(float)]);
  161. if (r_len) {
  162. (*r_len) += sizeof(float) * 2;
  163. }
  164. }
  165. r_variant = val;
  166. } break;
  167. case Variant::VECTOR2I: {
  168. ERR_FAIL_COND_V(len < 4 * 2, ERR_INVALID_DATA);
  169. Vector2i val;
  170. val.x = decode_uint32(&buf[0]);
  171. val.y = decode_uint32(&buf[4]);
  172. r_variant = val;
  173. if (r_len) {
  174. (*r_len) += 4 * 2;
  175. }
  176. } break;
  177. case Variant::RECT2: {
  178. Rect2 val;
  179. if (type & ENCODE_FLAG_64) {
  180. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
  181. val.position.x = decode_double(&buf[0]);
  182. val.position.y = decode_double(&buf[sizeof(double)]);
  183. val.size.x = decode_double(&buf[sizeof(double) * 2]);
  184. val.size.y = decode_double(&buf[sizeof(double) * 3]);
  185. if (r_len) {
  186. (*r_len) += sizeof(double) * 4;
  187. }
  188. } else {
  189. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
  190. val.position.x = decode_float(&buf[0]);
  191. val.position.y = decode_float(&buf[sizeof(float)]);
  192. val.size.x = decode_float(&buf[sizeof(float) * 2]);
  193. val.size.y = decode_float(&buf[sizeof(float) * 3]);
  194. if (r_len) {
  195. (*r_len) += sizeof(float) * 4;
  196. }
  197. }
  198. r_variant = val;
  199. } break;
  200. case Variant::RECT2I: {
  201. ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
  202. Rect2i val;
  203. val.position.x = decode_uint32(&buf[0]);
  204. val.position.y = decode_uint32(&buf[4]);
  205. val.size.x = decode_uint32(&buf[8]);
  206. val.size.y = decode_uint32(&buf[12]);
  207. r_variant = val;
  208. if (r_len) {
  209. (*r_len) += 4 * 4;
  210. }
  211. } break;
  212. case Variant::VECTOR3: {
  213. Vector3 val;
  214. if (type & ENCODE_FLAG_64) {
  215. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 3, ERR_INVALID_DATA);
  216. val.x = decode_double(&buf[0]);
  217. val.y = decode_double(&buf[sizeof(double)]);
  218. val.z = decode_double(&buf[sizeof(double) * 2]);
  219. if (r_len) {
  220. (*r_len) += sizeof(double) * 3;
  221. }
  222. } else {
  223. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 3, ERR_INVALID_DATA);
  224. val.x = decode_float(&buf[0]);
  225. val.y = decode_float(&buf[sizeof(float)]);
  226. val.z = decode_float(&buf[sizeof(float) * 2]);
  227. if (r_len) {
  228. (*r_len) += sizeof(float) * 3;
  229. }
  230. }
  231. r_variant = val;
  232. } break;
  233. case Variant::VECTOR3I: {
  234. ERR_FAIL_COND_V(len < 4 * 3, ERR_INVALID_DATA);
  235. Vector3i val;
  236. val.x = decode_uint32(&buf[0]);
  237. val.y = decode_uint32(&buf[4]);
  238. val.z = decode_uint32(&buf[8]);
  239. r_variant = val;
  240. if (r_len) {
  241. (*r_len) += 4 * 3;
  242. }
  243. } break;
  244. case Variant::VECTOR4: {
  245. Vector4 val;
  246. if (type & ENCODE_FLAG_64) {
  247. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
  248. val.x = decode_double(&buf[0]);
  249. val.y = decode_double(&buf[sizeof(double)]);
  250. val.z = decode_double(&buf[sizeof(double) * 2]);
  251. val.w = decode_double(&buf[sizeof(double) * 3]);
  252. if (r_len) {
  253. (*r_len) += sizeof(double) * 4;
  254. }
  255. } else {
  256. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
  257. val.x = decode_float(&buf[0]);
  258. val.y = decode_float(&buf[sizeof(float)]);
  259. val.z = decode_float(&buf[sizeof(float) * 2]);
  260. val.w = decode_float(&buf[sizeof(float) * 3]);
  261. if (r_len) {
  262. (*r_len) += sizeof(float) * 4;
  263. }
  264. }
  265. r_variant = val;
  266. } break;
  267. case Variant::VECTOR4I: {
  268. ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
  269. Vector4i val;
  270. val.x = decode_uint32(&buf[0]);
  271. val.y = decode_uint32(&buf[4]);
  272. val.z = decode_uint32(&buf[8]);
  273. val.w = decode_uint32(&buf[12]);
  274. r_variant = val;
  275. if (r_len) {
  276. (*r_len) += 4 * 4;
  277. }
  278. } break;
  279. case Variant::TRANSFORM2D: {
  280. Transform2D val;
  281. if (type & ENCODE_FLAG_64) {
  282. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 6, ERR_INVALID_DATA);
  283. for (int i = 0; i < 3; i++) {
  284. for (int j = 0; j < 2; j++) {
  285. val.columns[i][j] = decode_double(&buf[(i * 2 + j) * sizeof(double)]);
  286. }
  287. }
  288. if (r_len) {
  289. (*r_len) += sizeof(double) * 6;
  290. }
  291. } else {
  292. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 6, ERR_INVALID_DATA);
  293. for (int i = 0; i < 3; i++) {
  294. for (int j = 0; j < 2; j++) {
  295. val.columns[i][j] = decode_float(&buf[(i * 2 + j) * sizeof(float)]);
  296. }
  297. }
  298. if (r_len) {
  299. (*r_len) += sizeof(float) * 6;
  300. }
  301. }
  302. r_variant = val;
  303. } break;
  304. case Variant::PLANE: {
  305. Plane val;
  306. if (type & ENCODE_FLAG_64) {
  307. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
  308. val.normal.x = decode_double(&buf[0]);
  309. val.normal.y = decode_double(&buf[sizeof(double)]);
  310. val.normal.z = decode_double(&buf[sizeof(double) * 2]);
  311. val.d = decode_double(&buf[sizeof(double) * 3]);
  312. if (r_len) {
  313. (*r_len) += sizeof(double) * 4;
  314. }
  315. } else {
  316. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
  317. val.normal.x = decode_float(&buf[0]);
  318. val.normal.y = decode_float(&buf[sizeof(float)]);
  319. val.normal.z = decode_float(&buf[sizeof(float) * 2]);
  320. val.d = decode_float(&buf[sizeof(float) * 3]);
  321. if (r_len) {
  322. (*r_len) += sizeof(float) * 4;
  323. }
  324. }
  325. r_variant = val;
  326. } break;
  327. case Variant::QUATERNION: {
  328. Quaternion val;
  329. if (type & ENCODE_FLAG_64) {
  330. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
  331. val.x = decode_double(&buf[0]);
  332. val.y = decode_double(&buf[sizeof(double)]);
  333. val.z = decode_double(&buf[sizeof(double) * 2]);
  334. val.w = decode_double(&buf[sizeof(double) * 3]);
  335. if (r_len) {
  336. (*r_len) += sizeof(double) * 4;
  337. }
  338. } else {
  339. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
  340. val.x = decode_float(&buf[0]);
  341. val.y = decode_float(&buf[sizeof(float)]);
  342. val.z = decode_float(&buf[sizeof(float) * 2]);
  343. val.w = decode_float(&buf[sizeof(float) * 3]);
  344. if (r_len) {
  345. (*r_len) += sizeof(float) * 4;
  346. }
  347. }
  348. r_variant = val;
  349. } break;
  350. case Variant::AABB: {
  351. AABB val;
  352. if (type & ENCODE_FLAG_64) {
  353. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 6, ERR_INVALID_DATA);
  354. val.position.x = decode_double(&buf[0]);
  355. val.position.y = decode_double(&buf[sizeof(double)]);
  356. val.position.z = decode_double(&buf[sizeof(double) * 2]);
  357. val.size.x = decode_double(&buf[sizeof(double) * 3]);
  358. val.size.y = decode_double(&buf[sizeof(double) * 4]);
  359. val.size.z = decode_double(&buf[sizeof(double) * 5]);
  360. if (r_len) {
  361. (*r_len) += sizeof(double) * 6;
  362. }
  363. } else {
  364. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 6, ERR_INVALID_DATA);
  365. val.position.x = decode_float(&buf[0]);
  366. val.position.y = decode_float(&buf[sizeof(float)]);
  367. val.position.z = decode_float(&buf[sizeof(float) * 2]);
  368. val.size.x = decode_float(&buf[sizeof(float) * 3]);
  369. val.size.y = decode_float(&buf[sizeof(float) * 4]);
  370. val.size.z = decode_float(&buf[sizeof(float) * 5]);
  371. if (r_len) {
  372. (*r_len) += sizeof(float) * 6;
  373. }
  374. }
  375. r_variant = val;
  376. } break;
  377. case Variant::BASIS: {
  378. Basis val;
  379. if (type & ENCODE_FLAG_64) {
  380. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 9, ERR_INVALID_DATA);
  381. for (int i = 0; i < 3; i++) {
  382. for (int j = 0; j < 3; j++) {
  383. val.rows[i][j] = decode_double(&buf[(i * 3 + j) * sizeof(double)]);
  384. }
  385. }
  386. if (r_len) {
  387. (*r_len) += sizeof(double) * 9;
  388. }
  389. } else {
  390. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 9, ERR_INVALID_DATA);
  391. for (int i = 0; i < 3; i++) {
  392. for (int j = 0; j < 3; j++) {
  393. val.rows[i][j] = decode_float(&buf[(i * 3 + j) * sizeof(float)]);
  394. }
  395. }
  396. if (r_len) {
  397. (*r_len) += sizeof(float) * 9;
  398. }
  399. }
  400. r_variant = val;
  401. } break;
  402. case Variant::TRANSFORM3D: {
  403. Transform3D val;
  404. if (type & ENCODE_FLAG_64) {
  405. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 12, ERR_INVALID_DATA);
  406. for (int i = 0; i < 3; i++) {
  407. for (int j = 0; j < 3; j++) {
  408. val.basis.rows[i][j] = decode_double(&buf[(i * 3 + j) * sizeof(double)]);
  409. }
  410. }
  411. val.origin[0] = decode_double(&buf[sizeof(double) * 9]);
  412. val.origin[1] = decode_double(&buf[sizeof(double) * 10]);
  413. val.origin[2] = decode_double(&buf[sizeof(double) * 11]);
  414. if (r_len) {
  415. (*r_len) += sizeof(double) * 12;
  416. }
  417. } else {
  418. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 12, ERR_INVALID_DATA);
  419. for (int i = 0; i < 3; i++) {
  420. for (int j = 0; j < 3; j++) {
  421. val.basis.rows[i][j] = decode_float(&buf[(i * 3 + j) * sizeof(float)]);
  422. }
  423. }
  424. val.origin[0] = decode_float(&buf[sizeof(float) * 9]);
  425. val.origin[1] = decode_float(&buf[sizeof(float) * 10]);
  426. val.origin[2] = decode_float(&buf[sizeof(float) * 11]);
  427. if (r_len) {
  428. (*r_len) += sizeof(float) * 12;
  429. }
  430. }
  431. r_variant = val;
  432. } break;
  433. case Variant::PROJECTION: {
  434. Projection val;
  435. if (type & ENCODE_FLAG_64) {
  436. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 16, ERR_INVALID_DATA);
  437. for (int i = 0; i < 4; i++) {
  438. for (int j = 0; j < 4; j++) {
  439. val.columns[i][j] = decode_double(&buf[(i * 4 + j) * sizeof(double)]);
  440. }
  441. }
  442. if (r_len) {
  443. (*r_len) += sizeof(double) * 16;
  444. }
  445. } else {
  446. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 16, ERR_INVALID_DATA);
  447. for (int i = 0; i < 4; i++) {
  448. for (int j = 0; j < 4; j++) {
  449. val.columns[i][j] = decode_float(&buf[(i * 4 + j) * sizeof(float)]);
  450. }
  451. }
  452. if (r_len) {
  453. (*r_len) += sizeof(float) * 16;
  454. }
  455. }
  456. r_variant = val;
  457. } break;
  458. // misc types
  459. case Variant::COLOR: {
  460. ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
  461. Color val;
  462. val.r = decode_float(&buf[0]);
  463. val.g = decode_float(&buf[4]);
  464. val.b = decode_float(&buf[8]);
  465. val.a = decode_float(&buf[12]);
  466. r_variant = val;
  467. if (r_len) {
  468. (*r_len) += 4 * 4; // Colors should always be in single-precision.
  469. }
  470. } break;
  471. case Variant::STRING_NAME: {
  472. String str;
  473. Error err = _decode_string(buf, len, r_len, str);
  474. if (err) {
  475. return err;
  476. }
  477. r_variant = StringName(str);
  478. } break;
  479. case Variant::NODE_PATH: {
  480. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  481. int32_t strlen = decode_uint32(buf);
  482. if (strlen & 0x80000000) {
  483. //new format
  484. ERR_FAIL_COND_V(len < 12, ERR_INVALID_DATA);
  485. Vector<StringName> names;
  486. Vector<StringName> subnames;
  487. uint32_t namecount = strlen &= 0x7FFFFFFF;
  488. uint32_t subnamecount = decode_uint32(buf + 4);
  489. uint32_t flags = decode_uint32(buf + 8);
  490. len -= 12;
  491. buf += 12;
  492. if (flags & 2) { // Obsolete format with property separate from subpath
  493. subnamecount++;
  494. }
  495. uint32_t total = namecount + subnamecount;
  496. if (r_len) {
  497. (*r_len) += 12;
  498. }
  499. for (uint32_t i = 0; i < total; i++) {
  500. String str;
  501. Error err = _decode_string(buf, len, r_len, str);
  502. if (err) {
  503. return err;
  504. }
  505. if (i < namecount) {
  506. names.push_back(str);
  507. } else {
  508. subnames.push_back(str);
  509. }
  510. }
  511. r_variant = NodePath(names, subnames, flags & 1);
  512. } else {
  513. //old format, just a string
  514. ERR_FAIL_V(ERR_INVALID_DATA);
  515. }
  516. } break;
  517. case Variant::RID: {
  518. ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
  519. uint64_t id = decode_uint64(buf);
  520. if (r_len) {
  521. (*r_len) += 8;
  522. }
  523. r_variant = RID::from_uint64(id);
  524. } break;
  525. case Variant::OBJECT: {
  526. if (type & ENCODE_FLAG_OBJECT_AS_ID) {
  527. //this _is_ allowed
  528. ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
  529. ObjectID val = ObjectID(decode_uint64(buf));
  530. if (r_len) {
  531. (*r_len) += 8;
  532. }
  533. if (val.is_null()) {
  534. r_variant = (Object *)nullptr;
  535. } else {
  536. Ref<EncodedObjectAsID> obj_as_id;
  537. obj_as_id.instantiate();
  538. obj_as_id->set_object_id(val);
  539. r_variant = obj_as_id;
  540. }
  541. } else {
  542. ERR_FAIL_COND_V(!p_allow_objects, ERR_UNAUTHORIZED);
  543. String str;
  544. Error err = _decode_string(buf, len, r_len, str);
  545. if (err) {
  546. return err;
  547. }
  548. if (str.is_empty()) {
  549. r_variant = (Object *)nullptr;
  550. } else {
  551. Object *obj = ClassDB::instantiate(str);
  552. ERR_FAIL_COND_V(!obj, ERR_UNAVAILABLE);
  553. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  554. int32_t count = decode_uint32(buf);
  555. buf += 4;
  556. len -= 4;
  557. if (r_len) {
  558. (*r_len) += 4; // Size of count number.
  559. }
  560. for (int i = 0; i < count; i++) {
  561. str = String();
  562. err = _decode_string(buf, len, r_len, str);
  563. if (err) {
  564. return err;
  565. }
  566. Variant value;
  567. int used;
  568. err = decode_variant(value, buf, len, &used, p_allow_objects, p_depth + 1);
  569. if (err) {
  570. return err;
  571. }
  572. buf += used;
  573. len -= used;
  574. if (r_len) {
  575. (*r_len) += used;
  576. }
  577. obj->set(str, value);
  578. }
  579. if (Object::cast_to<RefCounted>(obj)) {
  580. Ref<RefCounted> ref = Ref<RefCounted>(Object::cast_to<RefCounted>(obj));
  581. r_variant = ref;
  582. } else {
  583. r_variant = obj;
  584. }
  585. }
  586. }
  587. } break;
  588. case Variant::CALLABLE: {
  589. r_variant = Callable();
  590. } break;
  591. case Variant::SIGNAL: {
  592. String name;
  593. Error err = _decode_string(buf, len, r_len, name);
  594. if (err) {
  595. return err;
  596. }
  597. ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
  598. ObjectID id = ObjectID(decode_uint64(buf));
  599. if (r_len) {
  600. (*r_len) += 8;
  601. }
  602. r_variant = Signal(id, StringName(name));
  603. } break;
  604. case Variant::DICTIONARY: {
  605. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  606. int32_t count = decode_uint32(buf);
  607. // bool shared = count&0x80000000;
  608. count &= 0x7FFFFFFF;
  609. buf += 4;
  610. len -= 4;
  611. if (r_len) {
  612. (*r_len) += 4; // Size of count number.
  613. }
  614. Dictionary d;
  615. for (int i = 0; i < count; i++) {
  616. Variant key, value;
  617. int used;
  618. Error err = decode_variant(key, buf, len, &used, p_allow_objects, p_depth + 1);
  619. ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
  620. buf += used;
  621. len -= used;
  622. if (r_len) {
  623. (*r_len) += used;
  624. }
  625. err = decode_variant(value, buf, len, &used, p_allow_objects, p_depth + 1);
  626. ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
  627. buf += used;
  628. len -= used;
  629. if (r_len) {
  630. (*r_len) += used;
  631. }
  632. d[key] = value;
  633. }
  634. r_variant = d;
  635. } break;
  636. case Variant::ARRAY: {
  637. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  638. int32_t count = decode_uint32(buf);
  639. // bool shared = count&0x80000000;
  640. count &= 0x7FFFFFFF;
  641. buf += 4;
  642. len -= 4;
  643. if (r_len) {
  644. (*r_len) += 4; // Size of count number.
  645. }
  646. Array varr;
  647. for (int i = 0; i < count; i++) {
  648. int used = 0;
  649. Variant v;
  650. Error err = decode_variant(v, buf, len, &used, p_allow_objects, p_depth + 1);
  651. ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
  652. buf += used;
  653. len -= used;
  654. varr.push_back(v);
  655. if (r_len) {
  656. (*r_len) += used;
  657. }
  658. }
  659. r_variant = varr;
  660. } break;
  661. // arrays
  662. case Variant::PACKED_BYTE_ARRAY: {
  663. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  664. int32_t count = decode_uint32(buf);
  665. buf += 4;
  666. len -= 4;
  667. ERR_FAIL_COND_V(count < 0 || count > len, ERR_INVALID_DATA);
  668. Vector<uint8_t> data;
  669. if (count) {
  670. data.resize(count);
  671. uint8_t *w = data.ptrw();
  672. for (int32_t i = 0; i < count; i++) {
  673. w[i] = buf[i];
  674. }
  675. }
  676. r_variant = data;
  677. if (r_len) {
  678. if (count % 4) {
  679. (*r_len) += 4 - count % 4;
  680. }
  681. (*r_len) += 4 + count;
  682. }
  683. } break;
  684. case Variant::PACKED_INT32_ARRAY: {
  685. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  686. int32_t count = decode_uint32(buf);
  687. buf += 4;
  688. len -= 4;
  689. ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA);
  690. ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA);
  691. Vector<int32_t> data;
  692. if (count) {
  693. //const int*rbuf=(const int*)buf;
  694. data.resize(count);
  695. int32_t *w = data.ptrw();
  696. for (int32_t i = 0; i < count; i++) {
  697. w[i] = decode_uint32(&buf[i * 4]);
  698. }
  699. }
  700. r_variant = Variant(data);
  701. if (r_len) {
  702. (*r_len) += 4 + count * sizeof(int32_t);
  703. }
  704. } break;
  705. case Variant::PACKED_INT64_ARRAY: {
  706. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  707. int32_t count = decode_uint32(buf);
  708. buf += 4;
  709. len -= 4;
  710. ERR_FAIL_MUL_OF(count, 8, ERR_INVALID_DATA);
  711. ERR_FAIL_COND_V(count < 0 || count * 8 > len, ERR_INVALID_DATA);
  712. Vector<int64_t> data;
  713. if (count) {
  714. //const int*rbuf=(const int*)buf;
  715. data.resize(count);
  716. int64_t *w = data.ptrw();
  717. for (int64_t i = 0; i < count; i++) {
  718. w[i] = decode_uint64(&buf[i * 8]);
  719. }
  720. }
  721. r_variant = Variant(data);
  722. if (r_len) {
  723. (*r_len) += 4 + count * sizeof(int64_t);
  724. }
  725. } break;
  726. case Variant::PACKED_FLOAT32_ARRAY: {
  727. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  728. int32_t count = decode_uint32(buf);
  729. buf += 4;
  730. len -= 4;
  731. ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA);
  732. ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA);
  733. Vector<float> data;
  734. if (count) {
  735. //const float*rbuf=(const float*)buf;
  736. data.resize(count);
  737. float *w = data.ptrw();
  738. for (int32_t i = 0; i < count; i++) {
  739. w[i] = decode_float(&buf[i * 4]);
  740. }
  741. }
  742. r_variant = data;
  743. if (r_len) {
  744. (*r_len) += 4 + count * sizeof(float);
  745. }
  746. } break;
  747. case Variant::PACKED_FLOAT64_ARRAY: {
  748. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  749. int32_t count = decode_uint32(buf);
  750. buf += 4;
  751. len -= 4;
  752. ERR_FAIL_MUL_OF(count, 8, ERR_INVALID_DATA);
  753. ERR_FAIL_COND_V(count < 0 || count * 8 > len, ERR_INVALID_DATA);
  754. Vector<double> data;
  755. if (count) {
  756. data.resize(count);
  757. double *w = data.ptrw();
  758. for (int64_t i = 0; i < count; i++) {
  759. w[i] = decode_double(&buf[i * 8]);
  760. }
  761. }
  762. r_variant = data;
  763. if (r_len) {
  764. (*r_len) += 4 + count * sizeof(double);
  765. }
  766. } break;
  767. case Variant::PACKED_STRING_ARRAY: {
  768. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  769. int32_t count = decode_uint32(buf);
  770. Vector<String> strings;
  771. buf += 4;
  772. len -= 4;
  773. if (r_len) {
  774. (*r_len) += 4; // Size of count number.
  775. }
  776. for (int32_t i = 0; i < count; i++) {
  777. String str;
  778. Error err = _decode_string(buf, len, r_len, str);
  779. if (err) {
  780. return err;
  781. }
  782. strings.push_back(str);
  783. }
  784. r_variant = strings;
  785. } break;
  786. case Variant::PACKED_VECTOR2_ARRAY: {
  787. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  788. int32_t count = decode_uint32(buf);
  789. buf += 4;
  790. len -= 4;
  791. Vector<Vector2> varray;
  792. if (type & ENCODE_FLAG_64) {
  793. ERR_FAIL_MUL_OF(count, sizeof(double) * 2, ERR_INVALID_DATA);
  794. ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 2 > (size_t)len, ERR_INVALID_DATA);
  795. if (r_len) {
  796. (*r_len) += 4; // Size of count number.
  797. }
  798. if (count) {
  799. varray.resize(count);
  800. Vector2 *w = varray.ptrw();
  801. for (int32_t i = 0; i < count; i++) {
  802. w[i].x = decode_double(buf + i * sizeof(double) * 2 + sizeof(double) * 0);
  803. w[i].y = decode_double(buf + i * sizeof(double) * 2 + sizeof(double) * 1);
  804. }
  805. int adv = sizeof(double) * 2 * count;
  806. if (r_len) {
  807. (*r_len) += adv;
  808. }
  809. len -= adv;
  810. buf += adv;
  811. }
  812. } else {
  813. ERR_FAIL_MUL_OF(count, sizeof(float) * 2, ERR_INVALID_DATA);
  814. ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 2 > (size_t)len, ERR_INVALID_DATA);
  815. if (r_len) {
  816. (*r_len) += 4; // Size of count number.
  817. }
  818. if (count) {
  819. varray.resize(count);
  820. Vector2 *w = varray.ptrw();
  821. for (int32_t i = 0; i < count; i++) {
  822. w[i].x = decode_float(buf + i * sizeof(float) * 2 + sizeof(float) * 0);
  823. w[i].y = decode_float(buf + i * sizeof(float) * 2 + sizeof(float) * 1);
  824. }
  825. int adv = sizeof(float) * 2 * count;
  826. if (r_len) {
  827. (*r_len) += adv;
  828. }
  829. }
  830. }
  831. r_variant = varray;
  832. } break;
  833. case Variant::PACKED_VECTOR3_ARRAY: {
  834. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  835. int32_t count = decode_uint32(buf);
  836. buf += 4;
  837. len -= 4;
  838. Vector<Vector3> varray;
  839. if (type & ENCODE_FLAG_64) {
  840. ERR_FAIL_MUL_OF(count, sizeof(double) * 3, ERR_INVALID_DATA);
  841. ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 3 > (size_t)len, ERR_INVALID_DATA);
  842. if (r_len) {
  843. (*r_len) += 4; // Size of count number.
  844. }
  845. if (count) {
  846. varray.resize(count);
  847. Vector3 *w = varray.ptrw();
  848. for (int32_t i = 0; i < count; i++) {
  849. w[i].x = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 0);
  850. w[i].y = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 1);
  851. w[i].z = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 2);
  852. }
  853. int adv = sizeof(double) * 3 * count;
  854. if (r_len) {
  855. (*r_len) += adv;
  856. }
  857. len -= adv;
  858. buf += adv;
  859. }
  860. } else {
  861. ERR_FAIL_MUL_OF(count, sizeof(float) * 3, ERR_INVALID_DATA);
  862. ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 3 > (size_t)len, ERR_INVALID_DATA);
  863. if (r_len) {
  864. (*r_len) += 4; // Size of count number.
  865. }
  866. if (count) {
  867. varray.resize(count);
  868. Vector3 *w = varray.ptrw();
  869. for (int32_t i = 0; i < count; i++) {
  870. w[i].x = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 0);
  871. w[i].y = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 1);
  872. w[i].z = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 2);
  873. }
  874. int adv = sizeof(float) * 3 * count;
  875. if (r_len) {
  876. (*r_len) += adv;
  877. }
  878. len -= adv;
  879. buf += adv;
  880. }
  881. }
  882. r_variant = varray;
  883. } break;
  884. case Variant::PACKED_COLOR_ARRAY: {
  885. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  886. int32_t count = decode_uint32(buf);
  887. buf += 4;
  888. len -= 4;
  889. ERR_FAIL_MUL_OF(count, 4 * 4, ERR_INVALID_DATA);
  890. ERR_FAIL_COND_V(count < 0 || count * 4 * 4 > len, ERR_INVALID_DATA);
  891. Vector<Color> carray;
  892. if (r_len) {
  893. (*r_len) += 4; // Size of count number.
  894. }
  895. if (count) {
  896. carray.resize(count);
  897. Color *w = carray.ptrw();
  898. for (int32_t i = 0; i < count; i++) {
  899. // Colors should always be in single-precision.
  900. w[i].r = decode_float(buf + i * 4 * 4 + 4 * 0);
  901. w[i].g = decode_float(buf + i * 4 * 4 + 4 * 1);
  902. w[i].b = decode_float(buf + i * 4 * 4 + 4 * 2);
  903. w[i].a = decode_float(buf + i * 4 * 4 + 4 * 3);
  904. }
  905. int adv = 4 * 4 * count;
  906. if (r_len) {
  907. (*r_len) += adv;
  908. }
  909. }
  910. r_variant = carray;
  911. } break;
  912. default: {
  913. ERR_FAIL_V(ERR_BUG);
  914. }
  915. }
  916. return OK;
  917. }
  918. static void _encode_string(const String &p_string, uint8_t *&buf, int &r_len) {
  919. CharString utf8 = p_string.utf8();
  920. if (buf) {
  921. encode_uint32(utf8.length(), buf);
  922. buf += 4;
  923. memcpy(buf, utf8.get_data(), utf8.length());
  924. buf += utf8.length();
  925. }
  926. r_len += 4 + utf8.length();
  927. while (r_len % 4) {
  928. r_len++; //pad
  929. if (buf) {
  930. *(buf++) = 0;
  931. }
  932. }
  933. }
  934. Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bool p_full_objects, int p_depth) {
  935. ERR_FAIL_COND_V_MSG(p_depth > Variant::MAX_RECURSION_DEPTH, ERR_OUT_OF_MEMORY, "Potential infinite recursion detected. Bailing.");
  936. uint8_t *buf = r_buffer;
  937. r_len = 0;
  938. uint32_t flags = 0;
  939. switch (p_variant.get_type()) {
  940. case Variant::INT: {
  941. int64_t val = p_variant;
  942. if (val > (int64_t)INT_MAX || val < (int64_t)INT_MIN) {
  943. flags |= ENCODE_FLAG_64;
  944. }
  945. } break;
  946. case Variant::FLOAT: {
  947. double d = p_variant;
  948. float f = d;
  949. if (double(f) != d) {
  950. flags |= ENCODE_FLAG_64;
  951. }
  952. } break;
  953. case Variant::OBJECT: {
  954. // Test for potential wrong values sent by the debugger when it breaks.
  955. Object *obj = p_variant.get_validated_object();
  956. if (!obj) {
  957. // Object is invalid, send a nullptr instead.
  958. if (buf) {
  959. encode_uint32(Variant::NIL, buf);
  960. }
  961. r_len += 4;
  962. return OK;
  963. }
  964. if (!p_full_objects) {
  965. flags |= ENCODE_FLAG_OBJECT_AS_ID;
  966. }
  967. } break;
  968. #ifdef REAL_T_IS_DOUBLE
  969. case Variant::VECTOR2:
  970. case Variant::VECTOR3:
  971. case Variant::PACKED_VECTOR2_ARRAY:
  972. case Variant::PACKED_VECTOR3_ARRAY:
  973. case Variant::TRANSFORM2D:
  974. case Variant::TRANSFORM3D:
  975. case Variant::QUATERNION:
  976. case Variant::PLANE:
  977. case Variant::BASIS:
  978. case Variant::RECT2:
  979. case Variant::AABB: {
  980. flags |= ENCODE_FLAG_64;
  981. } break;
  982. #endif // REAL_T_IS_DOUBLE
  983. default: {
  984. } // nothing to do at this stage
  985. }
  986. if (buf) {
  987. encode_uint32(p_variant.get_type() | flags, buf);
  988. buf += 4;
  989. }
  990. r_len += 4;
  991. switch (p_variant.get_type()) {
  992. case Variant::NIL: {
  993. //nothing to do
  994. } break;
  995. case Variant::BOOL: {
  996. if (buf) {
  997. encode_uint32(p_variant.operator bool(), buf);
  998. }
  999. r_len += 4;
  1000. } break;
  1001. case Variant::INT: {
  1002. if (flags & ENCODE_FLAG_64) {
  1003. //64 bits
  1004. if (buf) {
  1005. encode_uint64(p_variant.operator int64_t(), buf);
  1006. }
  1007. r_len += 8;
  1008. } else {
  1009. if (buf) {
  1010. encode_uint32(p_variant.operator int32_t(), buf);
  1011. }
  1012. r_len += 4;
  1013. }
  1014. } break;
  1015. case Variant::FLOAT: {
  1016. if (flags & ENCODE_FLAG_64) {
  1017. if (buf) {
  1018. encode_double(p_variant.operator double(), buf);
  1019. }
  1020. r_len += 8;
  1021. } else {
  1022. if (buf) {
  1023. encode_float(p_variant.operator float(), buf);
  1024. }
  1025. r_len += 4;
  1026. }
  1027. } break;
  1028. case Variant::NODE_PATH: {
  1029. NodePath np = p_variant;
  1030. if (buf) {
  1031. encode_uint32(uint32_t(np.get_name_count()) | 0x80000000, buf); //for compatibility with the old format
  1032. encode_uint32(np.get_subname_count(), buf + 4);
  1033. uint32_t np_flags = 0;
  1034. if (np.is_absolute()) {
  1035. np_flags |= 1;
  1036. }
  1037. encode_uint32(np_flags, buf + 8);
  1038. buf += 12;
  1039. }
  1040. r_len += 12;
  1041. int total = np.get_name_count() + np.get_subname_count();
  1042. for (int i = 0; i < total; i++) {
  1043. String str;
  1044. if (i < np.get_name_count()) {
  1045. str = np.get_name(i);
  1046. } else {
  1047. str = np.get_subname(i - np.get_name_count());
  1048. }
  1049. CharString utf8 = str.utf8();
  1050. int pad = 0;
  1051. if (utf8.length() % 4) {
  1052. pad = 4 - utf8.length() % 4;
  1053. }
  1054. if (buf) {
  1055. encode_uint32(utf8.length(), buf);
  1056. buf += 4;
  1057. memcpy(buf, utf8.get_data(), utf8.length());
  1058. buf += pad + utf8.length();
  1059. }
  1060. r_len += 4 + utf8.length() + pad;
  1061. }
  1062. } break;
  1063. case Variant::STRING:
  1064. case Variant::STRING_NAME: {
  1065. _encode_string(p_variant, buf, r_len);
  1066. } break;
  1067. // math types
  1068. case Variant::VECTOR2: {
  1069. if (buf) {
  1070. Vector2 v2 = p_variant;
  1071. encode_real(v2.x, &buf[0]);
  1072. encode_real(v2.y, &buf[sizeof(real_t)]);
  1073. }
  1074. r_len += 2 * sizeof(real_t);
  1075. } break;
  1076. case Variant::VECTOR2I: {
  1077. if (buf) {
  1078. Vector2i v2 = p_variant;
  1079. encode_uint32(v2.x, &buf[0]);
  1080. encode_uint32(v2.y, &buf[4]);
  1081. }
  1082. r_len += 2 * 4;
  1083. } break;
  1084. case Variant::RECT2: {
  1085. if (buf) {
  1086. Rect2 r2 = p_variant;
  1087. encode_real(r2.position.x, &buf[0]);
  1088. encode_real(r2.position.y, &buf[sizeof(real_t)]);
  1089. encode_real(r2.size.x, &buf[sizeof(real_t) * 2]);
  1090. encode_real(r2.size.y, &buf[sizeof(real_t) * 3]);
  1091. }
  1092. r_len += 4 * sizeof(real_t);
  1093. } break;
  1094. case Variant::RECT2I: {
  1095. if (buf) {
  1096. Rect2i r2 = p_variant;
  1097. encode_uint32(r2.position.x, &buf[0]);
  1098. encode_uint32(r2.position.y, &buf[4]);
  1099. encode_uint32(r2.size.x, &buf[8]);
  1100. encode_uint32(r2.size.y, &buf[12]);
  1101. }
  1102. r_len += 4 * 4;
  1103. } break;
  1104. case Variant::VECTOR3: {
  1105. if (buf) {
  1106. Vector3 v3 = p_variant;
  1107. encode_real(v3.x, &buf[0]);
  1108. encode_real(v3.y, &buf[sizeof(real_t)]);
  1109. encode_real(v3.z, &buf[sizeof(real_t) * 2]);
  1110. }
  1111. r_len += 3 * sizeof(real_t);
  1112. } break;
  1113. case Variant::VECTOR3I: {
  1114. if (buf) {
  1115. Vector3i v3 = p_variant;
  1116. encode_uint32(v3.x, &buf[0]);
  1117. encode_uint32(v3.y, &buf[4]);
  1118. encode_uint32(v3.z, &buf[8]);
  1119. }
  1120. r_len += 3 * 4;
  1121. } break;
  1122. case Variant::TRANSFORM2D: {
  1123. if (buf) {
  1124. Transform2D val = p_variant;
  1125. for (int i = 0; i < 3; i++) {
  1126. for (int j = 0; j < 2; j++) {
  1127. memcpy(&buf[(i * 2 + j) * sizeof(real_t)], &val.columns[i][j], sizeof(real_t));
  1128. }
  1129. }
  1130. }
  1131. r_len += 6 * sizeof(real_t);
  1132. } break;
  1133. case Variant::VECTOR4: {
  1134. if (buf) {
  1135. Vector4 v4 = p_variant;
  1136. encode_real(v4.x, &buf[0]);
  1137. encode_real(v4.y, &buf[sizeof(real_t)]);
  1138. encode_real(v4.z, &buf[sizeof(real_t) * 2]);
  1139. encode_real(v4.w, &buf[sizeof(real_t) * 3]);
  1140. }
  1141. r_len += 4 * sizeof(real_t);
  1142. } break;
  1143. case Variant::VECTOR4I: {
  1144. if (buf) {
  1145. Vector4i v4 = p_variant;
  1146. encode_uint32(v4.x, &buf[0]);
  1147. encode_uint32(v4.y, &buf[4]);
  1148. encode_uint32(v4.z, &buf[8]);
  1149. encode_uint32(v4.w, &buf[12]);
  1150. }
  1151. r_len += 4 * 4;
  1152. } break;
  1153. case Variant::PLANE: {
  1154. if (buf) {
  1155. Plane p = p_variant;
  1156. encode_real(p.normal.x, &buf[0]);
  1157. encode_real(p.normal.y, &buf[sizeof(real_t)]);
  1158. encode_real(p.normal.z, &buf[sizeof(real_t) * 2]);
  1159. encode_real(p.d, &buf[sizeof(real_t) * 3]);
  1160. }
  1161. r_len += 4 * sizeof(real_t);
  1162. } break;
  1163. case Variant::QUATERNION: {
  1164. if (buf) {
  1165. Quaternion q = p_variant;
  1166. encode_real(q.x, &buf[0]);
  1167. encode_real(q.y, &buf[sizeof(real_t)]);
  1168. encode_real(q.z, &buf[sizeof(real_t) * 2]);
  1169. encode_real(q.w, &buf[sizeof(real_t) * 3]);
  1170. }
  1171. r_len += 4 * sizeof(real_t);
  1172. } break;
  1173. case Variant::AABB: {
  1174. if (buf) {
  1175. AABB aabb = p_variant;
  1176. encode_real(aabb.position.x, &buf[0]);
  1177. encode_real(aabb.position.y, &buf[sizeof(real_t)]);
  1178. encode_real(aabb.position.z, &buf[sizeof(real_t) * 2]);
  1179. encode_real(aabb.size.x, &buf[sizeof(real_t) * 3]);
  1180. encode_real(aabb.size.y, &buf[sizeof(real_t) * 4]);
  1181. encode_real(aabb.size.z, &buf[sizeof(real_t) * 5]);
  1182. }
  1183. r_len += 6 * sizeof(real_t);
  1184. } break;
  1185. case Variant::BASIS: {
  1186. if (buf) {
  1187. Basis val = p_variant;
  1188. for (int i = 0; i < 3; i++) {
  1189. for (int j = 0; j < 3; j++) {
  1190. memcpy(&buf[(i * 3 + j) * sizeof(real_t)], &val.rows[i][j], sizeof(real_t));
  1191. }
  1192. }
  1193. }
  1194. r_len += 9 * sizeof(real_t);
  1195. } break;
  1196. case Variant::TRANSFORM3D: {
  1197. if (buf) {
  1198. Transform3D val = p_variant;
  1199. for (int i = 0; i < 3; i++) {
  1200. for (int j = 0; j < 3; j++) {
  1201. memcpy(&buf[(i * 3 + j) * sizeof(real_t)], &val.basis.rows[i][j], sizeof(real_t));
  1202. }
  1203. }
  1204. encode_real(val.origin.x, &buf[sizeof(real_t) * 9]);
  1205. encode_real(val.origin.y, &buf[sizeof(real_t) * 10]);
  1206. encode_real(val.origin.z, &buf[sizeof(real_t) * 11]);
  1207. }
  1208. r_len += 12 * sizeof(real_t);
  1209. } break;
  1210. case Variant::PROJECTION: {
  1211. if (buf) {
  1212. Projection val = p_variant;
  1213. for (int i = 0; i < 4; i++) {
  1214. for (int j = 0; j < 4; j++) {
  1215. memcpy(&buf[(i * 4 + j) * sizeof(real_t)], &val.columns[i][j], sizeof(real_t));
  1216. }
  1217. }
  1218. }
  1219. r_len += 16 * sizeof(real_t);
  1220. } break;
  1221. // misc types
  1222. case Variant::COLOR: {
  1223. if (buf) {
  1224. Color c = p_variant;
  1225. encode_float(c.r, &buf[0]);
  1226. encode_float(c.g, &buf[4]);
  1227. encode_float(c.b, &buf[8]);
  1228. encode_float(c.a, &buf[12]);
  1229. }
  1230. r_len += 4 * 4; // Colors should always be in single-precision.
  1231. } break;
  1232. case Variant::RID: {
  1233. RID rid = p_variant;
  1234. if (buf) {
  1235. encode_uint64(rid.get_id(), buf);
  1236. }
  1237. r_len += 8;
  1238. } break;
  1239. case Variant::OBJECT: {
  1240. if (p_full_objects) {
  1241. Object *obj = p_variant;
  1242. if (!obj) {
  1243. if (buf) {
  1244. encode_uint32(0, buf);
  1245. }
  1246. r_len += 4;
  1247. } else {
  1248. _encode_string(obj->get_class(), buf, r_len);
  1249. List<PropertyInfo> props;
  1250. obj->get_property_list(&props);
  1251. int pc = 0;
  1252. for (const PropertyInfo &E : props) {
  1253. if (!(E.usage & PROPERTY_USAGE_STORAGE)) {
  1254. continue;
  1255. }
  1256. pc++;
  1257. }
  1258. if (buf) {
  1259. encode_uint32(pc, buf);
  1260. buf += 4;
  1261. }
  1262. r_len += 4;
  1263. for (const PropertyInfo &E : props) {
  1264. if (!(E.usage & PROPERTY_USAGE_STORAGE)) {
  1265. continue;
  1266. }
  1267. _encode_string(E.name, buf, r_len);
  1268. int len;
  1269. Error err = encode_variant(obj->get(E.name), buf, len, p_full_objects, p_depth + 1);
  1270. ERR_FAIL_COND_V(err, err);
  1271. ERR_FAIL_COND_V(len % 4, ERR_BUG);
  1272. r_len += len;
  1273. if (buf) {
  1274. buf += len;
  1275. }
  1276. }
  1277. }
  1278. } else {
  1279. if (buf) {
  1280. Object *obj = p_variant.get_validated_object();
  1281. ObjectID id;
  1282. if (obj) {
  1283. id = obj->get_instance_id();
  1284. }
  1285. encode_uint64(id, buf);
  1286. }
  1287. r_len += 8;
  1288. }
  1289. } break;
  1290. case Variant::CALLABLE: {
  1291. } break;
  1292. case Variant::SIGNAL: {
  1293. Signal signal = p_variant;
  1294. _encode_string(signal.get_name(), buf, r_len);
  1295. if (buf) {
  1296. encode_uint64(signal.get_object_id(), buf);
  1297. }
  1298. r_len += 8;
  1299. } break;
  1300. case Variant::DICTIONARY: {
  1301. Dictionary d = p_variant;
  1302. if (buf) {
  1303. encode_uint32(uint32_t(d.size()), buf);
  1304. buf += 4;
  1305. }
  1306. r_len += 4;
  1307. List<Variant> keys;
  1308. d.get_key_list(&keys);
  1309. for (const Variant &E : keys) {
  1310. int len;
  1311. Error err = encode_variant(E, buf, len, p_full_objects, p_depth + 1);
  1312. ERR_FAIL_COND_V(err, err);
  1313. ERR_FAIL_COND_V(len % 4, ERR_BUG);
  1314. r_len += len;
  1315. if (buf) {
  1316. buf += len;
  1317. }
  1318. Variant *v = d.getptr(E);
  1319. ERR_FAIL_COND_V(!v, ERR_BUG);
  1320. err = encode_variant(*v, buf, len, p_full_objects, p_depth + 1);
  1321. ERR_FAIL_COND_V(err, err);
  1322. ERR_FAIL_COND_V(len % 4, ERR_BUG);
  1323. r_len += len;
  1324. if (buf) {
  1325. buf += len;
  1326. }
  1327. }
  1328. } break;
  1329. case Variant::ARRAY: {
  1330. Array v = p_variant;
  1331. if (buf) {
  1332. encode_uint32(uint32_t(v.size()), buf);
  1333. buf += 4;
  1334. }
  1335. r_len += 4;
  1336. for (int i = 0; i < v.size(); i++) {
  1337. int len;
  1338. Error err = encode_variant(v.get(i), buf, len, p_full_objects, p_depth + 1);
  1339. ERR_FAIL_COND_V(err, err);
  1340. ERR_FAIL_COND_V(len % 4, ERR_BUG);
  1341. r_len += len;
  1342. if (buf) {
  1343. buf += len;
  1344. }
  1345. }
  1346. } break;
  1347. // arrays
  1348. case Variant::PACKED_BYTE_ARRAY: {
  1349. Vector<uint8_t> data = p_variant;
  1350. int datalen = data.size();
  1351. int datasize = sizeof(uint8_t);
  1352. if (buf) {
  1353. encode_uint32(datalen, buf);
  1354. buf += 4;
  1355. const uint8_t *r = data.ptr();
  1356. memcpy(buf, &r[0], datalen * datasize);
  1357. buf += datalen * datasize;
  1358. }
  1359. r_len += 4 + datalen * datasize;
  1360. while (r_len % 4) {
  1361. r_len++;
  1362. if (buf) {
  1363. *(buf++) = 0;
  1364. }
  1365. }
  1366. } break;
  1367. case Variant::PACKED_INT32_ARRAY: {
  1368. Vector<int32_t> data = p_variant;
  1369. int datalen = data.size();
  1370. int datasize = sizeof(int32_t);
  1371. if (buf) {
  1372. encode_uint32(datalen, buf);
  1373. buf += 4;
  1374. const int32_t *r = data.ptr();
  1375. for (int32_t i = 0; i < datalen; i++) {
  1376. encode_uint32(r[i], &buf[i * datasize]);
  1377. }
  1378. }
  1379. r_len += 4 + datalen * datasize;
  1380. } break;
  1381. case Variant::PACKED_INT64_ARRAY: {
  1382. Vector<int64_t> data = p_variant;
  1383. int datalen = data.size();
  1384. int datasize = sizeof(int64_t);
  1385. if (buf) {
  1386. encode_uint32(datalen, buf);
  1387. buf += 4;
  1388. const int64_t *r = data.ptr();
  1389. for (int64_t i = 0; i < datalen; i++) {
  1390. encode_uint64(r[i], &buf[i * datasize]);
  1391. }
  1392. }
  1393. r_len += 4 + datalen * datasize;
  1394. } break;
  1395. case Variant::PACKED_FLOAT32_ARRAY: {
  1396. Vector<float> data = p_variant;
  1397. int datalen = data.size();
  1398. int datasize = sizeof(float);
  1399. if (buf) {
  1400. encode_uint32(datalen, buf);
  1401. buf += 4;
  1402. const float *r = data.ptr();
  1403. for (int i = 0; i < datalen; i++) {
  1404. encode_float(r[i], &buf[i * datasize]);
  1405. }
  1406. }
  1407. r_len += 4 + datalen * datasize;
  1408. } break;
  1409. case Variant::PACKED_FLOAT64_ARRAY: {
  1410. Vector<double> data = p_variant;
  1411. int datalen = data.size();
  1412. int datasize = sizeof(double);
  1413. if (buf) {
  1414. encode_uint32(datalen, buf);
  1415. buf += 4;
  1416. const double *r = data.ptr();
  1417. for (int i = 0; i < datalen; i++) {
  1418. encode_double(r[i], &buf[i * datasize]);
  1419. }
  1420. }
  1421. r_len += 4 + datalen * datasize;
  1422. } break;
  1423. case Variant::PACKED_STRING_ARRAY: {
  1424. Vector<String> data = p_variant;
  1425. int len = data.size();
  1426. if (buf) {
  1427. encode_uint32(len, buf);
  1428. buf += 4;
  1429. }
  1430. r_len += 4;
  1431. for (int i = 0; i < len; i++) {
  1432. CharString utf8 = data.get(i).utf8();
  1433. if (buf) {
  1434. encode_uint32(utf8.length() + 1, buf);
  1435. buf += 4;
  1436. memcpy(buf, utf8.get_data(), utf8.length() + 1);
  1437. buf += utf8.length() + 1;
  1438. }
  1439. r_len += 4 + utf8.length() + 1;
  1440. while (r_len % 4) {
  1441. r_len++; //pad
  1442. if (buf) {
  1443. *(buf++) = 0;
  1444. }
  1445. }
  1446. }
  1447. } break;
  1448. case Variant::PACKED_VECTOR2_ARRAY: {
  1449. Vector<Vector2> data = p_variant;
  1450. int len = data.size();
  1451. if (buf) {
  1452. encode_uint32(len, buf);
  1453. buf += 4;
  1454. }
  1455. r_len += 4;
  1456. if (buf) {
  1457. for (int i = 0; i < len; i++) {
  1458. Vector2 v = data.get(i);
  1459. encode_real(v.x, &buf[0]);
  1460. encode_real(v.y, &buf[sizeof(real_t)]);
  1461. buf += sizeof(real_t) * 2;
  1462. }
  1463. }
  1464. r_len += sizeof(real_t) * 2 * len;
  1465. } break;
  1466. case Variant::PACKED_VECTOR3_ARRAY: {
  1467. Vector<Vector3> data = p_variant;
  1468. int len = data.size();
  1469. if (buf) {
  1470. encode_uint32(len, buf);
  1471. buf += 4;
  1472. }
  1473. r_len += 4;
  1474. if (buf) {
  1475. for (int i = 0; i < len; i++) {
  1476. Vector3 v = data.get(i);
  1477. encode_real(v.x, &buf[0]);
  1478. encode_real(v.y, &buf[sizeof(real_t)]);
  1479. encode_real(v.z, &buf[sizeof(real_t) * 2]);
  1480. buf += sizeof(real_t) * 3;
  1481. }
  1482. }
  1483. r_len += sizeof(real_t) * 3 * len;
  1484. } break;
  1485. case Variant::PACKED_COLOR_ARRAY: {
  1486. Vector<Color> data = p_variant;
  1487. int len = data.size();
  1488. if (buf) {
  1489. encode_uint32(len, buf);
  1490. buf += 4;
  1491. }
  1492. r_len += 4;
  1493. if (buf) {
  1494. for (int i = 0; i < len; i++) {
  1495. Color c = data.get(i);
  1496. encode_float(c.r, &buf[0]);
  1497. encode_float(c.g, &buf[4]);
  1498. encode_float(c.b, &buf[8]);
  1499. encode_float(c.a, &buf[12]);
  1500. buf += 4 * 4; // Colors should always be in single-precision.
  1501. }
  1502. }
  1503. r_len += 4 * 4 * len;
  1504. } break;
  1505. default: {
  1506. ERR_FAIL_V(ERR_BUG);
  1507. }
  1508. }
  1509. return OK;
  1510. }
  1511. Vector<float> vector3_to_float32_array(const Vector3 *vecs, size_t count) {
  1512. // We always allocate a new array, and we don't memcpy.
  1513. // We also don't consider returning a pointer to the passed vectors when sizeof(real_t) == 4.
  1514. // One reason is that we could decide to put a 4th component in Vector3 for SIMD/mobile performance,
  1515. // which would cause trouble with these optimizations.
  1516. Vector<float> floats;
  1517. if (count == 0) {
  1518. return floats;
  1519. }
  1520. floats.resize(count * 3);
  1521. float *floats_w = floats.ptrw();
  1522. for (size_t i = 0; i < count; ++i) {
  1523. const Vector3 v = vecs[i];
  1524. floats_w[0] = v.x;
  1525. floats_w[1] = v.y;
  1526. floats_w[2] = v.z;
  1527. floats_w += 3;
  1528. }
  1529. return floats;
  1530. }