csg.cpp 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467
  1. /*************************************************************************/
  2. /* csg.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "csg.h"
  31. #include "core/math/geometry.h"
  32. #include "core/math/math_funcs.h"
  33. #include "core/sort_array.h"
  34. // Static helper functions.
  35. inline static bool is_snapable(const Vector3 &p_point1, const Vector3 &p_point2, real_t p_distance) {
  36. return (p_point1 - p_point2).length_squared() < p_distance * p_distance;
  37. }
  38. inline static Vector2 interpolate_segment_uv(const Vector2 p_segement_points[2], const Vector2 p_uvs[2], const Vector2 &p_interpolation_point) {
  39. float segment_length = (p_segement_points[1] - p_segement_points[0]).length();
  40. if (segment_length < CMP_EPSILON)
  41. return p_uvs[0];
  42. float distance = (p_interpolation_point - p_segement_points[0]).length();
  43. float fraction = distance / segment_length;
  44. return p_uvs[0].linear_interpolate(p_uvs[1], fraction);
  45. }
  46. inline static Vector2 interpolate_triangle_uv(const Vector2 p_vertices[3], const Vector2 p_uvs[3], const Vector2 &p_interpolation_point) {
  47. if (p_interpolation_point.distance_squared_to(p_vertices[0]) < CMP_EPSILON2)
  48. return p_uvs[0];
  49. if (p_interpolation_point.distance_squared_to(p_vertices[1]) < CMP_EPSILON2)
  50. return p_uvs[1];
  51. if (p_interpolation_point.distance_squared_to(p_vertices[2]) < CMP_EPSILON2)
  52. return p_uvs[2];
  53. Vector2 edge1 = p_vertices[1] - p_vertices[0];
  54. Vector2 edge2 = p_vertices[2] - p_vertices[0];
  55. Vector2 interpolation = p_interpolation_point - p_vertices[0];
  56. float edge1_on_edge1 = edge1.dot(edge1);
  57. float edge1_on_edge2 = edge1.dot(edge2);
  58. float edge2_on_edge2 = edge2.dot(edge2);
  59. float inter_on_edge1 = interpolation.dot(edge1);
  60. float inter_on_edge2 = interpolation.dot(edge2);
  61. float scale = (edge1_on_edge1 * edge2_on_edge2 - edge1_on_edge2 * edge1_on_edge2);
  62. if (scale == 0)
  63. return p_uvs[0];
  64. float v = (edge2_on_edge2 * inter_on_edge1 - edge1_on_edge2 * inter_on_edge2) / scale;
  65. float w = (edge1_on_edge1 * inter_on_edge2 - edge1_on_edge2 * inter_on_edge1) / scale;
  66. float u = 1.0f - v - w;
  67. return p_uvs[0] * u + p_uvs[1] * v + p_uvs[2] * w;
  68. }
  69. static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 p_vertices[3], float p_tolerance, Vector3 &r_intersection_point) {
  70. Vector3 edge1 = p_vertices[1] - p_vertices[0];
  71. Vector3 edge2 = p_vertices[2] - p_vertices[0];
  72. Vector3 h = p_dir.cross(edge2);
  73. real_t a = edge1.dot(h);
  74. // Check if ray is parrallel to triangle.
  75. if (Math::is_zero_approx(a))
  76. return false;
  77. real_t f = 1.0 / a;
  78. Vector3 s = p_from - p_vertices[0];
  79. real_t u = f * s.dot(h);
  80. if (u < 0.0 - p_tolerance || u > 1.0 + p_tolerance)
  81. return false;
  82. Vector3 q = s.cross(edge1);
  83. real_t v = f * p_dir.dot(q);
  84. if (v < 0.0 - p_tolerance || u + v > 1.0 + p_tolerance)
  85. return false;
  86. // Ray intersects triangle.
  87. // Calculate distance.
  88. real_t t = f * edge2.dot(q);
  89. // Confirm triangle is in front of ray.
  90. if (t >= p_tolerance) {
  91. r_intersection_point = p_from + p_dir * t;
  92. return true;
  93. } else
  94. return false;
  95. }
  96. inline bool is_point_in_triangle(const Vector3 &p_point, const Vector3 p_vertices[3], int p_shifted = 0) {
  97. real_t det = p_vertices[0].dot(p_vertices[1].cross(p_vertices[2]));
  98. // If determinant is, zero try shift the triangle and the point.
  99. if (Math::is_zero_approx(det)) {
  100. if (p_shifted > 2) {
  101. // Triangle appears degenerate, so ignore it.
  102. return false;
  103. }
  104. Vector3 shift_by;
  105. shift_by[p_shifted] = 1;
  106. Vector3 shifted_point = p_point + shift_by;
  107. Vector3 shifted_vertices[3] = { p_vertices[0] + shift_by, p_vertices[1] + shift_by, p_vertices[2] + shift_by };
  108. return is_point_in_triangle(shifted_point, shifted_vertices, p_shifted + 1);
  109. }
  110. // Find the barycentric coordinates of the point with respect to the vertices.
  111. real_t lambda[3];
  112. lambda[0] = p_vertices[1].cross(p_vertices[2]).dot(p_point) / det;
  113. lambda[1] = p_vertices[2].cross(p_vertices[0]).dot(p_point) / det;
  114. lambda[2] = p_vertices[0].cross(p_vertices[1]).dot(p_point) / det;
  115. // Point is in the plane if all lambdas sum to 1.
  116. if (!Math::is_equal_approx(lambda[0] + lambda[1] + lambda[2], 1)) return false;
  117. // Point is inside the triangle if all lambdas are positive.
  118. if (lambda[0] < 0 || lambda[1] < 0 || lambda[2] < 0) return false;
  119. return true;
  120. }
  121. inline static bool are_segements_parallel(const Vector2 p_segment1_points[2], const Vector2 p_segment2_points[2], float p_vertex_snap2) {
  122. Vector2 segment1 = p_segment1_points[1] - p_segment1_points[0];
  123. Vector2 segment2 = p_segment2_points[1] - p_segment2_points[0];
  124. real_t segment1_length2 = segment1.dot(segment1);
  125. real_t segment2_length2 = segment2.dot(segment2);
  126. real_t segment_onto_segment = segment2.dot(segment1);
  127. if (segment1_length2 < p_vertex_snap2 || segment2_length2 < p_vertex_snap2)
  128. return true;
  129. real_t max_separation2;
  130. if (segment1_length2 > segment2_length2) {
  131. max_separation2 = segment2_length2 - segment_onto_segment * segment_onto_segment / segment1_length2;
  132. } else {
  133. max_separation2 = segment1_length2 - segment_onto_segment * segment_onto_segment / segment2_length2;
  134. }
  135. return max_separation2 < p_vertex_snap2;
  136. }
  137. // CSGBrush
  138. void CSGBrush::_regen_face_aabbs() {
  139. for (int i = 0; i < faces.size(); i++) {
  140. faces.write[i].aabb = AABB();
  141. faces.write[i].aabb.position = faces[i].vertices[0];
  142. faces.write[i].aabb.expand_to(faces[i].vertices[1]);
  143. faces.write[i].aabb.expand_to(faces[i].vertices[2]);
  144. }
  145. }
  146. void CSGBrush::build_from_faces(const PoolVector<Vector3> &p_vertices, const PoolVector<Vector2> &p_uvs, const PoolVector<bool> &p_smooth, const PoolVector<Ref<Material> > &p_materials, const PoolVector<bool> &p_invert_faces) {
  147. faces.clear();
  148. int vc = p_vertices.size();
  149. ERR_FAIL_COND((vc % 3) != 0);
  150. PoolVector<Vector3>::Read rv = p_vertices.read();
  151. int uvc = p_uvs.size();
  152. PoolVector<Vector2>::Read ruv = p_uvs.read();
  153. int sc = p_smooth.size();
  154. PoolVector<bool>::Read rs = p_smooth.read();
  155. int mc = p_materials.size();
  156. PoolVector<Ref<Material> >::Read rm = p_materials.read();
  157. int ic = p_invert_faces.size();
  158. PoolVector<bool>::Read ri = p_invert_faces.read();
  159. Map<Ref<Material>, int> material_map;
  160. faces.resize(p_vertices.size() / 3);
  161. for (int i = 0; i < faces.size(); i++) {
  162. Face &f = faces.write[i];
  163. f.vertices[0] = rv[i * 3 + 0];
  164. f.vertices[1] = rv[i * 3 + 1];
  165. f.vertices[2] = rv[i * 3 + 2];
  166. if (uvc == vc) {
  167. f.uvs[0] = ruv[i * 3 + 0];
  168. f.uvs[1] = ruv[i * 3 + 1];
  169. f.uvs[2] = ruv[i * 3 + 2];
  170. }
  171. if (sc == vc / 3)
  172. f.smooth = rs[i];
  173. else
  174. f.smooth = false;
  175. if (ic == vc / 3)
  176. f.invert = ri[i];
  177. else
  178. f.invert = false;
  179. if (mc == vc / 3) {
  180. Ref<Material> mat = rm[i];
  181. if (mat.is_valid()) {
  182. const Map<Ref<Material>, int>::Element *E = material_map.find(mat);
  183. if (E) {
  184. f.material = E->get();
  185. } else {
  186. f.material = material_map.size();
  187. material_map[mat] = f.material;
  188. }
  189. } else {
  190. f.material = -1;
  191. }
  192. }
  193. }
  194. materials.resize(material_map.size());
  195. for (Map<Ref<Material>, int>::Element *E = material_map.front(); E; E = E->next()) {
  196. materials.write[E->get()] = E->key();
  197. }
  198. _regen_face_aabbs();
  199. }
  200. void CSGBrush::copy_from(const CSGBrush &p_brush, const Transform &p_xform) {
  201. faces = p_brush.faces;
  202. materials = p_brush.materials;
  203. for (int i = 0; i < faces.size(); i++) {
  204. for (int j = 0; j < 3; j++) {
  205. faces.write[i].vertices[j] = p_xform.xform(p_brush.faces[i].vertices[j]);
  206. }
  207. }
  208. _regen_face_aabbs();
  209. }
  210. // CSGBrushOperation
  211. void CSGBrushOperation::merge_brushes(Operation p_operation, const CSGBrush &p_brush_a, const CSGBrush &p_brush_b, CSGBrush &r_merged_brush, float p_vertex_snap) {
  212. // Check for face collisions and add necessary faces.
  213. Build2DFaceCollection build2DFaceCollection;
  214. for (int i = 0; i < p_brush_a.faces.size(); i++) {
  215. for (int j = 0; j < p_brush_b.faces.size(); j++) {
  216. if (p_brush_a.faces[i].aabb.intersects_inclusive(p_brush_b.faces[j].aabb)) {
  217. update_faces(p_brush_a, i, p_brush_b, j, build2DFaceCollection, p_vertex_snap);
  218. }
  219. }
  220. }
  221. // Add faces to MeshMerge.
  222. MeshMerge mesh_merge;
  223. mesh_merge.vertex_snap = p_vertex_snap;
  224. for (int i = 0; i < p_brush_a.faces.size(); i++) {
  225. Ref<Material> material;
  226. if (p_brush_a.faces[i].material != -1) {
  227. material = p_brush_a.materials[p_brush_a.faces[i].material];
  228. }
  229. if (build2DFaceCollection.build2DFacesA.has(i)) {
  230. build2DFaceCollection.build2DFacesA[i].addFacesToMesh(mesh_merge, p_brush_a.faces[i].smooth, p_brush_a.faces[i].invert, material, false);
  231. } else {
  232. Vector3 points[3];
  233. Vector2 uvs[3];
  234. for (int j = 0; j < 3; j++) {
  235. points[j] = p_brush_a.faces[i].vertices[j];
  236. uvs[j] = p_brush_a.faces[i].uvs[j];
  237. }
  238. mesh_merge.add_face(points, uvs, p_brush_a.faces[i].smooth, p_brush_a.faces[i].invert, material, false);
  239. }
  240. }
  241. for (int i = 0; i < p_brush_b.faces.size(); i++) {
  242. Ref<Material> material;
  243. if (p_brush_b.faces[i].material != -1) {
  244. material = p_brush_b.materials[p_brush_b.faces[i].material];
  245. }
  246. if (build2DFaceCollection.build2DFacesB.has(i)) {
  247. build2DFaceCollection.build2DFacesB[i].addFacesToMesh(mesh_merge, p_brush_b.faces[i].smooth, p_brush_b.faces[i].invert, material, true);
  248. } else {
  249. Vector3 points[3];
  250. Vector2 uvs[3];
  251. for (int j = 0; j < 3; j++) {
  252. points[j] = p_brush_b.faces[i].vertices[j];
  253. uvs[j] = p_brush_b.faces[i].uvs[j];
  254. }
  255. mesh_merge.add_face(points, uvs, p_brush_b.faces[i].smooth, p_brush_b.faces[i].invert, material, true);
  256. }
  257. }
  258. // Mark faces that ended up inside the intersection.
  259. mesh_merge.mark_inside_faces();
  260. // Create new brush and fill with new faces.
  261. r_merged_brush.faces.clear();
  262. switch (p_operation) {
  263. case OPERATION_UNION: {
  264. int outside_count = 0;
  265. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  266. if (mesh_merge.faces[i].inside)
  267. continue;
  268. outside_count++;
  269. }
  270. r_merged_brush.faces.resize(outside_count);
  271. outside_count = 0;
  272. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  273. if (mesh_merge.faces[i].inside)
  274. continue;
  275. for (int j = 0; j < 3; j++) {
  276. r_merged_brush.faces.write[outside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
  277. r_merged_brush.faces.write[outside_count].uvs[j] = mesh_merge.faces[i].uvs[j];
  278. }
  279. r_merged_brush.faces.write[outside_count].smooth = mesh_merge.faces[i].smooth;
  280. r_merged_brush.faces.write[outside_count].invert = mesh_merge.faces[i].invert;
  281. r_merged_brush.faces.write[outside_count].material = mesh_merge.faces[i].material_idx;
  282. outside_count++;
  283. }
  284. r_merged_brush._regen_face_aabbs();
  285. } break;
  286. case OPERATION_INTERSECTION: {
  287. int inside_count = 0;
  288. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  289. if (!mesh_merge.faces[i].inside)
  290. continue;
  291. inside_count++;
  292. }
  293. r_merged_brush.faces.resize(inside_count);
  294. inside_count = 0;
  295. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  296. if (!mesh_merge.faces[i].inside)
  297. continue;
  298. for (int j = 0; j < 3; j++) {
  299. r_merged_brush.faces.write[inside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
  300. r_merged_brush.faces.write[inside_count].uvs[j] = mesh_merge.faces[i].uvs[j];
  301. }
  302. r_merged_brush.faces.write[inside_count].smooth = mesh_merge.faces[i].smooth;
  303. r_merged_brush.faces.write[inside_count].invert = mesh_merge.faces[i].invert;
  304. r_merged_brush.faces.write[inside_count].material = mesh_merge.faces[i].material_idx;
  305. inside_count++;
  306. }
  307. r_merged_brush._regen_face_aabbs();
  308. } break;
  309. case OPERATION_SUBSTRACTION: {
  310. int face_count = 0;
  311. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  312. if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside)
  313. continue;
  314. if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside)
  315. continue;
  316. face_count++;
  317. }
  318. r_merged_brush.faces.resize(face_count);
  319. face_count = 0;
  320. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  321. if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside)
  322. continue;
  323. if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside)
  324. continue;
  325. for (int j = 0; j < 3; j++) {
  326. r_merged_brush.faces.write[face_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
  327. r_merged_brush.faces.write[face_count].uvs[j] = mesh_merge.faces[i].uvs[j];
  328. }
  329. if (mesh_merge.faces[i].from_b) {
  330. //invert facing of insides of B
  331. SWAP(r_merged_brush.faces.write[face_count].vertices[1], r_merged_brush.faces.write[face_count].vertices[2]);
  332. SWAP(r_merged_brush.faces.write[face_count].uvs[1], r_merged_brush.faces.write[face_count].uvs[2]);
  333. }
  334. r_merged_brush.faces.write[face_count].smooth = mesh_merge.faces[i].smooth;
  335. r_merged_brush.faces.write[face_count].invert = mesh_merge.faces[i].invert;
  336. r_merged_brush.faces.write[face_count].material = mesh_merge.faces[i].material_idx;
  337. face_count++;
  338. }
  339. r_merged_brush._regen_face_aabbs();
  340. } break;
  341. }
  342. // Update the list of materials.
  343. r_merged_brush.materials.resize(mesh_merge.materials.size());
  344. for (const Map<Ref<Material>, int>::Element *E = mesh_merge.materials.front(); E; E = E->next()) {
  345. r_merged_brush.materials.write[E->get()] = E->key();
  346. }
  347. }
  348. // CSGBrushOperation::MeshMerge
  349. // Use a limit to speed up bvh and limit the depth.
  350. #define BVH_LIMIT 8
  351. int CSGBrushOperation::MeshMerge::_create_bvh(FaceBVH *facebvhptr, FaceBVH **facebvhptrptr, int p_from, int p_size, int p_depth, int &r_max_depth, int &r_max_alloc) {
  352. if (p_depth > r_max_depth) {
  353. r_max_depth = p_depth;
  354. }
  355. if (p_size == 0) {
  356. return -1;
  357. }
  358. if (p_size <= BVH_LIMIT) {
  359. for (int i = 0; i < p_size - 1; i++) {
  360. facebvhptrptr[p_from + i]->next = facebvhptrptr[p_from + i + 1] - facebvhptr;
  361. }
  362. return facebvhptrptr[p_from] - facebvhptr;
  363. }
  364. AABB aabb;
  365. aabb = facebvhptrptr[p_from]->aabb;
  366. for (int i = 1; i < p_size; i++) {
  367. aabb.merge_with(facebvhptrptr[p_from + i]->aabb);
  368. }
  369. int li = aabb.get_longest_axis_index();
  370. switch (li) {
  371. case Vector3::AXIS_X: {
  372. SortArray<FaceBVH *, FaceBVHCmpX> sort_x;
  373. sort_x.nth_element(0, p_size, p_size / 2, &facebvhptrptr[p_from]);
  374. //sort_x.sort(&p_bb[p_from],p_size);
  375. } break;
  376. case Vector3::AXIS_Y: {
  377. SortArray<FaceBVH *, FaceBVHCmpY> sort_y;
  378. sort_y.nth_element(0, p_size, p_size / 2, &facebvhptrptr[p_from]);
  379. //sort_y.sort(&p_bb[p_from],p_size);
  380. } break;
  381. case Vector3::AXIS_Z: {
  382. SortArray<FaceBVH *, FaceBVHCmpZ> sort_z;
  383. sort_z.nth_element(0, p_size, p_size / 2, &facebvhptrptr[p_from]);
  384. //sort_z.sort(&p_bb[p_from],p_size);
  385. } break;
  386. }
  387. int left = _create_bvh(facebvhptr, facebvhptrptr, p_from, p_size / 2, p_depth + 1, r_max_depth, r_max_alloc);
  388. int right = _create_bvh(facebvhptr, facebvhptrptr, p_from + p_size / 2, p_size - p_size / 2, p_depth + 1, r_max_depth, r_max_alloc);
  389. int index = r_max_alloc++;
  390. FaceBVH *_new = &facebvhptr[index];
  391. _new->aabb = aabb;
  392. _new->center = aabb.position + aabb.size * 0.5;
  393. _new->face = -1;
  394. _new->left = left;
  395. _new->right = right;
  396. _new->next = -1;
  397. return index;
  398. }
  399. void CSGBrushOperation::MeshMerge::_add_distance(List<real_t> &r_intersectionsA, List<real_t> &r_intersectionsB, bool p_from_B, real_t p_distance) const {
  400. List<real_t> &intersections = p_from_B ? r_intersectionsB : r_intersectionsA;
  401. // Check if distance exists.
  402. for (const List<real_t>::Element *E = intersections.front(); E; E = E->next())
  403. if (Math::is_equal_approx(**E, p_distance)) return;
  404. intersections.push_back(p_distance);
  405. }
  406. bool CSGBrushOperation::MeshMerge::_bvh_inside(FaceBVH *facebvhptr, int p_max_depth, int p_bvh_first, int p_face_idx) const {
  407. Face face = faces[p_face_idx];
  408. Vector3 face_points[3] = {
  409. points[face.points[0]],
  410. points[face.points[1]],
  411. points[face.points[2]]
  412. };
  413. Vector3 face_center = (face_points[0] + face_points[1] + face_points[2]) / 3.0;
  414. Vector3 face_normal = Plane(face_points[0], face_points[1], face_points[2]).normal;
  415. uint32_t *stack = (uint32_t *)alloca(sizeof(int) * p_max_depth);
  416. enum {
  417. TEST_AABB_BIT = 0,
  418. VISIT_LEFT_BIT = 1,
  419. VISIT_RIGHT_BIT = 2,
  420. VISIT_DONE_BIT = 3,
  421. VISITED_BIT_SHIFT = 29,
  422. NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1,
  423. VISITED_BIT_MASK = ~NODE_IDX_MASK
  424. };
  425. List<real_t> intersectionsA;
  426. List<real_t> intersectionsB;
  427. int level = 0;
  428. int pos = p_bvh_first;
  429. stack[0] = pos;
  430. while (true) {
  431. uint32_t node = stack[level] & NODE_IDX_MASK;
  432. const FaceBVH *current_facebvhptr = &(facebvhptr[node]);
  433. bool done = false;
  434. switch (stack[level] >> VISITED_BIT_SHIFT) {
  435. case TEST_AABB_BIT: {
  436. if (current_facebvhptr->face >= 0) {
  437. while (current_facebvhptr) {
  438. if (p_face_idx != current_facebvhptr->face &&
  439. current_facebvhptr->aabb.intersects_ray(face_center, face_normal)) {
  440. const Face &current_face = faces[current_facebvhptr->face];
  441. Vector3 current_points[3] = {
  442. points[current_face.points[0]],
  443. points[current_face.points[1]],
  444. points[current_face.points[2]]
  445. };
  446. Vector3 current_normal = Plane(current_points[0], current_points[1], current_points[2]).normal;
  447. Vector3 intersection_point;
  448. // Check if faces are co-planar.
  449. if ((current_normal - face_normal).length_squared() < CMP_EPSILON2 &&
  450. is_point_in_triangle(face_center, current_points)) {
  451. // Only add an intersection if checking a B face.
  452. if (face.from_b)
  453. _add_distance(intersectionsA, intersectionsB, current_face.from_b, 0);
  454. } else if (ray_intersects_triangle(face_center, face_normal, current_points, CMP_EPSILON, intersection_point)) {
  455. real_t distance = (intersection_point - face_center).length();
  456. _add_distance(intersectionsA, intersectionsB, current_face.from_b, distance);
  457. }
  458. }
  459. if (current_facebvhptr->next != -1) {
  460. current_facebvhptr = &facebvhptr[current_facebvhptr->next];
  461. } else {
  462. current_facebvhptr = nullptr;
  463. }
  464. }
  465. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  466. } else {
  467. bool valid = current_facebvhptr->aabb.intersects_ray(face_center, face_normal);
  468. if (!valid) {
  469. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  470. } else {
  471. stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node;
  472. }
  473. }
  474. continue;
  475. }
  476. case VISIT_LEFT_BIT: {
  477. stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
  478. stack[level + 1] = current_facebvhptr->left | TEST_AABB_BIT;
  479. level++;
  480. continue;
  481. }
  482. case VISIT_RIGHT_BIT: {
  483. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  484. stack[level + 1] = current_facebvhptr->right | TEST_AABB_BIT;
  485. level++;
  486. continue;
  487. }
  488. case VISIT_DONE_BIT: {
  489. if (level == 0) {
  490. done = true;
  491. break;
  492. } else
  493. level--;
  494. continue;
  495. }
  496. }
  497. if (done)
  498. break;
  499. }
  500. // Inside if face normal intersects other faces an odd number of times.
  501. return (intersectionsA.size() + intersectionsB.size()) & 1;
  502. }
  503. void CSGBrushOperation::MeshMerge::mark_inside_faces() {
  504. // Mark faces that are inside. This helps later do the boolean ops when merging.
  505. // This approach is very brute force with a bunch of optimizations,
  506. // such as BVH and pre AABB intersection test.
  507. Vector<FaceBVH> bvhvec;
  508. bvhvec.resize(faces.size() * 3); // Will never be larger than this (TODO: Make better)
  509. FaceBVH *facebvh = bvhvec.ptrw();
  510. AABB aabb_a;
  511. AABB aabb_b;
  512. bool first_a = true;
  513. bool first_b = true;
  514. for (int i = 0; i < faces.size(); i++) {
  515. facebvh[i].left = -1;
  516. facebvh[i].right = -1;
  517. facebvh[i].face = i;
  518. facebvh[i].aabb.position = points[faces[i].points[0]];
  519. facebvh[i].aabb.expand_to(points[faces[i].points[1]]);
  520. facebvh[i].aabb.expand_to(points[faces[i].points[2]]);
  521. facebvh[i].center = facebvh[i].aabb.position + facebvh[i].aabb.size * 0.5;
  522. facebvh[i].aabb.grow_by(vertex_snap);
  523. facebvh[i].next = -1;
  524. if (faces[i].from_b) {
  525. if (first_b) {
  526. aabb_b = facebvh[i].aabb;
  527. first_b = false;
  528. } else {
  529. aabb_b.merge_with(facebvh[i].aabb);
  530. }
  531. } else {
  532. if (first_a) {
  533. aabb_a = facebvh[i].aabb;
  534. first_a = false;
  535. } else {
  536. aabb_a.merge_with(facebvh[i].aabb);
  537. }
  538. }
  539. }
  540. AABB intersection_aabb = aabb_a.intersection(aabb_b);
  541. // Check if shape AABBs intersect.
  542. if (intersection_aabb.size == Vector3())
  543. return;
  544. Vector<FaceBVH *> bvhtrvec;
  545. bvhtrvec.resize(faces.size());
  546. FaceBVH **bvhptr = bvhtrvec.ptrw();
  547. for (int i = 0; i < faces.size(); i++) {
  548. bvhptr[i] = &facebvh[i];
  549. }
  550. int max_depth = 0;
  551. int max_alloc = faces.size();
  552. _create_bvh(facebvh, bvhptr, 0, faces.size(), 1, max_depth, max_alloc);
  553. for (int i = 0; i < faces.size(); i++) {
  554. // Check if face AABB intersects the intersection AABB.
  555. if (!intersection_aabb.intersects_inclusive(facebvh[i].aabb))
  556. continue;
  557. if (_bvh_inside(facebvh, max_depth, max_alloc - 1, i))
  558. faces.write[i].inside = true;
  559. }
  560. }
  561. void CSGBrushOperation::MeshMerge::add_face(const Vector3 p_points[3], const Vector2 p_uvs[3], bool p_smooth, bool p_invert, const Ref<Material> &p_material, bool p_from_b) {
  562. int indices[3];
  563. for (int i = 0; i < 3; i++) {
  564. VertexKey vk;
  565. vk.x = int((double(p_points[i].x) + double(vertex_snap) * 0.31234) / double(vertex_snap));
  566. vk.y = int((double(p_points[i].y) + double(vertex_snap) * 0.31234) / double(vertex_snap));
  567. vk.z = int((double(p_points[i].z) + double(vertex_snap) * 0.31234) / double(vertex_snap));
  568. int res;
  569. if (snap_cache.lookup(vk, res)) {
  570. indices[i] = res;
  571. } else {
  572. indices[i] = points.size();
  573. points.push_back(p_points[i]);
  574. snap_cache.set(vk, indices[i]);
  575. }
  576. }
  577. // Don't add degenerate faces.
  578. if (indices[0] == indices[2] || indices[0] == indices[1] || indices[1] == indices[2])
  579. return;
  580. MeshMerge::Face face;
  581. face.from_b = p_from_b;
  582. face.inside = false;
  583. face.smooth = p_smooth;
  584. face.invert = p_invert;
  585. if (p_material.is_valid()) {
  586. if (!materials.has(p_material)) {
  587. face.material_idx = materials.size();
  588. materials[p_material] = face.material_idx;
  589. } else {
  590. face.material_idx = materials[p_material];
  591. }
  592. } else {
  593. face.material_idx = -1;
  594. }
  595. for (int k = 0; k < 3; k++) {
  596. face.points[k] = indices[k];
  597. face.uvs[k] = p_uvs[k];
  598. }
  599. faces.push_back(face);
  600. }
  601. // CSGBrushOperation::Build2DFaces
  602. int CSGBrushOperation::Build2DFaces::_get_point_idx(const Vector2 &p_point) {
  603. for (int vertex_idx = 0; vertex_idx < vertices.size(); ++vertex_idx) {
  604. if ((p_point - vertices[vertex_idx].point).length_squared() < vertex_snap2)
  605. return vertex_idx;
  606. }
  607. return -1;
  608. }
  609. int CSGBrushOperation::Build2DFaces::_add_vertex(const Vertex2D &p_vertex) {
  610. // Check if vertex exists.
  611. int vertex_id = _get_point_idx(p_vertex.point);
  612. if (vertex_id != -1) return vertex_id;
  613. vertices.push_back(p_vertex);
  614. return vertices.size() - 1;
  615. }
  616. void CSGBrushOperation::Build2DFaces::_add_vertex_idx_sorted(Vector<int> &r_vertex_indices, int p_new_vertex_index) {
  617. if (p_new_vertex_index >= 0 && r_vertex_indices.find(p_new_vertex_index) == -1) {
  618. ERR_FAIL_COND_MSG(p_new_vertex_index >= vertices.size(), "Invalid vertex index.");
  619. // The first vertex.
  620. if (r_vertex_indices.size() == 0) {
  621. // Simply add it.
  622. r_vertex_indices.push_back(p_new_vertex_index);
  623. return;
  624. }
  625. // The second vertex.
  626. if (r_vertex_indices.size() == 1) {
  627. Vector2 first_point = vertices[r_vertex_indices[0]].point;
  628. Vector2 new_point = vertices[p_new_vertex_index].point;
  629. // Sort along the axis with the greatest difference.
  630. int axis = 0;
  631. if (Math::abs(new_point.x - first_point.x) < Math::abs(new_point.y - first_point.y)) axis = 1;
  632. // Add it to the beginnig or the end appropriately.
  633. if (new_point[axis] < first_point[axis])
  634. r_vertex_indices.insert(0, p_new_vertex_index);
  635. else
  636. r_vertex_indices.push_back(p_new_vertex_index);
  637. return;
  638. }
  639. // Third or later vertices.
  640. Vector2 first_point = vertices[r_vertex_indices[0]].point;
  641. Vector2 last_point = vertices[r_vertex_indices[r_vertex_indices.size() - 1]].point;
  642. Vector2 new_point = vertices[p_new_vertex_index].point;
  643. // Determine axis being sorted against i.e. the axis with the greatest difference.
  644. int axis = 0;
  645. if (Math::abs(last_point.x - first_point.x) < Math::abs(last_point.y - first_point.y)) axis = 1;
  646. // Insert the point at the appropriate index.
  647. for (int insert_idx = 0; insert_idx < r_vertex_indices.size(); ++insert_idx) {
  648. Vector2 insert_point = vertices[r_vertex_indices[insert_idx]].point;
  649. if (new_point[axis] < insert_point[axis]) {
  650. r_vertex_indices.insert(insert_idx, p_new_vertex_index);
  651. return;
  652. }
  653. }
  654. // New largest, add it to the end.
  655. r_vertex_indices.push_back(p_new_vertex_index);
  656. }
  657. }
  658. void CSGBrushOperation::Build2DFaces::_merge_faces(const Vector<int> &p_segment_indices) {
  659. int segments = p_segment_indices.size() - 1;
  660. if (segments < 2) return;
  661. // Faces around an inner vertex are merged by moving the inner vertex to the first vertex.
  662. for (int sorted_idx = 1; sorted_idx < segments; ++sorted_idx) {
  663. int closest_idx = 0;
  664. int inner_idx = p_segment_indices[sorted_idx];
  665. if (sorted_idx > segments / 2) {
  666. // Merge to other segment end.
  667. closest_idx = segments;
  668. // Reverse the merge order.
  669. inner_idx = p_segment_indices[segments + segments / 2 - sorted_idx];
  670. }
  671. // Find the mergable faces.
  672. Vector<int> merge_faces_idx;
  673. Vector<Face2D> merge_faces;
  674. Vector<int> merge_faces_inner_vertex_idx;
  675. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  676. for (int face_vertex_idx = 0; face_vertex_idx < 3; ++face_vertex_idx) {
  677. if (faces[face_idx].vertex_idx[face_vertex_idx] == inner_idx) {
  678. merge_faces_idx.push_back(face_idx);
  679. merge_faces.push_back(faces[face_idx]);
  680. merge_faces_inner_vertex_idx.push_back(face_vertex_idx);
  681. }
  682. }
  683. }
  684. Vector<int> degenerate_points;
  685. // Create the new faces.
  686. for (int merge_idx = 0; merge_idx < merge_faces.size(); ++merge_idx) {
  687. int outer_edge_idx[2];
  688. outer_edge_idx[0] = merge_faces[merge_idx].vertex_idx[(merge_faces_inner_vertex_idx[merge_idx] + 1) % 3];
  689. outer_edge_idx[1] = merge_faces[merge_idx].vertex_idx[(merge_faces_inner_vertex_idx[merge_idx] + 2) % 3];
  690. // Skip flattened faces.
  691. if (outer_edge_idx[0] == p_segment_indices[closest_idx] ||
  692. outer_edge_idx[1] == p_segment_indices[closest_idx]) continue;
  693. //Don't create degenerate triangles.
  694. Vector2 edge1[2] = {
  695. vertices[outer_edge_idx[0]].point,
  696. vertices[p_segment_indices[closest_idx]].point
  697. };
  698. Vector2 edge2[2] = {
  699. vertices[outer_edge_idx[1]].point,
  700. vertices[p_segment_indices[closest_idx]].point
  701. };
  702. if (are_segements_parallel(edge1, edge2, vertex_snap2)) {
  703. if (!degenerate_points.find(outer_edge_idx[0]))
  704. degenerate_points.push_back(outer_edge_idx[0]);
  705. if (!degenerate_points.find(outer_edge_idx[1]))
  706. degenerate_points.push_back(outer_edge_idx[1]);
  707. continue;
  708. }
  709. // Create new faces.
  710. Face2D new_face;
  711. new_face.vertex_idx[0] = p_segment_indices[closest_idx];
  712. new_face.vertex_idx[1] = outer_edge_idx[0];
  713. new_face.vertex_idx[2] = outer_edge_idx[1];
  714. faces.push_back(new_face);
  715. }
  716. // Delete the old faces in reverse index order.
  717. merge_faces_idx.sort();
  718. merge_faces_idx.invert();
  719. for (int i = 0; i < merge_faces_idx.size(); ++i)
  720. faces.remove(merge_faces_idx[i]);
  721. if (degenerate_points.size() == 0) continue;
  722. // Split faces using degenerate points.
  723. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  724. Face2D face = faces[face_idx];
  725. Vertex2D face_vertices[3] = {
  726. vertices[face.vertex_idx[0]],
  727. vertices[face.vertex_idx[1]],
  728. vertices[face.vertex_idx[2]]
  729. };
  730. Vector2 face_points[3] = {
  731. face_vertices[0].point,
  732. face_vertices[1].point,
  733. face_vertices[2].point
  734. };
  735. for (int point_idx = 0; point_idx < degenerate_points.size(); ++point_idx) {
  736. int degenerate_idx = degenerate_points[point_idx];
  737. Vector2 point_2D = vertices[degenerate_idx].point;
  738. // Check if point is existing face vertex.
  739. bool existing = false;
  740. for (int i = 0; i < 3; ++i) {
  741. if ((point_2D - face_vertices[i].point).length_squared() < vertex_snap2) {
  742. existing = true;
  743. break;
  744. }
  745. }
  746. if (existing) continue;
  747. // Check if point is on an each edge.
  748. for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) {
  749. Vector2 edge_points[2] = {
  750. face_points[face_edge_idx],
  751. face_points[(face_edge_idx + 1) % 3]
  752. };
  753. Vector2 closest_point = Geometry::get_closest_point_to_segment_2d(point_2D, edge_points);
  754. if ((closest_point - point_2D).length_squared() < vertex_snap2) {
  755. int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3];
  756. // If new vertex snaps to degenerate vertex, just delete this face.
  757. if (degenerate_idx == opposite_vertex_idx) {
  758. faces.remove(face_idx);
  759. // Update index.
  760. --face_idx;
  761. break;
  762. }
  763. // Create two new faces around the new edge and remove this face.
  764. // The new edge is the last edge.
  765. Face2D left_face;
  766. left_face.vertex_idx[0] = degenerate_idx;
  767. left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3];
  768. left_face.vertex_idx[2] = opposite_vertex_idx;
  769. Face2D right_face;
  770. right_face.vertex_idx[0] = opposite_vertex_idx;
  771. right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx];
  772. right_face.vertex_idx[2] = degenerate_idx;
  773. faces.remove(face_idx);
  774. faces.insert(face_idx, right_face);
  775. faces.insert(face_idx, left_face);
  776. // Don't check against the new faces.
  777. ++face_idx;
  778. // No need to check other edges.
  779. break;
  780. }
  781. }
  782. }
  783. }
  784. }
  785. }
  786. void CSGBrushOperation::Build2DFaces::_find_edge_intersections(const Vector2 p_segment_points[2], Vector<int> &r_segment_indices) {
  787. // For each face.
  788. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  789. Face2D face = faces[face_idx];
  790. Vertex2D face_vertices[3] = {
  791. vertices[face.vertex_idx[0]],
  792. vertices[face.vertex_idx[1]],
  793. vertices[face.vertex_idx[2]]
  794. };
  795. // Check each edge.
  796. for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) {
  797. Vector2 edge_points[2] = {
  798. face_vertices[face_edge_idx].point,
  799. face_vertices[(face_edge_idx + 1) % 3].point
  800. };
  801. Vector2 edge_uvs[2] = {
  802. face_vertices[face_edge_idx].uv,
  803. face_vertices[(face_edge_idx + 1) % 3].uv
  804. };
  805. Vector2 intersection_point;
  806. // First check if the ends of the segment are on the edge.
  807. bool on_edge = false;
  808. for (int edge_point_idx = 0; edge_point_idx < 2; ++edge_point_idx) {
  809. intersection_point = Geometry::get_closest_point_to_segment_2d(p_segment_points[edge_point_idx], edge_points);
  810. if ((intersection_point - p_segment_points[edge_point_idx]).length_squared() < vertex_snap2) {
  811. on_edge = true;
  812. break;
  813. }
  814. }
  815. // Else check if the segment intersects the edge.
  816. if (on_edge || Geometry::segment_intersects_segment_2d(p_segment_points[0], p_segment_points[1], edge_points[0], edge_points[1], &intersection_point)) {
  817. // Check if intersection point is an edge point.
  818. if ((intersection_point - edge_points[0]).length_squared() < vertex_snap2 ||
  819. (intersection_point - edge_points[1]).length_squared() < vertex_snap2) continue;
  820. // Check if edge exists, by checking if the intersecting segment is parallel to the edge.
  821. if (are_segements_parallel(p_segment_points, edge_points, vertex_snap2)) continue;
  822. // Add the intersection point as a new vertex.
  823. Vertex2D new_vertex;
  824. new_vertex.point = intersection_point;
  825. new_vertex.uv = interpolate_segment_uv(edge_points, edge_uvs, intersection_point);
  826. int new_vertex_idx = _add_vertex(new_vertex);
  827. int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3];
  828. _add_vertex_idx_sorted(r_segment_indices, new_vertex_idx);
  829. // If new vertex snaps to opposite vertex, just delete this face.
  830. if (new_vertex_idx == opposite_vertex_idx) {
  831. faces.remove(face_idx);
  832. // Update index.
  833. --face_idx;
  834. break;
  835. }
  836. // If opposite point is on the segemnt, add its index to segment indices too.
  837. Vector2 closest_point = Geometry::get_closest_point_to_segment_2d(vertices[opposite_vertex_idx].point, p_segment_points);
  838. if ((closest_point - vertices[opposite_vertex_idx].point).length_squared() < vertex_snap2)
  839. _add_vertex_idx_sorted(r_segment_indices, opposite_vertex_idx);
  840. // Create two new faces around the new edge and remove this face.
  841. // The new edge is the last edge.
  842. Face2D left_face;
  843. left_face.vertex_idx[0] = new_vertex_idx;
  844. left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3];
  845. left_face.vertex_idx[2] = opposite_vertex_idx;
  846. Face2D right_face;
  847. right_face.vertex_idx[0] = opposite_vertex_idx;
  848. right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx];
  849. right_face.vertex_idx[2] = new_vertex_idx;
  850. faces.remove(face_idx);
  851. faces.insert(face_idx, right_face);
  852. faces.insert(face_idx, left_face);
  853. // Check against the new faces.
  854. --face_idx;
  855. break;
  856. }
  857. }
  858. }
  859. }
  860. int CSGBrushOperation::Build2DFaces::_insert_point(const Vector2 &p_point) {
  861. int new_vertex_idx = -1;
  862. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  863. Face2D face = faces[face_idx];
  864. Vertex2D face_vertices[3] = {
  865. vertices[face.vertex_idx[0]],
  866. vertices[face.vertex_idx[1]],
  867. vertices[face.vertex_idx[2]]
  868. };
  869. Vector2 points[3] = {
  870. face_vertices[0].point,
  871. face_vertices[1].point,
  872. face_vertices[2].point
  873. };
  874. Vector2 uvs[3] = {
  875. face_vertices[0].uv,
  876. face_vertices[1].uv,
  877. face_vertices[2].uv
  878. };
  879. // Check if point is existing face vertex.
  880. for (int i = 0; i < 3; ++i) {
  881. if ((p_point - face_vertices[i].point).length_squared() < vertex_snap2)
  882. return face.vertex_idx[i];
  883. }
  884. // Check if point is on an each edge.
  885. bool on_edge = false;
  886. for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) {
  887. Vector2 edge_points[2] = {
  888. points[face_edge_idx],
  889. points[(face_edge_idx + 1) % 3]
  890. };
  891. Vector2 edge_uvs[2] = {
  892. uvs[face_edge_idx],
  893. uvs[(face_edge_idx + 1) % 3]
  894. };
  895. Vector2 closest_point = Geometry::get_closest_point_to_segment_2d(p_point, edge_points);
  896. if ((closest_point - p_point).length_squared() < vertex_snap2) {
  897. on_edge = true;
  898. // Add the point as a new vertex.
  899. Vertex2D new_vertex;
  900. new_vertex.point = p_point;
  901. new_vertex.uv = interpolate_segment_uv(edge_points, edge_uvs, p_point);
  902. new_vertex_idx = _add_vertex(new_vertex);
  903. int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3];
  904. // If new vertex snaps to opposite vertex, just delete this face.
  905. if (new_vertex_idx == opposite_vertex_idx) {
  906. faces.remove(face_idx);
  907. // Update index.
  908. --face_idx;
  909. break;
  910. }
  911. // Don't create degenerate triangles.
  912. Vector2 split_edge1[2] = { vertices[new_vertex_idx].point, edge_points[0] };
  913. Vector2 split_edge2[2] = { vertices[new_vertex_idx].point, edge_points[1] };
  914. Vector2 new_edge[2] = { vertices[new_vertex_idx].point, vertices[opposite_vertex_idx].point };
  915. if (are_segements_parallel(split_edge1, new_edge, vertex_snap2) &&
  916. are_segements_parallel(split_edge2, new_edge, vertex_snap2)) {
  917. break;
  918. }
  919. // Create two new faces around the new edge and remove this face.
  920. // The new edge is the last edge.
  921. Face2D left_face;
  922. left_face.vertex_idx[0] = new_vertex_idx;
  923. left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3];
  924. left_face.vertex_idx[2] = opposite_vertex_idx;
  925. Face2D right_face;
  926. right_face.vertex_idx[0] = opposite_vertex_idx;
  927. right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx];
  928. right_face.vertex_idx[2] = new_vertex_idx;
  929. faces.remove(face_idx);
  930. faces.insert(face_idx, right_face);
  931. faces.insert(face_idx, left_face);
  932. // Don't check against the new faces.
  933. ++face_idx;
  934. // No need to check other edges.
  935. break;
  936. }
  937. }
  938. // If not on an edge, check if the point is inside the face.
  939. if (!on_edge && Geometry::is_point_in_triangle(p_point, face_vertices[0].point, face_vertices[1].point, face_vertices[2].point)) {
  940. // Add the point as a new vertex.
  941. Vertex2D new_vertex;
  942. new_vertex.point = p_point;
  943. new_vertex.uv = interpolate_triangle_uv(points, uvs, p_point);
  944. new_vertex_idx = _add_vertex(new_vertex);
  945. // Create three new faces around this point and remove this face.
  946. // The new vertex is the last vertex.
  947. for (int i = 0; i < 3; ++i) {
  948. // Don't create degenerate triangles.
  949. Vector2 edge[2] = { points[i], points[(i + 1) % 3] };
  950. Vector2 new_edge1[2] = { vertices[new_vertex_idx].point, points[i] };
  951. Vector2 new_edge2[2] = { vertices[new_vertex_idx].point, points[(i + 1) % 3] };
  952. if (are_segements_parallel(edge, new_edge1, vertex_snap2) &&
  953. are_segements_parallel(edge, new_edge2, vertex_snap2)) {
  954. continue;
  955. }
  956. Face2D new_face;
  957. new_face.vertex_idx[0] = face.vertex_idx[i];
  958. new_face.vertex_idx[1] = face.vertex_idx[(i + 1) % 3];
  959. new_face.vertex_idx[2] = new_vertex_idx;
  960. faces.push_back(new_face);
  961. }
  962. faces.remove(face_idx);
  963. // No need to check other faces.
  964. break;
  965. }
  966. }
  967. return new_vertex_idx;
  968. }
  969. void CSGBrushOperation::Build2DFaces::insert(const CSGBrush &p_brush, int p_face_idx) {
  970. // Find edge points that cross the plane and face points that are in the plane.
  971. // Map those points to 2D.
  972. // Create new faces from those points.
  973. Vector2 points_2D[3];
  974. int points_count = 0;
  975. for (int i = 0; i < 3; i++) {
  976. Vector3 point_3D = p_brush.faces[p_face_idx].vertices[i];
  977. if (plane.has_point(point_3D)) {
  978. // Point is in the plane, add it.
  979. Vector3 point_2D = plane.project(point_3D);
  980. point_2D = to_2D.xform(point_2D);
  981. points_2D[points_count++] = Vector2(point_2D.x, point_2D.y);
  982. } else {
  983. Vector3 next_point_3D = p_brush.faces[p_face_idx].vertices[(i + 1) % 3];
  984. if (plane.has_point(next_point_3D))
  985. continue; // Next point is in plane, it will be added separately.
  986. if (plane.is_point_over(point_3D) == plane.is_point_over(next_point_3D))
  987. continue; // Both points on the same side of the plane, ignore.
  988. // Edge crosses the plane, find and add the intersection point.
  989. Vector3 point_2D;
  990. if (plane.intersects_segment(point_3D, next_point_3D, &point_2D)) {
  991. point_2D = to_2D.xform(point_2D);
  992. points_2D[points_count++] = Vector2(point_2D.x, point_2D.y);
  993. }
  994. }
  995. }
  996. Vector<int> segment_indices;
  997. Vector2 segment[2];
  998. int inserted_index[3] = { -1, -1, -1 };
  999. // Insert points.
  1000. for (int i = 0; i < points_count; ++i) {
  1001. inserted_index[i] = _insert_point(points_2D[i]);
  1002. }
  1003. if (points_count == 2) {
  1004. // Insert a single segment.
  1005. segment[0] = points_2D[0];
  1006. segment[1] = points_2D[1];
  1007. _find_edge_intersections(segment, segment_indices);
  1008. for (int i = 0; i < 2; ++i) {
  1009. _add_vertex_idx_sorted(segment_indices, inserted_index[i]);
  1010. }
  1011. _merge_faces(segment_indices);
  1012. }
  1013. if (points_count == 3) {
  1014. // Insert three segments.
  1015. for (int edge_idx = 0; edge_idx < 3; ++edge_idx) {
  1016. segment[0] = points_2D[edge_idx];
  1017. segment[1] = points_2D[(edge_idx + 1) % 3];
  1018. _find_edge_intersections(segment, segment_indices);
  1019. for (int i = 0; i < 2; ++i) {
  1020. _add_vertex_idx_sorted(segment_indices, inserted_index[(edge_idx + i) % 3]);
  1021. }
  1022. _merge_faces(segment_indices);
  1023. segment_indices.clear();
  1024. }
  1025. }
  1026. }
  1027. void CSGBrushOperation::Build2DFaces::addFacesToMesh(MeshMerge &r_mesh_merge, bool p_smooth, bool p_invert, const Ref<Material> &p_material, bool p_from_b) {
  1028. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  1029. Face2D face = faces[face_idx];
  1030. Vertex2D fv[3] = {
  1031. vertices[face.vertex_idx[0]],
  1032. vertices[face.vertex_idx[1]],
  1033. vertices[face.vertex_idx[2]]
  1034. };
  1035. // Convert 2D vertex points to 3D.
  1036. Vector3 points_3D[3];
  1037. Vector2 uvs[3];
  1038. for (int i = 0; i < 3; ++i) {
  1039. Vector3 point_2D(fv[i].point.x, fv[i].point.y, 0);
  1040. points_3D[i] = to_3D.xform(point_2D);
  1041. uvs[i] = fv[i].uv;
  1042. }
  1043. r_mesh_merge.add_face(points_3D, uvs, p_smooth, p_invert, p_material, p_from_b);
  1044. }
  1045. }
  1046. CSGBrushOperation::Build2DFaces::Build2DFaces(const CSGBrush &p_brush, int p_face_idx, float p_vertex_snap2) :
  1047. vertex_snap2(p_vertex_snap2 * p_vertex_snap2) {
  1048. // Convert 3D vertex points to 2D.
  1049. Vector3 points_3D[3] = {
  1050. p_brush.faces[p_face_idx].vertices[0],
  1051. p_brush.faces[p_face_idx].vertices[1],
  1052. p_brush.faces[p_face_idx].vertices[2],
  1053. };
  1054. plane = Plane(points_3D[0], points_3D[1], points_3D[2]);
  1055. to_3D.origin = points_3D[0];
  1056. to_3D.basis.set_axis(2, plane.normal);
  1057. to_3D.basis.set_axis(0, (points_3D[1] - points_3D[2]).normalized());
  1058. to_3D.basis.set_axis(1, to_3D.basis.get_axis(0).cross(to_3D.basis.get_axis(2)).normalized());
  1059. to_2D = to_3D.affine_inverse();
  1060. Face2D face;
  1061. for (int i = 0; i < 3; i++) {
  1062. Vertex2D vertex;
  1063. Vector3 point_2D = to_2D.xform(points_3D[i]);
  1064. vertex.point.x = point_2D.x;
  1065. vertex.point.y = point_2D.y;
  1066. vertex.uv = p_brush.faces[p_face_idx].uvs[i];
  1067. vertices.push_back(vertex);
  1068. face.vertex_idx[i] = i;
  1069. }
  1070. faces.push_back(face);
  1071. }
  1072. void CSGBrushOperation::update_faces(const CSGBrush &p_brush_a, const int p_face_idx_a, const CSGBrush &p_brush_b, const int p_face_idx_b, Build2DFaceCollection &p_collection, float p_vertex_snap) {
  1073. Vector3 vertices_a[3] = {
  1074. p_brush_a.faces[p_face_idx_a].vertices[0],
  1075. p_brush_a.faces[p_face_idx_a].vertices[1],
  1076. p_brush_a.faces[p_face_idx_a].vertices[2],
  1077. };
  1078. Vector3 vertices_b[3] = {
  1079. p_brush_b.faces[p_face_idx_b].vertices[0],
  1080. p_brush_b.faces[p_face_idx_b].vertices[1],
  1081. p_brush_b.faces[p_face_idx_b].vertices[2],
  1082. };
  1083. // Don't use degenerate faces.
  1084. bool has_degenerate = false;
  1085. if (is_snapable(vertices_a[0], vertices_a[1], p_vertex_snap) ||
  1086. is_snapable(vertices_a[0], vertices_a[2], p_vertex_snap) ||
  1087. is_snapable(vertices_a[1], vertices_a[2], p_vertex_snap)) {
  1088. p_collection.build2DFacesA[p_face_idx_a] = Build2DFaces();
  1089. has_degenerate = true;
  1090. }
  1091. if (is_snapable(vertices_b[0], vertices_b[1], p_vertex_snap) ||
  1092. is_snapable(vertices_b[0], vertices_b[2], p_vertex_snap) ||
  1093. is_snapable(vertices_b[1], vertices_b[2], p_vertex_snap)) {
  1094. p_collection.build2DFacesB[p_face_idx_b] = Build2DFaces();
  1095. has_degenerate = true;
  1096. }
  1097. if (has_degenerate) return;
  1098. // Ensure B has points either side of or in the plane of A.
  1099. int over_count = 0, under_count = 0;
  1100. Plane plane_a(vertices_a[0], vertices_a[1], vertices_a[2]);
  1101. ERR_FAIL_COND_MSG(plane_a.normal == Vector3(), "Couldn't form plane from Brush A face.");
  1102. for (int i = 0; i < 3; i++) {
  1103. if (plane_a.has_point(vertices_b[i])) {
  1104. // In plane.
  1105. } else if (plane_a.is_point_over(vertices_b[i]))
  1106. over_count++;
  1107. else
  1108. under_count++;
  1109. }
  1110. // If all points under or over the plane, there is no intesection.
  1111. if (over_count == 3 || under_count == 3) return;
  1112. // Ensure A has points either side of or in the plane of B.
  1113. over_count = 0;
  1114. under_count = 0;
  1115. Plane plane_b(vertices_b[0], vertices_b[1], vertices_b[2]);
  1116. ERR_FAIL_COND_MSG(plane_b.normal == Vector3(), "Couldn't form plane from Brush B face.");
  1117. for (int i = 0; i < 3; i++) {
  1118. if (plane_b.has_point(vertices_a[i])) {
  1119. // In plane.
  1120. } else if (plane_b.is_point_over(vertices_a[i]))
  1121. over_count++;
  1122. else
  1123. under_count++;
  1124. }
  1125. // If all points under or over the plane, there is no intesection.
  1126. if (over_count == 3 || under_count == 3) return;
  1127. // Check for intersection using the SAT theorem.
  1128. {
  1129. // Edge pair cross product combinations.
  1130. for (int i = 0; i < 3; i++) {
  1131. Vector3 axis_a = (vertices_a[i] - vertices_a[(i + 1) % 3]).normalized();
  1132. for (int j = 0; j < 3; j++) {
  1133. Vector3 axis_b = (vertices_b[j] - vertices_b[(j + 1) % 3]).normalized();
  1134. Vector3 sep_axis = axis_a.cross(axis_b);
  1135. if (sep_axis == Vector3())
  1136. continue; //colineal
  1137. sep_axis.normalize();
  1138. real_t min_a = 1e20, max_a = -1e20;
  1139. real_t min_b = 1e20, max_b = -1e20;
  1140. for (int k = 0; k < 3; k++) {
  1141. real_t d = sep_axis.dot(vertices_a[k]);
  1142. min_a = MIN(min_a, d);
  1143. max_a = MAX(max_a, d);
  1144. d = sep_axis.dot(vertices_b[k]);
  1145. min_b = MIN(min_b, d);
  1146. max_b = MAX(max_b, d);
  1147. }
  1148. min_b -= (max_a - min_a) * 0.5;
  1149. max_b += (max_a - min_a) * 0.5;
  1150. real_t dmin = min_b - (min_a + max_a) * 0.5;
  1151. real_t dmax = max_b - (min_a + max_a) * 0.5;
  1152. if (dmin > CMP_EPSILON || dmax < -CMP_EPSILON) {
  1153. return; // Does not contain zero, so they don't overlap.
  1154. }
  1155. }
  1156. }
  1157. }
  1158. // If we're still here, the faces probably intersect, so add new faces.
  1159. if (!p_collection.build2DFacesA.has(p_face_idx_a)) {
  1160. p_collection.build2DFacesA[p_face_idx_a] = Build2DFaces(p_brush_a, p_face_idx_a, p_vertex_snap);
  1161. }
  1162. p_collection.build2DFacesA[p_face_idx_a].insert(p_brush_b, p_face_idx_b);
  1163. if (!p_collection.build2DFacesB.has(p_face_idx_b)) {
  1164. p_collection.build2DFacesB[p_face_idx_b] = Build2DFaces(p_brush_b, p_face_idx_b, p_vertex_snap);
  1165. }
  1166. p_collection.build2DFacesB[p_face_idx_b].insert(p_brush_a, p_face_idx_a);
  1167. }