math_funcs.h 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491
  1. /*************************************************************************/
  2. /* math_funcs.h */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #ifndef MATH_FUNCS_H
  31. #define MATH_FUNCS_H
  32. #include "core/math/math_defs.h"
  33. #include "core/math/random_pcg.h"
  34. #include "core/typedefs.h"
  35. #include "thirdparty/misc/pcg.h"
  36. #include <float.h>
  37. #include <math.h>
  38. class Math {
  39. static RandomPCG default_rand;
  40. public:
  41. Math() {} // useless to instance
  42. static const uint64_t RANDOM_MAX = 0xFFFFFFFF;
  43. static _ALWAYS_INLINE_ double sin(double p_x) { return ::sin(p_x); }
  44. static _ALWAYS_INLINE_ float sin(float p_x) { return ::sinf(p_x); }
  45. static _ALWAYS_INLINE_ double cos(double p_x) { return ::cos(p_x); }
  46. static _ALWAYS_INLINE_ float cos(float p_x) { return ::cosf(p_x); }
  47. static _ALWAYS_INLINE_ double tan(double p_x) { return ::tan(p_x); }
  48. static _ALWAYS_INLINE_ float tan(float p_x) { return ::tanf(p_x); }
  49. static _ALWAYS_INLINE_ double sinh(double p_x) { return ::sinh(p_x); }
  50. static _ALWAYS_INLINE_ float sinh(float p_x) { return ::sinhf(p_x); }
  51. static _ALWAYS_INLINE_ float sinc(float p_x) { return p_x == 0 ? 1 : ::sin(p_x) / p_x; }
  52. static _ALWAYS_INLINE_ double sinc(double p_x) { return p_x == 0 ? 1 : ::sin(p_x) / p_x; }
  53. static _ALWAYS_INLINE_ float sincn(float p_x) { return sinc(Math_PI * p_x); }
  54. static _ALWAYS_INLINE_ double sincn(double p_x) { return sinc(Math_PI * p_x); }
  55. static _ALWAYS_INLINE_ double cosh(double p_x) { return ::cosh(p_x); }
  56. static _ALWAYS_INLINE_ float cosh(float p_x) { return ::coshf(p_x); }
  57. static _ALWAYS_INLINE_ double tanh(double p_x) { return ::tanh(p_x); }
  58. static _ALWAYS_INLINE_ float tanh(float p_x) { return ::tanhf(p_x); }
  59. static _ALWAYS_INLINE_ double asin(double p_x) { return ::asin(p_x); }
  60. static _ALWAYS_INLINE_ float asin(float p_x) { return ::asinf(p_x); }
  61. static _ALWAYS_INLINE_ double acos(double p_x) { return ::acos(p_x); }
  62. static _ALWAYS_INLINE_ float acos(float p_x) { return ::acosf(p_x); }
  63. static _ALWAYS_INLINE_ double atan(double p_x) { return ::atan(p_x); }
  64. static _ALWAYS_INLINE_ float atan(float p_x) { return ::atanf(p_x); }
  65. static _ALWAYS_INLINE_ double atan2(double p_y, double p_x) { return ::atan2(p_y, p_x); }
  66. static _ALWAYS_INLINE_ float atan2(float p_y, float p_x) { return ::atan2f(p_y, p_x); }
  67. static _ALWAYS_INLINE_ double sqrt(double p_x) { return ::sqrt(p_x); }
  68. static _ALWAYS_INLINE_ float sqrt(float p_x) { return ::sqrtf(p_x); }
  69. static _ALWAYS_INLINE_ double fmod(double p_x, double p_y) { return ::fmod(p_x, p_y); }
  70. static _ALWAYS_INLINE_ float fmod(float p_x, float p_y) { return ::fmodf(p_x, p_y); }
  71. static _ALWAYS_INLINE_ double floor(double p_x) { return ::floor(p_x); }
  72. static _ALWAYS_INLINE_ float floor(float p_x) { return ::floorf(p_x); }
  73. static _ALWAYS_INLINE_ double ceil(double p_x) { return ::ceil(p_x); }
  74. static _ALWAYS_INLINE_ float ceil(float p_x) { return ::ceilf(p_x); }
  75. static _ALWAYS_INLINE_ double pow(double p_x, double p_y) { return ::pow(p_x, p_y); }
  76. static _ALWAYS_INLINE_ float pow(float p_x, float p_y) { return ::powf(p_x, p_y); }
  77. static _ALWAYS_INLINE_ double log(double p_x) { return ::log(p_x); }
  78. static _ALWAYS_INLINE_ float log(float p_x) { return ::logf(p_x); }
  79. static _ALWAYS_INLINE_ double exp(double p_x) { return ::exp(p_x); }
  80. static _ALWAYS_INLINE_ float exp(float p_x) { return ::expf(p_x); }
  81. static _ALWAYS_INLINE_ bool is_nan(double p_val) {
  82. #ifdef _MSC_VER
  83. return _isnan(p_val);
  84. #elif defined(__GNUC__) && __GNUC__ < 6
  85. union {
  86. uint64_t u;
  87. double f;
  88. } ieee754;
  89. ieee754.f = p_val;
  90. // (unsigned)(0x7ff0000000000001 >> 32) : 0x7ff00000
  91. return ((((unsigned)(ieee754.u >> 32) & 0x7fffffff) + ((unsigned)ieee754.u != 0)) > 0x7ff00000);
  92. #else
  93. return isnan(p_val);
  94. #endif
  95. }
  96. static _ALWAYS_INLINE_ bool is_nan(float p_val) {
  97. #ifdef _MSC_VER
  98. return _isnan(p_val);
  99. #elif defined(__GNUC__) && __GNUC__ < 6
  100. union {
  101. uint32_t u;
  102. float f;
  103. } ieee754;
  104. ieee754.f = p_val;
  105. // -----------------------------------
  106. // (single-precision floating-point)
  107. // NaN : s111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
  108. // : (> 0x7f800000)
  109. // where,
  110. // s : sign
  111. // x : non-zero number
  112. // -----------------------------------
  113. return ((ieee754.u & 0x7fffffff) > 0x7f800000);
  114. #else
  115. return isnan(p_val);
  116. #endif
  117. }
  118. static _ALWAYS_INLINE_ bool is_inf(double p_val) {
  119. #ifdef _MSC_VER
  120. return !_finite(p_val);
  121. // use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era
  122. #elif defined(__GNUC__) && __GNUC__ < 6
  123. union {
  124. uint64_t u;
  125. double f;
  126. } ieee754;
  127. ieee754.f = p_val;
  128. return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 &&
  129. ((unsigned)ieee754.u == 0);
  130. #else
  131. return isinf(p_val);
  132. #endif
  133. }
  134. static _ALWAYS_INLINE_ bool is_inf(float p_val) {
  135. #ifdef _MSC_VER
  136. return !_finite(p_val);
  137. // use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era
  138. #elif defined(__GNUC__) && __GNUC__ < 6
  139. union {
  140. uint32_t u;
  141. float f;
  142. } ieee754;
  143. ieee754.f = p_val;
  144. return (ieee754.u & 0x7fffffff) == 0x7f800000;
  145. #else
  146. return isinf(p_val);
  147. #endif
  148. }
  149. static _ALWAYS_INLINE_ double abs(double g) { return absd(g); }
  150. static _ALWAYS_INLINE_ float abs(float g) { return absf(g); }
  151. static _ALWAYS_INLINE_ int abs(int g) { return g > 0 ? g : -g; }
  152. static _ALWAYS_INLINE_ double fposmod(double p_x, double p_y) {
  153. double value = Math::fmod(p_x, p_y);
  154. if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
  155. value += p_y;
  156. }
  157. value += 0.0;
  158. return value;
  159. }
  160. static _ALWAYS_INLINE_ float fposmod(float p_x, float p_y) {
  161. float value = Math::fmod(p_x, p_y);
  162. if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
  163. value += p_y;
  164. }
  165. value += 0.0;
  166. return value;
  167. }
  168. static _ALWAYS_INLINE_ int posmod(int p_x, int p_y) {
  169. int value = p_x % p_y;
  170. if ((value < 0 && p_y > 0) || (value > 0 && p_y < 0)) {
  171. value += p_y;
  172. }
  173. return value;
  174. }
  175. static _ALWAYS_INLINE_ double deg2rad(double p_y) { return p_y * Math_PI / 180.0; }
  176. static _ALWAYS_INLINE_ float deg2rad(float p_y) { return p_y * Math_PI / 180.0; }
  177. static _ALWAYS_INLINE_ double rad2deg(double p_y) { return p_y * 180.0 / Math_PI; }
  178. static _ALWAYS_INLINE_ float rad2deg(float p_y) { return p_y * 180.0 / Math_PI; }
  179. static _ALWAYS_INLINE_ double lerp(double p_from, double p_to, double p_weight) { return p_from + (p_to - p_from) * p_weight; }
  180. static _ALWAYS_INLINE_ float lerp(float p_from, float p_to, float p_weight) { return p_from + (p_to - p_from) * p_weight; }
  181. static _ALWAYS_INLINE_ double lerp_angle(double p_from, double p_to, double p_weight) {
  182. double difference = fmod(p_to - p_from, Math_TAU);
  183. double distance = fmod(2.0 * difference, Math_TAU) - difference;
  184. return p_from + distance * p_weight;
  185. }
  186. static _ALWAYS_INLINE_ float lerp_angle(float p_from, float p_to, float p_weight) {
  187. float difference = fmod(p_to - p_from, (float)Math_TAU);
  188. float distance = fmod(2.0f * difference, (float)Math_TAU) - difference;
  189. return p_from + distance * p_weight;
  190. }
  191. static _ALWAYS_INLINE_ double inverse_lerp(double p_from, double p_to, double p_value) { return (p_value - p_from) / (p_to - p_from); }
  192. static _ALWAYS_INLINE_ float inverse_lerp(float p_from, float p_to, float p_value) { return (p_value - p_from) / (p_to - p_from); }
  193. static _ALWAYS_INLINE_ double range_lerp(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) { return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value)); }
  194. static _ALWAYS_INLINE_ float range_lerp(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) { return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value)); }
  195. static _ALWAYS_INLINE_ double smoothstep(double p_from, double p_to, double p_weight) {
  196. if (is_equal_approx(p_from, p_to))
  197. return p_from;
  198. double x = CLAMP((p_weight - p_from) / (p_to - p_from), 0.0, 1.0);
  199. return x * x * (3.0 - 2.0 * x);
  200. }
  201. static _ALWAYS_INLINE_ float smoothstep(float p_from, float p_to, float p_weight) {
  202. if (is_equal_approx(p_from, p_to))
  203. return p_from;
  204. float x = CLAMP((p_weight - p_from) / (p_to - p_from), 0.0f, 1.0f);
  205. return x * x * (3.0f - 2.0f * x);
  206. }
  207. static _ALWAYS_INLINE_ double move_toward(double p_from, double p_to, double p_delta) { return abs(p_to - p_from) <= p_delta ? p_to : p_from + SGN(p_to - p_from) * p_delta; }
  208. static _ALWAYS_INLINE_ float move_toward(float p_from, float p_to, float p_delta) { return abs(p_to - p_from) <= p_delta ? p_to : p_from + SGN(p_to - p_from) * p_delta; }
  209. static _ALWAYS_INLINE_ double linear2db(double p_linear) { return Math::log(p_linear) * 8.6858896380650365530225783783321; }
  210. static _ALWAYS_INLINE_ float linear2db(float p_linear) { return Math::log(p_linear) * 8.6858896380650365530225783783321; }
  211. static _ALWAYS_INLINE_ double db2linear(double p_db) { return Math::exp(p_db * 0.11512925464970228420089957273422); }
  212. static _ALWAYS_INLINE_ float db2linear(float p_db) { return Math::exp(p_db * 0.11512925464970228420089957273422); }
  213. static _ALWAYS_INLINE_ double round(double p_val) { return (p_val >= 0) ? Math::floor(p_val + 0.5) : -Math::floor(-p_val + 0.5); }
  214. static _ALWAYS_INLINE_ float round(float p_val) { return (p_val >= 0) ? Math::floor(p_val + 0.5) : -Math::floor(-p_val + 0.5); }
  215. static _ALWAYS_INLINE_ int64_t wrapi(int64_t value, int64_t min, int64_t max) {
  216. int64_t range = max - min;
  217. return range == 0 ? min : min + ((((value - min) % range) + range) % range);
  218. }
  219. static _ALWAYS_INLINE_ double wrapf(double value, double min, double max) {
  220. double range = max - min;
  221. return is_zero_approx(range) ? min : value - (range * Math::floor((value - min) / range));
  222. }
  223. static _ALWAYS_INLINE_ float wrapf(float value, float min, float max) {
  224. float range = max - min;
  225. return is_zero_approx(range) ? min : value - (range * Math::floor((value - min) / range));
  226. }
  227. // double only, as these functions are mainly used by the editor and not performance-critical,
  228. static double ease(double p_x, double p_c);
  229. static int step_decimals(double p_step);
  230. static int range_step_decimals(double p_step);
  231. static double stepify(double p_value, double p_step);
  232. static double dectime(double p_value, double p_amount, double p_step);
  233. static uint32_t larger_prime(uint32_t p_val);
  234. static void seed(uint64_t x);
  235. static void randomize();
  236. static uint32_t rand_from_seed(uint64_t *seed);
  237. static uint32_t rand();
  238. static _ALWAYS_INLINE_ double randd() { return (double)rand() / (double)Math::RANDOM_MAX; }
  239. static _ALWAYS_INLINE_ float randf() { return (float)rand() / (float)Math::RANDOM_MAX; }
  240. static double random(double from, double to);
  241. static float random(float from, float to);
  242. static real_t random(int from, int to) { return (real_t)random((real_t)from, (real_t)to); }
  243. static _ALWAYS_INLINE_ bool is_equal_approx_ratio(real_t a, real_t b, real_t epsilon = CMP_EPSILON, real_t min_epsilon = CMP_EPSILON) {
  244. // this is an approximate way to check that numbers are close, as a ratio of their average size
  245. // helps compare approximate numbers that may be very big or very small
  246. real_t diff = abs(a - b);
  247. if (diff == 0.0 || diff < min_epsilon) {
  248. return true;
  249. }
  250. real_t avg_size = (abs(a) + abs(b)) / 2.0;
  251. diff /= avg_size;
  252. return diff < epsilon;
  253. }
  254. static _ALWAYS_INLINE_ bool is_equal_approx(real_t a, real_t b) {
  255. // Check for exact equality first, required to handle "infinity" values.
  256. if (a == b) {
  257. return true;
  258. }
  259. // Then check for approximate equality.
  260. real_t tolerance = CMP_EPSILON * abs(a);
  261. if (tolerance < CMP_EPSILON) {
  262. tolerance = CMP_EPSILON;
  263. }
  264. return abs(a - b) < tolerance;
  265. }
  266. static _ALWAYS_INLINE_ bool is_equal_approx(real_t a, real_t b, real_t tolerance) {
  267. // Check for exact equality first, required to handle "infinity" values.
  268. if (a == b) {
  269. return true;
  270. }
  271. // Then check for approximate equality.
  272. return abs(a - b) < tolerance;
  273. }
  274. static _ALWAYS_INLINE_ bool is_zero_approx(real_t s) {
  275. return abs(s) < CMP_EPSILON;
  276. }
  277. static _ALWAYS_INLINE_ float absf(float g) {
  278. union {
  279. float f;
  280. uint32_t i;
  281. } u;
  282. u.f = g;
  283. u.i &= 2147483647u;
  284. return u.f;
  285. }
  286. static _ALWAYS_INLINE_ double absd(double g) {
  287. union {
  288. double d;
  289. uint64_t i;
  290. } u;
  291. u.d = g;
  292. u.i &= (uint64_t)9223372036854775807ll;
  293. return u.d;
  294. }
  295. //this function should be as fast as possible and rounding mode should not matter
  296. static _ALWAYS_INLINE_ int fast_ftoi(float a) {
  297. static int b;
  298. #if (defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0603) || WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP // windows 8 phone?
  299. b = (int)((a > 0.0) ? (a + 0.5) : (a - 0.5));
  300. #elif defined(_MSC_VER) && _MSC_VER < 1800
  301. __asm fld a __asm fistp b
  302. /*#elif defined( __GNUC__ ) && ( defined( __i386__ ) || defined( __x86_64__ ) )
  303. // use AT&T inline assembly style, document that
  304. // we use memory as output (=m) and input (m)
  305. __asm__ __volatile__ (
  306. "flds %1 \n\t"
  307. "fistpl %0 \n\t"
  308. : "=m" (b)
  309. : "m" (a));*/
  310. #else
  311. b = lrintf(a); //assuming everything but msvc 2012 or earlier has lrint
  312. #endif
  313. return b;
  314. }
  315. static _ALWAYS_INLINE_ uint32_t halfbits_to_floatbits(uint16_t h) {
  316. uint16_t h_exp, h_sig;
  317. uint32_t f_sgn, f_exp, f_sig;
  318. h_exp = (h & 0x7c00u);
  319. f_sgn = ((uint32_t)h & 0x8000u) << 16;
  320. switch (h_exp) {
  321. case 0x0000u: /* 0 or subnormal */
  322. h_sig = (h & 0x03ffu);
  323. /* Signed zero */
  324. if (h_sig == 0) {
  325. return f_sgn;
  326. }
  327. /* Subnormal */
  328. h_sig <<= 1;
  329. while ((h_sig & 0x0400u) == 0) {
  330. h_sig <<= 1;
  331. h_exp++;
  332. }
  333. f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23;
  334. f_sig = ((uint32_t)(h_sig & 0x03ffu)) << 13;
  335. return f_sgn + f_exp + f_sig;
  336. case 0x7c00u: /* inf or NaN */
  337. /* All-ones exponent and a copy of the significand */
  338. return f_sgn + 0x7f800000u + (((uint32_t)(h & 0x03ffu)) << 13);
  339. default: /* normalized */
  340. /* Just need to adjust the exponent and shift */
  341. return f_sgn + (((uint32_t)(h & 0x7fffu) + 0x1c000u) << 13);
  342. }
  343. }
  344. static _ALWAYS_INLINE_ float halfptr_to_float(const uint16_t *h) {
  345. union {
  346. uint32_t u32;
  347. float f32;
  348. } u;
  349. u.u32 = halfbits_to_floatbits(*h);
  350. return u.f32;
  351. }
  352. static _ALWAYS_INLINE_ float half_to_float(const uint16_t h) {
  353. return halfptr_to_float(&h);
  354. }
  355. static _ALWAYS_INLINE_ uint16_t make_half_float(float f) {
  356. union {
  357. float fv;
  358. uint32_t ui;
  359. } ci;
  360. ci.fv = f;
  361. uint32_t x = ci.ui;
  362. uint32_t sign = (unsigned short)(x >> 31);
  363. uint32_t mantissa;
  364. uint32_t exp;
  365. uint16_t hf;
  366. // get mantissa
  367. mantissa = x & ((1 << 23) - 1);
  368. // get exponent bits
  369. exp = x & (0xFF << 23);
  370. if (exp >= 0x47800000) {
  371. // check if the original single precision float number is a NaN
  372. if (mantissa && (exp == (0xFF << 23))) {
  373. // we have a single precision NaN
  374. mantissa = (1 << 23) - 1;
  375. } else {
  376. // 16-bit half-float representation stores number as Inf
  377. mantissa = 0;
  378. }
  379. hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) |
  380. (uint16_t)(mantissa >> 13);
  381. }
  382. // check if exponent is <= -15
  383. else if (exp <= 0x38000000) {
  384. /*// store a denorm half-float value or zero
  385. exp = (0x38000000 - exp) >> 23;
  386. mantissa >>= (14 + exp);
  387. hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa);
  388. */
  389. hf = 0; //denormals do not work for 3D, convert to zero
  390. } else {
  391. hf = (((uint16_t)sign) << 15) |
  392. (uint16_t)((exp - 0x38000000) >> 13) |
  393. (uint16_t)(mantissa >> 13);
  394. }
  395. return hf;
  396. }
  397. static _ALWAYS_INLINE_ float snap_scalar(float p_offset, float p_step, float p_target) {
  398. return p_step != 0 ? Math::stepify(p_target - p_offset, p_step) + p_offset : p_target;
  399. }
  400. static _ALWAYS_INLINE_ float snap_scalar_separation(float p_offset, float p_step, float p_target, float p_separation) {
  401. if (p_step != 0) {
  402. float a = Math::stepify(p_target - p_offset, p_step + p_separation) + p_offset;
  403. float b = a;
  404. if (p_target >= 0)
  405. b -= p_separation;
  406. else
  407. b += p_step;
  408. return (Math::abs(p_target - a) < Math::abs(p_target - b)) ? a : b;
  409. }
  410. return p_target;
  411. }
  412. };
  413. #endif // MATH_FUNCS_H