triangle_mesh.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751
  1. /*************************************************************************/
  2. /* triangle_mesh.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "triangle_mesh.h"
  31. #include "core/sort_array.h"
  32. int TriangleMesh::_create_bvh(BVH *p_bvh, BVH **p_bb, int p_from, int p_size, int p_depth, int &max_depth, int &max_alloc) {
  33. if (p_depth > max_depth) {
  34. max_depth = p_depth;
  35. }
  36. if (p_size == 1) {
  37. return p_bb[p_from] - p_bvh;
  38. } else if (p_size == 0) {
  39. return -1;
  40. }
  41. AABB aabb;
  42. aabb = p_bb[p_from]->aabb;
  43. for (int i = 1; i < p_size; i++) {
  44. aabb.merge_with(p_bb[p_from + i]->aabb);
  45. }
  46. int li = aabb.get_longest_axis_index();
  47. switch (li) {
  48. case Vector3::AXIS_X: {
  49. SortArray<BVH *, BVHCmpX> sort_x;
  50. sort_x.nth_element(0, p_size, p_size / 2, &p_bb[p_from]);
  51. //sort_x.sort(&p_bb[p_from],p_size);
  52. } break;
  53. case Vector3::AXIS_Y: {
  54. SortArray<BVH *, BVHCmpY> sort_y;
  55. sort_y.nth_element(0, p_size, p_size / 2, &p_bb[p_from]);
  56. //sort_y.sort(&p_bb[p_from],p_size);
  57. } break;
  58. case Vector3::AXIS_Z: {
  59. SortArray<BVH *, BVHCmpZ> sort_z;
  60. sort_z.nth_element(0, p_size, p_size / 2, &p_bb[p_from]);
  61. //sort_z.sort(&p_bb[p_from],p_size);
  62. } break;
  63. }
  64. int left = _create_bvh(p_bvh, p_bb, p_from, p_size / 2, p_depth + 1, max_depth, max_alloc);
  65. int right = _create_bvh(p_bvh, p_bb, p_from + p_size / 2, p_size - p_size / 2, p_depth + 1, max_depth, max_alloc);
  66. int index = max_alloc++;
  67. BVH *_new = &p_bvh[index];
  68. _new->aabb = aabb;
  69. _new->center = aabb.position + aabb.size * 0.5;
  70. _new->face_index = -1;
  71. _new->left = left;
  72. _new->right = right;
  73. return index;
  74. }
  75. void TriangleMesh::get_indices(Vector<int> *r_triangles_indices) const {
  76. if (!valid)
  77. return;
  78. const int triangles_num = triangles.size();
  79. // Parse vertices indices
  80. const Triangle *triangles_read = triangles.ptr();
  81. r_triangles_indices->resize(triangles_num * 3);
  82. int *r_indices_write = r_triangles_indices->ptrw();
  83. for (int i = 0; i < triangles_num; ++i) {
  84. r_indices_write[3 * i + 0] = triangles_read[i].indices[0];
  85. r_indices_write[3 * i + 1] = triangles_read[i].indices[1];
  86. r_indices_write[3 * i + 2] = triangles_read[i].indices[2];
  87. }
  88. }
  89. void TriangleMesh::create(const Vector<Vector3> &p_faces) {
  90. valid = false;
  91. int fc = p_faces.size();
  92. ERR_FAIL_COND(!fc || ((fc % 3) != 0));
  93. fc /= 3;
  94. triangles.resize(fc);
  95. bvh.resize(fc * 3); //will never be larger than this (todo make better)
  96. BVH *bw = bvh.ptrw();
  97. {
  98. //create faces and indices and base bvh
  99. //except for the Set for repeated triangles, everything
  100. //goes in-place.
  101. const Vector3 *r = p_faces.ptr();
  102. Triangle *w = triangles.ptrw();
  103. Map<Vector3, int> db;
  104. for (int i = 0; i < fc; i++) {
  105. Triangle &f = w[i];
  106. const Vector3 *v = &r[i * 3];
  107. for (int j = 0; j < 3; j++) {
  108. int vidx = -1;
  109. Vector3 vs = v[j].snapped(Vector3(0.0001, 0.0001, 0.0001));
  110. Map<Vector3, int>::Element *E = db.find(vs);
  111. if (E) {
  112. vidx = E->get();
  113. } else {
  114. vidx = db.size();
  115. db[vs] = vidx;
  116. }
  117. f.indices[j] = vidx;
  118. if (j == 0)
  119. bw[i].aabb.position = vs;
  120. else
  121. bw[i].aabb.expand_to(vs);
  122. }
  123. f.normal = Face3(r[i * 3 + 0], r[i * 3 + 1], r[i * 3 + 2]).get_plane().get_normal();
  124. bw[i].left = -1;
  125. bw[i].right = -1;
  126. bw[i].face_index = i;
  127. bw[i].center = bw[i].aabb.position + bw[i].aabb.size * 0.5;
  128. }
  129. vertices.resize(db.size());
  130. Vector3 *vw = vertices.ptrw();
  131. for (Map<Vector3, int>::Element *E = db.front(); E; E = E->next()) {
  132. vw[E->get()] = E->key();
  133. }
  134. }
  135. Vector<BVH *> bwptrs;
  136. bwptrs.resize(fc);
  137. BVH **bwp = bwptrs.ptrw();
  138. for (int i = 0; i < fc; i++) {
  139. bwp[i] = &bw[i];
  140. }
  141. max_depth = 0;
  142. int max_alloc = fc;
  143. _create_bvh(bw, bwp, 0, fc, 1, max_depth, max_alloc);
  144. bvh.resize(max_alloc); //resize back
  145. valid = true;
  146. }
  147. Vector3 TriangleMesh::get_area_normal(const AABB &p_aabb) const {
  148. uint32_t *stack = (uint32_t *)alloca(sizeof(int) * max_depth);
  149. enum {
  150. TEST_AABB_BIT = 0,
  151. VISIT_LEFT_BIT = 1,
  152. VISIT_RIGHT_BIT = 2,
  153. VISIT_DONE_BIT = 3,
  154. VISITED_BIT_SHIFT = 29,
  155. NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1,
  156. VISITED_BIT_MASK = ~NODE_IDX_MASK,
  157. };
  158. int n_count = 0;
  159. Vector3 n;
  160. int level = 0;
  161. const Triangle *triangleptr = triangles.ptr();
  162. // const Vector3 *verticesr = vertices.ptr();
  163. const BVH *bvhptr = bvh.ptr();
  164. int pos = bvh.size() - 1;
  165. stack[0] = pos;
  166. while (true) {
  167. uint32_t node = stack[level] & NODE_IDX_MASK;
  168. const BVH &b = bvhptr[node];
  169. bool done = false;
  170. switch (stack[level] >> VISITED_BIT_SHIFT) {
  171. case TEST_AABB_BIT: {
  172. bool valid = b.aabb.intersects(p_aabb);
  173. if (!valid) {
  174. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  175. } else {
  176. if (b.face_index >= 0) {
  177. const Triangle &s = triangleptr[b.face_index];
  178. n += s.normal;
  179. n_count++;
  180. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  181. } else {
  182. stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node;
  183. }
  184. }
  185. continue;
  186. }
  187. case VISIT_LEFT_BIT: {
  188. stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
  189. stack[level + 1] = b.left | TEST_AABB_BIT;
  190. level++;
  191. continue;
  192. }
  193. case VISIT_RIGHT_BIT: {
  194. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  195. stack[level + 1] = b.right | TEST_AABB_BIT;
  196. level++;
  197. continue;
  198. }
  199. case VISIT_DONE_BIT: {
  200. if (level == 0) {
  201. done = true;
  202. break;
  203. } else
  204. level--;
  205. continue;
  206. }
  207. }
  208. if (done)
  209. break;
  210. }
  211. if (n_count > 0)
  212. n /= n_count;
  213. return n;
  214. }
  215. bool TriangleMesh::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_point, Vector3 &r_normal) const {
  216. uint32_t *stack = (uint32_t *)alloca(sizeof(int) * max_depth);
  217. enum {
  218. TEST_AABB_BIT = 0,
  219. VISIT_LEFT_BIT = 1,
  220. VISIT_RIGHT_BIT = 2,
  221. VISIT_DONE_BIT = 3,
  222. VISITED_BIT_SHIFT = 29,
  223. NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1,
  224. VISITED_BIT_MASK = ~NODE_IDX_MASK,
  225. };
  226. Vector3 n = (p_end - p_begin).normalized();
  227. real_t d = 1e10;
  228. bool inters = false;
  229. int level = 0;
  230. const Triangle *triangleptr = triangles.ptr();
  231. const Vector3 *vertexptr = vertices.ptr();
  232. const BVH *bvhptr = bvh.ptr();
  233. int pos = bvh.size() - 1;
  234. stack[0] = pos;
  235. while (true) {
  236. uint32_t node = stack[level] & NODE_IDX_MASK;
  237. const BVH &b = bvhptr[node];
  238. bool done = false;
  239. switch (stack[level] >> VISITED_BIT_SHIFT) {
  240. case TEST_AABB_BIT: {
  241. bool valid = b.aabb.intersects_segment(p_begin, p_end);
  242. //bool valid = b.aabb.intersects(ray_aabb);
  243. if (!valid) {
  244. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  245. } else {
  246. if (b.face_index >= 0) {
  247. const Triangle &s = triangleptr[b.face_index];
  248. Face3 f3(vertexptr[s.indices[0]], vertexptr[s.indices[1]], vertexptr[s.indices[2]]);
  249. Vector3 res;
  250. if (f3.intersects_segment(p_begin, p_end, &res)) {
  251. real_t nd = n.dot(res);
  252. if (nd < d) {
  253. d = nd;
  254. r_point = res;
  255. r_normal = f3.get_plane().get_normal();
  256. inters = true;
  257. }
  258. }
  259. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  260. } else {
  261. stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node;
  262. }
  263. }
  264. continue;
  265. }
  266. case VISIT_LEFT_BIT: {
  267. stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
  268. stack[level + 1] = b.left | TEST_AABB_BIT;
  269. level++;
  270. continue;
  271. }
  272. case VISIT_RIGHT_BIT: {
  273. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  274. stack[level + 1] = b.right | TEST_AABB_BIT;
  275. level++;
  276. continue;
  277. }
  278. case VISIT_DONE_BIT: {
  279. if (level == 0) {
  280. done = true;
  281. break;
  282. } else
  283. level--;
  284. continue;
  285. }
  286. }
  287. if (done)
  288. break;
  289. }
  290. if (inters) {
  291. if (n.dot(r_normal) > 0)
  292. r_normal = -r_normal;
  293. }
  294. return inters;
  295. }
  296. bool TriangleMesh::intersect_ray(const Vector3 &p_begin, const Vector3 &p_dir, Vector3 &r_point, Vector3 &r_normal) const {
  297. uint32_t *stack = (uint32_t *)alloca(sizeof(int) * max_depth);
  298. enum {
  299. TEST_AABB_BIT = 0,
  300. VISIT_LEFT_BIT = 1,
  301. VISIT_RIGHT_BIT = 2,
  302. VISIT_DONE_BIT = 3,
  303. VISITED_BIT_SHIFT = 29,
  304. NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1,
  305. VISITED_BIT_MASK = ~NODE_IDX_MASK,
  306. };
  307. Vector3 n = p_dir;
  308. real_t d = 1e20;
  309. bool inters = false;
  310. int level = 0;
  311. const Triangle *triangleptr = triangles.ptr();
  312. const Vector3 *vertexptr = vertices.ptr();
  313. const BVH *bvhptr = bvh.ptr();
  314. int pos = bvh.size() - 1;
  315. stack[0] = pos;
  316. while (true) {
  317. uint32_t node = stack[level] & NODE_IDX_MASK;
  318. const BVH &b = bvhptr[node];
  319. bool done = false;
  320. switch (stack[level] >> VISITED_BIT_SHIFT) {
  321. case TEST_AABB_BIT: {
  322. bool valid = b.aabb.intersects_ray(p_begin, p_dir);
  323. if (!valid) {
  324. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  325. } else {
  326. if (b.face_index >= 0) {
  327. const Triangle &s = triangleptr[b.face_index];
  328. Face3 f3(vertexptr[s.indices[0]], vertexptr[s.indices[1]], vertexptr[s.indices[2]]);
  329. Vector3 res;
  330. if (f3.intersects_ray(p_begin, p_dir, &res)) {
  331. real_t nd = n.dot(res);
  332. if (nd < d) {
  333. d = nd;
  334. r_point = res;
  335. r_normal = f3.get_plane().get_normal();
  336. inters = true;
  337. }
  338. }
  339. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  340. } else {
  341. stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node;
  342. }
  343. }
  344. continue;
  345. }
  346. case VISIT_LEFT_BIT: {
  347. stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
  348. stack[level + 1] = b.left | TEST_AABB_BIT;
  349. level++;
  350. continue;
  351. }
  352. case VISIT_RIGHT_BIT: {
  353. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  354. stack[level + 1] = b.right | TEST_AABB_BIT;
  355. level++;
  356. continue;
  357. }
  358. case VISIT_DONE_BIT: {
  359. if (level == 0) {
  360. done = true;
  361. break;
  362. } else
  363. level--;
  364. continue;
  365. }
  366. }
  367. if (done)
  368. break;
  369. }
  370. if (inters) {
  371. if (n.dot(r_normal) > 0)
  372. r_normal = -r_normal;
  373. }
  374. return inters;
  375. }
  376. bool TriangleMesh::intersect_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const {
  377. uint32_t *stack = (uint32_t *)alloca(sizeof(int) * max_depth);
  378. //p_fully_inside = true;
  379. enum {
  380. TEST_AABB_BIT = 0,
  381. VISIT_LEFT_BIT = 1,
  382. VISIT_RIGHT_BIT = 2,
  383. VISIT_DONE_BIT = 3,
  384. VISITED_BIT_SHIFT = 29,
  385. NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1,
  386. VISITED_BIT_MASK = ~NODE_IDX_MASK,
  387. };
  388. int level = 0;
  389. const Triangle *triangleptr = triangles.ptr();
  390. const Vector3 *vertexptr = vertices.ptr();
  391. const BVH *bvhptr = bvh.ptr();
  392. int pos = bvh.size() - 1;
  393. stack[0] = pos;
  394. while (true) {
  395. uint32_t node = stack[level] & NODE_IDX_MASK;
  396. const BVH &b = bvhptr[node];
  397. bool done = false;
  398. switch (stack[level] >> VISITED_BIT_SHIFT) {
  399. case TEST_AABB_BIT: {
  400. bool valid = b.aabb.intersects_convex_shape(p_planes, p_plane_count, p_points, p_point_count);
  401. if (!valid) {
  402. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  403. } else {
  404. if (b.face_index >= 0) {
  405. const Triangle &s = triangleptr[b.face_index];
  406. for (int j = 0; j < 3; ++j) {
  407. const Vector3 &point = vertexptr[s.indices[j]];
  408. const Vector3 &next_point = vertexptr[s.indices[(j + 1) % 3]];
  409. Vector3 res;
  410. bool over = true;
  411. for (int i = 0; i < p_plane_count; i++) {
  412. const Plane &p = p_planes[i];
  413. if (p.intersects_segment(point, next_point, &res)) {
  414. bool inisde = true;
  415. for (int k = 0; k < p_plane_count; k++) {
  416. if (k == i)
  417. continue;
  418. const Plane &pp = p_planes[k];
  419. if (pp.is_point_over(res)) {
  420. inisde = false;
  421. break;
  422. }
  423. }
  424. if (inisde)
  425. return true;
  426. }
  427. if (p.is_point_over(point)) {
  428. over = false;
  429. break;
  430. }
  431. }
  432. if (over)
  433. return true;
  434. }
  435. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  436. } else {
  437. stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node;
  438. }
  439. }
  440. continue;
  441. }
  442. case VISIT_LEFT_BIT: {
  443. stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
  444. stack[level + 1] = b.left | TEST_AABB_BIT;
  445. level++;
  446. continue;
  447. }
  448. case VISIT_RIGHT_BIT: {
  449. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  450. stack[level + 1] = b.right | TEST_AABB_BIT;
  451. level++;
  452. continue;
  453. }
  454. case VISIT_DONE_BIT: {
  455. if (level == 0) {
  456. done = true;
  457. break;
  458. } else
  459. level--;
  460. continue;
  461. }
  462. }
  463. if (done)
  464. break;
  465. }
  466. return false;
  467. }
  468. bool TriangleMesh::inside_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count, Vector3 p_scale) const {
  469. uint32_t *stack = (uint32_t *)alloca(sizeof(int) * max_depth);
  470. enum {
  471. TEST_AABB_BIT = 0,
  472. VISIT_LEFT_BIT = 1,
  473. VISIT_RIGHT_BIT = 2,
  474. VISIT_DONE_BIT = 3,
  475. VISITED_BIT_SHIFT = 29,
  476. NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1,
  477. VISITED_BIT_MASK = ~NODE_IDX_MASK,
  478. };
  479. int level = 0;
  480. const Triangle *triangleptr = triangles.ptr();
  481. const Vector3 *vertexptr = vertices.ptr();
  482. const BVH *bvhptr = bvh.ptr();
  483. Transform scale(Basis().scaled(p_scale));
  484. int pos = bvh.size() - 1;
  485. stack[0] = pos;
  486. while (true) {
  487. uint32_t node = stack[level] & NODE_IDX_MASK;
  488. const BVH &b = bvhptr[node];
  489. bool done = false;
  490. switch (stack[level] >> VISITED_BIT_SHIFT) {
  491. case TEST_AABB_BIT: {
  492. bool intersects = scale.xform(b.aabb).intersects_convex_shape(p_planes, p_plane_count, p_points, p_point_count);
  493. if (!intersects)
  494. return false;
  495. bool inside = scale.xform(b.aabb).inside_convex_shape(p_planes, p_plane_count);
  496. if (inside) {
  497. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  498. } else {
  499. if (b.face_index >= 0) {
  500. const Triangle &s = triangleptr[b.face_index];
  501. for (int j = 0; j < 3; ++j) {
  502. Vector3 point = scale.xform(vertexptr[s.indices[j]]);
  503. for (int i = 0; i < p_plane_count; i++) {
  504. const Plane &p = p_planes[i];
  505. if (p.is_point_over(point))
  506. return false;
  507. }
  508. }
  509. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  510. } else {
  511. stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node;
  512. }
  513. }
  514. continue;
  515. }
  516. case VISIT_LEFT_BIT: {
  517. stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
  518. stack[level + 1] = b.left | TEST_AABB_BIT;
  519. level++;
  520. continue;
  521. }
  522. case VISIT_RIGHT_BIT: {
  523. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  524. stack[level + 1] = b.right | TEST_AABB_BIT;
  525. level++;
  526. continue;
  527. }
  528. case VISIT_DONE_BIT: {
  529. if (level == 0) {
  530. done = true;
  531. break;
  532. } else
  533. level--;
  534. continue;
  535. }
  536. }
  537. if (done)
  538. break;
  539. }
  540. return true;
  541. }
  542. bool TriangleMesh::is_valid() const {
  543. return valid;
  544. }
  545. Vector<Face3> TriangleMesh::get_faces() const {
  546. if (!valid)
  547. return Vector<Face3>();
  548. Vector<Face3> faces;
  549. int ts = triangles.size();
  550. faces.resize(triangles.size());
  551. Face3 *w = faces.ptrw();
  552. const Triangle *r = triangles.ptr();
  553. const Vector3 *rv = vertices.ptr();
  554. for (int i = 0; i < ts; i++) {
  555. for (int j = 0; j < 3; j++) {
  556. w[i].vertex[j] = rv[r[i].indices[j]];
  557. }
  558. }
  559. return faces;
  560. }
  561. TriangleMesh::TriangleMesh() {
  562. valid = false;
  563. max_depth = 0;
  564. }